PHYSIO-BIBLIOGRAPHY W-Z

Waadt R., Manalansan B., Rauniyar N., Munemasa S., Booker M. A., Brandt B., et al. (2015) – Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein Kinases2 and with Type 2A protein phosphatases that function in abscisic acid responses. – Plant Physiol. 169: 760–779 – doi: 10.1104/pp.15.00575 – http://www.plantphysiol.org/content/169/1/760 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-roles-of-regulatory-pp2aa-subunits-and-catalytic-pp2ac-subunits-in-aba-responses/ )

Wada T., Tachibana T., Shimura Y., Okada K. (1997) – Epidermal cell differentiation in Arabidopsis determined by a Myb homolog – CPC Science 277: 1113–1116 –

Wagg S., Mills G., Hayes F., Wilkinson S., Davies W. J. (2013) – Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris – Environmental Pollution 175: 82-91 – http://dx.doi.org/10.1016/j.envpol.2012.11.027 – https://www.sciencedirect.com/science/article/pii/S0269749112005052?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-responses-and-ozone/ )

Waggoner P. E. (1965) – Relative effectiveness of change in upper and lower stomatal openings – Crop Sci. 5: 291 –https://dl.sciencesocieties.org/publications/cs/abstracts/5/4/CS0050040291?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/16/effectiveness-of-change-in-upper-and-lower-stomatal-openings/ )

Waggoner P. E., Monteith J. L., Szeicz G. (1964) – Decreasing Transpiration of Field Plants by Chemical Closure of Stomata – Nature 201: 97–98 – doi:10.1038/201097b0 – https://www.nature.com/articles/201097b0 – (On our blog : https://plantstomata.wordpress.com/2018/01/05/chemical-closure-of-stomata-and-the-decrease-of-transpiration/ )

Waggoner P. E., Simmonds N. W. (1966) – Stomata and transpiration of droopy potatoes – Plant Physiol. 41: 1268-1271 – DOI: 10.1104/pp.41.8.1268https://pdfs.semanticscholar.org/6575/fa8a46403a7b552fd9ebf98f4e497bc2cf4c.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/04/stomata-and-transpiration-of-droopy-potatoes/ )

Waggoner P. E., Zelitch I. (1965) – Transpiration and the stomata of leaves – Science 150(3702): 1413-1420 – DOI: 10.1126/science.150.3702.1413 – http://science.sciencemag.org/content/150/3702/1413 – (On our blog : https://plantstomata.wordpress.com/2018/01/06/stomata-and-transpiration/ )

Wagner F., Below R., De Klerk P., Dilcher D. L., Joosten H., Kürschner W. M., Visscher H. (1996) – A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase – Proceedings of the National Academy of Sciences of the United States of America 93: 11705-11708 – https://doi.org/10.1073/pnas.93.21.11705 –https://www.pnas.org/content/93/21/11705 – (On our blog : https://plantstomata.wordpress.com/2019/02/19/lifetime-stomatal-frequency-response-to-annual-atmospheric-co2-increase/ )

Waidyarathne P., Samarasinghe S. (2018) – Boolean Calcium Signalling Model Predicts Calcium Role in Acceleration and Stability of Abscisic Acid-Mediated Stomatal Closure – Scientific Reports 8, Article number: 17635 (2018)  – https://www.nature.com/articles/s41598-018-35872-9 – (On our blog : https://plantstomata.wordpress.com/2019/01/11/calcium-role-in-acceleration-and-stability-of-aba-mediated-stomatal-closure/ )

Walker D. A., Zelitch I. 1963) – Some effects of metabolic inhibitors, temperature, and anaeroobic conditions on stomatal movement – Plant Physiology 38: 390-396 – PMCID: PMC549940 – PMID: 16655803 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC549940/ – (On our blog : https://plantstomata.wordpress.com/2019/02/19/biochemical-reactions-responsible-for-stomatal-movements-occur-simultaneously-in-the-light/ )

Wall G. W., Adam N. R., Brooks T. J., Kimball B. A., Pinter P. J., LaMorte R. L., Adamsen F. J., Hunsaker D. J., Wechsung G., Wechsung F., Gossman-Clarke S., Leavitt S., Matthias A. D., Webber A. N. (2000) –  Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves – Photosynth. Res. 66: 79-95 – https://doi.org/10.1023/A:1010646225929https://link.springer.com/article/10.1023/A:1010646225929#citeas – (On our blog : https://plantstomata.wordpress.com/2019/02/19/net-assimilation-and-stomatal-conductance/ )

Wallin G. (1990) – On the impact of tropospheric ozone on photosynthesis and stomatal conductance of Norway spruce, Picea abies (L.) Karst. – Ph. D. Thesis, University of Göteborg

Wallin G., Ottosson S., Selldén G. (1992) – Long term exposure of Norway spruce, Picea abies(L.) Karst., to ozone in open-top chambers – IV. Effects on the stomatal and the non-stomatal limitation of photosynthesis and on the carboxylation efficiency – New Phytol. 121(3): – https://doi.org/10.1111/j.1469-8137.1992.tb02939.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1992.tb02939.x – (On our blog : https://plantstomata.wordpress.com/2019/02/19/effects-of-ozone-on-the-stomatal-and-the-non-stomatal-limitation-of-photosynthesis/ )

Wallin G., Skärby L. (1992) – The influence of ozone on the stomata1 and non-stomatal limitation of photosynthesis in Norway spruce, Picea abies (L.) Karst, exposed to soil moisture deficit – Trees, Structure and Function 6: 128-136 – https://link.springer.com/article/10.1007/BF00202428 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/the-influence-of-ozone-on-the-stomatal-and-non-stomatal-limitation-of-photosynthesis/ )

Walter K. (2018) – Scientists Manipulate Crops to Need Less Water – R&D magazine 2018-03-06 – https://www.rdmag.com/article/2018/03/scientists-manipulate-crops-need-less-water – (On our blog : https://plantstomata.wordpress.com/2018/03/07/increased-psbs-expression-allows-crop-plants-to-be-more-conservative-with-water-use-triggering-stomata-to-close/ )

Walton P. D. (1974) –  The genetics of stomatal length and frequency in clones of Bromus inermis and the relationships between these traits and yield – Canadian Journal of Plant Science 54: 749-754 – https://doi.org/10.4141/cjps74-127 –http://www.nrcresearchpress.com/doi/10.4141/cjps74-127 – (On our blog : https://plantstomata.wordpress.com/2019/02/19/the-importance-of-stomatal-size-and-frequency-in-a-breeding-program-in-relation-to-agronomic-practices/ )

Wan X., Landhäusser S. M., Zwiazek J. J., Lieffers V. J. (2004) – Stomatal conductance and xylem sap properties of aspen (Populus tremuloides) in response to low soil temperature – Physiologia Plantarum 122: 79–85 – https://doi.org/10.1111/j.1399-3054.2004.00385.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.2004.00385.x – (On our blog : https://plantstomata.wordpress.com/2019/02/25/stomatal-conductance-and-xylem-sap-properties-in-response-to-low-soil-temperature/ )

Wan X., Zwiazek J. J. (2001) – Root water flow and leaf stomatal conductance in aspen ( Populus tremuloides ) seedlings treated with abscisic acid – Planta 213: 741-747 – DOI 10.1007/s004250100547 – Root_water_flow_and_leaf_stomatal_conduc.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/75564/ )

Wang C., Hu H., Qin X., Zeise B., Xu D., Rappel W. J., Boron W. F., Schroeder J. I. (2016) – Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor – Plant Cell. 28(2): 568-582 – doi: 10.1105/tpc.15.00637 – Epub 2016 Jan 13 – https://www.ncbi.nlm.nih.gov/pubmed/26764375 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/slac1-as-a-bicarbonate-responsive-protein-contributing-to-co2-regulation-of-s-type-anion-channels-in-stomata/ )

Wang C., Liu S., Dong Y., Zhao Y., Geng A., Xia X., et al. (2016) – PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar -Plant Biotechnol. J. 14: 849–860 – DOI:  10.1111/pbi.12434 – [PubMed] [Cross Ref] –  https://www.ncbi.nlm.nih.gov/pubmed/26228739 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/pdepf1-is-modulating-stomatal-density/ )

Wang C., Zhang J., Wu J., Brodsky D. E., Schroeder J. I. (2018) – Cytosolic malate and oxaloacetate activate S‐type anion channels in Arabidopsis guard cells – New Phytol. Online Version of Record  – https://doi.org/10.1111/nph.15292 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15292?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/12/cytosolic-organic-anions-function-in-guard-cell-plasma-membrane-ion-channel-regulation-of-stomata/ )

Wang F.-F., Lian H.-L., Kang C.-Y., Yang H.-Q. (2010) – Phytochrome B Is Involved in Mediating Red Light-Induced Stomatal Opening in Arabidopsis thaliana – Molecular Plant 3(1): 246-259 – https://doi.org/10.1093/mp/ssp097 –https://www.sciencedirect.com/science/article/pii/S167420521460410X – (On our blog : https://plantstomata.wordpress.com/2018/12/03/phyb-and-cry-might-regulate-stomatal-opening-by-regulating-myb60-expression/

Wang G. X.,  Zhang J.,  Liao J.-X.,  Wang J.-L. (2001) – Hydropassive evidence and effective factors in stomatal oscillations of Glycyrrhiza inflata under desert conditions – Plant Science 160: 1007-1013 – https://doi.org/10.1016/S0168-9452(01)00344-2 –https://www.sciencedirect.com/science/article/pii/S0168945201003442?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/07/hydropassive-evidence-and-effective-factors-in-stomatal-oscillations-under-desert-conditions/ )

Wang H., Clarke J. M., (1993) – Genotypic, intraplant, and environmental variation in stomatal frequency and size in wheat – Can. J. Plant. Sci. 73(3): 671-678 – https://doi.org/10.4141/cjps93-088 – http://www.nrcresearchpress.com/doi/10.4141/cjps93-088 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/stomatal-frequency-and-size-in-wheat/ )

Wang H., Ngwenyama N., Liu Y., Walker J. C., Zhang S. (2007) – Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis – Plant Cell 19: 63–73 – doi: 10.1105/tpc.106.048298 – Abstract/FREE Full TextGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2015/03/14/environmentally-responsive-mitogen-activated-protein-kinases/)

Wang H., Yan S., Xin H., Huang W., Zhang H., Teng S., Yu Y.-C., Fernie A. R., Lu X., Li P., Li S., Zhang C., Ruan Y.-L., Chen L.-Q, Lang Z. (2019) – A Subsidiary Cell-Localized Glucose Transporter Promotes Stomatal Conductance and Photosynthesis – Plant Cell https://doi.org/10.1105/tpc.18.00736http://www.plantcell.org/content/31/6/1328 – (On our blog : https://plantstomata.wordpress.com/2019/06/14/cst1-as-a-missing-link-in-the-feedback-regulation-of-stomatal-movement/ )

Wang H.-B., Wang X.-C., Chen J., Cao M., Li Y.-Y. (1997) – Relationship of stomata sensitivity to ABA and ABA-binding proteins on the plasmalemma of guard cells in Vicia faba – Acta Bot Sin. 39: 126-129 (in Chinese with English abstract) –

Wang J., Lu W., Tong Y., Yang Q. (2016) – Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light – Front. Plant Sci., 10 March 2016 | http://dx.doi.org/10.3389/fpls.2016.00250 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00250/full – (On our blog : https://plantstomata.wordpress.com/2016/03/28/8946/ )

Wang M., Feifei Y., Hao H., Zhang Y., Zhao H., Guo A., Hu J., Zhou X., Xie C. (2013) – BolOST1, an ortholog of Open Stomata 1 with alternative splicing products in Brassica oleracea, positively modulates drought responses in plants. – Biochem. Biophys. Res. Commun. 442, 214–220 – doi: 10.1016/j.bbrc.2013.11.032 – https://www.sciencedirect.com/science/article/pii/S0006291X13019141 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/bolost1-is-a-functional-snrk2-type-protein-kinase-positively-modulates-drought-responses-stomata/ )

Wang M. H., Wang J. R., Zhang X. W., Zhang A. P., Sun S., Zhao C. M. (2019) – Phenotypic plasticity of stomatal and photosynthetic features of four Picea species in two contrasting common gardens – AoB Plants 11(4): plz034 – doi: 10.1093/aobpla/plz034https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621916/ – (On our blog : https://plantstomata.wordpress.com/2019/10/09/phenotypic-plasticity-of-stomatal-and-photosynthetic-features/ )

Wang P., Du Y., Hou Y. J., Zhao Y., Hsu C. C., Yuan F., et al. (2015) – Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. U.S.A. 112, 613–618. doi: 10.1073/pnas.1423 481112 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299189/ – (On our blog : https://plantstomata.wordpress.com/2018/07/10/nitric-oxide-negatively-regulates-aba-signaling-in-stomata/ )

Wang P., Du Y., Zhao X., Miao Y., Song C.-P. (2012) – The MPK6-ERF-ROSE7/GCC-box complex modulates oxidative gene transcription and ROS signaling in Arabidopsis thaliana – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-mpk6-erf-rose7-gcc-box-complex-in-stomata/ )

Wang P., Song C. P. (2008) – Guard-cell signalling for hydrogen peroxide and abscisic acid. – New Phytol. 178, 703–718. – doi: 10.1111/j.1469-8137.2008.02431.x – https://www.ncbi.nlm.nih.gov/pubmed/18373649 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/points-of-connection-between-aba-and-h2o2-signalling-in-stomata/ )

Wang R., Yu G., He N., Wang Q., Zhao N., Xu Z., Ge J. (2015) – Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity – Scientific Reports 5, Article number: 14454 – https://www.nature.com/articles/srep14454 – (On our blog : https://plantstomata.wordpress.com/2019/04/01/new-insight-into-the-relationship-between-leaf-stomatal-traits-and-ecosystem-function/ )

Wang R. S., Pandey S., Li S., Gookin T. E., Zhao Z., Albert R., Assmann S. M. (2011) – Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. – BMC Genomics 12:216. – doi: 10.1186/1471-2164-12-216 – https://www.ncbi.nlm.nih.gov/pubmed/21554708 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/elements-of-the-aba-regulated-transcriptome-of-stomata/ )

Wang S., Dong F., Sun D., Chen Y., Yan X., Jing R. ( 2018) – QTL analysis for stomatal density and size in wheat spike organ – Emirates Journal of Food and Agriculture. 2018. 30(3): 173-179 – doi: 10.9755/ejfa.2018.v30.i3.1636 – https://www.researchgate.net/publication/324649827_QTL_analysis_for_stomatal_density_and_size_in_wheat_spike_organ – (On our blog : https://plantstomata.wordpress.com/2019/09/20/qtl-analysis-for-stomatal-density-and-size/ )

Wang S.-W., Li Y., Zhang X.-L., Yang H.-Q., Han X.-F., Liu Z.-H., Shang Z.-L., Asano T., Yoshioka Y., Zhang C.-G., Chen Y.-L. (2014)  – Lacking chloroplasts in guard cells of crumpled leaf attenuates stomatal opening: both guard cell chloroplasts and mesophyll contribute to guard cell ATP levels – Plant, Cell & Environment 37(9): 2201-2210 – https://doi.org/10.1111/pce.12297 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12297 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/both-stomatal-chloroplasts-and-mesophyll-contribute-to-the-atp-source-for-h-extrusion-by-guard-cells/)

Wang W., Liu Z., Bao L.-J., Zhang S.-S., Zhang C.-G., Li X., Li H.-X., Zhang X.-L., Bones A. M., Yang Z., Chen Y.-L. (2017) – The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening. – Plant Physiol 174: 717–731 – http://www.plantphysiol.org/content/174/2/717 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-ropgef2-rop7-rop2-pathway-and-the-red-light-induced-stomatal-opening/)

Wang W.-H., Chen J., Liu T.-W., Chen J., Han A.-D., Simon M., Dong X.-J., He J.-X., Zheng H.-L. (2013) – Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis – Journal of Experimental Botany, Vol. 65, No. 1, pp. 223–234, 2014 – doi:10.1093/jxb/ert362 –http://jxb.oxfordjournals.org/content/65/1/223.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cas-stomatal-movement-wue-and-drought-tolerance/ )

Wang W. H., Yi X. Q., Han A. D., Liu T. W., Chen J., Wu F. H., Dong X. J., He J. X., Pei Z. M., Zheng H. L. (2011) – Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. – J. Exp. Bot. 63, 177–190. – doi: 10.1093/jxb/err259 – https://www.ncbi.nlm.nih.gov/pubmed/21940718 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/a-hypothetical-model-whereby-ca2o-induces-h2o2-and-no-accumulation-in-stomata/ )

Wang X., Arora R., Horner H. T., Krebs S. L. (2008) – Structural Adaptations in Overwintering Leaves of Thermonastic and Nonthermonastic Rhododendron – American Society for Horticultural Science 133(6) – Doi: 10.21273/JASHS.133.6.768 – https://www.researchgate.net/publication/252966100_Structural_Adaptations_in_Overwintering_Leaves_of_Thermonastic_and_Nonthermonastic_Rhododendron – (On our blog : https://plantstomata.wordpress.com/2019/08/06/stomata-in-thermonastic-and-nonthermonastic-rhododendron/ )

Wang X., Du T., Huang J., Peng S., Xiong D. (2018) – Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during
drought in rice (Oryza sativa) – J Exp Bot 69: 4033–4045 – doi: 10.1093/jxb/ery188. – https://www.ncbi.nlm.nih.gov/pubmed/29788146 – (On our blog : https://plantstomata.wordpress.com/2019/05/15/the-decline-in-stomatal-and-mesophyll-conductance-during-drought/ )

Wang X. Q., Ullah H., Jones A. M., Assmann S. M. (2001) – G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. -Science 292: 2070–2072. – 10.1126/science.1059046 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/11408655 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/stomatal-opening-in-gpa1-plants-is-insensitive-to-inhibition-by-aba/

Wang X. Q., Wu W. H., Assmann S. M. (1998) – Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium – Plant Physiol 118: 1421–1429 –  DOI: https://doi.org/10.1104/pp.118.4.1421http://www.plantphysiol.org/content/118/4/1421?ijkey=32fa9e41146ef1ce52eedd7701307e0dc0c4603c&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/11/osmo-sensitive-and-stretch-activated-ca2-channels-stomata-and-their-regulation-by-osmotic-changes-and-actin-dynamics/ )

Wang Y. (2009) – Enhanced plant photosynthesis and growth through manipulation of stomatal apertures – IAR Letter, vol.15 – http://www.aip.nagoya-u.ac.jp/en/public/nu_research/features/detail/0004138.html – (On our blog : https://plantstomata.wordpress.com/2018/11/26/overexpression-of-h-atpase-in-stomatal-guard-cells-enhances-plant-productivity/

Wang Y., Blatt M. R. (2011) – Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells – Biochem. J. 439: 161–170 – doi: 10.1042/BJ20110845. – https://www.ncbi.nlm.nih.gov/pubmed/21745184 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/a-central-role-for-oxaloacetate-in-integrating-ion-flux-with-metabolism-in-stomatal-guard-cells/ )

Wang Y., Chen X, Xiang C. (2007) –  Stomatal density and bio-water saving – Journal of Integrative Plant Biology 49(10): 1435–1444 – https://doi.org/10.1111/j.1672-9072.2007.00554.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1672-9072.2007.00554.x – (On our blog : https://plantstomata.wordpress.com/2018/07/12/genes-regulating-stomatal-density-and-the-role-of-stomatal-density-in-plant-water-use-efficiency/ )

Wang Y., Chen Z. H., Zhang B., Hills A., Blatt M. R. ( 2013) – PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl channels through reactive oxygen species‐mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells – Plant Physiol 163: 566– 577 – DOI: 10.1104/pp.113.219758 –https://www.ncbi.nlm.nih.gov/pubmed/23899646?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/pyr-pyl-rcar-receptor-coupling-to-the-activation-by-aba-of-plasma-membrane-ca2-channels-through-ros-affecting-ca2i-and-its-regulation-of-stomatal-closure/ )

Wang Y., Hills A., Blatt M. R. ((2014) – Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency – Plant Physiology 164: 1593-1599 – https://doi.org/10.1104/pp.113.233403http://www.plantphysiol.org/content/164/4/1593 – (On our blog : https://plantstomata.wordpress.com/2019/09/26/systems-analysis-of-guard-cell-membrane-transport-for-enhanced-stomatal-dynamics/ )

Wang Y., Hills A., Vialet-Chabrand S., Papanatsiou M., Griffiths H., Rogers S., Lawson T., Lew V. L., Blatt M. R. (2017) – Unexpected Connections between Humidity and Ion Transport Discovered Using a Model to Bridge Guard Cell-to-Leaf Scales – Plant Cell 29: 2921–2935 – DOI: https://doi.org/10.1105/tpc.17.00694 – http://www.plantcell.org/content/29/11/2921?ijkey=615d52f6f112083b64a7d81e76985c6f96eb7ef4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/66246/ )

Wang Y., Holroyd G., Hetherington A. M., Ng C. K.‐Y. (2004) – Seeing “cool” and ‘hot’—infrared thermography as a tool for non‐invasive, high‐throughput screening of Arabidopsis guard cell signalling mutants – J Exp Bot. 55( 400): 1187‐ 1193 –  https://doi.org/10.1093/jxb/erh135https://academic.oup.com/jxb/article/55/400/1187/528654/ – (On our blog : https://plantstomata.wordpress.com/2019/10/08/the-use-of-infrared-thermography-as-a-non%e2%80%90invasive-high%e2%80%90throughput-tool-and-the-versatility-of-this-technique-for-screening-defective-in-stomatal-regulation/ )

Wang Y., Noguchi K., Ono N., Inoue S.-i., Terashima I., Kinoshita T. (2014) – Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth – PNAS 111(1): 533-538 – https://doi.org/10.1073/pnas.1305438111 –http://www.pnas.org/content/111/1/533 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-aperture-is-a-limiting-factor-in-photosynthesis-and-plant-growth/

Wang Y., Papanatsiou M., Eisenach C., Karnik R., Williams M., Hills A., Lew V. L., Blatt M. R. (2012) – Systems Dynamic Modeling of a Guard Cell Cl Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration – Plant Physiol 160:1956–1967 – DOI: https://doi.org/10.1104/pp.112.207704 – http://www.plantphysiol.org/content/160/4/1956?ijkey=cfc390beba20130ff1b1ff8b2c4ebc6af21a8836&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/emergent-homeostatic-network-regulating-stomatal-transpiration/

Wang Y., Sperry J. S., Venturas M. D., Trugman A. T., Love D. M., Anderegg W. R. L. (2019) – The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model – Tree Physiology 00: 1-12 – https://doi.org/10.1093/treephys/tpz038http://sperry.biology.utah.edu/publications/Wang_et_al_2019_TPH.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/14/the-stomatal-response-to-rising-co2-concentration-and-drought/ )

Ward D. A., Drake B. G. (1988) – Osmotic stress temporarily reverses the inhibitions of photosynthesis and stomatal conductance by abscisic acid evidence that abscisic acid induces a localized closure of stomata in intact detached leaves – Journal of Experimental Botany 39(199): 147-156 – https://eurekamag.com/research/006/047/006047340.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/osmotic-stress-temporarily-reverses-the-inhibitions-of-photosynthesis-and-stomatal-conductance-by-aba/ )

Ward E. J., Oren R., Bjarni D., Sigurdsson B. D., Jarvis P. G., Linder S. (2008) – Fertilization Effects on Mean Stomatal Conductance Are Mediated through Changes in the Hydraulic Attributes of Mature Norway Spruce Trees – Tree Physiology 28: 579-596 – http://dx.doi.org/10.1093/treephys/28.4.579 – https://academic.oup.com/treephys/article/28/4/579/1720621 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/fertilization-effects-on-mean-stomatal-conductance/

Ward J. M., Pei Z.-M., Schroeder J. I. (1995) – Roles of ion channels in initiation of signal transduction in higher plants – Plant Cell 7: 833–844 – http://www.plantcell.org/content/7/7/833https://plantstomata.wordpress.com/2017/06/06/roles-of-ion-channels-in-initiation-of-signal-transduction-in-stomata/ )

Ward J. M., Schroeder J. I. (1994) – Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure – Plant Cell 6, 669–683 – doi: 10.1105/tpc.6.5.669 – https://www.ncbi.nlm.nih.gov/pubmed/12244253 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/interaction-of-vk-and-sv-channel-activities-is-crucial-in-regulating-vacuolar-k-and-ca2-release-during-stomatal-closure/ )Ward J. M., Schroeder J. I. (1997) – Roles of ion channels in initiation of signal transduction in higher plants. In: Aducci P, ed. Molecular and cell biology updates, signal transduction in plants – Boston: Birkhauser Verlag 1-22 –

Wardle K.,  Short K. C. (1983) – Stomatal responses and the senescence of leaves –  Annals Bot 52: 411-412 – https://doi.org/10.1093/oxfordjournals.aob.a086590 –https://academic.oup.com/aob/article/52/3/411/91217 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/the-decline-in-stomatal-activity-during-senescence-is-an-independent-but-parallel-process-to-changes-occurring-in-the-mesophyll/ )

Warren C. R. (2008) – Stand aside stomata, another actor deserves center stage: the forgotten role of the internal conductance to CO2 transfer – J. Exp. Bot. 59: 1475–1487 – DOI: 10.1093/jxb/erm245 – https://www.ncbi.nlm.nih.gov/pubmed/17975206?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/substomatal-cavities-and-internal-conductance/ )

Warrit B., Landsberg J. J. Thorpe M. R. (1980) – Responses of apple leaf stomata to environmental factors – Plant, Cell & Environment 3(1): 13-22 – https://doi.org/10.1111/1365-3040.ep11580397https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11580397 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/responses-of-apple-leaf-stomata-to-environmental-factors/ )

Waterkeyn L., Bienfait A. (1979) – Production et dégradation de callose dans les stomates des fougères –  La Cellule 73: 83–97 – ISSN : 0008-8757 (No abstract available)

Watkins J. M.,  Chapman J. M., Muday G. K. (2017) – Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture – Plant Physiol. Dec 2017, 175 (4) 1807-1825 –  DOI: https://doi.org/10.1104/pp.17.01010 – http://www.plantphysiol.org/content/175/4/1807 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/flavonols-dampening-the-aba-dependent-ros-burst-that-drives-stomatal-closure/

Watkins J. M., Hechler P. J., Muday G. K. (2014) – Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. – Plant Physiol. 164: 1707–1717. – 10.1104/pp.113.233528 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/164/4/1707 – (On our blog : https://plantstomata.wordpress.com/2018/07/14/flavonols-suppress-ros-accumulation-and-decrease-the-rate-of-aba-dependent-stomatal-closure-with-ethylene-induced-increase-in-guard-cell-flavonols-modulating-these-responses/

Watts W, R. Neilson R. E. (1978) – Photosynthesis in Sitka Spruce (Picea sitchensis (Bong.) Carr.). VIII. Measurements of Stomatal Conductance and 14 CO 2 Uptake in Controlled Environments – Journal of Applied Ecology 15(1): 245-255 – https://www.jstor.org/stable/2402934?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/13/78461/ )

Watts W, R. Neilson R. E., Jarvis P. G. (1976) – Photosynthesis in sitka spruce (Picea sitchensis (Bong.) Carr.): 7. Stomatal conductance and 14CO2 uptake in a forest canopy – J. Appl. Ecol. 13: 633-638 – DOI: 10.2307/2401808 – https://www.researchgate.net/publication/272549753_Photosynthesis_in_Sitka_Spruce_Picea_sitchensis_Bong_Carr_VII_Measurements_of_Stomatal_Conductance_and_14_CO_2_Uptake_in_a_Forest_Canopy – (On our blog : https://plantstomata.wordpress.com/2019/05/13/stomatal-conductance-and-14co2-uptake-in-a-forest-canopy/ )

Watts-Williams S. J., Cavagnaro T. R., Tyerman S. D. (2018) – Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions – Plant, Cell & Environment, published online and citable. – https://doi.org/10.1111/pce.13369 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13369?af=R – (On our blog : https://plantstomata.wordpress.com/2018/06/28/mycorrhizal-plants-can-exhibit-increased-stomatal-conductance-gs/ )

Way D. A., Oren R., Kim H.-S., Katul G. G. (2011) – How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures – J Geophys Res. 2011 – 116:G04031 – DOI: 10.1029/2011JG001808 – [Crossref] –https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JG001808 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/how-well-do-stomatal-conductance-models-perform-on-closing-plant-carbon-budgets/ )

Wayne R. (2019) – Tubulin and Microtubule-Mediated Processes – Plant Cell Biology (Second Edition) – From Astronomy to Zoology – Chapter 11: 187-206 – https://doi.org/10.1016/B978-0-12-814371-1.00011-4https://www.sciencedirect.com/science/article/pii/B9780128143711000114 – (On our blog : https://plantstomata.wordpress.com/2019/08/05/tubulin-and-microtubule-mediated-processes-in-stomata/ )

Webb A. A. R., Baker A. J. (2002) – Stomatal biology: new techniques, new challenges – New Phytol 153: 365–370 – https://doi.org/10.1046/j.0028-646X.2001.00347.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.0028-646X.2001.00347.x – (On our blog : https://plantstomata.wordpress.com/2019/02/25/new-techniques-new-challenges-for-stomatal-biology/ )

Webb A. A. R., Larman M. G., Montgomery L. T., Taylor J. E., Hetherington A. M. (2001) – The role of calcium in ABA-induced gene expression and stomatal movements – Plant J. 26: 351–362 – PMID: 11439123 – https://www.ncbi.nlm.nih.gov/pubmed/11439123 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/calcium-in-aba-induced-gene-expression-and-stomatal-movements-2/ )

Webb A. A. R., McAinsh M. R., Mansfield T. A., Hetherington A. M. (1996) – Carbon dioxide induces increases in guard cell cytosolic free calcium – The Plant Journal 9: 297-304 – http://www.research.lancs.ac.uk/portal/en/publications/-(c918b23f-ab6f-4bad-b34d-a421d92f8c0e).html – (On our blog : https://plantstomata.wordpress.com/2018/07/12/ca2i-may-be-a-requirement-for-the-stomatal-response-to-co2/ )

Webb A. A. R., Robertson F.C. (xxxx) – Calcium Signals in the Control of Stomatal Movements – Signaling and Communication in Plants – Coding and Decoding of Calcium Signals in Plants : 63-77 – DOI10.1007/978-3-642-20829-4_5 –https://www.infona.pl/resource/bwmeta1.element.springer-3c4ccf7e-1905-3015-bb6b-ab137434ab7e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/calcium-is-an-important-regulator-of-stomatal-movements/ )

Wege S., De Angeli A., Droillard M. J., Kroniewicz L., Merlot S., Cornu D., Gambale F., Martinoia E., Barbier-Brygoo H., Thomine S., Leonhardt N., Filleur S. (2014) – Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid – Sci. Signal. 7:ra65 – doi: 10.1126/scisignal.2005140 – https://www.ncbi.nlm.nih.gov/pubmed/25005229 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/phosphorylation-of-atclca-is-required-for-the-stomatal-response-to-aba/ )

Wehr R., Commane R., Munger J. W., McManus J. B., Nelson D. D., Zahniser M. S., Saleska S. R., Wofsy S. C. (2017) – Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake – Biogeosciences, 14, 389–401 – doi:10.5194/bg-14-389-2017 – http://www.biogeosciences.net/14/389/2017/ –  https://www.biogeosciences.net/14/389/2017/bg-14-389-2017.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/30/dynamics-of-canopy-stomatal-conductance/ )

Wei P.-C., Zhang X.-Q., Zhao P., Wang X.-C. (2011) – Regulation of stomatal opening by the guard cell expansin AtEXPA1 – Plant Signaling & Behavior 6(5): 740-742 – http://dx.doi.org/10.4161/psb.6.5.15144 – http://www.tandfonline.com/doi/abs/10.4161/psb.6.5.15144 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-expansins-regulate-stomatal-movement/ )

Wei Z, Du T., Li X., Fang L., Liu F. (2018) – Simulation of stomatal conductance and water use efficiency of tomato leaves exposed to different irrigation regimes and air CO2 concentrations by a modified “Ball-Berry” model – Frontiers in Plant Science (2018) 9 – DOI: 10.3389/fpls.2018.00445Wei Zhttps://www.mendeley.com/catalogue/simulation-stomatal-conductance-water-efficiency-tomato-leaves-exposed-different-irrigation-regimes/ – (On our blog : https://plantstomata.wordpress.com/2019/09/01/simulation-of-stomatal-conductance-and-a-modified-ball-berry-model/ )

Weimer A. K., Matos J. L., Sharma N., Patell F., Murray J. A. H., Dewitte W., D. C. (2018) – Lineage and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells – Dev. Biol. – http://www.biologists.com/user-licence-1-1/ – doi: 10.1242/dev.160671 – http://dev.biologists.org/content/early/2018/02/14/dev.160671 – (On our blog : https://plantstomata.wordpress.com/2018/03/29/cycd71-coordinates-the-single-symmetric-division-that-creates-stomata/

Weinl S., Held K., Schlucking K., Steinhorst L., Kuhlgert S., Hippler M., Kudla J. (2008) – A plastid protein crucial for Ca2 + -regulated stomatal responses. – New Phytol 179: 675–686 – https://doi.org/10.1111/j.1469-8137.2008.02492.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2008.02492.x – (On our blog : https://plantstomata.wordpress.com/2018/07/17/cas-for-ca2-regulated-stomatal-responses/ )

Weise A., Lalonde S., Kuhn C., Frommer W. B., Ward J. M. (2008) – Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. – Plant Mol. Biol. 68, 251–262. – 10.1007/s11103-008-9366-9 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/18597047 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/lesut1-expression-was-detected-in-ab-and-adaxial-phloem-companion-cells-trichomes-and-stomata/ )

Weissenboeck G., Hedrich R., Sachs G. (1986) – Secondary phenolic products in isolated guard cell, epidermal cell and mesophyll cell protoplasts from pea (Pisum sativum L.) leaves: distribution and determination – Protoplasma 134: 141–148 –

Weissenboeck G., Schnabl H., Scharf H., Sachs G. (1987) – On the
properties of fluorescing compounds in guard and epidermal cells of Allium cepa L. – Planta 171: 88–95 –

Wellburn F. A. M., Gounaris I., Wellburn A. R. (1984) – Carbohydrate reserves and plant growth substance sensitivity in plastids, stomata and statocytes during shoot development – Israel Journal of Botany 33(2-4): 237-252 – http://www.tandfonline.com/doi/abs/10.1080/0021213X.1984.10677001 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/carbohydrate-reserves-and-plant-growth-substance-sensitivity-in-plastids-and-stomata/

Weng J. H., Chen C. Y. (1987) – Stomatal frequency associated with an esterase band in rice genotypes – Rice Genet News l5: 93-95 –

Wengler D. L., Bergmann D. C. (2013) – On Fate and Flexibility in Stomatal Development. – Cold Spring Harb Symp Quant Biol. – doi: 10.1101/sqb.2013.77.015883. Epub 2013 Feb 26.  – PMID:23444192 –https://www.ncbi.nlm.nih.gov/pubmed/23444192 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/fate-and-flexibility-in-stomatal-development/ )

Werner W., Buker P., Schulze E. (1998) – Stomatal Response of the two clover clones. Poster presented at the ICP-Crops Task Force Meeting, Jan. 14-16, 1998. Wageningen, The Netherlands.

Weryszko-Chmielewska E., Michałojć Z. (2009) – Anatomical features of leaves of sweet pepper (Capsicum annuum L.) fed with calcium using foliar nutrition – ACTA AGROBOTANICA 62(2): 155–164 – 1627-3991-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-in-leaves-of-sweet-pepper-fed-with-calcium-using-foliar-nutrition/ )

West J., Peak D., Peterson J., Mott K. (2005) – Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images – Plant, Cell & Environment 28: 633–641 – https://doi.org/10.1111/j.1365-3040.2005.01309.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2005.01309.x – (On our blog : https://plantstomata.wordpress.com/2018/10/28/dynamics-of-stomatal-patches-for-a-single-surface-of-leaves/ )

Weyers J. D. B., Fitzsimons P. J. (1982) – The non-osmotic volume of Commelina guard cells – Plant, Cell and Environment 5( 5): 417–421 – DOI: 10.1111/j.1365-3040.1982.tb00942.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1982.tb00942.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/13/the-non-osmotic-volume-of-stomatal-guard-cells/ )

Weyers J. D. B., Fitzsimons P. J., Mansey G. M., Martin E. S. (1983) – Guard cell protoplasts-aspects of work with an important new research tool – Physiol. Plant. 58: 331-339 – Guard_cell_protoplasts_-_Aspects_of_work.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/aspects-of-gcp-research-and-contributions-of-gcps-towards-an-understanding-of-the-stomatal-mechanism/ )

Weyers J. D. B., Hillman J. R. (1977) – Uptake and Distribution of Abscisic Acid in Commelina Leaf Epidermis – Planta 144: 167-172 –Uptake_and_distribution_of_abscisic_acid.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomata-and-the-uptake-and-distribution-of-aba/ )

Weyers J. D. B., Hillman J. R. (1979) – Sensitivity of Commelina Stomata to Abscisic Acid – Planta 146: 623-628 – Sensitivity_of_Commelina_stomata_to_absc.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/sensitivity-of-stomata-to-aba/ )

Weyers J. D. B., Johansen L. G. (1985) – Accurate estimation of stomatal aperture from silicone rubber impressions – New Phytol. 101: 109-115 –Accurate_Estimation_of_Stomatal_Aperture.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/accurate-estimation-of-stomatal-aperture-from-silicone-rubber-impressions/ )

Weyers J. D. B., Lawson T. (1997) – Heterogeneity in stomatal characteristics – Advances in Botanical Research 26: 317-351 – https://s3.amazonaws.com/academia.edu.documents/46027713/s0065-2296_2808_2960124-x20160528-19725-15fna21.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1549908343&Signature=14qo76%2BQ40rxfCGiCaqMOXTosiQ%3D&response-content-disposition=inline%3B%20filename%3DHeterogeneity_in_Stomatal_Characteristic.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/11/heterogeneity-in-stomata/ )

Weyers J. D. B., Meidner H. (1990) – Methods in Stomatal Research – Longman, Harlow, UK, 252 pp. – ISBN-10: 0582034833 – ISBN-13: 978-0582034839 –

Weyers J. D. B., Meidner H. (1990) – Methods in Stomatal Research – Longman, Harlow, UK, 252 pp. – https://www.amazon.co.uk/Methods-Stomatal-Research-Jonathan-Weyers/dp/0582034833 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/methods-to-investigate-progressively-more-isolated-plant-material-from-leaf-discs-to-guard-cell-organelles/ )

Weyers J. D. B., Patterson N. W. (1987) – Responses of Commelina stomata in vitro – Journal of Experimental Botany 38: 631–641 – DOI: 10.1093/jxb/38.4.631 –https://www.researchgate.net/publication/31454608_Responses_of_Commelina_communis_Stomata_In_Vitro – (On our blog : https://plantstomata.wordpress.com/2017/12/14/responses-of-stomata-in-vitro/ )

Weyers J. D. B., Patterson N. W. (1992) – Quantitative assessment of hormone sensitivity changes with reference to stomata’ responses to abscisic acid – In: Karssen C.M., van Loon L.C., Vreugdenhil D. (eds) : Progress in Plant Growth Regulation. Current Plant Science and Biotechnology in Agriculture, vol 13:  Springer, Dordrecht – DOI https://doi.org/10.1007/978-94-011-2458-4_25 – https://link.springer.com/chapter/10.1007/978-94-011-2458-4_25 – https://plantstomata.wordpress.com/2017/12/13/quantifying-hormone-sensitivity-using-stomatal-responses-to-aba-as-a-test-system/ )

Weyers J. D. B., Travis A. J. (1981) – Selection and preparation of leaf epidermis for experiments on stomatal physiology – J Exp Bot 32: 837-850 – https://doi.org/10.1093/jxb/32.4.837 -https://academic.oup.com/jxb/article/32/4/837/556736 – (On our blog :  https://plantstomata.wordpress.com/2018/12/03/selection-and-preparation-of-leaf-epidermis-for-experiments-on-stomatal-physiology/

White D. A., Turner N. C., Galbraith J. H. (2000) – Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia – Tree Physiology 20: 1157–1165 – – PMID: 12651491 – https://www.ncbi.nlm.nih.gov/pubmed/12651491 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/leaf-water-relations-and-stomatal-behavior-of-trees-in-mediterranean-southwestern-australia/ )

Whitehead D. (1998) – Regulation of stomatal conductance and transpiration in forest canopies – Tree Physiology 18: 633–644 – https://doi.org/10.1093/treephys/18.8-9.633 –https://academic.oup.com/treephys/article/18/8-9/633/1632628 – (On our blog : https://plantstomata.wordpress.com/2019/02/26/regulation-of-stomatal-conductance-in-forest-canopies/ )

Whitehead D., Jarvis P. G., Waring R. H. (1984) – Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment – Canadian Journal of Forest Research 14: 692–700 – https://doi.org/10.1139/x84-124 –http://www.nrcresearchpress.com/doi/10.1139/x84-124 – (On our blog : https://plantstomata.wordpress.com/2019/02/26/stomatal-conductance-transpiration-and-resistance-to-water-uptake/ )

Whitehead D., Okali D. U., Fasehun F. E (1981) – Stomatal Response to Environmental Variables in Two Tropical Forest Species During the Dry Season in Nigeria – J Appl Ecol 18: 571–587 –  DOI: 10.2307/2402418 – https://www.researchgate.net/publication/271758012_Stomatal_Response_to_Environmental_Variables_in_Two_Tropical_Forest_Species_During_the_Dry_Season_in_Nigeria – (On our blog : https://plantstomata.wordpress.com/2019/02/26/stomatal-response-to-environmental-variables/ )

Whitehead D., Teskey R. (1995) – Dynamic‐response of stomata to changing irradiance in loblolly pine (Pinus taeda L) – Tree Physiology 15: 245–251 – PMID: 14965964 – CrossrefPubMedWeb of Science®Google – Scholar – https://www.ncbi.nlm.nih.gov/pubmed/14965964 – (On our blog : https://plantstomata.wordpress.com/2019/02/27/dynamic%e2%80%90response-of-stomata-to-changing-irradiance/ )

Whyte J. H. (1938) – A study of factors affecting stomatal movement in the dark – PhD Thesis McGill Univ. – 122 pp. –http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1553812507793~729 – (On our blog : https://plantstomata.wordpress.com/2019/03/29/77009/ )

Wieser G., Emberson L. D. (2004) – Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies – Atmospheric Environment 38: 2339–2348 – https://doi.org/10.1016/j.atmosenv.2003.10.061 –https://www.sciencedirect.com/science/article/pii/S1352231004001037 – (On our blog : https://plantstomata.wordpress.com/2019/02/26/evaluation-of-the-stomatal-conductance-formulation/ )

Wild A., Wolf G. (1980) – The effect of different light intensities on the frequency and size of stomata the size of cells the number size and chlorophyll content of chloroplasts in the mesophyll and the guard cells during the ontogeny of primary leaves of Sinapis alba -Zeitschrift fuer Pflanzenphysiologie 97(4): 325-342 –
DOI10.1016/S0044-328X(80)80006-7 – https://eurekamag.com/research/006/642/006642062.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/the-effect-of-different-light-intensities-on-the-frequency-and-size-of-stomata/ )

Wilkinson S., Bacon M.A.Z., Davies W. J. (2007) – Nitrate Signalling to Stomata and Growing Leaves: Interactions with Soil Drying, ABA, and Xylem Sap pH in Maize – Journal of Experimental Botany 58: 1705-1716 – http://dx.doi.org/10.1093/jxb/erm021 – https://academic.oup.com/jxb/article/58/7/1705/514459 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/nitrate-signalling-to-stomata-and-growing-leaves-2/

Wilkinson S., Clephan A. L., Davies W. J. (2001) – Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis L. leaves but not in cold-sensitive Nicotiana rustica L. leaves, via a mechanism that involves apoplastic calcium but not abscisic acid – Plant Physiology 26: 1566-1578DOI: https://doi.org/10.1104/pp.126.4.1566http://www.plantphysiol.org/content/126/4/1566 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/rapid-low-temperature-induced-stomatal-closure-via-a-mechanism-that-involves-apoplastic-calcium-but-not-aba/ )

Wilkinson S., Corlett J. E., Oger L., Davies W. J. (1998) – Effects of Xylem pH on Transpiration from Wild-Type and flacca Tomato Leaves – A Vital Role for Abscisic Acid in Preventing Excessive Water Loss Even from Well-Watered Plants – Plant Physiology https://doi.org/10.1104/pp.117.2.703http://www.plantphysiol.org/content/117/2/703.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/06/04/a-vital-role-for-aba-in-preventing-stomata-opening/ )

Wilkinson S., Davies W. J. (1997) – Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast – Plant Physiology 113: 559–573 – https://doi.org/10.1104/pp.113.2.559 – PMCID: PMC158172PMID: 12223626 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC158172/ – (On our blog : https://plantstomata.wordpress.com/2019/02/28/a-drought-signal-received-at-the-apoplastic-face-of-the-stomatal-guard-cell/ )

Wilkinson S., Davies W. J. (2008) – Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation – Journal of Experimental Botany 59: 619– 631 – https://doi.org/10.1093/jxb/erm338https://academic.oup.com/jxb/article/59/3/619/576618 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/manipulation-of-the-apoplastic-ph-of-intact-plants-mimics-stomatal-and-growth-responses/ )

Wilkinson S., Davies W. J. (2009) – Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism – Plant, Cell & Environment 32: 949–959 https://doi.org/10.1111/j.1365-3040.2009.01970.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.01970.x – (On our blog : https://plantstomata.wordpress.com/2019/09/11/ozone-suppresses-soil-drying-and-aba-induced-stomatal-closure/ )

Will R. E., Teskey R. O. (1997) – Effect of irradiance and vapour
pressure deficit on stomatal responses to CO2 enrichment of
four tree species – Journal of Experimental Botany 48: 2095–2102.

Wille A. C., Lucas W. J. (1984) – Ultrastructural and histochemical studies on guard cells – Planta 160: 129-142 – https://doi.org/10.1007/BF00392861- https://link.springer.com/article/10.1007/BF00392861#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/17/ultrastructural-and-histochemical-studies-on-stomata/ )

Willer C. M., Kanai R., Pallas J. E. Jr., Black C. C. Jr. (1973) –  Detection of high levels of phosphoenolpyruvate carboxylase in leaf epidermal tissue and its significance in stomatal movements – Life Sci. 12: 151–155 – https://doi.org/10.1016/0024-3205(73)90207-5https://www.sciencedirect.com/science/article/abs/pii/0024320573902075 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/phosphoenolpyruvate-carboxylase-in-leaf-epidermal-tissue-and-its-significance-in-stomatal-movements/ )

Williams M. (2017) – Small Pores with a Big Impact –  BlogPlant PhysiologyPlant Physiology NewsResearch – https://plantae.org/blog/plant-physiology-focus-issue-on-stomata-published/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/small-pores-with-a-big-impact/ )

Williams M. (2017) – Update: Blue light regulation of stomatal opening and the plasma membrane H+-ATPase – BlogPlant Physiology – https://plantae.org/update-blue-light-regulation-of-stomatal-opening-and-the-plasma-membrane-h-atpase/?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plantae_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/blue-light-regulation-of-stomatal-opening/ )

Williams M. (2017) – ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel – in Plant Science Research Weekly, Research, Blog – https://plantae.org/blog/aba-induced-stomatal-closure-involves-almt4-a-phosphorylation-dependent-vacuolar-anion-channel/ – (On our blog : https://plantstomata.wordpress.com/2019/11/05/aba-induced-stomatal-closure-involves-almt4/

Williams W. E., Grivet C., Zeiger E. (1983) – Gas exchange in Paphiopedilum – lack of chloroplasts in guard cells correlates with low stomatal conductance – Plant Physiol 72: 906–908 – https://doi.org/10.1104/pp.72.3.906 – http://www.plantphysiol.org/content/72/3/906.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/lack-of-chloroplasts-in-stomata-correlates-with-low-stomatal-conductance/

Willmer M. (1983) – Stomatal development and differenciation and the ultrastructure of guard cells. In: Willmer M. (Ed) Stomata (pp 28–50). Longman.

Willmer C.M. (1993) – The evolution, structure and functioning of stomata – Botanical Journal of Scotland 46(3): 433-445 – https://doi.org/10.1080/03746609308684805 – http://www.tandfonline.com/doi/pdf/10.1080/03746609308684805 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/stomatal-structure-and-functioning/ )

Willmer C. M., Beattle L. N. J. P. (1978) – Cellular osmotic phenomena during stomatal movements of Commelina communisProtoplasma 95(4): 321–332https://doi.org/10.1007/BF01291408https://link.springer.com/article/10.1007/BF01291408#citeas – (On our blog : https://plantstomata.wordpress.com/2019/08/12/cellular-osmotic-phenomena-during-stomatal-movements/ )

Willmer C. M., Dittrich P. (1974) – Carbon dioxide fixation by epidermal and mesophyll tissues of Tulipa and Commelina – Planta 117: 123-132 – doi: 10.1007/BF00390794. – https://www.ncbi.nlm.nih.gov/pubmed/24458325 – (On our blog : https://plantstomata.wordpress.com/2019/02/27/carbon-dioxide-fixation-by-epidermal-stomata-and-mesophyll-tissues/ )

Willmer C. M., Don R., Parker W. (1978) – Levels of short-chain fatty acids and of abscisic acid in water-stressed and non-stressed leaves and their effects on stomata in epidermal strips and excised leaves – Planta 139, 281–287 – doi: 10.1007/BF00388642 –  [PubMed][Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/24414272 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/fatty-acids-aba-and-their-effects-on-stomata-in-epidermal-strips-and-excised-leaves/

Willmer C. M., Fricker M. (1996) – Stomata – In : Topics in Plant Functional Biology: 2 – Eds. M. Black and B. Charlwood – Springer-Science+ Business Media B. V. – https://books.google.be/books?id=9sjoCAAAQBAJ&pg=PA12&lpg=PA12&dq=stomata&source=bl&ots=tIpu1rPm39&sig=YGbF_YtCyNa-YR3F8_QWpf3UugI&hl=en&sa=X&ved=0ahUKEwiS3e-4ocbYAhVMmbQKHcY3DWw4HhDoAQgoMAA#v=onepage&q=stomata&f=false – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-3/ )

Willmer C. M., Mansfield T. A. (1970) – Further observations of cation-stimulated stomatal opening in isolated epidermis – New Phytol. 69(3): 639-645 – https://doi.org/10.1111/j.1469-8137.1970.tb02451.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1970.tb02451.x – (On our blog : https://plantstomata.wordpress.com/2019/08/28/active-transport-of-monovalent-cations-into-stomatal-guard-cells-might-explain-the-co2%e2%80%90independent-light-responses-of-stomata-but-not-their-light%e2%80%90independent-co2-responses/ )

Willmer C. M., Pallas J. E. Jr. (1973) – A survey of stomatal movements and associated potassium fluxes in the plant kingdom – Canadian Journal of Botany 51(1): 37-42 – https://doi.org/10.1139/b73-006 – http://www.nrcresearchpress.com/doi/abs/10.1139/b73-006?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/01/28/stomatal-movements-and-associated-potassium-fluxes/ )

Willmer C. M., Pallas J. E., Black C. C. (1973) – Carbon dioxide metabolism in leaf epidermal tissue – Plant Physiol 52: 448-452 –  PMID: 16658581 PMCID: PMC366521 –http://www.plantphysiol.org/content/plantphysiol/52/5/448.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/27/carbon-dioxide-metabolism-in-leaf-epidermis-stomata/ )

Willmer C. M., Pantoja O. (1992) – The plasma membrane and tonoplast of guard cells. In: Plant Membranes. Springer, Dordrecht – Plant Membranes : 220-238 – https://link.springer.com/chapter/10.1007/978-94-017-2683-2_11 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/ion-transport-across-the-tonoplast-and-plasma-membrane-play-a-central-role-in-stomatal-functioning/

Willmer C. M., Sexton R. (1979) – Stomata and plasmodesmata – Protoplasma 100: 113 –  https://doi.org/10.1007/BF01276305 – https://link.springer.com/article/10.1007/BF01276305#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-and-plasmodesmata/ )

Willmer C. M., Thorpe N., Rutter J. C., Milthorpe F. L. (1978) – Stomatal metabolism: fixation in attached and detached epidermis of Commelina – Aust. J. Plant Physiol. 5: 767–778 – https://doi.org/10.1071/PP9780767http://www.publish.csiro.au/FP/PP9780767 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-metabolism-fixation-in-attached-and-detached-epidermis/ )

Wilson D. (1975) – Leaf growth, stomatal diffusion resistances and photosynthesis during droughting of Lolium perenne populations selected for contrasting stomatal length and frequency – Ann. Applied Biol. – https://doi.org/10.1111/j.1744-7348.1975.tb01523.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1744-7348.1975.tb01523.x – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-diffusion-resistances-and-photosynthesis-during-droughting/ )

Wilson I. D., Ribeiro D. M., Bright J., Confraria A., Harrison J., Barros R. S., Desikan R., Neill S. J., Hancock J. T. (2009) – Role of nitric oxide in regulating stomatal apertures – Plant Signal. Behav. 4: 467-469 – doi: 10.4161/psb.4.5.8545 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676769/ – (On our blog : https://plantstomata.wordpress.com/2019/01/09/a-role-for-no-in-the-fine-tuning-of-the-stomatal-apertures-of-turgid-leaves/ )

Wilson J. A., Ogunkanmi A. B., Mansfield T. A. (1978) – Effects of external potassium supply on stomatal closure induced by abscisic acid – Plant Cell Environ. 1: 199–201 – https://doi.org/10.1111/j.1365-3040.1978.tb00761.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1978.tb00761.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/effects-of-external-potassium-supply-on-stomatal-closure-induced-by-aba/ )

Wilson K. B., Baldocchi D. D., Hanson P. J. (2000) – Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species – Tree Physiology 20: 787–797 – PMID: 12651499 – https://nature.berkeley.edu/biometlab/pdf/wilson_et_al_tree_physiol_2000_vol20_787.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/27/quantifying-stomatal-and-non-stomatal-limitations-to-carbon-assimilation/ )

Wilson K. B., Bunce J. A. (1997) – Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean – Plant, Cell & Environment 20: 230-238 – DOI (10.1046/j.1365-3040.1997.d01-58.x) –https://pubag.nal.usda.gov/catalog/1412253 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/effects-of-co2-concentration-on-the-interactive-effects-of-temperature-and-water-vapour-on-stomatal-conductance/ )

Winkel T., Rambal S. (1990) – Stomatal conductance of some grapevines growing in the field under a Mediterranean environment – Agric. For. Meteorol. 51: 107-121 – https://doi.org/10.1016/0168-1923(90)90010-4https://www.sciencedirect.com/science/article/pii/0168192390900104 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/stomatal-conductance-of-some-grapevines-growing-in-the-field-under-a-mediterranean-environment/ )

Winter K., Schramm M. J. (1986) – Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis – Plant Physiol. 82: 173-178 – DOI: https://doi.org/10.1104/pp.82.1.173http://www.plantphysiol.org/content/82/1/173 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/stomatal-and-nonstomatal-components-in-the-environmental-control-of-co2-exchange-in-leaves/ )

Wittig V. E., Ainsworth E. A., Long S. P. (2007) – To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments – Plant Cell Environ. 30: 1150–1162 – OI: 10.1111/j.1365-3040.2007.01717.x – https://www.ncbi.nlm.nih.gov/pubmed/17661752 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/effect-of-ozone-on-photosynthesis-and-stomatal-conductance/ )

Wolf A., Anderegg W. R. L., Pacala S. W. (2016)  – Optimal stomatal behavior with competition for water and risk of hydraulic impairment – Published online before print October 31, 2016, doi:10.1073/pnas.1615144113  – PNAS October 31, 2016 – Proceedings of the National Academy of Sciences USA 113, E7222–E7230. – http://www.pnas.org/content/early/2016/10/27/1615144113.short – (On our blog : https://plantstomata.wordpress.com/2016/11/06/optimal-stomatal-behavior/

Wohlfahrt G., Brilli F., Hörtnagl L., Xu X., Bingemer H., Hansel A., Loretto F. (2012) – Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations – Plant, Cell and Environment (2012) 35, 657–667 – doi: 10.1111/j.1365-3040.2011.02451.x – Carbonyl_sulfide_COS_as_a_tracer_for_can.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/cos-as-a-tracer-for-canopy-photosynthesis-transpiration-and-stomatal-conductance/ )

Wolz K. J., Wertin T. M., Abordo M., Wang D., Leakey A. D. B. (2017) – Diversity in stomatal function is integral to modelling plant carbon and water fluxes – Nature Ecology & Evolution1: 1292–1298(2017) – doi:10.1038/s41559-017-0238-z –https://www.nature.com/articles/s41559-017-0238-z – (On our blog : https://plantstomata.wordpress.com/2017/11/24/diversity-in-stomatal-function/ )

Wong S. C., Cowan I. F., Farquhar G. D. (1979) – Stomatal conductance correlates with photosynthetic capacity – Nature: 282: 424-426 – 10.1038/282424a0 – https://www.nature.com/articles/282424a0 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/stomatal-conductance-correlates-with-photosynthetic-capacity/ )

Wong S. L., Chen C. W., Huang H. W., Weng J. H. (2012) – Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes – Tree Physiology 32: 535–544 – https://doi.org/10.1093/treephys/tps037 – https://academic.oup.com/treephys/article/32/5/535/1735291 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/combined-measurements-for-comparison-of-light-induction-of-stomatal-conductance-electron-transport-rate-and-co2-fixation/ )

Wood J. G. (1932) – The physiology of xerophytism in Australian plants: The carbohydrate metabolism of plants with tomentose succulent leaves – Immunology & Cell Biology – https://doi.org/10.1038/icb.1932.31https://onlinelibrary.wiley.com/doi/pdf/10.1038/icb.1932.31 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/the-carbohydrate-metabolism-of-plants-with-tomentose-succulent-leaves/ )

Wood J. G. (1934) – The physiology of xerophytism in Australian plants: the stomatal frequencies, transpiration and osmotic pressures of sclerophyll and tomentose-succulent leaved plants – J. Ecol. 22: 69–87 – doi:10.2307/2256096 – https://www.jstor.org/stable/2256096?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/13/stomatal-frequencies-transpiration-and-osmotic-pressures-of-sclerophyll-and-tomentose-succulent-leaved-plants/ )

Wood N. T., Allan A. C., Haley A., Viry-Moussaid M., Trewavas A. J. (2000) – The characterization of differential calcium signalling in tobacco guard cells – Plant J 24: 335–344 – https://doi.org/10.1046/j.1365-313x.2000.00881.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313x.2000.00881.x – (On our blog :  https://plantstomata.wordpress.com/2019/02/28/differential-calcium-signalling-in-stomatal-guard-cells/ )

Woods D. B., Turner N. C. (1971) – Stomatal response to changing light by four tree species of varying shade tolerance. – New Phytol. 70: 77–84 – https://doi.org/10.1111/j.1469-8137.1971.tb02512.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1971.tb02512.x – (On our blog : https://plantstomata.wordpress.com/2018/07/19/stomatal-response-to-changing-light/ )

Woodruff D., Meinzer F. C., McCulloh K. A. (2009) – Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer – Journal of Experimental Botany 61(1):203-210 –https://www.ncbi.nlm.nih.gov/pubmed/19933710 – (on our blog : https://plantstomata.wordpress.com/2016/11/06/stomatal-sensitivity-to-leaf-to-air-vapour-pressure-deficit/ )

Woodward A. W., Bartel B. (2018) – Biology in Bloom: A Primer on the Arabidopsis thaliana Model System – GENETICS 208(4): 1337-1349 – https://doi.org/10.1534/genetics.118.300755http://www.genetics.org/content/208/4/1337 – (On our blog : https://plantstomata.wordpress.com/2019/02/08/arabidopsis-thaliana-model-system/ )

Woodward F. I. (1987) – Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels – Nature 327: 617–618 – doi:10.1038/327617a0 | CrossRef | – CrossRef Web of Science – Google Scholar –https://www.nature.com/nature/journal/v327/n6123/abs/327617a0.html – (On our blog : https://plantstomata.wordpress.com/2017/07/23/increases-in-co2-from-pre-industrial-levels-and-stomatal-density/ )

Woodward F. I. (1998) – Do plants really need stomata? – Journal of Experimental Botany 49: 471-480. – Google Scholar  CrossRef –http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Do-plants-really-need-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/do-plants-really-need-stomata/ )

Woodward F. I. (2012) – Stomata – a global view  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-global-view-on-stomata/ )

Woodward F. I., Bazzaz F. A. (1987) –  The responses of stomatal density to CO2 partial-pressure – Journal of Experimental Botany 39: 1771–1781 – https://doi.org/10.1093/jxb/39.12.1771 – https://academic.oup.com/jxb/article-abstract/39/12/1771/542607 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/stomatal-density-and-co2-partial-pressure/ )

Woodward F. I., Kelly C. K. (1995) – The influence of CO2 concentration on stomatal density – New Phytologist 131: 311-327 – http://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1995.tb03067.x/asset/j.1469-8137.1995.tb03067.x.pdf?v=1&t=jd6h95wl&s=df4433366e7bdeb84775b67a8c73c5d4c03837ca – (On our blog : https://plantstomata.wordpress.com/2018/02/02/co2-concentration-and-stomatal-density-2/ )

Woodward F. I., Lake C. K., Quick W. P. (2002) – Stomatal development and CO2:  ecological consequences – New Phytologist 153: 477-484 – https://doi.org/10.1046/j.0028-646X.2001.00338.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.0028-646X.2001.00338.x – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-development-and-co2-ecological-consequences/ )

Woolfenden H. C., Baillie A. L., Gray J. E., Hobbs J. K., Morris R. J., Fleming A. J. (2018) – Models and Mechanisms of Stomatal Mechanics –  In Press Corrected Proof – Trends in Plant Science – DOI: https://doi.org/10.1016/j.tplants.2018.06.003 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30132-8 – (On our blog : https://plantstomata.wordpress.com/2018/07/13/a-reassessment-of-accepted-paradigms-and-a-new-understanding-of-the-mechanism-of-stomatal-mechanics/ )

Woolfenden H. C., Bourdais G., Kopischke M., Miedes E., Molina A., Robatzek S., Morris R. J. (2017) – A computational approach for inferring the cell wall properties that govern guard cell dynamics – The Plant Journal: Accepted, unedited articles published online and citable. – DOI: 10.1111/tpj.13640 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13640/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/29/proper-stomatal-dynamics-builds-on-two-key-properties-of-the-cell-wall-namely-anisotropy-in-the-form-of-hoop-reinforcement-and-strain-stiffening/ )

Wright L. A., Murphy T. M. (1982) – Short-wave ultraviolet light closes leaf stomata – Am J Bot 69: 1196–1199 – https://doi.org/10.1002/j.1537-2197.1982.tb13364.xhttps://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1982.tb13364.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/closing-of-stomata-may-account-for-the-acceleration-of-senescence-that-is-induced-by-ultraviolet-light/ )

Wu B., Long J. Ci (2001) – Landscape change and desertification development in the Mu Us Sandland, Northern China – J. Arid Environ. 50: 429-444 – DOI: 10.1006/jare.2001.0847.

Wu B.-J., Chow W. S., Liu Y.-J., Shi L., Jiang C.-D. ( 2014) – Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb – Plant Science 229: 23–31 – Effects_of_stomatal_development_on_stoma.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/effects-of-stomatal-development-on-stomatal-conductance-and-on-stomatal-limitation-of-photosynthesis/ )

Wu G., Liu H., Hua L., Luo Q., Lin Y., He P., Feng S., Liu J., Ye Q. (2018) – Differential Responses of Stomata and Photosynthesis to Elevated Temperature in Two Co-occurring Subtropical Forest Tree Species – Front. Plant Sci. – https://doi.org/10.3389/fpls.2018.00467 – https://www.frontiersin.org/articles/10.3389/fpls.2018.00467/full – (On our blog : https://plantstomata.wordpress.com/2018/10/13/two-tree-species-responded-differently-to-water-deficit-caused-by-elevated-temperature-through-the-adjustment-of-stomata/ )

Wu H., Sharpe P. J. H. (1979) – Stomatal mechanics – II: Material properties of guard cell walls – Plant, Cell and Environment 2: 235-244 –  DOI: 10.1111/j.1365-3040.1979.tb00075.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00075.x – (On our blog : https://plantstomata.wordpress.com/2019/02/28/material-properties-of-stomatal-guard-cell-walls/ )

Wu H., Sharpe P. J. H., Spence R. D. (1985) – Stomatal mechanics. 3. Geometric interpretation of the mechanical advantage – Plant, Cell & Environment 8: 269–274 – https://doi.org/10.1111/1365-3040.ep11604674 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11604674 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/simple-geometric-relationships-calculated-from-measurable-anatomical-dimensions-of-the-stomatal-system/ )

Wu H.-C, Huang Y.-C., Stracovsky L., Jinn T.-L. (2017) – Pectin methylesterase is required for guard cell function in response to heat – Plant Signaling & Behavior  12(6) – http://dx.doi.org/10.1080/15592324.2017.1338227 http://www.tandfonline.com/doi/full/10.1080/15592324.2017.1338227?src=recsys – (On our blog : https://plantstomata.wordpress.com/2017/10/28/the-significant-role-of-pme34-in-heat-tolerance-through-the-regulation-of-stomatal-movement/ )

Wu L., Huang Z., Li X.,  Ma L., Gu Q..Wu H., Liu J., Borriss R., Wu Z., Gao X., (2018) – Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana – Front. Microbiol., 27 April 2018 | https://doi.org/10.3389/fmicb.2018.00847 – https://www.frontiersin.org/articles/10.3389/fmicb.2018.00847/full – (On our blog : https://plantstomata.wordpress.com/2018/09/19/stomatal-movements-and-a-biocontrol-mechanism-of-soil-rhizobacteria-in-a-plant/ )

Wu S.., Maseyk K., Lett C., Seibt U. (2018 ?) – Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh – Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-431, in review, 2017 – https://www.biogeosciences-discuss.net/bg-2017-431/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-control-of-leaf-fluxes-of-cos-and-co2/ )

Wu W. H., Assmann S. M. (1993) – Photosynthesis by guard cell chloroplasts of Vicia faba L. : effects of factors associated with stomatal movement – Plant Cell Physiology 34: 1015-1022 – https://doi.org/10.1093/oxfordjournals.pcp.a078514 –https://academic.oup.com/pcp/article-abstract/34/7/1015/1810682?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/01/photosynthesis-by-guard-cell-chloroplasts-effects-of-factors-associated-with-stomatal-movement/ )

Wu W. H., Assmann S. M. (1994) – A membrane-delimited pathway of G protein regulation of the guard-cell inward K+channel – Proc Natl Acad Sci USA 91: 6310–6314 – https://doi.org/10.1073/pnas.91.14.6310 – http://www.pnas.org/content/91/14/6310?ijkey=0c9c7541994d9f3dd37d34ba334875c55d199d9e&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/05/g-proteins-can-act-via-a-membrane-delimited-pathway-to-regulate-inward-k-channels-in-stomata/ )

Wu W. H., Assmann S. M. (1995) – Is ATP required for K+ channel activation in Vicia guard cells? – Plant Physiol. 107: 101–109 – DOI: https://doi.org/10.1104/pp.107.1.101http://www.plantphysiol.org/content/107/1/101 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/atp-is-required-for-activation-of-the-inward-k-channels-of-the-stomatal-guard-cell-plasma-membrane/ )

Wu Z., Chen L., Yu Q., Zhou W., Gou X., Li J., Hou S. (2019) – Multiple transcriptional factors control stomata development in rice – New Phytologist – https://doi.org/10.1111/nph.15766 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15766?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/03/how-various-species-reprogramme-the-molecular-mechanisms-to-generate-different-stomatal-types-during-evolution/ )

Wullschleger S. D., Gunderson C. A., Hanson P. J., Wilson K. B., Norby R. J. (2002) – Sensitivity of stomatal and canopy conductance to elevated CO2 concentration – interacting variables and perspectives of scale – New Phytologist 153: 485–496 – https://doi.org/10.1046/j.0028-646X.2001.00333.x –https://nph.onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00333.x – (On our blog : https://plantstomata.wordpress.com/2019/03/01/sensitivity-of-stomatal-and-canopy-conductance-to-elevated-co2-concentration/ )

Wullschleger S. D., Hanson P. J., Sage R. F. (1992) – PHOTOBIO: Modeling the Stomatal and Biochemical Control of Plant Gas Exchange -J. Nat. Resour. Life Sci. Educ. 21: 141-145 – https://www.crops.org/files/publications/nse/pdfs/jnr021/021-02-0141.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/modeling-the-stomatal-and-biochemical-control-of-plant-gas-exchange/ )

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – Stomatal movement – guard cell physiology – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/stomatal-movements/ )

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – ABA action and receptors – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-action-and-receptors-in-stomata/ )

Wynn J. G. (2003) – Towards a physically based model of CO2-induced stomatal frequency response – New Phytol. 157: 394–398 –Towards_a_physically_based_model_of_CO2-.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/a-physically-based-model-of-co2-induced-stomatal-frequency-response/ )

Xia X. J., Gao C. J., Song L. X., Zhou Y. H., Shi K., Yu J. Q. (2014) – Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum – Plant Cell Environ. 37: 2036–2050 – 10.1111/pce.12275 – [PubMed][Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/24428600 – (On our blog : https://plantstomata.wordpress.com/2018/07/20/aba-deficiency-abolished-ebr-induced-stomatal-closure-but-did-not-affect-ebr-induced-stomatal-opening/ )

Xie C., Zhang R., Qu Y., Miao Z., Zhang Y., Shen X., Wang T, Dong J. (2012) – Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density – New Phytol. 19: 5124–135 – DOI:  10.1111/j.1469-8137.2012.04136.x –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/22510066 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/interaction-of-mtcas31-and-atice1-caused-the-decrease-in-stomatal-density/ )

Xie S., Luo X. (2003) – Effect of leaf position and age on anatomical structure, photosynthesis, stomatal conductance and transpiration of Asian pear – Bot. Bull. Acad. Sin. (2003) 44: 297-303 – https://ejournal.sinica.edu.tw/bbas/content/2003/4/bot444-06.html – (On our blog : https://plantstomata.wordpress.com/2018/01/13/leaf-position-and-age-stomatal-conductance-and-transpiration-of-asian-pear/ )

Xie X., Wang Y., Williamson L., Holroyd G. H., Tagliavia C., Murchie E., Theobald J., Knight M. R., Davies W. J., Leyser H. M. O., Hetherington A. M. (2006) – The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. – Curr. Biol. 16: 882–887 – DOI: https://doi.org/10.1016/j.cub.2006.03.028 – http://www.cell.com/current-biology/fulltext/S0960-9822(06)01324-8?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982206013248%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2018/02/02/genes-for-the-stomatal-response-to-reduced-atmospheric-relative-humidity/ )

Xie Y., Mao Y., Duan X., Zhou H., Lai D., Zhang Y., Shen W. (2016) – Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness – Plant Physiology 170(3):  – DOI: https://doi.org/10.1104/pp.15.01550 –http://www.plantphysiol.org/content/170/3/1699 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/hy1-modulated-stomatal-movement/ )

Xie Y., Mao Y., Zhang W., Lai D., Wang Q., Shen W. (2014) – Reactive oxygen species-dependent nitric oxide production contributes to hydrogen- promoted stomatal closure in Arabidopsis – Plant Physiol. 165: 759–773 – doi: 10.1104/pp.114.237925 – http://www.plantphysiol.org/content/early/2014/04/14/pp.114.237925 – (On our blog : https://plantstomata.wordpress.com/2018/07/20/no-production-contributes-to-h2-promoted-stomatal-closure/ )

Xie Z., Lee E., Lucas J. R., Morohashi K., Li D., Murray J. A., Sack F. D., Grotewold E. (2010) – Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes – The Plant Cell 22: 2306–2321 –  https://doi.org/10.1105/tpc.110.074609http://www.plantcell.org/content/22/7/2306 – (On our blog : https://plantstomata.wordpress.com/2019/05/03/regulation-of-cell-proliferation-in-the-stomatal-lineage-by-myb-four-lips-via-direct-targeting-of-core-cell-cycle-genes/ )

Xinhua (2017) – Grass stomata seen as possible lead to crops better surviving climate change – http://news.xinhuanet.com/english/2017 – 03/17/c_136135449.htm – (On our blog : https://plantstomata.wordpress.com/2017/10/30/these-findings-may-lead-to-producing-other-plants-with-four-celled-stomata/ )

Xiong D., Douthe C., Flexas J. (2018) – Differential coordination of stomatal conductance, mesophyll conductance and leaf hydraulic conductance in response to changing light across species – Plant Cell Environ. 41: 821-827 – https://doi.org/10.1111/pce.13111http://onlinelibrary.wiley.com/doi/10.1111/pce.13111/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/10/differential-coordination-of-stomatal-conductance/ )

Xiong D., Flexas J., Peng S., Huang J. (2017) – Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in OryzaNew Phytol. 213(2): 572-583 – doi: 10.1111/nph.14186 – Epub 2016 Sep 2 – https://www.ncbi.nlm.nih.gov/pubmed/27653809 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/kleaf-was-not-correlated-with-the-maximum-theoretical-stomatal-conductance/ )

Xu B.-s., Zhang R.-h. ( 2002) – Study on chlorophyll content and stomata morphology of Pïnus massoniana – Chemistry and Industry of Forest Products 22(3): 59-61  – http://www.cifp.ac.cn/EN/abstract/abstract94.shtml – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-density-is-negatively-correlated-with-stomata-diameter-in-pinus/ )

Xu K., Guo L., Ye H. (2019) – A naturally optimized mass transfer process: The stomatal transpiration of plant leaves – J Plant Physiol. 234-235:138-144 – doi: 10.1016/j.jplph.2019.02.004 – https://www.ncbi.nlm.nih.gov/pubmed/30798115 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-transpiration-of-leaves/ )

Xu L., Baldocchi D. D. (2003) – Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature – Tree Physiolog, 23: 865–877 – https://doi.org/10.1093/treephys/23.13.865 –https://academic.oup.com/treephys/article/23/13/865/1650675 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/seasonal-trends-in-photosynthetic-parameters-and-stomatal-conductance/ )

Xu M., Chen F., Qi S., Zhang L., Wu S. (2018) – Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora – Horticulture Research (2018)5: 42 – DOI 10.1038/s41438-018-0048-8 – Loss_or_duplication_of_key_regulatory_genes_coinci.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/09/loss-or-duplication-of-key-regulatory-genes-is-associated-with-environmental-adaptation-of-the-stomatal-complex/ )

Xu X.-D., Lou C.-H. (1980)The presence of roots as a prerequisite for normal functioning of stomata on sweet potato leaves – Acta Agriculturae Universitatis Pekinensis (Journal of Peking Agricultural University) – (in Chinese), 1980, 1: 37-45 – ISSN :0479-8007 – https://www.cabdirect.org/cabdirect/abstract/19800712248 – (On our blog : https://plantstomata.wordpress.com/2019/03/30/a-physiologically-active-substance-from-roots-was-necessary-for-normal-stomatal-function/ )

Xu Z., Jiang Y., Jia B., Zhou G. (2016) – Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors – Front. Plant Sci., 13 May 2016 | https://doi.org/10.3389/fpls.2016.00657 – https://www.frontiersin.org/articles/10.3389/fpls.2016.00657/full – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-stomata-respond-to-elevated-co2-levels-and-environmental-factors/ )

Xu Z., Zhou G. (2008) – Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59: 3317–3325 – DOI: 10.1093/jxb/ern185 – Abstract/FREE Full TextGoogle Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ern185 – (On our blog : https://plantstomata.wordpress.com/2017/06/15/stomatal-density-and-size/)

Xuan X., Wang Y., Ma S. M., Ye X.( 2011) – Comparisons between stomatal parameters between normal and abnormal leaf of Bougainvillea spectabilis Willd. – African Journal of Biotechnology 10(36): 6973-6978 – 94698-243748-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/20/stomatal-parameters-of-normal-and-abnormal-leaves/ )

Xue S., Hu H., Ries A., Merilo E., Kollist H., Schroeder J. I. (2011) – Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell – EMBO J. 30: 1645–1658 –  doi:  10.1038/emboj.2011.68 – http://labs.biology.ucsd.edu/schroeder/bggn227/oldfiles13/emboj201168%20Xue%20Hu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/20/bicarbonate-in-s-type-anion-channel-activation-and-ost1-protein-kinase-in-co2-signal-transduction-in-stomata-2/

Xue S., Yang P. (2005) – Effects of La 3+ on inward K + channels at plasma membrane in guard cells – Science in China Series B Chemistry 48(2):143-147 –https://www.researchgate.net/publication/244742609_Effects_of_La_3_on_inward_K_channels_at_plasma_membrane_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2017/12/14/effects-of-la-3-on-inward-k-channels-at-plasma-membrane-in-guard-cells/ )

Yaaran A., Negin B., Moshelion M. (2017) – Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response – Biorxiv – doi: https://doi.org/10.1101/218719 – https://www.biorxiv.org/content/early/2017/11/13/218719 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-maximal-stomatal-aperture-and-prompt-vapor-pressure-deficit-response/ )

Yamamoto Y., Negi J., Wang C., Isogai Y., Schroeder J. I., Iba K . (2016) – The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO2 Signals via an ABA-Independent Pathway in Arabidopsis – Plant Cell.  28(2): 557-567 – Epub 2016 Jan 13 – DOI: https://doi.org/10.1105/tpc.15.00583http://www.plantcell.org/content/28/2/557 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/stomatal-guard-cell-slac1-channels-perceives-co2-signals-via-an-aba-independent-pathway/ )

Yamashita T. (1952) – Influences of potassium supply upon various properties and movement of guard cell. – Sielboldia Acta Biollogy 1, 51–70 – (Article not found)

Yamauchi S., Mano S., Oikawa K., Hikino K., Teshima K. M., Kimori Y., Nishimura M., Shimazaki K.-i., Takemiya A. (2019) – Autophagy controls reactive oxygen species homeostasis in guard cells that is essential for stomatal opening – PNAS 116(38): 19187-19192 – https://doi.org/10.1073/pnas.1910886116https://www.pnas.org/content/116/38/19187 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/autophagy-controls-stomatal-guard-cell-ros-homeostasis-by-eliminating-oxidized-peroxisomes-thereby-allowing-stomatal-opening/ )

Yamauchi S., Takemiya A., Sakamoto T., Kurata T., Tsutsumi T., Kinoshita T., Shimazaki K.-i. (2016) – The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light – Plant Physiology 171(4) – DOI: https://doi.org/10.1104/pp.16.01581 – http://www.plantphysiol.org/content/171/4/2731 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/aha1-plays-a-major-role-in-stomatal-opening-in-response-to-blue-light/ )

Yamazaki D., Yoshida S., Asami T., Kuchitsu K. (2003) – Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. – Plant J. 35: 129–139. – 10.1046/j.1365-313X.2003.01782.x –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/12834408 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/visualization-of-the-aba-perception-sites-and-the-nature-of-membrane-associated-aba-receptors-in-stomata/ )

Yamazaki T., Kato K., Ito T., Nakai T., Matsumoto K., Miki N., Park H., Ohta T. (2013) – A common stomatal parameter set used to simulate the energy and water balance over boreal and temperate forests – Journal of the Meteorological Society of Japan 91: 273–285 – DOI:10.2151/jmsj.2013-303 – https://www.jstage.jst.go.jp/article/jmsj/91/3/91_2013-303/_pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/01/a-common-stomatal-parameter-set-used-to-simulate-the-energy-and-water-balance-over-boreal-and-temperate-forests/ )

Yan F., Li X., Liu F. (2017) – ABA signaling and stomatal control in tomato plants exposure to progressive soil drying under ambient and elevated atmospheric CO2 concentration – Environ. Exp. Bot. 139: 99–104 – https://doi.org/10.1016/j.envexpbot.2017.04.008https://www.sciencedirect.com/science/article/abs/pii/S009884721730103X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/27/aba-signaling-and-stomatal-control/ )

Yan F., Sun Y., Song F., Liu F. (2012) – Differential responses of stomatal morphology to partial root-zone drying and deficit irrigation in potato leaves under varied nitrogen rates – Scientia Horticulturae 145: 76-83 – https://doi.org/10.1016/j.scienta.2012.07.026 – https://www.sciencedirect.com/science/article/pii/S0304423812003573 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/partial-root-zone-drying-prd-reduces-plant-water-use-via-modulating-stomatal-morphology-under-high-n-rate/

Yan W., Zhong Y., Shangguan Z. (2017) – Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles – Glob. Change Biol. 104: 145–157 – doi: 10.1111/gcb.13654 – https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13654 https://plantstomata.wordpress.com/2019/03/01/a-common-stomatal-parameter-set-used-to-simulate-the-energy-and-water-balance-over-boreal-and-temperate-forests/)

Yang-Chuan Y., Yu D. J., Ge D. X., Hui D., Liang M. (1998) – Studies on stomata of apple leaves – J. Shandong Agril. Univ. 29: 8-14 – (Article not found)

Yang D. L., Shi Z., Bao Y., Yan J., Yang Z., Yu H., Li Y., Gou M., Wang S., Zou B., Xu D., Ma Z., Kim J., Hua J. (2017) – Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity – Plant Physiology 175(1): –  DOI: https://doi.org/10.1104/pp.17.01136 – http://www.plantphysiol.org/content/175/1 – (On our blog : https://plantstomata.wordpress.com/2017/11/12/aca10-8-and-bon1-interact-on-plasma-membrane-and-function-in-the-generation-of-cytosol-calcium-signatures-critical-for-stomatal-movement/

Yang H. M., Wang G. X. (2001) – Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment – Acta Phytoecologica Sinica 25: 312–316 – https://europepmc.org/abstract/cba/540904 – (on our blog : https://plantstomata.wordpress.com/2019/03/02/leaf-stomatal-densities-and-distribution-under-drought-and-co2-enrichment/ )

Yang H. M., Zhang X. Y., Tang Q.-L., Wang G.-X. (2006) – Extracellular calcium is involved in stomatal movement through the regulation of water channels in broad bean – Plant Growth Regulation 50(1): 79-83 – DOI10.1007/s10725-006-9128-0 –https://www.infona.pl/resource/bwmeta1.element.springer-6f95dbbd-1b60-3c0e-baed-9c2cbcc6471f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/extracellular-calcium-and-the-regulation-of-water-channels-in-stomatal-movement/ )

Yang H. M., Zhang X. Y., Wang G.-X. (2004) – Cytosolic calcium oscillation signaling in guard cell – Plant Science 166: 549-556 – https://doi.org/10.1016/j.plantsci.2003.11.005 –https://www.sciencedirect.com/science/article/pii/S0168945203004813 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/how-ca2cyt-oscillations-are-encoded-and-decoded-and-water-channels-may-be-involved-in-stomatal-oscillation/ )

Yang H. M., Zhang J., Zhang X. (2005) – Regulation mechanisms of stomatal oscillation – Journal of Integrative Plant Biology 47: 1159–1172 – https://doi.org/10.1111/j.1744-7909.2005.00146.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-7909.2005.00146.x – (On our blog : https://plantstomata.wordpress.com/2018/10/28/a-summary-of-studies-on-stomatal-oscillation-and-a-discussion-regarding-the-mechanisms-of-regulation-of-stomatal-oscillation/ )

Yang J., Weyers J., Zhu Q., Peng Z. (1995) – Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves – Acta Agronomica Sinica 21: 533–539 – https://europepmc.org/abstract/cba/282006 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/effect-of-water-deficit-stress-on-stomatal-frequency-and-stomatal-conductance/ )

Yang K.-Z., Jiang M., Wang M., Xue S., Zhu L.-l., Wang H.-Z., Zou J., Lee E.-K., Sack F. D., Le J. (2015) – Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis – Molecular Plant 8(5): 783-795 – https://doi.org/10.1016/j.molp.2014.12.014 –https://www.sciencedirect.com/science/article/pii/S1674205214000513 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/phosphorylation-of-serine-186-of-bhlh-transcription-factor-speechless-promotes-stomatal-development/ )

Yang K., Zhu L., Wang H., Jiang M., Xiao C., Hu X., Vanneste S., Dong J., Le J. (2019) – A conserved but plant-specific CDK-mediated regulation of DNA replication protein A2 in the precise control of stomatal terminal division – PNAS – https://doi.org/10.1073/pnas.1819345116https://www.pnas.org/content/early/2019/08/19/1819345116 – (On our blog : https://plantstomata.wordpress.com/2019/08/21/the-precise-control-of-stomatal-terminal-division/ )

Yang L., Mei H., Zhou G., Li J. (2007) – The changes of water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect – Acta Ecologica Sinica 27: 16–24 – https://doi.org/10.1016/S1872-2032(07)60006-7 –-https://www.sciencedirect.com/science/article/pii/S1872203207600067 –  https://plantstomata.wordpress.com/2016/02/16/water-use-efficiency-and-stoma-density/ )

Yang M., Sack F. D. (1995) – The too many mouths and four lips mutations affect stomatal production in Arabidopsis – Plant Cell 7: 2227–2239 – doi: 10.1105/tpc.7.12.2227 – https://www.jstor.org/stable/3870164?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/22/two-mutations-affect-stomatal-production-more-than-patterning-or-differentiation/ )

Yang T. Z., Yu Y. Q., Le D. Y., Mei Z. Y. (2004) – Relationships between ozone injury and stoma parameters and activities of antioxidant enzyme – Acta-Phytoecologica_Sinica 28: 672-679 – https://europepmc.org/abstract/cba/465258 – (On our blog : https://plantstomata.wordpress.com/2019/07/17/ozone-injury-stoma-parameters-and-activities-of-antioxidant-enzyme/ )

Yang X. et al. (2017) – Drought-resistant plant genes could accelerate evolution of water-use efficient crops – https://phys.org/news/2017-12-drought-resistant-genes-evolution-water-use-efficient.html#jCp – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomata-cam-plants-water-use-efficiency-and-drought-resistant-plant-genes/ )

Yang X., Yang Y., Ji C., Feng T., Shi Y., Lin L., Ma J., He J.-S. (2014) – Large-scale patterns of stomatal traits in Tibetan and Mongolian grassland species – Basic and Applied Ecology 15(2): 122-132 – https://doi.org/10.1016/j.baae.2014.01.003 –https://www.sciencedirect.com/science/article/pii/S1439179114000048?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/01/the-low-temperature-and-high-insolation-at-high-altitudes-may-be-responsible-for-the-larger-and-fewer-stomata/ )

Yang Y., Costa A., Leonhardt N., Siegel R. S., Schroeder J. I. (2008) – Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool – Plant Methods2008 4:6 –– https://doi.org/10.1186/1746-4811-4-6 – https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-4-6 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/isolation-of-a-strong-arabidopsis-guard-cell-promoter-and-its-potential-as-a-research-tool/ )

Yanmaz R., Abak K. (1985) – Stomatal frequency in some pepper varieties. Capsicum Newslett. 4: 20-21 –

Yanmaz R., Erio A. (1984) –  Bazi sebze turlerinin yapraklarindaki stoma sayilari – A.U. Ziraat Fakultesi Yilii 33: 94-102 –

Yao X., Zhao W., Yang R., Wang J., Zhao F., Wang S. (2018) – Preparation and applications of guard cell protoplasts from the leaf epidermis of Solanum lycopersicum – Plant Methods201814:26 – https://doi.org/10.1186/s13007-018-0294-7 – https://plantmethods.biomedcentral.com/articles/10.1186/s13007-018-0294-7 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/preparation-and-applications-of-stomatal-protoplasts/ )

Ye W., Adachi Y., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2015) – Open stomata 1 kinase is essential for yeast elicitor-induced stomatal closure in Arabidopsis. – Plant Cell Physiol. 56: 1239–1248 -DOI: 10.1093/pcp/pcv051 – https://www.ncbi.nlm.nih.gov/pubmed/25840086 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/ost1-kinase-is-essential-for-stomatal-closure-and-activation-of-s-type-anion-channels-induced-by-yel/ )

Ye W., Hossain M. A., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2013) – Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells – J. Plant Physiol. 170: 1212–1215 – https://doi.org/10.1016/j.jplph.2013.03.011 – https://www.sciencedirect.com/science/article/pii/S0176161713001363 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/endogenous-aba-is-involved-in-meja-induced-ros-and-no-production-but-not-in-meja-induced-cytosolic-alkalization-in-stomata/ )

Ye W., Murata Y. (2016) – Microbe Associated Molecular Pattern Signaling in Guard Cells – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2016) – Front. Plant Sci. 7:583. doi: 10.3389/fpls.2016.00583- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/recent-findings-in-signaling-underlying-mamp-induced-stomatal-movement/ )

Ye W., Muroyama D., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Calcium-dependent protein kinase, CPK6, positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. – Plant Physiol. 163, 591–599. – doi: 10.1104/pp.113.224055 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/163/2/591.full.pdf+html – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk6-yel-and-stomatal-movement/ )

Ye Z.-P., Yu Q. (2008) – A coupled model of stomatal conductance and photosynthesis for winter wheat – Photosynthetica 46: 637–640 – https://core.ac.uk/download/pdf/71607305.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/02/a-coupled-model-of-stomatal-conductance-and-photosynthesis/ )

Yekondi S., Liang F.-C., Okuma E., Radziejwoski A., Mai H.-W., Swain S., Singh P., Gauthier M., Chien H.-C., Murata Y., Zimmerli L. (2017) – Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure – New Phytol. doi:10.1111/nph.14953 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14953/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-role-of-lecrk-v-2-and-lecrk-vii-1-in-stomatal-immunity/ )

Yi H., Liu X., Yi M., Chen G. (2014) – Dual Role of Hydrogen Peroxide in Arabidopsis Guard Cells in Response to Sulfur Dioxide – Advances in Toxicology Volume 2014, Article ID 407368 – http://dx.doi.org/10.1155/2014/407368https://www.hindawi.com/journals/atox/2014/407368/ – (On our blog : https://plantstomata.wordpress.com/2019/04/14/dual-role-of-h2o2-in-stomatal-guard-cells-in-response-to-so2/ )

Yi H., Rui Y., Kandemir B., Wang J. Z., Anderson C. T., Puri V. M. (2018) – Mechanical effects of cellulose, xyloglucan, and pectins on stomatal guard cells of Arabidopsis thaliana –  Front Plant Sci 9: 1566 – doi:  10.3389/fpls.2018.01566https://europepmc.org/articles/pmc6230562 – (On our blog : https://plantstomata.wordpress.com/2019/08/02/new-insights-into-how-the-walls-of-guard-cells-are-constructed-to-meet-the-mechanical-requirements-of-stomatal-dynamics/ )

Yi H., Yin J., Liu X., Jing X., Fan S., Zhang H. (2012) – Sulfur dioxide induced programmed cell death in Vicia guard cells – Ecotoxicology and Environmental Safety 78: 281–286 – https://doi.org/10.1016/j.ecoenv.2011.11.035 –https://www.sciencedirect.com/science/article/pii/S0147651311004477?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/14/77606/ )

Yi X. L.,Wang J. X., Duan Z. Q. (2006) – Study on the Stomatal Density and Daily Change Rule of the Wheat – Chin Agric Sci Bull. 22(5): 237–242 – https://doi.org/10.3969/j.issn.1000-6850.2006.05.063http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200605063# – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-density-and-daily-change-rule-of-the-wheat/ )

Yin J., Zhang X., Zhang G., Wen Y., Liang G., Chen X. (2019) – Aminocyclopropane-1-carboxylic acid is a key regulator of guard mother cell terminal division in Arabidopsis thaliana – Journal of Experimental Botany 70(3): 897–908 – https://doi.org/10.1093/jxb/ery413 –https://academic.oup.com/jxb/article/70/3/897/5194407 – (On our blog : https://plantstomata.wordpress.com/2019/05/03/acc-positively-modulates-the-symmetric-division-of-stomatal-gmcs-in-a-manner-that-is-dependent-on-cdkb1s-and-cyca2s/ )

Yin X., Biswal A. K., Dionora J., Perdigon K. M., Balahadia C. P., MazumdarS., Chater C., Lin H.-C., Coe R. A., Kretzschmar T., Gray J., Quick P. W., Bandiopadhyay A. (2017) – CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice – Plant Cell Rep 36: 745-757 – https://doi.org/10.1007/s00299-017-2118-zhttps://link.springer.com/article/10.1007%2Fs00299-017-2118-z#citeas – (On our blog : https://plantstomata.wordpress.com/2019/03/13/crispr-cas9-and-crispr-cpf1-mediated-targeting-of-a-stomatal-developmental-gene-epfl9-2/ )

Yin X.., Wang J., Duan Z., Wen J., Wang H. (2006) – Study on the stomatal density and daily change rule of the wheat – Chinese Agricultural Science Bulletin 22: 237–242 – (Article not found)

Yin Y., Adachi Y., Nakamura Y. Munemasa S., MoriI C., Murara Y. (2016) – Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard CellsPlant Cell Physiol. 57(8): 1779-1790 – doi: 10.1093/pcp/pcw102 – Epub 2016 May 20 – https://www.ncbi.nlm.nih.gov/pubmed/27354421 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/meja-signaling-in-stomatal-guard-cells-is-primed-by-aba-and-is-not-brought-about-through-the-pathway-mediated-by-pyr1-pyl1-pyl2-and-pyl4/ )

Yin Y., Adachi Y., Ye W., Hayashi M., Nakamura Y. Kinoshita T., MoriI C., Murara Y. (2013) – Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. – Plant Physiol. 163, 600–610 (2013). – CAS – Article – PubMed – PubMed Central – http://www.plantphysiol.org/content/163/2/600 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/aba-perception-mechanisms-and-stomata/)

Yirgou D., Caldwell R. M. (1963) – Stomatal penetration of wheat seedlings by stem and leaf rust: effect of light and carbon dioxide – Science (80-.) 141: 272–273 –

Yirgou D., Caldwell R. M. (1968) – Stomatal penetration of wheat seedlings by stem and leaf rusts in relation to effects of carbon dioxide light and stomatal aperture – Phytopathology 58:

Yocum L. E. (1935) – The stomata and transpiration of oaks – Plant Physiology 10(4): 795-801, DOI: https://doi.org/10.1104/pp.10.4.795 – http://www.plantphysiol.org/content/plantphysiol/10/4/795.full.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/35085 )

Yoo C. Y., Pence H. E., Jin J. B., Miura K., Gosney M. J., Hasegawa P. M., Mickelbart M. V. (2010) – The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1 – Plant Cell 22: 4128–4141 – DOI:  10.1105/tpc.110.078691 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantcell.org/content/22/12/4128/F4 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/gtl1-negatively-regulates-wue-by-modulating-stomatal-density-via-transrepression-of-sdd1/ )

Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Shinozaki K. (2005) – The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid (ABA) and Osmotic Stress Signals Controlling Stomatal Closure in Arabidopsis – J Biol Chem 281: 5310–5318 – doi:10.1074/jbc.M509820200 – http://www.jbc.org/content/281/8/5310?ijkey=4d73b99bc49e061c5740fbd1b42af0114a33c6ed&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-direct-interaction-between-srk2e-ost1-and-abi1-through-domain-ii-plays-a-critical-role-in-the-control-of-stomatal-closure/

Yoshida T., Fernie A. R. (2018) – Remote Control of Transpiration via ABA – in Press Corrected Proof – DOI: https://doi.org/10.1016/j.tplants.2018.07.001 – https://www.cell.com/trends/plant-science/abstract/S1360-1385(18)30149-3 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/stomatal-transpiration-via-aba-is-controlled-by-remote-signals-from-roots-and-leaves-for-efficient-use-of-water/ )

You J., Zong W., Li X., Ning J., Hu H., Li X., Xiao J., Xiong L. (2013) – The SNAC1‐targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice – Journal of Experimental Botany 64: 569-583 – https://doi.org/10.1093/jxb/ers349 –https://academic.oup.com/jxb/article/64/2/569/531959 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/ossro1c-has-dual-roles-in-drought-and-oxidative-stress-tolerance-of-rice-by-promoting-stomatal-closure/ )

Young J. J., Mehta S., Israelsson M., Godoski J., Grill E., Schroeder J. I. (2006) – CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2 + -independent phase, and CO2 insensitivity of the gca2 mutant. – Proc. Natl. Acad. Sci. U.S.A. 103, 7506–7511 – DOI: 10.1073/pnas.0602225103 – http://www.pnas.org/content/103/19/7506 – https://www.ncbi.nlm.nih.gov/pubmed/16651523 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/co2-concentrations-prime-ca2-sensors-which-could-mediate-specificity-in-ca2-signaling-in-stomata/ )

Young T., Turner S., Torau S., Stanley B., Murphy K., Lee E., Kenney K., Hoffmaster R., Foster L., Cavanaugh B., Brunot R., Bradford K., (2004) – How environmental factors affect stomatal density and chlorophyll in trees – https://www.frostburg.edu/fsu/assets/File/clife/rmsc/FinalPapers/2004/Stoma%202004.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/how-environmental-factors-affect-stomatal-density/ )

Youngglove T., McCool P. M., Musselman R. C., Smith E. D. (1988) – The use of transfer function models to describe the relationship between pollutant exposure and leaf stomatal opening – Environmental and Experimental Botany 28: 239-248 – https://doi.org/10.1016/0098-8472(88)90034-2 –https://www.sciencedirect.com/science/article/abs/pii/0098847288900342 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/transfer-function-models-pollutant-exposure-and-leaf-stomatal-opening/ )

Younis M. E., El-Shahaby O. A., Hasaneen M. N. A., Gaber A. M. (1993) – Plant growth, metabolism and adaptation in relation to stress conditions: XVII. Influence of different water treatments on stomatal apparatus, pigments and photosynthetic capacity in Vicia faba – J. Arid Environ. 25: 221-232 –

Yu G.-R., Nakayama K., Matsuoka N., Kon H. (1998) – A combination model for estimating stomatal conductance of maize (Zea mays L.) leaves over a long term – Agricultural and Forest Meteorology 92: 9–28 – https://doi.org/10.1016/S0168-1923(98)00087-2 –https://www.sciencedirect.com/science/article/pii/S0168192398000872 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/a-combination-model-for-estimating-stomatal-conductance/ )

Yu H., Chen X., Hong Y. Y., Wang Y., Xu P., Ke S. D., Liu H. Y., Zhu J. K., Oliver D. J., Xiang C. B. (2008) – Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. – Plant Cell 20: 1134–1151 – https://doi.org/10.1105/tpc.108.058263 – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/early/2008/04/30/tpc.108.058263https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390749/ – (On our blog : https://plantstomata.wordpress.com/2018/01/02/hd-start-protein-confers-drought-tolerance-with-improved-root-system-and-reduced-stomatal-density/)

Yu K., Goldsmith G. R., Wang Y., Anderegg W. R. L. (2019) – Phylogenetic and biogeographic controls of plant nighttime stomatal conductance – New Phytologist – https://doi.org/10.1111/nph.15755 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15755 – (On our blog : https://plantstomata.wordpress.com/2019/02/22/nighttime-stomatal-conductance/ )

Yu M. H., Ding G. D., Gao G. L., Zhao Y. Y., Sai K. (2018) – Leaf temperature fluctuations of typical psammophytic plants and their application to stomatal conductance estimation. Forests 9: 313 – https://doi.org/10.3390/f9060313https://www.mdpi.com/1999-4907/9/6/313 – (On our blog : https://plantstomata.wordpress.com/2019/08/01/references-for-developing-a-practical-application-of-stomatal-conductance-estimation-models-in-field-operations/ )

Yu R., Huang R.-F., Wang X.-C., Yuan M. (2001) – Microtubule dynamics are involved in stomatal movement of Vicia faba L. – Protoplasma 216: 113–118 – https://doi.org/10.1007/BF02680138https://link.springer.com/article/10.1007%2FBF02680138 – (On our blog : https://plantstomata.wordpress.com/2019/01/29/microtubule-dynamics-are-involved-in-stomatal-movement/ )

Yu Q., Zhang Y., Liu Y., Shi P. (2004) – Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes – Annals of Botany 93: 435–441 – https://doi.org/10.1093/aob/mch023 –https://academic.oup.com/aob/article/93/4/435/196365 – (On our blog : https://plantstomata.wordpress.com/2019/01/29/study-to-parameterize-stomatal-conductance-by-extending-a-previous-empirical-model-and-a-revised-ball-berry-model/ )

Yu Y., Assmann S. M. (2014) – Metabolite transporter regulation of ABA function and guard cell response – Mol. Plant 7: 1505–1507 – DOI 10.1093/mp/ssu093 – [PubMed] [Cross Ref] – https://www.cell.com/molecular-plant/pdf/S1674-2052(14)60955-2.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69787 )

Yu Y., Assmann S. M. (2016) – The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants – Plant Signal Behav. 11(2): e1085275 – doi:  10.1080/15592324.2015.1085275 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883925/ – (On our blog : https://plantstomata.wordpress.com/2018/08/22/greater-transpiration-observed-in-agb1-plants-is-not-mediated-by-differential-genotypic-direct-effects-of-na-on-stomatal-apertures/

Yu Y., Chakravorty D., Assmann S. M. (2018) – The G protein β subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement – Plant Physiol. 176: 2426–2440 – doi: 10.1104/pp.17.01277 – http://www.plantphysiol.org/content/176/3/2426 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/agb1-interacts-with-feronia-in-ralf1-regulated-stomatal-movement/ )

Yuan L.-m., Qiu M., Wang P., Wang Z.-q., Yang J.-c. (2006) – Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes – Scientia Agriucultura Sinica 39(5): 902-909 – Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/density-and-area-of-the-stomata-in-leaves-of-transgenic-rice-lines/ )

Zachariadis M., Apostolakos P., Galatis B. (1998) – Morphogenesis of ‘floating’ stomata in the fern Anemia mandioccana. Stomatal pore formation – In: Tsekos I, Moustakas M, editors – Progress in Botanical Research – Dordrecht: Kluwer Academic Publishers; 1998: 615–618 –  https://doi.org/10.1007/978-94-011-5274-7_141https://link.springer.com/chapter/10.1007/978-94-011-5274-7_141#citeas – (On our blog : https://plantstomata.wordpress.com/2019/03/02/stomatal-pore-formation-of-floating-stomata/ )

Zait Y. (2008) – Stomatal Oscillations in Banana Plants (Musa cavandisii) – Hebrew University of Jerusalem, 2008 – 74 pages

Zait Y., Shapira O., Schwartz A. (2017) – The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves – Plant, Cell & Environment, 40: 1143–1152. doi: 10.1111/pce.12907.- http://onlinelibrary.wiley.com/doi/10.1111/pce.12907/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/blue-light-increased-xylem-epidermis-water-supply-and-stomatal-movement/ )

Zait Y., Shtein I., Schwartz A. (2018) – Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance – Tree Physiol. – doi: 10.1093/treephys/tpy133 – https://www.ncbi.nlm.nih.gov/pubmed/30597082 – (On our blog : https://plantstomata.wordpress.com/2019/04/03/long-term-acclimation-to-drought-salinity-and-temperature-different-tradeoffs-between-mesophyll-and-stomatal-conductance/ )

Zalenski V. R. (1921) – Action of High Temperature on Behavior of Stomata – Jour. Russian Bot. Cong. 1: 62-63 – Bot. Absts. 14: 1931. 1925 – (Article not found)

Zamora-Zaragoza J., Scheres B. (2018) – Tuning Division and Differentiation in Stomata: How to Silence a MUTE – Dev. Cell 45(3): 282-283 – DOI:https://doi.org/10.1016/j.devcel.2018.04.019 – https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30325-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1534580718303253%3Fshowall%3Dtrue. (No abstract available)

Zarafshar M., Akbarinia M., Askari H., Hosseini S. M., Rahaie M., Struve D., Striker G. G. (2014) – Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana) – Biotechnol. Agron. Soc. Environ. 18(3): 353-366 – http://www.pressesagro.be/base/text/v18n3/353.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/16/stomata-and-soil-water-deficit-in-seedlings-of-wild-pear/ )

Zeiditoolabi N., Daraie-Mofrad A., Direkvandy S., Mosavi Rad H., Romiani-Karami A. (2011) – Effect of plant density on the stomata morphological structure and forage yield in three species of forage yield vetch (Viciasp.) under dry farming conditions of Khorramabad – jdas  3 (5) : 17-32 – http://jdas.shahed.ac.ir/browse.php?a_code=A-10-1-28&slc_lang=en&sid=1 – http://jdas.shahed.ac.ir/article-1-143-en.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/effect-of-plant-density-on-the-stomata-morphological-structure-and-forage-yield/ )

Zeifel R., Steppe K., Sterco F. J. (2007) – Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model – Journal of Experimental Botany 5: 2113-2131 – DOI: 10.1093/jxb/erm050 –https://www.ncbi.nlm.nih.gov/pubmed/17490998 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/stomatal-regulation-by-microclimate-and-tree-water-relations/ )

Zeiger E. (1983) – The biology of stomatal guard cells – Ann. Rev. Plant Physiol. 34: 441-475 – https://doi.org/10.1146/annurev.pp.34.060183.002301 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.34.060183.002301 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/biology-of-stomatal-guard-cells-2/ )

Zeiger E. (1984) – Blue light and stomatal function – In: Senger H. (eds) Blue Light Effects in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg, pp. 484-494. – DOI: https://doi.org/10.1007/978-3-642-69767-8_54 – Online ISBN978-3-642-69767-8 – https://link.springer.com/chapter/10.1007/978-3-642-69767-8_54#citeas – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomata-are-remarkably-sensitive-to-photon-fluxes-and-light-quality/ )

Zeiger E. (1990) – Light perception in guard cells – Plant Cell Environ 13: 739–744  -doi:10.1111/j.1365-3040.1990.tb01088.x – CrossRefGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01088.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/light-perception-in-stomata/ )

Zeiger E. (1994) – The photobiology of stomatal movements. In
Photomorphogenesis in Plants (eds R.E. Kendrick & G.H.M.
Kronenberg), pp. 683–706. Kluwer Academic Publishers, Dordrecht

Zeiger E. (2000) – Sensory transduction of blue light in guard cells – Trends in Plant Science 5: 183-185 – DOI:https://doi.org/10.1016/S1360-1385(00)01602-2 –https://www.cell.com/trends/plant-science/fulltext/S1360-1385(00)01602-2 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/sensory-transduction-of-blue-light-in-guard-cells/ )

Zeiger E., Armond P., Melis A. (1981) – Fluorescence properties of guard cell chloroplasts – Plant Physiol. 67: 17–20 – https://www.jstor.org/stable/4266578?seq=1#page_scan_tab_contents – (On our  blog : https://plantstomata.wordpress.com/2018/10/05/fluorescence-properties-of-stomatal-chloroplasts/ )

Zeiger E., Assmann S. M., Meidner H. (1983) – The photobiology of Paphiopedilum stomata: opening under blue but not red light – Photochem Photobiol 38: 627–630 – https://doi.org/10.1111/j.1751-1097.1983.tb03394.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1983.tb03394.x – (On our blog : https://plantstomata.wordpress.com/2019/03/03/photobiology-of-stomata-opening-under-blue-but-not-red-light/ )

Zeiger E., Bloom A. J., Hepler P. K. (1978) -Transport in stomatal guard cells. A chemico – osmotichypothesis – What is new in Plant Physiology 9: 29-32 – (Article not found)

Zeiger E., Farquhar G. D., Cowan.I. R.  (Eds) (1987) – Stomatal Function – Stanford University Press, Stanford, California, 491 pp. –http://www.rhizopon.com/images/stomatal%20function-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-function-3/ )

Zeiger E., Field C. (1982)  – Photocontrol of the Functional Coupling between Photosynthesis and Stomatal Conductance in the Intact Leaf – Blue Light and Par-Dependent Photosystems in Guard Cells – Plant Physiology  – https://doi.org/10.1104/pp.70.2.370 – http://www.plantphysiol.org/content/70/2/370.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/blue-light-and-par-dependent-photosystems-in-stomata/ ) 

Zeiger E., Field C., Mooney H. A. (1981)  – Stomatal opening at dawn possible roles of the blue light response in nature – In: H.Smith (ed. – Plants and the daylight spectrum) – Academic press,  London. 391-407 – (Text not available)

Zeiger E., Gotow K., Mawson B., Taylor S. (1987) – The guard cell chloroplast: properties and function. – In : Proceedings of the 7th International Photosynthesis Congress, Vol. 4 (ed. J. Biggins): 273-280 – Martinus Nijhoff, Dordrecht –

Zeiger E., Grivet C., Assmann S. M., Deitzer G. F., Hannegan M. W. (1985) –  Stomatal limitation to carbon gain in Paphiopedilum sp. (Orchidaceae) and its reversal by blue light – Plant Physiol 77: 456–460 – PMID: 16664074 ^PMCID: PMC1064535 –https://www.ncbi.nlm.nih.gov/pubmed/16664074 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/stomatal-limitation-to-carbon-gain-and-its-reversal-by-blue-light/ )

Zeiger E., Hepler P. K. (1976) – Production of guard cell protoplasts from onion and tobacco – Plant Physiol. 58(4): 492–498 – PMCID: PMC543252 – PMID: 16659703 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC543252/ – (On our blog : https://plantstomata.wordpress.com/2019/03/03/production-of-stomatal-guard-cell-protoplasts/ )

Zeiger E., Hepler P. K. (1977) – Light and stomatal function: blue light stimulates swelling of guard cell protoplasts – Science 196: 887-889 – DOI: 10.1126/science.196.4292.887 –http://science.sciencemag.org/content/196/4292/887 – (On our blog : https://plantstomata.wordpress.com/2017/11/25/blue-light-stimulates-swelling-of-stomatal-protoplasts/ )

Zeiger E., Hepler P. K. (1979) – Blue light-induced, intrinsic vacuolar fluorescence in onion guard cells – J Cell Sci. 37: 1–10 – https://pdfs.semanticscholar.org/aef0/98859b2b1c7feb124f9373096f3d29f0b676.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/18/vacuolar-fluorescence-in-stomata/ )

Zeiger E., Moody W., Hepler P. K., Varela F. (1977) – Light sensitive membrane potentials in onion guard cells – Nature 270: 270-271 – DOI: 10.1038/270270a0 – https://www.nature.com/articles/270270a0 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/light-sensitive-membrane-potentials-in-stomata/ )

Zeiger E., Iino M. Shimazaki K.-i. (1987) – The blue‐light response of stomata: mechanism and function. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), pp. 209–228. Stanford University Press, California – (Article not found)

Zeiger E., Iino M., Ogawa T. (1985) – The blue light response of stomata: pulse kinetics and some mechanistic implications – Photochem. Photobiol. 42: 759–763 – https://doi.org/10.1111/j.1751-1097.1985.tb01644.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1985.tb01644.x – (On our blog : https://plantstomata.wordpress.com/2019/02/10/environmental-and-metabolic-roles-of-the-stomatal-response-to-blue-light/ )

Zeiger E., Schwartz A. (1982) – Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging – Science 218: 680-682 – DOI: 10.1126/science.218.4573.680 https://www.ncbi.nlm.nih.gov/pubmed/17791588 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/leaves-retain-stomatal-control-during-senescence/ )

Zeiger E., Stebbins L. (1972) – Developmental genetics in barley: a mutation for stomatal development – American Journal of Botany 59: 143–148 –

Zeiger E., Talbott L. D., Frechilla S., Srivastava A., Zhu J. (2002) – The guard cell chloroplast: a perspective for the twenty-first century – New Phytol 153: 415–424 – https://doi.org/10.1046/j.0028-646X.2001.NPH328.doc.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.0028-646X.2001.NPH328.doc.x – (On our blog : https://plantstomata.wordpress.com/2018/10/05/the-properties-of-the-stomatal-chloroplast/ )

Zeiger E., Zhu J. (1998) – Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells – J. Exp. Bot. 49: 433–442 – DOI 10.1093/jxb/49.Special_Issue.433 – [Cross Ref] – https://www.jstor.org/stable/23695976?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/07/21/blue-light-sensing-by-guard-cell-zeaxanthin-has-a-regulatory-role-in-the-light-response-of-stomata/

Zeilinger C., Palme K., Hedrich R. (1992) – Identification of a potassium channel in mesophyll and guard cell plasma membranes of Vicia faba leaves – 9th International workshop on plant membrane biology, Monterey July 19-24, 1992, Abstr. No. 51 – (Article not found)

Zelitch I. (1961) – Biochemical control of stomatal opening in leaves – Proc. Natl. Acad. Sci. U. S. 47: 1423-1433 –

Zelitch I. (1963) – Stomata and water relations in plants – Advanced Science Seminar on the Physiology and Biochemistry of Leaf Stomata – Conn. Agric. Expt. Sta.,  Bull. 664. 116 pp – http://www.ct.gov/caes/lib/caes/documents/publications/bulletins/b664.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomata-and-water-relations/ )

Zelitch I. (1963) – The control and mechanism of stomatal movement. In: Stomata and water relations in plants – Bull. Conn, Agric. Exp. Stn. 664: 18 –

Zelitch I. (1965) – Environmental and biochemical control of stomatal movement in leaves – Biological Reviews 40(4): 463-481 –  https://doi.org/10.1111/j.1469-185X.1965.tb00811.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-185X.1965.tb00811.x – (On our blog : https://plantstomata.wordpress.com/2019/03/03/environmental-and-biochemical-control-of-stomatal-movement/ )

Zelitch I. (1967) – Control of leaf stomata – Their role in transpiration and photosynthesis – American Scientist 55(4): 472-486 – https://www.jstor.org/stable/27837040?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-role-of-stomata-in-transpiration-and-photosynthesis/ )

Zelitch I. (1969) – Stomatal control – Annual Review of Plant Biology, 20(1), 329-350 – https://doi.org/10.1146/annurev.pp.20.060169.001553 –https://app.dimensions.ai/details/publication/pub.1018400569 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/stomatal-control/ )

Zelitch I., Waggoner P. E. (1962) – Effect of chemical control of stomata on transpiration and photosynthesis – Proc. Natl. Acad. Sci. U. S. 48: 1101-1108 –

Zemel E., Gepstein S. (1985) – Immunological evidence for the presence of ribulose bisphosphate carboxylase in guard cell chloroplasts – Plant Physiol. 78: 586–590 – DOI: https://doi.org/10.1104/pp.78.3.586http://www.plantphysiol.org/content/78/3/586 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/ribulose-bisphosphate-carboxylase-in-stomatal-guard-cell-chloroplasts/ )

Zeng W., He S. Y. (2010) – A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis – Plant Physiol. 153, 1188–1198 – doi: 10.1104/pp.110.157016 – http://www.plantphysiol.org/content/153/3/1188 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/the-flagellin-receptor-flagellin-sensing2-in-mediating-stomatal-response-to-pseudomonas-syringae/ )

Zeng W., Melotto M., He S. Y. (2010) – Plant stomata: a checkpoint of host immunity and pathogen virulence – Curr. Opin. Biotechnol. 21: 599–603 – doi: 10.1016/j.copbio.2010.05.006 – https://www.ncbi.nlm.nih.gov/pubmed/20573499 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/signaling-events-involved-in-bacterium-triggered-stomatal-closure-and-virulence-factors-to-actively-counter-stomatal-closure-to-facilitate-invasion/ )

Zeppel M. J. B., Lewis J. D., Chaszar B., Smith R. A., Medlyn B. E., Huxman T. E., Tissue D. T. (2012) – Nocturnal stomatal conductance responses to rising [CO2], temperature and drought –  New Phytol. 193: 929–938 – 10.1111/j.1469-8137.2011.03993.x -y – https://www.ncbi.nlm.nih.gov/pubmed/22150067 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/nocturnal-stomatal-conductance-responses-to-rising-co2-temperature-and-drought/ )

Zhang A., Huang R., Wang X., Yuan M. (2001) – Identification of integrin-like in guard cells of Vicia faba – Chinese Science Bulletin 46: 1100–1102 – DOIhttps://doi.org/10.1007/BF02900687 – https://link.springer.com/article/10.1007/BF02900687 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/integrins-like-are-present-at-the-stomatal-guard-cell-plasma-membrane/ )

Zhang A., Ren H. M., Tan Y. Q., Qi G. N., Yao F. Y., Wu G. L., Yang L. W., Hussain J., Sun S. J., Wang Y. F. (2016) – S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis – Plant Cell. 28(4): 949-955 – doi: 10.1105/tpc.16.01050 – http://www.plantcell.org/content/28/4/949 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/a-novel-regulatory-mechanism-for-stomatal-movement-2/ )

Zhang B., Liu Y., Xu D., Cai J., Zhao N. (2011) – Estimation of summer corn canopy conductance by scaling up leaf stomatal conductance – Transactions of the CSAE 27: 80–86 – [In Chinese with English summary] – https://www.ingentaconnect.com/content/tcsae/tcsae/2011/00000027/00000005/art00013 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/leaf-stomatal-conductance-gs-and-canopy-conductance-gc/ )

Zhang D., Tian C., Yin K., Wang W., Qiu J. L. ( 2019) – Postinvasive Bacterial Resistance Conferred by Open Stomata in Rice – Mol Plant Microbe Interact. 32(2): 255-266 – doi: 10.1094/MPMI-06-18-0162-R – https://www.ncbi.nlm.nih.gov/pubmed/30124364 – (On our blog : https://plantstomata.wordpress.com/2019/04/06/a-novel-role-of-stomata-in-plant-immunity-through-modulation-of-leaf-water-status/ )

Zhang F.-P., Carins-Murphy M. R., Cardoso A. A., Jordan G. J., Brodribb T. J. (2018) – Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves – New Phytologist – https://doi.org/10.1111/nph.15210 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15210?af=R – (On our blog : https://plantstomata.wordpress.com/2018/05/22/the-relationships-between-veins-stomata-and-epidermal-cells-in-leaves-sepals-and-petals/ )

Zhang H. (2012) – Using soil drying as a regulative tool to enhance crop water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-controlled-soil-drying-can-enhance-whole-plant-senescence-and-crop-water-use-efficiency/ )

Zhang H., Fang Q., Zhang Z., Wang Y., Zheng X. (2009) – The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. – J. Exp. Bot. 60, 3109–3122. – doi: 10.1093/jxb/erp146 – https://www.ncbi.nlm.nih.gov/pubmed/19454596 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/two-rboh-function-in-elicitor-induced-stomatal-closure-but-not-in-elicitor-induced-hr/ )

Zhang H., Wang X., Wang S. (2004) – A study on stomatal traits of Platanus acerifolia under urban stress – Journal of Fudan University  43: 651–656 – http://europepmc.org/abstract/cba/460789 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/stomatal-density-and-stomatal-length-are-more-sensitive-and-available-to-indicate-urban-environmental-stress/ )

Zhang J., Davies W. J. (1989) – Sequential responses of whole plant water relations towards prolonged soil drying and the mediation by xylem sap ABA concentrations in the regulation of stomatal behaviour of sunflower plants – New Phytol 113: 167–174 – DOI: 10.1111/j.1469-8137.1989.tb04703.x – https://www.jstor.org/stable/2556693?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/04/the-mediation-by-xylem-sap-aba-concentrations-in-the-regulation-of-stomatal-behaviour/ )

Zhang J., Schurr U., Davies W. J. (1987) – Control of stomatal behavior by abscisic acid which apparently originates in the roots – Journ. Exp. Bot. 38(6): 1174-1181 – Control of Stomatal Behaviour by Abscisic Acid which Apparently Originates in the Rootshttps://doi.org/10.1093/jxb/38.7.1174 – https://academic.oup.com/jxb/article-abstract/38/7/1174/440751?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/22/aba-can-move-from-the-roots-to-the-epidermis-and-restrict-stomatal-aperture/ )

Zhang J., Wang N., Miao Y., Hauser F., McCammon J. A., Rappel W.-J., Schroeder J. I. (2018) – Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements – PNAS 115 (44): 11129-11137 – https://doi.org/10.1073/pnas.1807624115 – http://www.pnas.org/content/115/44/11129 –  (On our blog : https://plantstomata.wordpress.com/2018/11/01/slac1-anion-channel-residues-required-for-regulation-of-stomatal-movements/ )

Zhang J. H., Fu C., Kanzawa H. (2001) – Simulating canopy stomatal conductance of winter wheat and its distribution using remote sensing information – Journal of Environmental Sciences 13(4): 439-443 – (Article not found)

Zhang J.-Y., He S.-B., Li L., Yang H.-Q. (2014) – Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll – PNAS 111 (29) E3015-E3023 – doi:10.1073/pnas.1400542111 – http://www.pnas.org/content/111/29/E3015.full – (On our blog : https://plantstomata.wordpress.com/2018/01/20/auxin-signaling-in-mesophyll-to-coordinate-stomatal-development-with-photosynthesis/ ) 

Zhang L., Niu H., Wang S., Li Y., Zhao X. (2010) – Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau – Acta Ecol. Sin. 30: 6961–6969 – http://en.cnki.com.cn/Article_en/CJFDTotal-STXB201024032.htm – (On our blog : https://plantstomata.wordpress.com/2019/03/04/effects-of-temperature-increase-and-grazing-on-stomatal-density-and-length/ )

Zhang L. R., Niu H. S., Wang S. P., Zhu X., Luo C., Li Y. N., Zhao X. Q. (2012) – Gene or environment? Species-specific control of stomatal density and length – Ecology and Evolution 2 (5): 1065–1070 – DOI: 10.1002/ece3.233 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399171/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69825 )

Zhang R.-X., Ge S., He J., Li S., Hao Y., Du H., Liu Z., Cheng R., Feng Y.-Q., Xiong L., Li C., Hetherington A. M., Liang Y.-K. (2018) – BIG regulates stomatal immunity and jasmonate production in Arabidopsis -New Phytologist published online and citable, https://doi.org/10.1111/nph.15568 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15568?af=R – (On our blog : https://plantstomata.wordpress.com/2018/10/30/big-negatively-and-positively-regulate-the-myc2%e2%80%90-and-erf1%e2%80%90-arms-of-the-ja-signalling-pathway-in-stomata/ )

Zhang S., Cai Z., Wang X. (2009) – The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling – PNAS March 17, 2009 106 (11) 4543-4548 –  https://doi.org/10.1073/pnas.0900349106 – http://www.pnas.org/content/106/11/4543?ijkey=aa2f23b79d7deb06e9721fe8f74ed38c1bcb0bd6&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/12/the-molecular-mechanisms-by-which-brs-could-interact-with-aba/

Zhang S.-B., Guan Z.-J., Chang W., Hu H., Yin Q,, Cao K.-F. (2011) – Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy – Physiologia Plantarum 142: 118–127 – https://pdfs.semanticscholar.org/41b2/eb995324236f2d172d28f8d314a03d27b30d.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/07/evidence-for-the-morphological-and-physiological-evolution-of-stomata-relation-for-water-conservation-under-natural-selection/ )

Zhang S. Q., Outlaw W. H. Jr. (2001) – The guard‐cell apoplast as a site of abscisic acid accumulation in Vicia faba L. – Plant, Cell and Environment 24: 347–355 – https://doi.org/10.1046/j.1365-3040.2001.00677.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2001.00677.x – (On our blog : https://plantstomata.wordpress.com/2019/03/04/stomata-will-display-higher-sensitivity-to-leaf-apoplastic-aba-if-stomata-are-widely-open-in-a-relatively-dry-atmosphere/ )

Zhang S. Q., Outlaw W. H. Jr. (2001) – Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure – Plant, Cell and Environment 24: 1045-1054 – https://doi.org/10.1046/j.1365-3040.2001.00755.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2001.00755.x – (On our blog : https://plantstomata.wordpress.com/2019/02/04/abscisic-acid-accumulates-in-the-guard-cell-apoplast-and-causes-stomatal-closure/ )

Zhang S. Q., Outlaw W. H. Jr. (2001) – Gradual long-term water stress results in abscisic acid accumulation in the guard-cell symplast and guard-cell apoplast of intact Vicia faba L. plants – J Plant Growth Regul 20: 300–307 – https://doi.org/10.1007/s003440010021https://library.vukrom.cz/documents/29345?back=https%3A%2F%2Flibrary.vukrom.cz%2Fauthorities%2F110336%3Flocale%3Dcs&group=36945,21202,29345,26415,36944,36630,36943,21257 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/water-stress-results-in-aba-accumulation-in-the-stomatal-guard-cell-symplast-and-guard-cell-apoplast/ )

Zhang S. Q., Outlaw W. H. Jr., Aghoram K. (2001) – Relationship between changes in the guard cell abscisic acid content and other stress$related physiological parameters in intact plants – J. Exp. Bot. 52(355): 301-308 – https://watermark.silverchair.com/520301.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/03/28/changes-in-the-guard-cell-aba-content-and-other-stress-related-physiological-parameters/ )

Zhang T., Chen S., Harmon A. C. (2014) – Protein phosphorylation in stomatal movement. – Plant Signa. Behav. 9:e972845. – doi: 10.4161/ 15592316.2014.972845 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622631/ – (On our blog : https://plantstomata.wordpress.com/2018/07/23/the-essential-role-of-protein-phosphorylation-in-aba-induced-stomatal-closure-and-in-blue-light-induced-stomatal-opening/ )

Zhang W., Fan L. M., Wu W. H. (2007) – Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics – Plant Physiology 143: 1140–1151 – DOI: https://doi.org/10.1104/pp.106.091405http://www.plantphysiol.org/content/143/3/1140 – (On our blog : https://plantstomata.wordpress.com/2019/01/11/osmo-sensitive-and-stretch-activated-ca2-channels-stomata-and-their-regulation-by-osmotic-changes-and-actin-dynamics/ )

Zhang W., He J., Zhang L., He S. Y., Ryser E., Li H. (2019) – Stomata Facilitated Sorption of Silver Nanoparticles by Arabidopsis thaliana – Geophysical Research Abstracts Vol. 21, EGU2019-15061, 2019 – https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15061.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/21/stomata-facilitated-sorption-of-silver-nanoparticles/ )

Zhang W., He S. Y., Assmann S. M. (2008) – The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation – Plant J. 56, 984–996 – doi: 10.1111/j.1365-313X.2008.03657.x – https://www.ncbi.nlm.nih.gov/pubmed/18702674 – (On our blog : https://plantstomata.wordpress.com/2018/07/23/insights-into-the-elusive-signaling-process-underlying-pti-associated-stomatal-responses/ )

Zhang W., Jeon B. W., Assmann S. M. (2011) – Heterotrimeric G-protein regulation of ROS signaling and calcium currents in Arabidopsis guard cells. – J. Exp. Bot. 62, 2371–2379. – doi: 10.1093/jxb/erq424 – https://www.ncbi.nlm.nih.gov/pubmed/21262908 – (On our blog : https://plantstomata.wordpress.com/2018/07/23/heterotrimeric-g-protein-regulation-of-ros-signaling-and-calcium-currents-in-stomata/ )

Zhang W., Nilson S. E., Assmann S. M. (2008) – Isolation and whole-cell patch clamping of Arabidopsis guard cell protoplasts. – CSH Protoc. 2008:pdb prot5014. – doi: 10.1101/pdb.prot5014 – http://cshprotocols.cshlp.org/content/2008/6/pdb.prot5014.abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-whole-cell-patch-clamping-of-guard-cell-protoplasts-stomata/ )

Zhang X., Dong F. C., Gao J. F., Song C. P. (2001) – Hydrogen peroxide- induced changes in intracellular pH of guard cells precede stomatal closure. – Cell Res. 11, 37–43. – doi: 10.1038/sj.cr.7290064 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Hydrogen-peroxide-induced-changes-in-intracellular-pH-of-guard-cells-precede-stomatal-closure-1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/23/h2o2-is-important-at-an-early-stage-in-the-signal-cascade-leading-to-stomatal-closure/ )

Zhang X., Miao Y. C., An G. Y., Zhou Y., Shangguan Z. P., Gao J. F., Song C. P. (2001) – K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells – Cell Res. 11: 195–202 – DOI: 10.1038/sj.cr.7290086 – https://www.nature.com/articles/7290086 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/h2o2-mediates-aba-induced-stomatal-movement-by-targeting-inward-k-channels-at-plasma-membrane/ )

Zhang X., Takemiya A., Kinoshita T., Shimazaki K. (2007) – Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. – Plant Cell Physiol. 48: 715-723 – https://academic.oup.com/pcp/article/48/5/715/2279068 – (On our blog : https://plantstomata.wordpress.com/2018/07/24/no-and-h-2-o-2-inhibit-blue-light-induced-activation-of-h-atpase-and-stimulate-stomatal-closure-by-aba/ )

Zhang X., Wang H., Takemiya A., Song C., Kinoshita T., Shimazaki K. (2004) – Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts. – Plant Physiol. 136: 4150–4158 – DOI: 10.1104/pp.104.046573 – http://europepmc.org/abstract/MED/15563626 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/inhibition-of-blue-light-dependent-h-pumping-by-aba-through-hydrogen-peroxide-induced-dephosphorylation-in-stomatal-protoplasts/ )

Zhang X., Yu C. M., An G. Y., Zhou Y., Shangguan Z. P., Gao J. F., Song C. P. (2001) – K+channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells – Cell Res. 11: 195–202 – DOI: 10.1038/sj.cr.7290086https://www.nature.com/articles/7290086.pdf?origin=ppub – (On our blog : https://plantstomata.wordpress.com/2019/05/28/h2o2-mediates-aba-induced-stomatal-movement-by-targeting-inward-k-channels-at-plasma-membrane-2/ )

Zhang X., Zhang L., An G. Y., Gao J. F., Song C. P. (2001) – Studies on ABA-induced H2O2 in Vicia guard cells by means of confocal laser scanning microscopy – Acta Biol Exp Sin 34(1): 71-76 – PMID: 12549013 – https://www.ncbi.nlm.nih.gov/pubmed/12549013 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/h2o2-is-possibly-involved-in-aba-signaling-leading-to-stomatal-closure/ )

Zhang X., Zhang L., Dong F., Gao J., Galbraith D. W., Song C. P. (2001) – Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba – Plant Physiol. 126: 1438–1448 – DOI: https://doi.org/10.1104/pp.126.4.1438 – http://www.plantphysiol.org/content/126/4/1438 – (On our blog : https://plantstomata.wordpress.com/2018/07/24/aba-may-close-the-stomata-via-a-pathway-with-h2o2-production-involved-and-h2o2-may-be-an-intermediate-in-aba-signaling/ )

Zhang X. Q., Wei P. C., Xiong Y. M., Yang Y., Chen J., Wang X. C. (2011) – Overexpression of the Arabidopsis α-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus –Plant Cell Rep 30: 27–36 – doi: 10.1007/s00299-010-0937-2 – https://www.ncbi.nlm.nih.gov/pubmed/20976459?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/12/03/the-putative-role-of-atexpa1-as-controller-of-stomatal-opening-rate-and-its-regulation/

Zhang X. Y., Wang H. M., Hou Z. D., Wang G. X. (2003) – Stomatal density and distributions of spring wheat leaves under different planting densities and soil moisture levels – Acta Phytoecologica Sinica 27: 133–136 – doi: 10.17521/cjpe.2003.0020 – http://www.plant-ecology.com/EN/10.17521/cjpe.2003.0020 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/changes-in-stomatal-densities-and-distributions-are-the-result-of-different-water-conditions-induced-by-planting-densities/ )

Zhang Y., Bergmann D. C., Dong J. (2016) – Fine-scale dissection of the subdomains of polarity protein BASL in stomatal asymmetric cell division – J Exp Bot.(17): 5093-5103 – doi: 10.1093/jxb/erw274 – PMID: 27422992  – https://www.ncbi.nlm.nih.gov/pubmed/27422992 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/basl-integrates-multiple-regulatory-inputs-to-provide-a-mechanism-that-promotes-difference-during-stomatal-lineage-acds/ )

Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., Wang X. (2009) – Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. – Plant Cell 21, 2357–2377. – doi: 10.1105/tpc.108.062992 – http://www.plantcell.org/content/early/2009/08/18/tpc.108.062992 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/the-role-of-pld%ce%b11-and-pa-in-aba-induced-production-of-ros-in-stomata/ )

Zhang Y.-J., Meinzer F. C., Qi J.-H. et al (2013) – Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees – Plant Cell Environ 36: 149–158 –  https://doi.org/10.1111/j.1365-3040.2012.02563.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2012.02563.x – (On our blog : https://plantstomata.wordpress.com/2019/03/04/the-functional-significance-of-stomatal-regulation-in-broadleaf-tree-species-is-probably-for-preventing-stem-xylem-dysfunction/ )

Zhang Y. P., Wang Z. M., Wu Y. C., Zhang X. (2006) – Stomatal characteristics of different green organs in wheat under different irrigation regimes – Acta Agronomica Sinica 32: 70–75 – http://agris.fao.org/agris-search/search.do?recordID=CN2006001624 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/stomatal-characteristics-of-different-green-organs-under-different-irrigation-regimes/ )

Zhao C., Wang Y., Chan K. X., Marchant D. B., Franks P. J., Randall D., Tee E. E., Chen G., Ramesh S., Phua S. Y., Zhang B., Hills A., Dai F., Xye D., Gilliham M., Tyerman S., Nevo E., Wu F., Zhang G., Wong G. K.-S., Leebens-Mack J. H., Melkonian M., Blatt M. R., Soltis P. S., Soltis D. E., Pogson B. J., Chen Z.-H. (2019) – Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land – PNAS March 12, 2019 116 (11) 5015-5020 – https://doi.org/10.1073/pnas.1812092116https://www.pnas.org/content/116/11/5015 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/pap-regulates-stomatal-closure-via-secondary-messengers-and-ion-transport-in-guard-cells/ )

Zhao L. , Sack F. D. (1999) –  Ultrastructure of stomatal development in Arabidopsis (Brassicaceae) leaves. – Amer J Botany 86: 929-939 – http://www.amjbot.org/content/86/7/929.full – (On our blog : https://plantstomata.wordpress.com/2018/01/29/ultrastructure-of-stomatal-development-2/ )

Zhao R., Dielen V., Kinet J.-M., Boutry M. (2000) – Cosuppression of a plasma membrane H+-ATPaseisoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility – Plant Cell. 12: 535–546 – PMCID: PMC139851 – PMID: 10760242https://www.ncbi.nlm.nih.gov/pmc/articles/PMC139851/ – (On our blog : https://plantstomata.wordpress.com/2019/05/28/cosuppression-of-pma4-affected-the-guard-cells-stomatal-opening-and-photosynthesis-in-mature-leaves/ )

Zhao R. X., Zhang Q. B., Wu X. Y., Wang Y. (2001) – The effects of drought on epidermal cells and stomatal density of wheat leaves. Inner Mongolia Agricultural Science and Technology 6: 6–7 – (Article not found)

Zhao S, Chen W, Ma D, Zhao F. (2006) – Influence of different salt level on stomatal character in rice leaves – Reclaiming and Rice Cultivation 6: 26–29 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-KZDZ200606012.htm – (On our blog : https://plantstomata.wordpress.com/2019/03/05/different-salt-levels-and-stomatal-characters/ )

Zhao W., Sun Y., Kjelgren R., Liu X. (2015) – Response of Stomatal Density and Bound Gas Exchange in Leaves of Maize to Soil Water Deficit – Plants, Soils, and Climate Faculty Publications. Paper 732 –  http://digitalcommons.usu.edu/psc_facpub/732 – https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1731&context=psc_facpub – (On our blog : https://plantstomata.wordpress.com/2018/02/04/response-of-stomatal-density-and-bound-gas-exchange-to-soil-water-deficit/ )

Zhao X., Li Y. Y., Xiao H. L., Xu C. S., Zhang, X. (2013) – Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba guard cells. – J. Integr. Plant Biol. 55, 527–536. – doi: 10.1111/jipb.12038 – https://www.ncbi.nlm.nih.gov/pubmed/23384172 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/ca2-plays-dual-and-distinctive-roles-in-the-crosstalk-between-bl-and-no-signaling-in-stomata-2/ )

Zhao X., Zhao M., Xiao J. T., Zhang W. X., Guan D., Wang M. Y., Li J. N., Zhang N. (2003) – Stomata characteristics of leaves of high-photosynthetic efficiency progenies from a cross between Oryza sativa and O. rufipogon and their parents – Acta Agronomica Sinica 29(2): 216-221 – https://eurekamag.com/research/004/328/004328511.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/stomata-characteristics-of-progenies-from-a-cross-between-oryza-sativa-and-o-rufipogon-and-their-parents/ )

Zhao X., Wang Y.-J., Wang Y.-L., Wang X.-L., Zhang X. (2011) –  Extracellular Ca2+ alleviates NaCl–induced stomatal opening through a pathway involving H2O2-blocked Na+ influx in Vicia guard cells – J. Plant Physiol. 168: 903-910 – PMID:21367483 – http://dx.doi.org/10.1016/j.jplph.2010.11.024http://www.sciencedirect.com/science/article/pii/S0176161711000630 – (On our blog : https://plantstomata.wordpress.com/2017/09/30/extracellular-ca2-alleviates-nacl-induced-stomatal-opening/ )

Zhao X., Yang Y., Shen, Z., Zhang H., Wang G., Gan Y. (2006) – Stomatal clustering in Cinnamomum camphora – South African Journal of Botany 72: 565-569 – https://doi.org/10.1016/j.sajb.2006.03.006 – https://www.sciencedirect.com/science/article/pii/S0254629906000883 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/stomatal-clusters-are-probably-able-to-assist-in-water-conservation/ )

Zhao Y., Zhao S., Mao T., Qu X., Cao W., Zhang L., Zhang W., He L., Li S., Ren S., Zhao J., Zhu G., Huang S., Ye K., Yuan,M., Guo Y. (2011) – The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis – Plant Cell 23: 2314-2330 – https://doi.org/10.1105/tpc.111.086546http://www.plantcell.org/content/23/6/2314 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/scab1-is-required-for-the-precise-regulation-of-actin-filament-reorganization-during-stomatal-closure/ )

Zhao Z., Assmann S. M. (2011) – The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. –  J. Exp. Bot. 62, 5179–5189. – 10.1093/jxb/err223 – [PMC free article][PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/21813794 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/ipgams-and-glycolytic-activity-are-critical-for-stomatal-function-and-fertility/

Zhao Z., Stanley B. A., Zhang W., Assmann S. M. (2010) – ABA-Regulated G Protein Signaling in Arabidopsis Guard Cells: A Proteomic Perspective – J. Proteome Res., 2010, 9 (4), pp 1637–1647 – DOI10.1021/pr901011h – http://pubs.acs.org/doi/abs/10.1021/pr901011h – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-regulated-g-protein-signaling-in-stomata/ )

Zhao Z. X., Zhang W., Stanley B. A., Assmann S. M. (2008) – Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. – Plant Cell 20, 3210–3226. – doi: 10.1105/tpc.108.063263 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630442/ – (On our blog : https://plantstomata.wordpress.com/2018/07/26/functional-proteomics-uncovers-new-stomatal-signaling-pathways/ )

Zheng S-X., Shangguan Z.-P., Xue Q-W. (2006) – Changes of stomatal parameters of four typical species in the Loess Plateau of China over the last century – Acta Agriculturae Scandinavica, Section B – Soil & Pl.Sci., 56: 284- 291 – https://doi.org/10.1080/09064710500321532https://www.tandfonline.com/doi/abs/10.1080/09064710500321532 – (On our blog : https://plantstomata.wordpress.com/2019/05/25/changes-of-stomatal-parameters-over-the-last-century/ )

Zheng X., Kang S., Jing Y., Ren Z., Li L., Zhou J. -M., Berkowitz G., Shi J., Fu A., Lan W., Zhao F. Luan S. (2018) – Danger-Associated Peptides Close Stomata by OST1-Independent Activation of Anion Channels in Guard Cells – The Plant Cell 30 (5): 1132-1146 – DOI: 10.1105/tpc.17.00701 – http://www.plantcell.org/content/30/5/1132 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/a-damp-triggered-signaling-pathway-triggers-stomata-immunity-through-an-ost1-independent-mechanism/

Zheng Y., Xu M., Hou R., Shen R., Qiu S., Ouyang Z. (2013) – Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.) – Ecol. Evol. 3: 3095–311 -. doi: 10.1002/ece3.674 – https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.674 – (On our blog : https://plantstomata.wordpress.com/2018/10/15/effects-of-experimental-warming-on-stomatal-traits-2/ )

Zheng Y. P., Ming X. U., Wang J. S., Qin S., Wang H. X. (2015) – Responses of the stomatal traits and gas exchange of Maize leaves to climate warming – Acta Agron. Sin. 41: 601 – DOI: 10.3724/SP.J.1006.2015.00601 – https://www.researchgate.net/publication/289983261_Responses_of_the_Stomatal_Traits_and_Gas_Exchange_of_Maize_Leaves_to_Climate_Warming – (On our blog :

Zheng Z. L., Nafisi M., Tam A., Li H., Crowell D. N., Chary S. N., Schroeder J. I., Shen J., Yang Z. (2002) – Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. – Plant Cell 14(11): 2787-2797 – PMID: 12417701 PMCID: PMC152727 – https://www.ncbi.nlm.nih.gov/pubmed/12417701 – (On our blog : https://plantstomata.wordpress.com/2018/07/26/rop10-a-pm-localized-signaling-molecule-involved-in-the-negative-regulation-of-aba-signaling-in-stomata/ )

Zhou S., Medlyn B., Sabaté S., Sperlich D., Prentice I. C. (2014) – Short‐term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates – Tree Physiol 34: 1035–1046 – doi: 10.1093/treephys/tpu072. Epub 2014 Sep 4 – https://www.ncbi.nlm.nih.gov/pubmed/25192884 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/adaptive-interspecific-differences-in-drought-responses-stomatal-mesophyll-and-biochemical-limitations-to-photosynthesis/ )

Zhou Y., Vroegop-Vos I., Schuurink R. C., Pieterse C. M. J. , Van Wees S. C. M. (2017) – Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine – Front. Plant Sci., 16 May 2017 | https://doi.org/10.3389/fpls.2017.00700 –https://www.frontiersin.org/articles/10.3389/fpls.2017.00700/full – (On our blog : https://plantstomata.wordpress.com/2017/10/29/co2-aba-accumulation-and-stomatal-responsiveness-to-coronatine/ )

Zhou X. F., Jin Y. H., Yoo C. Y., Lin X.-L., Kim W.-Y., Yun D.-J., Bressan R. A.,  Hasegawa P. M., Jin J. B. (2013) – CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis – Plant Physiol. 162, 1030–1041  –http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DC%2BC3sXps1OqsLo%3D&md5=9148d023de1dca6c9f9e0f7c9e793052 – (https://plantstomata.wordpress.com/2016/12/07/cych1-regulates-blue-light-mediated-stomatal-opening-by-controlling-reactive-oxygen-species-homeostasis/ )

Zhou X. M., Wu W. H., Yuan M., Wang X. C. (1999) –  Regulation of the inward K+ -channels in stomatal guard cells by cytoskeletal microtubules – Chinese Science Bulletin 44: 919–923 – (Article not found)

Zhou Y. M., Han S. J. (2005) – Photosynthetic response and stomatal behaviour of Pinus koraiensis during the fourth year of exposure to elevated CO2 concentration – Photosynthetica. 43: 445-449 – https://doi.org/10.1007/s11099-005-0071-5https://link.springer.com/article/10.1007/s11099-005-0071-5 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/photosynthetic-response-and-stomatal-behaviour-during-the-fourth-year-of-exposure-to-elevated-co2-concentration/ )

Zhu J., Talbott L. D., Jin X., Zeiger E. (1998) – The stomatal response to CO2 is linked to changes in guard cell zeaxanthin – Plant Cell Environment 21: 813-820 – https://doi.org/10.1046/j.1365-3040.1998.00323.x –https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1998.00323.x – (On our blog : https://plantstomata.wordpress.com/2019/03/05/co2%e2%80%90dependent-changes-in-the-zeaxanthin-content-of-stomata-could-modulate-co2%e2%80%90dependent-changes-of-stomatal-apertures-in-the-light/ )

Zhu J., Yu Q., Xu C., Li J., Qin G. (2018) – Rapid Estimation of Stomatal Density and Stomatal Area of Plant Leaves Based on Object-Oriented Classification and Its Ecological Trade-Off Strategy Analysis – forests-09-00616.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/01/rapid-estimation-of-stomatal-density-and-stomatal-area/ )

Zhu M., Li X., Su Y.-H., Lu L., Huang C.-L., Ninemets Ü. (2011) – Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. – Tree Physiology  31(2): 178–195 – https://doi.org/10.1093/treephys/tpr005 – https://academic.oup.com/treephys/article/31/2/178/1716620 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/72284 )

Zhu M., Assmann S. M. (2017) – Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics – Scientific Reports 7(1) – DOI: 10.1038/s41598-017-13166-w – https://www.researchgate.net/publication/320288731_Metabolic_Signatures_in_Response_to_Abscisic_Acid_ABA_Treatment_in_Brassica_napus_Guard_Cells_Revealed_by_Metabolomics – (On our blog : https://plantstomata.wordpress.com/2018/07/28/metabolic-signatures-in-response-to-aba-in-stomatal-protoplasts/ )

Zhu M., Dai S., Zhu N., Booy A., Simons B., Yi S., Chen S. (2012) – Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics – J. Proteome Res. 11: 3728–3742 – DOI 10.1021/pr300213k – [PubMed] [Cross Ref] – https://pubs.acs.org/doi/abs/10.1021/pr300213k – (On our blog : https://plantstomata.wordpress.com/2018/07/28/meja-responsive-molecular-mechanisms-in-stomata/

Zhu M., Jeon B. W., Geng S., Yu Y., Balmant K., Chen S., et al. (2016) – Preparation of epidermal peels and guard cell protoplasts for cellular, electrophysiological, and -omics assays of guard cell function – Methods Mol. Biol. 1363, 89–121 – doi: 10.1007/978-1-4939-3115-6_9 – (Article not found)

Zhu M., Simons B., Zhu N., Oppenheimer D. G., Chen S. (2010) – Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging – J. Proteomics 73: 790–805 – doi: 10.1016/j.jprot.2009.11.002 – https://www.sciencedirect.com/science/article/pii/S1874391909003303 – (On our blog : https://plantstomata.wordpress.com/2018/07/28/inventory-of-aba-responsive-proteins-and-new-proteins-for-further-investigation-of-their-functions-in-guard-cell-aba-signaling/ )

Zhu M. , Zhang T., Ji W., Silva-Sanchez C., Song W.-y., Assmann S. M., Harmon A. C., Chen S. 2017) – Redox regulation of a guard cell SNF1-related protein kinase in Brassica napus, an oilseed crop – Biochemical Journal 474(15): 2585-2599 – DOI: 10.1042/BCJ20170070 – http://www.biochemj.org/content/474/15/2585 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/bnsnrk2-4-1c-is-redox-regulated-with-potential-roles-in-guard-cell-signal-transduction-in-stomata/ )

Zhu M., Zhu N., Song W.-Y., Harmon A. C., Assmann S. M., Chen S. (2014) – Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells – Plant J. 78: 491–515 – doi: 10.1111/tpj.12490 – https://www.ncbi.nlm.nih.gov/pubmed/24580573 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/potential-redox-switches-and-a-protein-redox-regulatory-mechanism-in-aba-and-meja-signal-transduction-in-stomata/ )

Zhu X., Cao Q., Sun L., Yang X., Yang W., Zhang H. (2018) – Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress – Front Plant Sci. 9:1363 – doi: 10.3389/fpls.2018.01363 – eCollection 2018 – https://www.ncbi.nlm.nih.gov/pubmed/30283478 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/am-symbiosis-alters-stomatal-morphology-by-changing-sd-and-the-size-of-the-stomatal-guard-cells-and-pores/ )

Zhu Y., Ge X. M., Wu M. M., Li X., He J. M. (2014) – The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis – Plant Sci. 215–216: 84–90 – doi: 10.1016/j.plantsci.2013.11.010 – https://www.sciencedirect.com/science/article/pii/S0168945213002537 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/cytosolic-alkalization-and-hydrogen-peroxide-in-ultraviolet-b-induced-stomatal-closure/ )

Zhu Y. H., Kang H. Z., Liu C. J. (2011) – Affecting factors of plant stomatal traits variability and relevant investigation methods – Chin J Appl Ecol. 22(1): 250–256 (Article in Chinese) – PMID: 21548316 – https://www.ncbi.nlm.nih.gov/pubmed/21548316 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/relationships-between-stomatal-traits-and-environmental-factors/ )

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – Discovery of synthetic small molecules that enhance the number of stomata: C–H functionalization chemistry for plant biology – Chemical Communications 69 (2017) – DOI: 10.1039/C7CC04526C – http://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc04526c#!divAbstract – https://plantstomata.wordpress.com/2017/09/18/synthetic-small-molecules-that-enhance-the-number-of-stomata/ )

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – More mouths can be fed by boosting number of plant pores – https://phys.org/news/2017-09-mouths-fed-boosting-pores.html – (On our blog : https://plantstomata.wordpress.com/2017/10/31/more-mouths-can-be-fed-with-more-stomata/ )

Zia-Khan S., Spreer W., Pengnian Y., Zhao X., Othmanli H., He X., Müller J. (2015) – Effect of Dust Deposition on Stomatal Conductance and Leaf Temperature of Cotton in Northwest China – Water 2015, 7, 116-131; doi:10.3390/w7010116 – water-07-00116.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/dust-deposition-stomatal-conductance-and-leaf-temperature/ )

Ziegler D. J., Friedman C. R. (2017) – Morphology and stomatal density of developing Arceuthobium americanum (lodgepole pine dwarf mistletoe) fruit: a qualitative and quantitative analysis using environmental scanning electron microscopy – Botany, 2017, 95(3): 347-356 – https://doi.org/10.1139/cjb-2016-0187 – – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2016-0187 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/stomata-in-arceuthobium-santalaceae/ )

Zimmerli C., Ribot C., Vavasseur A., Bauer H., Hedrich R., Poirier Y. (2012) – PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis – The Plant Journal – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/pho1-expression-in-guard-cells-mediates-the-stomatal-response-to-aba/ )

Zipperlen S. W., Press M. C. (1997) – Photosynthetic induction and stomatal oscillations in relation to the light environment of two dipterocarp rain forest tree species – J Ecol 85: 491–503 – DOI: 10.2307/2960572 – https://www.jstor.org/stable/2960572?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/05/photosynthetic-induction-and-stomatal-oscillations-in-relation-to-light/ )

Ziv M., Schwartz A., Fleminger D. (1987) – Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening – Plant Sci. Let. 52: 127–134 – https://doi.org/10.1016/0168-9452(87)90114-2https://www.sciencedirect.com/science/article/pii/0168945287901142 – (On our blog : https://plantstomata.wordpress.com/2019/05/29/malfunctioning-stomata-in-vitreous-leaves-of-carnation/ )

Zobayed S. M. A., Afreen-Zobayed F., Kubota C., Kozai T. (1999) – Stomatal characteristics and leaf anatomy of potato plantlets cultured in vitro under photoautotrophic and photomixotrophic conditions – In Vitro Cell. Dev. Biol.- Plant 35: 183-188 – https://doi.org/10.1007/s11627-999-0075-0 – https://link.springer.com/article/10.1007%2Fs11627-999-0075-0#citeas – (On our blog : https://plantstomata.wordpress.com/2018/04/30/stomatal-size-and-density-in-potato-plantlets-cultured-in-vitro/ )

Zobayed S. M. A., Afreen-Zobayed F., Kubota C., Kozai T. (2001) – Large-Scale Photoautotrophic Micropropagation in a Scaled-Up Vessel – In : Progress in Biotechnology 18: 345-354 – https://doi.org/10.1016/S0921-0423(01)80091-5 –https://www.sciencedirect.com/science/article/abs/pii/S0921042301800915 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/stomata-and-large-scale-photoautotrophic-micropropagation/ )

Zona D., Gioli B., Fares S., De Groote T., Pilegaard K., Ibrom Z., Ceulemans R. (2014) – Environmental controls on ozone fluxes in a poplar plantation in Western Europe – Environmental Pollution 184: 201-210 – https://doi.org/10.1016/j.envpol.2013.08.032

Zona D., Gioli B., Fares S., De Groote T., Pilegaard K., Ibrom Z., Ceulemans R. (2014) – Environmental controls on ozone fluxes in a poplar plantation in Western Europe – Environmental Pollution 184: 201-210 – https://doi.org/10.1016/j.envpol.2013.08.032https://www.sciencedirect.com/science/article/pii/S0269749113004570 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/net-ecosystem-exchange-was-not-affected-by-the-stomatal-o3-uptake/ )

Zona D., Gioli B., Fares S., De Groote T., Pilegaard K., Ibrom Z., Ceulemans R. (2014) – Environmental controls on ozone fluxes in a poplar plantation in Western Europe – https://www.sciencedirect.com/science/article/pii/S0269749113004570 – (On our blog :

Zou J., Wei F., Wang C., Wu J., Ratnasekera D., Liu W.,Wu W.-H. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+- mediated stomatal regulation in response to drought stress – Plant Physiol. 154: 1232–1243 –  doi:  10.1104/pp.110.157545 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2971602/ – (On our blog : https://plantstomata.wordpress.com/2018/07/30/cpk10-plays-important-roles-in-aba-and-ca2-mediated-regulation-of-stomatal-movements-2/

Zou J.-J., Li X.-D., Ratnasekera D., Wang C., Liu W.-X., Song L.-F.,Zhang W.-Z., Wu W.-H. (2015) – Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. – Plant Cell 27, 1445–1460.  – doi: 10.1105/tpc.15.00144 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantcell.org/content/27/5/1445.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cpk8-functions-in-aba-mediated-stomatal-regulation-in-responses-to-drought-stress-through-regulation-of-cat3-activity/ )

Zou J. J.,Wei F. J., Wang C., Wu J. J., Ratnasekera D., Liu W. X., WuW. H. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress – Plant Physiol 154: 1232–1243 – doi:http://dx.doi.org/10.1104/pp.110.157545 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/154/3/1232.abstract?ijkey=96f00ed7a9553111d6de0afaa2cd6a829c05317e&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk10-plays-important-roles-in-aba-and-ca2-mediated-regulation-of-stomatal-movements/ )

Zoulias N., Harrison E. L., Casson S. A., Gray J. E. (2018) – Molecular control of stomatal development – Biochem J. 475(2): 441-454 – doi: 10.1042/BCJ20170413 – https://www.ncbi.nlm.nih.gov/pubmed/29386377 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/molecular-control-of-stomatal-development/ )

Zweifel R., Böhm J. P., Hasler R. (2002) – Midday stomatal closure in Norway spruce–reactions in the upper and lower crown – Tree Physiol. 22, 1125–1136 (2002) – CrossRefPubMedWeb of ScienceGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/12414372 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/stomatal-conductance-can-be-modeled-accurately-only-when-both-local-microclimatic-conditions-and-tree-water-status-are-known/ )

Zweifel R., Rigling A., Dobbertin M. (2009) – Species-specific stomatal response of trees to drought – a link to vegetation dynamics? – Journal of Vegetation Science 20: 442–454 –Species-specific_stomatal_response_of_tr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-aperture-provides-an-indication-of-a-species-ability-to-cope-with-current-and-predicted-climate/ )

Zweifel R., Steppe K., Sterck F. J. (2007) – Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model – J Exp Bot. 2007;58(8):2113-31. Epub 2007 May 8. – https://www.ncbi.nlm.nih.gov/pubmed/17490998 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/stomatal-regulation-by-microclimate-and-tree-water-relations/ )

Zwieniecki M. A., Haaning K. S., C. Boyce K., Jensen K. H. (2016) – Stomatal design principles in synthetic and real leaves – Journ. Royal Soc. Interface Nov. 2, 2016 – DOI: 10.1098/rsif.2016.0535 – http://rsif.royalsocietypublishing.org/content/13/124/20160535 – (On our blog : https://plantstomata.wordpress.com/2018/01/12/a-new-measure-to-gauge-the-relative-performance-of-species-based-on-their-stomatal-characteristics/ )