PHYSIO-BIBLIOGRAPHY W-Z

Waadt R., Manalansan B., Rauniyar N., Munemasa S., Booker M. A., Brandt B., Waadt C., Nusinow D. A., Kay S. A., Kunz H.-H.,  Schumacher K., DeLong A., Yates J. R., Schroeder J. I. (2015) – Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein Kinases2 and with Type 2A protein phosphatases that function in abscisic acid responses – Plant Physiol. 169: 760–779 – doi: 10.1104/pp.15.00575 – http://www.plantphysiol.org/content/169/1/760 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-roles-of-regulatory-pp2aa-subunits-and-catalytic-pp2ac-subunits-in-aba-responses/ )

Wagg S., Mills G., Hayes F., Wilkinson S., Davies W. J. (2013) – Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris – Environmental Pollution 175: 82-91 – http://dx.doi.org/10.1016/j.envpol.2012.11.027 – https://www.sciencedirect.com/science/article/pii/S0269749112005052?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-responses-and-ozone/ )

Waggoner P. E. (1964) – Decreasing Transpiration of Field Plants by Chemical Closure of Stomata – Nature 201(4914): 97-98 – DOI: 10.1038/201097b0https://ui.adsabs.harvard.edu/abs/1964Natur.201…97W/abstract – (On our blog : https://plantstomata.wordpress.com/2021/11/19/the-effect-of-chemical-closure-of-stomata-on-transpiration-by-a-population-of-plants-in-the-field/ )

Waggoner P. E. (1965) – Relative effectiveness of change in upper and lower stomatal openings – Crop Sci. 5: 291 –https://dl.sciencesocieties.org/publications/cs/abstracts/5/4/CS0050040291?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/16/effectiveness-of-change-in-upper-and-lower-stomatal-openings/ )

Waggoner P. E., Bravdo B.-A. (1967) – Stomata and the hydrologic cycle – Proc. Nat. Acad. Sci. U. S. 57: 1096-1102 – https://doi.org/10.1073/pnas.57.4.1096https://www.pnas.org/content/57/4/1096 – (On our blog : https://plantstomata.wordpress.com/2021/11/16/95496/ )

Waggoner P. E., Monteith J. L., Szeicz G. (1964) – Decreasing Transpiration of Field Plants by Chemical Closure of Stomata – Nature 201: 97–98 – doi:10.1038/201097b0 – https://www.nature.com/articles/201097b0 – (On our blog : https://plantstomata.wordpress.com/2018/01/05/chemical-closure-of-stomata-and-the-decrease-of-transpiration/ )

Waggoner P. E., Pallas J. E. Jr (xxxx) – Saving the water spent by plants – https://naldc.nal.usda.gov/download/IND43895178/PDF – (On our blog : https://plantstomata.wordpress.com/2021/11/15/saving-the-water-spent-by-plants/ )

Waggoner P. E., Simmonds N. W. (1966) – Stomata and transpiration of droopy potatoes – Plant Physiol. 41: 1268-1271 – DOI: 10.1104/pp.41.8.1268https://pdfs.semanticscholar.org/6575/fa8a46403a7b552fd9ebf98f4e497bc2cf4c.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/04/stomata-and-transpiration-of-droopy-potatoes/ )

Waggoner P. E., Turner N. C., (2020) – Transpiration and its Control by Stomata in a Pine Forest – Bull Conn Agric Expt Sta No. 726, 87p. – DOI: 10.13140/RG.2.2.18910.38727https://www.researchgate.net/publication/339999015_Waggoner_and_Turner_1971_Transpiration_and_its_Control_by_Stomata_in_a_Pine_Forest_Bull_Conn_Agric_Expt_Sta_No_726_87p – (On our blog : https://plantstomata.wordpress.com/2021/10/27/transpiration-and-its-control-by-stomata-2/ )

Waggoner P. E., Zelitch I. (1965) – Transpiration and the stomata of leaves – Science 150(3702): 1413-1420 – DOI: 10.1126/science.150.3702.1413 http://science.sciencemag.org/content/150/3702/1413 – (On our blog : https://plantstomata.wordpress.com/2018/01/06/stomata-and-transpiration/ )

Wagner F. (1998) – The influence of environment on the stomatal frequency in BetulaPhD Thesis – LPP Contributions Series no.9, LPP Foundation, 102p. (summary: www.bio.uu.nl/~palaeo/Personeel/Rike/Rikew.htm)

Wagner F., Aaby B., Visscher H. (2002) – Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event – PNAS  99(19): 12011-12014 – https://doi.org/10.1073/pnas.182420699https://www.pnas.org/content/99/19/12011 – (On our blog : https://plantstomata.wordpress.com/2020/08/13/quantification-of-the-stomatal-frequency-signal-corroborates-a-distinctive-temperature-co2-correlation/ )

Wagner F., Below R., De Klerk P., Dilcher D. L., Joosten H., Kürschner W. M., Visscher H. (1996) – A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase – Proceedings of the National Academy of Sciences of the United States of America 93: 11705-11708 – https://doi.org/10.1073/pnas.93.21.11705 –https://www.pnas.org/content/93/21/11705 – (On our blog : https://plantstomata.wordpress.com/2019/02/19/lifetime-stomatal-frequency-response-to-annual-atmospheric-co2-increase/ )

Wagner F., Dilcher D. L., Visscher H. (2005) – Stomatal frequency responses in hardwood‐swamp vegetation from Florida during a 60‐year continuous CO2 increase – American Journal of Botany 92(4): – https://doi.org/10.3732/ajb.92.4.690https://bsapubs.onlinelibrary.wiley.com/doi/full/10.3732/ajb.92.4.690 – (On our blog : https://plantstomata.wordpress.com/2020/05/20/stomatal-frequency-responses-in-hardwood%e2%80%90swamp-vegetation/ )

Wagner F., Kouwenberg L. L. R., van Hoof T. B., Visscher H. (2004)
Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency –
Quaternary Science Reviews 23(18–19): 1947-1954 – ISSN 0277-3791 –
https://doi.org/10.1016/j.quascirev.2004.04.003
https://www.sciencedirect.com/science/article/pii/S0277379104001039 – (On our blog : https://plantstomata.wordpress.com/2023/07/23/holocene-atmospheric-co2-records-based-on-stomatal-frequency/

Wagner Y., Pozner E., Bar-On P., Ramon U., Raveh E., Neuhaus E., Cohen S., Grünzweig J., Klein T., (2021) – Rapid stomatal response in lemon saves trees and their fruit yields under summer desiccation, but fails under recurring droughts – Agricultural and Forest Meteorology 307: 108487 – https://doi.org/10.1016/j.agrformet.2021.108487 – ISSN 0168-1923 – https://www.sciencedirect.com/science/article/abs/pii/S0168192321001702?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2023/02/12/the-physiological-capacity-of-lemon-trees-to-avoid-short-term-drought-effects-through-stomatal-closure/ )

Wagner-Cremer F., Visscher H., Kurschner W. M., Dilcher D. L. (2007) – Influence of ontogeny and atmospheric CO2 on stomata parameters of Osmunda regalis – Advances in Angiosperm Paleobotany and Paleoclimatic Reconstruction 258: 183–189 – ( CFS Courier Forschungsinstitut Senckenberg) – https://www.researchgate.net/publication/46697432_Influence_of_ontogeny_and_atmospheric_CO2_on_stomata_parameters_of_Osmunda_regalis – (On our blog : https://plantstomata.wordpress.com/2023/01/01/the-distinct-inverse-correlation-between-stomatal-index-and-historical-co2-levels-determined-in-o-regalis-is-used-to-develop-a-co2-inference-model-for-palaeo-co2-estimates-from-fossil-fronds/ )

Waidyarathne P., Samarasinghe S. (2018) – Boolean Calcium Signalling Model Predicts Calcium Role in Acceleration and Stability of Abscisic Acid-Mediated Stomatal Closure – Scientific Reports 8, Article number: 17635 (2018)  – https://www.nature.com/articles/s41598-018-35872-9 – (On our blog : https://plantstomata.wordpress.com/2019/01/11/calcium-role-in-acceleration-and-stability-of-aba-mediated-stomatal-closure/ )

Waisel Y., Borger G. A., Kozlowski T. T. (1969) – Effects of phenylmercuric acetate on stomatal movement and transpiration of exscised Betula papyrifera Marsh leaves – Plant Physiol. 44: 685-690 – doi: 10.1104/pp.44.5.685 – PMID: 16657121 – PMCID: PMC396146 – https://pubmed.ncbi.nlm.nih.gov/16657121/ – (On our blog : https://plantstomata.wordpress.com/2023/01/01/in-betula-papyrifera-stomata-of-various-size-classes-were-considered-as-physiologically-different-populations/ )

Waite P.-A., Kumar M., Link R. M., Schuldt B. (2024) – Coordinated hydraulic traits influence the two phases of time to hydraulic failure in five temperate tree species differing in stomatal stringency – Tree Physiology 44(5): tpae038 – https://doi.org/10.1093/treephys/tpae038https://academic.oup.com/treephys/article-abstract/44/5/tpae038/764452 – (On our blog : https://plantstomata.wordpress.com/2024/05/07/isohydry-is-linked-to-water-use-rather-than-to-drought-survival-strategies-confirming-the-proposed-use-of-hydroscape-area-hsa-as-a-complement-to-hydraulic-safety-margins-hsm-for-describing-plant/ )

Wakeel A., Wang L., Xu M. (2021) – SPEECHLESS and MUTE Mediate Feedback Regulation of Signal Transduction during Stomatal Development – Plants 2021, 10: 432 – https://doi.org/10.3390/plants10030432, file:///C:/Users/wille/Downloads/plants-10-00432-v2%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/07/09/the-feedback-mechanisms-driven-by-spch-and-mute-in-the-regulation-of-epf2-and-the-erecta-family-and-intersections-of-the-molecular-mechanisms-for-fate-determination-of-stomatal-lineage-cells/ )

Walker D. A., Zelitch I. (1963) – Some effects of metabolic inhibitors, temperature, and anaeroobic conditions on stomatal movement – Plant Physiology 38: 390-396 – PMCID: PMC549940 – PMID: 16655803 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC549940/ – (On our blog : https://plantstomata.wordpress.com/2019/02/19/biochemical-reactions-responsible-for-stomatal-movements-occur-simultaneously-in-the-light/ )

Wall G. W., Adam N. R., Brooks T. J., Kimball B. A., Pinter P. J., LaMorte R. L., Adamsen F. J., Hunsaker D. J., Wechsung G., Wechsung F., Gossman-Clarke S., Leavitt S., Matthias A. D., Webber A. N. (2000) –  Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves – Photosynth. Res. 66: 79-95 – https://doi.org/10.1023/A:1010646225929https://link.springer.com/article/10.1023/A:1010646225929#citeas – (On our blog : https://plantstomata.wordpress.com/2019/02/19/net-assimilation-and-stomatal-conductance/ )

Wall S., Vialet-Chabrand S., Davey P., Van Rie J., Galle A., Cockram J.,  Lawson T. (2022) – Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat – New Phytologist 235(5): 1743-1756 – https://doi.org/10.1111/nph.18257https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18257 – (On our blog : https://plantstomata.wordpress.com/2023/01/28/stomata-on-the-abaxial-and-adaxial-leaf-surfaces-contribute-differently-to-leaf-gas-exchange/ )

Wallace A., Deutsch A. (1968) – Phosphorus deficiency decreases stomatal activity and water use of plants – Calif Agr 22(8): 15-16 – https://calag.ucanr.edu/Archive/?article=ca.v022n08p15 – (On our blog : https://plantstomata.wordpress.com/2021/11/14/phosphorus-deficiency-decreases-stomatal-activity/ )

Wallace J., Roberts J., Sivakumar M. (1990) – The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices – Agric. For. Meteorol. 51: 35–49 – https://doi.org/10.1016/0168-1923(90)90040-Dhttps://www.sciencedirect.com/science/article/abs/pii/016819239090040D?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/20/the-estimation-of-transpiration-using-stomatal-conductance-and-vegetation-area-indices/ )

Wallheimer B. (2011) – Gene helps plants use less water without biomass loss – Purdue University News Service – https://www.purdue.edu/newsroom/research/2011/110111MickelbartGene.html – (On our blog : https://plantstomata.wordpress.com/2020/12/07/gene-helps-plants-use-less-water-without-biomass-loss/ )

Wallin G. (1990) – On the impact of tropospheric ozone on photosynthesis and stomatal conductance of Norway spruce, Picea abies (L.) Karst. – Ph. D. Thesis, University of Göteborg

Wallin G., Ottosson S., Selldén G. (1992) – Long term exposure of Norway spruce, Picea abies(L.) Karst., to ozone in open-top chambers – IV. Effects on the stomatal and the non-stomatal limitation of photosynthesis and on the carboxylation efficiency – New Phytol. 121(3): – https://doi.org/10.1111/j.1469-8137.1992.tb02939.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1992.tb02939.x – (On our blog : https://plantstomata.wordpress.com/2019/02/19/effects-of-ozone-on-the-stomatal-and-the-non-stomatal-limitation-of-photosynthesis/ )

Wallin G., Skärby L. (1992) – The influence of ozone on the stomata1 and non-stomatal limitation of photosynthesis in Norway spruce, Picea abies (L.) Karst, exposed to soil moisture deficit – Trees, Structure and Function 6: 128-136 – https://link.springer.com/article/10.1007/BF00202428 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/the-influence-of-ozone-on-the-stomatal-and-non-stomatal-limitation-of-photosynthesis/ )

Walter J., Rastorfer J. R., Eigsti O. J. (1976) – Comparison of chlorophyll contents hill reactions number of chloroplasts in guard cells and lengths of guard cells in diploid and tetraploid plants of Tradescantia ohiensis – Transactions of the Illinois State Academy of Science 69(2): 218 – https://eurekamag.com/research/026/294/026294419.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/number-of-chloroplasts-in-stomatal-guard-cells-and-lengths-of-guard-cells-in-diploid-and-tetraploid-plants/ )

Walter K. (2018) – Scientists Manipulate Crops to Need Less Water – R&D magazine 2018-03-06 – https://www.rdmag.com/article/2018/03/scientists-manipulate-crops-need-less-water – (On our blog : https://plantstomata.wordpress.com/2018/03/07/increased-psbs-expression-allows-crop-plants-to-be-more-conservative-with-water-use-triggering-stomata-to-close/ )

Walton B. C., Galson E., Harrison M. A. (1977) – The Relationship between Stomatal Resistance and Abscisic-acid Levels in Leaves of Water-stressed Bean Plants – Planta 133: 145-148 – doi: 10.1007/BF00391912https://pubmed.ncbi.nlm.nih.gov/24425217/ – (On our blog : https://plantstomata.wordpress.com/2023/01/01/the-rate-of-aba-synthesis-in-the-leaf-rather-than-the-total-aba-content-determines-the-status-of-the-stomatal-aperture/ )

Walton P. D. (1974) –  The genetics of stomatal length and frequency in clones of Bromus inermis and the relationships between these traits and yield – Canadian Journal of Plant Science 54: 749-754 – https://doi.org/10.4141/cjps74-127 – http://www.nrcresearchpress.com/doi/10.4141/cjps74-127 – (On our blog : https://plantstomata.wordpress.com/2019/02/19/the-importance-of-stomatal-size-and-frequency-in-a-breeding-program-in-relation-to-agronomic-practices/ )

Wan J., Griffiths R., Ying J., McCourt P., Huang Y. (2009) – Development of Drought-Tolerant Canola (Brassica napus L.) through Genetic Modulation of ABA-mediated Stomatal Responses – Crop Science 49(5): 1539-1554 – https://doi.org/10.2135/cropsci2008.09.0568https://acsess.onlinelibrary.wiley.com/doi/10.2135/cropsci2008.09.0568 – (On our blog : https://plantstomata.wordpress.com/2023/08/16/development-of-drought-tolerant-canola-through-genetic-modulation-of-aba-mediated-stomatal-responses/ )

Wan X., Landhäusser S. M., Zwiazek J. J., Lieffers V. J. (2004) – Stomatal conductance and xylem sap properties of aspen (Populus tremuloides) in response to low soil temperature – Physiologia Plantarum 122: 79–85 – https://doi.org/10.1111/j.1399-3054.2004.00385.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.2004.00385.x – (On our blog : https://plantstomata.wordpress.com/2019/02/25/stomatal-conductance-and-xylem-sap-properties-in-response-to-low-soil-temperature/ )

Wan X., Zwiazek J. J. (2001) – Root water flow and leaf stomatal conductance in aspen ( Populus tremuloides ) seedlings treated with abscisic acid – Planta 213: 741-747 – DOI 10.1007/s004250100547Root_water_flow_and_leaf_stomatal_conduc.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/75564/ )

Wang B. X., Zeng Y. H., Wang D. Y., Zhao R., Xu X. (2010) – Responses of leaf stomata to environmental stresses in distribution and physiological characteristics – [ 王碧霞, 曾永海, 王大勇, 赵蓉, 胥晓 (2010). 叶片气孔分布及生理特征对环境胁迫的响应. 干旱地区农业研究, 28,122-126.]- Agricultural Research in the Arid Areas 28: 122-126 –

Wang C., He J., Zhao T.-H., Cao Y., Wang G., Sun B., Yan X., Guo W., Li M.-H. (2019) – The Smaller the Leaf Is, the Faster the Leaf Water Loses in a Temperate Forest – Front. Plant Sci., 04 February 2019 – https://doi.org/10.3389/fpls.2019.00058https://www.frontiersin.org/articles/10.3389/fpls.2019.00058/full – (On our blog : https://plantstomata.wordpress.com/2019/12/29/evidences-for-leaf-size-in-leaf-temperature-regulation-in-dry-environment-with-strong-radiation/ )

Wang C., Hu H., Qin X., Zeise B., Xu D., Rappel W. J., Boron W. F., Schroeder J. I. (2016) – Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor – Plant Cell. 28(2): 568-582 – doi: 10.1105/tpc.15.00637 – Epub 2016 Jan 13 – https://www.ncbi.nlm.nih.gov/pubmed/26764375 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/slac1-as-a-bicarbonate-responsive-protein-contributing-to-co2-regulation-of-s-type-anion-channels-in-stomata/ )

Wang C.,  Li Y., Cui D., Su H. (1997) – Study on the doubling effect of colchicine on leaves in vitro of apple seedlings – Acta Agriculturae Nucleatae Sinica 11(1): 21-25 – ISSN 1000-8551 – https://inis.iaea.org/search/search.aspx?orig_q=RN:28046760 – (On our blog : https://plantstomata.wordpress.com/2022/09/18/study-on-the-stomata-and-the-doubling-effect-of-colchicine-on-leaves-in-vitro-of-apple-seedlings/ )

Wang C., Liu S., Dong Y., Zhao Y., Geng A., Xia X., et al. (2016) – PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar -Plant Biotechnol. J. 14: 849–860 – DOI:  10.1111/pbi.12434 –  https://www.ncbi.nlm.nih.gov/pubmed/26228739 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/pdepf1-is-modulating-stomatal-density/ )

Wang C., Wu S., Tankari M., Zhang X., Li L., Gong D., Hao W., Zhang Y., Mei X., Wang Y., Liu F., Wang Y. (2018) – Stomatal aperture rather than nitrogen nutrition determined water use efficiency of tomato plants under nitrogen fertigation – Agricultural Water Management 209: 94-101 – ISSN 0378-3774 – https://doi.org/10.1016/j.agwat.2018.07.020https://www.sciencedirect.com/science/article/pii/S0378377418306899 – (On our blog : https://plantstomata.wordpress.com/2023/03/08/stomatal-conductance-gs-rather-than-n-nutrition-predominated-regulation-of-plant-wue-under-fertigation/ )

Wang C., Zhang J., Wu J., Brodsky D. E., Schroeder J. I. (2018) – Cytosolic malate and oxaloacetate activate S‐type anion channels in Arabidopsis guard cells – New Phytol. Online Version of Record – 220(1): 178-186 – https://doi.org/10.1111/nph.15292 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15292?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/12/cytosolic-organic-anions-function-in-guard-cell-plasma-membrane-ion-channel-regulation-of-stomata/ )

Wang C. Y., Pang Y. M., Li M. S., et al. (2013) – Effects of drought stress on soybean stomatal characteristics and photosynthetic parameter – Journal of Agricultural Science and Technology 15(1): 109-115 – http://d.old.wanfangdata.com.cn/Periodical/zgnykjdb201301024

Wang F., Jia J., Wang Y., Wang W., Chen Y., Liu T., Shang Z. (2014) – Hyperpolization-activated Ca2+ channels in guard cell plasma membrane are involved in extracellular ATP-promoted stomatal opening in Vicia faba – J. Plant. Physiol. 171: 1241–1247 – https://doi.org/10.1016/j.jplph.2014.05.007https://www.sciencedirect.com/science/article/abs/pii/S0176161714001424?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/02/21/eatp-may-promote-stomatal-opening-via-reactive-oxygen-species-that-regulate-guard-cell-plasma-membrane-ca2-channels/ )

Wang F., Robson T. M., Casal J. J., Shapiguzov A., Aphalo P. J. (2020) – Contributions of cryptochromes and phototropins to stomatal opening through the day – Functional Plant Biology 47(3): 226-238 – https://doi.org/10.1071/FP19053https://www.publish.csiro.au/fp/FP19053 – (On our blog : https://plantstomata.wordpress.com/2021/05/09/90752/ )

Wang F., Xin X., Wei H., Qiu X., Liu B. (2020) – In Vitro Regeneration, Ex Vitro Rooting and Foliar Stoma Studies of Pseudostellaria heterophylla
(Miq.) Pax – Agronomy 10: 949 – doi:10.3390/agronomy10070949file:///C:/Users/wille/Downloads/agronomy-10-00949.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/17/stomata-studies-of-pseudostellaria-heterophylla/ )

Wang F.-F., Lian H.-L., Kang C.-Y., Yang H.-Q. (2010) – Phytochrome B Is Involved in Mediating Red Light-Induced Stomatal Opening in Arabidopsis thaliana – Molecular Plant 3(1): 246-259 – https://doi.org/10.1093/mp/ssp097https://www.sciencedirect.com/science/article/pii/S167420521460410X – (On our blog : https://plantstomata.wordpress.com/2018/12/03/phyb-and-cry-might-regulate-stomatal-opening-by-regulating-myb60-expression/

Wang G. X.,  Zhang J.,  Liao J.-X.,  Wang J.-L. (2001) – Hydropassive evidence and effective factors in stomatal oscillations of Glycyrrhiza inflata under desert conditions – Plant Science 160: 1007-1013 – https://doi.org/10.1016/S0168-9452(01)00344-2 –https://www.sciencedirect.com/science/article/pii/S0168945201003442?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/07/hydropassive-evidence-and-effective-factors-in-stomatal-oscillations-under-desert-conditions

Wang H. L., Guo S. Y., Wang P. T., Song C. P. (2018) – Research progress in stomatal development mechanism // 王宏亮, 郭思义, 王棚涛, 宋纯鹏. 植物气孔发育机制研究进展. 植物学报- doi: 10.11983/CBB17033 / – Chinese Bulletin of Botany 53(2): 164-174 (in Chinese) –

Wang H. Z., Han L., Xu Y. L., Niu J. L. (2015) – Model analysis of the stomatal conductance response to light in Populus pruinosa at different temperatures in the Taklimakan desert – Ecology and Environmental Sciences 24: 741-748 – [ 王海珍, 韩路, 徐雅丽, 牛建龙 (2015). 不同温度下灰胡杨叶片气孔导度对光强响应的模型分析. 生态环境学报, 24,741-748.]

Wang H., Clarke J. M. (1993) – Relationship of excised-leaf water loss and stomatal frequency in wheat / Rapport entre la déperdition d’eau sur feuilles excisées et la fréquence stomatique chez le blé. – Can. J. Plant. Sci. 73(1): 93-99 – https://www.nrcresearchpress.com/doi/pdfplus/10.4141/cjps93-012 – (On our blog : https://plantstomata.wordpress.com/2020/06/20/excised-leaf-water-loss-and-stomatal-frequenc/ )

Wang H., Clarke J. M. (1993) – Genotypic, intraplant, and environmental variation in stomatal frequency and size in wheat – Can. J. Plant. Sci. 73(3): 671-678 – https://doi.org/10.4141/cjps93-088 – http://www.nrcresearchpress.com/doi/10.4141/cjps93-088 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/stomatal-frequency-and-size-in-wheat/ )

Wang H., Guo S., Qiao X., Guo J., Li Z., Zhou Y., Bai S., Gao Z., Wang D., Wang P., Galbraith D. W., Song C. P. (2019) – BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize – PLoS Genet. 15(8):e1008377 – doi: 10.1371/journal.pgen.1008377 – PMID: 31465456 – PMCID: PMC6738654 – https://pubmed.ncbi.nlm.nih.gov/31465456/ – (On our blog : https://plantstomata.wordpress.com/2021/03/30/89224/ )

Wang H., Li N., Li H., Zhang S., Zhang X., Yan X., Wang Z., Yang Y., Zhang S. (2023) – Overexpression of NtGCN2 improves drought tolerance in tobacco by regulating proline accumulation, ROS scavenging ability, and stomatal closure – Plant Physiol Biochem.198: 107665 – doi: 10.1016/j.plaphy.2023.107665 – Epub 2023 Mar 28 – PMID: 37018865 – https://pubmed.ncbi.nlm.nih.gov/37018865/ – (On our blog : https://plantstomata.wordpress.com/2023/05/27/ntgcn2-might-regulate-drought-tolerance-by-regulating-proline-accumulation-reactive-oxygen-species-ros-scavenging-and-stomatal-closure-in-tobacco-and-may-have-the-potential-for-application-in-the/ )

Wang H., Ngwenyama N., Liu Y., Walker J. C., Zhang S. (2007) – Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis – Plant Cell 19: 63–73 – doi: 10.1105/tpc.106.048298 – (On our blog : https://plantstomata.wordpress.com/2015/03/14/environmentally-responsive-mitogen-activated-protein-kinases/)

Wang H., Wang Y., Sang T., Lin Z., Li R., Ren W., Shen X., Zhao B., Wang X., Zhang X., Zhou S., Dai S., Hu H., Song C.-P., Wang P. (2023) – Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells – Journal of Integrative Plant Biology – https://doi.org/10.1111/jipb.13536https://onlinelibrary.wiley.com/doi/10.1111/jipb.13536 – (On our blog : https://plantstomata.wordpress.com/2023/06/13/how-aba-activates-snrk2-6-ost1-in-guard-cells-and-represents-a-resource-potentially-providing-further-insights-into-the-molecular-basis-of-stomatal-guard-cell-and-mesophyll-cell-development-metabolis/ )

Wang H., Wei Z., Li J., Wang X. (2017) – 9 – Brassinosteroids – In : Hormone Metabolism and Signaling in Plants 2017, Pages 291-326 – https://doi.org/10.1016/B978-0-12-811562-6.00009-8https://www.sciencedirect.com/science/article/pii/B9780128115626000098 – (On our blog : https://plantstomata.wordpress.com/2021/02/08/br-regulated-plant-developmental-processes-include-stomatal-development/ )

Wang H., Yan S., Xin H., Huang W., Zhang H., Teng S., Yu Y.-C., Fernie A. R., Lu X., Li P., Li S., Zhang C., Ruan Y.-L., Chen L.-Q, Lang Z. (2019) – A Subsidiary Cell-Localized Glucose Transporter Promotes Stomatal Conductance and Photosynthesis – Plant Cell – https://doi.org/10.1105/tpc.18.00736http://www.plantcell.org/content/31/6/1328 – (On our blog : https://plantstomata.wordpress.com/2019/06/14/cst1-as-a-missing-link-in-the-feedback-regulation-of-stomatal-movement/ )

Wang H.-B., Wang X.-C., Chen J., Cao M., Li Y.-Y. (1997) – Relationship of stomata sensitivity to ABA and ABA-binding proteins on the plasmalemma of guard cells in Vicia faba – Acta Bot Sin. 39: 126-129 (in Chinese with English abstract) – https://scholars.uab.edu/display/pub2430955 – (On our blog : https://plantstomata.wordpress.com/2023/01/01/the-change-of-stomata-sensitivity-of-aba-by-light-dark-could-be-regulated-through-the-change-of-dissociation-contant-to-the-aba-binding-proteins/ )

Wang J. (2024) – Unlocking-the-potential-of-AI-for-studying-leaf-stomata : A-valuable-image-dataset-for-ecologists-and-plant-scientists – Plant Science and Anatomy & Physiology 2024 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/123224)

Wang J., Cui D., Wang L., Du M., Yin Y., Ma R., Sun H., Jiao Z. (2021) – Atmospheric pressure plasma treatment induces abscisic acid production, reduces stomatal aperture and improves seedling growth in Arabidopsis thaliana, Plant Biology 23(4): 564-573 – https://doi.org/10.1111/plb.13245 – https://onlinelibrary.wiley.com/doi/10.1111/plb.13245 – (On our blog : https://plantstomata.wordpress.com/2023/05/27/capps-treatment-accelerates-aba-accumulation-in-arabidopsis-at-early-growth-stages-and-aba-regulates-ros-and-ca2-concentrations-to-affect-stomatal-aperture/ )

Wang J., Lu W., Tong Y., Yang Q. (2016) – Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light – Front. Plant Sci., 10 March 2016 | http://dx.doi.org/10.3389/fpls.2016.00250 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00250/full – (On our blog : https://plantstomata.wordpress.com/2016/03/28/8946/ )

Wang J., Shi L., Song S., Tian J., Kang X. (2013) – Tetraploid production through zygotic chromosome doubling in Populus – Silva Fennica 47(2): article id 932 – https://doi.org/10.14214/sf.932https://silvafennica.fi/article/932/ref/3 – (On our blog : https://plantstomata.wordpress.com/2022/01/26/size-and-frequency-of-leaf-stomata-between-tetraploid-and-diploid-plants-were-significantly-different/ )

Wang J., Wen X. (2022) – Excess radiation exacerbates drought stress impacts on stomatal conductance along aridity gradients – European Geosciences Union: Biogeosciences (preprint currently under review for the journal BG) – https://doi.org/10.5194/bg-2022-50https://bg.copernicus.org/preprints/bg-2022-50/ – (On our blog : https://plantstomata.wordpress.com/2022/03/19/the-need-to-integrate-multiple-stressors-and-plant-properties-to-determine-spatial-variability-in-stomatal-conductance-gs/ )

Wang J., Wen X., Lyu S., Guo Q. (2021) – Soil properties mediate ecosystem intrinsic water use efficiency and stomatal conductance via taxonomic diversity and leaf economic spectrum – Science of the Total Environment  (IF7.963) – DOI: 10.1016/j.scitotenv.2021.146968https://en.x-mol.com/paper/article/1382786176436428800https://www.sciencedirect.com/science/article/abs/pii/S0048969721020386 – (On our blog : https://plantstomata.wordpress.com/2022/03/30/complex-feedbacks-that-regulate-intrinsic-water-use-efficiency-iwue-and-stomatal-conductance-gs-at-ecosystem-level/ )

Wang K., Gao Y., Li S., Zhang M., Wu Z., Liu L., Sun H., Li C., Zhang Y. (2019) – Response of leaf stomata and photosynthetic parameters to short-term drought stress in cotton (Gossypium hirsutum L.) – Chinese Journal of Eco-Agriculture 27(6): 901-907 – doi: 10.13930/j.cnki.cjea.180928http://www.ecoagri.ac.cn/en/article/doi/10.13930/j.cnki.cjea.180928?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Chinese_Journal_of_Eco-Agriculture_TrendMD_1 – (On our blog : https://plantstomata.wordpress.com/2022/03/23/the-simulated-drought-induced-by-peg-6000-may-result-in-cotton-stomatal-closure-and-an-increase-in-stomatal-density/ )

Wang L., Bai X., Qiao Y., Si L., Yu Z., Ni C., Li T., Guo C., Qiao K. (2022) – tae-miR9674a, a microRNA member of wheat, confers plant drought and salt tolerance through modulating the stomata movement and ROS homeostasis – Plant Biotechnology Reports 17(9): – DOI: 10.1007/s11816-022-00787-5 – ww.researchgate.net/publication/363035183 – (On our blog : https://plantstomata.wordpress.com/2024/02/03/tae-mir9674a-is-an-essential-mediator-in-plant-osmotic-stress-tolerance-by-positively-regulating-osmotic-stress-acclimation-cellular-ros-homeostasis-and-related-defensive-processes-modulating-the-s/)

Wang L., Chang C. (2023) – The exploration of stomatal development for crop stress resistance – Journal of Experimental Botany – DOI: 10.1093/jxb/erad477https://www.researchgate.net/publication/375913630 – (On our blog : https://plantstomata.wordpress.com/2024/02/15/the-most-recent-advances-in-studies-of-crop-stomata-formation-and-its-multifaceted-functions-in-abiotic-stress-tolerance/ )

Wang L., Li Q.-T., Lei Q., Feng C., Zheng X., Zhou F., Li L., Liu X., Wang Z., Kong J. (2017) – Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes – BMC Plant Biol. 17(1): 246 – doi: 10.1186/s12870-017-1212-2 – PMID: 29258418 – PMCID: PMC5735821 – https://pubmed.ncbi.nlm.nih.gov/29258418/ – (On our blog : https://plantstomata.wordpress.com/2022/09/08/enhanced-drought-tolerance-of-transgenic-tomatoes-partially-via-reduced-water-loss-controlled-by-stomata-closure-in-leaves/ )

Wang M., Feifei Y., Hao H., Zhang Y., Zhao H., Guo A., Hu J., Zhou X., Xie C. (2013) – BolOST1, an ortholog of Open Stomata 1 with alternative splicing products in Brassica oleracea, positively modulates drought responses in plants. – Biochem. Biophys. Res. Commun. 442: 214–220 – doi: 10.1016/j.bbrc.2013.11.032 – https://www.sciencedirect.com/science/article/pii/S0006291X13019141 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/bolost1-is-a-functional-snrk2-type-protein-kinase-positively-modulates-drought-responses-stomata/ )

Wang M., Ji Q., Liu P., Liu Y. (2022) – Guarding and hijacking: stomata on the move – Trends in Plant Science – https://doi.org/10.1016/j.tplants.2022.05.004https://www.cell.com/trends/plant-science/fulltext/S1360-1385(22)00142-X – (On our blog : https://plantstomata.wordpress.com/2022/05/26/106804/ )

Wang M., Wei H., Jeong B. R. (2021) – Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce (Lactuca sativa L.) – Int. J. Mol. Sci. 22(6): 3157 – https://doi.org/10.3390/ijms22063157https://www.mdpi.com/1422-0067/22/6/3157/htm – (On our blog : https://plantstomata.wordpress.com/2021/12/16/the-lighting-direction-has-a-profound-effect-on-the-morphological-characteristics-of-lettuce/ )

Wang M., Yang K., Le J. (2014) – Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of TOO MANY MOUTHS – Journal of integrative plant biology 57(3): 247-255 – https://doi.org/10.1111/jipb.12285https://onlinelibrary.wiley.com/doi/10.1111/jipb.12285 – (On our blog : https://plantstomata.wordpress.com/2023/05/22/the-br-organ-specific-effects-on-stomatal-production-might-coordinate-with-the-tmm-organ-specific-actions/ )

Wang M. H., Wang J. R., Zhang X. W., Zhang A. P., Sun S., Zhao C. M. (2019) – Phenotypic plasticity of stomatal and photosynthetic features of four Picea species in two contrasting common gardens – AoB Plants 11(4): plz034 – doi: 10.1093/aobpla/plz034https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621916/ – (On our blog : https://plantstomata.wordpress.com/2019/10/09/phenotypic-plasticity-of-stomatal-and-photosynthetic-features/ )

Wang P., Dong F., Song C.-P., (2001) – Requirement for increasing production of hydrogen peroxide in salicylic acid induced stomatal closure in Vicia faba guard cells – Plant Biology (Rockville) : 36 – https://eurekamag.com/research/035/653/035653794.php

Wang P., Du Y., Hou Y. J., Zhao Y., Hsu C. C., Yuan F., et al. (2015) – Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. U.S.A. 112: 613–618 – doi: 10.1073/pnas.1423 481112 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299189/ – (On our blog : https://plantstomata.wordpress.com/2018/07/10/nitric-oxide-negatively-regulates-aba-signaling-in-stomata/ )

Wang P., Du Y., Zhao X., Miao Y., Song C.-P. (2012) – The MPK6-ERF-ROSE7/GCC-box complex modulates oxidative gene transcription and ROS signaling in Arabidopsis thaliana – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-mpk6-erf-rose7-gcc-box-complex-in-stomata/ )

Wang P., Qi S., Wang X., Dou L., Jia M.-A., Mao T., Guo Y., Wang X. (2023) – The OPEN STOMATA1-SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis – Plant Cell. 35(1): 260-278 – doi: 10.1093/plcell/koac307 – PMID: 36255272 – PMCID: PMC9806620 – https://pubmed.ncbi.nlm.nih.gov/36255272/ – (On our blog : https://plantstomata.wordpress.com/2023/01/10/spr1-positively-regulates-microtubule-disassembly-during-aba-induced-stomatal-closure-which-depends-on-ost1-mediated-phosphorylation/ )

Wang P., Song C. P. (2008) – Guard-cell signalling for hydrogen peroxide and abscisic acid. – New Phytol. 178: 703–718 – doi: 10.1111/j.1469-8137.2008.02431.x – https://www.ncbi.nlm.nih.gov/pubmed/18373649 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/points-of-connection-between-aba-and-h2o2-signalling-in-stomata/ )

Wang P., Wang S., Chen B., Amir M., Wang L., Chen J., Ma L., Wang X., Liu Y., Zhu K. (2022) – Light and Water Conditions Co-Regulated Stomata and Leaf Relative Uptake Rate (LRU) during Photosynthesis and COS Assimilation: A Meta-Analysis – Sustainability 10.3390/su14052840 – 14(5) : –  https://doi.org/10.3390/su14052840https://www.mdpi.com/2071-1050/14/5/2840 – (On our blog : https://plantstomata.wordpress.com/2022/12/05/during-plant-photosynthesis-and-cos-assimilation-light-and-water-conditions-co-regulated-the-stomata-and-lru/ )

Wang Q., He Q., Zhou G. (2018) – Applicability of common stomatal conductance models in maize under varying soil moisture conditions – Science of The Total Environment 628–629: 141-149 – ISSN 0048-9697 –
https://doi.org/10.1016/j.scitotenv.2018.01.291
https://www.sciencedirect.com/science/article/pii/S0048969718303309 – (On our blog : https://plantstomata.wordpress.com/2022/05/05/a-basis-for-selecting-appropriate-stomatal-conductance-models-under-drought-conditions/ )

Wang R. (2021) – The application of the replicated spatial point pattern analysis method to the spatial characteristics of stomata of the eight Magnoliaceae species. MD Thesis, Nanjing Forestry University, China –

Wang R., Yu G., He N., Wang Q., Zhao N., Xu Z., Ge J. (2014) – Elevation-Related Variation in Leaf Stomatal Traits as a Function of Plant Functional Type: Evidence from Changbai Mountain, China. – PLoS ONE 9(12): e115395 – https://doi.org/10.1371/journal.pone.0115395https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115395 – (On our blog : https://plantstomata.wordpress.com/2021/09/18/elevation-related-patterns-of-stomatal-characteristics-in-leaves-are-primarily-a-function-of-pft/ )

Wang R., Yu G., He N., Wang Q., Zhao N., Xu Z., Ge J. (2015) – Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity – Scientific Reports 5, Article number: 14454 – https://www.nature.com/articles/srep14454 – (On our blog : https://plantstomata.wordpress.com/2019/04/01/new-insight-into-the-relationship-between-leaf-stomatal-traits-and-ecosystem-function/ )

Wang R. L., Yu G. R., He N. P., Wang Q. F, Zhao N., Xu Z. W. (2016) – Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain – Acta Ecologica Sinica 36: 2175-2184 – [ 王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律——以长白山为例. 生态学报, 36,2175-2184.]

Wang R. S., Pandey S., Li S., Gookin T. E., Zhao Z., Albert R., Assmann S. M. (2011) – Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells – BMC Genomics 12:216 – doi: 10.1186/1471-2164-12-216 – https://www.ncbi.nlm.nih.gov/pubmed/21554708 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/elements-of-the-aba-regulated-transcriptome-of-stomata/ )

Wang S., Dong F., Sun D., Chen Y., Yan X., Jing R. ( 2018) – QTL analysis for stomatal density and size in wheat spike organ – Emirates Journal of Food and Agriculture. 30(3): 173-179 – doi: 10.9755/ejfa.2018.v30.i3.1636https://www.researchgate.net/publication/324649827_QTL_analysis_for_stomatal_density_and_size_in_wheat_spike_organ – (On our blog : https://plantstomata.wordpress.com/2019/09/20/qtl-analysis-for-stomatal-density-and-size/ )

Wang S., Jia S., Sun D., Fan H., Chang X., Jing R. (2016) – Mapping QTLs for stomatal density and size under drought stress
in wheat (Triticum aestivum L.) – Journal of Integrative Agriculture 15(9): 1955–1967 – https://core.ac.uk/download/pdf/82226104.pdf – (On our blog : https://plantstomata.wordpress.com/2020/04/12/mapping-qtls-for-stomatal-density-and-size-under-drought-stress-2/ )

Wang S., Li S., Wang J., Li Q., Xin X. F., Zhou S., Wang Y., Li D., Xu J., Luo Z. Q., He S. Y., Sun W. (2021) – A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice – Nat Commun.12(1): 5479 – doi: 10.1038/s41467-021 -25748-4 – PMID: 34531388 – PMCID: PMC8445998 – https://pubmed.ncbi.nlm.nih.gov/34531388/ – (On our blog : https://plantstomata.wordpress.com/2023/05/22/a-bacterial-kinase-phosphorylates-osk1-to-suppress-stomatal-immunity/ )

Wang S., Sun J., Fan F., Tan Z., Zou Y., Lu D. (2016) – A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure – Sci. China Life Sci. 59: 897–905 – doi: 10.1007/s11427-016-5106-6https://www.frontiersin.org/articles/10.3389/fpls.2021.668797/full – (On our blog : https://plantstomata.wordpress.com/2021/11/09/xopr-likely-suppresses-plant-immunity-by-targeting-bik1-and-other-rlcks-and-it-suppresses-pamp-triggered-stomatal-closure/ )

Wang S., Yang Y., Trishchenko A. P., Barr A. G., Black T. A., McCaughey H., (2009) – Modeling the Response of Canopy Stomatal Conductance to Humidity – Journal of Hydrometeorology 10(2): 521-532 – https://doi.org/10.1175/2008JHM1050.1https://journals.ametsoc.org/view/journals/hydr/10/2/2008jhm1050_1.xml – (On our blog : https://plantstomata.wordpress.com/2021/02/18/new-models-to-improve-the-response-of-canopy-stomatal-conductance-to-humidity/ )

Wang S., Zhou Z., Rahiman R., Lee G. S. Y., Yeo Y. K., Yang X., Lau O. S. (2021) – Light regulates stomatal development by modulating paracrine signaling from inner tissues – Nat Commun 123403 – https://doi.org/10.1038/s41467-021-23728-2https://www.nature.com/articles/s41467-021-23728-2 – (On our blog : https://plantstomata.wordpress.com/2021/07/04/a-molecular-link-between-light-signaling-and-stomatal-development/ )

Wang S.-W., Li Y., Zhang X.-L., Yang H.-Q., Han X.-F., Liu Z.-H., Shang Z.-L., Asano T., Yoshioka Y., Zhang C.-G., Chen Y.-L. (2014)  – Lacking chloroplasts in guard cells of crumpled leaf attenuates stomatal opening: both guard cell chloroplasts and mesophyll contribute to guard cell ATP levels – Plant, Cell & Environment 37(9): 2201-2210 – https://doi.org/10.1111/pce.12297 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12297 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/both-stomatal-chloroplasts-and-mesophyll-contribute-to-the-atp-source-for-h-extrusion-by-guard-cells/)

Wang T., Wei Q., Wang Z., Liu W., Zhao X., Ma C., Gao J., Xu Y., Hong B. (2021) – CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness – Journal of Integrative Plant BiologyVolume 64(3): 741-755 – https://doi.org/10.1111/jipb.13201https://onlinelibrary.wiley.com/doi/10.1111/jipb.13201 – (On our blog : https://plantstomata.wordpress.com/2023/05/24/cmnf-yb8-thus-regulates-cmcipk6-and-cmshn3-expression-to-alter-stomatal-movement-and-cuticle-thickness-in-the-leaf-epidermis-thereby-affecting-drought-resistance/ )

Wang T., Yang R., Shi N., Yang J., Yan H., Wang J., Ding Z., Huang W., Luo Q., Lin Y., Gao J., Han M. (2019) – Cu,N-Codoped Carbon Nanodisks with Biomimic Stomata-Like Interconnected Hierarchical Porous Topology as Efficient Electrocatalyst for Oxygen Reduction Reaction – Small 15(43): 1902410 – https://doi.org/10.1002/smll.201902410https://onlinelibrary.wiley.com/doi/10.1002/smll.201902410 – (On our blog : https://plantstomata.wordpress.com/2023/12/20/high-quality-2d-cu-n-c-nanodisks-nds-with-biomimic-stomata-like-interconnected-hierarchical-porous-topology-are-synthesized-via-carbonization-of-cu-tetrapyridylporphyrin-tpyp-metal-organic/ )

Wang T., Ye W., Wang Y., Zhang M., Aihara Y., Kinoshita T. (2021) – Protease Inhibitor-Dependent Inhibition of Light-Induced Stomatal Opening – Front. Plant Sci. 12: 735328 – https://doi.org/10.3389/fpls.2021.735328https://www.frontiersin.org/articles/10.3389/fpls.2021.735328/full – (On our blog : https://plantstomata.wordpress.com/2023/04/11/pis-suppress-bl-induced-stomatal-opening-at-least-in-part-by-inhibiting-pm-h-atpase-activity-but-not-the-aba-signaling-pathway/ )

Wang T., Zheng L., Xiong D., Wang F., Man J., Deng N., Cui K., Huang J., Peng S., Ling X. (2022) – Stomatal Ratio Showing No Response to Light Intensity in Oryza – Plants (Basel) 12(1): 66 – doi: 10.3390/plants12010066 – PMID: 36616195 – PMCID: PMC9823486 – https://pubmed.ncbi.nlm.nih.gov/36616195/ – (On our blog : https://plantstomata.wordpress.com/2023/03/01/stomatal-traits-of-oryza-tend-to-shift-together-during-plasticity-to-diverse-growing-conditions-but-the-previously-projected-sensitive-trait-stomatal-ratio-does-not-shape-growth-condition/ )

Wang W., Chen Q., Xu S., Liu W.-C., Zhu X., Song C.-P. (2020) – Trehalose-6-phosphate phosphatase E modulates ABA-controlled root growth and stomatal movement in Arabidopsis – Journal of Integrative Plant Biology 62(10): 1518-1534 – https://doi.org/10.1111/jipb.12925https://onlinelibrary.wiley.com/doi/10.1111/jipb.12925 – (On our blog : https://plantstomata.wordpress.com/2023/05/24/tppe-is-involved-in-aba-controlled-root-elongation-and-stomatal-movement-by-inducing-ros-accumulation/ )

Wang W., Ganzeveld L., Rossabi S., Hueber J., Helmig D. (2020) – Measurement report: Leaf-scale gas exchange of atmospheric reactive trace species (NO2, NO, O3) at a northern hardwood forest in Michigan – Atmos. Chem. Phys. 20: 11287–11304 – https://doi.org/10.5194/acp-20-11287-2020https://acp.copernicus.org/articles/20/11287/2020/ – (On our blog : https://plantstomata.wordpress.com/2022/04/17/the-foliar-no2-and-o3-uptake-largely-followed-a-diurnal-cycle-correlating-with-that-of-the-leaf-stomatal-conductance/ )

Wang W., Liu Z., Bao L.-J., Zhang S.-S., Zhang C.-G., Li X., Li H.-X., Zhang X.-L., Bones A. M., Yang Z., Chen Y.-L. (2017) – The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening – Plant Physiol 174: 717–731 – http://www.plantphysiol.org/content/174/2/717 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-ropgef2-rop7-rop2-pathway-and-the-red-light-induced-stomatal-opening/)

Wang W., Shi X., Chen D., Wang F., Zhang H. (2020) – The Brassica napus MYC2 regulates drought tolerance by monitoring stomatal closure – Eur.J.Hortic.Sci. 85 (4) 226-231 | DOI: 10.17660/eJHS.2020/85.4.3– ISSN 1611-4426 print and 1611-4434 online | © ISHS 2020 | European Journal of Horticultural Science | Original article – https://www.pubhort.org/ejhs/85/4/3/index.htm – (On our blog : https://plantstomata.wordpress.com/2024/04/01/123287/ )

Wang W.-H., Chen J., Liu T.-W., Chen J., Han A.-D., Simon M., Dong X.-J., He J.-X., Zheng H.-L. (2013) – Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis – Journal of Experimental Botany 65(1): 223–234 – doi:10.1093/jxb/ert362http://jxb.oxfordjournals.org/content/65/1/223.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cas-stomatal-movement-wue-and-drought-tolerance/ )

Wang W. H., He E. M., Chen J., Guo Y., Chen J., Liu X., Zheng H. L. (2016) – The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation – Plant J. 86(2): 132-144 – doi:10.1111/tpj.13154 – PMID: 26945669 – https://pubmed.ncbi.nlm.nih.gov/26945669/ – (On our blog : https://plantstomata.wordpress.com/2023/01/03/a-mechanism-for-chloroplast-mediated-stomatal-closure-involving-the-generation-of-mesophyll-chloroplastic-h2o2-based-on-the-reduced-state-of-the-pq-pool-which-is-calcium-sensing-receptor-cas-and-lh/ )

Wang W. H., Yi X. Q., Han A. D., Liu T. W., Chen J., Wu F. H., Dong X. J., He J. X., Pei Z. M., Zheng H. L. (2011) – Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis – J. Exp. Bot. 63: 177–190 – doi: 10.1093/jxb/err259 – https://www.ncbi.nlm.nih.gov/pubmed/21940718 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/a-hypothetical-model-whereby-ca2o-induces-h2o2-and-no-accumulation-in-stomata/ )

Wang W. H., Zheng H. L. (2012) – Mechanisms for calcium sensing receptor-regulated stomatal closure in response to the extracellular calcium signal – Plant Signal Behav. 7(2):289-91 – doi: 10.4161/psb.18882 – Epub 2012 Feb 1 – https://pubmed.ncbi.nlm.nih.gov/22415046/ – (On our blog : https://plantstomata.wordpress.com/2023/01/03/nitric-oxide-no-and-the-hydrogen-peroxide-h%e2%82%82o%e2%82%82-accumulated-in-the-stomatal-guard-cell-chloroplast-are-the-two-elements-that-act-downstream-of-the-cas-signaling-and-trigger-the-stom/ )

Wang W. N., Tarafdar J. C., Biswas P. (2013) – Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake – J Nanopart Res 15: 1417 – https://doi.org/10.1007/s11051-013-1417-8https://link.springer.com/article/10.1007/s11051-013-1417-8#citeas – (On our blog : https://plantstomata.wordpress.com/2022/09/29/certain-fractions-of-nanoparticles-generated-by-the-aerosol-process-could-enter-the-leaf-following-the-stomatal-pathway/ )

Wang X., Arora R., Horner H. T., Krebs S. L. (2008) – Structural Adaptations in Overwintering Leaves of Thermonastic and Nonthermonastic Rhododendron – American Society for Horticultural Science 133(6) – Doi:10.21273/JASHS.133.6.768https://www.researchgate.net/publication/252966100_Structural_Adaptations_in_Overwintering_Leaves_of_Thermonastic_and_Nonthermonastic_Rhododendron – (On our blog : https://plantstomata.wordpress.com/2019/08/06/stomata-in-thermonastic-and-nonthermonastic-rhododendron/ )

Wang X., Du T., Huang J., Peng S., Xiong D. (2018) – Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice – J Exp Bot. 69(16): 4033-4045 – doi: 10.1093/jxb/ery188 – PMID: 29788146 – PMCID: PMC6054168 – https://pubmed.ncbi.nlm.nih.gov/29788146/ – (On our blog : https://plantstomata.wordpress.com/2021/11/26/the-decline-in-stomatal-and-mesophyll-conductance-during-drought-2/ )

Wang X., Wang Q., Nguyen P., Lin jC. (2014) – Chapter Seven – Cryptochrome-Mediated Light Responses in Plants – in Book The Enzymes 35: 167-189 – https://doi.org/10.1016/B978-0-12-801922-1.00007-5https://www.sciencedirect.com/science/article/pii/B9780128019221000075 – (On our blog : https://plantstomata.wordpress.com/2021/02/25/cryptochrome-mediated-light-responses-in-plants-stomata/ )

Wang X., Du T., Huang J., Peng S., Xiong D. (2018) – Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice (Oryza sativa) – J Exp Bot 69: 4033–4045 – doi: 10.1093/jxb/ery188https://www.ncbi.nlm.nih.gov/pubmed/29788146 – (On our blog : https://plantstomata.wordpress.com/2019/05/15/the-decline-in-stomatal-and-mesophyll-conductance-during-drought/ )

Wang X.-L., Gao X.-Q., Wang X.-C. (2011) – Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement – Plant, Cell & Environment 34(8): 1248-1257 – https://doi.org/10.1111/j.1365-3040.2011.02325.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2011.02325.x – (On our blog : https://plantstomata.wordpress.com/2023/06/26/the-stochastic-dynamics-of-actin-filaments-in-guard-cells-regulate-chloroplast-localization-during-stomatal-movement/ )

Wang X. Q., Ullah H., Jones A. M., Assmann S. M. (2001) – G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. -Science 292: 2070–2072 – doi: 10.1126/science.1059046 – https://www.ncbi.nlm.nih.gov/pubmed/11408655 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/stomatal-opening-in-gpa1-plants-is-insensitive-to-inhibition-by-aba/

Wang X. Q., Wu W. H., Assmann S. M. (1998) – Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium – Plant Physiol 118: 1421–1429 – https://doi.org/10.1104/pp.118.4.1421http://www.plantphysiol.org/content/118/4/1421?ijkey=32fa9e41146ef1ce52eedd7701307e0dc0c4603c&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/11/osmo-sensitive-and-stretch-activated-ca2-channels-stomata-and-their-regulation-by-osmotic-changes-and-actin-dynamics/ )

Wang Y. (2009) – Enhanced plant photosynthesis and growth through manipulation of stomatal apertures – IAR Letter, 15 – http://www.aip.nagoya-u.ac.jp/en/public/nu_research/features/detail/0004138.html – (On our blog : https://plantstomata.wordpress.com/2018/11/26/overexpression-of-h-atpase-in-stomatal-guard-cells-enhances-plant-productivity/

Wang Y., Anderegg W. R. L., Venturas M. D., Trugman A. T., Yu K.,
Christian Frankenberg C. (2021)
– Optimization theory explains nighttime stomatal responses – New Phytologist – doi: 10.1111/nph.17267https://escholarship.org/content/qt80760038/qt80760038_noSplash_424551c0ada57ff84f901c20ccf49e92.pdf?t=r69w9s – (On our blog : https://plantstomata.wordpress.com/2022/04/01/why-do-plants-lose-water-at-night-and-how-to-model-it-at-large-scales/ )

Wang Y., Blatt M. R. (2011) – Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells – Biochem. J. 439: 161–170 – doi: 10.1042/BJ20110845. – https://www.ncbi.nlm.nih.gov/pubmed/21745184 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/a-central-role-for-oxaloacetate-in-integrating-ion-flux-with-metabolism-in-stomatal-guard-cells/ )

Wang Y., Chen Z. H. (2020) – Does Molecular and Structural Evolution Shape the Speedy Grass Stomata? – Frontiers in Plant Science 11 – DOI: 10.3389/fpls.2020.00333https://www.researchgate.net/publication/339727342_Does_Molecular_and_Structural_Evolution_Shape_the_Speedy_Grass_Stomata – (On our blog : https://plantstomata.wordpress.com/2020/04/29/the-differential-stomatal-morphology-developmental-mechanism-and-guard-cell-signaling-in-monocots-and-eudicots/ )

Wang Y., Chen X, Xiang C. (2007) –  Stomatal density and bio-water saving – Journal of Integrative Plant Biology 49(10): 1435–1444 – https://doi.org/10.1111/j.1672-9072.2007.00554.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1672-9072.2007.00554.x – (On our blog : https://plantstomata.wordpress.com/2018/07/12/genes-regulating-stomatal-density-and-the-role-of-stomatal-density-in-plant-water-use-efficiency/ )

Wang Y., Chen Z. H., Zhang B., Hills A., Blatt M. R. ( 2013) – PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl channels through reactive oxygen species‐mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells – Plant Physiol 163: 566– 577 – DOI: 10.1104/pp.113.219758 –https://www.ncbi.nlm.nih.gov/pubmed/23899646?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/pyr-pyl-rcar-receptor-coupling-to-the-activation-by-aba-of-plasma-membrane-ca2-channels-through-ros-affecting-ca2i-and-its-regulation-of-stomatal-closure/ )

Wang Y., Chen Z. H., Zhang B., Hills A. (2019) – The role of ion channels in regulating stomatal movement – Plant Cell Reports 38(2): 149-162 –

Wang Y., Gehring C. A., Irving H. R. (2011) – Plant natriuretic peptides are apoplastic and paracrine stress response molecules – Plant and Cell Physiology 52(5): 837–850 – doi:10.1093/pcp/pcr036https://repository.kaust.edu.sa/handle/10754/561750 – (On our blog : https://plantstomata.wordpress.com/2022/09/13/atpnp-a-modulates-the-effects-of-aba-on-stomata/ )

Wang Y., Hills A., Blatt M. R. ((2014) – Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency – Plant Physiology 164: 1593-1599 – https://doi.org/10.1104/pp.113.233403http://www.plantphysiol.org/content/164/4/1593 – (On our blog : https://plantstomata.wordpress.com/2019/09/26/systems-analysis-of-guard-cell-membrane-transport-for-enhanced-stomatal-dynamics/ )

Wang Y., Hills A., Vialet-Chabrand S., Papanatsiou M., Griffiths H., Rogers S., Lawson T., Lew V. L., Blatt M. R. (2017) – Unexpected Connections between Humidity and Ion Transport Discovered Using a Model to Bridge Guard Cell-to-Leaf Scales – Plant Cell 29: 2921–2935 – DOI: https://doi.org/10.1105/tpc.17.00694 – http://www.plantcell.org/content/29/11/2921?ijkey=615d52f6f112083b64a7d81e76985c6f96eb7ef4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/66246/ )

Wang Y., Holroyd G., Hetherington A. M., Ng C. K.‐Y. (2004) – Seeing “cool” and ‘hot’—infrared thermography as a tool for non‐invasive, high‐throughput screening of Arabidopsis guard cell signalling mutants – J Exp Bot. 55( 400): 1187‐ 1193 –  https://doi.org/10.1093/jxb/erh135https://academic.oup.com/jxb/article/55/400/1187/528654/ – (On our blog : https://plantstomata.wordpress.com/2019/10/08/the-use-of-infrared-thermography-as-a-non%e2%80%90invasive-high%e2%80%90throughput-tool-and-the-versatility-of-this-technique-for-screening-defective-in-stomatal-regulation/ )

Wang Y., Köhler P., He L., Doughty R., Braghiere R. K., Wood J. D., Frankenberg C. (2021) – Testing stomatal models at stand level in deciduous angiosperm and evergreen gymnosperm forests using CliMA Land (v0.1) – Geosci. Model Dev. Discuss. [preprint] – https://doi.org/10.5194/gmd-2021-154, in review, 2021 – https://gmd.copernicus.org/preprints/gmd-2021-154/ – (On our blog : https://plantstomata.wordpress.com/2021/07/07/using-stomatal-optimization-with-a-comprehensive-rt-model-showed-high-accuracy-in-simulating-land-surface-processes/ )

Wang Y., Li J., Li C., Liang Y. (2016) – A comparative study of cadmium and zinc uptake and distribution in two contrasting ecotypes of Sedum alfredii – Journal of Hazardous Materials 304: 146-155 –

Wang Y., Liu S., Zhang H., Zhao Y., Zhao H., Liu H. (2014) – Glycine betaine application in grain filling wheat plants alleviates heat and high light-induced photoinhibition by enhancing the psbA transcription and stomatal conductance – Acta Physiologiae Plantarum 36(8): 2195-2202 – http://dx.doi.org/10.1007/s11738-014-1596-7https://link.springer.com/article/10.1007/s11738-014-1596-7 – (On our blog : https://plantstomata.wordpress.com/2020/11/12/gb-accumulation-in-vivo-was-involved-in-the-regulation-of-stomatal-conductance/ )

Wang Y., Ma G., Du X., Liu Y., Wang B., Xu G., Mao H. (2020) – Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber – Agronomy 10: 1921 – doi:10.3390/agronomy10121921www.mdpi.com/journal/agronomyfile:///C:/Users/wille/Downloads/agronomy-10-01921.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/03/leaf-photosynthesis-rate-transpiration-rate-intercellular-co2-concentration-and-stomatal-conductance-were-significantly-decreased-under-b1t2-b1t3-b2t2-and-b2t3-treatments/ )

Wang Y., Noguchi K., Onishi T., Inoue S.-i. (2019) – Dynamic regulation of stomatal density and size by ABA – Plant Physiology 180(4): 1869-1877 –

Wang Y., Noguchi K., Ono N., Inoue S.-i., Terashima I., Kinoshita T. (2014) – Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth – PNAS 111(1): 533-538 – https://doi.org/10.1073/pnas.1305438111 –http://www.pnas.org/content/111/1/533 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-aperture-is-a-limiting-factor-in-photosynthesis-and-plant-growth/

Wang Y., Noguchi K., Terashima I. (2008) – Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. – Plant Cell Environ.  31: 1307-1316 – DOI: 10.1111/j.1365-3040.2008.01843.xhttps://pubmed.ncbi.nlm.nih.gov/18537998/ – (On our blog : https://plantstomata.wordpress.com/2021/01/05/distinct-light-responses-of-the-adaxial-and-abaxial-stomata/ )

Wang Y., Noguchi K., Terashima I. (2011) – Photosynthesis-dependent and-independent responses of stomata to blue, red and green monochromatic light: differences between the normally oriented and inverted leaves of sunflower –
Plant Cell Physiol. 52(3): 479–489 – doi:10.1093/pcp/pcr005 – PMID:21257606 – https://academic.oup.com/pcp/article/52/3/479/1940722 – (On our blog : https://plantstomata.wordpress.com/2021/01/05/stomatal-responses-to-monochromatic-light-change-considerably-in-response-to-growth-light-environment/ )

Wang Y., Papanatsiou M., Eisenach C., Karnik R., Williams M., Hills A., Lew V. L., Blatt M. R. (2012) – Systems Dynamic Modeling of a Guard Cell Cl Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration – Plant Physiol 160:1956–1967 – DOI: https://doi.org/10.1104/pp.112.207704 – http://www.plantphysiol.org/content/160/4/1956?ijkey=cfc390beba20130ff1b1ff8b2c4ebc6af21a8836&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/emergent-homeostatic-network-regulating-stomatal-transpiration/

Wang Y., Sperry J. S., Anderegg W. R. L., Venturas M. D., Trugman A. T. (2020) – A theoretical and empirical assessment of stomatal optimization modeling – New Phytologist 227: 311-325 – https://doi.org/10.1111/nph.16572https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16572 – (On our blog : https://plantstomata.wordpress.com/2022/04/19/10-different-optimization-models-in-how-they-quantify-the-penalty-and-how-well-they-predict-stomatal-responses-to-the-environment/ )

Wang Y., Sperry J. S., Venturas M. D., Trugman A. T., Love D. M., Anderegg W. R. L. (2019) – The stomatal response to rising CO2 concentration and drought is predicted by a hydraulic trait-based optimization model – Tree Physiology 00: 1-12 – https://doi.org/10.1093/treephys/tpz038http://sperry.biology.utah.edu/publications/Wang_et_al_2019_TPH.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/14/the-stomatal-response-to-rising-co2-concentration-and-drought/ )

Wang Y., Wang Y., Tang Y., Xin-Guang Zhu X.-G. (2022) – Stomata conductance as a goalkeeper for increased photosynthetic efficiency –
Current Opinion in Plant Biology 70: 102310 – ISSN 1369-5266 –
https://doi.org/10.1016/j.pbi.2022.102310
https://www.sciencedirect.com/science/article/pii/S136952662200139X – (On our blog : https://plantstomata.wordpress.com/2023/03/09/optimization-of-stomata-conductance-to-increase-whole-plant-photosynthesis-with-full-consideration-of-the-heterogeneities-in-gs-microclimates-and-leaf-ontology-represents-a-largely-uncharted-area-to/ )

Wang Y., Xue X., Zhu J.-K., Juan Dong J. (2016) – Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development – Development 143: 4452-4461 – doi:10.1242/dev.129932https://www.purdue.edu/hla/sites/zhulab/wp-content/uploads/sites/23/2017/05/4452.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/04/stomatal-development-is-influenced-by-ibm1-regulated-histone-modification-and-dna-methylation-on-the-gene-body-region-of-the-erecta-receptors/ )

Wang Z.-Q., Liu Q., Wu J.-H., Li J., He J.-M., Zhang Y., Li S. (2020) – Downregulating VAC14 in Guard Cells Causes Drought Hypersensitivity by Inhibiting Stomatal Closure – Front. Plant Sci., 17 December 2020 – https://doi.org/10.3389/fpls.2020.602701https://www.frontiersin.org/articles/10.3389/fpls.2020.602701/full – (On our blog : https://plantstomata.wordpress.com/2021/12/04/96685/ )

Wankmüller F., Carminati A. (2022) – Stomatal regulation prevents plants from critical water potentials during drought: Result of a model linking soil–plant hydraulics to abscisic acid dynamics – Ecohydrology 15(5): e2386 – https://doi.org/10.1002/eco.2386https://www.research-collection.ethz.ch/handle/20.500.11850/517715 – (On our blog : https://plantstomata.wordpress.com/2023/03/12/in-dry-soils-or-at-high-vpd-stomatal-closure-is-triggered-by-the-sharp-decline-in-leaf-water-potential-as-transpiration-rate-increases/ )

Wankmüller F., Zarebanadkouki M., Carminati A. (2021) – A model of stomatal closure driven by nonlinearities in soil-plant hydraulics – 10.5194/egusphere-egu21-12524  –
vEGU21, the 23rd EGU General Assembly, held online 19-30 April, 2021, id.EGU21-12524 – (On our blog : https://plantstomata.wordpress.com/2022/04/28/stomatal-closure-driven-by-nonlinearities-in-soil-plant-hydraulics/ )

Waqas M., Yaning C., Iqbal H., Shareef M., Rehman H., Yang Y. (2017) – Paclobutrazol improves salt tolerance in quinoa: Beyond the stomatal and biochemical interventions – Journal of Agronomy and Crop Science 203(4): 315-322 – https://doi.org/10.1111/jac.12217https://onlinelibrary.wiley.com/doi/10.1111/jac.12217 – (On our blog : https://plantstomata.wordpress.com/2023/12/04/paclobutrazol-application-significantly-improved-the-stomatal-density-on-both-surfaces-of-leaves/ )

Waraich E. A., Farhan R., Zahoor A., Ahmad R., Ahmad M. (2020) – Foliar applied potassium stimulate drought tolerance in canola under water deficit conditions – Journal of Plant Nutrition 43(13): 1923-1934 – DOI: 10.1080/01904167.2020.1758132https://www.tandfonline.com/doi/abs/10.1080/01904167.2020.1758132 – (On our blog : https://plantstomata.wordpress.com/2022/03/01/stomatal-conductance-and-drought-tolerance-in-canola-by-foliar-application-of-potassium-under-water-deficiency-conditions/ )

Ward D. A., Drake B. G. (1988) – Osmotic stress temporarily reverses the inhibitions of photosynthesis and stomatal conductance by abscisic acid evidence that abscisic acid induces a localized closure of stomata in intact detached leaves – Journal of Experimental Botany 39(199): 147-156 – https://eurekamag.com/research/006/047/006047340.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/osmotic-stress-temporarily-reverses-the-inhibitions-of-photosynthesis-and-stomatal-conductance-by-aba/ )

Ward E. J., Domec J.-C/, Laviner M. A., Fox T. R., Sun G., McNulty S., King J., Noormets A. (2015) – Fertilization intensifies drought stress: Water use and stomatal conductance of Pinus taeda in a midrotation fertilization and throughfall reduction experiment – Forest Ecology and Management – https://www.academia.edu/32629504/Fertilization_intensifies_drought_stress_Water_use_and_stomatal_conductance_of_Pinus_taeda_in_a_midrotation_fertilization_and_throughfall_reduction_experiment – (On our blog : https://plantstomata.wordpress.com/2022/01/19/100251/ )

Ward E. J., Oren R., Bell D. M., Clark J. S., McCarthy H. R., Kim H.-S., Domec J.-C.
(2013
) – The effect of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE – Tree Physiol 33:135–151 – DOI: 10.1093/treephys/tps118https://pubmed.ncbi.nlm.nih.gov/23243030/ – (On our blog : https://plantstomata.wordpress.com/2021/05/26/effect-of-elevated-co2-and-nitrogen-fertilization-on-stomatal-conductance/ )

Ward E. J., Oren R., Sigurdsson B. D., Jarvis P. G., Linder S. (2008) – Fertilization Effects on Mean Stomatal Conductance Are Mediated through Changes in the Hydraulic Attributes of Mature Norway Spruce Trees – Tree Physiology 28: 579-596 – http://dx.doi.org/10.1093/treephys/28.4.579 – https://academic.oup.com/treephys/article/28/4/579/1720621 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/fertilization-effects-on-mean-stomatal-conductance/

Ward J. M., Pei Z.-M., Schroeder J. I. (1995) – Roles of ion channels in initiation of signal transduction in higher plants – Plant Cell 7: 833–844 – http://www.plantcell.org/content/7/7/833 – (On our blog : https://plantstomata.wordpress.com/2017/06/06/roles-of-ion-channels-in-initiation-of-signal-transduction-in-stomata/ )

Ward J. M., Schroeder J. I. (1994) – Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure – Plant Cell 6, 669–683 – doi: 10.1105/tpc.6.5.669 – https://www.ncbi.nlm.nih.gov/pubmed/12244253 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/interaction-of-vk-and-sv-channel-activities-is-crucial-in-regulating-vacuolar-k-and-ca2-release-during-stomatal-closure/ )

Ward J. M., Schroeder J. I. (1997) – Roles of ion channels in initiation of signal transduction in higher plants. In: Aducci P, ed. Molecular and cell biology updates, signal transduction in plants – Boston: Birkhauser Verlag 1-22 –

Wardle K.,  Short K. C. (1983) – Stomatal responses and the senescence of leaves –  Annals Bot 52: 411-412 – https://doi.org/10.1093/oxfordjournals.aob.a086590 –https://academic.oup.com/aob/article/52/3/411/91217 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/the-decline-in-stomatal-activity-during-senescence-is-an-independent-but-parallel-process-to-changes-occurring-in-the-mesophyll/ )

Wardle K.,  Short K. C. (1983) – Stomatal response of in vitro cultured plantlets. I. Responses in epidermal strips of Chrysanthemum to environmental factors and growth regulators – Biochem. Physiol. Pflanzen. 178: 619-624 – https://doi.org/10.1016/S0015-3796(83)80076-6https://www.sciencedirect.com/science/article/abs/pii/S0015379683800766 – (On our blog : https://plantstomata.wordpress.com/2023/01/03/stomatal-response-of-in-vitro-cultured-plantlets-to-environmental-factors-and-growth-regulators/ )

Wargo J., Gass J., Lowman L. (2022) – ED35D-0585 – Simulating Stomatal Conductance using the Ball-Berry-Leuning Model in Southern Appalachian Cloud Forests – AGU Fall Meeting – https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1171041 – (On our blog : https://plantstomata.wordpress.com/2023/01/30/the-ball-berry-leuning-model-is-not-able-to-recreate-stomatal-conductance-rates-observed-in-an-appalachian-cloud-forest/ )

Warren C. R. (2008) – Stand aside stomata, another actor deserves center stage: the forgotten role of the internal conductance to CO2 transfer – J. Exp. Bot. 59: 1475–1487 – DOI: 10.1093/jxb/erm245 – https://www.ncbi.nlm.nih.gov/pubmed/17975206?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/substomatal-cavities-and-internal-conductance/ )

Warrit B., Landsberg J. J. Thorpe M. R. (1980) – Responses of apple leaf stomata to environmental factors – Plant, Cell & Environment 3(1): 13-22 – https://doi.org/10.1111/1365-3040.ep11580397https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11580397 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/responses-of-apple-leaf-stomata-to-environmental-factors/ )

Warskow W. L. (1965) – Factors affecting stomatal opening of creosotebush (Larrea tridentata (DC.) Cov.) and their combined effect on herbicide activity – MSc. Thesis – University of Arizona – https://repository.arizona.edu/bitstream/handle/10150/347495/AZU_TD_BOX158_E9791_1965_133.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2021/11/23/factors-affecting-stomatal-opening-of-creosotebush/ )

Wasilewska A., Vlad F., Sirichandra C., Redko Y., Jammes F., Valon C., Frey N. Fd, Leung J. (2008) – An update on Abscisic acid signaling in plants and more – Mol Plant. 1(2): 198-217 – DOI:https://doi.org/10.1093/mp/ssm022 – [http://mplant.oxfordjournals.org/cgi/content/abstract/1/2/198] – https://www.cell.com/molecular-plant/fulltext/S1674-2052(14)60429-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1674205214604299%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2020/12/10/the-surprising-ancient-origin-of-aba-and-its-attendant-mechanisms-of-signal-transduction-e-g-in-stomata/ )

Waszczak C., Vahisalu T.,  Yarmolinsky D., Sierla M., Zamora O., Gavarrón M. L., Palorinne J., Carter R., Pandey A. K., Nuhkat M., Carmody M., Puukko T., Sipari N., Lamminmäki A., Durner J., Ernst D., Winkler J. B., Paulin L., Auvinen P., Fleming A. J., Salojärvi J.,  Kollist H., Kangasjärvi J. (2020) – Genetic screen to saturate guard cell signaling network reveals a role of GDP-L-fucose metabolism in stomatal closure – bioRxiv 2020.06.04.134353 – doi: https://doi.org/10.1101/2020.06.04.134353https://www.biorxiv.org/content/10.1101/2020.06.04.134353v1.full – (On our blog : https://plantstomata.wordpress.com/2021/04/27/a-role-of-gdp-l-fucose-metabolism-in-stomatal-closure/ )

Watanabe M., Hoshika Y., Inada N., Wang X., Mao Q., Koike T. (2013) – Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan – Environ Pollut. 174: 50-56 – doi: 10.1016/j.envpol.2012.11.006 – Epub 2012 Dec 14 – PMID: 23246746 – https://pubmed.ncbi.nlm.nih.gov/23246746/ – (On our blog : https://plantstomata.wordpress.com/2022/12/04/stomatal-traits-under-free-air-ozone-exposure/ )

Waterkeyn L., Bienfait A. (1979) – Production et dégradation de callose dans les stomates des fougères –  La Cellule 73: 83–97 – ISSN : 0008-8757 e) –

Waterland N. L., Campbell C. A., Finer J., Jones M. L. (2010) – Abscisic acid application enhances drought stress tolerance in bedding plants – HortScience 45: 409-413 – https://doi.org/10.21273/HORTSCI.45.3.409https://journals.ashs.org/hortsci/view/journals/hortsci/45/3/article-p409.xml – (On our blog : https://plantstomata.wordpress.com/2020/12/09/s-aba-was-consistently-effective-at-reducing-water-loss-and-extending-shelf-life-for-all-species-treated-stomatal-closure/ )

Waterland N. L., Finer J., Jones M. L. (2010) – Abscisic Acid Applications Decrease Stomatal Conductance and Delay Wilting in Drought-stressed Chrysanthemums – HortTechnology hortte 20: 5 –  doi:10.21273/HORTTECH.20.5.896https://journals.ashs.org/horttech/view/journals/horttech/20/5/article-p896.xml – (On our blog : https://plantstomata.wordpress.com/2020/12/09/aba-applications-decrease-stomatal-conductance-and-delay-wilting/ )

Watkins J. M.,  Chapman J. M., Muday G. K. (2017) – Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture – Plant Physiol. 175(4): 1807-1825 – https://doi.org/10.1104/pp.17.01010 – http://www.plantphysiol.org/content/175/4/1807 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/flavonols-dampening-the-aba-dependent-ros-burst-that-drives-stomatal-closure/

Watkins J. M., Hechler P. J., Muday G. K. (2014) – Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture – Plant Physiol. 164: 1707–1717 – doi:10.1104/pp.113.233528 – http://www.plantphysiol.org/content/164/4/1707 – (On our blog : https://plantstomata.wordpress.com/2018/07/14/flavonols-suppress-ros-accumulation-and-decrease-the-rate-of-aba-dependent-stomatal-closure-with-ethylene-induced-increase-in-guard-cell-flavonols-modulating-these-responses/

Watts W. R. (1977) – Field studies of stomatal conductance 173-196 – In: J. J. Landsberg and C. V. Cutting, (eds.) – Environmental effects on crop physiology – Academic, London –

Watts W. R., Neilson R. E. (1978) – Photosynthesis in Sitka Spruce (Picea sitchensis (Bong.) Carr.). 8. Measurements of Stomatal Conductance and 14 CO2 Uptake in Controlled Environments – Journal of Applied Ecology 15(1): 245-255 – https://www.jstor.org/stable/2402934?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/13/78461/ )

Watts W. R., Neilson R. E., Jarvis P. G. (1976) – Photosynthesis in sitka spruce (Picea sitchensis (Bong.) Carr.): 7. Stomatal conductance and 14CO2 uptake in a forest canopy – J. Appl. Ecol. 13: 633-638 – DOI: 10.2307/2401808https://www.researchgate.net/publication/272549753_Photosynthesis_in_Sitka_Spruce_Picea_sitchensis_Bong_Carr_VII_Measurements_of_Stomatal_Conductance_and_14_CO_2_Uptake_in_a_Forest_Canopy – (On our blog : https://plantstomata.wordpress.com/2019/05/13/stomatal-conductance-and-14co2-uptake-in-a-forest-canopy/ )

Watts-Williams S. J., Cavagnaro T. R., Tyerman S. D. (2018) – Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions – Plant, Cell & Environment, published online and citable – https://doi.org/10.1111/pce.13369 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13369?af=R – (On our blog : https://plantstomata.wordpress.com/2018/06/28/mycorrhizal-plants-can-exhibit-increased-stomatal-conductance-gs/ )

Way D. A. (2012) – What lies between: the evolution of stomatal traits on the road to C4 photosynthesis – New Phytologist 193(2): 291-293 – https://doi.org/10.1111/j.1469-8137.2011.04000.xhttps://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2011.04000.x – (On our blog : https://plantstomata.wordpress.com/2023/08/11/a-novel-contribution-to-our-knowledge-of-c4-biology-providing-a-hitherto-missing-link-between-stomatal-characteristics-and-photosynthetic-physiology/ )

Way D. A., Katul G. G., Manzoni S., Vico G. (2014) – Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective – J Exp Bot. 65(13): 3683-3693 – doi: 10.1093/jxb/eru205 – Epub 2014 May 23 -PMID: 24860185 – https://pubmed.ncbi.nlm.nih.gov/26706059/ – (On our blog : https://plantstomata.wordpress.com/2022/09/13/a-stomatal-optimization-perspective-for-increasing-water-use-efficiency-along-the-c3-to-c4-evolutionary-pathway/ )

Way D. A., Oren R., Kim H.-S., Katul G. G. (2011) – How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures – J Geophys Res. 2011 – 116:G04031 – DOI: 10.1029/2011JG001808 – https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JG001808 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/how-well-do-stomatal-conductance-models-perform-on-closing-plant-carbon-budgets/ )

Wayne R. (2019) – Tubulin and Microtubule-Mediated Processes – Plant Cell Biology (Second Edition) – From Astronomy to Zoology – Chapter 11: 187-206 – https://doi.org/10.1016/B978-0-12-814371-1.00011-4https://www.sciencedirect.com/science/article/pii/B9780128143711000114 – (On our blog : https://plantstomata.wordpress.com/2019/08/05/tubulin-and-microtubule-mediated-processes-in-stomata/ )

Webb A. A. R., Baker A. J. (2002) – Stomatal biology: new techniques, new challenges – New Phytol 153: 365–370 – https://doi.org/10.1046/j.0028-646X.2001.00347.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.0028-646X.2001.00347.x – (On our blog : https://plantstomata.wordpress.com/2019/02/25/new-techniques-new-challenges-for-stomatal-biology/ )

Webb A. A. R., Hetherington A. M. (1997) – Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells – Plant Physiology 114: 1557– 1560 – https://doi.org/10.1104/pp.114.4.1557https://academic.oup.com/plphys/article/114/4/1557/6071153 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/the-signal-transduction-pathways-for-three-stimuli-converge-on-or-close-to-the-abi1-and-abi2-gene-products/ )

Webb A. A. R., Larman M. G., Montgomery L. T., Taylor J. E., Hetherington A. M. (2001) – The role of calcium in ABA-induced gene expression and stomatal movements – Plant J. 26: 351–362 – PMID: 11439123 – https://www.ncbi.nlm.nih.gov/pubmed/11439123 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/calcium-in-aba-induced-gene-expression-and-stomatal-movements-2/ )

Webb A. A. R., Mansfield T. A. (2010) – How do stomata work? – Journal of Biological Education 26(1): 19-26 – https://doi.org/10.1080/00219266.1992.9655238https://www.tandfonline.com/doi/abs/10.1080/00219266.1992.9655238 – (On our blog : https://plantstomata.wordpress.com/2021/04/07/new-theories-of-the-mechanisms-of-stomatal-movements/ )

Webb A. A. R., McAinsh M. R., Mansfield T. A., Hetherington A. M. (1996) – Carbon dioxide induces increases in guard cell cytosolic free calcium – The Plant Journal 9: 297-304 – http://www.research.lancs.ac.uk/portal/en/publications/-(c918b23f-ab6f-4bad-b34d-a421d92f8c0e).html – (On our blog : https://plantstomata.wordpress.com/2018/07/12/ca2i-may-be-a-requirement-for-the-stomatal-response-to-co2/ )

Webb A. A. R., Robertson F.C. (xxxx)  Calcium Signals in the Control of Stomatal Movements – Signaling and Communication in Plants – Coding and Decoding of Calcium Signals in Plants : 63-77 – DOI: 10.1007/978-3-642-20829-4_5 –https://www.infona.pl/resource/bwmeta1.element.springer-3c4ccf7e-1905-3015-bb6b-ab137434ab7e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/calcium-is-an-important-regulator-of-stomatal-movements/ )

Weber F. (1923) – Enzymatische Regulation der Spaltöffnungsbewegung – Die Naturwissenschaften 11: 309–316 – https://doi.org/10.1007/BF01551928https://link.springer.com/article/10.1007/BF01551928#citeas – (On our blog : https://plantstomata.wordpress.com/2023/06/23/enzymatic-regulation-of-stomatal-movement/ )

Weber F. (1925) – Plasmolyseform und Kernform funktionierender Schließzellen – Jahrb. wiss. Bot. 64: –

Weber F. (1925) – Lageveränderung der Chloroplasten in Schließzellen – Planta 1

Weber F. (1926) – Die Schließzellen: Sammelreferat – Arch. f. exper. Zellforsch. 3: 101–113 – Fischer

Weber F. (1927) – Stomata-Öffnen welkender Blätter – Ber. d. Dtsch. bot. Ges. 45: 408-412 – https://doi.org/10.1111/j.1438-8677.1927.tb01189.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1927.tb01189.x – (On our blog : https://plantstomata.wordpress.com/2023/11/28/fur-das-extrem-weite-offnen-der-stomata-welkender-blatter-ist-in-erster-linie-der-turgeszenzverlust-der-epidermiszellen-verantwortlich-fur-das-schliesen-der-stomata-nach-erfolgter-wasserinfiltration/)

Weber F. (1927) – Stomata-Öffnungszustand, bestimmt mit Cellophan – https://doi.org/10.1111/j.1438-8677.1927.tb01203.x

Weber F. (1930) – Permeabilität der Stomatazellen – Protoplasma 10: –

Weber F. (1931) – Harnstoffpermeabilität ungleich alter Stomatazelien – Protoplasma 14: –

Weber F. (1932) – Resistenz der Schließzellen gegen Gallensalz-Neutralsalz – Biologia generalis 8 :

Weber F. (1933) – Zur Permeabilität der Schließzellen – Protoplasma 19: –

Weber F. (1940) – Kurzzellen-Schließzellen von Iris japonica – Protoplasma 35: –

Weber F. (1943) – Spaltöffnungsapparate Anomalein Colchicierter Tradescantia Blatter – Prortoplasma 37: 556-565 –

Wege S., De Angeli A., Droillard M. J., Kroniewicz L., Merlot S., Cornu D., Gambale F., Martinoia E., Barbier-Brygoo H., Thomine S., Leonhardt N., Filleur S. (2014) – Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid – Sci. Signal. 7:ra65 – doi: 10.1126/scisignal.2005140 https://www.ncbi.nlm.nih.gov/pubmed/25005229 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/phosphorylation-of-atclca-is-required-for-the-stomatal-response-to-aba/ )

Wehr R., Commane R., Munger J. W., McManus J. B., Nelson D. D., Zahniser M. S., Saleska S. R., Wofsy S. C. (2017)  Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake – Biogeosciences 14: 389–401 – doi:10.5194/bg-14-389-2017 – http://www.biogeosciences.net/14/389/2017/ –  https://www.biogeosciences.net/14/389/2017/bg-14-389-2017.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/30/dynamics-of-canopy-stomatal-conductance/ )

Wehr R., Saleska S. R. (2020) – Calculating Canopy Stomatal Conductance from Eddy Covariance Measurements, in Light of the Energy Budget Closure Problem – Biogeosciences Discuss – Biogeosciences 18: 13–24 –
https://doi.org/10.5194/bg-18-13-2021https://www.biogeosciences-discuss.net/bg-2020-154/ – (On our blog : https://plantstomata.wordpress.com/2020/07/25/85256/ )

Wehrmeyer W. (1961) – Entwicklungsgeschichtliche Untersuchungen zur Spaltöffnungsdoppelbildung – Protoplasma 53: 1–10 – https://doi.org/10.1007/BF01252598https://link.springer.com/article/10.1007/BF01252598#citeas – (On our blog : https://plantstomata.wordpress.com/2024/01/06/die-verschiedenen-formen-der-spaltoffnungsdoppelbildung/ )

Wei H., Jing Y., Zhang L., Kong D. (2021) – Phytohormones and their crosstalk in regulating stomatal development and patterning – J. Exp. Bot. 72: 2356-2370 – PMID: 33512461 – DOI: 10.1093/jxb/erab034https://pubmed.ncbi.nlm.nih.gov/33512461/ – (On our blog : https://plantstomata.wordpress.com/2023/02/20/how-different-phytohormones-crosstalk-to-tailor-stomatal-density-and-spacing-patterns/ )

Wei H., Kong D., Yang J., Wang H. (2020) – Light Regulation of Stomatal Development and Patterning: Shifting the Paradigm from Arabidopsis to Grasses – Science Direct Plant Communications 1(2): – https://doi.org/10.1016/j.xplc.2020.100030https://www.sciencedirect.com/science/article/pii/S2590346220300110 – (On our blog : https://plantstomata.wordpress.com/2020/07/29/85308/ )

Wei J., Li D.-X., Zhang J.-R., Shan C., Rengel Z., Song Z.-B., Chen Q. (2018) – Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana – Journal of Pineal Research 65(2): e12500 – https://doi.org/10.1111/jpi.12500https://onlinelibrary.wiley.com/doi/10.1111/jpi.12500 – (On our blog : https://plantstomata.wordpress.com/2023/07/22/the-phytomelatonin-regulation-of-stomatal-closure-is-dependent-on-its-receptor-cand2-pmtr1-mediated-h2o2-and-ca2signaling-transduction-cascade/ )

Wei L. L., Xin X. J., Wang Y. S., Zhang C., Cao D. M. (2014) – SO2-induced guard cells apoptosis and its signal regulation in Hemerocallis fulva – Acta Sci. Circumst. 34: 801–806 – doi: 10.13671/j.hjkxxb.2014.0135

Wei P.-C., Zhang X.-Q., Zhao P., Wang X.-C. (2011)  Regulation of stomatal opening by the guard cell expansin AtEXPA1 – Plant Signaling & Behavior 6(5): 740-742 – http://dx.doi.org/10.4161/psb.6.5.15144 – http://www.tandfonline.com/doi/abs/10.4161/psb.6.5.15144 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-expansins-regulate-stomatal-movement/ )

Wei Y. Q., Yuan J. J., Xiao C. C., Li G. X., Yan J.Y., Zheng S. J., Ding Z. J. (2022) – RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40 – Journal of integrative plant biology 64(5): 979-994 – https://doi.org/10.1111/jipb.13247https://onlinelibrary.wiley.com/doi/10.1111/jipb.13247 – (On our blog : https://plantstomata.wordpress.com/2023/05/24/uls1-and-uls2-function-in-feedback-inhibition-of-abcg40-dependent-aba-transport-during-aba-induced-leaf-senescence-and-stomatal-closure/ )

Wei Z, Du T., Li X., Fang L., Liu F. (2018) – Simulation of stomatal conductance and water use efficiency of tomato leaves exposed to different irrigation regimes and air CO2 concentrations by a modified “Ball-Berry” model – Frontiers in Plant Science (2018) 9 – DOI: 10.3389/fpls.2018.00445Wei Zhttps://www.mendeley.com/catalogue/simulation-stomatal-conductance-water-efficiency-tomato-leaves-exposed-different-irrigation-regimes/ – (On our blog : https://plantstomata.wordpress.com/2019/09/01/simulation-of-stomatal-conductance-and-a-modified-ball-berry-model/ )

Weimer A. K., Matos J. L., Sharma N., Patell F., Murray J. A. H., Dewitte W., D. C. (2018) – Lineage and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells – Dev. Biol. – http://www.biologists.com/user-licence-1-1/ – doi: 10.1242/dev.160671 – http://dev.biologists.org/content/early/2018/02/14/dev.160671 – (On our blog : https://plantstomata.wordpress.com/2018/03/29/cycd71-coordinates-the-single-symmetric-division-that-creates-stomata/

Weinl S., Held K., Schlucking K., Steinhorst L., Kuhlgert S., Hippler M., Kudla J. (2008) – A plastid protein crucial for Ca2 + -regulated stomatal responses – New Phytol 179: 675–686 – https://doi.org/10.1111/j.1469-8137.2008.02492.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2008.02492.x – (On our blog : https://plantstomata.wordpress.com/2018/07/17/cas-for-ca2-regulated-stomatal-responses/ )

Weise A., Lalonde S., Kuhn C., Frommer W. B., Ward J. M. (2008) – Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells – Plant Mol. Biol. 68: 251–262 – doi: 10.1007/s11103-008-9366-9 – https://www.ncbi.nlm.nih.gov/pubmed/18597047 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/lesut1-expression-was-detected-in-ab-and-adaxial-phloem-companion-cells-trichomes-and-stomata/ )

Weissenböck K. (1949) – Studien an colchizinierten Pflanzen, I – Anatomische Untersuchungen – Phyton 1: 282–300 –

Weissenböck G., Hedrich R., Sachs G. (1986) – Secondary phenolic products in isolated guard cell, epidermal cell and mesophyll cell protoplasts from pea (Pisum sativum L.) leaves: distribution and determination – Protoplasma 134: 141–148 – https://doi.org/10.1007/BF01275712https://link.springer.com/article/10.1007/BF01275712#citeas – (On our blog: https://plantstomata.wordpress.com/2023/01/03/isolated-stomatal-guard-and-epidermal-protoplasts-retained-flavonoid-patterns-of-the-parent-epidermal-tissue/ )

Weissenböck G., Schnabl H., Sachs G., Elbert C., Heller F. O. (1984) – Flavonol content of guard cell and mesophyll cell protoplasts isolated from Vicia faba cultivar weisskernige hangdown leaves – Physiologia Plantarum 62(3): 356-362 – DOI: 10.1111/j.1399-3054.1984.tb04586.xhttps://eurekamag.com/research/005/467/005467228.php – (On our blog : https://plantstomata.wordpress.com/2021/09/21/flavonol-content-of-stomatal-guard-cell-protoplasts/ )

Weissenböck G., Schnabl H., Scharf H., Sachs G. (1987) – On the
properties of fluorescing compounds in guard and epidermal cells of Allium cepa L. – Planta 171: 88–95 –

Wellburn F. A. M., Gounaris I., Wellburn A. R. (1984) – Carbohydrate reserves and plant growth substance sensitivity in plastids, stomata and statocytes during shoot development – Israel Journal of Botany 33(2-4): 237-252 – http://www.tandfonline.com/doi/abs/10.1080/0021213X.1984.10677001 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/carbohydrate-reserves-and-plant-growth-substance-sensitivity-in-plastids-and-stomata/

Wen J. W., Chen H. X., Teng Y. P., Zhang S. X., Wang R. L. (2018) – Variation of leaf stomatal traits in Quercus species along the altitudinal gradient in Taibai Mountain, China – Acta Ecologica Sinica 38: 6712-6721 – [ 温婧雯, 陈昊轩, 滕一平, 张硕新, 王瑞丽 (2018). 太白山栎属树种气孔特征沿海拔梯度的变化规律. 生态学报, 38,6712-6721.]

Weng J. H., Chen C. Y. (1987) – Stomatal frequency associated with an esterase band in rice genotypes – Rice Genet News 5: 93-95 – https://www.researchgate.net/profile/Jen-Hsien_Weng/publication/313711825_Stomatal_frequency_associated_with_an_esterase_band_in_rice_genotypes/links/5a5a1485a6fdcc3bfb5e9efa/Stomatal-frequency-associated-with-an-esterase-band-in-rice-genotypes.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/11/stomatal-frequency-associated-with-an-esterase-band/ )

Wengler D. L., Bergmann D. C. (2013) – On Fate and Flexibility in Stomatal Development – Cold Spring Harb Symp Quant Biol. – doi: 10.1101/sqb.2013.77.015883 Epub 2013 Feb 26  – PMID:23444192 – https://www.ncbi.nlm.nih.gov/pubmed/23444192 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/fate-and-flexibility-in-stomatal-development/ )

Werner W., Buker P., Schulze E. (1998) – Stomatal Response of the two clover clones – Poster presented at the ICP-Crops Task Force Meeting, Jan. 14-16, 1998 – Wageningen, The Netherlands –

Weryszko-Chmielewska E., Michałojć Z. (2009) – Anatomical features of leaves of sweet pepper (Capsicum annuum L.) fed with calcium using foliar nutrition – ACTA AGROBOTANICA 62(2): 155–164 – 1627-3991-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-in-leaves-of-sweet-pepper-fed-with-calcium-using-foliar-nutrition/ )

West J., Peak D., Peterson J., Mott K. (2005) – Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images – Plant, Cell & Environment 28: 633–641 – https://doi.org/10.1111/j.1365-3040.2005.01309.x https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2005.01309.x – (On our blog : https://plantstomata.wordpress.com/2018/10/28/dynamics-of-stomatal-patches-for-a-single-surface-of-leaves/ )

Westbrook A. S., McAdam S. A. M. (2020) – Atavistic Stomatal Responses to Blue Light in Marsileaceae – Plant Physiology 184: 1378–1388 – https://doi.org/10.1104/pp.20.00967http://www.plantphysiol.org/content/184/3/1378 – (On our blog : https://plantstomata.wordpress.com/2021/02/10/blue-light-stomatal-responses-may-have-contributed-to-the-divergence-from-other-leptosporangiate-ferns-by-enabling-high-rates-of-leaf-gas-exchange-in-marsileaceae/ )

Westbrook A. S, McAdam S. A. M. (2021) – Stomatal density and mechanics are critical for high productivity: insights from amphibious ferns – New Phytol. 229(2): 877-889 – doi: 10.1111/nph.16850 – Epub 2020 Sep 5 – PMID: 32761918 – https://pubmed.ncbi.nlm.nih.gov/32761918/ – (On our blog : https://plantstomata.wordpress.com/2023/02/08/evolution-in-stomatal-physiology-was-a-prerequisite-for-high-photosynthetic-capacities-in-vascular-plants-and-a-key-driver-of-the-abrupt-cretaceous-rise-of-the-angiosperms-2/ )

Westgeest A. J., Dauzat M., Simonneau T., Pantin F. (2023) – Leaf starch metabolism sets the phase of stomatal rhythm – The Plant Cell: koad158 – https://doi.org/10.1093/plcell/koad158https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koad158/7187593 – (On our blog : https://plantstomata.wordpress.com/2023/08/22/leaf-starch-influences-the-timing-of-transpiration-rhythm-through-an-interplay-between-the-circadian-clock-and-sugars-across-tissues-while-the-energetic-effect-of-starch-derived-sugars-is-usually-non/ )

Weyers J. D. B. (1978) – The hormonal control of stomatal aperture in Commelina communis L. by abscisic acid – PhD thesis, University of Glasgow – http://theses.gla.ac.uk/41023/http://theses.gla.ac.uk/41023/ – (On our blog : https://plantstomata.wordpress.com/2021/09/14/the-involvement-of-aba-in-the-control-of-stomatal-closure-following-water-stress/ )

Weyers J. D. B. (2010) – Investigating stomatal physiology with epidermal strips from Commelina commun is L (Day flower) – Journal of Biological Education 28(4): 255-259 – https://doi.org/10.1080/00219266.1994.9655402https://www.tandfonline.com/doi/abs/10.1080/00219266.1994.9655402?journalCode=rjbe20 – (On our blog : https://plantstomata.wordpress.com/2021/04/05/the-cells-on-strips-remain-functional-allowing-them-to-be-used-to-explore-aspects-of-stomatal-physiology-under-controlled-conditions-in-vitro/ )

Weyers J. D. B., Fitzsimons P. J. (1982)  The non-osmotic volume of Commelina guard cells – Plant, Cell and Environment 5(5): 417–421 – DOI: 10.1111/j.1365-3040.1982.tb00942.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1982.tb00942.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/13/the-non-osmotic-volume-of-stomatal-guard-cells/ )

Weyers J. D. B., Fitzsimons P. J. (1985) The use of guard cell protoplasts to study stomatal physiology – Conference paper – Part of the Proceedings in Life Sciences book series (LIFE SCIENCES) – The physiological properties of plant protoplasts edited by Paul Emile Pilet: 152-161 – https://doi.org/10.1007/978-3-642-70144-3_18https://eurekamag.com/research/017/498/017498705.phphttps://link.springer.com/chapter/10.1007/978-3-642-70144-3_18#citeas – (On our blog : https://plantstomata.wordpress.com/2023/01/04/the-use-of-stomatal-guard-cell-protoplasts-to-study-stomatal-physiology/ )

Weyers J. D. B., Fitzsimons P. J., Mansey G. M., Martin E. S. (1983)  Guard cell protoplasts-aspects of work with an important new research tool – Physiol. Plant. 58: 331-339 – Guard_cell_protoplasts_-_Aspects_of_work.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/aspects-of-gcp-research-and-contributions-of-gcps-towards-an-understanding-of-the-stomatal-mechanism/ )

Weyers J. D. B., Hillman J. R. (1977)  Uptake and Distribution of Abscisic Acid in Commelina Leaf Epidermis – Planta 144: 167-172 –Uptake_and_distribution_of_abscisic_acid.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomata-and-the-uptake-and-distribution-of-aba/ )

Weyers J. D. B., Hillman J. R. (1979)  Sensitivity of Commelina Stomata to Abscisic Acid – Planta 146: 623-628 – Sensitivity_of_Commelina_stomata_to_absc.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/sensitivity-of-stomata-to-aba/ )

Weyers J. D. B., Johansen L. G. (1985)  Accurate estimation of stomatal aperture from silicone rubber impressions – New Phytol. 101: 109-115 –Accurate_Estimation_of_Stomatal_Aperture.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/accurate-estimation-of-stomatal-aperture-from-silicone-rubber-impressions/ )

Weyers J. D. B., Johansen L. G. (1990)  Methods of Stomatal Research – Harlow, Essex, England: Longman Scientific & Technical.

Weyers J. D. B., Lawson T. (1997) – Heterogeneity in stomatal characteristics – Advances in Botanical Research 26: 317-351 – https://s3.amazonaws.com/academia.edu.documents/46027713/s0065-2296_2808_2960124-x20160528-19725-15fna21.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1549908343&Signature=14qo76%2BQ40rxfCGiCaqMOXTosiQ%3D&response-content-disposition=inline%3B%20filename%3DHeterogeneity_in_Stomatal_Characteristic.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/11/heterogeneity-in-stomata/ )

Weyers J. D. B., Meidner H. (1990) – Methods in Stomatal Research – Longman, Harlow, UK, 252 pp. – https://www.amazon.co.uk/Methods-Stomatal-Research-Jonathan-Weyers/dp/0582034833 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/methods-to-investigate-progressively-more-isolated-plant-material-from-leaf-discs-to-guard-cell-organelles/ )

Weyers J. D. B., Patterson N. W. (1987)  Responses of Commelina stomata in vitro – Journal of Experimental Botany 38: 631–641 – DOI: 10.1093/jxb/38.4.631https://www.researchgate.net/publication/31454608_Responses_of_Commelina_communis_Stomata_In_Vitro – (On our blog : https://plantstomata.wordpress.com/2017/12/14/responses-of-stomata-in-vitro/ )

Weyers J. D. B., Patterson N. W. (1992)  Quantitative assessment of hormone sensitivity changes with reference to stomata’ responses to abscisic acid – In: Karssen C.M., van Loon L.C., Vreugdenhil D. (eds) : Progress in Plant Growth Regulation. Current Plant Science and Biotechnology in Agriculture, vol 13:  Springer, Dordrecht – https://doi.org/10.1007/978-94-011-2458-4_25 – https://link.springer.com/chapter/10.1007/978-94-011-2458-4_25 – https://plantstomata.wordpress.com/2017/12/13/quantifying-hormone-sensitivity-using-stomatal-responses-to-aba-as-a-test-system/ )

Weyers J. D. B., Patterson N. W., Fitzsimons P. J., Dudley J. M. (1982)  Metabolic inhibitors block ABA induced stomatal closure – J. Exp. Bot. 33: 1270-1278 – https://doi.org/10.1093/jxb/33.6.1270https://academic.oup.com/jxb/article-abstract/33/6/1270/676537 – (On our blog : https://plantstomata.wordpress.com/2023/01/04/metabolic-energy-is-required-for-aba-action-involving-solute-loss-from-the-stomatal-guard-cells/ )

Weyers J. D. B., Travis A. J. (1981) – Selection and preparation of leaf epidermis for experiments on stomatal physiology – J Exp Bot 32: 837-850 – https://doi.org/10.1093/jxb/32.4.837https://academic.oup.com/jxb/article/32/4/837/556736 – (On our blog :  https://plantstomata.wordpress.com/2018/12/03/selection-and-preparation-of-leaf-epidermis-for-experiments-on-stomatal-physiology/

Wheeler R. M., Fitzpatrick A. H., Tibbitts T. W. (2019) – Potatoes as a Crop for Space Life Support: Effect of CO2, Irradiance, and Photoperiod on Leaf Photosynthesis and Stomatal Conductance – Front. Plant Sci., 19 December 2019 – https://doi.org/10.3389/fpls.2019.01632https://www.frontiersin.org/articles/10.3389/fpls.2019.01632/full – (On our blog : https://plantstomata.wordpress.com/2021/05/23/effect-of-co2-irradiance-and-photoperiod-on-stomatal-conductance/ )

Wheeler R. M., Stutte G. W., Mackowiak C. L., Yorio N. C., Sager J. C., Knott W. M. (2008) – Gas exchange rates of potato stands for bioregenerative life support – Adv. Space Res. 41: 798–806 – doi: 10.1016/j.asr.2007.07.027https://www.sciencedirect.com/science/article/abs/pii/S0273117707008022?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/05/23/25-m2-of-potato-plants-under-continuous-cultivation-would-be-required-to-support-the-co2-removal-and-o2-requirements-for-one-person/ )

White D. A., Beadle C. L., Sands P. J., Worledge D., Honeysett J. L. (1999) – Quantifying the effect of cumulative water stress on stomatal conductance of Eucalyptus globulus and Eucalyptus nitens: a phenomenological approach – Australian Journal of Plant Physiology 26: 17– 27 – https://doi.org/10.1071/PP98023 https://www.publish.csiro.au/fp/PP98023 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/the-effect-of-cumulative-water-stress-on-stomatal-conductance/ )

White D. A., Turner N. C., Galbraith J. H. (2000) – Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia – Tree Physiology 20: 1157–1165 – PMID: 12651491 – https://www.ncbi.nlm.nih.gov/pubmed/12651491 – (On our blog : https://plantstomata.wordpress.com/2019/02/25/leaf-water-relations-and-stomatal-behavior-of-trees-in-mediterranean-southwestern-australia/ )

Whitehead D. (1980) – Assessment of water status in trees from measurements of stomatal conductance and water potential – New Zealand Journal of Forestry Science 10: 159-165 – https://www.semanticscholar.org/paper/ASSESSMENT-OF-WATER-STATUS-IN-TREES-FROM-OF-AND-Whitehead/d8894ea4253a90c387673021d3c67fd523088d1a – (On our blog : https://plantstomata.wordpress.com/2021/09/25/water-status-from-measurements-of-stomatal-conductance-and-water-potential/ )

Whitehead D. (1998) – Regulation of stomatal conductance and transpiration in forest canopies – Tree Physiology 18: 633–644 – https://doi.org/10.1093/treephys/18.8-9.633 – https://academic.oup.com/treephys/article/18/8-9/633/1632628 – (On our blog : https://plantstomata.wordpress.com/2019/02/26/regulation-of-stomatal-conductance-in-forest-canopies/ )

Whitehead D., Barbour M. M., Griffin K. L., Turnbull M. H., Tissue D. T. (2011) – Effects of leaf age and treesize on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes) – Tree Physiol. 31: 985–996 – doi: 10.1093/treephys/tpr021 – Epub 2011 Apr 22. – https://pubmed.ncbi.nlm.nih.gov/21515907/ – (On our blog : https://plantstomata.wordpress.com/2024/02/10/lower-a-in-leaves-on-tall-trees-compared-with-those-on-short-trees-could-be-attributed-in-part-to-lower-mesophyl-conductance-gm-and-higher-stomatal-ls-and-mesophyll-lm-limitations-to-photosy/ )

Whitehead D., Jarvis P. G., Waring R. H. (1984) – Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment – Canadian Journal of Forest Research 14: 692–700 – https://doi.org/10.1139/x84-124 – http://www.nrcresearchpress.com/doi/10.1139/x84-124 – (On our blog : https://plantstomata.wordpress.com/2019/02/26/stomatal-conductance-transpiration-and-resistance-to-water-uptake/ )

Whitehead D., Okali D. U., Fasehun F. E (1981) – Stomatal Response to Environmental Variables in Two Tropical Forest Species During the Dry Season in Nigeria – J Appl Ecol 18: 571–587 – DOI: 10.2307/2402418https://www.researchgate.net/publication/271758012_Stomatal_Response_to_Environmental_Variables_in_Two_Tropical_Forest_Species_During_the_Dry_Season_in_Nigeria – (On our blog : https://plantstomata.wordpress.com/2019/02/26/stomatal-response-to-environmental-variables/ )

Whitehead D., Teskey R. (1995) – Dynamic‐response of stomata to changing irradiance in loblolly pine (Pinus taeda L) – Tree Physiology 15: 245–251 – PMID: 14965964 – https://www.ncbi.nlm.nih.gov/pubmed/14965964 – (On our blog : https://plantstomata.wordpress.com/2019/02/27/dynamic%e2%80%90response-of-stomata-to-changing-irradiance/ )

Whiteside J. O. (1971) – Histopathology of Citrus Greasy Spot and Identification of the Causal Fungus – Phytopathology 62: 260-263 – DOI: 10.1094/Phyto-62-260https://www.apsnet.org/publications/phytopathology/backissues/Documents/1972Abstracts/Phyto62_260.htm – (On our blog : https://plantstomata.wordpress.com/2021/10/22/stomatal-penetration-by-a-fungus/ )

Whitewoods C. D. (2021) – Riddled with holes: Understanding air space formation in plant leaves – PLoS Biol 19(12): e3001475 – https://doi.org/10.1371/journal.pbio.3001475https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001475 – (On our blog : https://plantstomata.wordpress.com/2021/12/09/air-space-formation-in-plant-leaves/ )

Whyte J. H. (1933) – The relation of stomatal opening to temperature and other factors – MSc. Thesis McGill University, Montreal – file:///C:/Users/wille/Downloads/1933_whyte%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/01/stomatal-opening-temperature-and-other-factors/ )

Whyte J. H. (1938) – A study of factors affecting stomatal movement in the dark – PhD Thesis McGill Univ. – 122 pp. –http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1553812507793~729 – (On our blog : https://plantstomata.wordpress.com/2019/03/29/77009/ )

Widiati R., Musa Y., Ala A., Bdr M. F. (2014) – Stomatal Performance Of Soybean Genotypes Due To Drought Stress And Acidity – IJSTR©2014 – INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH 3(11): – ISSN 2277-8616 – https://www.ijstr.org/final-print/nov2014/Stomatal-Performance-Of-Soybean-Genotypes-Due-To-Drought-Stress-And-Acidity.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/07/the-length-of-stomata-stomatal-pore-width-number-of-stomata-can-be-used-as-an-indicator-of-selection-of-soybean-genotypes-against-drought-and-acidity/ )

Wieser G., Emberson L. D. (2004) – Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies – Atmospheric Environment 38: 2339–2348 – https://doi.org/10.1016/j.atmosenv.2003.10.061 –https://www.sciencedirect.com/science/article/pii/S1352231004001037 – (On our blog : https://plantstomata.wordpress.com/2019/02/26/evaluation-of-the-stomatal-conductance-formulation/ )

Wieser G., Oberhuber W., Waldboth B., Gruber A., Matyssek R., Siegwolf R. T. W., Grams T. E. E. (2018) – Long-term trends in leaf level gas exchange mirror tree-ring derived intrinsic water-use efficiency of Pinus cembra at treeline during the last century – Agricultural and Forest Meteorology 248: 251-258 – https://doi.org/10.1016/j.agrformet.2017.09.023https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A4630 – (On our blog : https://plantstomata.wordpress.com/2022/02/21/stomata-and-water-use-efficiency/ )

Wiggans R. G. (1921) – Variations in the Osmotic Concentration of the Guard Cells During the Opening and Closing of Stomata – American Journal of Botany 8(1): 30-40 – https://www.jstor.org/stable/pdf/2435060.pdf – (On our blog : https://plantstomata.wordpress.com/2020/05/22/osmotic-concentration-of-the-guard-cells-during-the-opening-and-closing-of-stomata/ )

Wikimedia Commons/Emilio Ermini (2019) – File:Leaf epithelium, stomata and guard cells.jpg – https://commons.wikimedia.org/wiki/File:Leaf_epithelium,_stomata_and_guard_cells.jpg – (On our blog: https://plantstomata.wordpress.com/2022/04/30/leaf-epithelium-and-stomata/ )

Wild A., Wolf G. (1980) – The effect of different light intensities on the frequency and size of stomata the size of cells the number size and chlorophyll content of chloroplasts in the mesophyll and the guard cells during the ontogeny of primary leaves of Sinapis alba – Zeitschrift fuer Pflanzenphysiologie 97(4): 325-342 –
DOI10.1016/S0044-328X(80)80006-7https://eurekamag.com/research/006/642/006642062.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/the-effect-of-different-light-intensities-on-the-frequency-and-size-of-stomata/ )

Wilkins M. B. (1993) – The role of stomata in the generation of circadian rhythms in plant tissue – J. Exp. Bot. SuppI. 44 : 2 –

Wilkinson H. P. (1979) – The Plant Surface (Mainly Leaf) – Part I: Stomata – In: Metcalfe, C.R. and Chalk, L., Eds., Anatomy of the Dicotyledons, Clarendon Press, Oxford, 97-117 –

Wilkinson S., Bacon M.A.Z., Davies W. J. (2007) – Nitrate Signalling to Stomata and Growing Leaves: Interactions with Soil Drying, ABA, and Xylem Sap pH in Maize – Journal of Experimental Botany 58: 1705-1716 – http://dx.doi.org/10.1093/jxb/erm021 – https://academic.oup.com/jxb/article/58/7/1705/514459 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/nitrate-signalling-to-stomata-and-growing-leaves-2/

Wilkinson S., Clephan A. L., Davies W. J. (2001) – Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis L. leaves but not in cold-sensitive Nicotiana rustica L. leaves, via a mechanism that involves apoplastic calcium but not abscisic acid – Plant Physiology 26: 1566-1578 https://doi.org/10.1104/pp.126.4.1566http://www.plantphysiol.org/content/126/4/1566 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/rapid-low-temperature-induced-stomatal-closure-via-a-mechanism-that-involves-apoplastic-calcium-but-not-aba/ )

Wilkinson S., Corlett J. E., Oger L., Davies W. J. (1998) – Effects of Xylem pH on Transpiration from Wild-Type and flacca Tomato Leaves – A Vital Role for Abscisic Acid in Preventing Excessive Water Loss Even from Well-Watered Plants – Plant Physiology – https://doi.org/10.1104/pp.117.2.703http://www.plantphysiol.org/content/117/2/703.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/06/04/a-vital-role-for-aba-in-preventing-stomata-opening/ )

Wilkinson S., Davies W. J. (1997) – Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast – Plant Physiology 113: 559–573 – https://doi.org/10.1104/pp.113.2.559 – PMCID: PMC158172PMID: 12223626 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC158172/ – (On our blog : https://plantstomata.wordpress.com/2019/02/28/a-drought-signal-received-at-the-apoplastic-face-of-the-stomatal-guard-cell/ )

Wilkinson S., Davies W. J. (2008) – Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation – Journal of Experimental Botany 59: 619– 631 – https://doi.org/10.1093/jxb/erm338https://academic.oup.com/jxb/article/59/3/619/576618 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/manipulation-of-the-apoplastic-ph-of-intact-plants-mimics-stomatal-and-growth-responses/ )

Wilkinson S., Davies W. J. (2009) – Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism – Plant, Cell & Environment 32: 949–959 https://doi.org/10.1111/j.1365-3040.2009.01970.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.01970.x – (On our blog : https://plantstomata.wordpress.com/2019/09/11/ozone-suppresses-soil-drying-and-aba-induced-stomatal-closure/ )

Will R. E., Teskey R. O. (1997) – Effect of irradiance and vapour pressure deficit on stomatal responses to CO2 enrichment of four tree species – Journal of Experimental Botany 48: 2095–2102 – https://www.jstor.org/stable/23695484?seq=1 – (On our blog : https://plantstomata.wordpress.com/2021/05/26/stomatal-responses-to-co2-enrichment-2/ )

Wille A. C., Lucas W. J. (1984) – Ultrastructural and histochemical studies on guard cells – Planta 160: 129-142 – https://doi.org/10.1007/BF00392861– https://link.springer.com/article/10.1007/BF00392861#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/17/ultrastructural-and-histochemical-studies-on-stomata/ )

Willer C. M., Kanai R., Pallas J. E. Jr., Black C. C. Jr. (1973) – Detection of high levels of phosphoenolpyruvate carboxylase in leaf epidermal tissue and its significance in stomatal movements – Life Sci. 12: 151–155 – https://doi.org/10.1016/0024-3205(73)90207-5https://www.sciencedirect.com/science/article/abs/pii/0024320573902075 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/phosphoenolpyruvate-carboxylase-in-leaf-epidermal-tissue-and-its-significance-in-stomatal-movements/ )

Williams A. F. (2013) – Identification of proteins that putatively bind the promoter of the stomatal master regulator gene, MUTE – MSc Thesis Washington University – WWU Graduate School Collection 308 – https://doi.org/10.25710/p944-zy62https://cedar.wwu.edu/wwuet/308/ – (On our blog : https://plantstomata.wordpress.com/2021/12/12/97381/ )

Williams C. N. (1971) – Growth and Productivity of Tapioca (Manihot utilissima) II. Stomatal Functioning and Yield – Experimental Agriculture 7(1): 49-62 – doi:10.1017/S0014479700004786https://www.cambridge.org/core/journals/experimental-agriculture/article/abs/growth-and-productivity-of-tapioca-manihot-utilissima-ii-stomatal-functioning-and-yield/7C0B50553A9C3F785886B8B33B1F6609 – (On our blog : https://plantstomata.wordpress.com/2023/06/16/stomatal-functioning-could-be-related-to-canopy-type-and-to-planting-conditions/ )

Williams L. E., Baeza P., Vaughn P. (2012) – Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines – Irrig Sci 30: 201–212 – https://doi.org/10.1007/s00271-011-0276-2https://link.springer.com/article/10.1007/s00271-011-0276-2 – (On our blog : https://plantstomata.wordpress.com/2023/03/31/midday-measurements-of-stomatal-conductance-and-%cf%88l-were-significantly-correlated-with-one-another/ )

Williams M. (2017)  Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling – March 17, 2017 – in Plant Science Research Weekly – https://plantae.org/autocrine-regulation-of-stomatal-differentiation-potential-by-epf1-and-erecta-like1-ligand-receptor-signaling/ – (On our blog : https://plantstomata.wordpress.com/2022/03/22/a-model-in-which-the-co-presence-of-epf1-erl1-and-mute-inhibits-stomatal-fate-and-epf1-acts-as-an-autocrine-signal/ )

Williams M. (2017) Small Pores with a Big Impact  – https://plantae.org/blog/plant-physiology-focus-issue-on-stomata-published/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/small-pores-with-a-big-impact/ )

Williams M. (2017) Update: Blue light regulation of stomatal opening and the plasma membrane H+-ATPase – https://plantae.org/update-blue-light-regulation-of-stomatal-opening-and-the-plasma-membrane-h-atpase/?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plantae_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/blue-light-regulation-of-stomatal-opening/ )

Williams M. (2017) – ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel – in Plant Science – https://plantae.org/blog/aba-induced-stomatal-closure-involves-almt4-a-phosphorylation-dependent-vacuolar-anion-channel/ – (On our blog : https://plantstomata.wordpress.com/2019/11/05/aba-induced-stomatal-closure-involves-almt4/

Williams M. (2020) – Review: Guard cell metabolism and stomatal function (Annu. Rev. Plant Biol.) – June 12, 2020 – in Plant Science Research Weekly – https://plantae.org/review-guard-cell-metabolism-and-stomatal-function-annu-rev-plant-biol/ – (On our blog : https://plantstomata.wordpress.com/2022/03/22/stomatal-guard-cell-metabolism-and-function/ )

Williams M., Rastetter E. B., Fernandes D. N., Goulden M. L.,Wofsy S. C., Shaver G. R., Melillo J. M., Munger J. W., Fan S.-M., Nadelhoffer K. J. (1996) – Modelling the soil-plant-atmosphere continuum in a Quercus- Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties – Plant Cell Environ. 19: 911–927 – https://doi.org/10.1111/j.1365-3040.1996.tb00456.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00456.x – (On our blog : https://plantstomata.wordpress.com/2023/01/04/the-regulation-of-stomatal-conductance-by-light-nitrogen-and-soil-plant-hydraulic-properties/ )

Williams W. E., Grivet C., Zeiger E. (1983) – Gas exchange in Paphiopedilum – lack of chloroplasts in guard cells correlates with low stomatal conductance – Plant Physiol 72: 906–908 – https://doi.org/10.1104/pp.72.3.906 – http://www.plantphysiol.org/content/72/3/906.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/lack-of-chloroplasts-in-stomata-correlates-with-low-stomatal-conductance/ )

Williams W. T. (1947) – Shock-induced stomatal movements – Nature 160: 364-365 – https://doi.org/10.1038/160364b0https://www.nature.com/articles/160364b0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/12/27/shock-induced-stomatal-movements/ )

Williams W. T. (1949) – Studies in stomatal behaviour. III. The sensitivity of stomata to mechanical shock – Annals of Bot. N. S. 13: 309-329 – https://doi.org/10.1093/oxfordjournals.aob.a083220https://academic.oup.com/aob/article-abstract/13/3/309/207848 – (On our blog : https://plantstomata.wordpress.com/2021/12/23/sensitivity-of-stomata-to-mechanical-shock/ )

Williams W. T. (1950) – Studies in Stomatal Behaviour: IV. THE WATER-RELATIONS OF THE EPIDERMIS – Journal of Experimental Botany 1(1): 114–131 – https://doi.org/10.1093/jxb/1.1.114https://academic.oup.com/jxb/article-abstract/1/1/114/653271?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2021/12/26/the-stomatal-phenomena-and-the-water-relations-of-the-epidermis/ )

Williams W. T. (1952) – Studies in Stomatal Behaviour: II. THE ROLE OF STARCH IN THE LIGHT RESPONSE OF STOMATA – Journal of Experimental Botany 3(1): 110–127 – https://doi.org/10.1093/jxb/3.1.110https://academic.oup.com/jxb/article-abstract/3/1/110/437217 – (On our blog : https://plantstomata.wordpress.com/2021/12/16/the-function-of-carbohydrate-changes-in-stomata-is-the-amplifying-and-stabilizing-of-changes-primarily-controlled-by-other-factors/ )

Williams W. T. (1954) – A new theory of the mechanism of stomatal movement – Jour. Exp. Bot. 5(15): 545-552 – http://www.jstor.org/stable/23686181 – (On our blog : https://plantstomata.wordpress.com/2021/12/16/the-mechanism-of-stomatal-movement-2/ )

Williams W. T., Spencer G. (1950) – Quantitative Estimation of Stomatal Starch – Nature 166: 34–35 – https://doi.org/10.1038/166034b0https://www.nature.com/articles/166034b0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/12/19/quantitative-estimation-of-stomatal-starch/ )

Williams W. T., Shipton M. E. (1950) – Stomatal Behaviour in Buffer Solutions – Physiol. Plant. 3: 479-486 – DOI: 10.1111/j.1399-3054.1950.tb07675.x – Wiley Online Library | –https://eurekamag.com/research/025/526/025526760.php – (On our blog : https://plantstomata.wordpress.com/2017/06/08/stomatal-behaviour-in-buffer-solutions/ )

Willis A. J., Balasubramaniam S. (1968) – STOMATAL BEHAVIOUR IN RELATION TO RATES OF PHOTOSYNTHESIS AND TRANSPIRATION IN PELARGONIUM – New Phytologist 67(2): 265-285 – https://doi.org/10.1111/j.1469-8137.1968.tb06383.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1968.tb06383.x – (On our blog : https://plantstomata.wordpress.com/2023/07/22/watering-leads-to-stomatal-closure-at-first-with-decreased-rates-of-photosynthesis-and-transpiration-but-subsequently-leaf-resistance-diminishes-and-the-rates-increase-as-normal-turgor-relations-in/ )

Willmer C. M. (1980) – SOME CHARACTERISTICS OF PHOSPHOENOLPYRUVATE CARBOXYLASE ACTIVITY FROM LEAF EPIDERMAL TISSUE IN RELATION TO STOMATAL FUNCTIONING – New Phytologist 84(4): 593-602 – https://doi.org/10.1111/j.1469-8137.1980.tb04773.xhttps://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1980.tb04773.x – (On our blog : https://plantstomata.wordpress.com/2023/07/22/aba-does-not-control-stomatal-movements-via-its-effect-on-pep-carboxylase/ )

Willmer C. M. (1983) – Stomata – London, Longman – 

Willmer C. M. (1983) – Stomatal development and differenciation and the ultrastructure of guard cells. In: Willmer M. (Ed) Stomata (pp 28–50). Longman –

Willmer C. M. (1983) – Phosphoenolpyruvatc carboxylase activity and stomatal operation – Physiologie végétale 21: 943-953 –

Willmer C. M. (1988) – Stomatal sensing of the environment – Biological Journal of the Linnean Society 34: 205-217 – https://doi.org/10.1111/j.1095-8312.1988.tb01959.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1095-8312.1988.tb01959.x – (On our blog : https://plantstomata.wordpress.com/2021/05/11/stomatal-sensing-of-the-environment/ )

Willmer C.M. (1993)  The evolution, structure and functioning of stomata – Botanical Journal of Scotland 46(3): 433-445 – https://doi.org/10.1080/03746609308684805 – http://www.tandfonline.com/doi/pdf/10.1080/03746609308684805 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/stomatal-structure-and-functioning/ )

Willmer C. M., Beattle L. N. J. P. (1978) – Cellular osmotic phenomena during stomatal movements of Commelina communisProtoplasma 95(4): 321–332https://doi.org/10.1007/BF01291408https://link.springer.com/article/10.1007/BF01291408#citeas – (On our blog : https://plantstomata.wordpress.com/2019/08/12/cellular-osmotic-phenomena-during-stomatal-movements/ )

Willmer C. M., Dittrich P. (1974) – Carbon dioxide fixation by epidermal and mesophyll tissues of Tulipa and Commelina – Planta 117: 123-132 – doi: 10.1007/BF00390794https://www.ncbi.nlm.nih.gov/pubmed/24458325 – (On our blog : https://plantstomata.wordpress.com/2019/02/27/carbon-dioxide-fixation-by-epidermal-stomata-and-mesophyll-tissues/ )

Willmer C. M., Don R., Parker W. (1978) – Levels of short-chain fatty acids and of abscisic acid in water-stressed and non-stressed leaves and their effects on stomata in epidermal strips and excised leaves – Planta 139: 281–287 – doi: 10.1007/BF00388642 – https://www.ncbi.nlm.nih.gov/pubmed/24414272 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/fatty-acids-aba-and-their-effects-on-stomata-in-epidermal-strips-and-excised-leaves/

Willmer C. M., Fricker M. (1996) – Stomata – In : Topics in Plant Functional Biology: 2 – Eds. M. Black and B. Charlwood – Springer-Science+ Business Media B. V. – https://books.google.be/books?id=9sjoCAAAQBAJ&pg=PA12&lpg=PA12&dq=stomata&source=bl&ots=tIpu1rPm39&sig=YGbF_YtCyNa-YR3F8_QWpf3UugI&hl=en&sa=X&ved=0ahUKEwiS3e-4ocbYAhVMmbQKHcY3DWw4HhDoAQgoMAA#v=onepage&q=stomata&f=false – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-3/ )

Willmer C. M., Fricker M. (1996) – The theory of gas diffusion through stomata – In: Stomata. Springer, Dordrecht – https://doi.org/10.1007/978-94-011-0579-8_5https://link.springer.com/chapter/10.1007/978-94-011-0579-8_5#citeas – (On our blog : https://plantstomata.wordpress.com/2023/01/04/the-theory-of-gas-diffusion-through-stomata/ )

Willmer C. M., Fricker M. (1996) – The influence of hormones and other naturally occurring compounds on stomatal behaviour – In: Stomata. Springer, Dordrecht – https://doi.org/10.1007/978-94-011-0579-8_7https://link.springer.com/chapter/10.1007/978-94-011-0579-8_7 – (On our blog : https://plantstomata.wordpress.com/2023/06/25/groups-of-hormones-such-as-the-cytokinins-may-be-involved-in-the-control-of-stomata/ )

Willmer C. M., Kanai R., Pallas J. E., Black C. C. (1973) – Detection of high levels of phosphoenolpyruvate carboxylase in leaf epidermal tissue and its significance in stomatal movements – Life Sci. 12: 151-155 – PMID: 4708202 – https://doi.org/10.1016/0024-3205(73)90207-5https://pubmed.ncbi.nlm.nih.gov/4708202/https://www.sciencedirect.com/science/article/abs/pii/0024320573902075 – (On our blog : https://plantstomata.wordpress.com/2023/01/05/phosphoenolpyruvate-carboxylase-in-leaf-epidermal-tissue-and-its-significance-in-stomatal-movements-2/ )

Willmer C. M., Mansfield T. A. (1969) – A Critical Examination of the Use of Detached Epidermis in Studies of Stomatal Physiology – New Phytol. 68: 363-375 – https://doi.org/10.1111/j.1469-8137.1969.tb06449.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1969.tb06449.x – (On our blog : https://plantstomata.wordpress.com/2016/03/18/the-use-of-detached-epidermis-in-studies-of-stomatal-physiology/ )

Willmer C. M., Mansfield T. A. (1969) – Active cation transport and stomatal opening: possible physiological role of sodium ions – Z. Pflanzenphysiol. 61: 398-400 –

Willmer C. M., Mansfield T. A. (1970) – Further observations of cation-stimulated stomatal opening in isolated epidermis – New Phytol. 69(3): 639-645 – https://doi.org/10.1111/j.1469-8137.1970.tb02451.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1970.tb02451.x – (On our blog : https://plantstomata.wordpress.com/2019/08/28/active-transport-of-monovalent-cations-into-stomatal-guard-cells-might-explain-the-co2%e2%80%90independent-light-responses-of-stomata-but-not-their-light%e2%80%90independent-co2-responses/ )

Willmer C. M., Mansfield T. A. (1970) – Effects of some metabolic inhibitors and temperature on ion-stimulated stomatal opening in detached epidermis – New Phytol. 69: 983-992 – https://doi.org/10.1111/j.1469-8137.1970.tb02477.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1970.tb02477.x – (On our blog : https://plantstomata.wordpress.com/2023/01/05/effects-of-some-metabolic-inhibitors-and-temperature-on-ion-stimulated-stomatal-opening/ )

Willmer C. M., Pallas J. E. Jr. (1973) – A survey of stomatal movements and associated potassium fluxes in the plant kingdom – Canadian Journal of Botany 51(1): 37-42 – https://doi.org/10.1139/b73-006 – http://www.nrcresearchpress.com/doi/abs/10.1139/b73-006?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/01/28/stomatal-movements-and-associated-potassium-fluxes/ )

Willmer C. M., Pallas J. E. Jr. (1974) – Stomatal movements and ion fluxes within epidermis of Commelina communis L. – Nature (Lond.) 252: 126-l27 – https://doi.org/10.1038/252126a0https://www.nature.com/articles/252126a0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/10/02/stomatal-movements-and-ion-fluxes/ )

Willmer C. M., Pallas J. E., Black C. C. (1973) – Carbon dioxide metabolism in leaf epidermal tissue – Plant Physiol 52: 448-452 –  PMID: 16658581 PMCID: PMC366521 –http://www.plantphysiol.org/content/plantphysiol/52/5/448.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/27/carbon-dioxide-metabolism-in-leaf-epidermis-stomata/ )

Willmer C. M., Pantoja O. (1992) – The plasma membrane and tonoplast of guard cells. In: Plant Membranes. Springer, Dordrecht – Plant Membranes : 220-238 – https://link.springer.com/chapter/10.1007/978-94-017-2683-2_11 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/ion-transport-across-the-tonoplast-and-plasma-membrane-play-a-central-role-in-stomatal-functioning/

Willmer C. M., Rutter J. C. (1977) –  Guard Cell Malic Acid Metabolism during Stomatal Movements – Nature 269: 327-328 – https://doi.org/10.1038/269327a0https://www.nature.com/articles/269327a0#citeas – (On our blog : https://plantstomata.wordpress.com/2023/01/05/stomatal-guard-cell-malic-acid-metabolism-during-stomatal-movements/ )

Willmer C. M., Sexton R. (1979)  Stomata and plasmodesmata – Protoplasma 100: 113 – https://doi.org/10.1007/BF01276305 – https://link.springer.com/article/10.1007/BF01276305#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-and-plasmodesmata/ )

Willmer C. M., Thorpe N., Rutter J. C., Milthorpe F. L. (1978) – Stomatal metabolism: fixation in attached and detached epidermis of Commelina – Aust. J. Plant Physiol. 5: 767–778 – https://doi.org/10.1071/PP9780767http://www.publish.csiro.au/FP/PP9780767 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-metabolism-fixation-in-attached-and-detached-epidermis/ )

Willmer C. M., Wilson A. B., Jones H. G. (1988) – Changing responses of
stomata to abscisic acid and CO2 as leaves and plants age – Journal of
Experimental Botany 39: 401–410 – https://doi.org/10.1093/jxb/39.4.401https://academic.oup.com/jxb/article-abstract/39/4/401/438052?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2020/11/18/changing-responses-of-stomata-to-abscisic-acid-and-co2-as-leaves-and-plants-age/ )

Wilson C. C. (1948) – The effect of some environmental factors on the movements of guard cells – Plant Physiol. Lancaster 23: 5-37 – doi: 10.1104/pp.23.1.5https://pubmed.ncbi.nlm.nih.gov/16654148/ – (On our blog : https://plantstomata.wordpress.com/2023/01/05/environmental-factors-and-the-movements-of-guard-cells/ )

Wilson D. (1971) – Selection responses of stomatal length and frequency, epidermal ridging, and other leaf characteristics in Lolium perenne l.‘grasslands ruanui’ – New
Zealand Journal of Agricultural Research 14(4): 761-771 – DOI: 10.1080/00288233.1971.10421670https://www.tandfonline.com/doi/pdf/10.1080/00288233.1971.10421670 – (On our blog : https://plantstomata.wordpress.com/2022/02/05/selection-responses-of-stomatal-length-and-frequency-2/ )

Wilson D. (1975) – Leaf growth, stomatal diffusion resistances and photosynthesis during droughting of Lolium perenne populations selected for contrasting stomatal length and frequency – Ann. Applied Biol. – https://doi.org/10.1111/j.1744-7348.1975.tb01523.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1744-7348.1975.tb01523.x – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-diffusion-resistances-and-photosynthesis-during-droughting/ )

Wilson I. D., Ribeiro D. M., Bright J., Confraria A., Harrison J., Barros R. S., Desikan R., Neill S. J., Hancock J. T. (2009) – Role of nitric oxide in regulating stomatal apertures – Plant Signal. Behav. 4: 467-469 – doi: 10.4161/psb.4.5.8545 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676769/ – (On our blog : https://plantstomata.wordpress.com/2019/01/09/a-role-for-no-in-the-fine-tuning-of-the-stomatal-apertures-of-turgid-leaves/ )

Wilson J. A., Davies W. J. (1979) – Farnesol-like antitranspirant activity and stomatal behaviour in maize and Sorghum lines of differing drought tolerance – Plant, Cell & Environment 2(1): 49-57 – https://doi.org/10.1111/j.1365-3040.1979.tb00773.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1979.tb00773.x – (On our blog : https://plantstomata.wordpress.com/2024/05/12/there-was-no-consistent-relationship-between-plant-water-stress-and-antitranspirant-level-or-between-stomatal-behaviour-and-antitranspirant-level/ )

Wilson J. A., Ogunkanmi A. B., Mansfield T. A. (1978) – Effects of external potassium supply on stomatal closure induced by abscisic acid – Plant Cell Environ. 1: 199–201 – https://doi.org/10.1111/j.1365-3040.1978.tb00761.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1978.tb00761.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/effects-of-external-potassium-supply-on-stomatal-closure-induced-by-aba/ )

Wilson K. B., Baldocchi D. D., Hanson P. J. (2000) – Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species – Tree Physiology 20: 787–797 – PMID: 12651499 – https://nature.berkeley.edu/biometlab/pdf/wilson_et_al_tree_physiol_2000_vol20_787.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/27/quantifying-stomatal-and-non-stomatal-limitations-to-carbon-assimilation/ )

Wilson K. B., Bunce J. A. (1997) – Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean – Plant, Cell & Environment 20: 230-238 – DOI (10.1046/j.1365-3040.1997.d01-58.x) – https://pubag.nal.usda.gov/catalog/1412253 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/effects-of-co2-concentration-on-the-interactive-effects-of-temperature-and-water-vapour-on-stomatal-conductance/ )

Wilson M. F. (2022) – On the Trails: Water drops on plants – https://www.juneauempire.com/news/on-the-trails-water-drops-on-plants/ – (On our blog : https://plantstomata.wordpress.com/2022/10/08/stomata-often-close-at-night-but-root-pressure-still-forces-some-water-up-to-the-leaves-and-out-pores-at-the-leaf-edge/ )

Winkel T., Rambal S. (1990) – Stomatal conductance of some grapevines growing in the field under a Mediterranean environment – Agric. For. Meteorol. 51: 107-121 – https://doi.org/10.1016/0168-1923(90)90010-4https://www.sciencedirect.com/science/article/pii/0168192390900104 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/stomatal-conductance-of-some-grapevines-growing-in-the-field-under-a-mediterranean-environment/ )

Winner W. E. (1980) – Cross-sections of stomata on leaves of Grand fir after heat treatments. Washington. 1980 – https://www.sciencebase.gov/catalog/item/get/51dd9641e4b0f72b4471d317?files.sort=dateUploaded&files.order=desc&files.metadataFirst=false – (On our blog : https://plantstomata.wordpress.com/2021/08/31/cross-sections-of-stomata-on-leaves-of-grand/ )

Winner W. E., Mooney H. A. (1980) – Responses of Hawaiian plants to volcanic sulfur dioxide: stomatal behavior and foliar injury – Science 210(4471): 789–791 – doi:10.1126/science.210.4471.789https://www.science.org/doi/10.1126/science.210.4471.789 – (On our blog : https://plantstomata.wordpress.com/2023/01/05/stomatal-behavior-and-foliar-injury-as-responses-to-volcanic-sulfur-dioxide/ )

Winner W. E., Mooney H. A. (1980) – Ecology of SO2 resistance. II. Photosynthetic changes of shrubs in relation to SO2 absorption and stomatal behavior – Oecologia 44: 296–302 – https://doi.org/10.1007/BF00545231https://link.springer.com/article/10.1007%2FBF00545231#citeas – (On our blog : https://plantstomata.wordpress.com/2021/04/22/the-effects-of-so2-on-photosynthesis-partitioned-between-stomatal-and-nonstomatal-components/ )

Winter K., Schramm M. J. (1986) – Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis – Plant Physiol. 82: 173-178 – DOI: https://doi.org/10.1104/pp.82.1.173http://www.plantphysiol.org/content/82/1/173 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/stomatal-and-nonstomatal-components-in-the-environmental-control-of-co2-exchange-in-leaves/ )

Wise R. R. (2016) – Organizational Cell Biology – in Encyclopedia of Cell Biology 2: 324-330 – https://doi.org/10.1016/B978-0-12-394447-4.20030-8https://www.sciencedirect.com/science/article/pii/B9780123944474200308 and https://www.sciencedirect.com/topics/immunology-and-microbiology/plant-stoma – (On our blog : https://plantstomata.wordpress.com/2021/03/02/guard-cell-chloroplasts/ )

Withers C. M., Gay A. P., Mur L. A. J. (2011) – Are stomatal responses the key to understanding the cost of fungal disease resistance in plants? – Journal of the Science of Food and Agriculture 91: 1538-1540 – DOI: 10.1002/jsfa.4423https://pubmed.ncbi.nlm.nih.gov/21538365/ – (On our blog : https://plantstomata.wordpress.com/2023/01/05/is-understanding-stomatal-responses-to-fungal-attack-the-key-to-minimising-reductions-in-growth-associated-with-disease-resistance/ )

Witoń D., Sujkowska-Rybkowska M., Dąbrowska-Bronk J., Czarnocka W., Bernacki M., Szechyńska-Hebda M., Karpiński S. (2021) -MITOGEN-ACTIVATED PROTEIN KINASE4 impacts leaf development, temperature, and stomatal movement in hybrid aspen – Plant Physiol. : kiab186 – doi: 10.1093/plphys/kiab186 – Epub ahead of print – PMID: 34010410 – https://pubmed.ncbi.nlm.nih.gov/34010410/ – (On our blog : https://plantstomata.wordpress.com/2021/07/21/the-role-of-mpk4-in-the-genetic-and-environmental-regulation-of-stomatal-formation-differentiation-signaling-and-function/ )

Wittig V. E., Ainsworth E. A., Long S. P. (2007) – To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments – Plant Cell Environ. 30: 1150–1162 – DOI: 10.1111/j.1365-3040.2007.01717.x – https://www.ncbi.nlm.nih.gov/pubmed/17661752 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/effect-of-ozone-on-photosynthesis-and-stomatal-conductance/ )

Wohlfahrt G., Brilli F., Hörtnagl L., Xu X., Bingemer H., Hansel A., Loretto F. (2012) – Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations – Plant, Cell and Environment 35: 657–667 – doi: 10.1111/j.1365-3040.2011.02451.xCarbonyl_sulfide_COS_as_a_tracer_for_can.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/cos-as-a-tracer-for-canopy-photosynthesis-transpiration-and-stomatal-conductance/ )

Wolf A., Anderegg W. R. L., Pacala S. W. (2016) – Optimal stomatal behavior with competition for water and risk of hydraulic impairment – PNAS 113 (46) E7222-E7230 – doi:10.1073/pnas.1615144113  –http://www.pnas.org/content/early/2016/10/27/1615144113.short – (On our blog : https://plantstomata.wordpress.com/2016/11/06/optimal-stomatal-behavior/

Wolf T., Guinot D. R., Hedrich R., Dietrich P., Marten I. (2005) – Nucleotides and Mg2+ ions differentially regulate K+ channels and non-selective cation channels present in cells forming the stomatal complex – Plant Cell Physiol. 46(10): 1682-1689 – doi: 10.1093/pcp/pci184 – Epub 2005 Aug 4 – https://pubmed.ncbi.nlm.nih.gov/16081526/ – (On our blog : https://plantstomata.wordpress.com/2021/03/07/the-nucleotide-and-mg2-dependencies-of-time-dependent-kin-and-kout-channels-from-maize-subsidiary-cells-were-examined-showing-that-mgatp-as-well-as-mgadp-function-as-channel-activators/ )

Wolf T., Heidelmann T., Marten I. (2006) – ABA regulation of K(+)-permeable channels in maize subsidiary cells – Plant Cell Physiol. 47(10):1372-1380 – doi: 10.1093/pcp/pcl007 – Epub 2006 Sep 14 – https://pubmed.ncbi.nlm.nih.gov/16973684/ – (On our blog : https://plantstomata.wordpress.com/2021/03/07/the-aba-induced-changes-in-time-dependent-kin-and-kout-currents-from-subsidiary-cells-are-very-similar-to-those-previously-described-for-guard-cells/ )

Wolz K. J., Wertin T. M., Abordo M., Wang D., Leakey A. D. B. (2017) – Diversity in stomatal function is integral to modelling plant carbon and water fluxes – Nature Ecology & Evolution1(9): 1292–1298 – doi:10.1038/s41559-017-0238-zhttps://www.nature.com/articles/s41559-017-0238-z – (On our blog : https://plantstomata.wordpress.com/2017/11/24/diversity-in-stomatal-function/ )

Wong J. H., Klejchová M., Snipes S. A., Nagpal P., Bak G., Wang B., Dunlap S., Park M. Y., Kunkel E. N., Trinidad B., Reed J. W., Blatt M. R., Gray W. M. (2021) – SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements – Plant Physiol. 185(1): 256-273 – doi: 10.1093/plphys/kiaa023 – PMID: 33631805 – PMCID: PMC8133658 – https://pubmed.ncbi.nlm.nih.gov/33631805/ – (On our blog : https://plantstomata.wordpress.com/2023/01/19/saur-and-pp2c-d-proteins-act-antagonistically-to-facilitate-stomatal-movements-through-a-concerted-targeting-of-both-atp-dependent-h-pumping-and-channel-mediated-k-transport/ )

Wong S. C. (1979) – Stomatal behaviour in relation to photosynthesis – PhD thesis Australian National University – https://www-legacy.dge.carnegiescience.edu/publications/berry/AnnRev2012/1979%20Wong-1.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/11/97324/ )

Wong S. C., Cowan I. R., Farquhar G. D. (1978) – Leaf Conductance in Relation to Assimilation in Eucalyptus pauciflora Sieb. ex Spreng (Influence of Irradiance and Partial Pressure of Carbon Dioxide) – Plant Physiology 62(4): – https://doi.org/10.1104/pp.62.4.670http://www.plantphysiol.org/content/62/4/670.short – (On our blog : https://plantstomata.wordpress.com/2020/11/30/leaf-conductance-in-relation-to-assimilation/ )

Wong S. C., Cowan I. R., Farquhar G. D. (1979) – Stomatal conductance correlates with photosynthetic capacity – Nature: 282: 424-426 – doi: 10.1038/282424a0https://www.nature.com/articles/282424a0 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/stomatal-conductance-correlates-with-photosynthetic-capacity/ )

Wong S. L., Chen C. W., Huang H. W., Weng J. H. (2012) – Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes – Tree Physiology 32: 535–544 – https://doi.org/10.1093/treephys/tps037 – https://academic.oup.com/treephys/article/32/5/535/1735291 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/combined-measurements-for-comparison-of-light-induction-of-stomatal-conductance-electron-transport-rate-and-co2-fixation/ )

Woo J. G., Kim H. D., Oh B. S. (1991) – Estimation of the ploidy of anther derived Chinese cabbage Brassica campestris ssp. pekinensis by the number of chloroplasts in the guard cells – Res. Rep. Rur. Dev. Adm. 33: 35-39 – https://worldveg.tind.io/record/16857?ln=en – (On our blog : https://plantstomata.wordpress.com/2023/01/05/to-estimate-the-ploidy-level-of-anther-derived-plants-by-the-mean-number-of-chloroplasts-in-the-stomatal-guard-cells/ )

Woo K. B. (1965) Dynamic simulation model of transpiration process with stomatal control mechanism – PhD Thesis Oregon State University – file:///C:/Users/wille/Downloads/WooKwangB1965.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/20/a-possible-model-of-the-stomatal-control-mechanism-is-proposed/ )

Woo K. B., Stone L. N., Boersma L. (1966) – A conceptual model of stomatal control mechanisms – Wat. Resour. Res. 2(1): 71-84 – DOI: 10.1029/WR002i001p00071https://ui.adsabs.harvard.edu/abs/1966WRR…..2…71W/abstract – (On our blog : https://plantstomata.wordpress.com/2021/11/17/a-conceptual-model-of-the-stomatal-control-mechanism/ )

Woo S. Y. (2010) – Epidermal leaf characteristics and seasonal changes of net photosynthesis of five Populus – African Journal of Biotechnology 9(10): – https://www.ajol.info/index.php/ajb/article/view/78319 – (On our blog : https://plantstomata.wordpress.com/2020/12/08/a-wide-significant-variation-in-the-stomata-size-and-density-of-the-genotypes-of-five-populus/ )

Wood J. G. (1932) – The physiology of xerophytism in Australian plants: The carbohydrate metabolism of plants with tomentose succulent leaves – Immunology & Cell Biology – https://doi.org/10.1038/icb.1932.31https://onlinelibrary.wiley.com/doi/pdf/10.1038/icb.1932.31 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/the-carbohydrate-metabolism-of-plants-with-tomentose-succulent-leaves/ )

Wood J. G. (1934) – The physiology of xerophytism in Australian plants: the stomatal frequencies, transpiration and osmotic pressures of sclerophyll and tomentose-succulent leaved plants – J. Ecol. 22: 69–87 – doi:10.2307/2256096https://www.jstor.org/stable/2256096?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/13/stomatal-frequencies-transpiration-and-osmotic-pressures-of-sclerophyll-and-tomentose-succulent-leaved-plants/ )

Wood N. T., Allan A. C., Haley A., Viry-Moussaid M., Trewavas A. J. (2000) – The characterization of differential calcium signalling in tobacco guard cells – Plant J 24: 335–344 – https://doi.org/10.1046/j.1365-313x.2000.00881.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313x.2000.00881.x – (On our blog :  https://plantstomata.wordpress.com/2019/02/28/differential-calcium-signalling-in-stomatal-guard-cells/ )

Woodrow I. E., Ball J. T., Berry J. A. (1986) – A general expression for the control of the rate of photosynthetic CO2 fixation by stomata, the boundary layer and radiation exchange – In Progress in Photosynthesis Research Vol. 4 (ed. J. Biggins), pp. 225–228 – Martinus Nijhoff, Dordrecht –

Woodrow I. E., Ball J. T., Berry J. A. (1990) – Control of photosynthetic carbon dioxide fixation by the boundary layer, stomata and ribulose 1,5-biphosphate carboxylase/oxygenase – Plant, Cell & Environment 13(4): 339-347 – https://doi.org/10.1111/j.1365-3040.1990.tb02137.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb02137.x – (On our blog : https://plantstomata.wordpress.com/2023/11/24/coefficients-describing-the-sensitivity-of-the-rate-of-photosynthetic-carbon-dioxide-fixation-to-small-changes-in-the-stomatal-conductance-and-boundary-layer-conductance-are-derived/ )

Woodruff D. R., Mcculloh K. A., Warren J. M., Meinzer F. C., Lachenbruch B. (2007) – Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir – Plant Cell Environ. 30: 559–569 – https://doi.org/10.1111/j.1365-3040.2007.01652.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2007.01652.x – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/88613)

Woodruff D., Meinzer F. C., McCulloh K. A. (2009) – Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer – Journal of Experimental Botany 61(1): 203-210 –https://www.ncbi.nlm.nih.gov/pubmed/19933710 – (On our blog : https://plantstomata.wordpress.com/2016/11/06/stomatal-sensitivity-to-leaf-to-air-vapour-pressure-deficit/ )

Woods D. B., Turner N. C. (1971) – Stomatal response to changing light by four tree species of varying shade tolerance – New Phytol. 70: 77–84 – https://doi.org/10.1111/j.1469-8137.1971.tb02512.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1971.tb02512.x – (On our blog : https://plantstomata.wordpress.com/2018/07/19/stomatal-response-to-changing-light/ )

Woodward A. W., Bartel B. (2018) – Biology in Bloom: A Primer on the Arabidopsis thaliana Model System – GENETICS 208(4): 1337-1349 – https://doi.org/10.1534/genetics.118.300755http://www.genetics.org/content/208/4/1337 – (On our blog : https://plantstomata.wordpress.com/2019/02/08/arabidopsis-thaliana-model-system/ )

Woodward F. I. (1987)  Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels – Nature 327: 617–618 – doi:10.1038/327617a0https://www.nature.com/nature/journal/v327/n6123/abs/327617a0.html – (On our blog : https://plantstomata.wordpress.com/2017/07/23/increases-in-co2-from-pre-industrial-levels-and-stomatal-density/ )

Woodward F. I. (1998) – Do plants really need stomata? – Journal of Experimental Botany 49: 471-480 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Do-plants-really-need-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/do-plants-really-need-stomata/ )

Woodward F. I. (2012) – Stomata – a global view  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-global-view-on-stomata/ )

Woodward F. I., Bazzaz F. A. (1987) – The responses of stomatal density to CO2 partial-pressure – Journal of Experimental Botany 39: 1771–1781 – https://doi.org/10.1093/jxb/39.12.1771 – https://academic.oup.com/jxb/article-abstract/39/12/1771/542607 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/stomatal-density-and-co2-partial-pressure/ )

Woodward F. I., Kelly C. K. (1995) – The influence of CO2 concentration on stomatal density – New Phytologist 131: 311-327 – http://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1995.tb03067.x/asset/j.1469-8137.1995.tb03067.x.pdf?v=1&t=jd6h95wl&s=df4433366e7bdeb84775b67a8c73c5d4c03837ca – (On our blog : https://plantstomata.wordpress.com/2018/02/02/co2-concentration-and-stomatal-density-2/ )

Woodward F. I., Lake C. K., Quick W. P. (2002) – Stomatal development and CO2:  ecological consequences – New Phytologist 153: 477-484 – https://doi.org/10.1046/j.0028-646X.2001.00338.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.0028-646X.2001.00338.x – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-development-and-co2-ecological-consequences/

Woolfenden H. C., Baillie A. L., Gray J. E., Hobbs J. K., Morris R. J., Fleming A. J. (2018) – Models and Mechanisms of Stomatal Mechanics –  In Press Corrected Proof – Trends in Plant Science – https://doi.org/10.1016/j.tplants.2018.06.003 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30132-8 – (On our blog : https://plantstomata.wordpress.com/2018/07/13/a-reassessment-of-accepted-paradigms-and-a-new-understanding-of-the-mechanism-of-stomatal-mechanics/ )

Woolfenden H. C., Bourdais G., Kopischke M., Miedes E., Molina A., Robatzek S., Morris R. J. (2017)  A computational approach for inferring the cell wall properties that govern guard cell dynamics – The Plant Journal – DOI: 10.1111/tpj.13640 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13640/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/29/proper-stomatal-dynamics-builds-on-two-key-properties-of-the-cell-wall-namely-anisotropy-in-the-form-of-hoop-reinforcement-and-strain-stiffening/ )

Wong S. C., Canny M. J., Holloway-Phillips M., Stuart-Williams H., Cernusak L. A., Márquez D. A., Farquhar G. D. (2022) – Humidity gradients in the air spaces of leaves – Nat. Plants 8: 971–978 – https://doi.org/10.1038/s41477-022-01202-1https://www.nature.com/articles/s41477-022-01202-1 – (On our blog : https://plantstomata.wordpress.com/2022/08/19/humidity-gradients-in-the-air-spaces-of-leaves/ )

Wong S. C., Cowan I. R., Farquhar G. D. (1979) – Stomatal conductance correlates with photosynthetic capacity – Nature 282: 424–426 – https://doi.org/10.1038/282424a0https://www.nature.com/articles/282424a0#citeas – (On our blog : https://plantstomata.wordpress.com/2024/02/10/stomatal-conductance-takes-account-of-co2-transfer-through-both-stomata-and-leaf-boundary-layer-the-conductance-of-the-latter-being-0-5-mol-m%e2%88%922-s%e2%88%921/)

Worrall D., Liang Y.-K., Alvarez S., Holroyd G. H., Spiegel S., Panagopulos M., Gray J. E., Hetherington A. M. (2008) – Involvement of sphingosine kinase in plant cell signalling – The Plant Journal 56(1): 64-72 – https://doi.org/10.1111/j.1365-313X.2008.03579.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03579.x – (On our blog : expression of SPHK1 and SPPASE are coordinately regulated, and this may contribute to robustness in guard-cell signalling

Wright L. A., Murphy T. M. (1982) – Short-wave ultraviolet light closes leaf stomata – Am J Bot 69: 1196–1199 – https://doi.org/10.1002/j.1537-2197.1982.tb13364.xhttps://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1982.tb13364.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/closing-of-stomata-may-account-for-the-acceleration-of-senescence-that-is-induced-by-ultraviolet-light/ )

Wu B. J., Liu Y. J., Jiang C. D., Shi L. (2015) – Effects of stomatal development on leaf temperature during leaf expansion – [ 吴冰洁, 刘玉军, 姜闯道, 石雷 (2015). 叶片生长进程中气孔发育对叶温调节的影响. 植物生理学报, 51,119-126.] – Plant Physiology Journal 51: 119-126 – DOI:  10.13592/j.cnki.ppj.2014.0552https://www.researchgate.net/publication/281952359_Effects_of_stomatal_development_on_leaf_temperature_during_leaf_expansion -(On our blog : https://plantstomata.wordpress.com/2023/01/05/adaxial-stomata-may-mainly-contribute-to-reducing-leaf-temperature-by-transpiration-cooling/ )

Wu B.-J., Chow W. S., Liu Y.-J., Shi L., Jiang C.-D. ( 2014) – Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb – Plant Science 229: 23–31 – Effects_of_stomatal_development_on_stoma.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/effects-of-stomatal-development-on-stomatal-conductance-and-on-stomatal-limitation-of-photosynthesis/ )

Wu F., Chi Y., Jiang Z. et al. (2020) – Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis – Nature (2020) – https://doi.org/10.1038/s41586-020-2032-3 https://www.nature.com/articles/s41586-020-2032-3#citeas – (On our blog : https://plantstomata.wordpress.com/2020/02/20/hpca1-mediates-h2o2-induced-activation-of-ca2-channels-in-guard-cells-and-is-required-for-stomatal-closure/ )

Wu G., Jia H., Huang Y., Gan L., Fu C., Zhang L., Yu L., Li M. (2014) – Characterization and Molecular Interpretation of the Photosynthetic Traits of Lonicera confusa in Karst Environment – PLoS ONE 9(6): e100703 – https://doi.org/10.1371/journal.pone.0100703https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100703 – (On our blog : https://plantstomata.wordpress.com/2022/09/18/transpiration-stomata-conductance-and-photosynthetic-traits-of-lonicera-confusa-in-karst-environment/ )

Wu G., Liu H., Hua L., Luo Q., Lin Y., He P., Feng S., Liu J., Ye Q. (2018) – Differential Responses of Stomata and Photosynthesis to Elevated Temperature in Two Co-occurring Subtropical Forest Tree Species – Front. Plant Sci. 9: 467-479 – https://doi.org/10.3389/fpls.2018.00467 – https://www.frontiersin.org/articles/10.3389/fpls.2018.00467/full – (On our blog : https://plantstomata.wordpress.com/2018/10/13/two-tree-species-responded-differently-to-water-deficit-caused-by-elevated-temperature-through-the-adjustment-of-stomata/ )

Wu H.-C., Huang Y.-C., Stracovsky L., Jinn T.-L. (2017)  Pectin methylesterase is required for guard cell function in response to heat – Plant Signaling & Behavior  12(6) – http://dx.doi.org/10.1080/15592324.2017.1338227 http://www.tandfonline.com/doi/full/10.1080/15592324.2017.1338227?src=recsys – (On our blog : https://plantstomata.wordpress.com/2017/10/28/the-significant-role-of-pme34-in-heat-tolerance-through-the-regulation-of-stomatal-movement/ )

Wu H.-C., Yu S.-Y., Wang Y.-D., Jinn T.-L. (2022)  Guard Cell-Specific Pectin METHYLESTERASE53 Is Required for Abscisic Acid-Mediated Stomatal Function and Heat Response in Arabidopsis – Front Plant Sci 13: 836151 – doi: 10.3389/fpls.2022.836151 – eCollection 2022 – https://pubmed.ncbi.nlm.nih.gov/35265095/ – (On our blog : https://plantstomata.wordpress.com/2023/03/30/the-pme53-mediated-de-methylesterification-status-of-pectin-is-directed-toward-stomatal-development-movement-and-regulation-of-the-flexibility-of-the-guard-cell-wall-required-for-the-heat-response/ )

Wu H.-i., Sharpe P. J. H. (1979) – Stomatal mechanics – II: Material properties of guard cell walls – Plant, Cell and Environment 2: 235-244 –  DOI: 10.1111/j.1365-3040.1979.tb00075.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00075.x – (On our blog : https://plantstomata.wordpress.com/2019/02/28/material-properties-of-stomatal-guard-cell-walls/ )

Wu H.-i, Sharpe P. J. H., Spence R. D. (1985) – Stomatal mechanics. III. Geometric interpretation of the mechanical advantage – Plant, Cell & Environment 8: 269–274 – https://doi.org/10.1111/1365-3040.ep11604674 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11604674 – (On our blog : https://plantstomata.wordpress.com/2019/02/28/simple-geometric-relationships-calculated-from-measurable-anatomical-dimensions-of-the-stomatal-system/ )

Wu H., Zhang X., Giraldo J. P., Huang X. (2016) – Improvement of plant productivity in a model crop through air-tissue oxygen channeling – Nature Communications 7: 10710 –

Wu J., Liu Y. (2022) – Stomata–pathogen interactions: over a century of research – Trends in Plant Science 27(10): 964-967 – ttps://doi.org/10.1016/j.tplants.2022.07.004https://www.cell.com/action/showPdf?pii=S1360-1385%2822%2900184-4 – (On our blog : https://plantstomata.wordpress.com/2022/10/27/new-frontiers-in-stomata-pathogen-interactions/ )

Wu J., Serbin S. P., Ely K. S., Wolfe B. T., Dickman L. T., Grossiord C., Michaletz S. T., Collins A. D., Detto M., McDowell N. G., Wright S. J., Rogers A. (2019) – The response of stomatal conductance to seasonal drought in tropical forests – Global Change Biology – https://doi.org/10.1111/gcb.14820https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14820 – (On our blog : https://plantstomata.wordpress.com/2022/05/14/response-of-stomatal-conductance-to-seasonal-drought/ )

Wu L., de Boer H., Zhang Z., Chen X., Yanying Shi, Peng S., Wang F. (2020) – The coordinated increase in stomatal density and vein dimensions during genetic improvement in rice – Agronomy Journal 112(4): 2791-2804 – https://doi.org/10.1002/agj2.20180https://acsess.onlinelibrary.wiley.com/doi/10.1002/agj2.20180 – (On our blog : https://plantstomata.wordpress.com/2023/08/22/the-relationships-between-the-anatomical-maximum-stomatal-conductance-operational-stomatal-conductance-and-the-anatomy-of-the-stomata-and-vein-in-relation-to-leaf-level-transpiration-and-photosynthe/ )

Wu L., Huang Z., Li X.,  Ma L., Gu Q..Wu H., Liu J., Borriss R., Wu Z., Gao X., (2018) – Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana – Front. Microbiol. 27 April 2018 – https://doi.org/10.3389/fmicb.2018.00847 – https://www.frontiersin.org/articles/10.3389/fmicb.2018.00847/full – (On our blog : https://plantstomata.wordpress.com/2018/09/19/stomatal-movements-and-a-biocontrol-mechanism-of-soil-rhizobacteria-in-a-plant/ )

Wu Q., Wang M., Shen J., Chen D., Zheng Y., Zhang W. (2018) – ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses – Journal of Integrative Plant Biology 61(4): 47-491 – https://doi.org/10.1111/jipb.12714https://onlinelibrary.wiley.com/doi/10.1111/jipb.12714 – (On our blog : https://plantstomata.wordpress.com/2023/05/26/a-positive-regulatory-role-for-zmost1-in-guard-cell-aba-signaling-and-drought-response-in-maize-plants/ )

Wu S., Maseyk K., Lett C., Seibt U. (2018 ?) – Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh – Biogeosciences Discuss. – https://doi.org/10.5194/bg-2017-431, in review, 2017 – https://www.biogeosciences-discuss.net/bg-2017-431/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-control-of-leaf-fluxes-of-cos-and-co2/ )

Wu S., Su S., Fu L., Zhuang C., Ma J., Zheng J., Zhang Y., Xiao Y., Li X., Liu Y. G., Li Y. (2017) – Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study – PLoS Genet. 13(8): e1006889 –

Wu T.-C., Lin B.-L., Kao W.-Y. (2020) – Active stomatal control of Marsilea crenata in response to CO2 concentration and exogenous application of ABA – Taiwania 65(4): 431–437 – DOI: 10.6165/tai.2020.65.431https://taiwania.ntu.edu.tw/pdf/tai.2020.65.431.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/16/active-stomatal-control-in-response-to-co2-concentration-and-exogenous-application-of-aba/ )

Wu T.-C., Lin B.-L., Kao W.-Y. (2020) – Stomatal blue light response is present in Marsilea crenata, an amphibious fern – Taiwania 65(4): 456-462 – DOI: 10.6165/tai.2020.65.456https://taiwania.ntu.edu.tw/abstract.php?type=referance&id=1709 – (On our blog : https://plantstomata.wordpress.com/2021/01/24/stomatal-bl-specific-response-in-a-fern/ )

Wu W. H., Assmann S. M. (1993) – Photosynthesis by guard cell chloroplasts of Vicia faba L. : effects of factors associated with stomatal movement – Plant Cell Physiology 34: 1015-1022 – https://doi.org/10.1093/oxfordjournals.pcp.a078514 –https://academic.oup.com/pcp/article-abstract/34/7/1015/1810682?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/01/photosynthesis-by-guard-cell-chloroplasts-effects-of-factors-associated-with-stomatal-movement/ )

Wu W. H., Assmann S. M. (1994) – A membrane-delimited pathway of G protein regulation of the guard-cell inward K+channel – Proc Natl Acad Sci USA 91: 6310–6314 – https://doi.org/10.1073/pnas.91.14.6310 – http://www.pnas.org/content/91/14/6310?ijkey=0c9c7541994d9f3dd37d34ba334875c55d199d9e&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/05/g-proteins-can-act-via-a-membrane-delimited-pathway-to-regulate-inward-k-channels-in-stomata/ )

Wu W. H., Assmann S. M. (1995) – Is ATP required for K+ channel activation in Vicia guard cells? – Plant Physiol. 107: 101–109 – https://doi.org/10.1104/pp.107.1.101http://www.plantphysiol.org/content/107/1/101 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/atp-is-required-for-activation-of-the-inward-k-channels-of-the-stomatal-guard-cell-plasma-membrane/ )

Wu X., Qiao Z., Liu H., Acharya B. R., Li C., Zhang W. (2017) – CML20, an Arabidopsis Calmodulin-like Protein, Negatively Regulates Guard Cell ABA Signaling and Drought Stress Tolerance – Front Plant Sci. 8: 824-824 – doi:10.3389/fpls.2017.00824https://www.frontiersin.org/articles/10.3389/fpls.2017.00824/full – (On our blog : https://plantstomata.wordpress.com/2023/01/06/cml20-a-functional-ca2-sensor-is-a-negative-regulator-in-stomatal-guard-cell-aba-signaling/ )

Wu X., Sun T., Xu W., Sun Y., Wang B., Wang Y., Li Y., Wang J., Wu X., Lu Z., Xu P., Li G. (2021) – Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and GWAS in Cowpea (Vigna. unguiculata L. Walp) – Front. Genet., 28 October 2021 – https://doi.org/10.3389/fgene.2021.743758https://www.frontiersin.org/articles/10.3389/fgene.2021.743758/full – (On our blog : https://plantstomata.wordpress.com/2022/02/01/forward-genetic-mapping-of-the-genetic-architecture-of-stomatal-traits-related-to-drought-tolerance/ )

Wu X., Xu Y., Shi J., Zuo Q., Zhang T., Wang L., Xue X., Ben-Gal A. (2021) – Estimating stomatal conductance and evapotranspiration of winter wheat using a soil-plant water relations-based stress index -Agricultural and Forest Meteorology 303: 108393 – ISSN 0168-1923 –
https://doi.org/10.1016/j.agrformet.2021.108393
https://www.sciencedirect.com/science/article/pii/S0168192321000769 – (On our blog : https://plantstomata.wordpress.com/2022/04/20/a-novel-soil-water-stress-index-%cf%89-should-be-feasible-and-reliable-to-delineate-the-response-of-stomatal-physiological-reaction-to-water-stress/ )

Wu Y. (2008) – Guard Cell Signaling – Annual Plant Reviews 33: Intracellular Signaling in Plants 33 – Edit. Zhenbiao Yang – https://onlinelibrary.wiley.com/doi/10.1002/9781444302387.ch13 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/115822 )

Wu Y. P., Hu X. W., Wang Y. R. (2009) – Growth, water relations, and stomatal development of Caragana korshinskii Kom. and Zygophyllum xanthoxylum (Bunge) Maxim. seedlings in response to water deficits – New Zealand Journal of Agricultural Research 52(2): 185-193 – DOI: 10.1080/00288230909510503https://www.tandfonline.com/doi/pdf/10.1080/00288230909510503 – (On our blog : https://plantstomata.wordpress.com/2021/12/23/stomatal-development-under-three-watering-regimes/ )

Wu Z., Chen L., Yu Q., Zhou W., Gou X., Li J., Hou S. (2019) – Multiple transcriptional factors control stomata development in rice – New Phytologist – https://doi.org/10.1111/nph.15766 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15766?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/03/how-various-species-reprogramme-the-molecular-mechanisms-to-generate-different-stomatal-types-during-evolution/ )

Wullschleger S. D., Gunderson C. A., Hanson P. J., Wilson K. B., Norby R. J. (2002) – Sensitivity of stomatal and canopy conductance to elevated CO2 concentration – interacting variables and perspectives of scale – New Phytologist 153: 485–496 – https://doi.org/10.1046/j.0028-646X.2001.00333.x –https://nph.onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00333.x – (On our blog : https://plantstomata.wordpress.com/2019/03/01/sensitivity-of-stomatal-and-canopy-conductance-to-elevated-co2-concentration/ )

Wullschleger S. D., Hanson P. J., Sage R. F. (1992) – PHOTOBIO: Modeling the Stomatal and Biochemical Control of Plant Gas Exchange -J. Nat. Resour. Life Sci. Educ. 21: 141-145 – https://www.crops.org/files/publications/nse/pdfs/jnr021/021-02-0141.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/modeling-the-stomatal-and-biochemical-control-of-plant-gas-exchange/ )

Wullschleger S. D., Oosterhuis D. M. (1989) – The occurrence of an internal cuticle in cotton (Gossypium hirsutum L.) leaf stomates -Environmental and Experimental Botany 29: 229– 235 – https://doi.org/10.1016/0098-8472(89)90054-3https://www.sciencedirect.com/science/article/abs/pii/0098847289900543 – (On our blog : https://plantstomata.wordpress.com/2023/01/06/the-internal-cuticle-in-cotton-stomates-may-be-associated-with-the-relative-insensitivity-of-cotton-stomates-to-leaf-water-deficit/ )

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – Stomatal movement – guard cell physiology – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/stomatal-movements/ )

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – ABA action and receptors – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-action-and-receptors-in-stomata/ )

Würzburg University (Germany) – How Plants React to Fungi – 10/07/2019 – https://www.uni-wuerzburg.de/en/news-and-events/news/detail/news/how-plants-react-to-fungi/ – (On our blog : https://plantstomata.wordpress.com/2019/12/03/how-the-plant-recognizes-fungi-and-the-molecular-signalling-chain-via-which-the-chitin-triggers-the-closure-of-the-stomata/ )

Wuyun T., Niinemets Ü., Hõrak H. (2023) – Species-specific stomatal ABA responses in juvenile ferns grown from spores – New Phytol. 240(5): 1722-1728 – doi: 10.1111/nph.19215 – Epub 2023 Aug 27 – PMID: 37635267 – https://pubmed.ncbi.nlm.nih.gov/37635267/

Wyka T. P., Duarte H. M., Lüttge U. E. (2005) – Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier – Plant Biol (Stuttg) 7(2): 176-181 – doi: 10.1055/s-2005-837541https://pubmed.ncbi.nlm.nih.gov/15822013/ – (On our blog : https://plantstomata.wordpress.com/2022/03/08/photosynthetic-rhythmicity-is-independent-of-stomatal-regulation-and-may-originate-in-the-mesophyll/ )

Wynn J. G. (2003)  Towards a physically based model of CO2-induced stomatal frequency response – New Phytol. 157: 394–398 –Towards_a_physically_based_model_of_CO2-.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/a-physically-based-model-of-co2-induced-stomatal-frequency-response/ )

Wynn W. (1976) – Appressorium formation over stomata by the bean rust fungus: response to a surface contact stimulus – Phytopathology 66: 136–146 – DOI: 10.1094/Phyto-66-136https://www.apsnet.org/publications/phytopathology/backissues/Documents/1976Abstracts/Phyto66_136.htm – (On our blog : https://plantstomata.wordpress.com/2021/04/02/the-specific-surface-feature-which-induced-appressorium-formation-on-leaves-was-apparently-the-stomatal-lips/ )

Xia X. J., Gao C. J., Song L. X., Zhou Y. H., Shi K., Yu J. Q. (2014) – Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum – Plant Cell Environ. 37: 2036–2050 – doi: 10.1111/pce.12275 – https://www.ncbi.nlm.nih.gov/pubmed/24428600 – (On our blog : https://plantstomata.wordpress.com/2018/07/20/aba-deficiency-abolished-ebr-induced-stomatal-closure-but-did-not-affect-ebr-induced-stomatal-opening/

Xia Y., Du K., Ling A., Wu W., Li J., Kang X. (2022) – Overexpression of PagSTOMAGEN, a Positive Regulator of Stomatal Density, Promotes Vegetative Growth in Poplar – Int J Mol Sci. 23(17): 10165 – doi: 10.3390/ijms231710165 – PMID: 36077563 – https://pubmed.ncbi.nlm.nih.gov/36077563/https://plantstomata.wordpress.com/2023/08/16/pagstomagen-could-positively-regulate-stomatal-density-and-increase-the-photosynthetic-rate-and-plant-hormone-content-thereby-promoting-vegetative-growth-in-poplar/ )

Xia Y., Jiang S., Wu W., Du K., Kang X. (2024) – MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar – New Phytologist 241(6): 2506-2522 – https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.19531 – (On our blog : https://plantstomata.wordpress.com/2024/04/01/the-regulation-mechanism-of-plant-stomatal-occurrence-and-polyploid-stomatal-density-as-well-as-reducing-stomatal-density-and-improving-plant-water-use-efficiency-by-overexpressing-myc2/ )

Xia Z. H., Chen Y. N., Zhu C. G., Zhou Y. Y., Chen X. L. (2018) – Stomatal change in leaves of Populus euphratica under drought stress – Arid Zone Research 35: 1111-1117 ([ 夏振华, 陈亚宁, 朱成刚, 周莹莹, 陈晓林 (2018). 干旱胁迫环境下的胡杨叶片气孔变化. 干旱区研究, 35,1111-1117.]) – doi: 10.13866/j.azr.2018.05.14http://azr.xjegi.com/EN/10.13866/j.azr.2018.05.14 – (On our blog : https://plantstomata.wordpress.com/2023/01/06/stomatal-changes-under-drought-stress-gradients/ )

Xiang Q., Lott A. A., Assmann S. M., Chen S. (2021) – Advances and perspectives in the metabolomics of stomatal movement and the disease triangle – Plant Science 302 – https://doi.org/10.1016/j.plantsci.2020.110697https://www.sciencedirect.com/science/article/abs/pii/S0168945220303034?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/12/02/recent-advances-toward-understanding-the-stomatal-disease-triangle-in-the-context-of-newly-discovered-signaling-molecules/ )

Xiao C., Guo H., Tang J., Li J., Yao X. (2021) – Expression Pattern and Functional Analyses of Arabidopsis Guard Cell-Enriched GDSL Lipases – Frontiers in Plant Science 12 – DOI: 10.3389/fpls.2021.748543https://www.researchgate.net/publication/354731386_Expression_Pattern_and_Functional_Analyses_of_Arabidopsis_Guard_Cell-Enriched_GDSL_Lipases – (On our blog : https://plantstomata.wordpress.com/2021/09/27/functional-insights-into-the-ggls-to-control-stomatal-dynamics-and-development-plant-growth-and-adaptation-to-the-environment/ )

Xie C., Zhang R., Qu Y., Miao Z., Zhang Y., Shen X., Wang T, Dong J. (2012) – Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density – New Phytol. 19: 5124–135 – DOI:  10.1111/j.1469-8137.2012.04136.x – https://www.ncbi.nlm.nih.gov/pubmed/22510066 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/interaction-of-mtcas31-and-atice1-caused-the-decrease-in-stomatal-density/ )

Xie J., Wang Z., Li Y. (2022) – Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients – New Phytol. 235(3): 907-922 – doi: 10.1111/nph.18189 – Epub 2022 May 20 -PMID: 35491493 – https://pubmed.ncbi.nlm.nih.gov/35491493/ – (On our blog : https://plantstomata.wordpress.com/2023/01/12/the-stomatal-traits-related-to-control-of-stomatal-movement-play-fundamental-roles-in-balancing-gas-exchange-leaf-cooling-embolism-resistance-and-pathogen-defense/ )

Xie K. (2019) – Food for the Future: How Artificial Intelligence Can Improve Drought Resistance – FFAR Dec. 19, 2019 – https://foundationfar.org/2019/12/19/food-for-the-future-how-artificial-intelligence-can-improve-drought-resistance/ – (On our blog : https://plantstomata.wordpress.com/2020/04/22/can-we-find-a-good-balance-point-where-plants-capture-the-most-co2-possible-while-using-the-least-possible-amount-of-water/ )

Xie L., Zhang J., Wang J., Zhao Y., Mei Y., Gu C., …, Shen W. (2016) – Modulation of exogenous nitric oxide in alleviating arsenic toxicity by promoting arsenic volatilization and reducing arsenic uptake in wheat (Triticum aestivum L.) – Journal of Hazardous Materials 318: 139-147 –

Xie R., Zhao J., Lu L., Brown P., Guo J., Tian S. (2020) – Penetration of foliar-applied Zn and its impact on apple plant nutrition status: in vivo evaluation by synchrotron-based X-ray fluorescence microscopy – Hortic Res 7, Art.147 – https://doi.org/10.1038/s41438-020-00369-yhttps://www.nature.com/articles/s41438-020-00369-y#Sec15 – (On our blog : https://plantstomata.wordpress.com/2021/01/22/direct-visual-evidence-for-the-zn-penetration-process-across-the-leaf-surface/ )

Xie S., Luo X. (2003) – Effect of leaf position and age on anatomical structure, photosynthesis, stomatal conductance and transpiration of Asian pear – Bot. Bull. Acad. Sin. 44: 297-303 – https://ejournal.sinica.edu.tw/bbas/content/2003/4/bot444-06.html – (On our blog : https://plantstomata.wordpress.com/2018/01/13/leaf-position-and-age-stomatal-conductance-and-transpiration-of-asian-pear/ )

Xie X., Mayfield-Jones D., Erice G., Choi M., Leakey A. D. B. (2020) – Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for QTL mapping in maize – BioRXiv – https://doi.org/10.1101/2020.10.09.333880https://www.biorxiv.org/content/10.1101/2020.10.09.333880v1 – (On our blog : https://plantstomata.wordpress.com/2021/05/01/how-discovery-of-the-genetic-basis-for-stomatal-patterning-can-be-accelerated-in-maize/ )

Xie X., Wang Y., Williamson L., Holroyd G. H., Tagliavia C., Murchie E., Theobald J., Knight M. R., Davies W. J., Leyser H. M. O., Hetherington A. M. (2006) – The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. – Curr. Biol. 16: 882–887 – https://doi.org/10.1016/j.cub.2006.03.028 – http://www.cell.com/current-biology/fulltext/S0960-9822(06)01324-8?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982206013248%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2018/02/02/genes-for-the-stomatal-response-to-reduced-atmospheric-relative-humidity/ )

Xie Y., Mao Y., Duan X., Zhou H., Lai D., Zhang Y., Shen W. (2016) – Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness – Plant Physiology 170(3):  –https://doi.org/10.1104/pp.15.01550 –http://www.plantphysiol.org/content/170/3/1699 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/hy1-modulated-stomatal-movement/ )

Xie Y., Mao Y., Zhang W., Lai D., Wang Q., Shen W. (2014) – Reactive oxygen species-dependent nitric oxide production contributes to hydrogen- promoted stomatal closure in Arabidopsis – Plant Physiol. 165: 759–773 – doi: 10.1104/pp.114.237925 – http://www.plantphysiol.org/content/early/2014/04/14/pp.114.237925 – (On our blog : https://plantstomata.wordpress.com/2018/07/20/no-production-contributes-to-h2-promoted-stomatal-closure/ )

Xie Z., Lee E., Lucas J. R., Morohashi K., Li D., Murray J. A., Sack F. D., Grotewold E. (2010) – Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes – The Plant Cell 22: 2306–2321 –  https://doi.org/10.1105/tpc.110.074609http://www.plantcell.org/content/22/7/2306 – (On our blog : https://plantstomata.wordpress.com/2019/05/03/regulation-of-cell-proliferation-in-the-stomatal-lineage-by-myb-four-lips-via-direct-targeting-of-core-cell-cycle-genes/ )

Xie Z., Li D., Wang L., Sack F. D., Grotewold E. (2010) – Role of the stomatal development regulators FLP/MYB88 in abiotic stress responses – The Plant Journal 64(5): 731-739 – https://doi.org/10.1111/j.1365-313X.2010.04364.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-313X.2010.04364.x – (On our blog : https://plantstomata.wordpress.com/2021/05/02/the-stomatal-development-regulators-flp-myb88/ )

Xing Q., Liao J., Cao S., Li M., Lv T., Qi H. (2020) – CmLOX10 positively regulates drought tolerance through jasmonic acid -mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino) – Sci Rep. 10(1): 17452 – doi: 10.1038/s41598-020-74550-7 – PMID: 33060707 – PMCID: PMC7562952 – https://pubmed.ncbi.nlm.nih.gov/33060707/ – (On our blog : https://plantstomata.wordpress.com/2023/06/30/important-roles-of-cmlox10-in-the-regulation-of-drought-tolerance-in-oriental-melon-seedlings-through-ja-mediated-stomatal-closure-and-ja-signaling-mediated-feedback-through-cmmyc2/ )

Xinhua (2017) – Grass stomata seen as possible lead to crops better surviving climate change – http://news.xinhuanet.com/english/2017 – 03/17/c_136135449.htm – (On our blog : https://plantstomata.wordpress.com/2017/10/30/these-findings-may-lead-to-producing-other-plants-with-four-celled-stomata/ )

Xiong D., Douthe C., Flexas J. (2018) Differential coordination of stomatal conductance, mesophyll conductance and leaf hydraulic conductance in response to changing light across species – Plant Cell Environ. 41: 821-827 – https://doi.org/10.1111/pce.13111http://onlinelibrary.wiley.com/doi/10.1111/pce.13111/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/10/differential-coordination-of-stomatal-conductance/ )

Xiong D., Flexas J. (2020) – From one side to two sides: the effects of stomatal distribution on photosynthesis – New Phytologist 228(6): 1754-1766 –  doi: 10.1111/nph.16801 – Epub 2020 Aug 28 – https://pubmed.ncbi.nlm.nih.gov/32652573/ – (On our blog : https://plantstomata.wordpress.com/2021/01/25/the-shift-of-stomatal-pores-from-one-leaf-side-to-both-sides-played-an-important-role-in-regulating-co2-diffusion-via-both-stomata-and-mesophyll-tissues/ )

Xiong D., Flexas J., Peng S., Huang J. (2017) – Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza – New Phytol. 213(2): 572-583 – doi: 10.1111/nph.14186 – Epub 2016 Sep 2 – https://www.ncbi.nlm.nih.gov/pubmed/27653809 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/kleaf-was-not-correlated-with-the-maximum-theoretical-stomatal-conductance/ )

Xiong H., Ma C. E., Li L., Zeng H., Guo D. L. (2014) – Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats ([ 熊慧, 马承恩, 李乐, 曾辉, 郭大立 (2014). 不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应. 植物生态学报, 38,868-877.]) – Chinese Journal of Plant Ecology 38: 868-877 – DOI: 10.3724/SP.J.1258.2014.00081https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00081 – (On our blog : https://plantstomata.wordpress.com/2023/01/06/both-habitat-and-plant-type-affect-the-stomatal-response-to-light/ )

Xiong Z., Dun Z., Wang Y., Yang D., Xiong D., Cui K., Peng S., Huang J. (2022) – Effect of Stomatal Morphology on Leaf Photosynthetic Induction Under Fluctuating Light in Rice – Front Plant Sci. 12: 754790 – doi: 10.3389/fpls.2021.754790 – PMID: 35185944 – PMCID: PMC8851391 – https://pubmed.ncbi.nlm.nih.gov/35185944/ – (On our blog : https://plantstomata.wordpress.com/2023/02/05/the-important-role-of-stomatal-morphology-in-regulating-photosynthetic-efficiency-and-plant-growth-under-fluctuating-light-conditions/ )

Xiong Z., Luo Q. W., Xiong D. L., Cui K. H., Peng S. B., Huang J. L.(2022) – Speed of light-induced stomatal movement is not correlated to initial or final stomatal conductance in rice – Photosynthetica 60(3): 350-359 – DOI: 10.32615/ps.2022.013https://ps.ueb.cas.cz/artkey/phs-202203-0003_speed-of-light-induced-stomatal-movement-is-not-correlated-to-initial-or-final-stomatal-conductance-in-rice.php – (On our blog : https://plantstomata.wordpress.com/2023/03/09/synchronization-between-photosynthesis-and-stomatal-conductance-under-fluctuating-light-may-contribute-to-the-improvement-of-photosynthesis-and-water-use-efficiency-in-the-future/ )

Xiong Z., Xiong D., Cai D., Wang W., Cui K., Peng J., Huang J. (2021) – Effect of stomatal morphology on leaf photosynthetic induction under fluctuating light across diploid and tetraploid rice – Environmental and Experimental Botany 194(12): 104757 – DOI: 10.1016/j.envexpbot.2021.104757https://www.researchgate.net/publication/357107150_Effect_of_stomatal_morphology_on_leaf_photosynthetic_induction_under_fluctuating_light_across_diploid_and_tetraploid_rice – (On our blog : https://plantstomata.wordpress.com/2022/04/22/the-function-of-stomata-in-regulating-photosynthetic-induction-and-water-use-efficiency-under-fluctuating-light/ )

Xu B., Long Y., Feng X., Zhu X., Sai N., Chirkova L., Betts A., Herrmann J., Edwards E. J., Okamoto M., Hedrich R., Gilliham M. (2021) – GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience – Nat Commun 12: 1952 – https://doi.org/10.1038/s41467-021-21694-3 – https://www.nature.com/articles/s41467-021-21694-3 – (On our blog : https://plantstomata.wordpress.com/2021/07/04/gaba-signalling-modulates-stomatal-opening/ )

Xu B. Q., Wang J. J., Peng Y., Huang H., Sun L. L., Yang R., Suo L. N., Wang S. H., Zhao W. C. (2022)SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression – Front Plant Sci. 13: 952758 – doi: 10.3389/fpls.2022.952758 – PMID: 35937339 – PMCID: PMC9354244 – https://pubmed.ncbi.nlm.nih.gov/35937339/ – (On our blog : https://plantstomata.wordpress.com/2023/03/06/slmyc2-drives-stomatal-closure-by-modulating-the-accumulation-of-flavonol-and-the-ja-and-aba-contents-helping-to-decipher-the-mechanism-of-stomatal-movement-under-drought-stress/ )

Xu B.-s., Zhang R.-h. ( 2002) – Study on chlorophyll content and stomata morphology of Pïnus massoniana – Chemistry and Industry of Forest Products 22(3): 59-61  – http://www.cifp.ac.cn/EN/abstract/abstract94.shtml – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-density-is-negatively-correlated-with-stomata-diameter-in-pinus/ )

Xu D. Q., Terashima K., Crang R. F. E., Chen X. M., Hesketh J. D. (1994) – Stomatal and nonstomatal acclimation to a CO2 enriched atmosphere – Biotronics 23: 1–9 – https://catalog.lib.kyushu-u.ac.jp/opac_detail_md/?lang=1&amode=MD100000&bibid=8192 – (On our blog : https://plantstomata.wordpress.com/2023/01/06/stomatal-closure-in-co2-enriched-air-was-patchy-and-associated-conductances-were-closeto-limiting-co2-flux-into-the-leaf/ )

Xu H.-L., Gauthier L., Gosselin A. (1995) – Stomatal and Cuticular Transpiration of Greenhouse Tomato Plants in Response to High Solution Electrical Conductivity and Low Soil Water Content – J. AMER. SOC. HORT. SCI. 120(3): 417-422 – file:///C:/Users/wille/Downloads/[23279788%20-%20Journal%20of%20the%20American%20Society%20for%20Horticultural%20Science]%20Stomatal%20and%20Cuticular%20Transpiration%20of%20Greenhouse%20Tomato%20Plants%20in%20Response%20to%20High%20Solution%20Electrical%20Conductivity%20and%20Low%20Soil%20Water%20Co%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/01/stomatal-and-cuticular-transpiration-of-greenhouse-tomato-plants/ )

Xu J., Zheng Y., He Y., Zhu F., Mai B., Wang S., Zhang M., Zhao X., Wang L., Xu L., Ding L., Guo Z. (2019) – Estimating stomatal conductance and partitioning total ozone uptake over a winter wheat field – Atmospheric Pollution Research 10(3): 904-912 – https://doi.org/10.1016/j.apr.2018.12.018https://www.sciencedirect.com/science/article/abs/pii/S1309104218305099 – (On our blog : https://plantstomata.wordpress.com/2022/04/17/estimating-stomatal-conductance-and-partitioning-total-ozone-uptake/ )

Xu K., Guo L., Ye H. (2019) – A naturally optimized mass transfer process: The stomatal transpiration of plant leaves – J Plant Physiol. 234-235: 138-144 – doi: 10.1016/j.jplph.2019.02.004https://www.ncbi.nlm.nih.gov/pubmed/30798115 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-transpiration-of-leaves/ )

Xu L., Baldocchi D. D. (2003) – Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature – Tree Physiology 23: 865–877 – https://doi.org/10.1093/treephys/23.13.865 –https://academic.oup.com/treephys/article/23/13/865/1650675 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/seasonal-trends-in-photosynthetic-parameters-and-stomatal-conductance/ )

Xu L., Luo X., Lin J.-S., Hu L. (2022) – B11A-02 – Stomatal Conductance Modeling from the Perspectives of Land Surface Models – AGU Fall Meeting – https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1099233 – (On our blog : https://plantstomata.wordpress.com/2023/01/30/stomatal-conductance-modeling-from-the-perspectives-of-land-surface-models/ )

Xu L., Najeeb U., Naeem M. S., Daud M. K., Cao J. S., Gong H. J., Shen W. Q., Zhou W. J. (2010) Induction of tetraploidy in Juncus effusus by colchicine – Biologia Plantarum 54(4): 659-663 – https://doi.org/10.1007/s10535-010-0117-9https://espace.library.uq.edu.au/view/UQ:721082 – (On our blog : https://plantstomata.wordpress.com/2020/02/19/differences-between-diploid-and-tetraploid-plants-larger-stomata-but-lower-stomatal-density-in-tetraploid-plants/ )

Xu L., Zhao H., Wang J., Wang X., Jia X., Wang L., Xu Z., Li R., Jiang K., Chen Z., Luo J., Xie X., Yi K. (2023) – AIM1-dependent high basal salicylic acid accumulation modulates stomatal aperture in rice – New Phytologist 238(4): 1420-1430 – https://doi.org/10.1111/nph.18842https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18842 – (On our blog : https://plantstomata.wordpress.com/2023/08/07/the-synthesis-of-basal-sa-in-rice-shoot-is-dependent-on-osaim1-and-the-critical-role-of-the-pal-pathway-in-the-biosynthesis-of-high-basal-level-sa-which-plays-an-important-role-in-the-regulation/ )

Xu M., Chen F., Qi S., Zhang L., Wu S. (2018) – Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora – Horticulture Research (2018)5: 42 – DOI 10.1038/s41438-018-0048-8 – Loss_or_duplication_of_key_regulatory_genes_coinci.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/09/loss-or-duplication-of-key-regulatory-genes-is-associated-with-environmental-adaptation-of-the-stomatal-complex/ )

Xu M., Gruber B. D., Delhaize E., White R. G., James R. A., You J., Yang Z., Ryan P. R. (2014) – The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism – Physiologia Plantarum 153(1) : 183-193 – https://doi.org/10.1111/ppl.12234https://onlinelibrary.wiley.com/doi/10.1111/ppl.12234 – (On our blog : https://plantstomata.wordpress.com/2023/06/04/hvalmt1-releases-malate-and-perhaps-other-anions-from-guard-cells-to-promote-stomatal-closure/ )

Xu W., Li Y., Cheng Z., Xia G., Wang M. (2016) – A wheat histone variant gene TaH2A.7 enhances drought tolerance and promotes stomatal closure in Arabidopsis – Plant Cell Rep. 35(9): 1853-1862 – doi: 10.1007/s00299-016-1999-6 – Epub 2016 May 23 – PMID: 27215438 – https://pubmed.ncbi.nlm.nih.gov/27215438/ – (On our blog : https://plantstomata.wordpress.com/2022/03/10/tah2a-7-can-enhance-drought-tolerance-via-at-least-in-part-promoting-stomatal-closure/ )

Xu X., Chen Y., Li B., Zhang Z., Qin G., Chen T., Tian S. (2022) – How do horticultural crops defend themselves against fungal pathogens? – Horticulture Research 9: uhac066 – https://doi.org/10.1093/hr/uhac066 – EurekAlert! / AAAS – NANJING AGRICULTURAL UNIVERSITY THE ACADEMY OF SCIENCE – https://www.eurekalert.org/news-releases/961975 – (On our blog : https://plantstomata.wordpress.com/2022/08/19/research-progress-on-defense-responses-of-horticultural-crops-to-fungal-pathogens-and-novel-regulatory-strategies-to-regulate-induction-of-plant-resistance/ )

Xu X.-D., Lou C.-H. (1980)The presence of roots as a prerequisite for normal functioning of stomata on sweet potato leaves – Acta Agriculturae Universitatis Pekinensis (Journal of Peking Agricultural University) – (in Chinese) 1: 37-45 – ISSN :0479-8007 – https://www.cabdirect.org/cabdirect/abstract/19800712248 – (On our blog : https://plantstomata.wordpress.com/2019/03/30/a-physiologically-active-substance-from-roots-was-necessary-for-normal-stomatal-function/ )

Xu Y.-f.1, Chen H.1, Zhou H.2, Jin J.-w.1-3, Hu T.-m.1 (2011) – Acclimation of morphology and physiology in turf grass to low light environment: A review – African Journal of Biotechnology 10(48): 9737-9742 – http://www.academicjournals.org/AJBDOI: 10.5897/AJB11.1260 – ISSN 1684–5315 – file:///C:/Users/wille/Downloads/95744-Article%20Text-247816-1-10-20131024%20(2).pdf – (On our blog : https://plantstomata.wordpress.com/2022/09/13/plants-gain-limited-light-quantum-in-the-low-light-adversity-so-leaf-temperature-is-reduced-stomata-limitation-increased-stomata-conductance-decreased/ )

Xu Z., Jiang Y., Jia B., Zhou G. (2016) – Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors – Front. Plant Sci., 13 May 2016 – https://doi.org/10.3389/fpls.2016.00657 – https://www.frontiersin.org/articles/10.3389/fpls.2016.00657/full – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-stomata-respond-to-elevated-co2-levels-and-environmental-factors/ )

Xu Z. Z., Zhou G. (2008) – Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass – J. Exp. Bot. 59: 3317–3325 – DOI: 10.1093/jxb/ern185 – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ern185 – (On our blog : https://plantstomata.wordpress.com/2017/06/15/stomatal-density-and-size/)

Xuan X., Wang Y., Ma S. M., Ye X.( 2011) – Comparisons between stomatal parameters between normal and abnormal leaf of Bougainvillea spectabilis Willd. – African Journal of Biotechnology 10(36): 6973-6978 – 94698-243748-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/20/stomatal-parameters-of-normal-and-abnormal-leaves/ )

Xue C., Li S., Hu D. (2022) – Stomatal dynamics: a modeling study revisiting miscellaneous experimental phenomena – Authorea November 15, 2022 – DOI: 10.22541/au.166852604.48579873/v1https://www.authorea.com/users/522640/articles/595029-stomatal-dynamics-a-modeling-study-revisiting-miscellaneous-experimental-phenomena?commit=336225717c17e7bd5c3704cf240dbc5410c50fd0 – (On our blog : https://plantstomata.wordpress.com/2023/01/22/model-to-reproduce-different-experimental-phenomena-semi-and-stomatal-responses-to-environment-conditions/ )

Xue S., Hu H., Ries A., Merilo E., Kollist H., Schroeder J. I. (2011) – Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell – EMBO J. 30: 1645–1658 –  doi: 10.1038/emboj.2011.68 – http://labs.biology.ucsd.edu/schroeder/bggn227/oldfiles13/emboj201168%20Xue%20Hu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/20/bicarbonate-in-s-type-anion-channel-activation-and-ost1-protein-kinase-in-co2-signal-transduction-in-stomata-2/

Xue S., Hu H., Ries A., Merilo E., Kollist H., Schroeder J. I. (2017) – Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell – EMBO J. 36(5): 655-670 –

Xue S., Yang P. (2005) – Effects of La 3+ on inward K + channels at plasma membrane in guard cells – Science in China Series B Chemistry 48(2): 143-147 –https://www.researchgate.net/publication/244742609_Effects_of_La_3_on_inward_K_channels_at_plasma_membrane_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2017/12/14/effects-of-la-3-on-inward-k-channels-at-plasma-membrane-in-guard-cells/ )

Xue S. W., Hu H. H., Ries A., Merilo E., Kollist H., Schroeder J. I. (2011) – Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell – Embo Journal 30: 1645-1658 – doi:10.1038/emboj.2011.68

Xue X., Bian C., Guo X., Di R., Dong J. (2020) – The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis – PLOS Genetics 16(4): e1008706 – https://doi.org/10.1371/journal.pgen.1008706https://journals.plos.org/plosgenetics/article/comments?id=10.1371/journal.pgen.1008706 – (On our blog : https://plantstomata.wordpress.com/2020/07/25/mass-proteins-regulate-stomatal-development/ )

Yaaran A., Negin B., Moshelion M. (2017) – Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response – Biorxiv – doi: https://doi.org/10.1101/218719 – https://www.biorxiv.org/content/early/2017/11/13/218719 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-maximal-stomatal-aperture-and-prompt-vapor-pressure-deficit-response/ )

Yamaguchi M., Kinose Y., Matsumura H., Izuta T. (2019) – Evaluation of O3 effects on cumulative photosynthetic CO2 uptake in seedlings of four Japanese deciduous broad-leaved forest tree species based on stomatal O3
uptake – Forests 10: 556 – Doi 10.3390/f10070556https://www.mdpi.com/1999-4907/10/7/556# – (On our blog : https://plantstomata.wordpress.com/2020/02/02/evaluation-of-o3-effects-on-cumulative-photosynthetic-co2-uptake-based-on-stomatal-o3-uptake/ )

Yamamoto Y., Negi J., Wang C., Isogai Y., Schroeder J. I., Iba K . (2016) – The Transmembrane Region of Guard Cell SLAC1 Channels Perceives CO2 Signals via an ABA-Independent Pathway in Arabidopsis – Plant Cell.  28(2): 557-567 – Epub 2016 Jan 13 – https://doi.org/10.1105/tpc.15.00583http://www.plantcell.org/content/28/2/557 – (On our blog : https://plantstomata.wordpress.com/2019/03/01/stomatal-guard-cell-slac1-channels-perceives-co2-signals-via-an-aba-independent-pathway/ )

Yamamuro C., Miki D., Zheng Z., Ma J., Wang J., Yang Z., Dong J., Zhu J.-K. (2014) – Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation – Nat. Commun. 5: 4062 – doi: 10.1038/ncomms5062https://pubmed.ncbi.nlm.nih.gov/24898766/ – (On our blog : https://plantstomata.wordpress.com/2023/01/06/active-dna-demethylation-combats-the-activity-of-rna-directed-dna-methylation-to-influence-the-initiation-of-stomatal-lineage-cells/ )

Yamasaki M., Moriya A. (1939) – Polyploidy and the size of stomata in the sugar-cane – Bot. Zool. 7: 1069-1072 – https://eurekamag.com/research/013/466/013466486.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/the-length-of-stomata-makes-it-possible-to-distinguish-easily-between-diploid-and-allopolyploid-strains/ )

Yamashita T. (1952) – Influences of potassium supply upon various properties and movement of guard cell – Sielboldia Acta Biollogy 1: 51–70 –

Yamauchi S., Mano S., Oikawa K., Hikino K., Teshima K. M., Kimori Y., Nishimura M., Shimazaki K.-i., Takemiya A. (2019) – Autophagy controls reactive oxygen species homeostasis in guard cells that is essential for stomatal opening – PNAS 116(38): 19187-19192 – https://doi.org/10.1073/pnas.1910886116https://www.pnas.org/content/116/38/19187 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/autophagy-controls-stomatal-guard-cell-ros-homeostasis-by-eliminating-oxidized-peroxisomes-thereby-allowing-stomatal-opening/ )

Yamauchi S., Takemiya A., Sakamoto T., Kurata T., Tsutsumi T., Kinoshita T., Shimazaki K.-i. (2016)  The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light – Plant Physiology 171(4) – https://doi.org/10.1104/pp.16.01581 – http://www.plantphysiol.org/content/171/4/2731 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/aha1-plays-a-major-role-in-stomatal-opening-in-response-to-blue-light/ )

Yamazaki D., Yoshida S., Asami T., Kuchitsu K. (2003) – Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells – Plant J. 35: 129–139 – doi: 10.1046/j.1365-313X.2003.01782.x — https://www.ncbi.nlm.nih.gov/pubmed/12834408 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/visualization-of-the-aba-perception-sites-and-the-nature-of-membrane-associated-aba-receptors-in-stomata/ )

Yamazaki T., Kato K., Ito T., Nakai T., Matsumoto K., Miki N., Park H., Ohta T. (2013) – A common stomatal parameter set used to simulate the energy and water balance over boreal and temperate forests – Journal of the Meteorological Society of Japan 91: 273–285 – DOI: 10.2151/jmsj.2013-303https://www.jstage.jst.go.jp/article/jmsj/91/3/91_2013-303/_pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/01/a-common-stomatal-parameter-set-used-to-simulate-the-energy-and-water-balance-over-boreal-and-temperate-forests/ )

Yamori W., Kusumi K., Iba K., Terashima I. (2020) – Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice – Plant, Cell & Environment – https://doi.org/10.1111/pce.13725https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13725 – (On our blog : https://plantstomata.wordpress.com/2020/08/15/increased-stomatal-conductance-induces-rapid-changes-to-photosynthetic-rate/ )

Yan F., Li X., Liu F. (2017) – ABA signaling and stomatal control in tomato plants exposure to progressive soil drying under ambient and elevated atmospheric CO2 concentration – Environ. Exp. Bot. 139: 99–104 – https://doi.org/10.1016/j.envexpbot.2017.04.008https://www.sciencedirect.com/science/article/abs/pii/S009884721730103X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/27/aba-signaling-and-stomatal-control/ )

Yan F., Liu F. (2016) – Effects of different concentration of Ca (NO 3)on quinoa treated with salinity – Peer J. Preprints 4:e1956v1 – https://doi.org/10.7287/peerj.preprints.1956v1https://peerj.com/preprints/1956/ – (On our blog : https://plantstomata.wordpress.com/2021/12/11/stomata-and-the-effects-of-cano3-2-applications/ )

Yan F., Sun Y., Song F., Liu F. (2012) – Differential responses of stomatal morphology to partial root-zone drying and deficit irrigation in potato leaves under varied nitrogen rates – Scientia Horticulturae 145: 76-83 – https://doi.org/10.1016/j.scienta.2012.07.026 – https://www.sciencedirect.com/science/article/pii/S0304423812003573 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/partial-root-zone-drying-prd-reduces-plant-water-use-via-modulating-stomatal-morphology-under-high-n-rate/

Yan G., Alassimone J., Varnau R., Sharma N., Cheung L. S., Bergmann D. C.  (2021) – Tuning self-renewal in the Arabidopsis stomatal lineage by hormone and nutrient regulation of asymmetric cell division – eLife 10:e63335 – DOI: 10.7554/eLife.63335https://elifesciences.org/articles/63335 – (On our blog : https://plantstomata.wordpress.com/2022/03/31/a-mechanistic-understanding-of-how-nutritional-status-and-environmental-factors-tune-stem-cell-behavior-in-the-stomatal-lineage/ )

Yan H., Shah S. S., Zhao W., Liu F. (2020) – Variations in water relations, stomatal characteristics, and plant growth between quinoa and pea under salt-stress conditions – Pak J Bot 52(1): 1-7 –

Yan J., Tsuichihara N., Etoh T., Iwai S. (2007) – Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening – Plant, Cell & Environment 30(10) : 1320-1325 – https://doi.org/10.1111/j.1365-3040.2007.01711.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01711.x – (On our blog :

Yan J., Yu H., Li B., Fan A., Melkonian J., Wang X., Zhou T., Hua J. (2019) – Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense and apoplastic defense – PloS Pathog 15(10): e1008094 – https://doi.org/10.1371/journal.ppat.1008094https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1008094 – (On our blog : https://plantstomata.wordpress.com/2020/02/29/an-unexpected-regulation-of-stomatal-defense-by-nlr-genes/ )

Yan S., McLamore E. S., Dong S., Gao H., Taguchi M., Wang N., Zhang T., Su X., Shen Y. (2015) – The role of plasma membrane H+-ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana – The Plant Journal 83(4): 638-649 – https://doi.org/10.1111/tpj.12915https://onlinelibrary.wiley.com/doi/10.1111/tpj.12915 – (On our blog : https://plantstomata.wordpress.com/2023/07/08/the-elevation-of-cytosolic-ca2-concentration-and-the-depolarized-pm-drive-the-efflux-of-k-from-the-cell-resulting-in-loss-of-turgor-and-closure-of-the-stomata/ )

Yan W., Zhong Y., Shangguan Z. (2017) – Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles – Glob. Change Biol. 104: 145–157 – doi: 10.1111/gcb.13654 – https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13654 https://plantstomata.wordpress.com/2019/03/01/a-common-stomatal-parameter-set-used-to-simulate-the-energy-and-water-balance-over-boreal-and-temperate-forests/)

Yáñez M. A., Urzua J. I., Espinoza S. E., Peña V. L. (2021) – Limited Phenotypic Variation in Vulnerability to Cavitation and Stomatal Sensitivity to Vapor Pressure Deficit among Clones of Aristotelia chilensis from Different Climatic Origins – Plants (Basel) 10(9): 1777 – doi: 10.3390/plants10091777 – PMID: 34579309 – PMCID: PMC8469263 – https://pubmed.ncbi.nlm.nih.gov/34579309/ – (On our blog : https://plantstomata.wordpress.com/2021/12/26/stomatal-sensitivity-to-vapor-pressure-deficit-3/ )

Yang C., Jinyu S., Du X., Hui D., Liang M. (1998) – Studies on the stomata of apple leaves – J. Shandong Agril. Univ. 29: 8-14 – https://europepmc.org/article/cba/313244 – (On our blog : https://plantstomata.wordpress.com/2021/04/18/stomata-are-of-stable-heredity-character-an-microcosmic-morphological-character-when-studing-the-heredity-breeding-of-fruit-trees-distinguishing-cultivars-and-strains/ )

Yang D. L., Shi Z., Bao Y., Yan J., Yang Z., Yu H., Li Y., Gou M., Wang S., Zou B., Xu D., Ma Z., Kim J., Hua J. (2017) – Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity – Plant Physiology 175(1): –  https://doi.org/10.1104/pp.17.01136 – http://www.plantphysiol.org/content/175/1 – (On our blog : https://plantstomata.wordpress.com/2017/11/12/aca10-8-and-bon1-interact-on-plasma-membrane-and-function-in-the-generation-of-cytosol-calcium-signatures-critical-for-stomatal-movement/

Yang F., Devetter L.W., Strik B.C., Bryla D.R. (2019) – Stomatal functioning and its influence on calcium accumulation during fruit development in northern highbush blueberry – HortScience. 53(9): 96-102 – https://doi.org/10.21273/HORTSCI14482-19https://www.ars.usda.gov/research/publications/publication/?seqNo115=352174 – (On our blog : https://plantstomata.wordpress.com/2019/12/09/although-stomatal-conductance-is-low-in-developing-blueberries-it-appears-to-be-an-important-mechanism-by-which-ca-is-delivered-to-the-berries/ )

Yang H. M. (2004) – Studies on the physiological and molecular regulation mechanisms of stomatal oscillation – PhD thesis, University of Lanzhou, China.

Yang H. M., Wang G. X. (2001) – Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment – Acta Phytoecologica Sinica 25: 312–316 – https://europepmc.org/abstract/cba/540904 – (on our blog : https://plantstomata.wordpress.com/2019/03/02/leaf-stomatal-densities-and-distribution-under-drought-and-co2-enrichment/ )

Yang H. M., Zhang X. Y., Wang G.X. (2004) – Cytosolic calcium oscillation signaling in guard cell – Plant Science 166: 549-556 – https://doi.org/10.1016/j.plantsci.2003.11.005 –https://www.sciencedirect.com/science/article/pii/S0168945203004813 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/how-ca2cyt-oscillations-are-encoded-and-decoded-and-water-channels-may-be-involved-in-stomatal-oscillation/ )

Yang H. M., Zhang X. Y., Wang G.X. (2004) – Effects of heavy metals on stomatal movements in broad bean leaves – Russian Journ. Plant Physiol. 51(4): 464-468 (Fiziologiya Rastenii 51(4): 516-520) – http://www.paper.edu.cn/scholar/showpdf/MUT2MNxINTj0Axwh – (On our blog : https://plantstomata.wordpress.com/2021/01/23/effects-of-heavy-metals-on-stomatal-movements/ )

Yang H. M., Zhang X. Y., Tang Q.-L., Wang G.-X. (2006)  Extracellular calcium is involved in stomatal movement through the regulation of water channels in broad bean – Plant Growth Regulation 50(1): 79-83 – DOI: 10.1007/s10725-006-9128-0 –https://www.infona.pl/resource/bwmeta1.element.springer-6f95dbbd-1b60-3c0e-baed-9c2cbcc6471f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/extracellular-calcium-and-the-regulation-of-water-channels-in-stomatal-movement/ )

Yang H.-M., Zhang X.-Y., Wang G.-X., Zhang J.-H. (2006) – Water Channels Are Involved in Stomatal Oscillations Encoded by Parameter-Specific Cytosolic Calcium Oscillations – Journal of Integrative Plant Biology 48(7): 790-799 – https://doi.org/10.1111/j.1744-7909.2006.00261.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1744-7909.2006.00261.x – (On our blog : https://plantstomata.wordpress.com/2023/05/25/water-channels-are-involved-in-stomatal-oscillation-as-a-downstream-element-of-ca2cyt-oscillation-signaling/ )

Yang H. M., Zhang J., Zhang X. (2005) – Regulation mechanisms of stomatal oscillation – Journal of Integrative Plant Biology 47: 1159–1172 – https://doi.org/10.1111/j.1744-7909.2005.00146.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-7909.2005.00146.x – (On our blog : https://plantstomata.wordpress.com/2018/10/28/a-summary-of-studies-on-stomatal-oscillation-and-a-discussion-regarding-the-mechanisms-of-regulation-of-stomatal-oscillation/ )

Yang J., Li C., Kong D., Guo F., Wei H. (2020) – Light-Mediated Signaling and Metabolic Changes Coordinate Stomatal Opening and Closure – Front. Plant Sci., 04 December 2020 | https://doi.org/10.3389/fpls.2020.601478https://www.frontiersin.org/articles/10.3389/fpls.2020.601478/full – (On our blog : https://plantstomata.wordpress.com/2021/03/27/mechanisms-regulating-the-trade-off-between-stomatal-opening-and-closure-may-have-potential-applications-toward-generating-superior-crops-with-improved-water-use-efficiency/ )

Yang J., Liang T., Liu L., Pan T., Zou Z. (2019) – Stomatal opening and growth in tomato seedlings treated with different proportions of red and blue light – Canadian Journal of Plant Science 99(5): 688-700 – https://doi.org/10.1139/cjps-2018-0241https://www.nrcresearchpress.com/doi/abs/10.1139/CJPS-2018-0241 – (On our blog : https://plantstomata.wordpress.com/2020/09/08/red-and-blue-light-dependent-stomatal-opening-processes/ )

Yang J., Ordiz I. M., Jaworski J. G., Beachy, R. N. (2011) – Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata – Plant Physiol. Biochem. 49: 1448–1455 – doi: 10.1016/j.plaphy.2011.09.006https://www.sciencedirect.com/science/article/abs/pii/S0981942811002580?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/12/29/drought-tolerance-caused-by-the-induction-of-win1-shin-gene-may-be-due-to-reduced-numbers-of-stomata-as-well-as-to-cuticular-wax-accumulation/ )

Yang J., Weyers J., Zhu Q., Peng Z. (1995) – Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves – Acta Agronomica Sinica 21: 533–539 – https://europepmc.org/abstract/cba/282006 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/effect-of-water-deficit-stress-on-stomatal-frequency-and-stomatal-conductance/ )

Yang J., Weyers J., Zhu Q., Peng Z. (1995) – Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves – Acta Agron. Sin. 21: 533– 539 – https://europepmc.org/article/cba/282006 – (On our blog : https://plantstomata.wordpress.com/2020/11/04/effect-of-water-deficit-stress-on-the-stomatal-frequency-stomatal-conductance-and-aba/ )

Yang J., Zhang N., Bai J., Duan X., Zhang L., Liu S., Tang X., Jin X., Li S., Si H. (2022) – Stu-miR827-Targeted StWRKY48 Transcription Factor Negatively Regulates Drought Tolerance of Potato by Increasing Leaf Stomatal Density – Int J Mol Sci. 23(23): 14805 – doi: 10.3390/ijms232314805 – PMID: 36499135 – PMCID: PMC9741430 – https://pubmed.ncbi.nlm.nih.gov/36499135/ – (On our blog : https://plantstomata.wordpress.com/2023/02/05/suppression-of-stu-mir827-might-lead-to-overexpression-of-stwrky48-which-may-contribute-to-negatively-regulating-the-drought-adaptation-by-increasing-the-stomatal-density/ )

Yang K., Yang J., Lv C., Hu Z., Yu L., Sun W. (2023) – Effects of three patterns of elevated CO2 in single and multiple generations on photosynthesis and stomatal features in rice – Annals of Botany 131(3): 463–473 – https://doi.org/10.1093/aob/mcad021https://academic.oup.com/aob/article-abstract/131/3/463/7008608?redirectedFrom=fulltext&utm_source=etoc&utm_campaign=aob&utm_medium=email – (On our blog : https://plantstomata.wordpress.com/2023/04/08/elevated-co2-retained-intergenerational-effects-on-photosynthesis-and-stomatal-features-and-there-were-no-multigenerational-differences-in-the-effects-of-gradually-elevated-co2-and/ )

Yang K., Jiang M., Le J. (2014) – A new loss‐of‐function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell – Journal of Integrative Plant Biology 56(6): – https://doi.org/10.1111/jipb.12154https://onlinelibrary.wiley.com/doi/abs/10.1111/jipb.12154 – (On our blog : https://plantstomata.wordpress.com/2020/04/08/upregulation-of-agamous%e2%80%90like16-agl16-in-28y-mutants-suggests-that-ago1-is-required-to-restrict-agl16%e2%80%90mediated-stomatal-spacing-divisions/ )

Yang K., Jiang M., Wang M., Xue S., Zhu L.-l., Wang H.-Z., Zou J., Lee E.-K., Sack F. D., Le J. (2015) – Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis – Molecular Plant 8(5): 783-795 – https://doi.org/10.1016/j.molp.2014.12.014 –https://www.sciencedirect.com/science/article/pii/S1674205214000513 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/phosphorylation-of-serine-186-of-bhlh-transcription-factor-speechless-promotes-stomatal-development/ )

Yang K., Le J. (2019) – A conserved but plant specific CDK-mediated regulation of DNA replication protein A2 in the precise control of stomatal terminal division – PNAS – See : Scientists find precise control of terminal division during plant stomatal developmenthttps://phys.org/news/2019-08-scientists-precise-terminal-division-stomatal.html – (On our blog : https://plantstomata.wordpress.com/2020/08/02/scientists-find-precise-control-of-terminal-division-during-plant-stomatal-development/ )

Yang K., Zhu L., Wang H., Jiang M., Xiao C., Hu X., Vanneste S., Dong J., Le J. (2019) – A conserved but plant-specific CDK-mediated regulation of DNA replication protein A2 in the precise control of stomatal terminal division – PNAS 116(36): 18126-18131- https://doi.org/10.1073/pnas.1819345116https://www.pnas.org/content/early/2019/08/19/1819345116 – (On our blog : https://plantstomata.wordpress.com/2019/08/21/the-precise-control-of-stomatal-terminal-division/ )

Yang K.-T., Chang H.-L., Chen G.-P., Yu X.-Y., Xian J.-R. (2021) – Stomatal traits of main greening plant species in Lanzhou – Chin J Plant Ecol  45(2): 187-196 – DOI: 10.17521/cjpe.2020.0257https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0257 – (On our blog : https://plantstomata.wordpress.com/2021/11/28/96405/ )

Yang L., Han M., Zhou G., Li J. (2007) – The changes in water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect – Acta Ecologica Sinica 27(1): 16-24 – https://doi.org/10.1016/S1872-2032(07)60006-7https://www.sciencedirect.com/science/article/abs/pii/S1872203207600067 – (On our blog : https://plantstomata.wordpress.com/2023/01/06/changes-in-water-use-efficiency-and-stomata-density/ )

Yang L., Mei H., Zhou G., Li J. (2007) – The changes of water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect – Acta Ecologica Sinica 27: 16–24 – https://doi.org/10.1016/S1872-2032(07)60006-7 –https://www.sciencedirect.com/science/article/pii/S1872203207600067 –  https://plantstomata.wordpress.com/2016/02/16/water-use-efficiency-and-stoma-density/ )

Yang L.-N., Liu H., Wang Y.-P., Seemlatti J., Grenville-Briggs L. J., Wang Z., Zhan J. (2021) – Pathogen-Mediated Stomatal Opening: A Previously Overlooked Pathogenicity Strategy in the Oomycete Pathogen Phytophthora infestans – Front. Plant Sci., 12 July 2021 – https://doi.org/10.3389/fpls.2021.668797https://www.frontiersin.org/articles/10.3389/fpls.2021.668797/full – (On our blog : https://plantstomata.wordpress.com/2021/11/09/95163/ )

Yang M., He J;, Sun Z., Li Q., Cai J., Zhou Q, Wollenweber B., Jiang D., Wang X. (2023) – Drought priming mechanisms in wheat elucidated by in-situ determination of dynamic stomatal behavior -Front Plant Sci.:14: 1138494 –  doi: 10.3389/fpls.2023.1138494 – eCollection 2023 – https://pubmed.ncbi.nlm.nih.gov/36875605/ – (On our blog : https://plantstomata.wordpress.com/2024/03/18/priming-promoted-faster-stomatal-closure-under-drought-stress-and-faster-reopening-during-post-drought-recovery-in-relation-to-non-primed-plants-thereby-enhancing-overall-drought-tolerance/ )

Yang M., Sack F. D. (1995) – The too many mouths and four lips mutations affect stomatal production in Arabidopsis – Plant Cell 7: 2227–2239 – doi: 10.1105/tpc.7.12.2227 – https://www.jstor.org/stable/3870164?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/22/two-mutations-affect-stomatal-production-more-than-patterning-or-differentiation/ )

Yang M. B., Yang J. L., Yang J. Y., Liang N., Qing H. (2007) – Changes on characteristics of the leaf epidermis and genetic diversity of Caragana davazamcii in different habitats in Ordos plateau, China – Journal of Plant Ecology (Chinese Version) 31: 1181–1189 (in Chinese with English abstract) –

Yang S., Liu X., Tyree M. T. (1998) – A model of stomatal conductance in sugar maple (Acer saccharum Marsh) – J Theor Biol 191: 197–211 – https://doi.org/10.1006/jtbi.1997.0583https://www.sciencedirect.com/science/article/abs/pii/S002251939790583X – (On our blog : https://plantstomata.wordpress.com/2023/01/06/a-model-to-describe-stomatal-conductance-as-a-function-of-photosynthetically-active-radiation-leaf-water-potential-leaf-temperature-and-vapor-pressure-difference/ )

Yang S. H., Berberich T., Sano H., Kusano T. (2001) – Specific association of transcripts of tbzF and tbz17, tobacco genes encoding basic region leucine zipper-type transcriptional activators, with guard cells of senescing leaves and/or flowers – Plant Physiol. 127(1): 23-32 – doi: 10.1104/pp.127.1.23 – PMID: 11553731 – PMCID: PMC117959 – https://pubmed.ncbi.nlm.nih.gov/11553731/ – (On our blog : https://plantstomata.wordpress.com/2021/04/25/tbzf-and-tbz17-are-both-involved-in-controlling-gene-transcription-related-to-functions-of-stomata-in-senescing-leaves-tbzf-acts-bifunctionally-in-floral-development/ )

Yang S.-J., Sun M., Zhang Y.-J., Cochard H., Cao K.-F. (2014) – Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (Sinarundinaria nitida) to contrasting light environments – Plant Ecology 215(1): 97-109 – http://www.jstor.org/stable/24552072 – (On our blog : https://plantstomata.wordpress.com/2023/04/29/stomatal-size-and-leaf-phosphorous-concentration-per-unit-mass-remained-relatively-constant-regardless-of-light-regime/ )

Yang S.-L., Ho C.-M. K. (2022) – The coordination between stomata and cuticles – The Plant Cell: In a Nutshell February 15, 2022 – https://plantae.org/the-coordination-between-stomata-and-cuticles/ – (On our blog : https://plantstomata.wordpress.com/2022/04/22/coordination-between-stomata-and-cuticles/ )

Yang S.-L., Tran N., Tsai M.-Y., Ho C.-M. K. (2021) – Misregulation of MYB16 expression causes stomatal cluster formation by disrupting polarity during asymmetric cell divisions – The Plant Cell – koab260 – https://doi.org/10.1093/plcell/koab260https://academic.oup.com/plcell/advance-article-abstract/doi/10.1093/plcell/koab260/6412568 – (On our blog : https://plantstomata.wordpress.com/2021/11/27/96281/ )

Yang T. Z., Yu Y. Q., Le D. Y., Mei Z. Y. (2004) – Relationships between ozone injury and stoma parameters and activities of antioxidant enzyme – Acta-Phytoecologica_Sinica 28: 672-679 – https://europepmc.org/abstract/cba/465258 – (On our blog : https://plantstomata.wordpress.com/2019/07/17/ozone-injury-stoma-parameters-and-activities-of-antioxidant-enzyme/ )

Yang T. Z., Zhang X. Y., Wang G. X. (2004) – Relationships between stomatal character, photosynthetic character and seed chemical composition in grass pea at different water availabilities – Journal of Agricultural Science 142: 675-681 –  https://agris.fao.org/agris-search/search.do?recordID=US201301014975 – (On our blog : https://plantstomata.wordpress.com/2020/12/08/stomatal-aperture-may-be-more-closely-related-to-photosynthetic-character-and-seed-chemical-composition-in-grass-pea-and-water-deficit-may-enhance-the-correlations/ )

Yang W., Ruan M., Xiang M., Deng A., Du J., Xiao C. (2019) – Overexpression of a pectin methylesterase gene PtoPME35 from Populus tomentosa influences stomatal function and drought tolerance in Arabidopsis thaliana – BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

Yang X. et al. (2017) – Drought-resistant plant genes could accelerate evolution of water-use efficient crops – https://phys.org/news/2017-12-drought-resistant-genes-evolution-water-use-efficient.html#jCp – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomata-cam-plants-water-use-efficiency-and-drought-resistant-plant-genes/ )

Yang X., Gavya L., Zhou S., Urano D., Lau S. (2022) – Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase–mediated phosphocode on the master regulator SPEECHLESS – SCIENCE ADVANCES 8(40): – DOI: 10.1126/sciadv.add2063https://www.science.org/doi/10.1126/sciadv.add2063 – (On our blog : https://plantstomata.wordpress.com/2022/10/15/regulation-of-stomatal-production-by-imprinting-a-snrk2-kinase-mediated-phosphocode-on-the-master-regulator-speechless/ )

Yang X., Short T. H., Fox R. D., Bauerle W. L. (1990) – Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop – Agricultural and Forest Meteorology 51(3-4): 197-209 – https://doi.org/10.1016/0168-1923(90)90108-Ihttps://www.sciencedirect.com/science/article/abs/pii/016819239090108I – (On our blog : https://plantstomata.wordpress.com/2021/03/31/no-significant-correlations-between-stomatal-resistance-and-other-climatic-variables/ )

Yang X.-H., Xi Z., Li J., Feng X., Zhu X., Guo S., Song C. (2021) – Deep Transfer Learning-Based Multi-Object Detection for Plant Stomata Phenotypic Traits Intelligent Recognition – IEEE/ACM Transactions on Computational Biology and Bioinformatics PP(99):1-1 – DOI: 10.1109/TCBB.2021.3137810https://dl.acm.org/doi/abs/10.1109/TCBB.2021.3137810 – (On our blog : https://plantstomata.wordpress.com/2024/01/28/for-different-cultivars-multi-scales-rich-background-features-high-density-and-small-stomata-object-images-the-proposed-method-can-precisely-locate-multiple-stomata-in-microscope-images-and-autom/ )

Yang X., Yang Y., Ji C., Feng T., Shi Y., Lin L., Ma J., He J.-S. (2014) – Large-scale patterns of stomatal traits in Tibetan and Mongolian grassland species – Basic and Applied Ecology 15(2): 122-132 – https://doi.org/10.1016/j.baae.2014.01.003 –https://www.sciencedirect.com/science/article/pii/S1439179114000048?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/01/the-low-temperature-and-high-insolation-at-high-altitudes-may-be-responsible-for-the-larger-and-fewer-stomata/ )

Yang Y., Chen J., Liu Q., Ben C., Todd C. D., Shi J., Yang Y., Hu X. (2012) – Comparative proteomic analysis of the thermotolerant plant Portulaca oleracea acclimation to combined high temperature and humidity stress – J Proteome Res. 11(7): 3605-3623 – doi: 10.1021/pr300027a – Epub 2012 Jun 7 – PMID: 22616707 – https://pubmed.ncbi.nlm.nih.gov/22616707/ – (On our blog : https://plantstomata.wordpress.com/2022/09/11/quickly-accumulations-of-proline-content-and-heat-shock-proteins-and-depleting-aba-were-also-found-in-portulaca-oleracea-under-stress-conditions-that-resulted-into-greater-stomata-conductance/ )

Yang Y., Costa A., Leonhardt N., Siegel R. S., Schroeder J. I. (2008) – Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool – Plant Methods 4: 6 – https://doi.org/10.1186/1746-4811-4-6 – https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-4-6 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/isolation-of-a-strong-arabidopsis-guard-cell-promoter-and-its-potential-as-a-research-tool/ )

Yang Y., Li H. G., Wang J., Wang H. L., He F., Su Y., Zhang Y., Feng C. H., Niu M., Li Z., Liu C., Yin W., Xia X. (2020) – ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica – J Exp Bot. 71(22): 7270-7285 – doi: 10.1093/jxb/eraa383 – PMID: 32822499 – https://pubmed.ncbi.nlm.nih.gov/32822499/ – https://plantstomata.wordpress.com/2023/08/16/peabf3-enhances-drought-tolerance-via-promoting-aba-induced-stomatal-closure-by-directly-regulating-peadf5-expression/ )

Yang Y., Yu L., Wang L., Guo S. (2015) – Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress – Science.gov (United States) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html – (On our blog : https://plantstomata.wordpress.com/2022/03/06/promotion-of-photosynthesis-by-the-activation-of-stomatal-and-non-stomatal-abilities-especially-the-regulation-of-a-variety-of-photosynthetic-enzymes/ )

Yang Y., Zhao Y., Zheng W., Zhao Y., Zhao S., Wang Q., Bai L., Zhang T., Huang S., Song C., Yuan M., Guo Y. 2022) – Phosphatidylinositol 3-phosphate regulates SCAB1-mediated F-actin reorganization during stomatal closure in Arabidopsis – The Plant Cell 34(1): 477–494 – https://doi.org/10.1093/plcell/koab264https://academic.oup.com/plcell/article/34/1/477/6433164?login=false – (On our blog : https://plantstomata.wordpress.com/2023/05/27/a-pi3p-regulated-pathway-during-aba-induced-stomatal-closure-which-involves-the-mediation-of-scab1-activity-in-f-actin-reorganization/ )

Yang Y.-J., Bi M., Nie Z., Jiang H., Liu X., Fang X., Brodribb T. J., (2021) – Evolution of stomatal closure to optimise water use efficiency in response to dehydration in ferns and seed plants – New Phytologist – DOI: 10.1111/nph.17278https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17278https://www.researchgate.net/publication/349314771_Evolution_of_stomatal_closure_to_optimise_water_use_efficiency_in_response_to_dehydration_in_ferns_and_seed_plants – (On our blog : https://plantstomata.wordpress.com/2021/02/24/evolution-of-stomatal-closure-to-optimise-water-use-efficiency-in-response-to-dehydration/ )

Yang Z.-R., Lin Q. (2005) – Comparative morphology of the leaf epidermis in Schisandra (Schisandraceae) – Botanical Journal of the Linnean Society 148(1): 39-56 – https://doi.org/10.1111/j.1095-8339.2005.00396.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.2005.00396.x – (On our blog : https://plantstomata.wordpress.com/2023/06/30/double-outer-stomatal-rims-occur-in-evergreen-schisandra-species-whereas-a-single-rim-occurs-in-deciduous-species/ )

Yang Z. Q., Tan W., Liu Z. X., Chen Y. Q. (2015) – Effect of soil water stress on stomatal characters of greenhouse tomato leaves ([ 杨再强, 谭文, 刘朝霞, 陈艳秋 (2015). 土壤水分胁迫对设施番茄叶片气孔特性的影响. 生态学杂志, 34,1234-1240.]) – Chinese Journal of Ecology 34: 1234-1240 –

Yanmaz R., Abak K. (1985) – Stomatal frequency in some pepper varieties – Capsicum Newslett. 4: 20-21 –

Yanmaz R., Erio A. (1984) –  Bazi sebze turlerinin yapraklarindaki stoma sayilari – A.U. Ziraat Fakultesi Yilii 33: 94-102 –

Yao P.-Q., Chen J.-H., Ma P.-F., Xie L.-H., Cheng S.-P. (2023) – Stomata variation in the process of polyploidization in Chinese chive (Allium tuberosum) – BMC Plant Biology 23(1) :- DOI: 10.1186/s12870-023-04615-yhttps://www.researchgate.net/publication/375997742 – (On our blog : https://plantstomata.wordpress.com/2024/02/03/122234/ )

Yao X., Zhao W., Yang R., Wang J., Zhao F., Wang S. (2018) – Preparation and applications of guard cell protoplasts from the leaf epidermis of Solanum lycopersicum – Plant Methods 14: 26 – https://doi.org/10.1186/s13007-018-0294-7 – https://plantmethods.biomedcentral.com/articles/10.1186/s13007-018-0294-7 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/preparation-and-applications-of-stomatal-protoplasts/ )

Yarsi G., Sivaci A., Dasgan H. Y., Altuntas O. (2017) – Effects of salinity stress on chlorophyll and carotenoid contents and stomata size of grafted and ungrafted Galia C8 melon cultivar – International Nuclear Information System (INIS) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/chlorophyll-carotenoid-contents-and-stomata-length-and-width-of-upper-and-lower-surface-of-leaf-were-generally-reduced-under-salinity-stress/ )

Yasmeen S., Khan M. T.,  Khan I. A. (2020) –  Revisiting the physical mutagenesis for sugarcane improvement: a stomatal prospective – Scientific Reports 10(1): 16003 – doi: 10.1038/s41598-020-73087-z – PMID: 32994498 – PMCID: PMC7524725https://pubmed.ncbi.nlm.nih.gov/32994498/ – (On our blog : https://plantstomata.wordpress.com/2023/02/18/gamma-radiations-cause-variations-in-stomatal-characteristics-of-sugarcane/ )

Yates D. (2021) – Not just CO2: Rising temperatures also alter photosynthesis in a changing climate – Illinois News Bureau, University of Illinois – https://news.illinois.edu/view/6367/1834613107 – (On our blog : https://plantstomata.wordpress.com/2021/03/23/88946/ )

Yates G. (2021) – What’s stomata? – https://www.linkedin.com/pulse/whats-stomata-gary-yates/?trk=public_profile_article_view – (On our blog : https://plantstomata.wordpress.com/2021/11/28/whats-stomata/ )

Yavas I., Nail H., Ünay A. (2016) – The Applications to Increase Drought Tolerance of Plants – Turkish Journal of Agriculture 4(1): – https://doi.org/10.24925/turjaf.v4i1.48-57.545http://www.agrifoodscience.com/index.php/TURJAF/article/view/545 – (On our blog : https://plantstomata.wordpress.com/2022/03/09/stomata-and-drought-tolerance-of-plants/ )

Ye W., Adachi Y., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2015) – Open stomata 1 kinase is essential for yeast elicitor-induced stomatal closure in Arabidopsis – Plant Cell Physiol. 56: 1239–1248 -DOI: 10.1093/pcp/pcv051 – https://www.ncbi.nlm.nih.gov/pubmed/25840086 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/ost1-kinase-is-essential-for-stomatal-closure-and-activation-of-s-type-anion-channels-induced-by-yel/ )

Ye W., Ando E., Rhaman M. S., Tahjib-Ul- ARif, Okuma E., Nakamura Y., Kinoshita T., Murata Y. (2020) – Inhibition of light-induced stomatal opening by allyl isothiocyanate does not require guard cell cytosolic Ca2+ signaling – Journal of Experimental Botany 71(10 – DOI: 10.1093/jxb/eraa073https://www.researchgate.net/publication/339567515_Inhibition_of_light-induced_stomatal_opening_by_allyl_isothiocyanate_does_not_require_guard_cell_cytosolic_Ca2_signaling – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/105053 )

Ye W., Dong J., Kinoshita T. (2022) – Editorial: Stomatal Biology and Beyond – Front. Plant Sci., 11 February 2022 – https://doi.org/10.3389/fpls.2022.848811https://www.frontiersin.org/articles/10.3389/fpls.2022.848811/full – (On our blog : https://plantstomata.wordpress.com/2022/02/20/stomatal-biology-and-beyond/ )

Ye W., Hossain M. A., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2013) – Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells – J. Plant Physiol. 170: 1212–1215 – https://doi.org/10.1016/j.jplph.2013.03.011 – https://www.sciencedirect.com/science/article/pii/S0176161713001363 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/endogenous-aba-is-involved-in-meja-induced-ros-and-no-production-but-not-in-meja-induced-cytosolic-alkalization-in-stomata/ )

Ye W., Koya S., Hayashi Y., Jiang H., Oishi T., Kato K., Fukatsu K., Kinoshita T. (2021) – Identification of Genes Preferentially Expressed in Stomatal Guard Cells of Arabidopsis thaliana and Involvement of the Aluminum-Activated Malate Transporter 6 Vacuolar Malate Channel in Stomatal Opening – Front. Plant Sci. – https://doi.org/10.3389/fpls.2021.744991https://www.frontiersin.org/articles/10.3389/fpls.2021.744991/full – (On our blog : https://plantstomata.wordpress.com/2022/03/30/the-gc-specific-genes-are-frequently-involved-in-stomatal-movement/ )

Ye W., Munemasa S., Shinya T., Wu W., Ma T., Lu j., Kinoshita T., Kaku H., Shibuya N., Murata Y. (2020) – Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death – PNAS 117(34): 20932-20942 – https://doi.org/10.1073/pnas.1922319117https://www.pnas.org/content/117/34/20932 – (On our blog : https://plantstomata.wordpress.com/2020/11/04/stomatal-immunity-against-fungal-invasion-comprises-not-only-ctos-induced-stomatal-closure-but-also-csos-induced-guard-cell-death/ )

Ye W., Murata Y. (2016) – Microbe Associated Molecular Pattern Signaling in Guard Cells – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2016) – Front. Plant Sci. 7:583. doi: 10.3389/fpls.2016.00583- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/recent-findings-in-signaling-underlying-mamp-induced-stomatal-movement/ )

Ye W., Muroyama D., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Calcium-dependent protein kinase, CPK6, positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis – Plant Physiol. 163: 591–599 – doi: 10.1104/pp.113.224055 – http://www.plantphysiol.org/content/163/2/591.full.pdf+html – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk6-yel-and-stomatal-movement/ )

Ye Z.-P., Yu Q. (2008) – A coupled model of stomatal conductance and photosynthesis for winter wheat – Photosynthetica 46: 637–640 – https://core.ac.uk/download/pdf/71607305.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/02/a-coupled-model-of-stomatal-conductance-and-photosynthesis/ )

Yeh C.-Y., Wang Y.-S., Takahashi Y., Kuusk K., Paul K., Arjus T., Yadlos O., Schroeder J. I., Ilves I., Garcia-Sosa A. T., Kollist H. (2023) – MPK12 in stomatal CO2 signaling: function beyond its kinase activity – New Phytologist 239(1): 146-158 – https://doi.org/10.1111/nph.18913https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.18913 – (On our blog : https://plantstomata.wordpress.com/2023/06/09/mpk12-kinase-activity-independent-interaction-with-ht1-functions-as-a-molecular-switch-by-which-stomatal-guard-cells-sense-changes-in-atmospheric-co2-concentration/ )

Yekondi S., Liang F.-C., Okuma E., Radziejwoski A., Mai H.-W., Swain S., Singh P., Gauthier M., Chien H.-C., Murata Y., Zimmerli L. (2017) – Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure – New Phytol. – doi:10.1111/nph.14953http://onlinelibrary.wiley.com/doi/10.1111/nph.14953/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-role-of-lecrk-v-2-and-lecrk-vii-1-in-stomatal-immunity/ )

Yemm E. W. (1969) – Stomatal Behaviour – Nature 224623 – https://doi.org/10.1038/224623a0 – Physiology of Stomata By Hans Meidner and T. A. Mansfield. (European Plant Biology Series.) Pp. xiii + 179. (McGraw-Hill: Maidenhead, 1969.) 56s.

Yemm E. W., Willis A. J. (1954) – Stomatal movements and changes of carbohydrate in leaves of Chrysanthemum maximum – New Phytologist 53: 373-396 – https://doi.org/10.1111/j.1469-8137.1954.tb05248.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1954.tb05248.x – (On our blog : https://plantstomata.wordpress.com/2023/01/07/stomatal-movements-and-changes-of-carbohydrate/ )

Yemm E. W., Willis A. J. (1954) – Chlorophyll and Photosynthesis in Stomatal Guard Cells – Nature 173: 726 – https://doi.org/10.1038/173726a0https://www.nature.com/articles/173726a0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/12/14/chlorophyll-and-photosynthesis-in-stomatal-guard-cells/ )

Yendrek C. R., Betzelberger A. M., Nelson R. L., Ainsworth E. A. (2010) -Acclimation to Chronic O3 in Field-grown Soybean is Characterized by Increased Levels of TCA Cycle Transcripts and ROS Scavenging Compounds in Addition to Decreased Photosynthetic Capacity – Biennial Conference on Molecular and Cellular Biology of the Soybean – August 8-11, 2010, Durham, NC – https://www.ars.usda.gov/research/publications/publication/?seqNo115=255442 – (On our blog : https://plantstomata.wordpress.com/2022/09/15/in-high-o3-reductions-in-productivity-are-due-in-part-to-an-overall-decrease-in-photosynthetic-capacity-when-plants-take-in-o3-through-stomata-harmful-reactive-oxygen-species-ros-are-produced/ )

Yera R.,  Davis S.,  Frazer J.,  Tallman G. (1986) – Responses of adaxial and abaxial stomata of normally oriented and inverted leaves of Vicia faba L. to light – Plant Physiol. 82: 384-389 – DOI: 10.1104/pp.82.2.384https://pubmed.ncbi.nlm.nih.gov/16665038/ – (On our blog : https://plantstomata.wordpress.com/2021/01/05/responses-of-adaxial-and-abaxial-stomata-of-normally-oriented-and-inverted-leaves/ )

Yera R., Tallman G., Davis S.,  Frazer J., (1984) – Response of abaxial and adaxial stomates to increasing light in amphistomatous leaves of Vicia faba, faba bean – Plant Physiology 75(Suppl. 1): 24 – https://eurekamag.com/research/029/088/029088484.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/abaxial-and-adaxial-stomates-respond-to-increasing-light-in-amphistomatous-leaves/ )

Yi H., Chen Y., Anderson C. T. (2022) – Turgor pressure change in stomatal guard cells arises from interactions between water influx and mechanical responses of their cell walls – Cambridge University Press: 13 June 2022 – Quantitative Plant Biology 3, E12 – doi:10.1017/qpb.2022.8https://www.cambridge.org/core/journals/quantitative-plant-biology/article/turgor-pressure-change-in-stomatal-guard-cells-arises-from-interactions-between-water-influx-and-mechanical-responses-of-their-cell-walls/097378CAC99AEB04D5578400D157AC71 – (On our blog : https://plantstomata.wordpress.com/2023/01/28/a-system-dynamics-model-accounting-for-water-influx/ )

Yi H., Chen Y., Wang J. Z., Puri V. M., Anderson C. T. (2019) – The stomatal flexoskeleton: how the biomechanics of guard cell walls animate an elastic pressure vessel – Journal of Experimental Botany 70: 3561–3572 – DOI: 10.1093/jxb/erz178https://pubmed.ncbi.nlm.nih.gov/30977824/ – (On our blog : https://plantstomata.wordpress.com/2023/01/07/modeling-studies-of-the-biomechanics-of-stomatal-complexes-highlighting-commonalities-and-contrasts-between-older-and-newer-studies/ )

Yi H., Liu X., Yi M., Chen G. (2014) – Dual Role of Hydrogen Peroxide in Arabidopsis Guard Cells in Response to Sulfur Dioxide – Advances in Toxicology Volume 2014, Article ID 407368 – http://dx.doi.org/10.1155/2014/407368https://www.hindawi.com/journals/atox/2014/407368/ – (On our blog : https://plantstomata.wordpress.com/2019/04/14/dual-role-of-h2o2-in-stomatal-guard-cells-in-response-to-so2/ )

Yi H., Rui Y., Kandemir B., Wang J. Z., Anderson C. T., Puri V. M. (2018) – Mechanical effects of cellulose, xyloglucan, and pectins on stomatal guard cells of Arabidopsis thaliana –  Front Plant Sci 9: 1566 – doi:  10.3389/fpls.2018.01566https://europepmc.org/articles/pmc6230562 – (On our blog : https://plantstomata.wordpress.com/2019/08/02/new-insights-into-how-the-walls-of-guard-cells-are-constructed-to-meet-the-mechanical-requirements-of-stomatal-dynamics/ )

Yi H., Yin J., Liu X., Jing X., Fan S., Zhang H. (2012) – Sulfur dioxide induced programmed cell death in Vicia guard cells – Ecotoxicology and Environmental Safety 78: 281–286 – https://doi.org/10.1016/j.ecoenv.2011.11.035 –https://www.sciencedirect.com/science/article/pii/S0147651311004477?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/14/77606/ )

Yi X. L.,Wang J. X., Duan Z. Q. (2006) – Study on the Stomatal Density and Daily Change Rule of the Wheat – Chin Agric Sci Bull. 22(5): 237–242 – https://doi.org/10.3969/j.issn.1000-6850.2006.05.063http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200605063# – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-density-and-daily-change-rule-of-the-wheat/ )

Yianoulis P., Tyree M. T. (1984) – A model to investigate the effect of evaporative cooling on the pattern of evaporation in sub-stomatal cavities – Annals of Botany 53: 189– 206 – https://doi.org/10.1093/oxfordjournals.aob.a086680https://academic.oup.com/aob/article-abstract/53/2/189/153513 – (On our blog : https://plantstomata.wordpress.com/2023/01/06/a-model-to-investigate-the-pattern-of-water-evaporation-from-sub-stomatal-cavities/ )

Yigit N., Cetin M., Ozturk A., Sevik H., Cetin S. (2019) – Variation of stomatal characteristics in broad leaved species based on habitat – APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 17(6): 12859-12868 –
http://www.aloki.hu – ISSN 1589 1623 (Print) – ISSN 1785 0037 (Online) –
http://dx.doi.org/10.15666/aeer/1706_1285912868http://www.aloki.hu/pdf/1706_1285912868.pdf – (On our blog : https://plantstomata.wordpress.com/2022/05/14/stomatal-characteristics-in-broad-leaved-species-based-on-habitat/ )

Yin H. C., Tung Y. T. (1948) – Phosphorylase in Guard Cells. Science. 108(2795): 87-88 – doi: 10.1126/science.108.2795.87 – PMID: 17838208 – https://pubmed.ncbi.nlm.nih.gov/17838208/ – (On our blog : https://plantstomata.wordpress.com/2024/01/04/121072/

Yin J., Zhang X., Zhang G., Wen Y., Liang G., Chen X. (2019) – Aminocyclopropane-1-carboxylic acid is a key regulator of guard mother cell terminal division in Arabidopsis thaliana – Journal of Experimental Botany 70(3): 897–908 – https://doi.org/10.1093/jxb/ery413https://academic.oup.com/jxb/article/70/3/897/5194407 – (On our blog : https://plantstomata.wordpress.com/2019/05/03/acc-positively-modulates-the-symmetric-division-of-stomatal-gmcs-in-a-manner-that-is-dependent-on-cdkb1s-and-cyca2s/ )

Yin Q., Tian T., Kou M., Liu P., Wang L., Hao Z., Yue M. (2020) – The relationships between photosynthesis and stomatal traits on the Loess Plateau – Global Ecology and Conservation 23: e01146 – ISSN 2351-9894 – https://doi.org/10.1016/j.gecco.2020.e01146
https://www.sciencedirect.com/science/article/pii/S2351989420306879 – (On our blog : https://plantstomata.wordpress.com/2022/04/15/plants-with-large-and-few-stomata-could-possess-low-gmax-and-maintain-an-appropriate-photosynthetic-rate-suggesting-that-it-will-benefit-plants-under-increased-co2-and-decreased-water-availability-en/ )

Yin X., Biswal A. K., Dionora J., Perdigon K. M., Balahadia C. P., MazumdarS., Chater C., Lin H.-C., Coe R. A., Kretzschmar T., Gray J., Quick P. W., Bandiopadhyay A. (2017) – CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice – Plant Cell Rep 36: 745-757 – https://doi.org/10.1007/s00299-017-2118-zhttps://link.springer.com/article/10.1007%2Fs00299-017-2118-z#citeas – (On our blog : https://plantstomata.wordpress.com/2019/03/13/crispr-cas9-and-crispr-cpf1-mediated-targeting-of-a-stomatal-developmental-gene-epfl9-2/ )

Yin X., Wang J., Duan Z., Wen J., Wang H. (2006) – Study on the stomatal density and daily change rule of the wheat – Chinese Agricultural Science Bulletin 22: 237–242 – https://doi.org/10.3969/j.issn.1000-6850.2006.05.063 – http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200605063# – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-density-and-daily-change-rule-of-the-wheat/ )

Yin X., Wang Y., Komatsu S. (2016) – Phosphoproteomics analysis reveals the molecular mechanisms underlying the regulation of carbon metabolism in rice seedling leaves under drought stress – Journal of Proteomics 143: 396-407 –

Yin X.-L., Wen J., Liu X., Du L.-W. (2008) – Study on leaf stoma density of 12 representative genus of Rosaceae family – Northern Frui. 1: 4–6 – https://en.cnki.com.cn/Article_en/CJFDTotal-BFGS200801003.htm – (On our blog : https://plantstomata.wordpress.com/2021/04/18/stomata-density-of-12-representative-genus-of-rosaceae-family/ )

Yin Y., Adachi Y., Nakamura Y. Munemasa S., MoriI C., Murara Y. (2016) – Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard CellsPlant Cell Physiol. 57(8): 1779-1790 – doi: 10.1093/pcp/pcw102 – Epub 2016 May 20 – https://www.ncbi.nlm.nih.gov/pubmed/27354421 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/meja-signaling-in-stomatal-guard-cells-is-primed-by-aba-and-is-not-brought-about-through-the-pathway-mediated-by-pyr1-pyl1-pyl2-and-pyl4/ )

Yin Y., Adachi Y., Ye W., Hayashi M., Nakamura Y. Kinoshita T., MoriI C., Murara Y. (2013)  Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata – Plant Physiol. 163: 600–610 – http://www.plantphysiol.org/content/163/2/600 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/aba-perception-mechanisms-and-stomata/)

Yirgou D., Caldwell R. M. (1963) – Stomatal penetration of wheat seedlings by stem and leaf rust: effect of light and carbon dioxide – Science (80-.) 141: 272–273 – DOI: 10.1126/science.141.3577.272https://www.science.org/doi/10.1126/science.141.3577.272 – (On our blog : https://plantstomata.wordpress.com/2021/12/30/stomatal-penetration-of-wheat-seedlings/ )

Yirgou D., Caldwell R. M. (1968) – Stomatal penetration of wheat seedlings by stem and leaf rusts in relation to effects of carbon dioxide light and stomatal aperture – Phytopathology 58:

Yocum L. E. (1935) – The stomata and transpiration of oaks – Plant Physiology 10(4): 795-801 – https://doi.org/10.1104/pp.10.4.795 – http://www.plantphysiol.org/content/plantphysiol/10/4/795.full.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/35085 )

Yong J. W. H., Wong S. C., Farquhar G. D. (2008) – Stomatal responses to changes in vapour pressure difference between leaf and air – Plant, Cell & Environment 20(10): 1213-1216 – https://doi.org/10.1046/j.1365-3040.1997.d01-27.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1997.d01-27.x – (On our blog : https://plantstomata.wordpress.com/2021/03/17/stomata-respond-to-a-change-in-vapour-pressure-difference-between-leaf-and-air-at-ambient-partial-pressures-of-co2-and-below-the-co2-compensation-point/ )

Yoo C. Y., Pence H. E., Jin J. B., Miura K., Gosney M. J., Hasegawa P. M., Mickelbart M. V. (2010) – The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1 – Plant Cell 22: 4128–4141 – DOI: 10.1105/tpc.110.078691http://www.plantcell.org/content/22/12/4128/F4 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/gtl1-negatively-regulates-wue-by-modulating-stomatal-density-via-transrepression-of-sdd1/ )

Yordanova R. Y., Uzunova A. N., Popova L. P. (2005) – Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants – Biol. Plant. 49: 317-319 – https://doi.org/10.1007/s10535-005-7319-6https://link.springer.com/article/10.1007/s10535-005-7319-6#citeas – (On our blog : https://plantstomata.wordpress.com/2019/12/09/stomatal-conductance-decreased-in-flooded-plants-stomatal-closure-started-within-2-%e2%88%92-6-h-and-stomata-remained-closed-up-to-24-h-of-treatment/ )

Yoshida K., Kondoh Y, Nakano T., Bolortuya B., Kawabata S., Iwahashi F., Nagano E., Osada H. (2021) – New Abscisic Acid Derivatives Revealed Adequate Regulation of Stomatal, Transcriptional, and Developmental Responses to Conquer Drought – ACS Chem. Biol. 16(8): 1566–1575 – https://doi.org/10.1021/acschembio.1c00451https://pubs.acs.org/doi/pdf/10.1021/acschembio.1c00451 – (On our blog : https://plantstomata.wordpress.com/2022/04/27/the-induction-of-pyr1-pyl1-pyl2-and-pyl5-mediated-stomatal-closure-and-regulated-transcription-consequently-leading-to-drought-tolerance-in-plants/ )

Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Shinozaki K. (2005) – The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid (ABA) and Osmotic Stress Signals Controlling Stomatal Closure in Arabidopsis – J Biol Chem 281: 5310–5318 – doi:10.1074/jbc.M509820200 – http://www.jbc.org/content/281/8/5310?ijkey=4d73b99bc49e061c5740fbd1b42af0114a33c6ed&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-direct-interaction-between-srk2e-ost1-and-abi1-through-domain-ii-plays-a-critical-role-in-the-control-of-stomatal-closure/

Yoshida T. (1976) – On the stomata! frequency in barley. I. The relationship between stomatal frequency and photosynthesis – Jap. J. Breed. 26: 130-136 [In Japanese with English summary) –

Yoshida T. (1977) – On the stomata! frequency in barley. II. Intra-plant variation, varietal difference and heritability of stomata! frequency – Jap. J. Breed. 27: 91- 97 [In Japanese with English summary] –

Yoshida T. (1978) – On the stomata! frequency in barley. IV. Estimating mesophyll resistance taking account of respiration during photosynthesis – Jap J. J. Breed. 28: 13-20 –

Yoshida T. (1978) – Effect of stomatal frequency and photosynthesis in barley – Bull. Kyushu nat. agr. exp. Sta. 20: 129-193 –

Yoshida T. (1979) – Relationship between Stomatal Frequency and Photosynthesis in Barley – Jarq 13(2): 101-105 – https://www.jircas.go.jp/sites/default/files/publication/jarq/13-2-101-105_0.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/12/stomatal-frequency-and-photosynthesis/ )

Yoshida T., Anjos L. D., Medeiros D. B., Araujo W. L., Fernie A. R., Daloso D. M. (2019) – Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches – Prog. Biophys. Mol. Biol. 146: 37–49 – doi: 10.1016/j.pbiomolbio.2018.11.006https://pubmed.ncbi.nlm.nih.gov/30447225/ – (On our blog : https://plantstomata.wordpress.com/2022/01/20/the-importance-of-systems-biology-approaches-to-drive-new-hypothesis-and-to-unravel-genes-and-pathways-that-are-regulated-by-aba-in-stomatal-guard-cells/ )

Yoshida T., Fernie A. R. (2018) – Remote Control of Transpiration via ABA – https://doi.org/10.1016/j.tplants.2018.07.001 – https://www.cell.com/trends/plant-science/abstract/S1360-1385(18)30149-3 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/stomatal-transpiration-via-aba-is-controlled-by-remote-signals-from-roots-and-leaves-for-efficient-use-of-water/ )

Yoshida T., Moss D. N., Rasmussen D. C. (1975) – Effect of stomata! frequency in barley on photosynthesis and transpiration – Bull. lyushii Agr. Exv. Stci. 1(8): 71-80 –

Yoshida T., Ono T. (1978) – Environmental differences in leaf stomatal frequency of rice – Jap. J. Crop Sci. 47: 506-514 – [In Japanese with Engllsh summary).

Yoshifuji N., Kumagal T., Ichie T., Kume T., Tateishi M., Inoue Y., Yoneyama A., Nakashizuka T. (2019) – Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction – Journal of Plant Research – DOI: 10.1007/s10265-019-01161-3https://www.researchgate.net/publication/338060137_Limited_stomatal_regulation_of_the_largest-size_class_of_Dryobalanops_aromatica_in_a_Bornean_tropical_rainforest_in_response_to_artificial_soil_moisture_reduction (On our blog : https://plantstomata.wordpress.com/2019/12/23/limited-stomatal-regulation-in-response-to-soil-drought-by-ree-and-the-resulting-decline-in-gp-might-suggest-a-poor-resistance-to-the-unusually-severe-drought-expected-in-the-future/ )

Yoshioka K., Moeder W. (2020) – Calcium channel in plants helps shut the door on intruders – Nature – doi: 10.1038/d41586-020-02504-0https://www.nature.com/articles/d41586-020-02504-0 – (On our blog : https://plantstomata.wordpress.com/2020/09/08/85850/ )

Yoshioka K., Moeder W. (2020) – Calcium channel in plants helps shut the door on intruders – Nature – doi: 10.1038/d41586-020-02504-0https://media.nature.com/original/magazine-assets/d41586-020-02504-0/d41586-020-02504-0.pdf – (On our blog : https://plantstomata.wordpress.com/2020/09/08/calcium-channel-in-plants-helps-shut-the-door-on-intruders/ )

You J., Zong W., Li X., Ning J., Hu H., Li X., Xiao J., Xiong L. (2013) – The SNAC1‐targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice – Journal of Experimental Botany 64: 569-583 – https://doi.org/10.1093/jxb/ers349 –https://academic.oup.com/jxb/article/64/2/569/531959 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/ossro1c-has-dual-roles-in-drought-and-oxidative-stress-tolerance-of-rice-by-promoting-stomatal-closure/ )

Young D. R., Smith W. K. (1980) – Influence of Sunlight on Photosynthesis, Water Relations, and Leaf Structure in the Understory Species Arnica cordifolia – Ecology 61(6): 1380-1390 – https://doi.org/10.2307/1939047https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1939047 – (On our blog : https://plantstomata.wordpress.com/2023/07/02/stomatal-opening-occurred-for-both-sun-and-shade-plants-during-sunlit-periods-which-led-to-large-increases-in-pohotosynthesis-and-transpiration/ )

Young J. J., Mehta S., Israelsson M., Godoski J., Grill E., Schroeder J. I. (2006) – CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2 + -independent phase, and CO2 insensitivity of the gca2 mutant. – Proc. Natl. Acad. Sci. U.S.A. 103: 7506–7511 – DOI: 10.1073/pnas.0602225103 – http://www.pnas.org/content/103/19/7506 – https://www.ncbi.nlm.nih.gov/pubmed/16651523 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/co2-concentrations-prime-ca2-sensors-which-could-mediate-specificity-in-ca2-signaling-in-stomata/ )

Young T., Turner S., Torau S., Stanley B., Murphy K., Lee E., Kenney K., Hoffmaster R., Foster L., Cavanaugh B., Brunot R., Bradford K., (2004) – How environmental factors affect stomatal density and chlorophyll in trees – https://www.frostburg.edu/fsu/assets/File/clife/rmsc/FinalPapers/2004/Stoma%202004.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/how-environmental-factors-affect-stomatal-density/ )

Youngglove T., McCool P. M., Musselman R. C., Smith E. D. (1988) – The use of transfer function models to describe the relationship between pollutant exposure and leaf stomatal opening – Environmental and Experimental Botany 28: 239-248 – https://doi.org/10.1016/0098-8472(88)90034-2 –https://www.sciencedirect.com/science/article/abs/pii/0098847288900342 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/transfer-function-models-pollutant-exposure-and-leaf-stomatal-opening/ )

Younis M. E., El-Shahaby O. A., Hasaneen M. N. A., Gaber A. M. (1993) – Plant growth, metabolism and adaptation in relation to stress conditions: XVII. Influence of different water treatments on stomatal apparatus, pigments and photosynthetic capacity in Vicia faba – J. Arid Environ. 25: 221-232 –

Yu D. J., Kim S. J., Lee H. J. (2009) – Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars – Biologia Plantarum 53 : 133–137 – DOI: 10.1007/s10535-009-0019-xhttps://bp.ueb.cas.cz/artkey/bpl-200901-0024 – (On our blog : https://plantstomata.wordpress.com/2024/02/10/the-stomatal-conductance-gs-and-transpiration-rate-changed-in-parallel-with-the-net-photosynthetic-rate-pn-indicating-that-pn-was-greatly-affected-by-gs/ )

Yu G.-R., Nakayama K., Matsuoka N., Kon H. (1998) – A combination model for estimating stomatal conductance of maize (Zea mays L.) leaves over a long term – Agricultural and Forest Meteorology 92: 9–28 – https://doi.org/10.1016/S0168-1923(98)00087-2 –https://www.sciencedirect.com/science/article/pii/S0168192398000872 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/a-combination-model-for-estimating-stomatal-conductance/ )

Yu G.-R., Wang Q.-F., Zhuang J. (2004) – Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis-transpiration based on stomatal behavior – J Plant Physiol 161(3): 303-318 – doi: 10.1078/0176-1617-00972https://pubmed.ncbi.nlm.nih.gov/15077629/ – (On our blog : https://plantstomata.wordpress.com/2022/03/09/a-synthetic-model-of-photosynthesis-transpiration-based-on-stomatal-behavior/ )

Yu H., Blande J. D. (2022) – A potential ozone defense in intercellular air space: Clues from intercellular BVOC concentrations and stomatal conductance – Science of The Total Environment 852:158456 – ISSN 0048-9697 –https://doi.org/10.1016/j.scitotenv.2022.158456https://www.sciencedirect.com/science/article/pii/S0048969722055553 – (On our blog : https://plantstomata.wordpress.com/2022/10/01/o3-and-stomatal-conductance/ )

Yu H., Chen X., Hong Y. Y., Wang Y., Xu P., Ke S. D., Liu H. Y., Zhu J. K., Oliver D. J., Xiang C. B. (2008) – Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density – Plant Cell 20: 1134–1151 – https://doi.org/10.1105/tpc.108.058263 – http://www.plantcell.org/content/early/2008/04/30/tpc.108.058263https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390749/ – (On our blog : https://plantstomata.wordpress.com/2018/01/02/hd-start-protein-confers-drought-tolerance-with-improved-root-system-and-reduced-stomatal-density/)

Yu K., Goldsmith G. R., Wang Y., Anderegg W. R. L. (2019) – Phylogenetic and biogeographic controls of plant nighttime stomatal conductance – New Phytologist – https://doi.org/10.1111/nph.15755 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15755 – (On our blog : https://plantstomata.wordpress.com/2019/02/22/nighttime-stomatal-conductance/ )

Yu M. H., Ding G. D., Gao G. L., Zhao Y. Y., Sai K. (2018) – Leaf temperature fluctuations of typical psammophytic plants and their application to stomatal conductance estimation. Forests 9: 313 – https://doi.org/10.3390/f9060313https://www.mdpi.com/1999-4907/9/6/313 – (On our blog : https://plantstomata.wordpress.com/2019/08/01/references-for-developing-a-practical-application-of-stomatal-conductance-estimation-models-in-field-operations/ )

Yu Q., Ren J. J., Kong L. J., Wang X. L. (2018) – Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells – Protoplasma 255(1): 235-245 – doi: 10.1007/s00709-017-1149-1 – Epub 2017 Aug 13 -PMID: 28803402 – https://pubmed.ncbi.nlm.nih.gov/28803402/ – (On our blog : https://plantstomata.wordpress.com/2023/07/03/the-actin-depolymerization-is-involved-in-the-regulation-of-the-pw-cw-adhesion-during-hyperosmotic-induced-plasmolysis-in-tobacco-stomatal-guard-cells/ )

Yu R., Huang R.-F., Wang X.-C., Yuan M. (2001) – Microtubule dynamics are involved in stomatal movement of Vicia faba L. – Protoplasma 216: 113–118 – https://doi.org/10.1007/BF02680138https://link.springer.com/article/10.1007%2FBF02680138 – (On our blog : https://plantstomata.wordpress.com/2019/01/29/microtubule-dynamics-are-involved-in-stomatal-movement/ )

Yu Q., Zhang Y., Liu Y., Shi P. (2004) – Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes – Annals of Botany 93: 435–441 – https://doi.org/10.1093/aob/mch023 –https://academic.oup.com/aob/article/93/4/435/196365 – (On our blog : https://plantstomata.wordpress.com/2019/01/29/study-to-parameterize-stomatal-conductance-by-extending-a-previous-empirical-model-and-a-revised-ball-berry-model/ )

Yu S. G., Kim J. H., Cho N. H., Oh T. R., Kim W. T.. (2020) – Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABA-mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress – Plant J. 103(2): 824-842 – doi: 10.1111/tpj.14775 – Epub 2020 May 2 – PMID: 32314432 – https://pubmed.ncbi.nlm.nih.gov/32314432/ – (On our blog : https://plantstomata.wordpress.com/2023/01/10/the-arabidopsis-ring-e3-ligase-jul1-plays-a-critical-role-in-aba-mediated-microtubule-disorganization-stomatal-closure-and-tolerance-to-drought-stress/ )

Yu T., Feng O., Si J., Pinkard E. (2019) – Coordination of stomatal control and stem water storage on plant water use in desert riparian trees – Trees 33: 787-801 – DOI:10.1007/s00468-019-01816-7https://link.springer.com/article/10.1007%2Fs00468-019-01816-7https://www.semanticscholar.org/paper/Coordination-of-stomatal-control-and-stem-water-on-Yu-Feng/5d4e54919512eaef621a30a21e293c43ae0ac915 – (On our blog : https://plantstomata.wordpress.com/2021/03/13/88595/ )

Yu Y., Assmann S. M. (2014) – Metabolite transporter regulation of ABA function and guard cell response – Mol. Plant 7: 1505–1507 – DOI 10.1093/mp/ssu093 – https://www.cell.com/molecular-plant/pdf/S1674-2052(14)60955-2.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69787 )

Yu Y., Assmann S. M. (2016) – The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants – Plant Signal Behav. 11(2): e1085275 – doi:  10.1080/15592324.2015.1085275 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883925/ – (On our blog : https://plantstomata.wordpress.com/2018/08/22/greater-transpiration-observed-in-agb1-plants-is-not-mediated-by-differential-genotypic-direct-effects-of-na-on-stomatal-apertures/

Yu Y., Chakravorty D., Assmann S. M. (2018) – The G protein β subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement – Plant Physiol. 176: 2426–2440 – doi: 10.1104/pp.17.01277http://www.plantphysiol.org/content/176/3/2426 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/agb1-interacts-with-feronia-in-ralf1-regulated-stomatal-movement/ )

Yuan L.-m., Qiu M., Wang P., Wang Z.-q., Yang J.-c. (2006) Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes – Scientia Agriucultura Sinica 39(5): 902-909 – Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/density-and-area-of-the-stomata-in-leaves-of-transgenic-rice-lines/ )

Yuan S. X., Liu Y. M., Fang Z. Y., Yang L. M., Zhuang M., Zhang Y. Y., Sun
P. T. (2009)
– Study on the relationship between the ploidy level of microspore-derived plants and the number of chloroplasts in stomatal guard cells in Brassica oleracea – Agricultural Sciences in China 8: 939-946 – https://doi.org/10.1016/S1671-2927(08)60298-9https://www.sciencedirect.com/science/article/abs/pii/S1671292708602989 – (On our blog : https://plantstomata.wordpress.com/2020/12/19/the-chromosome-ploidy-of-plants-derived-from-microspore-culture-can-be-identified-by-counting-the-chloroplast-number-in-stomatal-guard-cells/ )

Yuliasmara F., Fitria Ardiyani F. (2013) – Morphology, Physiology, and Anatomy of Penny Fern (Drymoglossum phyloselloides) and Its Effect on Cocoa (Morfologi, Fisiologi, dan Anatomi Paku Picisan (Drymoglossumphyloselloides) serta Pengaruhnya pada Tanaman Kakao) – Pelita Perkebunan 29(2): 128 – 141 – DOI:  10.22302/iccri.jur.pelitaperkebunan.v29i2.60https://www.researchgate.net/publication/275276168_Morphology_Physiology_and_Anatomy_of_Penny_Fern_Drymoglossum_phyloselloides_and_Its_Effect_on_Cocoa – (On our blog : https://plantstomata.wordpress.com/2022/09/23/morphology-physiology-stomata-and-anatomy-of-penny-fern-drymoglossum-phyloselloides-and-its-effect-on-cocoa/ )

Yun K., Timlin D., Kim S.-H., (2020) – Coupled Gas-Exchange Model for C4 Leaves Comparing Stomatal Conductance Models – Plants (Basel) 9(10): 1358 – doi: 10.3390/plants9101358https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602149/ – (On our blog : https://plantstomata.wordpress.com/2021/01/25/coupled-gas-exchange-model-for-c4-leaves-comparing-stomatal-conductance-models/ )

Yunus A., Parjanto, Samanhudi, Hikam M. P., Widyastuti Y. (2018) – Polyploid response of Artemisia annua L. to colchicine treatment – IOP Conference Series: Earth and Environmental Science, Volume 142, Issue 1, pp. 012020 (2018) – DOI: 10.1088/1755-1315/142/1/012020 – https://ui.adsabs.harvard.edu/abs/2018E%26ES..142a2020Y/abstract – (On our blog : https://plantstomata.wordpress.com/2022/09/13/the-stomata-density-of-polyploid-plants/ )

Yunusa I. A. M., Palmer A. R., Kamululdeen J., Punthakey J. F. (2021) – Contrasting responses to soil and water salinity in stomata and canopy traits produced convergence of water-use in tomatoes (Solanum esculentum) and okra (Abelmoschus esculentus): application to water management – Journal of the Science of Food and Agriculture 102(8): 3227-3236 – https://doi.org/10.1002/jsfa.11665https://onlinelibrary.wiley.com/doi/10.1002/jsfa.11665 – (On our blog : https://plantstomata.wordpress.com/2023/11/25/a-tight-stomatal-control-of-transpiration-that-minimised-use-of-water-and-its-uptake-from-the-soil-conferred-a-superior-salinity-tolerance-on-tomato-over-okra/ )

Yusufov A. G., Abdullaeva T. M. (1968) – Growth and physiology of root formation in detached leaves Polygonum sachalinense d Saponaria officinalis d Nicotiana affinis d tomato d nucleic acids protein carbohydrates stomata number – Soviet Plant Physiology 15(4): 574-579 – https://eurekamag.com/research/024/761/024761055.php – (On our blog : https://plantstomata.wordpress.com/2022/02/19/growth-and-physiology-of-root-formation-and-stomata-number/ )

Zacchini M., Morini S. (1988) – Stomatal functioning in relation to leaf age in in-vitro-grown plum shoots – Plant Cell Reports 18: 292-296 – https://doi.org/10.1007/s002990050574https://link.springer.com/article/10.1007/s002990050574#citeas – (On our blog : https://plantstomata.wordpress.com/2023/01/07/the-ability-of-stomata-to-close-in-response-to-abiotic-factors-was-studied-on-different-aged-leaves/ )

Zacchini M., Morini S., Vitagliano C. (1997) – Effect of photoperiod on some stomatal characteristics of in vitro cultured fruit tree shoots – Plant Cell, Tissue and Organ Culture 49: 195-200 – https://doi.org/10.1023/A:1005866911045https://link.springer.com/article/10.1023/A:1005866911045 – (On our blog : https://plantstomata.wordpress.com/2021/01/03/effect-of-photoperiod-on-some-stomatal-characteristics/ )

Zachariadis M., Apostolakos P., Galatis B. (1998) – Morphogenesis of ‘floating’ stomata in the fern Anemia mandioccana. Stomatal pore formation – In: Tsekos I, Moustakas M, editors – Progress in Botanical Research – Dordrecht: Kluwer Academic Publishers 1998: 615–618 –  https://doi.org/10.1007/978-94-011-5274-7_141https://link.springer.com/chapter/10.1007/978-94-011-5274-7_141#citeas – (On our blog : https://plantstomata.wordpress.com/2019/03/02/stomatal-pore-formation-of-floating-stomata/ )

Zait Y. (2008) – Stomatal Oscillations in Banana Plants (Musa cavandisii) – Hebrew University of Jerusalem, 2008 – 74 pages

Zait Y., Shapira O., Schwartz A. (2017) – The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves – Plant, Cell & Environment 40: 1143–1152 – doi: 10.1111/pce.12907– http://onlinelibrary.wiley.com/doi/10.1111/pce.12907/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/blue-light-increased-xylem-epidermis-water-supply-and-stomatal-movement/ )

Zait Y., Shtein I., Schwartz A. (2018) – Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance – Tree Physiol. – doi: 10.1093/treephys/tpy133https://www.ncbi.nlm.nih.gov/pubmed/30597082 – (On our blog : https://plantstomata.wordpress.com/2019/04/03/long-term-acclimation-to-drought-salinity-and-temperature-different-tradeoffs-between-mesophyll-and-stomatal-conductance/ )

Zalenski V. R. (1921) – Action of High Temperature on Behavior of Stomata – Jour. Russian Bot. Cong. 1: 62-63 – Bot. Absts. 14: 1931. 1925 –

Zamora O., Schulze S., Azoulay-Shemer T., Parik H., Unt J., Brosché M., Schroeder J. I., Yarmolinsky D., Kollist H. (2021) – Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO2 , abscisic acid, darkness, vapor pressure deficit and ozone – Plant J. 108(1): 134-150 – doi: 10.1111/tpj.15430 – Epub 2021 Aug 14 – PMID: 34289193 – https://pubmed.ncbi.nlm.nih.gov/34289193/ – (On our blog : https://plantstomata.wordpress.com/2021/11/17/stomatal-responsiveness-to-co2-light-intensity-aba-high-vapor-pressure-deficit-and-ozone-either-did-not-or-for-some-stimuli-only-very-slightly-depended-upon-ja-and-sa-biosynthesis-and-signa/ )

Zamora-Zaragoza J., Scheres B. (2018) – Tuning Division and Differentiation in Stomata: How to Silence a MUTE – Dev. Cell 45(3): 282-283 – https://doi.org/10.1016/j.devcel.2018.04.019 – https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30325-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1534580718303253%3Fshowall%3Dtrue.

Zangani E., Angourani H. R., Andalibi B., Rad S. V., Mastinu A., (2023) – Sodium Nitroprusside Improves the Growth and Behavior of the Stomata of Silybum marianum L. Subjected to Different Degrees of Drought – Life 13(4): 875 – DOI: 10.3390/life13040875https://www.researchgate.net/publication/369577771 – (On our blog : https://plantstomata.wordpress.com/2024/02/06/exogenous-no-changed-the-behavior-of-the-stomata-during-the-period-of-dehydration-such-that-plants-treated-with-snp-showed-a-decrease-in-the-stomatal-density-of-the-leaf-and-an-increase-in-the-length/ ) 

Zarafshar M., Akbarinia M., Askari H., Hosseini S. M., Rahaie M., Struve D., Striker G. G. (2014) – Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana) – Biotechnol. Agron. Soc. Environ. 18(3): 353-366 – http://www.pressesagro.be/base/text/v18n3/353.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/16/stomata-and-soil-water-deficit-in-seedlings-of-wild-pear/ )

Zayas V. A., Conner A. V., Montalvo S., Freyre R. (2016) – Determination of Ploidy Levels and Breeding of Ruellia – Proc. Fla. State Hort. Soc. 129: 234–238 – file:///C:/Users/wille/Downloads/perrycollins-234-237.pdf – (On our blog : https://plantstomata.wordpress.com/2022/06/08/individuals-were-screened-for-ploidy-level-by-counting-chloroplasts-on-the-stomata-and-measuring-stomata-length/ )

Zeiditoolabi N., Daraie-Mofrad A., Direkvandy S., Mosavi Rad H., Romiani-Karami A. (2011)  Effect of plant density on the stomata morphological structure and forage yield in three species of forage yield vetch (Vicia sp.) under dry farming conditions of Khorramabad – jdas  3 (5) : 17-32 – http://jdas.shahed.ac.ir/browse.php?a_code=A-10-1-28&slc_lang=en&sid=1 – http://jdas.shahed.ac.ir/article-1-143-en.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/effect-of-plant-density-on-the-stomata-morphological-structure-and-forage-yield/ )

Zeifel R., Steppe K., Sterco F. J. (2007) – Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model – Journal of Experimental Botany 5: 2113-2131 – DOI: 10.1093/jxb/erm050 –https://www.ncbi.nlm.nih.gov/pubmed/17490998 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/stomatal-regulation-by-microclimate-and-tree-water-relations/ )

Zeiger E. (1981) – Novel approaches to the biology of stomatal guard cells: protoplast and fluorescent studies – In: MANSFIELD T, JARVIS P (eds) Stomatal physiology – Cambridge University Press, Cambridge, 103–117 –

Zeiger E. (1983) – The biology of stomatal guard cells – Ann. Rev. Plant Physiol. 34: 441-475 – https://doi.org/10.1146/annurev.pp.34.060183.002301 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.34.060183.002301 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/biology-of-stomatal-guard-cells-2/ )

Zeiger E. (1984) – Blue light and stomatal function – In: Senger H. (eds) Blue Light Effects in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg 484-494 – https://doi.org/10.1007/978-3-642-69767-8_54 – Online ISBN978-3-642-69767-8 – https://link.springer.com/chapter/10.1007/978-3-642-69767-8_54#citeas – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomata-are-remarkably-sensitive-to-photon-fluxes-and-light-quality/ )

Zeiger E. (1986)  The photobiology of stomatal movements – In: Kendrick, R. E. and Krononberg, G. H. M., (eds,), Photomorphogenesis in plants, Martinus Nijhorff Publishers, Dordrecht, Netherlands, 391-413 –

Zeiger E. (1987) – The blue-light response of stomata: mechanism and function – In : Stomatal Function, 209-227 – Stanford University Press –

Zeiger E. (1990) – Light perception in guard cells – Plant Cell Environ 13: 739–744  –doi:10.1111/j.1365-3040.1990.tb01088.x –  http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01088.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/light-perception-in-stomata/ )

Zeiger E. (1994) – The photobiology of stomatal movements. In
Photomorphogenesis in Plants (eds R.E. Kendrick & G.H.M.
Kronenberg), pp. 683–706. Kluwer Academic Publishers, Dordrecht – https://doi.org/10.1007/978-94-011-1884-2_24https://link.springer.com/chapter/10.1007/978-94-011-1884-2_24#citeas – (On our blog : https://plantstomata.wordpress.com/2021/05/20/stomata-provide-temporal-control-over-the-diffusion-of-essential-gases/ )

Zeiger E. (2000) – Sensory transduction of blue light in guard cells – Trends in Plant Science 5: 183-185 – https://doi.org/10.1016/S1360-1385(00)01602-2 –https://www.cell.com/trends/plant-science/fulltext/S1360-1385(00)01602-2 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/sensory-transduction-of-blue-light-in-guard-cells/ )

Zeiger E., Armond P., Melis A. (1981) – Fluorescence properties of guard cell chloroplasts – Plant Physiol. 67: 17–20 – https://www.jstor.org/stable/4266578?seq=1#page_scan_tab_contents – (On our  blog : https://plantstomata.wordpress.com/2018/10/05/fluorescence-properties-of-stomatal-chloroplasts/ )

Zeiger E., Assmann S. M., Meidner H. (1983) – The photobiology of Paphiopedilum stomata: opening under blue but not red light – Photochem Photobiol 38: 627–630 – https://doi.org/10.1111/j.1751-1097.1983.tb03394.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1983.tb03394.x – (On our blog : https://plantstomata.wordpress.com/2019/03/03/photobiology-of-stomata-opening-under-blue-but-not-red-light/ )

Zeiger E., Bloom A. J., Hepler P. K. (1978) -Transport in stomatal guard cells. A chemico – osmotichypothesis – What is new in Plant Physiology 9: 29-32 – 

Zeiger E., Farquhar G. D., Cowan.I. R.  (Eds) (1987) – Stomatal Function – Stanford University Press, Stanford, California, 491 pp. –http://www.rhizopon.com/images/stomatal%20function-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-function-3/ )

Zeiger E., Field C. (1982)  – Photocontrol of the Functional Coupling between Photosynthesis and Stomatal Conductance in the Intact Leaf – Blue Light and Par-Dependent Photosystems in Guard Cells – Plant Physiology  – https://doi.org/10.1104/pp.70.2.370 – http://www.plantphysiol.org/content/70/2/370.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/blue-light-and-par-dependent-photosystems-in-stomata/ ) 

Zeiger E., Field C., Mooney H. A. (1981)  – Stomatal opening at dawn possible roles of the blue light response in nature – In: H.Smith (ed. – Plants and the daylight spectrum) – Academic press,  London. 391-407 –

Zeiger E., Gotow K., Mawson B., Taylor S. (1987) – The guard cell chloroplast: properties and function. – In : Proceedings of the 7th International Photosynthesis Congress, Vol. 4 (ed. J. Biggins): 273-280 – Martinus Nijhoff, Dordrecht –

Zeiger E., Grivet C., Assmann S. M., Deitzer G. F., Hannegan M. W. (1985) –  Stomatal limitation to carbon gain in Paphiopedilum sp. (Orchidaceae) and its reversal by blue light – Plant Physiol 77: 456–460 – PMID: 16664074 – PMCID: PMC1064535 –https://www.ncbi.nlm.nih.gov/pubmed/16664074 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/stomatal-limitation-to-carbon-gain-and-its-reversal-by-blue-light/ )

Zeiger E., Hepler P. K. (1976) – Production of guard cell protoplasts from onion and tobacco – Plant Physiol. 58(4): 492–498 – PMCID: PMC543252 – PMID: 16659703 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC543252/ – (On our blog : https://plantstomata.wordpress.com/2019/03/03/production-of-stomatal-guard-cell-protoplasts/ )

Zeiger E., Hepler P. K. (1977) – Light and stomatal function: blue light stimulates swelling of guard cell protoplasts – Science 196: 887-889 – DOI: 10.1126/science.196.4292.887http://science.sciencemag.org/content/196/4292/887 – (On our blog : https://plantstomata.wordpress.com/2017/11/25/blue-light-stimulates-swelling-of-stomatal-protoplasts/ )

Zeiger E., Hepler P. K. (1979) – Blue light-induced, intrinsic vacuolar fluorescence in onion guard cells – J Cell Sci. 37: 1–10 – https://pdfs.semanticscholar.org/aef0/98859b2b1c7feb124f9373096f3d29f0b676.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/18/vacuolar-fluorescence-in-stomata/ )

Zeiger E., Iino M., Ogawa T. (1985) – The blue light response of stomata: pulse kinetics and some mechanistic implications – Photochem. Photobiol. 42: 759–763 – https://doi.org/10.1111/j.1751-1097.1985.tb01644.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1985.tb01644.x – (On our blog : https://plantstomata.wordpress.com/2019/02/10/environmental-and-metabolic-roles-of-the-stomatal-response-to-blue-light/ )

Zeiger E., Iino M. Shimazaki K.-i. (1987) – The blue‐light response of stomata: mechanism and function. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), 209–228 – Stanford University Press, California –

Zeiger E., Moody W., Hepler P. K., Varela F. (1977) – Light sensitive membrane potentials in onion guard cells – Nature 270: 270-271 – DOI: 10.1038/270270a0https://www.nature.com/articles/270270a0 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/light-sensitive-membrane-potentials-in-stomata/ )

Zeiger E., Schwartz A. (1982) – Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging – Science 218: 680-682 – DOI: 10.1126/science.218.4573.680 https://www.ncbi.nlm.nih.gov/pubmed/17791588 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/leaves-retain-stomatal-control-during-senescence/ )

Zeiger E., Stebbins L. (1972) – Developmental genetics in barley: a mutant for stomatal development – American Journal of Botany 59: 143–148 – https://doi.org/10.1002/j.1537-2197.1972.tb10073.xhttps://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1972.tb10073.x – (On our blog : https://plantstomata.wordpress.com/2022/07/06/an-abnormal-stomatal-development-as-a-pleiotropic-effect-2/)

Zeiger E., Talbott L. D., Frechilla S., Srivastava A., Zhu J. (2002) – The guard cell chloroplast: a perspective for the twenty-first century – New Phytol 153: 415–424 – https://doi.org/10.1046/j.0028-646X.2001.NPH328.doc.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.0028-646X.2001.NPH328.doc.x – (On our blog : https://plantstomata.wordpress.com/2018/10/05/the-properties-of-the-stomatal-chloroplast/ )

Zeiger E., Zhu J. (1998) – Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells – J. Exp. Bot. 49: 433–442 – DOI: 10.1093/jxb/49.Special_Issue.433 – https://www.jstor.org/stable/23695976?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/07/21/blue-light-sensing-by-guard-cell-zeaxanthin-has-a-regulatory-role-in-the-light-response-of-stomata/

Zeilinger C., Palme K., Hedrich R. (1992) – Identification of a potassium channel in mesophyll and guard cell plasma membranes of Vicia faba leaves – 9th International workshop on plant membrane biology, Monterey July 19-24, 1992, Abstr. No. 51 –

Zelitch I. (1961) – Biochemical control of stomatal opening in leaves – Proc. Natl. Acad. Sci. U. S. 47: 1423-1433 – doi: 10.1073/pnas.47.9.1423https://www.ncbi.nlm.nih.gov/pmc/articles/PMC223154/ – (On our blog : https://plantstomata.wordpress.com/2021/12/04/biochemical-control-of-stomatal-opening/ )

Zelitch I. (1963) Stomata and water relations in plants – Advanced Science Seminar on the Physiology and Biochemistry of Leaf Stomata – Conn. Agric. Expt. Sta.,  Bull. 664. 116 pp – http://www.ct.gov/caes/lib/caes/documents/publications/bulletins/b664.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomata-and-water-relations/ )

Zelitch I. (1963) – The control and mechanism of stomatal movement. In: Stomata and water relations in plants – Bull. Conn, Agric. Exp. Stn. 664: 18 –

Zelitch I. (1964)  The Effect of Control of Leaf Stomata on Transpiration – Research on Water: A Symposium on Problems and Progress 4 – Book Editor(s):T. J. Army – https://doi.org/10.2134/asaspecpub4.c12https://acsess.onlinelibrary.wiley.com/doi/10.2134/asaspecpub4.c12 – (On our blog : https://plantstomata.wordpress.com/2023/11/24/the-effectiveness-of-reducing-the-evaporation-losses-outdoors-by-the-chemical-closure-of-stomata-and-stomatal-resistance-is-a-significant-factor-in-the-natural-transpiration-from-a-crop/ )

Zelitch I. (1964)  Stomata and Water Relationships in Plants – Soil Science: 98(1): 347 https://journals.lww.com/soilsci/Citation/1964/11000/Stomata_and_Water_Relationships_in_Plants.15.aspx – (On our blog : https://plantstomata.wordpress.com/2021/11/19/stomata-and-water/ )

Zelitch I. (1965) – Environmental and biochemical control of stomatal movement in leaves – Biological Reviews 40(4): 463-481 –  https://doi.org/10.1111/j.1469-185X.1965.tb00811.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-185X.1965.tb00811.x – (On our blog : https://plantstomata.wordpress.com/2019/03/03/environmental-and-biochemical-control-of-stomatal-movement/ )

Zelitch I. (1967) – Control of leaf stomata – Their role in transpiration and photosynthesis – American Scientist 55(4): 472-486 – https://www.jstor.org/stable/27837040?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-role-of-stomata-in-transpiration-and-photosynthesis/ )

Zelitch I. (1969) – Stomatal control – Annual Review of Plant Biology 20(1): 329-350 – https://doi.org/10.1146/annurev.pp.20.060169.001553 –https://app.dimensions.ai/details/publication/pub.1018400569 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/stomatal-control/ )

Zelitch I. (1969) – Mechanisms of Carbon Fixation and Associated Physiological Responses – Agronomy & Horticulture Department at DigitalCommons@University of Nebraska – Lincoln – Faculty Publications 198 – https://digitalcommons.unl.edu/agronomyfacpub/198 – Published in Physiological Aspects of Crop Yield: Proceedings of a symposium January 20-24, 1969. Edited by Jerry D. Eastin, F. A. Haskins, C. Y. Sullivan, C. H. M. Van Bavel, and Richard C. Dinauer (Madison, Wisconsin: American Society of Agronomy & Crop Science Society of America, 1969) – https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1191&context=agronomyfacpub;Mechanisms – (On our blog : https://plantstomata.wordpress.com/2021/11/13/stomatal-opening-in-light-and-inhibitors-of-stomatal-opening/ )

Zelitch I., Waggoner P. E. (1962) – Effect of chemical control of stomata on transpiration and photosynthesis – Proc. Natl. Acad. Sci. U. S. 48: 1101-1108 – PNAS 48(7): 1101-1108 – https://doi.org/10.1073/pnas.48.7.1101https://www.pnas.org/content/48/7/1101 – (On our blog : https://plantstomata.wordpress.com/2021/11/19/chemical-control-of-stomata-on-transpiration-and-photosynthesis/ )

Zelitch I., Waggoner P. E. (1962) – Effect of chemical control of stomata on transpiration of intact plants – PNAS 48(8): 1297-1299 – https://doi.org/10.1073/pnas.48.8.1297https://www.pnas.org/content/48/8/1297 – (On our blog : https://plantstomata.wordpress.com/2021/11/20/chemical-control-of-stomata-on-transpiration/ )

Zelitch I., Walker D. A. (1964) – The role of glycolic acid metabolism in opening of leaf stomata – Plant Physiol. 39: 856-862 – doi: 10.1104/pp.39.5.856https://www.ncbi.nlm.nih.gov/pmc/articles/PMC550179/ – (On our blog : https://plantstomata.wordpress.com/2023/01/07/the-role-of-glycolic-acid-metabolism-in-opening-of-leaf-stomata/ )

Zemel E., Gepstein S. (1985) – Immunological evidence for the presence of ribulose bisphosphate carboxylase in guard cell chloroplasts – Plant Physiol. 78: 586–590 – https://doi.org/10.1104/pp.78.3.586http://www.plantphysiol.org/content/78/3/586 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/ribulose-bisphosphate-carboxylase-in-stomatal-guard-cell-chloroplasts/ )

Zenes N., Kerr K. L., Trugman A. T., Anderegg W. R. L. (2020) – Competition and Drought Alter Optimal Stomatal Strategy in Tree Seedlings – Front. Plant Sci., 08 May 2020 – https://doi.org/10.3389/fpls.2020.00478https://www.frontiersin.org/articles/10.3389/fpls.2020.00478/full – (On our blog : https://plantstomata.wordpress.com/2021/10/19/stomatal-strategies-are-dynamic-and-change-with-climate-and-competition-stressors/ )

Zeng S. M., Lo E. K. W., Hazelton B. J., Morales M. F., Torii K. U. (2020) – Effective range of non-cell autonomous activator and inhibitor peptides specifying plant stomatal patterning – Development 147: dev192237 – doi: 10.1242/dev.192237https://dev.biologists.org/content/147/17/dev192237 – (On our blog : https://plantstomata.wordpress.com/2020/09/24/non-cell-autonomous-activator-and-inhibitor-peptides-specifying-plant-stomatal-patterning/ )

Zeng W., Brutus A., Kremer J. M., Withers J. C., Gao X., Jones A. D., He S. Y. (2011) – A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000 – PLoS Pathog. 2011 Oct.7(10):e1002291 – doi: 10.1371/journal.ppat.1002291 – Epub 2011 Oct 6 – https://www.ncbi.nlm.nih.gov/pubmed/21998587 – (On our blog : https://plantstomata.wordpress.com/2019/12/07/identification-of-scord5-begins-to-implicate-an-important-role-of-stress-associated-protein-translation-in-stomatal-guard-cell-signaling-in-response-to-microbe-associated-molecular-patterns-and-bacter/ )

Zeng W., He S. Y. (2010) – A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis – Plant Physiol. 153: 1188–1198 – doi: 10.1104/pp.110.157016 – http://www.plantphysiol.org/content/153/3/1188 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/the-flagellin-receptor-flagellin-sensing2-in-mediating-stomatal-response-to-pseudomonas-syringae/ )

Zeng W., Melotto M., He S. Y. (2010) – Plant stomata: a checkpoint of host immunity and pathogen virulence – Curr. Opin. Biotechnol. 21: 599–603 – doi: 10.1016/j.copbio.2010.05.006 – https://www.ncbi.nlm.nih.gov/pubmed/20573499 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/signaling-events-involved-in-bacterium-triggered-stomatal-closure-and-virulence-factors-to-actively-counter-stomatal-closure-to-facilitate-invasion/ )

Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation – Plant, Cell & Environment

Zeppel M., Lewis J. D., Chaszar B., Smith R. A., Medlyn B. E., Huxman T. E., Tissue D. T. (2012) – Nocturnal stomatal conductance responses to rising [CO2], temperature and drought –  New Phytol. 193: 929–938 – Doi: 10.1111/j.1469-8137.2011.03993.x -yhttps://www.ncbi.nlm.nih.gov/pubmed/22150067 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/nocturnal-stomatal-conductance-responses-to-rising-co2-temperature-and-drought/ )

Zeppel M., Logan B., Lewis D., Phillips N. Tissue D. (2013) – Why lose water at night? Disentangling the mystery of nocturnal sap flow, transpiration and stomatal conductance – When, where, who? – Acta Horticulturae 991: 307-312 – International Workshop on Sap Flow (9th : 2013) – Ghent, Belgium – https://researchers.mq.edu.au/en/publications/why-lose-water-at-night-disentangling-the-mystery-of-nocturnal-sa – (On our blog : https://plantstomata.wordpress.com/2022/01/06/nocturnal-sap-flow-transpiration-and-stomatal-conductance/ )

Zeppel M., Macinnis-Ng C. M. O., Yunusa I. A. M., Whitley R. J.Eamus D. (2008) – Long term trends of stand transpiration in a remnant forest during wet and dry years – Journal of Hydrology 349: 200 – 213 – doi:10.1016/j.jhydrol.2007.11.001https://www.academia.edu/13850056/Long_term_trends_of_stand_transpiration_in_a_remnant_forest_during_wet_and_dry_years?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/04/07/89648/ )

Zgallai H., Steppe K., Lemeur R. (2006) – Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants – Journal of Integrative Plant biology 48(6): 679-685 – https://doi.org/10.1111/j.1744-7909.2006.00272.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-7909.2006.00272.x -n (On our blog : https://plantstomata.wordpress.com/2020/04/10/effects-of-different-levels-of-water-stress-on-leaf-water-potential-and-stomatal-resistance/ )

Zhang A., Huang R., Wang X., Yuan M. (2001) – Identification of integrin-like in guard cells of Vicia faba – Chinese Science Bulletin 46: 1100–1102 – https://doi.org/10.1007/BF02900687https://link.springer.com/article/10.1007/BF02900687 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/integrins-like-are-present-at-the-stomatal-guard-cell-plasma-membrane/ )

Zhang A., Ren H. M., Tan Y. Q., Qi G. N., Yao F. Y., Wu G. L., Yang L. W., Hussain J., Sun S. J., Wang Y. F. (2016) – S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis – Plant Cell. 28(4): 949-955 – doi: 10.1105/tpc.16.01050http://www.plantcell.org/content/28/4/949 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/a-novel-regulatory-mechanism-for-stomatal-movement-2/ )

Zhang B., Liu Y., Xu D., Cai J., Zhao N. (2011) – Estimation of summer corn canopy conductance by scaling up leaf stomatal conductance – Transactions of the CSAE 27: 80–86 – [In Chinese with English summary] – https://www.ingentaconnect.com/content/tcsae/tcsae/2011/00000027/00000005/art00013 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/leaf-stomatal-conductance-gs-and-canopy-conductance-gc/ )

Zhang C., Huang H., Zhou Y., Lin H., Xie T., Liao C. (2019) – Stomatal Response of Maize (Zea mays L.) to Crude Oil Contamination in Soils – Appl. Sci. 9: 4074 – doi:10.3390/app9194074 – applsci-09-04074 – (On our blog : https://plantstomata.wordpress.com/2020/03/02/controlling-stomata-movement-will-be-beneficial-to-phytoremediation-of-contaminated-soil/ )

Zhang C, Song Z., Jin P., Zhou X., Zhang H. (2021) – Xylooligosaccharides induce stomatal closure via salicylic acid signaling-regulated reactive oxygen species and nitric oxide production in Arabidopsis – Physiologia Plantarum 172(4): 1908-1918 – https://doi.org/10.1111/ppl.13403https://onlinelibrary.wiley.com/doi/10.1111/ppl.13403 – (On our blog : https://plantstomata.wordpress.com/2023/07/17/xylooligosaccharides-can-elicit-stomatal-closure-via-salicylic-acid-signaling-mediated-production-of-reactive-oxygen-species-and-nitric-oxide-in-a-manner-independent-of-aba-signaling/ )

Zhang C., Tetteh C., Luo S., Jin P., Hao X., Sun M., Fang N., Liu Y. Zhang H. (2024) – Exogenous application of pectin triggers stomatal closure and immunity in Arabidopsis – Molecular Plant Pathology 25(2): e13438 – https://doi.org/10.1111/mpp.13438https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/mpp.13438 – (On our blog : https://plantstomata.wordpress.com/2024/03/30/exogenous-pectin-induced-stomatal-closure-was-associated-with-ros-and-no-production-regulated-by-aba-and-sa-signalling-contributing-to-defence-against-pst-dc3000-in-arabidopsis/ )

Zhang D., Liu Y., Zhang H., Zhang Z.-J., Wang Y., Liu M.-C. (2021) – Response of Photosynthesis and Leaf Morphological Characteristics to Drought Stress in Glycyrrhiza uralensis – Bulletin Bot. Res. (BBR) 41(3): 449-457 – doi: 10.7525/j.issn.1673-5102.2021.03.016http://bbr.nefu.edu.cn/article/2021/1673-5102/1673-5102-2021-41-3-449.shtml – (On our blog : https://plantstomata.wordpress.com/2022/03/31/severe-drought-stress-accelerated-the-programmed-death-of-stomatal-cells-pcd-and-seedlings-lost-their-ability-to-resist-drought/ )

Zhang D., Spiegelhalder R. P., Abrash E. B., Nunes T. D.G., Hidalgo I., Anleu Gil M. X., Jesenofsky B., Lindner H., Bergmann D. C., Raissig M. T. (2022) – Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses – Elife. 2022 Dec 20;11:e79913 – doi: 10.7554/eLife.79913 – PMID: 36537077 – PMCID: PMC9767456 – https://pubmed.ncbi.nlm.nih.gov/36537077/ – (On our blog : https://plantstomata.wordpress.com/2023/01/11/two-opposing-polarity-domains-that-coordinate-the-stomatal-subsidiary-cell-division-a-process-crucial-for-grass-stomatal-physiology/ )

Zhang D., Tian C., Yin K., Wang W., Qiu J. L. ( 2019) – Postinvasive Bacterial Resistance Conferred by Open Stomata in Rice – Mol Plant Microbe Interact. 32(2): 255-266 – doi: 10.1094/MPMI-06-18-0162-Rhttps://www.ncbi.nlm.nih.gov/pubmed/30124364 – (On our blog : https://plantstomata.wordpress.com/2019/04/06/a-novel-role-of-stomata-in-plant-immunity-through-modulation-of-leaf-water-status/ )

Zhang D. C., Zhu Y. H., Li S. Z. (2018) – Variation in stomatal characteristics of eight plant species along a soil moisture gradient in alpine meadow of the Dongda Mountains in southeast Tibet ([ 张大才, 朱玉怀, 李双智 (2018). 东达山高寒草甸8种植物气孔特征沿土壤水分梯度的变化. 草业学报, 27,36-46.]) – Acta Prataculturae Sinica 27: 36-46 –

Zhang D. P. (1989) – Studies of stomata on the rice plant leaf blade. II. Dynamic morphogenesis of stomata under varied ecological conditions – Journal of Fujian Agricultural College 18(3): 302-307 – https://eurekamag.com/research/001/954/001954998.php – (On our blog : https://plantstomata.wordpress.com/2022/01/13/dynamic-morphogenesis-of-stomata-under-varied-ecological-conditions/ )

Zhang F., Wang B., Lu F., Zhang X. (2023) – Rotating Stomata Measurement Based on Anchor-Free Object Detection and Stomata Conductance Calculation – Plant Phenomics 5(9) – DOI: 10.34133/plantphenomics.0106https://www.researchgate.net/publication/374393447 – (On our blog : https://plantstomata.wordpress.com/2024/01/29/a-novel-approach-named-deeprsd-deep-learning-based-rotating-stomata-detection-for-detecting-rotating-stomata-and-calculating-stomata-basic-traits-at-the-same-time-simultaneously-the-stomata-cond/ ) 

Zhang F.-P., Carins-Murphy M. R., Cardoso A. A., Jordan G. J., Brodribb T. J. (2018) – Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves – New Phytologist – https://doi.org/10.1111/nph.15210 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15210?af=R – (On our blog : https://plantstomata.wordpress.com/2018/05/22/the-relationships-between-veins-stomata-and-epidermal-cells-in-leaves-sepals-and-petals/ )

Zhang G., Thompson A., Schisler D., Johnson E. T. (2019) – Characterization of the infection process by Peronospora belbahrii on basil by scanning electron microscopy – Heliyon 5(1): e01117 – https://doi.org/10.1016/j.heliyon.2019.e01117
https://www.sciencedirect.com/science/article/pii/S2405844018353829 – (On our blog : https://plantstomata.wordpress.com/2019/12/09/one-or-more-sporangiophores-grew-through-stomata-to-produce-new-sporangia-on-both-the-abaxial-and-adaxial-surfaces-of-leaves/ )

Zhang H. (2012) – Using soil drying as a regulative tool to enhance crop water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-controlled-soil-drying-can-enhance-whole-plant-senescence-and-crop-water-use-efficiency/ )

Zhang H., Dong S., Wang M., Wang W., Song W., Dou X., Zheng X., Zhang Z. (2010) – The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure – J. Exp. Bot. 61: 3799–3812 – doi: 10.1093/jxb/erq189https://academic.oup.com/jxb/article/61/13/3799/534541 – (On our blog : https://plantstomata.wordpress.com/2020/09/10/vpe-functions-not-only-in-elicitor-induced-hr-but-also-in-elicitor-induced-stomatal-closure/ )

Zhang H., Fang Q., Zhang Z., Wang Y., Zheng X. (2009) – The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. – J. Exp. Bot. 60, 3109–3122. – doi: 10.1093/jxb/erp146 – https://www.ncbi.nlm.nih.gov/pubmed/19454596 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/two-rboh-function-in-elicitor-induced-stomatal-closure-but-not-in-elicitor-induced-hr/ )

Zhang H., Ni L., Liu Y., Wang Y., Zhang A., Tan M., Jiang M. (2016) – SnRK2. 6-mediated channel phosphorylation controls stomatal aperture and transpiration by modulating ion flux – Plant Cell 28(11): 2894-2907 –

Zhang H., Pan C. Z., Gu S. H., Ma Q. M., Zhang Y. Q., Li X., Shi K. (2019) – Stomatal movements are involved in elevated CO2-mitigated high temperature stress in tomato – Physiol Plant. 165(3): 569–583 – doi:10.1111/ppl.12752 – https://onlinelibrary.wiley.com/doi/abs/10.1111/ppl.12752 – (On our blog : https://plantstomata.wordpress.com/2020/01/13/rboh1%e2%80%90dependent-h2o2-accumulation-was-involved-in-the-eco2%e2%80%90induced-stomatal-closure/ )

Zhang H., Wang X., Wang S. (2004) – A study on stomatal traits of Platanus acerifolia under urban stress – Journal of Fudan University  43: 651–656 – http://europepmc.org/abstract/cba/460789 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/stomatal-density-and-stomatal-length-are-more-sensitive-and-available-to-indicate-urban-environmental-stress/ )

Zhang J. (2023) – Estimating crop stomatal conductance through high-throughput plant phenotyping (Master’s Thesis) – Biological Systems Engineering–Dissertations, Theses, and Student Research Department of Biological Systems Engineering, University of Nebraska, Lincoln – https://digitalcommons.unl.edu/biosysengdiss/141/ – (On our blog : https://plantstomata.wordpress.com/2023/05/10/the-potential-of-estimating-gs-from-remote-sensing-and-field-phenotyping-platforms-to-help-growers-obtain-information-about-the-water-status-of-crops-and-plan-irrigation-more-efficiently/ )

Zhang J., Davies W. J. (1986) – Chemical and hydraulic influences on the stomata of flooded plants – J. Exp. Bot. 37: 1479-1491 – https://doi.org/10.1093/jxb/37.10.1479https://academic.oup.com/jxb/article-abstract/37/10/1479/519902?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2020/06/10/nutrient-deficiency-may-limit-stomatal-opening-and-growth-in-flooded-plants/ )

Zhang J., Davies W. J. (1989) – Sequential responses of whole plant water relations towards prolonged soil drying and the mediation by xylem sap ABA concentrations in the regulation of stomatal behaviour of sunflower plants – New Phytol 113: 167–174 – DOI: 10.1111/j.1469-8137.1989.tb04703.x – https://www.jstor.org/stable/2556693?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/04/the-mediation-by-xylem-sap-aba-concentrations-in-the-regulation-of-stomatal-behaviour/ )

Zhang J., De‐Oliveira‐Ceciliato P., Takahashi Y., Schulze S., Dubeaux G., Hauser F., Azoulay‐Shemer T., Toldsepp K., Kollist H., Rappel W.- J., Schroeder J. I. (2018) – Insights into the molecular mechanisms of CO2‐mediated regulation of stomatal movements – Current Biology 28: R1356– R1363 – https://doi.org/10.1016/j.cub.2018.10.015https://www.cell.com/current-biology/fulltext/S0960-9822(18)31344-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982218313447%3Fshowall%3Dtrue#%20 – (On our blog : https://plantstomata.wordpress.com/2019/11/27/molecular-mechanisms-of-co2%e2%80%90mediated-regulation-of-stomatal-movements/ )

Zhang J., Pian R., Yang E., Zhou W., He Q., Chen X. (2020)In vitro induction and characterisation of tetraploid drumstick tree (Moringa oleifera Lam.) – Open Life Sciences – https://doi.org/10.1515/biol-2020-0087 -De Gruyter Open Access November 18, 2020 – https://www.degruyter.com/document/doi/10.1515/biol-2020-0087/html – (On our blog : https://plantstomata.wordpress.com/2022/04/07/the-tetraploid-of-moringa-exhibited-superior-agronomical-traits-improved-biomass-yield-and-significantly-enhanced-leaf-and-stomatal-size-than-diploids/ )

Zhang J., Schurr U., Davies W. J. (1987) – Control of stomatal behavior by abscisic acid which apparently originates in the roots – Journ. Exp. Bot. 38(6): 1174-1181 – Control of Stomatal Behaviour by Abscisic Acid which Apparently Originates in the Rootshttps://doi.org/10.1093/jxb/38.7.1174 – https://academic.oup.com/jxb/article-abstract/38/7/1174/440751?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/22/aba-can-move-from-the-roots-to-the-epidermis-and-restrict-stomatal-aperture/ )

Zhang J., Wang N., Miao Y., Hauser F., McCammon J. A., Rappel W.-J., Schroeder J. I. (2018) – Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements – PNAS 115 (44): 11129-11137 – https://doi.org/10.1073/pnas.1807624115 – http://www.pnas.org/content/115/44/11129 –  (On our blog : https://plantstomata.wordpress.com/2018/11/01/slac1-anion-channel-residues-required-for-regulation-of-stomatal-movements/ )

Zhang J., Zhou H., Zhou M., Ge Z., Zhang F., Foyer C. H., Yuan X., Xie Y. (2020) – The coordination of guard-cell autonomous ABA synthesis and DES1 function in situ regulates plant water deficit responses – J Adv Res. 27: 191-197 – doi: 10.1016/j.jare.2020.07.013 – PMID: 33318877 – PMCID: PMC7728585 – https://pubmed.ncbi.nlm.nih.gov/33318877/ – (On our blog : https://plantstomata.wordpress.com/2022/03/14/the-coordinated-synthesis-of-aba-and-des1-expression-is-required-for-drought-induced-stomatal-closure/ )

Zhang J. H., Fu C., Kanzawa H. (2001) – Simulating canopy stomatal conductance of winter wheat and its distribution using remote sensing information – Journal of Environmental Sciences 13(4): 439-443 –

Zhang J.-Y., He S.-B., Li L., Yang H.-Q. (2014) – Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll – PNAS 111 (29) E3015-E3023 – doi:10.1073/pnas.1400542111 – http://www.pnas.org/content/111/29/E3015.full – (On our blog : https://plantstomata.wordpress.com/2018/01/20/auxin-signaling-in-mesophyll-to-coordinate-stomatal-development-with-photosynthesis/ )

Zhang K., Xue M., Qin F., He Y., Zhou Y. (2023) – Natural polymorphisms in ZmIRX15A affect water-use efficiency by modulating stomatal density in maize – Plant Biotechnology Journal Early View – Online Version of Record before inclusion in an issue – https://doi.org/10.1111/pbi.14153https://onlinelibrary.wiley.com/doi/10.1111/pbi.14153 – (On our blog : https://plantstomata.wordpress.com/2023/08/15/genetic-insights-into-the-natural-variation-of-leaf-sd-in-maize-and-the-identified-loci-or-genes-can-serve-as-direct-targets-for-enhancing-drought-resistance-in-molecular-assisted-maize-breeding/ )

Zhang L., Liu L., Zhao H., Jiang Z., Cai J., (2020) – Differences in Near Isohydric and Anisohydric Behavior of Contrasting Poplar Hybrids (I-101 (Populus alba L.) × 84K (Populus alba L. × Populus glandulosa Uyeki)) under Drought-Rehydration Treatments – Forests 11(4): 402- – https://doi.org/10.3390/f11040402https://www.mdpi.com/1999-4907/11/4/402 – (On our blog : https://plantstomata.wordpress.com/2021/12/06/the-trade-off-between-carbon-distribution-and-stomatal-regulation-should-be-considered-separately-within-genotypes-of-the-same-species/ )

Zhang L., Moran M. D., Brook J. R. (2001) – A comparison of models to estimate in-canopy photosynthetically active radiation and their influence on canopy stomatal resistance – Atmos. Environ. 35: 4463-4470 – DOI:10.1029/98JD01564

Zhang L., Niu H., Wang S., Li Y., Zhao X. (2010) – Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau – Acta Ecol. Sin. 30: 6961–6969 – http://en.cnki.com.cn/Article_en/CJFDTotal-STXB201024032.htm – (On our blog : https://plantstomata.wordpress.com/2019/03/04/effects-of-temperature-increase-and-grazing-on-stomatal-density-and-length/ )

Zhang L. R., Niu H. S., Wang S. P., Zhu X., Luo C., Li Y. N., Zhao X. Q. (2012) – Gene or environment? Species-specific control of stomatal density and length – Ecology and Evolution 2 (5): 1065–1070 – DOI: 10.1002/ece3.233 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399171/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69825 )

Zhang L., Shi X., Zhang Y., Wang J., Yang J., Ishida T.,  Jiang W., Han X., Kang J., Wang X., Pan L., Lv S., Cao B., Zhang Y., Wu J., Han H., Hu Z., Cui L., Sawa S., He J., Wang G. (2019) – CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana – Plant, Cell & Environment 42(3): 1033-1044 – https://doi.org/10.1111/pce.13475https://onlinelibrary.wiley.com/doi/10.1111/pce.13475 – (On our blog : https://plantstomata.wordpress.com/2023/06/09/a-novel-aba-dependent-function-of-cle9-in-the-regulation-of-stomatal-apertures/ )

Zhang L., Takahashi Y., Hsu P.-K., Kollist H., Merillo E., Krysan P. J., Schroeder J. I. (2020) – FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure – https://elifesciences.org/articles/56351 – (On our blog : https://plantstomata.wordpress.com/2021/01/28/stomatal-co2-signaling-requires-basal-aba-and-snrk2-signaling-but-not-snrk2-activation/ )

Zhang L., Wang S., Yang X., Cui X., Niu H. (2021) – An Intrinsic Geometric Constraint on Morphological Stomatal Traits – Front Plant Sci. 12: 658702 – doi: 10.3389/fpls.2021.658702 – PMID: 33968115 – PMCID: PMC8097139 – https://pubmed.ncbi.nlm.nih.gov/33968115/ – (On our blog : https://plantstomata.wordpress.com/2022/09/02/geometric-constraint-on-morphological-stomatal-traits/ )

Zhang M., Gao H., Chen S., Wang X., Mo W., Yang X., Wang X., Wang Z., Wang R. (2022) – Linkages between stomatal density and minor leaf vein density across different altitudes and growth forms – Front Plant Sci. 13: 1064344 – doi: 10.3389/fpls.2022.1064344 – PMID: 36561450 – PMCID: PMC9765094 – https://pubmed.ncbi.nlm.nih.gov/36561450/ – (On our blog : https://plantstomata.wordpress.com/2023/01/08/coordinating-stomatal-number-and-minor-vein-length-within-one-leaf-rather-than-stomatal-and-vein-density-may-be-a-common-choice-of-plants-in-the-fluctuating-environment/ )

Zhang N., Berman S. R., Joubert D., Vialet-Chabrand S., Marcelis L. F. M., Kaiser E. (2022) – Variation of Photosynthetic Induction in Major Horticultural Crops Is Mostly Driven by Differences in Stomatal Traits – Frontiers in Plant Science 13 [860229] – https://doi.org/10.3389/fpls.2022.860229https://research.wur.nl/en/publications/variation-of-photosynthetic-induction-in-major-horticultural-crop – (On our blog : https://plantstomata.wordpress.com/2023/01/22/manipulating-stomatal-traits-may-speed-up-photosynthetic-induction-and-growth-of-horticultural-crops-under-natural-irradiance-fluctuations/ )

Zhang N. (2023) – Artificially modulating stomatal development may improve crop stress tolerance – Phys. Org. – https://phys.org/news/2023-06-artificially-modulating-stomatal-crop-stress.html – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/116692 )

Zhang Q., Peng S., Li Y. (2019) – Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza – J Exp Bot. 70(19): 5259-5269 – doi: 10.1093/jxb/erz267 – PMID: 31145797 – PMCID: PMC6793446 – https://pubmed.ncbi.nlm.nih.gov/31145797/ – (On our blog : https://plantstomata.wordpress.com/2023/02/05/the-influence-of-stomatal-size-on-dynamic-photosynthesis-is-correlated-with-%ce%bb-and-gsinitial/ )

Zhang R.-X., Ge S., He J., Li S., Hao Y., Du H., Liu Z., Cheng R., Feng Y.-Q., Xiong L., Li C., Hetherington A. M., Liang Y.-K. (2018) – BIG regulates stomatal immunity and jasmonate production in Arabidopsis -New Phytologist published online and citable – https://doi.org/10.1111/nph.15568 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15568?af=R – (On our blog : https://plantstomata.wordpress.com/2018/10/30/big-negatively-and-positively-regulate-the-myc2%e2%80%90-and-erf1%e2%80%90-arms-of-the-ja-signalling-pathway-in-stomata/ )

Zhang S., Cai Z., Wang X. (2009) – The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling – PNAS 106(11): 4543-4548 – https://doi.org/10.1073/pnas.0900349106 – http://www.pnas.org/content/106/11/4543?ijkey=aa2f23b79d7deb06e9721fe8f74ed38c1bcb0bd6&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/12/the-molecular-mechanisms-by-which-brs-could-interact-with-aba/

Zhang S., Gao R. (2000) – Diurnal Changes of Gas Exchange, Chlorophyll Fluorescence, and Stomatal Aperture of Hybrid Poplar Clones Subjected to Midday Light Stress – Photosynthetica 37: 559–571 – DOI: 10.1023/A:1007119524389https://ps.ueb.cas.cz/artkey/phs-199914-0011_diurnal-changes-of-gas-exchange-chlorophyll-fluorescence-and-stomatal-aperture-of-hybrid-poplar-clones-subjec.php – (On our blog : https://plantstomata.wordpress.com/2024/01/11/midday-depression-of-photosynthesis-can-be-attributed-to-both-stomatal-and-non-stomatal-limitations/ )

Zhang S., Li Q., Ma K., Chen L., (2001) – Temperature-dependent gas exchange and stomatal/nonstomatal limitation to CO2 assimilation of Quercus liaotungensis under midday higher irradiance – Photosynthetica 39: 383-388 –

Zhang S., Ma K., Chen L. (2002) – Tempo-spatial variations in stomatal conductance, aperture and density of Ligustrum sinense acclimated to different light environments – Acta Botany of Sinica 44: 1225–1232 – https://europepmc.org/article/cba/378247 – (On our blog : https://plantstomata.wordpress.com/2023/04/20/the-sensitivity-of-stomata-to-changing-environment-for-high-light-leaves-was-higher-than-that-for-low-light-leaves-which-may-also-relative-to-the-higher-stomatal-density-for-the-high-light-leaves/ )

Zhang S.-B., Guan Z.-J., Chang W., Hu H., Yin Q,, Cao K.-F. (2011) – Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy – Physiologia Plantarum 142: 118–127 – https://pdfs.semanticscholar.org/41b2/eb995324236f2d172d28f8d314a03d27b30d.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/07/evidence-for-the-morphological-and-physiological-evolution-of-stomata-relation-for-water-conservation-under-natural-selection/ )

Zhang S.-B., Guan Z.-J., Sun M., Zhang J.-J., Cao K.-F., Hu H. (2012) – Evolutionary Association of Stomatal Traits with Leaf Vein Density in Paphiopedilum, Orchidaceae – Plos One – https://doi.org/10.1371/journal.pone.0040080https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040080 – (On our blog : https://plantstomata.wordpress.com/2020/02/24/evolutionary-association-of-stomatal-traits-with-leaf-vein-density/ )

Zhang S. Q., Outlaw W. H. Jr. (2001) – The guard‐cell apoplast as a site of abscisic acid accumulation in Vicia faba L. – Plant, Cell and Environment 24: 347–355 – https://doi.org/10.1046/j.1365-3040.2001.00677.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2001.00677.x – (On our blog : https://plantstomata.wordpress.com/2019/03/04/stomata-will-display-higher-sensitivity-to-leaf-apoplastic-aba-if-stomata-are-widely-open-in-a-relatively-dry-atmosphere/ )

Zhang S. Q., Outlaw W. H. Jr. (2001) – Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure – Plant, Cell and Environment 24: 1045-1054 – https://doi.org/10.1046/j.1365-3040.2001.00755.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2001.00755.x – (On our blog : https://plantstomata.wordpress.com/2019/02/04/abscisic-acid-accumulates-in-the-guard-cell-apoplast-and-causes-stomatal-closure/ )

Zhang S. Q., Outlaw W. H. Jr. (2001) – Gradual long-term water stress results in abscisic acid accumulation in the guard-cell symplast and guard-cell apoplast of intact Vicia faba L. plants – J Plant Growth Regul 20: 300–307 – https://doi.org/10.1007/s003440010021https://library.vukrom.cz/documents/29345?back=https%3A%2F%2Flibrary.vukrom.cz%2Fauthorities%2F110336%3Flocale%3Dcs&group=36945,21202,29345,26415,36944,36630,36943,21257 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/water-stress-results-in-aba-accumulation-in-the-stomatal-guard-cell-symplast-and-guard-cell-apoplast/ )

Zhang S. Q., Outlaw W. H. Jr., Aghoram K. (2001) – Relationship between changes in the guard cell abscisic acid content and other stress$related physiological parameters in intact plants – J. Exp. Bot. 52(355): 301-308 – https://watermark.silverchair.com/520301.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/03/28/changes-in-the-guard-cell-aba-content-and-other-stress-related-physiological-parameters/ )

Zhang S. Q., Outlaw W. H., Chollet R. ( 1994) – Lessened malate inhibition of guard-cell phosphoenolpyruvate carboxylase velocity during stomatal opening – FEBS Letters 352(1): 45-48 – https://doi.org/10.1016/0014-5793(94)00916-3https://febs.onlinelibrary.wiley.com/doi/10.1016/0014-5793%2894%2900916-3 – (On our blog : https://plantstomata.wordpress.com/2023/05/29/the-lessened-sensitivity-of-guard-cell-pepc-activity-to-malate-inhibition-is-an-important-regulatory-feature-of-stomatal-opening/ )

Zhang T., Chen S., Harmon A. C. (2014) – Protein phosphorylation in stomatal movement – Plant Signa. Behav. 9:e972845 – doi: 10.4161/ 15592316.2014.972845 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622631/ – (On our blog : https://plantstomata.wordpress.com/2018/07/23/the-essential-role-of-protein-phosphorylation-in-aba-induced-stomatal-closure-and-in-blue-light-induced-stomatal-opening/ )

Zhang T.-Y., Li F.-C., Fan C.-M., Li X., Zhang F.-F., He J.-M. (2017) – Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure – Plant Science 262: 190-199 – https://doi.org/10.1016/j.plantsci.2017.06.010https://www.sciencedirect.com/science/article/abs/pii/S0168945217301875?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/05/11/genetic-and-biochemical-evidences-not-only-show-that-mek1-mpk6-cascade-atrbohd-f-dependent-h2o2-and-nia1-dependent-no-are-all-involved-in-dark-induced-stomatal-closure/ )

Zhang T.-Y., Li Z.-Q., Zhao Y.-D., Shen W.-J., Chen M.-S., Gao H.-Q., Ge X.-M.,  Wang H.-Q., Xue Li X., He J.-M. (2021) – Ethylene-induced stomatal closure is mediated via MKK1/3–MPK3/6 cascade to EIN2 and EIN3 – Journal of Integrative Plant Biology 63(7): 1324-1340 – https://doi.org/10.1111/jipb.13083https://onlinelibrary.wiley.com/doi/10.1111/jipb.13083 – (On our blog : https://plantstomata.wordpress.com/2023/05/25/the-mkk1-3-mpk3-6-cascade-mediates-ethylene-induced-stomatal-closure-by-functioning-downstream-of-etr1-ctr1-and-h2o2-to-interact-with-ein2-thereby-promoting-ein3-accumulation-and-ein3/ )

Zhang W. (2011) – Roles of heterotrimeric G proteins in guard cell ion channel regulation – Plant Signal Behav. 6(7): 986-990 – doi: 10.4161/psb.6.7.15461 – PMID: 21617376 – PMCID: PMC3257774 – https://pubmed.ncbi.nlm.nih.gov/21617376/ – (On our blog : https://plantstomata.wordpress.com/2021/10/03/g-protein-regulation-of-ion-channels-on-the-plasma-membrane-of-stomatal-guard-cells/ )

Zhang W., Calla B., Thiruppathi D. (2021) – Deep learning-based high-throughput phenotyping accelerates gene discovery for stomatal traits – Plant Physiol. 187(3): 1273-1275 – doi: 10.1093/plphys/kiab398 – PMID: 34734281 – PMCID: PMC8566201https://academic.oup.com/plphys/article/187/3/1273/6420538 – (On our blog : https://plantstomata.wordpress.com/2023/08/15/deep-learning-based-high-throughput-phenotyping-accelerates-gene-discovery-for-stomatal-traits/ )

Zhang W., Fan L. M., Wu W. H. (2007) – Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics – Plant Physiology 143: 1140–1151 – https://doi.org/10.1104/pp.106.091405http://www.plantphysiol.org/content/143/3/1140 – (On our blog : https://plantstomata.wordpress.com/2019/01/11/osmo-sensitive-and-stretch-activated-ca2-channels-stomata-and-their-regulation-by-osmotic-changes-and-actin-dynamics/ )

Zhang W., He J., Zhang L., He S. Y., Ryser E., Li H. (2019) – Stomata Facilitated Sorption of Silver Nanoparticles by Arabidopsis thaliana – Geophysical Research Abstracts Vol. 21, EGU2019-15061, 2019 – https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15061.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/21/stomata-facilitated-sorption-of-silver-nanoparticles/ )

Zhang W., He S. Y., Assmann S. M. (2008) – The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation – Plant J. 56: 984–996 – doi: 10.1111/j.1365-313X.2008.03657.x – https://www.ncbi.nlm.nih.gov/pubmed/18702674 – (On our blog : https://plantstomata.wordpress.com/2018/07/23/insights-into-the-elusive-signaling-process-underlying-pti-associated-stomatal-responses/ )

Zhang W., Jeon B. W., Assmann S. M. (2011) – Heterotrimeric G-protein regulation of ROS signaling and calcium currents in Arabidopsis guard cells – J. Exp. Bot. 62: 2371–2379 – doi: 10.1093/jxb/erq424 – https://www.ncbi.nlm.nih.gov/pubmed/21262908 – (On our blog : https://plantstomata.wordpress.com/2018/07/23/heterotrimeric-g-protein-regulation-of-ros-signaling-and-calcium-currents-in-stomata/ )

Zhang W., Nilson S. E., Assmann S. M. (2008) – Isolation and whole-cell patch clamping of Arabidopsis guard cell protoplasts – CSH Protoc. 2008: pdb prot5014 – doi: 10.1101/pdb.prot5014 – http://cshprotocols.cshlp.org/content/2008/6/pdb.prot5014.abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-whole-cell-patch-clamping-of-guard-cell-protoplasts-stomata/ )

Zhang W. (炜 张), Zhao Y. (杨 赵), Guo Y. (岩 郭), Ye K. (克穷 叶) (2012) – Plant Actin-binding Protein SCAB1 Is Dimeric Actin Cross-linker with Atypical Pleckstrin Homology Domain – PROTEIN STRUCTURE AND FOLDING 287(15): 11981-11990 – https://doi.org/10.1074/jbc.M111.338525https://www.jbc.org/article/S0021-9258(20)53123-2/fulltext – (On our blog : https://plantstomata.wordpress.com/2023/03/08/scab1-is-a-novel-plant-specific-actin-binding-protein-that-binds-bundles-and-stabilizes-actin-filaments-and-regulates-stomatal-movement/ )

Zhang X., Dong F. C., Gao J. F., Song C. P. (2001) – Hydrogen peroxide- induced changes in intracellular pH of guard cells precede stomatal closure – Cell Res. 11: 37–43 – doi: 10.1038/sj.cr.7290064 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Hydrogen-peroxide-induced-changes-in-intracellular-pH-of-guard-cells-precede-stomatal-closure-1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/23/h2o2-is-important-at-an-early-stage-in-the-signal-cascade-leading-to-stomatal-closure/ )

Zhang X., Mei X., Wang Y., Huang G., Feng F., Liu X., Guo R., Gu F., Hu X., Yang Z., Zhong X., Li Y. (2020) – Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity – PeerJ. 8: e8927 – DOI: 10.7717/peerj.8927https://peerj.com/articles/8927.pdf – (On our blog : https://plantstomata.wordpress.com/2021/02/19/stomatal-conductance-bears-no-correlation-with-transpiration-rate-under-high-air-humidity/ )

Zhang X., Miao Y. C., An G. Y., Zhou Y., Shangguan Z. P., Gao J. F., Song C. P. (2001) – K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells – Cell Res. 11: 195–202 – DOI: 10.1038/sj.cr.7290086 – https://www.nature.com/articles/7290086 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/h2o2-mediates-aba-induced-stomatal-movement-by-targeting-inward-k-channels-at-plasma-membrane/ )

Zhang X., Takemiya A., Kinoshita T., Shimazaki K. (2007) – Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells – Plant Cell Physiol. 48: 715-723 – https://academic.oup.com/pcp/article/48/5/715/2279068 – (On our blog : https://plantstomata.wordpress.com/2018/07/24/no-and-h-2-o-2-inhibit-blue-light-induced-activation-of-h-atpase-and-stimulate-stomatal-closure-by-aba/ )

Zhang X., Wang H., Takemiya A., Song C., Kinoshita T., Shimazaki K. (2004) – Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts – Plant Physiol. 136: 4150–4158 – DOI: 10.1104/pp.104.046573 – http://europepmc.org/abstract/MED/15563626 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/inhibition-of-blue-light-dependent-h-pumping-by-aba-through-hydrogen-peroxide-induced-dephosphorylation-in-stomatal-protoplasts/ )

Zhang X., Yu C. M., An G. Y., Zhou Y., Shangguan Z. P., Gao J. F., Song C. P. (2001) – K+channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells – Cell Res. 11: 195–202 – DOI: 10.1038/sj.cr.7290086https://www.nature.com/articles/7290086.pdf?origin=ppub – (On our blog : https://plantstomata.wordpress.com/2019/05/28/h2o2-mediates-aba-induced-stomatal-movement-by-targeting-inward-k-channels-at-plasma-membrane-2/ )

Zhang X., Zhang L., An G. Y., Gao J. F., Song C. P. (2001) – Studies on ABA-induced H2O2 in Vicia guard cells by means of confocal laser scanning microscopy – Acta Biol Exp Sin 34(1): 71-76 – PMID: 12549013 – https://www.ncbi.nlm.nih.gov/pubmed/12549013 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/h2o2-is-possibly-involved-in-aba-signaling-leading-to-stomatal-closure/ )

Zhang X., Zhang L., Dong F., Song C. P., Gao J., (2000) – Generation of hydrogen peroxide in abscisic acid signalling in stomatal guard cells of Vicia faba L. – Plant Biology (Rockville) : 38 – https://eurekamag.com/research/034/978/034978888.php

Zhang X., Zhang L., Dong F., Gao J., Galbraith D. W., Song C. P. (2001) – Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba – Plant Physiol. 126: 1438–1448 – https://doi.org/10.1104/pp.126.4.1438 – http://www.plantphysiol.org/content/126/4/1438 – (On our blog : https://plantstomata.wordpress.com/2018/07/24/aba-may-close-the-stomata-via-a-pathway-with-h2o2-production-involved-and-h2o2-may-be-an-intermediate-in-aba-signaling/ )

Zhang X.,  Zhang Y., Tian J., Ma N., Wang Y.-P. (2022) – CO2 fertilization is spatially distinct from stomatal conductance reduction in controlling ecosystem water-use efficiency increase – Environ. Res. Lett. 17: 054048 – DOI 10.1088/1748-9326/ac6c9chttps://iopscience.iop.org/article/10.1088/1748-9326/ac6c9c – (On our blog : https://plantstomata.wordpress.com/2023/04/11/the-co2-fertilization-effect-on-photosynthesis-23-was-similar-to-the-co2-suppression-effect-on-stomatal-conductance-28/ )

Zhang X. Q., Wei P. C., Xiong Y. M., Yang Y., Chen J., Wang X. C. (2011) – Overexpression of the Arabidopsis α-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus –Plant Cell Rep 30: 27–36 – doi: 10.1007/s00299-010-0937-2 – https://www.ncbi.nlm.nih.gov/pubmed/20976459?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/12/03/the-putative-role-of-atexpa1-as-controller-of-stomatal-opening-rate-and-its-regulation/

Zhang X. Y., Wang H. M., Hou Z. D., Wang G. X. (2003) – Stomatal density and distributions of spring wheat leaves under different planting densities and soil moisture levels – Acta Phytoecologica Sinica 27: 133–136 – doi: 10.17521/cjpe.2003.0020 – http://www.plant-ecology.com/EN/10.17521/cjpe.2003.0020 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/changes-in-stomatal-densities-and-distributions-are-the-result-of-different-water-conditions-induced-by-planting-densities/ )

Zhang Y., Bergmann D. C., Dong J. (2016) – Fine-scale dissection of the subdomains of polarity protein BASL in stomatal asymmetric cell division – J Exp Bot.(17): 5093-5103 – doi: 10.1093/jxb/erw274 – PMID: 27422992  – https://www.ncbi.nlm.nih.gov/pubmed/27422992 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/basl-integrates-multiple-regulatory-inputs-to-provide-a-mechanism-that-promotes-difference-during-stomatal-lineage-acds/ )

Zhang Y., Guo X., Dong J. (2016) – Phosphorylation of the Polarity Protein BASL Differentiates Asymmetric Cell Fate through MAPKs and SPCH – Curr. Biol. 26(21): 2957-2965 – https://doi.org/10.1016/j.cub.2016.08.066https://www.cell.com/current-biology/fulltext/S0960-9822(16)31011-9 – (On our blog : https://plantstomata.wordpress.com/2021/12/05/basl-polarization-leads-to-elevated-nuclear-mpk6-signaling-and-lowered-spch-abundance-in-one-of-the-two-daughter-cells/ )

Zhang Y., Kaiser E., Li T., Marcelis L. F. M. (2021) –  Salt stress slows down dynamic photosynthesis mainly through osmotic effects on dynamic stomatal behavior – Authorea – June 02, 2021 – DOI: 10.22541/au.162264615.56315760/v1https://www.authorea.com/users/417597/articles/524631-salt-stress-slows-down-dynamic-photosynthesis-mainly-through-osmotic-effects-on-dynamic-stomatal-behavior – (On our blog : https://plantstomata.wordpress.com/2021/07/27/osmotic-effect-strongly-impacts-dynamic-stomatal-and-photosynthetic-behavior-under-salt-stress/ )

Zhang Y., Kaiser E., Li T., Marcelis L. F. M., (2022) – NaCl affects photosynthetic and stomatal dynamics by osmotic effects and reduces photosynthetic capacity by ionic effects in tomato – Journal of Experimental Botany 73(11): 3637-3650 – https://doi.org/10.1093/jxb/erac078https://academic.oup.com/jxb/article-abstract/73/11/3637/6537450?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2023/04/10/nacl-impacts-dynamic-stomatal-and-photosynthetic-kinetics-by-osmotic-effects-and-reduces-photosynthetic-capacity-by-ionic-effects/ )

Yuqin Zhang, Himabindu Vasuki Kilambi, Jie Liu, Hamutal Bar, Shani Lazary, Aiman Egbaria, Dagmar Ripper, Laurence Charrier, Zeinu Mussa Belew, Nikolai Wulff, Suresh Damodaran, Hussam Hassan Nour-Eldin, Asaph Aharoni, Laura Ragni, Lucia Strader, Nir SadeRoy Weinstain, Markus Geisler, Eilon Shani, (2021) – ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers – SCIENCE ADVANCES 7(43): – https://www.science.org/doi/10.1126/sciadv.abf6069 – (On our blog : https://plantstomata.wordpress.com/2021/11/11/abcg17-and-abcg18-double-knockdown-revealed-that-the-transporters-encoded-by-these-genes-not-only-limit-stomatal-aperture-size-conductance-and-transpiration/ )

Zhang Y., Liu B., Jia G., Yu G., Zhang X., Yin X., Zhao Z., Cheng C., Wang Y., Xin Y. (2022) – Scaling Up from Leaf to Whole-Plant Level for Water Use Efficiency Estimates Based on Stomatal and Mesophyll Behaviour in Platycladus orientalis – Water 14(2): 263 – DOI:  10.3390/w14020263https://www.researchgate.net/publication/357904238_Scaling_Up_from_Leaf_to_Whole-Plant_Level_for_Water_Use_Efficiency_Estimates_Based_on_Stomatal_and_Mesophyll_Behaviour_in_Platycladus_orientalis – (On our blog : https://plantstomata.wordpress.com/2023/07/27/in-shaping-the-expression-of-the-short-term-water-use-efficiencyp-the-role-of-both-stomatal-gsw-and-mesophyll-conductance-gmwere-emphasized/ )

Zhang Y., Lv S., Wang G. (2018) – Strigolactones are common regulators in induction of stomatal closure in planta – Plant Signal Behav. 13(3): e1444322 – doi: 10.1080/15592324.2018.1444322 – Epub 2018 Mar 13 – https://pubmed.ncbi.nlm.nih.gov/29473784/ – (On our blog : https://plantstomata.wordpress.com/2020/12/31/sls-could-serve-as-common-regulators-in-the-modulation-of-stomatal-apertures-of-various-plant-species/ )

Zhang Y.-J., Meinzer F. C., Qi J.-H., Goldstein G., Cao K.-F. (2013) – Midday stomatal conductance is more related to stemrather than leaf water status in subtropical deciduous andevergreen broadleaf trees – Plant, Cell and Environment  36: 149–158 – https://www.academia.edu/18598975/Midday_stomatal_conductance_is_more_related_to_stem_rather_than_leaf_water_status_in_subtropical_deciduous_and_evergreen_broadleaf_trees – (On our blog : https://plantstomata.wordpress.com/2022/01/07/99170/ )

Zhang Y., Novick K. A., Song C., Zhang Q., Hwang T. (2017) – Representation of physiological drought at ecosystem level based on model and eddy covariance measurements – American Geophysical Union, Fall Meeting 2017, abstract #B13H-1852 – https://ui.adsabs.harvard.edu/abs/2017AGUFM.B13H1852Z/abstract – (On our blog : https://plantstomata.wordpress.com/2022/09/05/a-phenomena-of-isohydricity-in-which-plants-tend-to-close-stomata-to-keep-the-leaf-water-potential-constant-and-reduce-the-risk-of-hydraulic-failure/ )

Zhang Y., Oren R., Kang S. (2012) – Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area – Tree Physiology 32(3): 262–279 –  https://doi.org/10.1093/treephys/tpr120https://academic.oup.com/treephys/article/32/3/262/1686919 – (On our blog : https://plantstomata.wordpress.com/2023/02/05/spatiotemporal-variation-of-crown-scale-stomatal-conductance/ )

Zhang Y., Su J., Wu T., Wu Y. (2019) – New insights into the regulation of stomatal development and patterning – International Journal of Molecular Sciences 20(15): 3783-

Zhang Y., Sun Y., Liu X., Deng J., Yao J., Zhang Y., Deng S., Zhang H., Zhao N., Li J., Zhou X., Zhao R., Chen S. (2021) Populus euphratica Apyrases Increase Drought Tolerance by Modulating Stomatal Aperture in Arabidopsis – Int. J. Mol. Sci. 22: 9892 – https://doi.org/10.3390/ ijms22189892file:///C:/Users/wille/Downloads/ijms-22-09892.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/21/a-speculative-model-of-apyrase-signaling-in-eatp-and-aba-regulated-stomatal-movements-under-drought/ )

Zhang Y.-D., Véry A.-A., Wang L.-M., Deng Y.-W., Sentenac H., Huang D.-F. (2010) – A K+ channel from salt-tolerant melon inhibited by Na+– New Phytologist 189(3): Special Issue: Featured papers on ‘Unearthing the truffle genome’ : 856-868 – https://doi.org/10.1111/j.1469-8137.2010.03526.xhttps://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03526.x – (On our blog : https://plantstomata.wordpress.com/2023/07/24/expressed-in-guard-cells-melon-inward-rectifying-k-channel-mirk-might-control-na-arrival-to-the-shoots-via-regulation-of-stomatal-aperture-by-na/ )

Zhang Y., Wang P., Shao W., Zhu J. K., Dong J. (2015) -The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division – Dev Cell 33(2): 136-149 – https://doi.org/10.1016/j.devcel.2015.02.022 – Epub 2015 Apr 2 – PMID: 25843888 – PMCID: PMC4406870 – https://pubmed.ncbi.nlm.nih.gov/25843888/ – (On our blog : https://plantstomata.wordpress.com/2023/01/07/breaking-of-asymmetry-in-the-stomatal-lineage-basl-is-polarized-to-control-stomatal-asymmetric-division/ )

Zhang Y., Xu W., Li Z., Deng X. W., Wu W., Xue Y. (2008) – F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis – Plant Physiol. 148(4): 2121-2133 – doi: 10.1104/pp.108.126912 – Epub 2008 Oct 3 – PMID: 18835996 – PMCID: PMC2593669 – https://pubmed.ncbi.nlm.nih.gov/18835996/ – (On our blog : https://plantstomata.wordpress.com/2023/06/09/dor-acts-independent-of-phospholipase-dalpha1-in-an-aba-signaling-pathway-to-inhibit-the-aba-induced-stomatal-closure-under-drought-stress/ )

Zhang Y., Xue Y. (2009) – DOR: a link between an F-box protein and guard cell ABA signaling – Plant Signal Behav 4(5): 470-471 –  doi: 10.1104/pp.108.126912 – Epub 2009 May 24 – PMID: 19816119 – PMCID: PMC2676770 – https://pubmed.ncbi.nlm.nih.gov/19816119/ – (On our blog : https://plantstomata.wordpress.com/2023/06/09/dor-is-a-guard-cell-preferential-f-box-protein-it-likely-forms-two-negative-feedback-regulatory-loops-for-the-aba-induced-stomatal-closure-under-drought-conditions-in-arabidopsis/ )

Zhang Y., Yang S. J., Sun M., Cao K. F. (2014) – Stomatal traits are evolutionarily associated with vein density in basal angiosperms  ([ 张亚, 杨石建, 孙梅, 曹坤芳 (2014). 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 32,320-328.]) – Plant Science Journal 32: 320-328 – https://www.cabdirect.org/cabdirect/abstract/20143327314 – (On our blog :  https://plantstomata.wordpress.com/2023/01/07/stomatal-traits-are-evolutionarily-associated-with-vein-density-in-basal-angiosperms/ )

Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., Wang X. (2009) – Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis – Plant Cell 21, 2357–2377 – doi: 10.1105/tpc.108.062992 – http://www.plantcell.org/content/early/2009/08/18/tpc.108.062992 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/the-role-of-pld%ce%b11-and-pa-in-aba-induced-production-of-ros-in-stomata/ )

Zhang Y. P., Wang Z. M., Wu Y. C., Zhang X. (2006) – Stomatal characteristics of different green organs in wheat under different irrigation regimes – Acta Agronomica Sinica 32: 70–75 – http://agris.fao.org/agris-search/search.do?recordID=CN2006001624 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/stomatal-characteristics-of-different-green-organs-under-different-irrigation-regimes/ )

Zhang Z. F., Liu J. H., Fu X. F., et al (2017) – Effect of drought stress on stomata and ultrastructure of mesophyll cells of oat leaf – Journal of Triticeae Crops 37(9): 1216-1223 – http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201709012

Zhang Z. Z., Zhao P., McCarthy H. R., Zhao X. H., Niu J. F., Zhu L. W., Ni G. Y., Ouyang L., Huang Y. Q. (2016) – Influence of the decoupling degree on the estimation of canopy stomatal conductance for two broadleaf tree species – Agricultural and Forest Meteorology 221: 230-241 – ISSN : 0168-1923 – doi: 10.1016/j.agrformet.2016.02.018https://www.infona.pl/resource/bwmeta1.element.elsevier-425c99c5-3f19-3a53-937b-e9947c3316cc – (On our blog : https://plantstomata.wordpress.com/2022/02/28/some-light-on-the-prediction-error-of-stomatal-conductance-derived-from-the-simplified-equation-in-different-forest-types/ )

Zhao C. (2019) – A conserved chloroplast retrograde signal regulates stomatal closure for drought tolerance in plants – https://researchdirect.westernsydney.edu.au/islandora/object/uws%3A51886 – (On our blog : https://plantstomata.wordpress.com/2022/05/13/mechanisms-from-both-physiological-and-molecular-aspects-of-a-chloroplast-retrograde-signal-that-enhances-plant-drought-tolerance-by-regulating-stomatal-closure/ )

Zhao C., Cai S., Wang Y., Chen Z. H. (2016) – Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signalling components in Arabidopsis – Plant signalling & behavior 11(6): e1183088 – doi: 10.1080/15592324.2016.1183088 – PMID: 27171851 – PMCID: PMC4973779https://pubmed.ncbi.nlm.nih.gov/27171851/ – (On our blog : https://plantstomata.wordpress.com/2023/01/08/mutating-nia1-and-nia2-impaired-nearly-all-the-key-components-of-guard-cell-aba-signaling-pathway-in-arabidopsis/ )

Zhao C., Chavan S., He X., Zhou M., Cazzonelli C. I., Chen Z.-H., Tissue D. T., Ghannoum O. (2020) – Smart Film Impacts Stomatal Sensitivity of Greenhouse Capsicum Through Altered Light – biorxiv – doi: https://doi.org/10.1101/2020.09.22.309427https://www.biorxiv.org/content/10.1101/2020.09.22.309427v1.full – (On our blog : https://plantstomata.wordpress.com/2021/03/27/sg-upregulated-the-expression-of-key-genes-involved-in-stomatal-regulation-and-light-sensing/ )

Zhao C., Haigh A. M., Holford P., Chen Z. H. (2018) – Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance – International Journal of Molecular Sciences 19(4): 963 – PMID: 29570668 – PMCID: PMC5979362 – DOI: 10.3390/ijms19040963https://pubmed.ncbi.nlm.nih.gov/29570668/ – (On our blog : https://plantstomata.wordpress.com/2023/01/08/the-roles-of-important-plasma-membrane-and-tonoplast-ion-transporters-that-are-involved-in-regulating-stomatal-movement/ )

Zhao C., Wang Y. Y., Chan K. X., Chen G., Holford P., Haigh A. M., Chen Z. H. ( ) – Chloroplastretrograde Signal PAP bypasses Open Stomatal 1 to rescue gene expression of critical ABA signalling elements in guard cells and mesophyll cells of Arabidopsis –

Zhao C., Wang Y., Chan K. X., Marchant D. B., Franks P. J., Randall D., Tee E. E., Chen G., Ramesh S., Phua S. Y., Zhang B., Hills A., Dai F., Xye D., Gilliham M., Tyerman S., Nevo E., Wu F., Zhang G., Wong G. K.-S., Leebens-Mack J. H., Melkonian M., Blatt M. R., Soltis P. S., Soltis D. E., Pogson B. J., Chen Z.-H. (2019) – Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land – PNAS 116 (11) 5015-5020 – https://doi.org/10.1073/pnas.1812092116https://www.pnas.org/content/116/11/5015 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/pap-regulates-stomatal-closure-via-secondary-messengers-and-ion-transport-in-guard-cells/ )

Zhao J., Zhang W., da Silva J. A. T., Liu X., Duan J. (2021) – Rice histone deacetylase HDA704 positively regulates drought and salt tolerance by controlling stomatal aperture and density – Planta 254(4): 79 –

Zhao J. R. (2023) – The relationship between the wettability and the density of stomata – Theoretical and Natural Science 6(1): 359-363 – DOI: 10.54254/2753-8818/6/20230285https://www.researchgate.net/publication/372883982 – (On our blog : https://plantstomata.wordpress.com/2024/01/31/elm-leaves-ulmaceae-lower-surface-with-superhydrophobic-function-is-covered-by-large-amount-of-stomata-while-the-bottom-surface-with-hydrophilic-performance-is-smooth-and-covered-by-a-small-amount/ )

Zhao J. T., Yang K., Wang X., Ma C., Zhang G Q. (2023) – Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves – Scientia Agricultura Sinica  56(3): 453-465 – doi: 10.3864/j.issn.0578-1752.2023.03.005https://www.chinaagrisci.com/EN/10.3864/j.issn.0578-1752.2023.03.005 – (On our blog : https://plantstomata.wordpress.com/2023/02/14/phosphorus-application-and-stomatal-aperture/ )

Zhao L. , Sack F. D. (1999) –  Ultrastructure of stomatal development in Arabidopsis (Brassicaceae) leaves. – Amer. J. Botany 86: 929-939 – http://www.amjbot.org/content/86/7/929.full – (On our blog : https://plantstomata.wordpress.com/2018/01/29/ultrastructure-of-stomatal-development-2/ )

Zhao L., Wang L., Li J., Bai G., Shi Y., Ge Y. (2021) – Toward accurate estimating of crop leaf stomatal conductance combining thermal IR imaging, weather variables, and machine learning – Proceedings Volume 11747, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VI; 117470L – https://doi.org/10.1117/12.2587577
Event: SPIE Defense + Commercial Sensing, 2021, Online Only – https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11747/117470L/Toward-accurate-estimating-of-crop-leaf-stomatal-conductance-combining-thermal/10.1117/12.2587577.short?SSO=1 – (On our blog : https://plantstomata.wordpress.com/2021/11/29/estimating-of-crop-leaf-stomatal-conductance-combining-thermal-ir-imaging-weather-variables-and-machine-learning/ )

Zhao M. (2022) – Evapotranspiration frequently increases during droughts – Nature Climate Change – DOI: 10.1038/s41558-022-01505-3www.nature.com/articles/s41558-022-01505-3https://phys.org/news/2022-10-key-drought.html – (On our blog : https://plantstomata.wordpress.com/2022/11/13/109828/ ) – See also https://www.newsclick.in/Plant-Processes-Make-Soil-Drier-During-Droughts

Zhao P.-X., Miao Z.-Q., Zhang J., Chen S.-Y., Liu Q.-Q, Xiang C.-B. (2020) – Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement – Journal of Experimental Botany 71(19): 6092–6106 –
doi:10.1093/jxb/eraa303 – (On our blog : https://plantstomata.wordpress.com/2022/04/07/agl16-acts-as-a-negative-regulator-of-drought-resistance-by-modulating-leaf-stomatal-density-and-aba-accumulation/ )

Zhao R., Dielen V., Kinet J.-M., Boutry M. (2000) – Cosuppression of a plasma membrane H+-ATPaseisoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility – Plant Cell. 12: 535–546 – PMCID: PMC139851 – PMID: 10760242 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC139851/ – (On our blog : https://plantstomata.wordpress.com/2019/05/28/cosuppression-of-pma4-affected-the-guard-cells-stomatal-opening-and-photosynthesis-in-mature-leaves/ )

Zhao R. X., Zhang Q. B., Wu X. Y., Wang Y. (2001) – The effects of drought on epidermal cells and stomatal density of wheat leaves. Inner Mongolia Agricultural Science and Technology 6: 6–7 – 

Zhao S., Chen W., Ma D., Zhao F. (2006) – Influence of different salt level on stomatal character in rice leaves – Reclaiming and Rice Cultivation 6: 26–29 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-KZDZ200606012.htm – (On our blog : https://plantstomata.wordpress.com/2019/03/05/different-salt-levels-and-stomatal-characters/ )

Zhao S., Jiang Y., Zhao Y., Huang S., Yuan M., Zhao Y., Guo Y. (2016) – CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor – Plant Cell – https://doi.org/10.1105/tpc.16.00078http://www.plantcell.org/content/28/6/1422?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Cell_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2020/01/15/ckl2-regulates-actin-filament-reorganization-and-stomatal-closure-mainly-through-phosphorylation-of-adf/ )

Zhao W., Fu P., Liu G., Zhao P. (2020) – Difference between emergent aquatic and terrestrial monocotyledonous herbs in relation to the coordination of leaf stomata with vein traits – AoB Plants 12(5): plaa047 – doi: 10.1093/aobpla/plaa047 – PMID: 33376587 – PMCID: PMC7750939 – https://pubmed.ncbi.nlm.nih.gov/33376587/ – (On our blog : https://plantstomata.wordpress.com/2021/04/24/the-differences-in-water-supply-between-emergent-aquatic-and-terrestrial-plants-modify-the-coordination-of-their-leaf-veins-and-stomatal-traits/ )

Zhao W., Liu B., Chang X., Yang Q., Yang Y., Liu Z., Cleverly J., Eamus D. (2016) – Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China – J. Hydrol. 538: 374–386 – https://doi.org/10.1016/j.jhydrol.2016.04.042https://www.sciencedirect.com/science/article/abs/pii/S0022169416302335?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/20/the-role-of-stomatal-regulation-of-canopy-transpiration-tc-as-a-determinant-of-ecosystem-water-balance/ )

Zhao W., Sun Y., Kjelgren R., Liu X. (2015) – Response of Stomatal Density and Bound Gas Exchange in Leaves of Maize to Soil Water Deficit – Plants, Soils, and Climate Faculty Publications. Paper 732 –  http://digitalcommons.usu.edu/psc_facpub/732 – https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1731&context=psc_facpub – (On our blog : https://plantstomata.wordpress.com/2018/02/04/response-of-stomatal-density-and-bound-gas-exchange-to-soil-water-deficit/ )

Zhao W., Sun Y., Kjelgren R., Liu X. (2015) – Response of Stomatal Density and Bound Gas Exchange in Leaves of Maize to Soil Water Deficit – Acta Physiologiae Plantarum 37(1): 1-9 – doi: 10.1007/s11738-014-1746-y

Zhao W.-L., Chen Y.-J., Brodribb T. J., Cao K.-F. (2016) – Weak co-ordination between vein and stomatal densities in 105 angiosperm tree species along altitudinal gradients in Southwest China – Functional Plant Biology – http://dx.doi.org/10.1071/FP16012http://www.brodribblab.org.au/wp-content/uploads/2016/11/Weak-co-ordination.pdf – (On our blog : https://plantstomata.wordpress.com/2020/05/09/weak-co-ordination-between-vein-and-stomatal-densities/ )

Zhao W.-L., Fu P., Liu G., Zhao P. (2020) – Difference between emergent aquatic and terrestrial monocotyledonous herbs in relation to the coordination of leaf stomata with vein traits – AoB PLANTS 12(5) – DOI: 10.1093/aobpla/plaa047https://www.researchgate.net/publication/344703098_Difference_between_emergent_aquatic_and_terrestrial_monocotyledonous_herbs_in_relation_to_the_coordination_of_leaf_stomata_with_vein_traits – (On our blog : https://plantstomata.wordpress.com/2023/05/18/the-differences-in-water-supply-between-emergent-aquatic-and-terrestrial-plants-modify-the-coordination-of-their-leaf-veins-and-stomatal-traits-2/ )

Zhao W. L., Siddiq Z., Fu P. L., Zhang J. L., Cao K. F. (2017) – Stable stomatal number per minor vein length indicates the coordination between leaf water supply and demand in three leguminous species – Scientific reports 7: 2211 – PMID: 28526823 – PMCID: PMC5438398 – DOI: 10.1038/s41598-017-02448-yhttps://pubmed.ncbi.nlm.nih.gov/28526823/ – (On our blog : https://plantstomata.wordpress.com/2023/01/08/the-significance-of-sv-stomatal-number-per-minor-vein-length-and-new-insight-into-the-coordination-between-stomatal-number-and-minor-vein-length/ )-

Zhao X., Li Y. Y., Xiao H. L., Xu C. S., Zhang, X. (2013) – Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba guard cells – J. Integr. Plant Biol. 55: 527–536 – doi: 10.1111/jipb.12038 – https://www.ncbi.nlm.nih.gov/pubmed/23384172 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/ca2-plays-dual-and-distinctive-roles-in-the-crosstalk-between-bl-and-no-signaling-in-stomata-2/ )

Zhao X., Zhao M., Xiao J. T., Zhang W. X., Guan D., Wang M. Y., Li J. N., Zhang N. (2003) – Stomata characteristics of leaves of high-photosynthetic efficiency progenies from a cross between Oryza sativa and O. rufipogon and their parents – Acta Agronomica Sinica 29(2): 216-221 – https://eurekamag.com/research/004/328/004328511.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/stomata-characteristics-of-progenies-from-a-cross-between-oryza-sativa-and-o-rufipogon-and-their-parents/ )

Zhao X., Wang Y.-J., Wang Y.-L., Wang X.-L., Zhang X. (2011) –  Extracellular Ca2+ alleviates NaCl–induced stomatal opening through a pathway involving H2O2-blocked Na+ influx in Vicia guard cells – J. Plant Physiol. 168: 903-910 – PMID:21367483 – http://dx.doi.org/10.1016/j.jplph.2010.11.024http://www.sciencedirect.com/science/article/pii/S0176161711000630 – (On our blog : https://plantstomata.wordpress.com/2017/09/30/extracellular-ca2-alleviates-nacl-induced-stomatal-opening/ )

Zhao X., Yang Y., Shen, Z., Zhang H., Wang G., Gan Y. (2006) – Stomatal clustering in Cinnamomum camphora – South African Journal of Botany 72: 565-569 – https://doi.org/10.1016/j.sajb.2006.03.006 – https://www.sciencedirect.com/science/article/pii/S0254629906000883 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/stomatal-clusters-are-probably-able-to-assist-in-water-conservation/ )

Zhao Y. (2019) – Researchers reveal factor in subtropical plant photosynthesis – CGTN – Plant 2019-12-23 – https://news.cgtn.com/news/2019-12-23/Researchers-reveal-factor-in-subtropical-plant-photosynthesis-MEswOHB6EM/index.html – (On our blog : https://plantstomata.wordpress.com/2019/12/23/82502/ )

Zhao Y., Chan Z., Gao J., Xing L., Cao M., Yu C., Hu Y., You J., Shi H., Zhu Y., Gong Y., Mu Z., Wang H., Deng X., Wang P., Bressan R. A., Zhu J.-K., (2016) – ABA receptor PYL9 promotes drought resistance and leaf senescence – PNAS 113(7): 1949-1954 – https://doi.org/10.1073/pnas.1522840113https://www.pnas.org/content/113/7/1949 – (On our blog: https://plantstomata.wordpress.com/2021/12/23/the-molecular-mechanism-of-aba-induced-leaf-senescence-and-an-important-role-of-pyl9-and-leaf-senescence-in-promoting-resistance-to-extreme-drought-stress/ )

Zhao Y., Zhao S., Mao T., Qu X., Cao W., Zhang L., Zhang W., He L., Li S., Ren S., Zhao J., Zhu G., Huang S., Ye K., Yuan,M., Guo Y. (2011) – The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis – Plant Cell 23: 2314-2330 – https://doi.org/10.1105/tpc.111.086546http://www.plantcell.org/content/23/6/2314 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/scab1-is-required-for-the-precise-regulation-of-actin-filament-reorganization-during-stomatal-closure/ )

Zhao Y. Y., Lyu M. A., Miao F., Chen G., Zhu X. G. (2022) – The evolution of stomatal traits along the trajectory toward C4 photosynthesis – Plant Physiol. 190(1): 441-458 – doi: 10.1093/plphys/kiac252 – PMID: 35652758 – https://pubmed.ncbi.nlm.nih.gov/24860185/ – (On our blog : https://plantstomata.wordpress.com/2022/09/13/insights-into-the-pattern-mechanism-and-role-of-stomatal-evolution-along-the-road-toward-c4/ )

Zhao Y. Y., Yan F., Hu L. P., Zhou X. T., Zou Z. R., Cui L. R. (2015) – Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress – Genet. Mol. Res. 14: 6401–6412 – doi: 10.4238/2015.June.11.16https://www.funpecrp.com.br/gmr/year2015/vol14-2/pdf/gmr5197.pdf – (On our blog : https://plantstomata.wordpress.com/2022/12/03/effects-of-exogenous-5-aminolevulinic-acid-on-photosynthesis-and-stomatal-conductance/ )

Zhao Z. (2011)Arabidopsis Stomatal Opening and Closing Experiment – Bio-101: e74 – DOI: 10.21769/BioProtoc.74https://bio-protocol.org/bio101/e74 – (On our blog : https://plantstomata.wordpress.com/2020/12/07/how-to-measure-stomatal-apertures-following-aba-treatment/ )

Zhao Z., Assmann S. M. (2011) – The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana –  J. Exp. Bot. 62: 5179–5189 – doi: 10.1093/jxb/err223 – https://www.ncbi.nlm.nih.gov/pubmed/21813794 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/ipgams-and-glycolytic-activity-are-critical-for-stomatal-function-and-fertility/

Zhao Z., Stanley B. A., Zhang W., Assmann S. M. (2010) – ABA-Regulated G Protein Signaling in Arabidopsis Guard Cells: A Proteomic Perspective – J. Proteome Res. 9(4): 1637–1647 – DOI10.1021/pr901011h – http://pubs.acs.org/doi/abs/10.1021/pr901011h – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-regulated-g-protein-signaling-in-stomata/ )

Zhao Z. X., Zhang W., Stanley B. A., Assmann S. M. (2008) – Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways – Plant Cell 20: 3210–3226 – doi: 10.1105/tpc.108.063263 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630442/ – (On our blog : https://plantstomata.wordpress.com/2018/07/26/functional-proteomics-uncovers-new-stomatal-signaling-pathways/ )

Zhen S., Bugbee B. (2020) – Steady-state stomatal responses of C3 and C4 species to blue light fraction: Interactions with CO2 concentration – Plant, Cell & Environment 43(12) : 3020-3032 – https://doi.org/10.1111/pce.13888https://onlinelibrary.wiley.com/doi/10.1111/pce.13888 – (On our blog : https://plantstomata.wordpress.com/2024/01/08/the-blue-light-induced-stomatal-opening-minimally-enhanced-photosynthesis-and-consistently-decreased-water-use-efficiency/ )

Zheng F.-Y., Peng S.-L., Zhao P. (2001) – Changes in Stomatal Density and Intrinsic Water Use Efficiency of Two Trema Species over the Last Century – Chin J Plan Ecolo  25(4): 405-409 – https://www.plant-ecology.com/EN/abstract/abstract6944.shtml – (On our blog : https://plantstomata.wordpress.com/2022/03/04/stomatal-densities-declining-and-water-use-efficiency-increasing-with-time/ )

Zheng L., Van Labeke M. C. (2017) – Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants – Frontiers in Plant Science 8: 917- DOI: 10.3389/fpls.2017.00917https://europepmc.org/article/med/28611818 – (On our blog : https://plantstomata.wordpress.com/2020/03/05/long-term-effects-of-red-and-blue-light-on-stomata/ )

Zheng S-X., Shangguan Z.-P. (2005) – Relationship between stomata parameters of plants and atmospheric CO2 concentration change – Ecological Science 24(3): 264-267 – http://journal15.magtechjournal.com/Jwk_stkx/EN/abstract/abstract856.shtml# – (On our blog : https://plantstomata.wordpress.com/2022/02/18/the-progress-of-plant-stomata-parameters-in-the-reconstruction-of-the-palaeo-atmospheric-co2-concentration/ )

Zheng S-X., Shangguan Z.-P., Xue Q-W. (2006) – Changes of stomatal parameters of four typical species in the Loess Plateau of China over the last century – Acta Agriculturae Scandinavica, Section B – Soil & Pl.Sci. 56: 284-291 – https://doi.org/10.1080/09064710500321532https://www.tandfonline.com/doi/abs/10.1080/09064710500321532 – (On our blog : https://plantstomata.wordpress.com/2019/05/25/changes-of-stomatal-parameters-over-the-last-century/ )

Zheng T. C., Zhang X. K., Yin G. H., Wang L. N., Han Y. L., Chen L., Huang F., Tang J. W., Xia X. C., He Z. H. (2011) – Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008 – Field Crops Research 122: 225–233 – https://doi.org/10.1016/j.fcr.2011.03.015https://www.sciencedirect.com/science/article/abs/pii/S0378429011000979?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/06/23/genetic-gains-in-stomatal-conductance/ )

Zheng W., Jiang Y., Wang X., Huang S., Yuan M., Guo Y. (2019) – AP3M harbors actin filament binding activity that is crucial for vacuole morphology and stomatal closure in Arabidopsis – Proc. Natl. Acad. Sci. U.S.A. 116: 18132–18141 – doi: 10.1073/pnas.1901431116https://www.pnas.org/content/116/36/18132 – (On our blog : https://plantstomata.wordpress.com/2021/12/04/the-f-actin-binding-activity-of-ap3m-is-required-for-the-regulation-of-vacuole-morphology-in-guard-cells-during-stomatal-closure/ )

Zheng X., Kang S., Jing Y., Ren Z., Li L., Zhou J. -M., Berkowitz G., Shi J., Fu A., Lan W., Zhao F. Luan S. (2018) – Danger-Associated Peptides Close Stomata by OST1-Independent Activation of Anion Channels in Guard Cells – The Plant Cell 30 (5): 1132-1146 – DOI: 10.1105/tpc.17.00701 – http://www.plantcell.org/content/30/5/1132 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/a-damp-triggered-signaling-pathway-triggers-stomata-immunity-through-an-ost1-independent-mechanism/

Zheng Y., Xu M., Hou R., Shen R., Qiu S., Ouyang Z. (2013) – Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.) – Ecol. Evol. 3: 3095–3110 – doi: 10.1002/ece3.674 – https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.674 – (On our blog : https://plantstomata.wordpress.com/2018/10/15/effects-of-experimental-warming-on-stomatal-traits-2/ )

郑云普, 常志杰, 范晓懂, 张运鑫, 刘亮, 陈文娜, 刘媛媛, 郝立华. CO2浓度升高和磷素亏缺对黑麦草气孔特征及气体交换参数的影响. 农业工程学报, 2021, 37(18): 82-89 / Zheng Y. P., Chang Z. J., Fan X. D., Zhang Y. X., Liu L., Chen W. N., Liu Y. Y., Hao L. H. (2021) – Effects of CO2 concentration increase and phosphorus deficiency on the stomatal traits and leaf gas exchange parameters of ryegrass – Transactions of the Chinese Society of Agricultural Engineering 37(18): 82-89 (in Chinese) –

Zheng Y. P., Ming X. U., Wang J. S., Qin S., Wang H. X. (2015) – Responses of the stomatal traits and gas exchange of Maize leaves to climate warming – Acta Agron. Sin. 41: 601 – DOI: 10.3724/SP.J.1006.2015.00601https://www.researchgate.net/publication/289983261_Responses_of_the_Stomatal_Traits_and_Gas_Exchange_of_Maize_Leaves_to_Climate_Warming – (On our blog :

Zheng Z. L., Nafisi M., Tam A., Li H., Crowell D. N., Chary S. N., Schroeder J. I., Shen J., Yang Z. (2002) – Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis – Plant Cell 14(11): 2787-2797 – PMID: 12417701 – PMCID: PMC152727 – https://www.ncbi.nlm.nih.gov/pubmed/12417701 – (On our blog : https://plantstomata.wordpress.com/2018/07/26/rop10-a-pm-localized-signaling-molecule-involved-in-the-negative-regulation-of-aba-signaling-in-stomata/ )

Zhengmin H., Tongming Y. (1998) – The relationship between the resistance of poplar to Marssonina brunnea and size and density of stomata and peroxidase activity – Journal of Nanjing Forestry University 22(4): 91-94 – https://eurekamag.com/research/003/313/003313244.php – (On our blog : https://plantstomata.wordpress.com/2022/01/08/no-relationship-between-resistance-and-the-size-and-density-of-stomata-or-the-transpiration-rate/ )

Zhenzhu X., Guangsheng Z. (2008) – Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass – Journal of Experimental Botany 59 (12): 3317-3325 – https://doi.org/10.1093/jxb/ern185https://academic.oup.com/jxb/article/59/12/3317/627451 – (On our blog : https://plantstomata.wordpress.com/2020/02/25/high-flexibilities-in-stomatal-density-and-guard-cell-size-will-change-in-response-to-water-status/ )

Zhong M. (2010) – Plant Vacuoles and the Regulation of Stomatal Opening – Nature Education 3(9): 45 – https://www.nature.com/scitable/topicpage/plant-vacuoles-and-the-regulation-of-stomatal-14163334/ – (On our blog : https://plantstomata.wordpress.com/2021/03/21/key-regulators-of-stomata-are-plant-vacuoles-fluid-filled-organelles-bound-by-a-single-membrane-called-the-tonoplast/ )

Zhong M., Cerabolini B. E. L., Castro-Diez P., Puyravaud J.-P., Cornelissen J. H. C. (2020) – Allometric co-variation of xylem and stomata across diverse woody seedlings – Plant, Cell & Environment ( IF 6.362 ) – DOI: 10.1111/pce.13826https://www.x-mol.com/paper/1273038415424155648 – (On our blog : https://plantstomata.wordpress.com/2021/01/25/allometric-co-variation-of-xylem-and-stomata)

Zhong Z., He B., Wang Y.-P., Chen H. W., Chen D., Fu Y. H., Chen YU., Guo L., Deng Y., Huang L., Yuan W., Hao X., Tang R., Liu H., Sun L., XIE X., Zhang Y. (2023) – Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity – Science Advances 9(32) – eadf3166 –
DOI: 10.1126/sciadv.adf3166https://www.science.org/doi/10.1126/sciadv.adf3166 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/119485 )

Zhong M., Cerabolini B. E. L., Castro-Díez P., Puyravaud J.-P.,  Cornelissen J. H. C. (2020) – Allometric co-variation of xylem and stomata across diverse woody seedlings – Plant, Cell & Environment 43(9): 2301-2310 – https://doi.org/10.1111/pce.13826https://onlinelibrary.wiley.com/doi/10.1111/pce.13826 – (On our blog :

Zhong Z., He B., Wang Y.-P., Chen H. W., Chen D., Fu Y. H., Chen YU., Guo L., Deng Y., Huang L., Yuan W., Hao X., Tang R., Liu H., Sun L., XIE X., Zhang Y. (2023) – Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity – Science Advances 9 (32) – DOI: 10.1126/sciadv.adf3166https://www.science.org/doi/10.1126/sciadv.adf3166 – (On our blog :

Zhou N., Wang Y., Ya L., Porter A., Kürschner W. M., Li L., Lu N., McElwain J. C. (2019) – An inter-comparison study of three stomatal-proxy methods for CO2 reconstruction applied to early Jurassic Ginkgoales plants – Palaeogeography Palaeoclimatology Palaeoecology 109547 – DOI: 10.1016/j.palaeo.2019.109547https://www.sciencedirect.com/science/article/abs/pii/S0031018219304183?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/12/30/a-likely-occurrence-of-polyploidy-in-sphenobaiera-huangii-may-result-in-underestimated-paleo-co2-when-applying-mechanistic-method-due-to-an-increase-in-the-size-of-the-stomatal-complex/ )

Zhou S., Duursma R. A., Medlyn B. E., Kelly J. W. G., Prentice I. C. (2013) – How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress – Agricultural and forest meteorology 182-183: 204-214 – DOI: 10.1016/j.agrformet.2013.05.009http://www.researchonline.mq.edu.au/vital/access/manager/Repository/mq:28087;jsessionid=F5E8393B52B58BBF6E4EBAA5E20A0755f0=sm_subject%3A%22Photosynthetic+limitation%22 – (On our blog : https://plantstomata.wordpress.com/2022/03/01/stomatal-and-non-stomatal-limitations-to-photosynthesis-must-both-be-considered-for-the-short-term-response-to-drought/ )

Zhou S., Medlyn B., Sabaté S., Sperlich D., Prentice I. C. (2014) – Short‐term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates – Tree Physiol 34: 1035–1046 – doi: 10.1093/treephys/tpu072. Epub 2014 Sep 4https://www.ncbi.nlm.nih.gov/pubmed/25192884 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/adaptive-interspecific-differences-in-drought-responses-stomatal-mesophyll-and-biochemical-limitations-to-photosynthesis/ )

Zhou S.-X., Prentice I. C., Medlyn B. E. (2019) – Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought – Front. Plant Sci., 15 January 2019 – https://doi.org/10.3389/fpls.2018.01965https://www.frontiersin.org/articles/10.3389/fpls.2018.01965/full – (On our blog : https://plantstomata.wordpress.com/2020/01/09/how-experimentally-derived-quantitative-information-can-improve-the-representation-of-stomatal-and-non-stomatal-photosynthetic-responses-to-drought-in-large-scale-vegetation-models/ )

Zhou S.-X., Prentice I. C., Medlyn B. E., Sabaté S. (2013) – Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought – American Geophysical Union, Fall Meeting 2013, abstract id. B53C-0480 – https://ui.adsabs.harvard.edu/abs/2013AGUFM.B53C0480Z/abstract – (On our blog : https://plantstomata.wordpress.com/2022/03/12/water-use-strategies-and-stomatal-and-non-stomatal-components-under-drought/ )

Zhou X., Wu W., Yuan M., Wang X. (1999) – Regulation of the inward K+ -channels in stomatal guard cells by cytoskeletal microtubules – Chinese Science Bulletin 44: 919–923 – https://doi.org/10.1007/BF02885065https://link.springer.com/article/10.1007/BF02885065#citeas – (On our blog : https://plantstomata.wordpress.com/2023/01/08/the-regulation-of-the-inward-k-channels-in-guard-cells-by-microtubules-may-mediate-the-regulation-of-stomatal-movements-by-cytoskeleton/ )

Zhou X. F., Jin Y. H., Yoo C. Y., Lin X.-L., Kim W.-Y., Yun D.-J., Bressan R. A.,  Hasegawa P. M., Jin J. B. (2013) – CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis – Plant Physiol. 162: 1030–1041  –http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DC%2BC3sXps1OqsLo%3D&md5=9148d023de1dca6c9f9e0f7c9e793052 – (https://plantstomata.wordpress.com/2016/12/07/cych1-regulates-blue-light-mediated-stomatal-opening-by-controlling-reactive-oxygen-species-homeostasis/ )

Zhou Y., Vroegop-Vos I., Schuurink R. C., Pieterse C. M. J. , Van Wees S. C. M. (2017) – Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine – Front. Plant Sci., 16 May 2017 – https://doi.org/10.3389/fpls.2017.00700 –https://www.frontiersin.org/articles/10.3389/fpls.2017.00700/full – (On our blog : https://plantstomata.wordpress.com/2017/10/29/co2-aba-accumulation-and-stomatal-responsiveness-to-coronatine/ )

Zhou Y. M., Han S. J. (2005) – Photosynthetic response and stomatal behaviour of Pinus koraiensis during the fourth year of exposure to elevated CO2 concentration – Photosynthetica 43: 445-449 – https://doi.org/10.1007/s11099-005-0071-5https://link.springer.com/article/10.1007/s11099-005-0071-5 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/photosynthetic-response-and-stomatal-behaviour-during-the-fourth-year-of-exposure-to-elevated-co2-concentration/ )

Zhou Y. M., Han S. J., Liu Y., Jia X. (2005) – Stomatal response ofPinus sylvestriformis to elevated CO2 concentrations during the four years of exposure – Journal of Forestry Research 16: 15–18 – https://link.springer.com/article/10.1007/BF02856846 – (On our blog : https://plantstomata.wordpress.com/2023/04/20/elevated-co2-concentrations-reduced-the-total-stomatal-number-of-whole-needle-by-the-decline-of-stomatal-line-and-changed-the-allocation-pattern-of-stomata-between-upper-and-lower-surface-of-need/ )

Zhou Y. M., Schaub M., Shi L. X., Guo Z. L., Fan A. A., Yan C. F., Wang X. J., Wang C. G., Han S. J., Li M. H. (2012) – Non-linear response of stomata in Pinus koraiensis to tree age and elevation – Trees 26: 1389–1396 – doi:10.1007/s00468-012-0713-8

Zhou Z., Lau O. S. (2021) – Dissecting the developmental roles of Pol II-associated proteins through the stomatal pores – New Phytol. 230: 11-13 – https://doi.org/10.1111/nph.17157https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17157 – (On our blog : https://plantstomata.wordpress.com/2021/12/02/the-developmental-roles-of-pol-ii-associated-proteins-through-the-stomatal-pores/ )

Zhou Z., Wu Y., Yang Y., Du M., Zhang X., Guo Y., Li C., Zhou J.-M. (2015) – An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion – Plant Cell 27: 2032–2041 – doi: 10.1105/tpc.15.00466https://academic.oup.com/plcell/article/27/7/2032/6096642 – (On our blog : https://plantstomata.wordpress.com/2021/11/09/a-previously-unknown-pathway-exploited-by-pseudomonas-syringae-that-acts-upstream-of-coi1-to-regulate-ja-signaling-and-stomatal-opening/ )

Zhu J., Park J.-H., Lee S., Lee J. H., Hwang D., Kwak J. M., Kim Y. J. (2020) – Regulation of stomatal development by stomatal lineage miRNAs – PNAS 117(11): 6237-6245 – https://doi.org/10.1073/pnas.1919722117https://www.pnas.org/content/117/11/6237 – (On our blog : https://plantstomata.wordpress.com/2020/04/08/84012/ )

Zhu J., Talbott L. D., Jin X., Zeiger E. (1998) – The stomatal response to CO2 is linked to changes in guard cell zeaxanthin – Plant Cell Environment 21: 813-820 – https://doi.org/10.1046/j.1365-3040.1998.00323.x –https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1998.00323.x – (On our blog : https://plantstomata.wordpress.com/2019/03/05/co2%e2%80%90dependent-changes-in-the-zeaxanthin-content-of-stomata-could-modulate-co2%e2%80%90dependent-changes-of-stomatal-apertures-in-the-light/ )

Zhu J., Yu Q., Xu C., Li J., Qin G. (2018) – Rapid Estimation of Stomatal Density and Stomatal Area of Plant Leaves Based on Object-Oriented Classification and Its Ecological Trade-Off Strategy Analysis – forests-09-00616.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/01/rapid-estimation-of-stomatal-density-and-stomatal-area/ )

Zhu K., Sun Z., Zhao F., Yang T., Tian Z., Lai J., Long B., Li S. (2020) – Remotely sensed canopy resistance model for analyzing the stomatal behavior of environmentally-stressed winter wheat –  ISPRS J. Photogramm. Remote Sens. 168: 197–207 – https://doi.org/10.1016/j.isprsjprs.2020.08.012https://www.sciencedirect.com/science/article/abs/pii/S0924271620302276?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/20/remotely-sensed-canopy-resistance-model-for-analyzing-the-stomatal-behavior/ )

Zhu K., Wang A., Wu J., Yuan F., Guan D., Jin C., Zhang Y., Gong C., (2020) – Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak – Sci Rep. 10(1): 10038 – doi: 10.1038/s41598-020-66886-x – PMID: 32572068 – PMCID: PMC7308411 – https://pubmed.ncbi.nlm.nih.gov/32572068/ – (On our blog : https://plantstomata.wordpress.com/2021/01/25/improvements-in-leaf-n-content-and-aqp-and-ca-activities-significantly-promote-gm-and-gsc-increases/ )

Zhu L. W., Zhao P., Wang Q., Ni G. Y., Niu J. F., Zhao X. H., Zhang Z. Z., Zhao P. Q., Gao J. G., Huang Y. Q., Gu D. X., Zhang Z. F. (2015) – Stomatal and hydraulic conductance and water use in a eucalypt plantation in Guangxi, southern China – Agricultural and Forest Meteorology 202: 61-68, ISSN 0168-1923 – https://doi.org/10.1016/j.agrformet.2014.12.003https://www.sciencedirect.com/science/article/pii/S0168192314003050 – (On our blog : https://plantstomata.wordpress.com/2024/05/04/canopy-stomatal-conductance-gs-was-higher-in-july-than-in-october-and-linearly-decreased-with-the-natural-logarithm-of-the-vapor-pressure-deficit/ )

Zhu M., Assmann S. M. (2017) – Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics – Scientific Reports 7(1) – DOI: 10.1038/s41598-017-13166-w – https://www.researchgate.net/publication/320288731_Metabolic_Signatures_in_Response_to_Abscisic_Acid_ABA_Treatment_in_Brassica_napus_Guard_Cells_Revealed_by_Metabolomics – (On our blog : https://plantstomata.wordpress.com/2018/07/28/metabolic-signatures-in-response-to-aba-in-stomatal-protoplasts/ )

Zhu M., Dai S., Chen S. (2012) – The stomata frontline of plant
interaction with the environment-perspectives from hormone regulation –
Front. Biol. 7: 96-112 – https://doi.org/10.1007/s11515-012-1193-3https://link.springer.com/article/10.1007/s11515-012-1193-3#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/14/hormone-signaling-networks-in-guard-cells-and-how-the-networks-integrate-environmental-signals-to-plant-physiological-output/ )

Zhu M., Dai S., Zhu N., Booy A., Simons B., Yi S., Chen S. (2012) – Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics – J. Proteome Res. 11: 3728–3742 – DOI: 10.1021/pr300213k – https://pubs.acs.org/doi/abs/10.1021/pr300213k – (On our blog : https://plantstomata.wordpress.com/2018/07/28/meja-responsive-molecular-mechanisms-in-stomata/

Zhu M., Geng S., Chakravorty D., Guan Q., Chen S, Assmann S. M. (2020) – Metabolomics of red-light-induced stomatal opening in Arabidopsis thaliana: Coupling with abscisic acid and jasmonic acid metabolism – Plant J. 101(6): 1331-1348 – doi: 10.1111/tpj.14594 – Epub 2019 Dec 15 – PMID: 31677315 – https://pubmed.ncbi.nlm.nih.gov/31677315/ – (On our blog : https://plantstomata.wordpress.com/2021/06/29/stomatal-opening-response-to-red-light-is-correlated-with-a-decrease-in-guard-cell-abscisic-acid-content-and-an-increase-in-jasmonic-acid-content/ )

Zhu M., Jeon B. W., Geng S., Yu Y., Balmant K., Chen S., Assmann S. M. (2016) – Preparation of epidermal peels and guard cell protoplasts for cellular, electrophysiological, and -omics assays of guard cell function – Methods Mol. Biol. 1363: 89–121 – doi: 10.1007/978-1-4939-3115-6_9https://pubmed.ncbi.nlm.nih.gov/26577784/ – (On our blog : https://plantstomata.wordpress.com/2023/01/08/preparation-of-epidermal-peels-and-stomatal-guard-cell-protoplasts/ )

Zhu M., Li X., Su Y.-H., Lu L., Huang C.-L., Ninemets Ü. (2011) – Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. – Tree Physiology  31(2): 178–195 – https://doi.org/10.1093/treephys/tpr005 – https://academic.oup.com/treephys/article/31/2/178/1716620 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/72284 )

Zhu M., Simons B., Zhu N., Oppenheimer D. G., Chen S. (2010) – Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging – J. Proteomics 73: 790–805 – doi: 10.1016/j.jprot.2009.11.002 – https://www.sciencedirect.com/science/article/pii/S1874391909003303 – (On our blog : https://plantstomata.wordpress.com/2018/07/28/inventory-of-aba-responsive-proteins-and-new-proteins-for-further-investigation-of-their-functions-in-guard-cell-aba-signaling/ )

Zhu M. , Zhang T., Ji W., Silva-Sanchez C., Song W.-y., Assmann S. M., Harmon A. C., Chen S. 2017) – Redox regulation of a guard cell SNF1-related protein kinase in Brassica napus, an oilseed crop – Biochemical Journal 474(15): 2585-2599 – DOI: 10.1042/BCJ20170070 – http://www.biochemj.org/content/474/15/2585 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/bnsnrk2-4-1c-is-redox-regulated-with-potential-roles-in-guard-cell-signal-transduction-in-stomata/ )

Zhu M., Zhou M., Shabala L., Shabala S. (2015) – Linking osmotic adjustment and stomatal characteristics with salinity stress tolerance in contrasting barley accessions – Funct Plant Biol. 42(3): 252–263 – doi: 10.1071/FP14209https://pubmed.ncbi.nlm.nih.gov/32480671/ – (On our blog : https://plantstomata.wordpress.com/2023/01/10/increasing-stomata-density-as-an-adaptive-tool-to-optimise-efficiency-of-co2-assimilation-under-moderate-saline-conditions/ )

Zhu M., Zhu N., Song W.-Y., Harmon A. C., Assmann S. M., Chen S. (2014) – Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells – Plant J. 78: 491–515 – doi: 10.1111/tpj.12490 – https://www.ncbi.nlm.nih.gov/pubmed/24580573 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/potential-redox-switches-and-a-protein-redox-regulatory-mechanism-in-aba-and-meja-signal-transduction-in-stomata/ )

Zhu P., Zhuang Q, Ciais P., Welp L., Li W., Xin Q. (2017) – Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback – Geophys. Res. Lett. 44 – doi:10.1002/2016GL071733https://www.eaps.purdue.edu/ebdl/pdfs/Zhu_GRL_2017.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/07/stomatal-closure-reduces-evapotranspiration-and-increases-sensible-heat-emissions-from-ecosystems-leading-to-decreased-atmospheric-moisture-and-precipitation-and-local-warming/ )

Zhu X., Cao Q., Sun L., Yang X., Yang W., Zhang H. (2018) – Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress – Front Plant Sci. 9: 1363 – doi: 10.3389/fpls.2018.01363 – eCollection 2018 – https://www.ncbi.nlm.nih.gov/pubmed/30283478 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/am-symbiosis-alters-stomatal-morphology-by-changing-sd-and-the-size-of-the-stomatal-guard-cells-and-pores/ )

Zhu Y., Ge X. M., Wu M. M., Li X., He J. M. (2014) – The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis – Plant Sci. 215–216: 84–90 – doi: 10.1016/j.plantsci.2013.11.010 – https://www.sciencedirect.com/science/article/pii/S0168945213002537 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/cytosolic-alkalization-and-hydrogen-peroxide-in-ultraviolet-b-induced-stomatal-closure/ )

Zhu Y., Huang L., Dang C. H., Wang H. X., Jiang G. B., Li Y. Z., Zhang Z. C., Lou X., Zheng Y. P. (2016) – Effects of high temperature on leaf stomatal traits and gas exchange parameters of blueberry – Trans CSAE 32(1): 218–225 (in Chinese with English abstract) – https://www.ingentaconnect.com/content/tcsae/tcsae/2016/00000032/00000001/art00031https://www.cabdirect.org/cabdirect/abstract/20163191951 – (On our blog :

Zhu Y. H., Kang H. Z., Liu C. J. (2011) – Affecting factors of plant stomatal traits variability and relevant investigation methods – Chin J Appl Ecol. 22(1): 250–256 (Article in Chinese) – PMID: 21548316 – https://www.ncbi.nlm.nih.gov/pubmed/21548316 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/relationships-between-stomatal-traits-and-environmental-factors/ ) – [ 朱燕华, 康宏樟, 刘春江 (2011). 植物叶片气孔性状变异的影响因素及研究方法. 应用生态学报, 22,250-256.]

Zhu Z., Xu X., Cao B., Chen C., Chen Q., Xiang C.)B., Chen G., Lei J. (2015) – Pyramiding of AtEDT1/HDG11 and Cry2Aa2 into pepper(Capsicum annuum L.) enhances drought tolerance and insectresistance without yield decrease – Plant Cell Tiss Organ Cult 120: 919–932 – DOI 10.1007/s11240-014-0600-7https://www.researchgate.net/publication/273277173_Pyramiding_of_AtEDT1HDG11_and_Cry2Aa2_into_pepper_Capsicum_annuum_L_enhances_drought_tolerance_and_insect_resistance_without_yield_decrease – (On our blog : https://plantstomata.wordpress.com/2022/11/29/reduced-stomatal-density-and-improved-tolerance-to-drought-stress/ )

Zhu Z.-D., Sun H.-J., Li J., Yuan Y.-X., Zhao J.-F., Zhang C.-G., Chen Y.-L. (2021) – RIC7 plays a negative role in ABA-induced stomatal closure by inhibiting H2O2 production – Taylor-Francis Online – https://doi.org/10.1080/15592324.2021.1876379https://www.tandfonline.com/doi/full/10.1080/15592324.2021.1876379?src=recsys – (On our blog : https://plantstomata.wordpress.com/2021/07/28/ric7-affects-h2o2-generation-in-guard-cells/ )

Zia S., Du W. Y., Spreer W., Spohrer K., He X. K., Muller J. (2012) – Assessing crop water stress of winter wheat by thermography under different irrigation regimes in North China Plain – Int. J. Agric. & Biol. Eng. 5(3): – https://www.infratec-infrarot.ch/downloads/en/company/publications/2012_09_assessing_crop_water_stress_of_winter_wheat_by_thermography_463.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/22/an-indicator-of-water-stress-due-to-the-closure-of-stomata/ )

Zia S, Spohrer K., Merkt N., Du W., He X., Muller J. (2009) – Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography – Int J Agric & Biol. Eng. 2(4): 46-54 – DOI: 10.3965/j.issn.1934-6344.2009.04.046-054https://www.infratec.eu/downloads/en/company/publications/2009_12_non-invasive_water_status_detection_in_grapevine.pdf – (On our blog : https://plantstomata.wordpress.com/2023/01/10/the-use-of-infrared-thermography-irt-opens-up-the-possibility-to-study-large-population-of-leaves-and-to-give-an-overview-on-the-stomatal-variation-and-their-dynamics/ )

Zia S, Spohrer K., Merkt N., Du W., He X., Muller J. (2009) – Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography – Int J Agric & Biol. Eng. 2(4): 46 – DOI: 10.3965/j.issn.1934-6344.2009.04.046-054https://ijabe.org/index.php/ijabe/article/view/155 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/the-use-of-infrared-thermography-irt-opens-up-the-possibility-to-study-a-large-population-of-leaves-and-to-give-an-overview-on-the-stomatal-variation-and-their-dynamics/ )

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – Discovery of synthetic small molecules that enhance the number of stomata: C–H functionalization chemistry for plant biology – Chemical Communications 69 – DOI: 10.1039/C7CC04526C – http://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc04526c#!divAbstract – https://plantstomata.wordpress.com/2017/09/18/synthetic-small-molecules-that-enhance-the-number-of-stomata/ )

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – More mouths can be fed by boosting number of plant pores – https://phys.org/news/2017-09-mouths-fed-boosting-pores.html – (On our blog : https://plantstomata.wordpress.com/2017/10/31/more-mouths-can-be-fed-with-more-stomata/ )

Zia-Khan S., Spreer W., Pengnian Y., Zhao X., Othmanli H., He X., Müller J. (2015) – Effect of Dust Deposition on Stomatal Conductance and Leaf Temperature of Cotton in Northwest China – Water 7: 116-131 – doi:10.3390/w7010116 – water-07-00116.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/dust-deposition-stomatal-conductance-and-leaf-temperature/ )

Ziegenspeck H. (1937/9) – Die Micenierung der Turgeszenmechanismen -Teil I. Die Spaltöffnungen (mit phylogenetischen Ausblicken} – Bot. Archiv. 39: 268-309, 332-372 –

Ziegenspeck H. (1941) – Der Bau der Spaltöffnungen. Teil III: Eine phyletischphysiologische Studie. Repert. Spec. Nov. Regn. Veget. 123: 1–56.

Ziegenspeck H. (1944) – Vergleichende Untersuchung der Entwicklung der Spaltöffnungen von Monokotyledonen und Dikotyledonen im Lichte der Polariskopie und Dichroskopie –  Protoplasma 38: 197-224 –

Ziegenspeck H. (1955a) – Das Vorkommen von Fila in radialer Anordnung in den Schliesszellen – Protoplasma 44: 385-388 –

Ziegenspeck H. (1955b) – Die Farbenmikrophotographie ein Hilfsmittel zum objektiven Nachweis submikroskopischer Strukturelemente. Die Radiomicellierung und Filierung der Schliesszellen von Ophioderma pendulum – Photogr. Wiss. 4: 19–22 –

Ziegler D. J., Friedman C. R. (2017)  Morphology and stomatal density of developing Arceuthobium americanum (lodgepole pine dwarf mistletoe) fruit: a qualitative and quantitative analysis using environmental scanning electron microscopy – Botany 95(3): 347-356 – https://doi.org/10.1139/cjb-2016-0187 – – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2016-0187 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/stomata-in-arceuthobium-santalaceae/ )

Ziegler H., Shmueli E., Lange G. (1974) – Structure and function of the stomata of Zea mays. I. The development – Cytobiologie 9: 162-168 –

Ziemer R. R. (1979) – Evaporation and transpiration – Reviews of geophysics and space physics – Paper number 9R0474 – 17(6): 1175-1186 – https://www.fs.fed.us/psw/publications/ziemer/Ziemer79.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/23/stomata-evaporation-and-transpiration/ )

Ziemińska K., Lavergne A. (2020) – Historical changes in stomatal limitations on photosynthesis – Prentice’s Climate Group https://prenticeclimategroup.wordpress.com/2020/01/02/historical-changes-in-stomatal-limitations-on-photosynthesis-a-new-paper-by-alienor-lavergne-et-al/ – (On our blog : https://plantstomata.wordpress.com/2020/08/13/historical-changes-in-stomatal-limitations-on-photosynthesis/ )

Zimmerli C., Ribot C., Vavasseur A., Bauer H., Hedrich R., Poirier Y. (2012) – PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis – The Plant Journal 72(2): 199-211- https://doi.org/10.1111/j.1365-313X.2012.05058.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2012.05058.xhttp://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/pho1-expression-in-guard-cells-mediates-the-stomatal-response-to-aba/ )

Zimmermann S., Hartje S., Ehrhardt T., Plesch G., Mueller-Roeber B. (2001) – The K+ channel SKT1 is co-expressed with KST1 in potato guard cells–both channels can co-assemble via their conserved KT domains – Plant J. 28(5): 517-527 – doi: 10.1046/j.1365-313x.2001.01177.xhttps://pubmed.ncbi.nlm.nih.gov/11849592/ – (On our blog : https://plantstomata.wordpress.com/2021/06/29/different-types-of-k-channel-subunits-contribute-to-channel-formation-in-potato-guard-cells/ )

Zinnert J., Estiarte M., Johnson D. M. (2019) – 5.7 Stomatal conductance – In : CLIMEX HANDBOOKhttps://climexhandbook.w.uib.no/2019/11/03/stomatal-conductance/ – (On our blog : https://plantstomata.wordpress.com/2021/05/02/stomatal-conductance-2/ )

Zipfel W. R., Alscher R. G., Zucker L. (1990) – Effects of sulfite on phosphoenolpyruvate carboxylase and nicotinamide adenine dinucleotide phosphate-dependent malate dehydrogenase in epidermal peels in two cultivars of pea – Physiologia Plantarum 79(3): 491-496 – https://doi.org/10.1111/j.1399-3054.1990.tb02108.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1990.tb02108.x – (On our blog : https://plantstomata.wordpress.com/2023/07/15/the-inhibition-of-two-enzymes-of-the-malate-biosynthetic-pathway-may-be-one-cause-of-sulfur-dioxide-mediated-stomatal-closure/ )

Zipperlen S. W., Press M. C. (1997) – Photosynthetic induction and stomatal oscillations in relation to the light environment of two dipterocarp rain forest tree species – J Ecol 85: 491–503 – DOI: 10.2307/2960572https://www.jstor.org/stable/2960572?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/05/photosynthetic-induction-and-stomatal-oscillations-in-relation-to-light/ )

Ziv M., Schwartz A., Fleminger D. (1987) – Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening – Plant Sci. Let. 52: 127–134 – https://doi.org/10.1016/0168-9452(87)90114-2https://www.sciencedirect.com/science/article/pii/0168945287901142 – (On our blog : https://plantstomata.wordpress.com/2019/05/29/malfunctioning-stomata-in-vitreous-leaves-of-carnation/ )

Zobayed S. M. A., Afreen-Zobayed F., Kubota C., Kozai T. (1999) – Stomatal characteristics and leaf anatomy of potato plantlets cultured in vitro under photoautotrophic and photomixotrophic conditions – In Vitro Cell. Dev. Biol.- Plant 35: 183-188 – https://doi.org/10.1007/s11627-999-0075-0 – https://link.springer.com/article/10.1007%2Fs11627-999-0075-0#citeas – (On our blog : https://plantstomata.wordpress.com/2018/04/30/stomatal-size-and-density-in-potato-plantlets-cultured-in-vitro/ )

Zobayed S. M. A., Afreen-Zobayed F., Kubota C., Kozai T. (2001) – Large-Scale Photoautotrophic Micropropagation in a Scaled-Up Vessel – In : Progress in Biotechnology 18: 345-354 – https://doi.org/10.1016/S0921-0423(01)80091-5 –https://www.sciencedirect.com/science/article/abs/pii/S0921042301800915 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/stomata-and-large-scale-photoautotrophic-micropropagation/ )

Zobel D. B. (1974) – Local variation in intergrading Abies grandis-Abies concolor populations in the Central Oregon Cascades. II. Stomatal reaction to moisture stress – Bot. Gaz. 135:200-210 – https://www.jstor.org/stable/2474241 – (On our blog : https://plantstomata.wordpress.com/2021/09/29/stomatal-reaction-to-moisture-stress/ )

Zobel D. B. (1975) – Local variation in intergrading Abies grandis-Abies concolor populations in the Central Oregon Cascades. III. Timing of growth and stomatal characteristics in relation to environment – Bot. Gaz. 136(1): 63-71 – https://andrewsforest.oregonstate.edu/sites/default/files/lter/pubs/pdf/pub2090.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/29/timing-of-growth-and-stomatal-characteristics-in-relation-to-environment/ )

Zobel D. B., Liu V. T. (1980) – Leaf-Conductance Patterns of Seven Palms in a Common Environment – Botanical Gazette 141(3): 283-289 – https://www.jstor.org/stable/2474415?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/04/23/stomatal-conductance-in-palms/ )

Zobiole L. H. S., Oliveira Junior R. S. de, Bonato C. M., Muniz A. S., Castro C. de, Oliveira F. A. de, Constantin J., Oliveira Junior A. de, (2009) – Effect of increasing doses of glyphosate on water use efficiency and photosynthesis in glyphosate-resistant soybeans – Empresa Brasileira de Pesquisa Agropecuária (Parte de livro) – https://www.alice.cnptia.embrapa.br/bitstream/doc/577761/1/id30107.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/21/the-effect-of-increasing-glyphosate-doses-on-water-absorption-and-photosynthetic-parameters-of-soybean/ )

Zona D., Gioli B., Fares S., De Groote T., Pilegaard K., Ibrom Z., Ceulemans R. (2014) – Environmental controls on ozone fluxes in a poplar plantation in Western Europe – Environmental Pollution 184: 201-210 – https://doi.org/10.1016/j.envpol.2013.08.032https://www.sciencedirect.com/science/article/pii/S0269749113004570 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/net-ecosystem-exchange-was-not-affected-by-the-stomatal-o3-uptake/ )

Zona D., Gioli B., Fares S., De Groote T., Pilegaard K., Ibrom Z., Ceulemans R. (2014) – Environmental controls on ozone fluxes in a poplar plantation in Western Europe – Environmental Pollution 184: 201-210 – https://doi.org/10.1016/j.envpol.2013.08.032https://www.sciencedirect.com/science/article/pii/S0269749113004570 – (On our blog : https://plantstomata.wordpress.com/2021/04/15/multiple-regression-and-partial-correlation-analyses-showed-that-net-ecosystem-exchange-was-not-affected-by-the-stomatal-o3-uptake/ )

Zong H.-m., Yang F.-t., Shen Z.-x. (1991) – The Relation of Distribution Character and Diurnal Changes of Stomata Opening and Closure with Transpiration Intensity of Main Plants in Kobresia humilis Meadow – Chin J Plan Ecolo 15(1): 66-70 – https://www.plant-ecology.com/EN/abstract/abstract5311.shtml – (On our blog : https://plantstomata.wordpress.com/2021/04/15/stomatal-movements-and-transpiration-intensity-are-affected-by-both-air-temperature-and-the-relative-ambient-humidity/ )

Zörb C., Franzisky B. L., Lehr P. P., Kosch R., Altenbuchinger M., Geilgus C.-M. (2022) – Impact of nutritional imbalance on guard cell metabolism and stomata regulation under saline hyperosmotic conditions – Advances in Botanical Research 103: 123-186 – DOI: 10.1016/bs.abr.2022.02.011https://www.researchgate.net/publication/359122810_Impact_of_nutritional_imbalance_on_guard_cell_metabolism_and_stomata_regulation_under_saline_hyperosmotic_conditions – (On our blog : https://plantstomata.wordpress.com/2022/05/30/advances-in-stomata-research-especially-for-crops-growing-at-hyperosmotic-saline-environments/ )

Zou J., Wei F., Wang C., Wu J., Ratnasekera D., Liu W.,Wu W.-H. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+- mediated stomatal regulation in response to drought stress – Plant Physiol. 154: 1232–1243 –  doi:  10.1104/pp.110.157545 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2971602/ – (On our blog : https://plantstomata.wordpress.com/2018/07/30/cpk10-plays-important-roles-in-aba-and-ca2-mediated-regulation-of-stomatal-movements-2/

Zou J.-J., Li X.-D., Ratnasekera D., Wang C., Liu W.-X., Song L.-F.,Zhang W.-Z., Wu W.-H. (2015) – Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress – Plant Cell 27: 1445–1460 – doi: 10.1105/tpc.15.00144 – http://www.plantcell.org/content/27/5/1445.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cpk8-functions-in-aba-mediated-stomatal-regulation-in-responses-to-drought-stress-through-regulation-of-cat3-activity/ )

Zou J. J.,Wei F. J., Wang C., Wu J. J., Ratnasekera D., Liu W. X., WuW. H. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress – Plant Physiol 154: 1232–1243 – http://dx.doi.org/10.1104/pp.110.157545 –  http://www.plantphysiol.org/content/154/3/1232.abstract?ijkey=96f00ed7a9553111d6de0afaa2cd6a829c05317e&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk10-plays-important-roles-in-aba-and-ca2-mediated-regulation-of-stomatal-movements/ )

Zou M., Guo M., Zhou Z., Wang B., Pan Q., Li J., Zhou J. M., Li J. (2021) – MPK3- and MPK6-mediated VLN3 phosphorylation regulates actin dynamics during stomatal immunity in Arabidopsis – Nat Commun. 12(1): 6474 – doi: 10.1038/s41467-021-26827-2 – PMID: 34753953 – PMCID: PMC8578381 – https://pubmed.ncbi.nlm.nih.gov/34753953/ – (On our blog : https://plantstomata.wordpress.com/2023/03/06/quantitative-analyses-of-actin-dynamics-and-genetic-studies-reveal-that-vln3-phosphorylation-by-mpk3-6-modulates-actin-remodeling-to-activate-stomatal-defense-in-arabidopsis/ )

Zoulias N., Brown J., Rowe J., Casson S. A. (2020) – HY5 is not integral to light mediated stomatal development in Arabidopsis – PLoS One 15(1): e0222480 – doi: 10.1371/journal.pone.0222480 – eCollection 2020 – https://www.ncbi.nlm.nih.gov/pubmed/31945058 – (On our blog : https://plantstomata.wordpress.com/2020/01/30/whilst-hy5-has-the-potential-to-regulate-the-expression-of-stom-it-does-not-have-a-major-role-in-regulating-stomatal-development-in-response-to-light-signals/ )

Zoulias N., Harrison E. L., Casson S. A., Gray J. E. (2018) – Molecular control of stomatal development – Biochem J. 475(2): 441-454 – doi: 10.1042/BCJ20170413 – https://www.ncbi.nlm.nih.gov/pubmed/29386377 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/molecular-control-of-stomatal-development/ )

Zoulias N., Rowe J., Thomson E. E., Dabrowska M., Sutherland H., Degen G. E., Johnson M. P., Sedelnikova S. E., Hulmes G. E., Hettema E. H., Casson S. A. (2021) – Inhibition of Arabidopsis stomatal development by plastoquinone oxidation – Curr Biol. :S0960-9822(21)01407-X – doi: 10.1016/j.cub.2021.10.018 – Epub ahead of print – PMID: 34727522 – https://pubmed.ncbi.nlm.nih.gov/34727522/ – (On our blog : https://plantstomata.wordpress.com/2021/11/27/oxidation-of-the-plastoquinone-pq-pool-inhibits-stomatal-development-by-negatively-regulating-spch-and-mute-expression/ )

Zuch D. T., Doyle S. M., Majda M., Smith R. S. ,Robert S., Torii K. U. (2022) – Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination – The Plant Cell 34(1): 209–227 –  https://doi.org/10.1093/plcell/koab250https://academic.oup.com/plcell/article/34/1/209/6384585?login=false – (On our blog : https://plantstomata.wordpress.com/2023/02/20/a-review-on-the-current-knowledge-of-regulatory-mechanisms-underpinning-the-fate-specification-differentiation-morphogenesis-and-positioning-of-these-specialized-cell-types-e-g-stomata/ )

Zuch D. T., Herrmann A., Kim E.-D., Torii K. U. (2022) – Cell cycle dynamics and window of MUTE action during the terminal division of stomata and ramification of its loss-of-function on the cell cycle of an uncommitted precursor – bioRxiv preprint – https://doi.org/10.1101/2022.09.25.509410https://www.biorxiv.org/content/10.1101/2022.09.25.509410v1.full – (On our blog : https://plantstomata.wordpress.com/2022/10/08/stomata-and-cell-cycle-dynamics-and-window-of-mute-action/ )

Zuch D. T., Herrmann A., Kim E.-D., Torii K. U. (2023) – Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor – Plant and Cell Physiology 64(3): 325–335 –  https://doi.org/10.1093/pcp/pcad002https://academic.oup.com/pcp/article/64/3/325/6968448 – (On our blog : https://plantstomata.wordpress.com/2023/03/26/mute-directly-upregulates-the-expression-of-cell-cycle-components-throughout-the-terminal-cell-cycle-phases-of-a-stomatal-precursor/ )

Zucker M. (1963) – Experimental Morphology of Stomata – in Stomata and Water Relations in Plants – Conn. Agric. Exp. Station – New Haven 1963 –

Zunyong L., Hou S., Rodrigues O., Wang P., Luo D., Munemasa S., Lei J., Liu J., Ortiz-Morea F. A., Wang X., Nomura K., Yin C., Wang H., Zhang W., Zhu-Salzman K., He S. Y., He P., Shan L. (2022) – Phytocytokine signalling reopens stomata in plant immunity and water loss – Nature 605: 7909 -DOI: 10.1038/s41586-022-04684-3https://www.researchgate.net/publication/360377699_Phytocytokine_signalling_reopens_stomata_in_plant_immunity_and_water_loss – (On our blog : https://plantstomata.wordpress.com/2023/03/09/phytocytokine-signalling-reopens-stomata/ )

Zweifel R., Böhm J. P., Hasler R. (2002) – Midday stomatal closure in Norway spruce–reactions in the upper and lower crown – Tree Physiol. 22: 1125–1136 – https://www.ncbi.nlm.nih.gov/pubmed/12414372 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/stomatal-conductance-can-be-modeled-accurately-only-when-both-local-microclimatic-conditions-and-tree-water-status-are-known/ )

Zweifel R., Rigling A., Dobbertin M. (2009)  Species-specific stomatal response of trees to drought – a link to vegetation dynamics? – Journal of Vegetation Science 20: 442–454 –Species-specific_stomatal_response_of_tr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-aperture-provides-an-indication-of-a-species-ability-to-cope-with-current-and-predicted-climate/ )

Zweifel R., Steppe K., Sterck F. J. (2007) – Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model – J Exp Bot. 58(8): 2113-2131 – Epub 2007 May 8 – https://www.ncbi.nlm.nih.gov/pubmed/17490998 – (On our blog : https://plantstomata.wordpress.com/2019/03/02/stomatal-regulation-by-microclimate-and-tree-water-relations/ )

Zwieniecki M. A., Haaning K. S., C. Boyce K., Jensen K. H. (2016) – Stomatal design principles in synthetic and real leaves – Journ. Royal Soc. Interface Nov. 2, 2016 – 13(124): 0535 – DOI: 10.1098/rsif.2016.0535 – http://rsif.royalsocietypublishing.org/content/13/124/20160535 – (On our blog : https://plantstomata.wordpress.com/2018/01/12/a-new-measure-to-gauge-the-relative-performance-of-species-based-on-their-stomatal-characteristics/ )