PHYSIO-BIBLIOGRAPHY G-I

Gaastra P. (1959) – Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. – Meded. Landbouwhogeschool, Wageningen 59: 1–68 – https://books.google.be/books/about/Photosynthesis_of_Crop_Plants_as_Influen.html?id=uH9wHQAACAAJ&redir_esc=y – (On our blog : https://plantstomata.wordpress.com/2018/03/15/photosynthesis-light-co2-temperature-and-stomatal-diffusion-resistance/ )

Gadi V. K., Hussain R., Bordoloi S., Hossain S., Singh S., Garg A., Sekharan S., Karangat R., Lingaraj S. (2019) – Relating stomatal conductance and surface area with evapotranspiration induced suction in a heterogeneous grass cover – Journal of Hydrology 568: 867-876 – DOI 10.1016/j.jhydrol.2018.11.048 –http://adsabs.harvard.edu/abs/2019JHyd..568..867G – (On our blog : https://plantstomata.wordpress.com/2019/03/24/relating-stomatal-conductance-and-surface-area-with-evapotranspiration/ )

Gaedeke N., Klein M., Kolukisaoglu U., Forestier C., Muller A., Ansorge M., Becker D.Mamnun Y., Kuchler K., Schulz B., Mueller-Roeber B., Martinoia E. (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO Journal 20: 18751887. – DOI: 10.1093/emboj/20.8.1875 – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/05/24/atmrp5-and-stomatal-movement/)

Gago J.Daloso D de M.Figueroa C. M.Flexas J.Fernie A. R.Nikoloski Z. (2016) – Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach – Plant Physiol. 171265279 – doi: 10.1104/pp.15.01660. Epub 2016 Mar 14. – https://www.ncbi.nlm.nih.gov/pubmed/26977088 – (On our blog : https://plantstomata.wordpress.com/2019/04/28/relationships-of-leaf-net-photosynthesis-stomatal-conductance-and-mesophyll-conductance-to-primary-metabolism/ )

Gago J., de Menezes Daloso D., Figueroa C. M., Flexas J., Fernie A. R., Nikoloski Z. (2016) – Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach – Plant Physiology 

Gailing O., Langenfeld-Heyser R., Polley A., Finkeldey R. (2008) – Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments – Global Change Biology, 14: 1934–1946 – https://doi.org/10.1111/j.1365-2486.2008.01621.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2486.2008.01621.x – (On our blog : https://plantstomata.wordpress.com/2018/05/08/quantitative-trait-loci-affecting-stomatal-density-and-growth/ )

Galatis B. (1974) – Ultastructural studies on stomatal development. PhD thesis, University of Athens, Greece.

Galatis B. (1977) – Differentiation of stomatal meristemoids and guard cell mother cells into guard-like cells in Vigna sinensis leaves after colchicine treatment. An ultrastructural and experimental approach. – Planta 136: 103–114 – doi: 10.1007/BF00396185 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/24420314 – (On our blog : https://plantstomata.wordpress.com/2018/03/15/colchicine-treatment-and-differentiation-of-stomatal-meristemoids/

Galatis B. (1980) – Microtubules and guard cell morphogenesis in Zea mays L. – Cell Sci. 45: 211-244 – http://jcs.biologists.org/content/joces/45/1/211.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/19/microtubules-play-a-critical-role-in-guard-cell-morphogenesis-of-stomata/ )

Galatis B. (1982) – The organization of microtubules in guard cell mother cells of Zea mays – Canadian Journal of Botany 60(7): 1148-1166 – https://doi.org/10.1139/b82-145 – http://www.nrcresearchpress.com/doi/10.1139/b82-145 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/organization-of-microtubules-in-guard-cell-mother-cells/ )

Galatis B., Apostolakos P. (1991) – Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings of Zea mays. – Protoplasma 165: 11–26 – CrossRefWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/05/24/aberrant-stomata-and-microtubules/)

Galatis B., Apostolakos P. (2004) – The role of the cytoskeleton in the morphogenesis and function of stomatal complexes – New Phytologist 161(3): 613-639 – DOI: 10.1046/j.1469-8137.2003.00986.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2003.00986.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cytoskeleton-in-the-morphogenesis-and-function-of-stomatal-complexes/ ) – https://wordpress.com/post/plantstomata.wordpress.com/65730

Galatis B., Apostolakos P. (2010) – A new callose function – Involvement in differentiation and function of fern stomatal complexes – Plant Signal Behav. 5(11): 1359–1364 – Published online  – doi:  10.4161/psb.5.11.12959 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115234/ – (On our blog : https://plantstomata.wordpress.com/2018/08/15/callose-and-differentiation-and-function-of-fern-stomatal-complexes/

Galatis B., Apostolakos P., Katsaros C. (1983) – Synchronous organization of two preprophase microtubule bands and final cell plate arrangement in subsidiary cell mother cells of some Triticum species – Protoplasma 117: 24–39 – https://doi.org/10.1007/BF01281781 – https://link.springer.com/article/10.1007%2FBF01281781 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/preprophase-microtubule-bands-and-final-cell-plate-arrangement-in-subsidiary-cell-mother-cells-of-stomata/ )

Galatis B., Apostolakos P., Katsaros C. (1983) – Microtubules and their organizing centres in differentiating guard cells of Adiantum capillus-veneris – Protoplasma 115: 176–192 – https://doi.org/10.1007/BF01279808 – https://link.springer.com/article/10.1007%2FBF01279808#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/17/microtubules-in-differentiating-stomata/ )

Galatis B., Apostolakos P., Katsaros C. (1984) – Positional inconsistency between preprophase microtubule band and final cell plate arrangement during subsidiary cell and hair cell formation in two Triticum species  – Canadian Journal of Botany 62: 343–359 – https://doi.org/10.1139/b84-053 – http://www.nrcresearchpress.com/doi/abs/10.1139/b84-053?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/preprophase-microtubule-band-and-final-cell-plate-arrangement-during-subsidiary-cell-formation-in-stomata/ )

Galatis B., Apostolakos P., Katsaros C., Loukari H. (1982) – Pre-prophase microtubule band and local wall thickening in guard cell mother cells of some Leguminosae – Ann. Bot. 50: 779-791 – https://doi.org/10.1093/oxfordjournals.aob.a086422 – https://academic.oup.com/aob/article-abstract/50/6/779/161078?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/19/the-organization-of-pre-prophase-microtubule-bands-pmbs-and-gmcs-becoming-detectably-thickened/ )

Galatis B., Apostolakos P., Palafoutas D. (1986) – Studies on the formation of ‘floating’ guard cell mother cells in Anemia

Galatis B.,  Mitrakos K. (1979) – On the differential divisions and preprophase microtubule bands involved in the development of stomata of Vigna sinensis L. – J. Cell Sci. 37: 11–37 – PMID: 479319 – https://www.ncbi.nlm.nih.gov/pubmed/479319 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/differential-divisions-and-preprophase-microtubule-bands-involved-in-the-development-of-stomata/ )

Galatis B.,  Mitrakos K. (1980) – The ultrastructural cytology of the differentiating guard cells of Vigna sinensis – Amer. J. Bot. 67: 1243-1261 – DOI: 10.2307/2442367 – https://www.jstor.org/stable/2442367?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/21/the-ultrastructural-cytology-of-stomata/ )

Galbiati M., Matus J. T., Francia P., Rusconi F., Cañón P., Medina C., Conti L., Cominelli E., Tonelli C., Arce-Johnson P. (2011) – The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress – BMC Plant Biology 11:142 – https://doi.org/10.1186/1471-2229-11-142 – https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-11-142 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/vvmyb60-modulates-physiological-responses-in-stomata-2/ )

Galbiati M., Simoni L., Pavesi G., Cominelli E.,1 , Francia P., Vavasseur A., Nelson T., Bevan M., Tonelli C. (2008) – Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells – The Plant Journal (2008) 53, 750–762 –  doi: 10.1111/j.1365-313X.2007.03371.x – https://air.unimi.it/retrieve/handle/2434/40407/175510/Gene%20trap%20lines%20identify%20Arabidopsis%20genes.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/arabidopsis-genes-expressed-in-stomatal-guard-cells/ )

Galmés J., Flexas J., Savé R., Medrano H. (2007) –  Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery – Plant and Soil 290: 139-155 – DOI 10.1007/s11104-006-9148-6 – Google Scholar CrossRef – https://www.academia.edu/25508650/Water_relations_and_stomatal_characteristics_of_Mediterranean_plants_with_different_growth_forms_and_leaf_habits_responses_to_water_stress_and_recovery – (On our blog : https://plantstomata.wordpress.com/2018/03/15/different-growth-forms-and-leaf-habits-of-mediterranean-plants-water-relations-and-stomatal-characteristics/ )

Gan Y., Zhou L., Shen Z.-J., Shen Z.-X., Zhang Y.-Q., Wang G.-X. (2010) – Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants – Botanical Studies (2010) 51: 325-336. – http://ejournal.sinica.edu.tw/bbas/content/2010/3/Bot513-06.pdf – http://connection.ebscohost.com/c/articles/60102322/stomatal-clustering-new-marker-environmental-perception-adaptation-terrestrial-plants – (On our blog : https://plantstomata.wordpress.com/2016/10/24/stomatal-clustering-is-correlated-with-environmental-signals-2/)

Gangadhara M. (1973) – Effect of growth regulators on structure and development in Lagenaria leucantha (Duch.) Rusby – M. Sci. diss., S. P. Univ., India

Gangadhara M., Rao T. B., Inamdar J. A., Patel R. M. (1977) – Effect of growth regulators on the structure of cotyledonary and hypocotyledonary stomata of Gossypium herbaceum var. Digvijay – Phyton 18: 9-28 – https://www.zobodat.at/pdf/PHY_18_1_2_0009-0028.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/21/growth-regulators-and-stomata-of-gossypium/ )

Gao J., Wang N., Wang G. X. (2013)Saccharomyces cerevisiae induced stomatal closure mainly mediated by salicylhydroxamic acid- sensitive peroxidases in Vicia faba. – Plant Physiol. Biochem. 65, 27–31. – doi: 10.1016/j.plaphy.2013.01.008 – https://www.sciencedirect.com/science/article/pii/S0981942813000272 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/yeast-induces-stomatal-closure-mainly-mediated-by-salicylhydroxamic-acid-sensitive-peroxidases/ )

Gao J., Wang N., Xu S. S., Li Y., Wang Y., Wang G. X. (2013) – Exogenous application of trehalose induced H2O2 production and stomatal closure in Vicia faba. – Biologia Plantarum 57: 380–384 – https://doi.org/10.1007/s10535-012-0285-x – https://link.springer.com/article/10.1007%2Fs10535-012-0285-x#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/21/trehalose-induces-h2o2-production-and-stomatal-closure/

Gao Q., Yu M., Zhou C. (2013) – Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and artemisia subshrubs –  PLoS One 8:e84200 – doi: 10.1371/journal.pone.0084200 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084200 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/differences-in-responses-of-stomatal-conductance-to-moisture-stresses/ )

Gao Q., Yu M., Zhang X., Xu H., Huang Y. (2005) – Modeling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment – Functional Plant Biology 32: 583–598 – https://doi.org/10.1071/FP04092http://www.publish.csiro.au/fp/FP04092 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/seasonal-and-diurnal-dynamics-of-stomatal-conductance/ )

Gao Q., Zhao P., Zeng X., Cai X., Shen W. (2002) – A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. – Plant, Cell & Environment 25:13731381 – https://doi.org/10.1046/j.1365-3040.2002.00926.x –  Wiley Online Library – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2002.00926.x – (On our blog : https://plantstomata.wordpress.com/2018/03/19/a-model-of-stomatal-conductance-to-quantify-the-relationship-between-leaf-transpiration-microclimate-and-soil-water-stress/ )

Gao Q., Zhao P., Zeng X., Cai X., Shen W. (2002) – A model of stomatal conductance to quantify relationship between leaf transpiration, microclimate and soil water stress – Plant, Cell and Environment 25: 1373-1381 – http://onlinelibrary.wiley.com/store/10.1046/j.1365-3040.2002.00926.x/asset/j.1365-3040.2002.00926.x.pdf;jsessionid=0C4FD8D4E020DF3DC0F996706AB8B81E.f03t02?v=1&t=j7jepxi1&s=b27aa1d8111383898ab6c89fceeb6ccdb9dd65a6 – (On our blog : https://plantstomata.wordpress.com/2017/09/13/a-model-of-stomatal-conductance/)

Gao X. Q., Chen J., Wei P., Ren F., Chen J., Wang X. (2008) – Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. – Plant Cell Rep. 27: 1655–1665 – doi: 10.1007/s00299-008-0581-2. Epub 2008 Jul 9 – https://www.ncbi.nlm.nih.gov/pubmed/18612643 – (On our blog :  https://plantstomata.wordpress.com/2018/03/21/actin-filaments-and-stomatal-aperture/ )

Gao X.-Q., Li C.-G., Wei P.-C., Zhang X.-Y., Chen J., Wang X.-C. (2005) – The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. – Plant Physiol. 139: 1207–1216 [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/05/25/tonoplasts-in-guard-cells-are-important-for-stomatal-movement/)

Gao X.-Q., Wang X.-L., Ren F., Chen J., Wang X.-C. (2009) – Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement – Plant, Cell & Environment 32: 1108–1116 – doi: 10.1111/j.1365-3040.2009.01993.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2009.01993.x – (On our blog : https://plantstomata.wordpress.com/2018/08/16/the-interactive-function-of-actin-and-vacuole-in-stomatal-movement-regulation/

Gao X., Zou C., Wang L., Zhang F. (2006) – Silicon decreases transpiration rate and conductance from stomata of maize plants. – J. Plant Nutr., 29: 1637-2647. (http://www.tandfonline.com/doi/abs/10.1080/01904160600851494#.VREt3pPF-6E) – (On our blog : https://plantstomata.wordpress.com/2015/08/13/the-effect-of-silicon-on-stomata/).

Gao Z., Li Z., Chen J. (2017) – Stomatal Conductance Model Establishment and Simulation for Potted Apple Trees under Drought Stress – 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) – DOI: 10.1109/ICMTMA.2017.0083 –https://ieeexplore.ieee.org/document/7832246 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomatal-conductance-model-establishment-and-simulation-under-drought-stress/ )

Garcia-Amorena I., Wagner F., van Hoof T. B., Gomez Manzaneque F. (2006) – Stomata responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase; refining the stomatal-based CO2 proxy. – Rev. Palaebot. Palynol. 141: 303-312 – https://pdfs.semanticscholar.org/9c34/f061b72aedd6d669ed917a773abea6522690.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/19/stomata-responses-to-the-anthropogenic-atmospheric-co2-increase/ )

Garcia-Forner N., Adams H. D., Sevanto S., Collins A. D., Dickman L. T., Hudson P. J., Zeppel M. J., Jenkins M. W., Powers H., Martínez-Vilalta J., Mcdowell N. G..(2016) – Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation – Plant Cell Environ. 39: 38–49  – https://www.ncbi.nlm.nih.gov/pubmed/26081870?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/21/new-perspectives-for-stomatal-regulation/ )

Garcia-Mata C., Gay R.Sokolovski S.Hills A., Lamattina L.,  Blatt M. R. (2003) – Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. – Proc. Natl Acad. Sci. USA, 100, 1111611121. – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2015/10/04/stomata-and-nitric-oxide/)

Garcia-Mata C., Lamattina L. (2002) – Nitric oxide and abscisic acid cross talk in guard cells. – Plant Physiol. 128, 790–792. doi: 10.1104/pp.011020 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/25/no-and-aba-in-stomata/)

Garcia–Mata C., Lamattina L. (2003) – Abscisic acid, nitric oxide and stomatal closure – is nitrate reductase one of the missing links? – Trends. Plant Sci. 8: 20–26 – PMID: 12523996 – https://www.ncbi.nlm.nih.gov/pubmed/12523996 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/nr-as-a-putative-component-in-the-signaling-cascade-of-aba-induced-stomatal-closure/ )

Garcia-Mata C., Lamattina L. (2007) – Abscisic acid (ABA) inhibits light- induced stomatal opening through calcium-and nitric oxide-mediated signaling pathways. – Nitric Oxide 17: 143–151. – doi: 10.1016/j.niox.2007.08.001 – https://www.sciencedirect.com/science/article/pii/S1089860307000973 – (On our  blog : https://plantstomata.wordpress.com/2018/04/16/calcium-and-nitric-oxide-mediated-signaling-pathways-aba-and-stomatal-opening/ )

Garcia-Mata C., Lamattina L. (2009) – Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress – Plant Physiology 150: 531-531 – DOI: https://doi.org/10.1104/pp.126.3.1196 – http://www.plantphysiol.org/content/126/3/1196 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/nitric-oxide-induces-stomatal-closure/ )

Garcia-Mata C., Lamattina L. (2001) – Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress – Plant Physiol 126: 1196–1204 – https://doi.org/10.1104/pp.126.3.1196  –  http://www.plantphysiol.org/content/126/3/1196- (On our blog : https://plantstomata.wordpress.com/2018/12/01/nitric-oxide-induces-stomatal-closure-2/ )  

Garcia-Mata C., Lamattina L. (2010) – Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. – New Phytol. 188, 977–984. doi: 10.1111/j.1469-8137.2010.03465.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/25/h2s-in-stomata/ )

García-Mata C., Lamattina L. (2013) – Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. – Plant Sci. 201–202, 66–73. – doi: 10.1016/j.plantsci.2012.11.007 – https://www.sciencedirect.com/science/article/pii/S0168945212002403 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/gasotransmitters-are-guard-cell-signaling-molecules-and-regulators-of-leaf-gas-exchange-in-stomata/ )

Gardner M. J.Baker A. J.Assie J.-M.Poethig R. S.Haseloff J. P.Webb A. A. R. (2009) – GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression. – Journal of Experimental Botany 60, 213226. – doi: 10.1093/jxb/ern292 – Abstract/FREE Full Text – CrossRefMedlineGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/25/gal4-gfp-enhancer-trap-lines-and-stomatal-guard-cells/ )

Gargava A., Arya C., Raghavan S. R. (2016) – Smart Hydrogel-Based Valves Inspired by the Stomata in Plants – ACS Appl. Mater. Interfaces  8 (28): 18430–18438 – DOI: 10.1021/acsami.6b04625 – http://pubs.acs.org/doi/abs/10.1021/acsami.6b04625 – (On our blog : https://plantstomata.wordpress.com/2018/01/06/hydrogel-based-valves-inspired-by-stomata/ )

Garner D. B., Paolillo D. J. Jr. (1973) – On the functioning of stomata in Funaria – Bryologist 76: 423-427 – doi:10.2307/3241726 – https://www.jstor.org/stable/3241726?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/19/the-functioning-of-stomata-in-mosses/ )

Garnier E., Berger A. (1987) – The influence of drought on stomatal conductance and water potential of peach trees growing in the field – Sci. Hortic. 32: 249–263 – https://doi.org/10.1016/0304-4238(87)90091-4https://www.sciencedirect.com/science/article/pii/0304423887900914?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/influence-of-drought-on-stomatal-conductance/ )

Gautier H., Vavasseur A., Gans P,. Lasceve G. (1991) – Relationship between respiration and photosynthesis in guard cell and mesophyll cell protoplasts of Commelina communis L. – Plant Physiol. 95: 636–641 – PMID: 16668030 – PMCID: PMC1077579 – https://www.ncbi.nlm.nih.gov/pubmed/16668030 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/respiration-and-photosynthesis-in-stomatal-and-mesophyll-cell-protoplasts/ )

Gautier H., Vavasseur A., Lasceve G., Boudet A. M. (1992) – Redox processes in the blue light response of guard cell protoplasts of Commelina communis L. – Plant Physiol. 98: 34–38 – https://doi.org/10.1104/pp.98.1.34 – http://www.plantphysiol.org/content/98/1/34 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/redox-processes-in-the-blue-light-response-of-stomatal-protoplasts/

Gay A. P., Hurd R.G. (1975) – The influence of light on stomatal density in the tomato – New Phytologist 75: 37-46 – https://doi.org/10.1111/j.1469-8137.1975.tb01368.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1975.tb01368.x – (On our blog : https://plantstomata.wordpress.com/2018/03/21/light-and-stomatal-density/ )

 Gayatri G., Agurla S., Raghavendra A. S. (2013) – Nitric oxide in guard cells as an important secondary messenger during stomatal closure. – Front. Plant Sci. 4:425. – doi: 10.3389/fpls.2013.00425 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/24194741 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/nitric-oxide-in-stomata-a-secondary-messenger-during-stomatal-closure/ )

Ge X.-M., Cai H.-L., Lei X., Zhou X., Yue M., He J.-M. (2015) – Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. – Plant J. 82, 138–150. – doi: 10.1111/tpj.12799 –  [PubMed] [Cross Ref] – https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.12799 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/g%ce%b1-mediates-ethylene%e2%80%90induced-stomatal-closure-via-h2o2-production/

Gedenk E. (2017) – Research team uses supercomputing to understand processes leading to increased drought resistance in food and fuel crops – https://phys.org/news/2017-04-team-supercomputing-drought-resistance-food.html – (On our blog : https://plantstomata.wordpress.com/2017/04/19/supercomputing-stomata-and-increased-drought-resistance-in-food-and-fuel-crops/)

Gehring C. A., Irving H. R., McConchie R. M., Parish R. W. (1997) – Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. – Ann. Bot. 80: 485-489 – https://doi.org/10.1006/anbo.1997.0471 – https://www.sciencedirect.com/science/article/pii/S0305736497904716 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/jasmonates-and-closure-of-stomata/ ),

Gehring C. A., McConchie R. M., Venis M. A., Parish R. W. (1998) – Auxin-binding-protein antibodies and peptides influence stomatal opening and alter cytoplasmic pH. – Planta 205: 581-586 – DOI: 10.1007/s004250050359 – https://www.ncbi.nlm.nih.gov/pubmed/9684362 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/auxin-binding-protein-antibodies-and-peptides-influence-stomatal-opening/ )

Geiger D., Maierhofer T., Al-Rasheid K. A., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C., Marten I., Grill E., Romeis T., Hedrich R. (2011) – Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. – Sci. Signal. 4:ra32. doi: 10.1126/scisignal.2001346 – PubMed Abstract | CrossRef Full Text | Google Scholar – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/25/the-guard-cell-anion-channel-slah3-and-the-receptor-rcar1-in-stomatal-closure/ )

Geiger D., Scherzer S., Mumm P., Marten I., Ache P., Matschi S., Liese A., Wellmann C., Al-Rasheid K. A., Grill E., et al. (2010) – Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. – Proc. Natl Acad. Sci. USA 107, 8023–8028 (2010). – doi: 10.1073/pnas.0912030107 – PubMedArticlePubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/26/slac1-cdpk-and-stomatal-guard-cells/ )

Geiger D., Scherzer S., Mumm P., Stange A., Marten I., Bauer H., Ache P., Matschi S., Liese A., Al-Rasheid K.A., Romeis T., Hedrich R. (2009) – Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair.- Proc. Natl. Acad. Sci. USA 106: 21425–21430. – Abstract/FREE Full Text – http://www.pnas.org/content/106/50/21425.full – (On our blog : https://plantstomata.wordpress.com/2016/04/04/the-role-of-guard-cell-anion-channel-slac1-in-stomatal-movement/ )

Geilfus C._M., Mithöfer A., Ludwig‐Müller J., Zörb C., Muehling K. H. (xxxx) – Chloride‐inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt‐stressed Vicia faba – New Phytologist 208(3): 803 – 816 – DOI10.1111/nph.13507 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-208-i-3-nph13507 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/chloride%e2%80%90inducible-transient-apoplastic-alkalinizations-induce-stomata-closure/)

Geisler M. J., Deppong D. O., Nadeau J. A., Sack F. D. (2003) – Stomatal neighbor cell polarity and division in Arabidopsis. – Planta 216: 571-579. (pdf) – (On our blog : https://plantstomata.wordpress.com/2016/05/26/stomatal-neighbor-cell-polarity-and-division/ )

Geisler M. J., Nadeau J., Sack F. D. (2000) – Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. – Plant Cell 12:2075– 2086. – Abstract/FREE Full Text – http://www.plantcell.org/content/12/11/2075.abstract – (On our blog : https://plantstomata.wordpress.com/2015/10/05/the-too-many-mouths-mutation-and-the-stomatal-spacing-pattern/ )

Geisler M. J., Sack F. D. (2002) – Variable timing of developmental progression in the stomatal pathway in Arabidopsis cotyledons. – New Phytol. 153, 469–476. – DOI: 10.1046/j.0028-646X.2001.00332.x – CrossRefWeb of Science – http://dx.doi.org/10.1046/j.0028-646X.2001.00332.x – (On our blog : https://plantstomata.wordpress.com/2016/05/27/timing-of-developmental-progression-in-the-stomatal-pathway/ )

Geisler M. J., Yang M., Sack F. D. (1998) – Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips. – Planta 205, 522–530. – CrossRefMedlineWeb of Science – http://dx.doi.org/10.1007/s004250050351 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/regulation-of-stomatal-initiation-and-patterning/ )

Geng S., Misra B. B., de Armas E., Huhman D. V., Alborn H. T., Sumner L. W., Chen S. (2016) – Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics – doi: 10.1111/tpj.13296 – (On our blog : https://plantstomata.wordpress.com/2016/08/09/co2-induced-stomatal-closure-is-mediated-by-ja-signaling/ )

Geng S., Yu B., Zhu N., Dufresne C., Chen S. (2017) –  Metabolomics and proteomics of Brassica napus guard cells in response to low CO2. – Frontiers Molecular Biosciences 4:51- https://doi.org/10.3389/fmolb.2017.00051 –https://www.frontiersin.org/articles/10.3389/fmolb.2017.00051/full – (On our blog : https://plantstomata.wordpress.com/2019/04/02/the-low-stomatal-co2-response-is-mediated-by-a-complex-crosstalk-between-different-phytohormones/ )

Gepstein S., Jacobs M., Taiz L. (1982) – Inhibition of stomatal opening in Vicia faba epidermal tissue by vanadate and abscisic acid. – Plant Sci. Lett. 28: 63–72 – https://doi.org/10.1016/S0304-4211(82)80008-4 – Google Scholar – https://www.sciencedirect.com/science/article/pii/S0304421182800084 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/inhibition-of-stomatal-opening-by-vanadate-and-aba/ )

Gerosa G., Mereu S., Finco A., Marzuoli R. (2012) – Stomatal Conductance Modeling to Estimate the Evapotranspiration of Natural and Agricultural Ecosystems – In book: Evapotranspiration – Remote Sensing and Modeling – DOI: 10.5772/725 – https://publicatt.unicatt.it/retrieve/handle/10807/28887/43471/Gerosa%202012%20-Stomatal_conductance_modeling_to_estimate_the_evapotranspiration_of_natural_and_agricultural_ecosystems.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-conductance-modeling-to-estimate-the-evapotranspiration/ )

Getty Images (xxxx) – Pictures of stomata – https://www.gettyimages.be/fotos/stomata?sort=mostpopular&mediatype=photography&phrase=stomata – (On our blog : https://plantstomata.wordpress.com/2018/02/10/stock-photos-of-stomata/

Ghanavati F., Eskandari H. (2011) – Relationship between the chloroplast number in stomatal guard cells, flow cytometry and ploidy level in Onobrychis spp. – Journal Behnejadi Nahal and Bazr 3: 1-27 – SEED AND PLANT IMPROVEMENT JOURNAL27-1 , Number 3; 427-439 – https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=210537 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/chloroplast-number-in-stomatal-guard-cells-flow-cytometry-and-ploidy-level/ )

Ghannoum O., Conroy J. P. Driscoll S. P., Paul M. J., Foyer C. H., Lawlor D. W. (2003) – Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses – New Phytologist 159: 599–608 – https://doi.org/10.1046/j.1469-8137.2003.00835.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.1469-8137.2003.00835.x – (On our blog : https://plantstomata.wordpress.com/2018/09/26/inhibition-of-photosynthesis-in-the-four-c4-grasses-under-water-stress-is-dependent-mainly-on-biochemical-limitations/

Gharun M., Turnbull T., Pfautsch S., Adams M. (2015) – Stomatal structure and physiology do not explain differences in water use among montane eucalypts – Oecologia – April 2015, Volume 177, Issue 4, pp 1171-1181 – [http://link.springer.com/article/10.1007%2Fs00442-015-3252-3] – (On our blog : https://plantstomata.wordpress.com/2015/04/10/stomata-in-eucalyptus-dicots/).

Ghimire C. P., Bruijnzeel L. A., Lubczynski M. W., Zwartendijk B. W., Odongo V. O., Ravelona M., van Meerveld H. J. (2018) – Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs – Tree physiology 38(7): 1053-1070 – https://doi.org/10.1093/treephys/tpy004 –https://academic.oup.com/treephys/article-abstract/38/7/1053/4980879 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/transpiration-and-stomatal-conductance/ )

Ghosh A., Sasmal B. G., Das P. K. (2004) – Stomatal frequency, size and genetics of tossa jute (Corchorus olitorius L.) – Trop. Agric. 81: 149-156 – https://www.researchgate.net/publication/287573515_Stomatal_frequency_size_and_genetics_of_tossa_jute_Corchorus_olitorius_L – (On our blog : https://plantstomata.wordpress.com/2019/05/25/stomata-of-tossa-jute-corchorus-olitorius-l/ )

Ghuge S. A., Carucci A., Rodrigues-Pousada R. A., Tisi A., Franchi S., Tavladoraki P., Angelini R., Cona A. (2015) – The MeJA-inducible copper amine oxidase AtAO1 is expressed in xylem tissue and guard cells – Plant Signal. Behav. 10, e1073872 – https://doi.org/10.1080/15592324.2015.1073872https://www.tandfonline.com/doi/full/10.1080/15592324.2015.1073872 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/a-strong-atao1-gene-expression-occurs-also-in-guard-cells-of-leaves-and-flowers/ )

Giannoutsou E., Apostolakos P., Galatis B. (2011) – Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses – Protoplasma. 248(2): 373-390. – doi: 10.1007/s00709-010-0180-2. – Epub 2010 Jul 20 – https://www.ncbi.nlm.nih.gov/pubmed/20644970 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cortical-endoplasmic-reticulum-aggregations-in-developing-stomatal-complexes/ )

Giannoutsou E., Apostolakos P., Galatis B. (2016) – Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays – Planta · July 2016 – DOI: 10.1007/s00425-016-2574-7 – https://www.researchgate.net/publication/305661902_Spatio-temporal_diversification_of_the_cell_wall_matrix_materials_in_the_developing_stomatal_complexes_of_Zea_mays – (On our blog : https://plantstomata.wordpress.com/2016/07/29/cell-wall-matrix-materials-in-developing-stomata/ )

Giday H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2013) Foliar abscisic acid content underlies genotypic variation in stomatal responsiveness after growth at high relative air humidity. – Ann. Bot. 112(9): 1857-1867 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/05/genotypic-variation-in-stomatal-responsiveness/).

Giday H. , Kjaer K. H., Fanourakis D., Ottosen C.-O. (2013) – Smaller stomata require less severe leaf drying to close: A case study in Rosa hydrida – Journal of Plant Physiology, 170(15): 1309 – 1316 – DOI10.1016/j.jplph.2013.04.007 – https://www.infona.pl/resource/bwmeta1.element.elsevier-3abdfcce-076f-343a-8772-9fa544e960bb – (On our blog : https://plantstomata.wordpress.com/2017/10/10/stomatal-size-and-intraspecific-variation-in-the-regulation-of-transpiration-upon-water-deprivation/)

Giday H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2014) – Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth.- J. Exp. Bot. 65(15): 4361-4370 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/10/05/a-growth-aba-related-threshold-for-stomatal-sensitivity-to-desiccation/)

Gil P. M., Gurovich L., Schaffer B., Garcia N., Iturriaga R. (2009) – Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia – [Plant Signaling & Behavior 4(2): 100-108 – Electrical_signaling_stomatal_conductanc.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/a-communication-mechanism-involved-in-signaling-for-stomatal-closure-as-a-result-of-hypoxia-in-the-root-zone/ )

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Imaging the release of calcium from organelles during stomatal closure. – Plant Cell 3: 333–344 – (Article not found)

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Role of calcium in signal transduction of Commelina guard cells – Plant Cell 3: 333344 – CrossRef |PubMedCAS | – http://www.ncbi.nlm.nih.gov/pubmed/12324599 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/ca-and-transduction-pathways-linking-aba-perception-to-stomatal-closure/)

Gilroy S., Read N. D., Trewavas A. J. (1990) – Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. – Nature 346: 769-771 – doi: 10.1038/346769a0 – https://www.nature.com/articles/346769a0 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/ca2-and-insp3-may-act-as-second-messengers-leading-to-stomatal-closure/ )

Gimenez C., Fereres E., Ruz C., Orgaz F. (1997) – Water relations and gas exchange of olive trees: diurnal and seasonal patterns of leaf water potential, photosynthesis and stomatal conductance – Acta Hortic 449: 411–416 – DOI: 10.17660/ActaHortic.1997.449.57 –https://www.actahort.org/books/449/449_57.htm – (On our blog : https://plantstomata.wordpress.com/2019/04/07/diurnal-and-seasonal-patterns-of-leaf-water-potential-photosynthesis-and-stomatal-conductance/ )

Giménez C., Gallardo M., Thompson R. B. (2005) – Plant Water Relations – In : Encyclopedia of Soils in the Environment 2005: 231–238  – https://doi.org/10.1016/B0-12-348530-4/00459-8 – https://www.sciencedirect.com/science/article/pii/B0123485304004598 – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stomatal-conductance – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66113 )

Gimenez-Ibanez S., Boter M., Ortigosa A., García-Casado G., Chini A., Lewsey M. G., Ecker J. R., Ntoukakis V., Solano R. (2016) – JAZ2 controls stomata dynamics during bacterial invasion – New Phytologist (2017): Online Version of Record – DOI: 10.1111/nph.14354 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14354/abstract;jsessionid=7CCDFADCAFE977E2DCD0A6C68A238DF3.f01t04 – (https://plantstomata.wordpress.com/2016/12/26/a-coi1-jaz2-myc234-anac195572-module-responsible-for-the-regulation-of-stomatal-aperture/)

Gimeno T. E., Crous K. Y., Cooke J., O’Grady A. P., Ösvaldsson, Medlyn B. E., Ellsworth D. S. (2015) – Conserved stomatal behaviour under elevated CO2 and varying water availability in a mature woodland – Functional Ecology 30(5): – https://doi.org/10.1111/1365-2435.12532 –https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12532 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/conserved-stomatal-behaviour-under-elevated-co2-and-varying-water-availability/ )

Gindel I. (1969) – Stomatal number and size as related to soil moisture in tree xerophytes in Israel- Ecology 50: 263-267 – https://doi.org/10.2307/1934854 – https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1934854 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-number-and-size-as-related-to-soil-moisture-in-tree-xerophytes/ )

Giorio P., Sorrentino G., D’Andria R. (1999) – Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit – Environ Exp Bot. 42(2): 95–104 – doi: 10.1016/S0098-8472(99)00023-4 – https://www.sciencedirect.com/science/article/abs/pii/S0098847299000234 – (On our blog : https://plantstomata.wordpress.com/2018/11/14/stomatal-behaviour-leaf-water-status-and-photosynthetic-response-under-water-deficit/ )

Gitz D. C., Liu-Gitz L., Britz S. J., Sullivan J. H. (2005) – Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars – Environmental and Experimental Botany 53: 343-355 – https://doi.org/10.1016/j.envexpbot.2004.04.005 – https://www.sciencedirect.com/science/article/pii/S0098847204000711 – (On lour blog : https://plantstomata.wordpress.com/2018/03/22/ultraviolet-b-effects-on-stomatal-density/ )

Givnish T. J. (1986) – Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. – In: On the economy of plant form and function (ed. T.J. Givnish ), pp. 171213. Cambridge University Press, Cambridge. (Article not found)

Glasgow University – Institute of Molecular, Cell and Systems Biology (xxxx) – Calcium signalling and ion channel regulation in guard cells – https://www.gla.ac.uk/researchinstitutes/biology/staff/michaelblatt/researchinterests/calciumsignallingandionchannelregulationinguardcells/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/calcium-signalling-and-ion-channel-regulation-in-stomata/ )

Glaz B., Morris D. R., Daroub S. H. (2004) – Sugarcane Photosynthesis, Transpiration, and Stomatal Conductance Due to Flooding and Water Table – Crop Sci. 44: 1633–1641 – https://pdfs.semanticscholar.org/3403/a4ac763b5c917acc56d54b0d62c9f345d49e.pdf – (On our blog : https://plantstomata.wordpress.com/2019/07/23/stomatal-conductance-due-to-flooding-and-water-table/ )

Glenn E. P., Nagler P. L., Morino K., Kevin R. Hultine K. R. (2013) – Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment – Plant and Soil 371(1–2): 655–672 – https://link.springer.com/article/10.1007/s11104-013-1803-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/03/stomatal-conductance-of-tamarix-in-a-high-salinity-environment/)

Glinka Z. (1971) – The effect of epidermal cell water potential on stomatal response to illumination of leaf discs of Vicia faba – Physiol. Plant. 24: 476-479 – https://doi.org/10.1111/j.1399-3054.1971.tb03521.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1971.tb03521.x – (On our blog : https://plantstomata.wordpress.com/2018/03/23/epidermal-cell-water-potential-and-stomatal-response/

Glinka Z., Meidner H. (1968) – The measurement of stomatal responses to stimuli in leaves and leaf discs. – J. exp. Bot., 19, 152. – CrossRef | – http://jxb.oxfordjournals.org/content/19/1/152 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/13503/)

Glowacka K., Tretyn A., Gorecki R. J., Lee S. H. (2006) – EGTA inhibits floral induction of Pharbitis nil via its influence on gas exchange properties of stomata – Acta Physiologiae Plantarum 28: 5 – ISSN :0137-5881 – https://www.infona.pl/resource/bwmeta1.element.agro-article-65972cbe-3f0b-4cfb-8ffa-697e86dcafb5 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/egta-inhibits-floral-induction-via-its-influence-on-stomata/)

Göbel L., Coners H., Hertel D., Willinghöfer S., Leuschner C. (2019) – The Role of Low Soil Temperature for Photosynthesis and Stomatal Conductance of Three Graminoids From Different Elevations – Front. Plant Sci., 18 March 2019 | https://doi.org/10.3389/fpls.2019.00330 –https://www.frontiersin.org/articles/10.3389/fpls.2019.00330/full – (On our blog : https://plantstomata.wordpress.com/2019/03/21/the-effect-of-low-soil-temperature-on-photosynthesis-and-stomatal-conductance/ )

Godoski J., Kuhn J. M., Schroeder J. I. (2011) – Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. – Nature Cell Biology 12, 87 – 93 (2010) Published online: 13 December 2009 –doi:10.1038/ncb2009 – CrossRef Medline Web of Science Google Scholar – http://www.nature.com/ncb/journal/v12/n1/fig_tab/ncb2009_F5.html – (On our blog : https://plantstomata.wordpress.com/2016/04/07/carbonic-anhydrases-function-early-in-the-co2-signalling-pathway-in-stomata/)

Goh C. H., Dietrich P., Steinmeyer R., Schreiber U., Nam H. G,. Hedrich R. (2002) – Parallel recordings of photosynthetic electron transport and K+-channel activity in single guard cells – Plant J. 32: 623–630 – DOI: 10.1046/j.1365-313X.2002.01451.x – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Parallel-recordings-of-photosynthetic-electron-transport-and-K–channel-activity-in-single-guard-cells-1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/20/parallel-recordings-of-photosynthetic-electron-transport-and-k-channel-activity-in-single-guard-cells-of-stomata/ )

Goh C. H., Kinoshita T., Oku T., Shimazaki K. I. (1996) – Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplast  – Plant Physiol. 111: 433–440 – https://www.jstor.org/stable/4277180?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/23/inhibition-of-blue-light-dependent-h-pumping-by-aba-in-stomatal-protoplasts/ )

Goh C.-H., Ko S.-M, Park Y.-I., Kim C.-S., Song K.-J. (2011) – Regulation of Dark-Induced Stomatal Closure in Arabidopsis Dynamin-Like Protein 1E (adl1e) Mutant Leaves – Journal of Plant Biology 54(2): 112-118 – DOI10.1007/s12374-011-9149-8 – https://www.infona.pl/resource/bwmeta1.element.springer-2f3d3081-d229-309b-933a-38c10a528b9a – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-closure-in-the-dark-is-governed-by-cytosolic-atp-concentration-which-is-stimulated-by-mitochondrial-activity/)

Goh C.-H., Oku T., Shimazaki K. (1995) – Properties of proton pumping in response to blue light and fusicoccin in guard cell protoplasts isolated from adaxial epidermis of Vicia leaves – Plant Physiol 109: 187–194 – DOI: https://doi.org/10.1104/pp.109.1.187http://www.plantphysiol.org/content/109/1/187?ijkey=5474bd1a29fca2fa14f340a3fd667c6b0ca5f710&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/proton-pumping-in-response-to-blue-light-and-fusicoccin-in-stomatal-guard-cell-protoplasts/ )

Goh C.-H., Oku T., Shimazaki K.-I. (1997) – Photosynthetic properties of adaxial guard cells from Vicia leaves – Plant Science 127: 149 159 – https://doi.org/10.1016/S0168-9452(97)00122-2 –https://www.sciencedirect.com/science/article/pii/S0168945297001222 – (On our blog : https://plantstomata.wordpress.com/2019/03/14/photosynthetic-properties-of-adaxial-stomatal-guard-cells/ )

Goh C.-H., Schreiber U., Hedrich R. (1999) – New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli – Plant, Cell Environ. 2: 1057–1070 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/New-approaches-for-monitoring-chlorophyll-fluorescence-of-single-guard-cells-and-protoplast-in-response-to-physiological-stimuli.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/12/chlorophyll-fluorescence-quenching-analysis-allows-profound-insights-into-stomatal-physiology/ )

Goh C. J., Avadhani P. N., Loh C. S., Hanegraaf C., Arditti J. (1977) – Diurnal stomatal and acidity rhythms in orchid leaves – New Phytol. 78: 365-372 – DOI 10.1111/j.1469-8137.1977.tb04840.x – https://www.jstor.org/stable/2433361?seq=1#page_scan_tab_contents  – (On our blog : https://plantstomata.wordpress.com/2018/03/22/diurnal-stomatal-and-acidity-rhythms/ )

Gokbayrak Z., Dardeniz A., Bal M. (2008) – Stomatal density adaptation of grapevine to windy conditions – Trakia Journal of Sciences 6(1): 18-22 – http://tru.uni-sz.bg/tsj/Vol6N01_2008/Gokbayrak%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/29/stomatal-density-adaptation-to-windy-conditions/ )

Gollan T., Passioura J.B., Munns R. (1986) – Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves – Aust. J. Plant Physiol. 13: 459–464 – DOI 10.1071/PP9860459 – Google Scholar CrossRef – https://www.researchgate.net/publication/262994599_Soil_water_status_affects_the_stomatal_conductance_of_fully_turgid_wheat_and_sunflower_leaves_Aust_J_Plant_Physiol_13_459-464 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/soil-water-status-affects-the-stomatal-conductance/ )

Gollan T.Schurr U., Schulze E.-D. (1992) – Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap – Australian Journal of Plant Physiology 13: 459464. – Wiley Online Library |PubMed |CAS |CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01488.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/27/stomatal-response-to-drying-soil/)

Gollan T. N., Turner N. C., Schulze E.-D. (1985) – The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. III. In the sclerophnyllous woody species Nerium oleander – Oecologia 65: 356-362 – DOI: 10.1007/BF00378909 – https://www.ncbi.nlm.nih.gov/pubmed/28310439 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/soil-water-status-rather-than-leaf-water-status-controls-responses-of-stomata-and-leaf-gas-exchange/

Golldack D., Li C., Mohan H., Probst N. (2014) – Tolerance to drought and salt stress in plants: unraveling the signaling networks – Front. Plant Sci., 22 April 2014 | https://doi.org/10.3389/fpls.2014.00151 – https://www.frontiersin.org/articles/10.3389/fpls.2014.00151/full – (On our blog : https://plantstomata.wordpress.com/2018/01/27/the-specific-role-of-stomatal-signaling/ )

Goltz S. M., Tanner C. B. (1972) – Seed onion temperatures and their effect on stomata – Hort. Scvience 7: 180-181 (Article not found)

Gomes Dias G. de M., Rodrigues Soares J. D., Pasqual M., Lara Silva R. A., de Almaida Rodrigues L. C., Pereira F. J., de Castro E. M. (2014) – Photosynthesis and leaf anatomy of Anthurium cv. Rubi plantlets cultured in vitro under different silicon (Si) concentrations – Australian J. Crop Sci. AJCS 8(8): 1160-1167 – ISSN:1835-2707 – https://pdfs.semanticscholar.org/8a93/4a54f0acbe7f9c8e0dc43496a05d41d552ed.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/04/photosynthesis-leaf-anatomy-and-stomata-of-plantlets-cultured-in-vitro-under-different-silicon-concentrations/ )

Gomes M. M. A., Lagoa A. M. M. A., Medina C. L., Machado E. C., Machado M. A. (2004) – Interactions between leaf water potential, stomatal conductance and abscisic acid content of orange trees submitted to drought stress – Braz. J. Plant Physiol. 16(3): – http://dx.doi.org/10.1590/S1677-04202004000300005 – – ISSN 1677-9452 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202004000300005 – (On our blog : https://plantstomata.wordpress.com/2019/03/29/water-stress-increased-aba-content-with-consequent-stomatal-closure-and-decreased-y2-values/ )

Gomez L. D., Gilday A., Feil R., Lunn J. E., Graham I. A. (2010) –  AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growthand responsiveness to ABA in germinating seeds and stomatal guard cells – PlantJournal 64:113 – doi: 10.1111/j.1365-313X.2010.04312.x. Epub 2010 Sep 7 – https://www.ncbi.nlm.nih.gov/pubmed/20659274 – (On our blog : https://plantstomata.wordpress.com/2018/03/24/tps1-gene-product-plays-an-essential-role-in-responsiveness-to-aba-in-stomata/

Gómez-Rodríguez O., Zavaleta-Mejía E., González-Hernández V. A., Livera-Muñoz M., Cárdenas-Soriano E. (2007) –  Physiological and morphological adaptations in tomato intercropped with Tagetes erecta and Amaranthus hypochondriacus – Rev. Fitotec. Mex. 30 (4): 421 – 428 – Disponible en: <http://www.redalyc.org/articulo.oa?id=61030409> ISSN 0187-7380 – http://www.redalyc.org/html/610/61030409/ – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-conductance-physiological-and-morphological-adaptations/)

Gomi K., Ogawa D., Katou S., Kamada H., Nakajima N., Saji H., Soyano T.Sasabe M.Machida Y.Mitsuhara I., Ohashi1 Y., Seo S. (2005) – A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. – Plant Cell Physiol. 46, 1902–1914. doi: 10.1093/pcp/pci211 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/28/ntmpk4-is-involved-in-ja-signaling-and-in-stomatal-movement/ )

Gonugunta V. K., Srivastava N., Puli M. R., Raghavendra A. S. (2008) – Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. – Plant Cell Environ. 31: 1717–1724 – doi: 10.1111/j.1365-3040.2008.01872.x –  [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/05/28/no-aba-and-stomatal-closure/ )

Gonugunta V. K., Srivastava N., Raghavendra A. S. (2009) – Cytosolic alkalinization is a common and early messenger preceding the production of ROS and NO during stomatal closure by variable signals, including abscisic acid, methyl jasmonate and chitosan. – Plant Signal. Behav. 4, 561–564. – doi: 10.4161/psb.4.6.8847 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688314/ – (On our blog : https://plantstomata.wordpress.com/2018/03/24/levels-of-reactive-oxygen-species-ros-nitric-oxide-no-and-cytosolic-calcium-ca2-increase-significantly-during-stomatal-closure/

Gonzalez-Fernandez I., Bermejo V., Elvira S., de la Torre D., Gonzalez A., Navarrete L., Sanz J., Calvete H., Garcia-Gomez H., Lopez A., Serra J., Lafarge A., Armesto A. P., Calvo A., Alonso R. (2013) – Modelling ozone stomatal flux of wheat under Mediterranean conditions – Atmospheric Environment 67: 149–160 – https://doi.org/10.1016/j.atmosenv.2012.10.043 – https://www.sciencedirect.com/science/article/pii/S1352231012010254 – (On our blog : https://plantstomata.wordpress.com/2018/12/12/regional-model-parameterizations-are-more-suitable-for-ozone-risk-assessment-stomatal-flux/

Gonzales-Guzman M., Pizzio G.A., Antoni R., Vera-Sirera, Merilo E., Bassel G. W., Fernandez M. A., Holdsworth M. J., Perez-Amador M. A., Kollist H., Rodriguez P. L. (2012) – Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid – The Plant Cell Online 24: 2483-2496 – doi: 10.1105/tpc.112.098574 – https://www.ncbi.nlm.nih.gov/pubmed/22739828 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/arabidopsis-pyrpylrcar-receptors-play-a-major-role-in-quantitative-regulation-of-stomatal-aperture/)

Goodfellow J., Eamus D., Duff G. (1997) – Diurnal and seasonal changes in the impact of CO2 enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet–dry tropics of Australia – Tree Physiology 17: 291-299 – https://www.academia.edu/34058561/Diurnal_and_seasonal_changes_in_the_impact_of_CO2_enrichment_on_assimilation_stomatal_conductance_and_growth_in_a_long-term_study_of_Mangifera_indica_in_the_wet-dry_tropics_of_Australia – (On our blog : https://plantstomata.wordpress.com/2018/09/26/changes-in-the-impact-of-co2-enrichment-on-assimilation-stomatal-conductance-and-growth/)

Göring H., Koshuchowa S., Deckert C. (1990) – Influence of gibberellic acid on stomatal movement – Biochem. Physiol. Pflanz. 186: 367-374 – https://doi.org/10.1016/S0015-3796(11)80235-0 – https://www.sciencedirect.com/science/article/pii/S0015379611802350 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/influence-of-ga-on-stomatal-movement/

Gorton H. L., Williams W. E., Assmann S. M. (1993) – Circadian rhythms in stomatal responsiveness to red and blue light – Plant Physiol 103: 399–406 – DOI: https://doi.org/10.1104/pp.103.2.399http://www.plantphysiol.org/content/103/2/399?ijkey=28e5368928dc972dd2a90c2080aebbe7715abcf4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/circadian-rhythms-in-stomatal-responsiveness-to-red-and-blue-light/ )

Gorton H. L., Williams W. E., Binns M. E. (1988) – Repeated measurements of aperture for individual stomates – Plant Physiol. 89: 387–390 – PMID: 16666553 PMCID: PMC1055851 – https://www.ncbi.nlm.nih.gov/pubmed/16666553 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/repeated-measurements-of-aperture-for-individual-stomates/

Gorton H. L., Williams W. E., Binns M. E., Gemmell C. N., Leheny E. A., Shepherd A. C. (1989) – Circadian stomatal rhythms in epidermal peels from Vicia faba – Plant Physiol 90: 1329–1334 – DOI: https://doi.org/10.1104/pp.90.4.1329http://www.plantphysiol.org/content/90/4/1329?ijkey=fc43b703c8b277dfda2ba2266cd713bd568bc0c6&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/circadian-stomatal-rhythms/ )

Gostin I. N. (2009) – Air Pollution Effects on the Leaf Structure of some Fabaceae Species – Not. Bot. Hort. Agrobot. Cluj 37(2): 57-63 – 3078-12994-2-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/30/air-pollution-and-stomata-of-some-fabaceae/)

Goto T., Matsuno T., Yoshida Y., Kageyama Y. (2002) – Photosynthetic, Evapotranspiratory and Leaf Morphological Properties of Chrysanthemum Grown under Root Restriction as Affected by Fertigation Frequency – Journal of the Japanese Society for Horticultural Science 71(2): 277-287 – http://doi.org/10.2503/jjshs.71.277 – https://www.jstage.jst.go.jp/article/jjshs1925/71/2/71_2_277/_article – (On our blog : https://plantstomata.wordpress.com/2017/11/18/photosynthesis-evapotranspiration-fertigation-frequency-and-stomata/)

Gotoh E., Oiwamoto K., Inoue S.-i., Shimazaki K.-i., Doi M. (2019) – Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana – Journal of Experimental Botany, 70(4): 1367–1374 – https://doi.org/10.1093/jxb/ery450 –https://academic.oup.com/jxb/article/70/4/1367/5257106 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/bl-dependent-stomatal-opening-occurs-in-obligate-cam-plants-independently-of-photosynthetic-co2-assimilation-mode/ )

Gotow K., Kondo N., Syôno K. (1982) – Effect of CO2 on volume change of guard cell protoplast from Vicia faba L. – Plant Cell Physiol. 23: 1063–1070. – Google Scholar (No abstract)

Gotow K., Sakaki T., Kondo N., Kobayashi K., Syôno K (1985) – Light‐induced alkalinization of the suspending medium of guard cell protoplasts from Vicia faba – Plant Physiology 79: 825-828 – DOI: https://doi.org/10.1104/pp.79.3.825 – http://www.plantphysiol.org/content/79/3/825 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/light%e2%80%90induced-alkalinization-of-the-suspending-medium-of-stomatal-protoplasts/ )

Gotow K., Tanaka K., Kondo N., Kobayashi K., Syono K. (1985) –  Light activation of NADPmalate dehydrogenase in guard cell protoplasts from Vicia faba L. – Plant Physiol. 79: 829–832 – https://doi.org/10.1104/pp.79.3.829 – http://www.plantphysiol.org/content/79/3/829.short – (On our blog : https://plantstomata.wordpress.com/2018/12/13/the-physiological-significance-of-light-dependent-activation-of-nadp-mdh-in-stomata/ )

Gotow K., Shimazaki K.-I., Kondo N., Syôno K (1984) – Photosynthesis- dependent volume regulation in guard cell protoplasts from Vicia faba L. – Plant Cell Physiol. 25: 671–675 – https://academic.oup.com/pcp/article-abstract/25/4/671/1911872?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/24/volume-regulation-in-stomatal-protoplasts/ )

Gotow K., Taylor S., Zeiger E. (1988) – Photosynthetic carbon fixation in guard cell protoplasts of Vicia faba L.: evidence from radiolabel experiments.- Plant Physiology 86: 700–705 – https://doi.org/10.1104/pp.86.3.700 – http://www.plantphysiol.org/content/86/3/700.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/pga-is-a-primary-carboxylation-product-of-the-pcrp-in-stomata/

Gowing D. J., Jones H. G., Davies W. J. (1993) Xylem-transported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture. – Plant, Cell & Environment 16: 453459. – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/?s=Xylem-transported+abscisic+acid%3A )

Grabov A., Blatt M. R. (1997) – Parallel control of the inward‐rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. – Planta 201: 8495 – https://doi.org/10.1007/BF01258684 – CrossRefWeb of ScienceGoogle Scholar – https://link.springer.com/article/10.1007/BF01258684#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/24/control-of-the-inward%e2%80%90rectifier-k-channel-by-cytosolic-free-ca2-and-ph-in-stomata/

Grabov A., Blatt M. R. (1998a) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. – Proc. Natl Acad. Sci. USA, 95, 47784783. – CrossRef |PubMedCASADS – (On our blog / https://plantstomata.wordpress.com/2016/05/29/ca-membrane-voltage-aba-and-stomata/ )

Grabov A., Blatt M. R. (1998b) –  Co-ordination of signaling elements in guard cell ion channel control – J. Exp. Bot. 49: 351360 – https://www.jstor.org/stable/23695968?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/27/signaling-elements-in-stomatal-guard-cell-ion-channel-control/ )

Grabov A., Blatt M.R. (1999) – A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol. 119:277–287. – doi:http://dx.doi.org/10.1104/pp.119.1.277 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/30/hyperpolarization-in-stomata/ )

Grabov A., Leung J.Giraudat J.Blatt M. R. (1997) – Alteration of anion channel kinetics in wild-type andabi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. – Plant J.12, 203213. – Wiley Online LibraryPubMedCASCrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/05/30/aba-and-anion-channel-kinetics-in-stomata/)

Grace J., Okali D. U. U., Fasehun F. E. (1982) – Stomatal conductance of two tropical trees during the wet season in Nigeria – J Appl Ecol 19: 659–670 – DOI: 10.2307/2403497 – https://www.jstor.org/stable/2403497?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/26/stomatal-conductance-of-two-tropical-trees-during-the-wet-season/ )

Graham S. (2001) – Scientists Discover Mechanism by which Plants Hold Water During Drought – https://www.scientificamerican.com/article/scientists-discover-mecha/ (On our blog : https://plantstomata.wordpress.com/2019/04/03/stomatal-mechanism-by-which-plants-hold-water-during-drought/ )

Graniti A., Turner N. C. (1970) – Effect of fusicoccin on stomatal transpiration in plants – Phytopathologia Mediterranea 9(2-3): 160-167  -ISSN : 0031-9465 – https://www.cabdirect.org/cabdirect/abstract/19711101612 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/the-opening-of-stomata-may-be-due-to-the-different-effects-of-fusicoccin/ )

Granot D., Kelly G. (2019) – Evolution of Guard-Cell Theories: The Story of Sugars – Trends in Plant Science – https://doi.org/10.1016/j.tplants.2019.02.009 –https://www.cell.com/trends/plant-science/fulltext/S1360-1385(19)30051-2?rss=yes – (On our blog : https://plantstomata.wordpress.com/2019/03/10/the-evolution-of-stomatal-guard-cell-osmoregulation-theories-with-an-emphasis-on-the-role-of-sugars/ )

Granot D., Lugassi N., Kottapalli J., Kelly G. (2015) – Sensing Sugar and Saving Water – Procedia Environmental Sciences 29: 3 – DOI10.1016/j.proenv.2015.07.123 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fca83b2f-76cb-3f52-a583-ecd2769eecbb – (On our blog : https://plantstomata.wordpress.com/2017/10/09/sugars-close-stomata-via-a-non-osmotic-mechanism/)

Grant B. W., Vatnick I. (1998) – A multi-week inquiry for an undergraduate introductory biology laboratory: Investigating correlations between environmental variables and leaf stomata density. – Journal of College Science Teaching. 28: 109-112 – http://www.science.widener.edu/~grant/projects/pubs/grantvatnick1998.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/67469

Grant B. W., Vatnick I. (2004) – Environmental Correlates of Leaf Stomata Density -Teaching Issues and Experiments in Ecology (TIEE) -Ecological Society of America (Esa) -Volume 1 2004 – (http://www.esa.org/tiee/vol/v1/experiments/stomata/stomata_description.html) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/leaf-stomata-density-and-the-environment/)

Grant O. M., Chaves M. M., Jones H. G. (2006) –  Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions – Physiologia Plantarum 127(3): 507–518 – https://doi.org/10.1111/j.1399-3054.2006.00686.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2006.00686.x – (On our blog : https://plantstomata.wordpress.com/2019/08/12/the-robustness-and-sensitivity-of-thermal-imaging-for-detecting-changes-in-stomatal-conductance/ )

Grantz D. A. (1990) – Plant responses to atmospheric humidity – Plant, Cell & Environm. 13: 667–679 – https://doi.org/10.1111/j.1365-3040.1990.tb01082.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1990.tb01082.x – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/72211 )

Grantz D. A., Assmann S. M. (1991) – Stomatal response to blue-light: water-use efficiency in sugarcane and soybean. – Plant Cell Environ 14 683–690 – DOI: 10.1111/j.1365-3040.1991.tb01541.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01541.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/24/blue-light-stimulated-stomata/)

Grantz D. A., Ho T. H. D., Uknes S. J., Cheeseman J. M., Boyer J. S. (1985) – Metabolism of abscisic acid in guard cells of Vicia faba L. and Commelina communis L. – Plant Physiol. 78, 51–56. – 10.1104/pp.78.1.51 – [PMC free article] [PubMed] [Cross Ref] – https://www.jstor.org/stable/4269281?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/26/metabolism-of-aba-in-stomata/

Grantz D. A., Linscheid B. S., Grulke N. (2019) – Differential Responses of Stomatal Kinetics and Steady State Conductance to Abscisic Acid in a Fern: Comparison with a Gymnosperm and an Angiosperm – New Phytol. Accepted, unedited articles published online and citable. – https://doi.org/10.1111/nph.15736 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15736?af=R – (On our blog : https://plantstomata.wordpress.com/2019/02/12/stomatal-kinetics-may-provide-insight-into-phylogeny-and-stomatal-regulatory-strategies-with-potential-application-to-selection-for-crop-improvement/ )

Grantz D. A., Schwartz A. (1988) – Guard cells of Commelina communis L. do not respond metabolically to osmotic stress in isolated epidermis: implications for stomatal responses to drought and humidity – Planta 174: 166–173 – doi: 10.1007/BF00394768 – https://www.ncbi.nlm.nih.gov/pubmed/24221472 – (On our blog : https://plantstomata.wordpress.com/2018/09/29/stomatal-responses-to-drought-and-humidity/ )

Grantz D. A., Zeiger E. (1986) – Stomatal responses to light and leaf-air water vapour pressure differences show similar kinetics in sugarcane and soybean – Plant Physiology 81: 865-868 – PMID: 16664916 PMCID: PMC1075441 – https://www.ncbi.nlm.nih.gov/pubmed/16664916 – (On our blog : https://plantstomata.wordpress.com/2018/10/20/stomatal-responses-to-light-and-leaf-air-water-vapour-pressure/ )

Grantz D. A., Zhang X. J., Massman W. J., Delany A., Pederson J. R. (1997) – Ozone deposition to cotton (Gossypium hirsutum L.) field: stomatal and surface wetness effects during the California Ozone Deposition Experiment – Agric. For. Meteor. 85: 19-31 – https://doi.org/10.1016/S0168-1923(96)02396-9https://www.sciencedirect.com/science/article/pii/S0168192396023969 – (On our blog : https://plantstomata.wordpress.com/2019/04/28/ozone-deposition-to-cotton-is-largely-controlled-by-stomatal-responses/ )

Grantz D. A., Zhang X. J., Massman W. J., den Hartog G., Neumann H. H., Pederson J. R. (1995) – Effects of stomatal conductance and surface wetness on ozone deposition in field-grown grape – Atmos. Environ. 29: 3189-3198 – https://doi.org/10.1016/1352-2310(95)00129-M –
https://www.sciencedirect.com/science/article/pii/135223109500129M – (On our blog : https://plantstomata.wordpress.com/2019/04/28/effects-of-stomatal-conductance-and-surface-wetness-on-ozone-deposition/ )

Grantz D. A., Zinsmeister D., Burkhardt J. (2018) – Ambient aerosol increases minimum leaf conductance and alters the aperture–flux relationship as stomata respond to vapor pressure deficit (VPD) – New Phytol. Online Version – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15102?af=R – (On our blog : https://plantstomata.wordpress.com/2018/04/01/aerosol-exposure-decreased-stomatal-apertures-at-each-level-of-vapor-pressure-deficit-vpd-and-increased-stomatal-conductance-at-comparable-levels-of-aperture/ )

Grassi G., Magnani F. (2005)Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ.,28: 834-849 – (http://cat.inist.fr/?aModele=afficheN&cpsidt=16860662) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomata-drought-and-leaf-ontogeny/).

Gray J., Peirce G. J. (1919) – The Influence of Light Upon the Action of Stomata and Its Relation to the Transpiration of Certain Grains – Am. J. Bot.  6( 4): 131-155 – https://www.jstor.org/stable/2435124?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/29/light-stomata-and-transpiration/ )

Gray J. E. (2007) – Plant Development: Three Steps for Stomata – Curr. Biol. 17(6): 213-215 – https://doi.org/10.1016/j.cub.2007.01.032 – http://www.sciencedirect.com/science/article/pii/S0960982207008706 – (On our blog : https://plantstomata.wordpress.com/2017/09/18/three-steps-for-stomata/)

Gray J. E. (2012) – Stomatal development and evolution – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/signalling-mechanisms-regulating-stomatal-closure-most-probably-evolved-shortly-after-stomatal-pores-themselves/ )

Gray J. E. (2017) – The Gray Lab Website – https://www.sheffield.ac.uk/mbb/staff/juliegray – (On our blog : https://plantstomata.wordpress.com/2018/01/07/the-gray-lab-website/ )

Gray J. E., Franks P. J., Hetherington A., Jiang K., Veneklaas E., Casson S. (2017) – Stomata: Sensors of Climate Change – WON – https://wun.ac.uk/wun/research/view/stomata-sensors-of-climate-change – (On our blog : https://plantstomata.wordpress.com/2018/01/23/studying-stomata-for-producing-crops-better-adapted-to-future-climate-scenarios/ )

Gray J. E., Hetherington A. M. (2004) – Plant Development: YODA the Stomatal Switch – Current Biology 14(12): R488-R490 – DOI 10.1016/j.cub.2004.06.019 – https://www.infona.pl/resource/bwmeta1.element.elsevier-67257323-4837-3992-96bc-149e114f2383 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/yoda-the-stomatal-switch/)

Gray J. E., Holroyd G. H., van der Lee F. M., Bahrami A. R, Sijmons P. C., Woodward F. I., Schuch W., Hetherington A. M. (2000) – The HIC signalling pathway links CO2 perception to stomatal development – Nature 408: 713716 – DOI: 10.1038/35047071  –  CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/30/hic-co2-and-stomatal-development/)

Greenwood D. R., Scarr M. J., Christophel D. C. (2003) – Leaf stomatal frequency in the Australian tropical tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric CO2. – Palaeography, Palaeocliatology, Palaeoecology 196 (3-4): 375-393 – DOI 10.1016/S0031-0182(03)00465-6 – https://www.researchgate.net/publication/222676434_Leaf_stomatal_frequency_in_the_Australian_tropical_rainforest_tree_Neolitsea_dealbata_Lauraceae_as_a_proxy_measure_of_atmospheric_pCO2 – (On our blog : : https://plantstomata.wordpress.com/2018/03/25/leaf-stomatal-frequency-as-a-proxy-measure-of-atmospheric-co2/ )

Grein M., Roth-Nebelsick A., Konrad W. (2006) – Reconstruction of palaeoatmospheric carbon dioxide using stomatal densities of various beech plants (Fagaceae): testing and application of a mechanistic model – American Geophysical Union, Fall Meeting 2006, abstract id. PP21B-1691 – http://adsabs.harvard.edu/abs/2006AGUFMPP21B1691G – (On our blog : https://plantstomata.wordpress.com/2018/04/24/reconstruction-of-atmospheric-co2-using-stomatal-densities/ )

Gresham C. A. (1975) – Stomatal resistance in a loblolly pine plantation – Ph.D. Dissertation, Duke University, Durham, NC, 177 p.

Grewal S. (2014) – Auxin keeps stomata in the dark – The Node –  – (On our blog : https://plantstomata.wordpress.com/2015/03/11/light-and-auxin-signals-regulate-stomatal-development/).

Grieu P., Guehl J. M., Aussenac G. (1988) – The effects of soil and atmospheric drought on photosynthesis and stomatal control of gas exchange in three coniferous species – Physiol. Plant. 73: 97-104 – https://doi.org/10.1111/j.1399-3054.1988.tb09199.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1988.tb09199.x – (On our blog : https://plantstomata.wordpress.com/2019/04/28/effects-of-soil-and-atmospheric-drought-on-photosynthesis-and-stomatal-control-of-gas-exchange/ )

Grondin A.Rodrigues O.Verdoucq L.Merlot S.Leonhardt N.Maurel C. (2015) – Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation – The Plant Cell July 2015 vol. 27 no. 7 1945-1954 – doi: http://dx.doi.org/10.1105/tpc.15.00421 – http://www.plantcell.org/content/27/7/1945.abstract – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/29/aquaporins-abaost1-and-stomata/)

Gross L. (2006) – Protein kinases and plant pores – PLoS Biol 4(10): e358 – https://doi.org/10.1371/journal.pbio.0040358 – https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0040358 – (On our blog : https://plantstomata.wordpress.com/2018/12/07/protein-kinases-and-plant-pores/

Gross L. J., Kirschbaum M. U. F, Pearcy R. W. (1991) – A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation. – Plant Cell and Environment 14(9): 881 – 893 – https://doi.org/10.1111/j.1365-3040.1991.tb00957.x&nbsp;– Wiley Online LibraryCAS |- https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1991.tb00957.x – (On our blog : https://plantstomata.wordpress.com/2018/03/25/stomatal-conductance-c3-cycle-intermediates-photorespiration-and-rubisco-activation/ )

Grulke N. E. (2000) – An analysis of short-, medium-, and long-term O3 exposure in influencing stomatal conductance of ponderosa pine. In: Karnosky, D. F. (Ed.), 19th International IUFRO Meeting for Specialists in Air Pollution Effects on Forest Ecosystems. May 28e 31, Houghton, MI, pp. 35 (Book of Abstracts).

Grulke N. E., Alonso R., Nguyen T., Cascio C., Dobrowolski W. (2004) – Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics – Tree Physiology. 24(9): 1001-1010 – https://doi.org/10.1093/treephys/24.9.1001 – https://www.fs.usda.gov/treesearch/pubs/53846 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomata-open-at-night-in-pole-sized-and-mature-ponderosa-pine/)

Grulke N.E., Neufeld H.S., Davison A.W., Roberts M., Chappelka A.H. (2007) – Stomatal behavior of ozone-sensitive and -insensitive coneflowers (Rudbeckia laciniata var. digitata) in Great Smoky Mountains National Park. – New Phytol.173:100–109. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/01/o3-sensitivity-and-stomatal-behavior/)

Grünhage L., Pleijel H., Mills G., Bender J., Danielsson H., Lehmann Y., Jean-François Castell, Bethenod O. (2012) – Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield – Environmental Pollution 165: 147–157 – https://doi.org/10.1016/j.envpol.2012.02.026 – https://www.sciencedirect.com/science/article/pii/S0269749112000991 – (On our blog : https://plantstomata.wordpress.com/2018/10/21/functions-describing-the-influence-of-phenology-and-soil-moisture-on-stomatal-flux/ )

Gruters U., Fangmeier A., Jager H.-J. (1995) – Modelling stomatal responses of spring wheat (Triticum aestivum L. cv. Turbo) to ozone at different levels of water supply – Environ. Poll. 87: 141-149 – https://doi.org/10.1016/0269-7491(94)P2600-E –https://www.sciencedirect.com/science/article/pii/0269749194P2600E – (On our blog: https://plantstomata.wordpress.com/2019/04/28/modelling-stomatal-responses-to-ozone-at-different-levels-of-water-supply/ )

Gu Z.-F., Wang W.-q.,Zhu A.-p., Zhu X.-m., He H.-l., P. J., Song, Run C. (2004) – Effect of chlorophyll content and stoma density on cucumber resistance to downy mildew.- J. Shanghai Univ. Agric. Sci. 22: 381-384 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHNX200404012.htm – (On our blog : https://plantstomata.wordpress.com/2018/03/25/stomatal-resistance-to-downy-mildew/ )

Gudesblat G. E., Betti C., Russinova E. (2012) – Brassinosteroids tailor stomatal production to different environments – Trends Plant Sci. 2012a;17:685–687 http://hdl.handle.net/1854/LU-3106385 – [PubMed] – https://biblio.ugent.be/publication/3106385 – (On our blog : https://plantstomata.wordpress.com/2018/03/25/brassinosteroids-and-stomatal-production/

Gudesblat G. E., Iusem N. D., Morris P. C. (2007) – Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. – New Physiol., 173: 713-721 – doi: 10.1111/j.1469-8137.2006.01953.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/01/the-important-role-of-mpk3-in-the-perception-of-aba-and-h2o2-in-stomata/)

Gudesblat G. E., Iusem N. D., Morris P. C. (2007) – Arabidopsis MPK3, a Key Signalling Intermediate in Stomatal Function – Plant Signal Behav. 2(4): 271–272 – PMCID: PMC2634147 – http://pubmedcentralcanada.ca/pmcc/articles/PMC2634147/ – (On our blog : https://plantstomata.wordpress.com/2017/11/25/mpk3-a-key-signalling-intermediate-in-stomatal-function/)

Gudesblat G. E., Schneider-Pizon J., Betti C., Mayerhofer J., Vanhoutte I., van Dongen W., Boeren S., Zhiponova M., de Vries S., Jonak C., Russinova E. (2012) –  SPEECHLESS integrates brassinosteroid and stomata signalling pathways. – Nat Cell Biol 2012, 14:548-554. – 10.1038/ncb2471. – (PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/10/23/4728/).

Gudesblat G. E., Torres P. S., Vojnov A. A. (2009) – Stomata and pathogens; Warfare at the gates – Plant Signal Behav 4(12): 1114-1116 – http://dx.doi.org/10.4161/psb.4.12.10062 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819434/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/pamp-triggered-stomatal-closure-and-several-mechanisms-to-evade-stomatal-defense/)

Gudesblat G. E., Torres P. S., Vojnov A. A. (2009)Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. – Plant Physiol. 149, 1017–1027. doi: 10.1104/pp.108.126870 – PubMed Abstract | CrossRef Full Text | Google Scholar  – (On our blog : https://plantstomata.wordpress.com/2016/06/06/phytopathogens-and-stomatal-response/)

Guehl J. M., Aussenac G. (1987) – Photosynthesis decrease and stomatal control of gas exchange in Abies alba Mill in response to vapor pressure deficit – Plant Physiol. 83: 316-322 – DOI: https://doi.org/10.1104/pp.83.2.316http://www.plantphysiol.org/content/83/2/316 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/photosynthesis-decrease-and-stomatal-control-of-gas-exchange-in-response-to-vapor-pressure-deficit/ )

Guilioni L., Jones H. G., Leinonen I., Lhomme J. P. (2008) – On the relationships between stomatal resistance and leaf temperatures in thermography – Agric. For. Meteorol. 148: 1908–1912 – https://doi.org/10.1016/j.agrformet.2008.07.009https://www.sciencedirect.com/science/article/pii/S0168192308002074?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/relationships-between-stomatal-resistance-and-leaf-temperatures-in-thermography/ )

Guilló A., Alonso M. Á., Juan A. (2013) – New insights into seminal and stomatal morphology and their contribution to the taxonomy of the Old World succulent perennial Salicornioideae – Plant Systematics and Evolution 299(6): 1185–1203 – https://doi.org/10.1007/s00606-013-0788-8 – https://link.springer.com/article/10.1007/s00606-013-0788-8#citeas – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-morphology-and-the-taxonomy-of-succulent-perennial-salicornioideae/)

Guillier C., Gamm M., Lucchi G., Truntzer C., Pecqueur D., Ducoroy P., Adrian M., Héloir M.-C., (2015) – Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew-Infected Grapevine Leaves – Mol. Plant Microbe. Interact. 28: 1227–1236 – https://doi.org/10.1094/MPMI-05-15-0115-Rhttps://apsjournals.apsnet.org/doi/10.1094/MPMI-05-15-0115-R – (On our blog : https://plantstomata.wordpress.com/2019/06/07/two-glycoproteins-involved-in-stomatal-deregulation/ )

Guimaraes R. L., Stotz H. U. (2004) –  Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection – Plant Physiol. 136: 3703–3711 – DOI: https://doi.org/10.1104/pp.104.049650 – [PMC free article][PubMed] – http://www.plantphysiol.org/content/136/3/3703 – (On our blog : https://plantstomata.wordpress.com/2018/03/25/oxalate-acts-via-1-accumulation-of-osmotically-active-molecules-to-induce-stomatal-opening-and-2-inhibition-of-aba-induced-stomatal-closure/

Gulcan R., Misirli A. (1990) – Importance of stomata in evaluating the vigour of Prunus mahalep rootstocks – Proceedings of 23rd International Hort. Congr. Firenze (Italy), 27 August-1 September – Abst. Contributed Papers, No. 4030 –

Gunasekera D., Berkowitz G. A. (1992) – Heterogeneous stomatal closure in response to leaf water deficits is not a universal phenomenon – Plant Physiology 98: 660-665 – PMID: 16668692 – PMCID: PMC1080241 –https://www.ncbi.nlm.nih.gov/pubmed/16668692 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/heterogeneous-stomatal-closure-in-response-to-leaf-water-deficits-is-not-a-universal-phenomenon/ )

Gunderson C. A., Sholtis J. D., Wullschleger S. D., Tissue D. T., Hanson P. J. & Norby R. J. (2002) – Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment – Plant, Cell and Environment 25: 379– 393 – https://doi.org/10.1046/j.0016-8025.2001.00816.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.0016-8025.2001.00816.x – (On our blog : https://plantstomata.wordpress.com/2018/10/21/environmental-and-stomatal-control-of-photosynthetic-enhancement-in-the-canopy/ )

Guo F. Q., Young .J, Crawford N. M. (2003) – The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis – Plant Cell 15: 107–117 – doi:  10.1105/tpc.006312 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC143464/- (On our blog : https://plantstomata.wordpress.com/2018/09/30/an-anion-transporter-that-functions-in-stomatal-opening/ )

Guo J. S., Ogle K. (2018) – Antecedent soil water content and vapor pressure deficit interactively control water potential in Larrea tridentata – New Phytol. Online Version of Record before inclusion in an issue – https://doi.org/10.1111/nph.15374 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15374?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/26/stomatal-responses-and-the-influence-of-antecedent-d-and-w-at-daily-and-subdaily-timescales/ )

Guo P., Xia X., Yin W. L. (2011) – A role for stomata in regulating water use efficiency in Populus × euramericana and characterization of a related gene, PdERECTA. – Afr. J. Biotechnol. 10: 6904-6912 – https://doi.org/10.5897/AJB10.849 –  http://www.academicjournals.org/journal/AJB/article-stat/5EC173A26588 – (On our blog : https://plantstomata.wordpress.com/2018/03/25/stomata-regulating-water-use-efficiency/ )

Guo X.-Y., Wang Y., Zhao P.-X., Yu G.-H., Zhang L.-Y., Xiong Y., Xiang C.-B. (2019) – AtEDT1/HDG11 regulates stomatal density and water use efficiency via ERECTA and E2Fa – New Phytologist – https://doi.org/10.1111/nph.15861 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15861?af=R& – (On our blog : https://plantstomata.wordpress.com/2019/04/22/a-possible-edt1-hdg11%e2%80%90erecta%e2%80%90e2fa-genetic-pathway-that-reduces-stomatal-density/ )

Guo Y., Zhao S., Jiang Y., Zhao Y., Huang S., Yuan M., Zhao Y. (2016) – Casein Kinase1-Like Protein2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor – Plant Cell – DOI: https://doi.org/10.1105/tpc.16.00078 – http://www.plantcell.org/content/early/2016/06/07/tpc.16.00078?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Cell_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/ckl2-regulates-actin-filament-reorganization-and-stomatal-closure-via-phosphorylation-of-adf/ )

Gupta K. J., Mur L. A. J., Ratcliffe R. G. (xxxx) – Guarding the guard cells? – New Phytologist 203(2): 349 – 351 – DOI10.1111/nph.12882 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-203-i-2-nph12882 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/guarding-the-guard-cells/)

Gupta M. (1992) – Effect of growth regulators on foliar stomata of Vicia faba L. – Adv. Pl. Sci. 5. 483-495. – Stomatal abnormalities (Article not found)

Gupta P., Bhatnagar A. K. (2015) – Spatial distribution of arsenic in different leaf tissues and its effect on structure and development of stomata and trichomes in mung bean, Vigna radiata (L.) Wilczek – Environmental and Experimental Botany Volume 109: 12–22 – http://www.sciencedirect.com/science/article/pii/S0098847214002007 – (On our blog : https://plantstomata.wordpress.com/2016/12/22/arsenic-and-its-effect-on-structure-and-development-of-stomata-and-trichomes/)

Gupta S. C., Paliwal G. S., Gupta M. (1965) – The Development of Stomata in Vegetative and Reproductive Organs of Bupleurum tenue Buch.-Ham. ex D. Don – Ann Bot (1965) 29 (4): 645-654. – http://aob.oxfordjournals.org/content/29/4/645.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/12/stomata-in-bupleurum-tenue-apiaceae/)

Guseman J. M., Lee J. S., Bogenschutz N. L., Peterson K. M., Virata R. E., Xie B., Kanaoka M. M., Hong Z., Torii K. U. (2010) – Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASELIKE 8). – Development 137:1731–1741. – doi: 10.1242/dev.049197 – http://dev.biologists.org/content/137/10/1731 – (On our blog : https://plantstomata.wordpress.com/2016/06/06/cell-to-cell-connectivity-and-stomatal-patterning/)

Gutiérez M. V., Meinzer F. C., Grantz D. A. (1994) – Regulation of transpiration in coffee hedgerows: covariation of environmental variables and apparent responses of stomata to wind and humidity – Plant, Cell & Environment Volume 17, Issue 12, 1305–1313 – DOI: 10.1111/j.1365-3040.1994.tb00532.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00532.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/responses-of-stomata-to-wind-and-humidity/)

Gutschick V.P., Simonneau T. (2002) – Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying – Plant Cell and Environment 25(11): 1423 – 1434 – DOI 10.1046/j.1365-3040.2002.00937.x – Wiley Online Library – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-3040.2002.00937.x – (On our blog : https://plantstomata.wordpress.com/2018/03/25/modelling-stomatal-conductance/ )

Guyot G., Scoffoni C., Sack L. (2011) – Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control – Plant Cell and Environment 35(5):857-871 – DOI: 10.1111/j.1365-3040.2011.02458.x – https://www.researchgate.net/publication/51787626_Combined_impacts_of_irradiance_and_dehydration_on_leaf_hydraulic_conductance_Insights_into_vulnerability_and_stomatal_control – (On our blog : https://plantstomata.wordpress.com/2016/09/10/irradiance-and-dehydration-insights-into-vulnerability-and-stomatal-control/)

Guyot M. (1964) – Action de la colchicine sur le développement des stomates de Vicia faba L. – C. R. Séanc. Soc. Biol. 158: 1722–1726 – (Article not found)

Guyot M. (1970) – Action de la colchicine sur la différenciation des
cellules stomatiques – Bulletin de la Société Botanique de France, 117:sup2, 229-237 – DOI:10.1080/00378941.1970.10838859 – https://www.tandfonline.com/doi/pdf/10.1080/00378941.1970.10838859 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/action-de-la-colchicine-sur-la-differenciation-des-cellules-stomatiques/ )

Guyot M., Pikusz M. A., Humbert C. (1968) – Action de la colchicine sur les stomates de Dianthus caryophyllus – Comptes Rendus de l’Académie des Sciences de Paris 266: 1251-1252 (Article not found)

Guzel-Deger A., Scherzer S., Nuhkat M., Kedzierska J., Kollist H., Brosché M., Unyayar S., Boudsocq M., Hedrich R., Roelfsema M. R. G. (2015) –  Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure – New Phytologist, 2015, 208, 1, 162-173 – DOI: 10.1111/nph.13435  –PubMed Abstract | CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/nph.13435/full – (On our blog : https://plantstomata.wordpress.com/2015/06/13/molecular-mechanisms-underlying-the-mamp-response-and-its-interrelation-with-aba-signaling/)

Ha Y.Shang Y., Nam K. H. (2016) – Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis – J. Exp. Bot. (2016) 67 (22):6297-6308.doi: 10.1093/jxb/erw385 – http://jxb.oxfordjournals.org/content/67/22/6297.short?rss=1 – (On our blog : https://plantstomata.wordpress.com/2016/11/18/interactions-between-aba-and-br-signaling-are-important-for-the-regulation-of-stomatal-closure/)

Haberlandt G. (1887) – Zur Kenntniss des Spaltöffnungsapparates –
Flora 70: 97-109

Haberlandt G. (1932) – Zur Physiologie und Pathologie der Spaltöffnungen. I. Mitteilung – Sitzber. K. Preuss. Akad. 3. Berlin 10: 358-369 – (On our blog : https://plantstomata.wordpress.com/2017/07/29/physiology-and-pathology-of-stomata-i-communication-in-german/)

Haberlandt G. (1934) – Zur Physiologie und Pathologie der Spaltöffnungen. II. Die Spaltöffnungen von Artbastarden – Sitzber. K. Preuss. Akad. 3. Berlin 12: 115-151 – (On our blog : https://plantstomata.wordpress.com/2017/07/29/physiology-and-pathology-of-stomata-ii-stomata-of-species-hybrids-in-german/)

Habermann E., Dias de Oliveira E. A., Ribeiro Contin D., San Martin J. A. B., Curtarelli L., Gonzalez-Meler M. A., Martinez C. A. (2019) – Stomatal Development and Conductance of a Tropical Forage Legume Are Regulated by Elevated [CO2] Under Moderate Warming – Front. Plant Sci., 31 May 2019 | https://doi.org/10.3389/fpls.2019.00609https://www.frontiersin.org/articles/10.3389/fpls.2019.00609/full – (On our blog : https://plantstomata.wordpress.com/2019/08/18/control-on-stomatal-opening-under-eco2-was-not-changed-by-a-warmer-environment/ )

Habermann H. M. (1973) – Evidence for two photoreactions and possible involvement of phytochrome in light dependent stomatal opening – Plant Physiol. 51: 543-548 – PMID: 16658366 – PMCID: PMC366302 – https://www.ncbi.nlm.nih.gov/pubmed/16658366 – (On our blog : https://plantstomata.wordpress.com/2018/09/29/two-photoreactions-and-phytochrome-in-light-dependent-stomatal-opening/ )

Hachez C., Ohashi-Ito K., Dong J., Bergmann D. C.(2011) –  Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. – Plant Physiol. 155:1458–1472 -DOI: https://doi.org/10.1104/pp.110.167718 –  [PMC free article] [PubMed] – http://www.plantphysiol.org/content/early/2011/01/18/pp.110.167718 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/hypothesis-about-the-activity-of-fama-the-shape-of-its-regulatory-network-and-the-creation-of-a-new-set-of-stomatal-specific-or-stomatal-enriched-reporters/

Hacke U., Sauter J. J. (1995) – Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f purpurea. and Populus balsamifera – Journal of Experimental Botany 46: 1177– 1183 – https://doi.org/10.1093/jxb/46.9.1177 –https://academic.oup.com/jxb/article-abstract/46/9/1177/575795?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/14/xylem-embolism-in-summer-investigated-in-relation-to-leaf-water-potential-and-stomatal-conductance/ )

Haefner J. W., Buckley T. N., Mott K.A. (1997) – A spatially explicit model of patchy stomatal responses to humidity. – Plant, Cell & Environment 20: 10871097 – DOI: 10.1046/j.1365-3040.1997.d01-137.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-137.x/full –  (On our blog : https://plantstomata.wordpress.com/2017/08/28/model-of-patchy-stomatal-responses-to-humidity/)

Haifield J. L., Carlson R. E. (1978) – Photosynthetically active radiation, CO2 uptake and stomata1 dimusivc resistance profiles within soybean canopies – Agron. J. 70: 592-596 –

Hall A. E., Kaufmann M. R. (1975) – Stomatal response to environment with Sesamum indicum L. – Plant Physiol. 55: 455-459 – DOI: https://doi.org/10.1104/pp.55.3.455 – http://www.plantphysiol.org/content/55/3/455 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/large-humidity-gradients-may-contribute-to-mid-day-closure-of-stomata/ )

Hall A. E., Schulze E.-D. (1980) – Stomatal response to environment and a possible interrelation between stomatal effects on transpiration and CO2 assimilation – Plant, Cell & Environment 3(6): 467-474 – https://doi.org/10.1111/1365-3040.ep11587040 – https://onlinelibrary.wiley.com/doi/full/10.1111/1365-3040.ep11587040 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-response-to-environment/ )

Hall A. E., Schulze E.-D., Lange O. L. (1976) – Current perspectives of steady state stomatal response to environment – In Lange O. L., Kappen L., Schulze E.-D., eds, – Water and Plant Life. Ecological Studies 19. Springer, Berlin, pp 169–185 – https://doi.org/10.1007/978-3-642-66429-8_11https://link.springer.com/chapter/10.1007%2F978-3-642-66429-8_11 – (On our blog : https://plantstomata.wordpress.com/2018/09/29/steady-state-stomatal-response-to-environment/ )

Hall D. M., Jones R. L. (1961) – The role of carbon dioxide in the light response of stomata. I. – J. Exp. Bot. 1: 29-62 – (Article not found).

Hall L. N., Langdale J. A. (1996) – Molecular genetics of cellular differentiation in leaves. – New Phytol. 132: 533-553 – https://doi.org/10.1111/j.1469-8137.1996.tb01873.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1996.tb01873.x – (On our blog : https://plantstomata.wordpress.com/2018/04/16/understanding-cellular-differentiation-in-the-epidermis-stomata/ )

Hall R. D., Riksen-Bruinsma T., Weyens G., Lefèbvre M., Dunwell J. M., Krens F. A. (1996) – Stomatal guard cells are totipotent. – Plant Physiology 112, 889–92. – doi: http://dx.doi.org/10.1104/pp.112.3.889 – http://www.plantphysiol.org/content/112/3/889.abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/24/stomatal-guard-cells-retain-full-totipotent-capacity-2/)

Hall R. D., Riksen-Bruinsma T., Weyens G., Lefèbvre M., Dunwell J. M., van Tunen A., Krens F. A. (1997) – Sugar beet guard cell protoplasts demonstrate a remarkable capacity for cell division enabling applications in stomatal physiology and molecular breeding – Journal of Experimental Botany 48 (1997)307: 255-263 – ISSN 0022-0957 – http://library.wur.nl/WebQuery/wurpubs/305165 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/isolation-of-stomata-protoplasts-extensive-cell-division-colony-formation-and-plants-regeneration-from-guard-cell-derived-colonies/)

Hall R. D., Verhoeven H. A., Krens F. A. (1995) – Computer-assisted identification of protoplasts responsible for rare division events reveals guard cell totipotency. – Plant Physiol 107: 1379-1386 – https://doi.org/10.1104/pp.107.4.1379 – http://www.plantphysiol.org/content/107/4/1379 – (On our blog : https://plantstomata.wordpress.com/2018/12/14/stomatal-guard-cell-totipotency/ )

Hall R. D., Riksen-Bruinsma T., Weyens G. J., Rosquin I. J., Denys P. N., Evans I. J., Lathouwers J. E., Lefèbvre M. P., Dunwell J. M., van Tunen A., Krens F. A. (1996b) – A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. – Nat. Biotechnol. 14, 1133–1138. – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/06/07/the-generation-of-transgenic-sugar-beets-from-stomatal-guard-cells/)

Hamada N., Baba H. (1930) – On the number of chloroplasts in the guard cells in mulberry. – J. Sericultural Sci. 1: 305-309 – (Article not found)

Hamanishi E. T., Thomas B. R., Campbell M. M. (2012) – Drought induces alterations in the stomatal development program in Populus – J. Exp. Bot. 63: 4959–4971 – https://doi.org/10.1093/jxb/ers177 – [PMC free article] [PubMed] – https://academic.oup.com/jxb/article/63/13/4959/487768 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/drought-and-stomatal-development/ )

Hamilton D. W. A.,  Hills A., Blatt M. R. (2001) – Extracellular Ba2‡ and voltage interact to gate Ca2‡ channels at the plasma membrane of stomatal guard cells – FEBS Letters 491 (2001) 99-103 – http://onlinelibrary.wiley.com/store/10.1016/S0014-5793(01)02176-7/asset/feb2s0014579301021767.pdf?v=1&t=ip5xzwp2&s=16a1dd5e6e60dc5a7e36dea9e88360ec36821ea3 – (On our blog : https://plantstomata.wordpress.com/2016/06/07/extracellular-ba2%C2%87-and-voltage-interact-in-stomatal-guard-cells/)

Hamilton D. W. A.,  Hills A., Köhler B., Blatt M. R. (2000) – Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. – Proc. Natl Acad. Sci. USA, 97, 49674972. – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2016/06/07/aba-ca2-and-stomatal-guard-cells/)

Han S., Tang R., Anderson L. K., Woerner T. E., Pei Z. M. A. (2003) – A cell surface receptor mediates extracellular Ca2+ sensing in guard cells – Nature 425: 196–200 – doi: 10.1038/nature01932 – https://www.nature.com/articles/nature01932 – (On our blog : https://plantstomata.wordpress.com/2018/03/26/receptor-mediates-extracellular-ca2-sensing-in-stomata/ )

Han S. K., Qi X., Sugihara K., Dang J. D., Endo T. A., Miller K. L., Kim E.-D., Miura T., Torii K. U. (2018) – MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata – Dev. Cell 45(3): 303-315 – https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30285-5 – (On our blog : https://plantstomata.wordpress.com/2018/05/09/mute-cell-state-switch-and-the-single-symmetric-division-to-create-stomata/ )

Han S. K., Torii K. U. (2016) – Lineage-specific stem cells, signals and asymmetries during stomatal development. – Development 143: 1259-1270. [PubMed Abstract] – http://dev.biologists.org/content/143/8/1259 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/the-intrinsic-and-extrinsic-factors-that-control-stomatal-development/)

Han S. K., Torii K. U. (2019) – Linking cell cycle to stomatal differentiationCurrent Opinion in Plant Biology 51: 66-73 – https://doi.org/10.1016/j.pbi.2019.03.010https://www.sciencedirect.com/science/article/pii/S1369526619300202#fig0005 – (On our blog : https://plantstomata.wordpress.com/2019/08/10/how-cell-cycle-regulators-are-transcriptionally-regulated-and-contributing-to-each-step-of-stomatal-lineage-progression/ )

Han X.Hu Y.Zhang G.Jiang Y.Chen X.Yu D. (2018) – Jasmonate negatively regulates stomatal development in Arabidopsis cotyledons – Plant Physiol. 176(3):  – DOI: https://doi.org/10.1104/pp.17.00444 – http://www.plantphysiol.org/content/early/2018/03/01/pp.17.00444 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/jasmonate-and-myc-transcription-factors-negatively-regulate-stomatal-development/ )

Hanebuth W. F., Raschke K. (1973) – Stomatal aperture in Zea mays controlled by light or CO2? – Plant Physiol. (suppl.) 51: 9 – (Article not found)

Hanson D. T., Green L. E., Pockman W. T. (2013) – Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus. – Front. Plant Sci. 4:365 – doi: 10.3389/fpls.2013.00365 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.frontiersin.org/articles/10.3389/fpls.2013.00365/full – (On our blog : https://plantstomata.wordpress.com/2018/03/26/decoupling-of-stomatal-and-mesophyll-conductance-induced-by-vein-cutting/ )

Hanson M. (xxxx) – Guard cells surrounding a pore in a plant leaf – http://www.biotech.cornell.edu/guard-cells-surrounding-pore-plant-leaf – (On our blog : https://plantstomata.wordpress.com/2019/04/15/stomatal-guard-cells-3/ )

Hanstein S. M., Felle H. H. (2002) – CO2-triggered chloride release from guard cells in intact fava bean leaves: kinetics of the onset of stomatal closure. – Plant Physiol 130:940–950 – 10.1101/gad.1550707. – CrossRef PubMed PubMedCentral – PubMed CentralView ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/?s=CO2-triggered+chloride)

Hao F., Zhao S., Dong H., Zhang H., Sun L., Miao C. (2010) – Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. – J. Integr. Plant Biol. 52, 298–307. – doi: 10.1111/j.1744-7909.2010.00920.x – https://www.ncbi.nlm.nih.gov/pubmed/20377690 – (On our blog : https://plantstomata.wordpress.com/2018/03/26/nia1-and-nia2-are-involved-in-sa%e2%80%90stimulated-stomatal-closure/ )

Hao L. H., Wang W.-X., Chen C., Wang Y.-F., Liu T., Li X., Shang Z. L. (2012) –  Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species – Mol. Plant 5: 852–864  – PMID:22138967 –  http://dx.doi.org/10.1093/mp/ssr095 – CAS – Article – PubMed – http://www.cell.com/molecular-plant/abstract/S1674-2052(14)60201-X – (On our blog : https://plantstomata.wordpress.com/2018/03/26/eatp-promoted-stomatal-opening-possibly-involves-the-heterotrimeric-g-protein-ros-cytosolic-ca2-and-plasma-membrane-h-atpase/ )

Hara K., Kajita R., Torii K. U., Bergmann D. C., Kakimoto T. (2007) -The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule – Gene Dev 21:1720–1725 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/06/08/epf1-and-stomatal-patterning/)

Harada A., Shimazaki K. (2009) – Measurement of changes in cytosolic Ca2+ in Arabidopsis guard cells and mesophyll cells in response to blue light. – Plant Cell Physiol.50, 360–373. doi: 10.1093/pcp/pcn203 – PubMed Abstract | CrossRef Full Text – (On our blog : https://plantstomata.wordpress.com/2016/06/10/cytosolic-ca2-in-guard-cells-and-blue-light/)

Hardy  J.P., Anderson V.J., Gardner  J.S. (1995) – Stomatal characteristics, conductance ratios and drought-induced leaf modifications of semiarid grassland species – Am. J. Bot., 82: 1-7 – https://doi.org/10.1002/j.1537-2197.1995.tb15641.xhttp://www.jstor.org/discover/10.2307/2445779?sid=21106223288733&uid=4&uid=3737592&uid=2 – (On our blog : https://plantstomata.wordpress.com/2018/03/26/stomatal-characteristics-conductance-ratios-and-drought-induced-leaf-modifications-of-semiarid-grassland-species/ )

Harms H. (1936) – Beziehungen zwischen Stomataweite, Lichtstärke und Lichtfarbe – Planta 25: 155-193 – DOI 10.1007/BF01909183 – https://www.jstor.org/stable/23357681?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/26/stomatal-width-light-intensity-and-color-of-light/ )

Harper G. J., Camm E. L. (1993) – Effects of frozen storage duration and soil temperature on the stomatal conductance and net photosynthesis of Picea glauca seedlings – Can. J. For. Res. 23: 2459–2466 – https://doi.org/10.1139/x93-305https://www.nrcresearchpress.com/doi/10.1139/x93-305 – (On our blog : https://plantstomata.wordpress.com/2019/06/05/effects-of-frozen-storage-duration-and-soil-temperature-on-the-stomatal-conductance/ )

Harris M. J., Outlaw W. H. Jr. (1990) – Histochemical technique: A low‐volume, enzyme‐amplified immunoassay with sub‐fmol sensitivity. Application to measurement of abscisic acid in stomatal guard cells – https://doi.org/10.1111/j.1399-3054.1990.tb09068.x –https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1990.tb09068.x – (On our blog : https://plantstomata.wordpress.com/2019/02/05/measurement-of-aba-in-stomatal-guard-cells/ )

Harris M. J., Outlaw W.H., Jr. (1991) – Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status. – Plant Physiol. 95: 171-173 – DOI: https://doi.org/10.1104/pp.95.1.171 – http://www.plantphysiol.org/content/95/1/171 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/adjustment-of-guard-cell-aba-levels-to-leaf-water-status/ )

Harris M. J., Outlaw W. H. Jr., Mertens R., Weiler E. W. (1988) – Water‐stress‐induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme‐amplified immunoassay – Proceedings of the National Academy of Sciences, USA 85: 2584-2588 – https://doi.org/10.1073/pnas.85.8.2584 –https://www.pnas.org/content/85/8/2584 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/water%e2%80%90stress%e2%80%90induced-changes-in-the-aba-content-of-stomata/ )

Harrison R. D., Daniell J. W., Cheshire J. M. Jr. (1989) – Net photosynthesis and stomatal conductance of peach seedlings and cuttings in response to changes in soil water potential  – Journal of the American Society for Horticultural Science (USA) – ISSN : 0003-1062 – http://agris.fao.org/agris-search/search.do?recordID=US9021821 – (On our blog : https://plantstomata.wordpress.com/2019/03/22/net-photosynthesis-and-stomatal-conductance-in-response-to-changes-in-soil-water-potential/ )

Hart H. (1929) – Relation of stomatal behavior to stem-rust resistance in wheat –  J. agric. Res 39: 929–948

Hartung W. (1983) – The site of action of abscisic acid at the guard cell plasmalemma of Valinariella locusta. – Plant Cell Environ. 6, 427428. – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/06/12/aba-and-the-guard-cell-plasmalemma/)

Hartung W., Heilmeier H. (1993) – Stomatal responses to abscisic acid in natural environments. In: Jackson M.B., Black C.R. (eds) Interacting Stresses on Plants in a Changing Climate. NATO ASI Series (Series I: Global Environmental Change), vol 16. Springer, Berlin, Heidelberg, 525-542 – DOI: 10.1007/978-3-642-78533-7_33 – https://link.springer.com/chapter/10.1007/978-3-642-78533-7_33 -;(On our blog : https://plantstomata.wordpress.com/2019/03/14/aba-has-an-important-stress-physiological-role-as-a-root-to-shoot-signal-influencing-stomatal-responses-to-environmental-perturbations-under-natural-conditions/ )

Hartung W., Slovik S. (1991) – Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves – The New Phytologist 119: 361-382 – https://doi.org/10.1111/j.1469-8137.1991.tb00036.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1991.tb00036.x – (On our blog : https://plantstomata.wordpress.com/2019/02/04/stomatal-regulation-by-aba-in-leaves/ )

Hartung W., Wilkinson S., Davies W. J. (1998) – Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell. – J. Exp. Bot. 49: 361-367 – https://www.jstor.org/stable/23695969?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/28/ph-and-aba-concentration-at-the-primary-sites-of-action-in-stomata-influence-stomatal-aperture/ )

Hasemann G., Jung G., Wild A. (1990) – The loss of structural integrity in damaged spruce needles from locations exposed to air pollution: II. Epidermis and stomata (dermal tissue) – Journal of Phytopathology 128: 33-45 – https://doi.org/10.1111/j.1439-0434.1990.tb04249.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0434.1990.tb04249.x – (On our blog : https://plantstomata.wordpress.com/2019/03/15/the-loss-of-structural-integrity-in-damaged-spruce-needles-in-epidermis-and-stomata-due-to-air-pollution/ )

Hashimoto-Sugimoto M.Higaki T.Yaeno T., Nagami A.Irie M.Fujimi M.Miyamoto M.Akita K.Negi J.Shirasu K.Hasezawa H., Iba K. (2013) – A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses – Nature Communications4,Article number:2215 – doi:10.1038/ncomms3215 – http://www.nature.com/ncomms/2013/130730/ncomms3215/full/ncomms3215.html – (On our blog : https://plantstomata.wordpress.com/2016/03/30/a-munc13-like-protein-and-stomatal-responses/)

Hashimoto-Sugimoto M.Negi J., Monda K., Higaki T., Isogai Y., Nakano T.Hasezawa S.., Iba K. (2016) – Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis – J. Exp. Bot. (2016)doi: 10.1093/jxb/erw134 – http://jxb.oxfordjournals.org/content/early/2016/03/30/jxb.erw134.full – (On our blog : https://plantstomata.wordpress.com/2016/05/20/ht1-a-critical-regulator-for-co2-signaling-and-involved-in-stomatal-opening/)

Hashimoto-Sugimoto M.Negi J.Young J., Israelsson M., Schroeder J. I., Iba K. (2006) – Arabidopsis HT1 kinase controls stomatal movements in response to CO2 – Nature Cell Biology 8,391397.– CrossRefMedlineWeb of Science  (On our blog : https://plantstomata.wordpress.com/2016/05/20/ht1-kinase-controls-stomatal-movements/)

Hasper T. B., Dusenge M. E., Breuer F., Uwizeye F. K., Wallin G., Uddling J. (2017) – Stomatal CO2 responsiveness and photosynthetic capacity of tropical woody species in relation to taxonomy and functional traits – Oecologia 184(1): 43-57 – DOI10.1007/s00442-017-3829-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00442-017-3829-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/stomatal-co2-responsiveness-in-relation-to-taxonomy-and-functional-traits/)

Hassan I. A. (2004) – Interactive Effects of Salinity and Ozone Pollution on Photosynthesis, Stomatal Conductance, Growth, and Assimilate Partitioning of Wheat (Triticum aestivum L.) – Photosynthetica  42(1): 111–116 – https://link.springer.com/article/10.1023%2FB%3APHOT.0000040578.93542.61?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/10/05/interactive-effects-of-salinity-and-ozone-pollution-on-stomatal-conductance/)

Hassan I. A., Ashmore M. R., Bell J. N. B. (1994) – Effects of O3 on the stomatal behaviour of Egyptian varieties of radish (Raphanus sativus L. cv. Baladey) and turnip (Brassica rapa L. cv Sultani) – New Phytologist 128: 243-249 – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1994.tb04008.x – (On our blog : https://plantstomata.wordpress.com/2018/04/16/effects-of-o3-on-the-stomatal-behaviour/ )

Hassidim M.Dakhiya Y.Turjeman A.Hussien D.Shor E.Anidjar A.Goldberg K.Green R. M. (2017) – CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the Circadian Control of Stomatal Aperture – 

Hassiotou F., Evans J. R., Ludwig M., Veneklaas E. J. (2009) – Stomatal crypts may facilitate diffusion of CO(2) to adaxial mesophyll cells in thick sclerophylls – Plant Cell Environ. 2009 Nov;32(11):1596-611. doi: 10.1111/j.1365-3040.2009.02024.x. Epub 2009 Jul 17. – https://www.ncbi.nlm.nih.gov/pubmed/19627563 – (On our blog : https://plantstomata.wordpress.com/2018/01/27/possible-functions-of-stomatal-crypts/ )

Haubrick L. L., Torsethaugen G., Assmann S. M. (2006) – Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts – Physiol. Plant. 128: 134–143 –https://doi.org/10.1111/j.1399-3054.2006.00708.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2006.00708.x – (On our blog : https://plantstomata.wordpress.com/2019/03/15/control-of-stomatal-aperture-and-potassium-currents/ )

Havis J. R. (1980) – Container moisture state and stomatal resistance in nursery plants – HortScience 15(5): 638-639 ref.9 – ISSN : 0018-5345 – https://www.cabdirect.org/cabdirect/abstract/19810390722 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/container-moisture-state-and-stomatal-resistance/ )

Haworth M.Elliott-Kingston C., Gallagher A., Fitzgerald A., McElwain J. C. (2012) – Sulphur dioxide fumigation effects on stomatal density and index of non-resistant plants: implications for the stomatal palaeo-[CO2] proxy method – Review of Palaeobotany and Palynology 182: 44-54 – https://doi.org/10.1016/j.revpalbo.2012.06.006 – https://www.sciencedirect.com/science/article/pii/S0034666712001546 – (On our blog : https://plantstomata.wordpress.com/2018/10/22/the-sd-si-ratios-of-fossil-plants-may-serve-as-indicators-of-the-effectiveness-of-stomatal-reconstructions-of-palaeo-co2/ )

Haworth M.Elliott-Kingston C., McElwain J. C. (2011) – Stomatal control as a driver of plant evolution – J. Exp. Bot. 62 (8): 2419-2423. – doi: 10.1093/jxb/err086 – http://jxb.oxfordjournals.org/content/62/8/2419.full – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomatal-control-and-plant-evolution/)

Haworth M.Elliott-Kingston C., McElwain J. C. (2011) – The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers – Oecologia 167: 11-19 – DOI: 10.1007/s00442-011-1969-1 – https://www.ncbi.nlm.nih.gov/pubmed/21461935 – (On our blog : https://plantstomata.wordpress.com/2018/03/15/stomatal-index-responses-of-araucariaceae-conifers/ )

Haworth M.Elliott-Kingston C., McElwain J. C. (2013) – Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants – Oecologia 171: 71–82 – doi: 10.1007/s00442-012-2406-9 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.infona.pl/resource/bwmeta1.element.springer-97d8b071-46ba-3605-9d82-99c60bd0d034 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/physiological-and-morphological-responses-of-stomata-to-elevated-co2/)

Haworth M.Fitzgerald A., McElwain J. C. (2011) – Cycads show no stomatal-density and index response to elevated carbon dioxide and subambient oxygen – Australian Journal of Botany 59: 629–638 – https://doi.org/10.1071/BT11009 – http://www.publish.csiro.au/BT/BT11009?CFID=35207001&CFTOKEN=3723f8ed14392a7-71694F41-96DE-DEEC-346CD1882EE06135 – (On our blog : https://plantstomata.wordpress.com/2018/03/29/67659/

Haworth M.Gallagher A.Elliott-Kingston C.Raschi A.Marandola D.McElwain J. C. (2010) – Stomatal index responses of Agrostis canina to carbon dioxide and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy. – New Phytologist2010a;188845855. – CrossRefMedlineWeb of ScienceGoogle Scholar –

Haworth M.Heath J.McElwain J. C. (2010) – Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers – Annals of Botany 2010b;105:411418 – Doi 10.1093/aob/mcp309 – Abstract/FREE Full Text  – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826259/ – (On our blog : https://plantstomata.wordpress.com/2018/04/14/differences-in-the-response-sensitivity-of-stomatal-index-to-atmospheric-co2/

Haworth M., Hesselbo S. P., McElwain J. C., Robinson S. A., Brunt J. W. (2005) – Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidaceae) – Geology 33: 749-752 – doi: 10.1130/G21736.1 – https://www.academia.edu/31865286/Mid-Cretaceous_pCO2_based_on_stomata_of_the_extinct_conifer_Pseudofrenelopsis_Cheirolepidiaceae_ – (On our blog : https://plantstomata.wordpress.com/2018/12/14/mid-cretaceous-pco2-based-on-stomata-of-an-extinct-conifer/

Haworth M., Killi D.,  Materassi A.,  Raschi A. (2015) – Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control – Am. J. Bot. 102(5): 677-688 – http://www.amjbot.org/content/102/5/677.full – (On our blog : https://plantstomata.wordpress.com/2017/11/23/a-model-of-stomatal-control-strategies-in-response-to-co2/)

Haworth M., Killi D.,  Materassi A.,  Raschi A., Centritto M. (2016) – Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2] – Front Plant Sci. 7: 1568 – doi:  10.3389/fpls.2016.01568 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078776/ – (On our blog : https://plantstomata.wordpress.com/2018/08/29/impaired-stomatal-control-may-increase-the-vulnerability-of-plants-to-water-deficit-and-high-temperatures/

Haworth M., Marino G., Brunetti C., Killi D., De Carlo A., Centritto M. (2018) – The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.)—A Case Study of the 2017 Heat Wave – Plants 7(4): 76 – https://doi.org/10.3390/plants7040076 –&nbsp;http://www.mdpi.com/2223-7747/7/4/76 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/the-impact-of-heat-stress-and-water-deficit-on-stomatal-physiology-of-olive/ )

Haworth M., Marino G., Centritto M. (2017) – The impact of atmospheric composition on the evolutionary development of stomatal control and biochemistry of photosynthesis over the past 450 ma. In: Nuno de la Rosa, L., Müller, G. (Eds.), Evolutionary Developmental Biology: A Reference Guide. Springer, Amsterdam, pp. 1–12 – (Article not found)

Haworth M., Marino G., Cosentino S. L., Brunetti C., Riggi,E., Avola G., Loreto F., Centritto M. (2018) – Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.) – Environ. Exp. Bot. 147: 116–124 – DOI: 10.1016/j.envexpbot.2017.11.002 – https://www.sciencedirect.com/science/article/abs/pii/S0098847217302733 – (On our blog : https://plantstomata.wordpress.com/2018/10/21/the-high-photosynthesis-is-underpinned-by-highly-effective-stomatal-control/ )

Haworth M., Raschi A. (2014) – PROJECT PEA (Project PEA (Photosynthesis and Earth Atmospheres): Investigating the effect of evolutionary adaptation to high atmospheric carbon dioxide concentrations in fossil and living plants) – Final Report Summary – Project ID: 275626 – European Commission – CORDIS – Project website: http://www.daa.cnr.it/index.php/it/attivita/progetti-internazionali /497-project-pea- – http://cordis.europa.eu/result/rcn/140589_en.html – (On our blog : https://plantstomata.wordpress.com/2017/11/18/stomata-and-high-atmospheric-co2-concentrations-in-fossil-and-living-plants/)

Haworth M., Scutt C. P., Douthe C., Marino G., Gaudio T., Loreto F., Flexas J. Centritto M. (2018) – Allocation of the epidermis to stomata relates to stomatal physiological control: Stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty – Environmental and Experimental Botany 151: 55-63  – DOI: 10.1016/j.envexpbot.2018.04.010 – https://www.researchgate.net/publication/324682498_Allocation_of_the_epidermis_to_stomata_relates_to_stomatal_physiological_control_Stomatal_factors_involved_in_the_evolutionary_diversification_of_the_angiosperms_and_development_of_amphistomaty – (On our blog : https://plantstomata.wordpress.com/2018/09/21/stomatal-factors-involved-in-the-evolutionary-diversification-of-the-angiosperms/ )

Hayashi M., Inoue S., Takahashi K., Kinoshita T. (2011) – Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. – Plant Cell Physiol 52: 1238–1248. doi: 10.1093/pcp/pcr072 – PubMed Abstract | CrossRef Full Text | Google ScholarAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/06/12/bl-induced-phosphorylation-of-the-plasma-membrane-h-atpase-in-stomata/)

Hayashi M., Inoue S., Ueno Y., Kinoshita T. (2017) – A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening – Scientific Reports 7, Article number: 45586 – doi:10.1038/srep45586 – https://www.nature.com/articles/srep45586 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/a-raf-like-protein-kinase-bhp-and-stomatal-opening/)

Hayashi M., Kinoshita T. (2011) Crosstalk between blue-light- and aba-signaling pathways in stomatal guard cells – Plant Signaling & Behavior – Volume 6, Issue 11, 2011, 1662-1664 – DOI:10.4161/psb.6.11.17800 – CrossRef – http://www.tandfonline.com/doi/abs/10.4161/psb.6.11.17800 – (On our blog : https://plantstomata.wordpress.com/2016/06/12/14165/)

Hays B. (2016) – Agave genes could inspire new drought-resistant plants – UPI Science News 2016-12-06 – http://www.upi.com/Science_News/2016/12/06/Agave-genes-could-inspire-new-drought-resistant-plants/2391481046942/ – (On our blog : https://plantstomata.wordpress.com/2016/12/07/the-stomata-genes-of-agave-and-future-improved-drought-resistance-capabilities/)

He J., Liang Y.-K. (2018) – Stomata – eLS -https://doi.org/10.1002/9780470015902.a0026526 -https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0026526 – (On our blog : https://plantstomata.wordpress.com/2018/12/04/stomata-6/ ) 

He J., Ma X.-G., Zhang Y., Sun T.-F., Xu F.-F., Chen Y.-P., Liu X., Yue M. (2013) – Role and interrelationship of Ga protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves – Plant Physiology 161: 15701583 – DOI: 10.1104/pp.112.211623 – https://www.ncbi.nlm.nih.gov/pubmed/23341360 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/72237

He J., Xu H., She X.-P., Song X.-G., Zhao W.-M. (2005) – The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. – Funct. Plant Biol. 32, 237–247. doi: 10.1071/FP04185 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/?s=interrelationship+of+hydrogen+peroxide)

He J., Yue X., Wang R., Zhang Y. (2011) – Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. – J. Exp. Bot. 62, 2657–2666. doi: 10.1093/jxb/erq431 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/12/ethylene-and-stomatal-closure-2/)

He J., Zhang R.-X., Peng K., Tagliavia C., Li S., Xue S., Liu A., Hu H., , Zhang J., Hubbard K. E., Held K., McAinsh M. R., Gray J. E., Kudla J., Schroeder J. I., Liang Y.-K. Hetherington A. M. (2018) – The BIG protein distinguishes the process of CO2-induced stomatal closure from the inhibition of stomatal opening by CO2 – New Phytologist – https://pdfs.semanticscholar.org/21e9/6ee336990a58ef5713468224c20865677838.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/29/big-is-a-signaling-component-involved-in-the-elevated-co2-mediated-control-of-stomatal-development/ )

He J.-M., Ma X. G., Zhang Y., Sun T. F., Xu F. F., Chen Y. P., Liu X., Yue M. (2013) – Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves – Plant Physiology 161: 1570–1583 – https://doi.org/10.1104/pp.112.211623http://www.plantphysiol.org/content/161/3/1570 – (On our blog : https://plantstomata.wordpress.com/2019/06/27/ultraviolet-b-induced-stomatal-closure/ )

He J.-M., She X._P., Liu C., Zhao W. M. (2004) – [Stomatal and nonstomatal limitations of photosynthesis in mung bean leaves under the combination of enhanced UV-B radiation and NaCl stress] in Chinese –  Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30: 53–58 – PMID: 15583409 – https://www.ncbi.nlm.nih.gov/pubmed/15583409?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/06/27/stomatal-and-nonstomatal-limitations-of-photosynthesis-2/ )

He J.-M., Xu H., She X.-P., Song X.-G., Zhao W.-M. (2005) – The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B induced stomatal closure in broad bean – Funct Plant Biol 32: 237–247 –  https://doi.org/10.1071/FP04185http://www.publish.csiro.au/fp/FP04185 – (On our blog : https://plantstomata.wordpress.com/2019/06/27/uv-b-induced-stomatal-closure/ )

He J.-M., Yue X.-Z., Wang R.-B., Zhang Y. (2011) – Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. –  J Exp Bot 62: 2657–2666 – doi:10.1093/jxb/erq431https://www.researchgate.net/profile/Junmin_He/publication/49734575_Ethylene_mediates_UV-B-induced_stomatal_closure_via_peroxidase-dependent_hydrogen_peroxide_synthesis_in_Vicia_faba_L/links/55d1f39c08ae0b8f3ef7728c.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/27/ethylene-mediates-uv-b-induced-stomatal-closure-via-peroxidase-dependent-h2o2-generation/ )

He J.-M., Zhang Z., Wang R.-B., Chen Y.-P. (2011) – UV-B-induced stomatal closure occurs via ethylene-dependent NO generation in Vicia faba – Funct. Plant Biol. 38, 293 – https://doi.org/10.1071/FP10219 – http://www.publish.csiro.au/FP/FP10219?CFID=35207001&CFTOKEN=3723f8ed14392a7-71694F41-96DE-DEEC-346CD1882EE06135 – (On our blog : https://plantstomata.wordpress.com/2018/03/29/ethylene-participates-in-the-uv-b-induced-stomatal-closure/ )

Heath J. (1998) – Stomata of trees growing in CO2-enriched air show reduced sensitivity to vapour pressure deficit and drought – Plant Cell Environ. 21: 1077–1088 – 10.1046/j.1365-3040.1998.00366.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00366.x – (On our blog : https://plantstomata.wordpress.com/2018/10/22/stomata-of-trees-growing-in-co2-enriched-air-show-reduced-sensitivity-to-vapour-pressure-deficit-and-drought/ )

Heath O. V. S. (1938) – An experimental investigation on the mechanism of stomatal movement with some preliminary observations on the response of the guard cells to “shock” – New Phytol. 37: 385-395 – https://www.jstor.org/stable/2428308?seq=1#page_scan_tab_contents – (on our blog : https://plantstomata.wordpress.com/2019/06/27/the-mechanism-of-stomatal-movement/ )

Heath O. V. S. (1948) – Control of stomatal movement by a reduction in the normal carbon dioxide content of the air – Nature (London) 161: 179-181 – https://www.nature.com/articles/161179a0 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/control-of-stomatal-movement-by-a-reduction-in-the-normal-co2-content-of-the-air/ )

Heath O. V. S. (1949) – Studies in stomatal behaviour. II. The role of starch in the light response of stomata. Part I. Review of literature and experiments on the relation between aperture and starch content in the stomata of Pelargonium zonale. – New Phytol. 48: 186-211.

Heath O. V. S. (1950) – Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata– Journal of Experimental Botany 1: 2962 –  https://doi.org/10.1093/jxb/1.1.29https://academic.oup.com/jxb/article-abstract/1/1/29/653279?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/06/14/the-role-of-co2-in-the-light-response-of-stomata/ )

Heath O. V. S. (1959) – Light and carbon dioxide in stomatal movements.- Handb. Pfl. Physiol, 17/1, 415.

Heath O. V. S. (1959) – The water relations of stomatal cells and the mechanisms of stomatal movement –  in F. C. STEWARD (Ed.), Plant Physiology, a Treatise Vol. 2: 193-250, Academic Press, New York.

Heath O. V. S., Mansfield T. A. (1969) – The movements of stomata. In The physiology of plant growth and development. Wilkins M. B. Edit. 303-322. – Mac Graw-Hill, London.

Heath O. V. S., Meidner H. (1957) – Effects of carbon dioxide and temperature on stomata of Allium cepa L. – Nature (London) 180: 181-182.

Heath O. V. S., Meidner H. (1981) – Feedback Processes in the Opening of Leaf Stomata in Light – 

Heath O. V. S., Milthorpe F. L. (1950) – Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata, Part II – Journal of Experimental Botany 19501227-243.

Heath O. V. S., Russell J. (1954) – Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by the mesophyll. Part I. Effects of Light Independent of Carbon Dioxide and their Transmission from One Part of the Leaf to Another – J. Exp. Bot. 5: 1-15 – https://www.jstor.org/stable/23686118?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/15/studies-in-stomatal-behaviour-vi-light-responses-of-wheat-stomata-i-independent-of-co2/ )

Heath O. V. S., Russell J. (1954) – Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by mesophyll. Part II. Interactions with carbon dioxide – J. Exp. Bot. 5: 269–292 – CrossRefGoogle Scholar

Heber U., Neimanis S., Lange O. L. (1986) – Stomatal aperture, photosynthesis and water fluxes in mesophyll cells as affected by the abscission of leaves. Simultaneous measurements of gas exchange, light scattering and chlorophyll fluorescence – Planta 167: 554–562 – https://doi.org/10.1007/BF00391232https://link.springer.com/article/10.1007%2FBF00391232 – (On our blog : https://plantstomata.wordpress.com/2019/04/01/photosynthesis-followed-the-stomatal-responses-increasing-during-opening-and-decreasing-during-closure/ )

Heckenberger U., Schurr U., Schulze E.-D. (1996) – Stomatal response to abscisic acid fed into the xylem of intact Helianthus annuus (L.) plants – J. Exp. Bot. 47: 1405-1412 – https://doi.org/10.1093/jxb/47.9.1405 – https://academic.oup.com/jxb/article/47/9/1405/470986 – (On our blog : https://plantstomata.wordpress.com/2018/03/31/stomatal-response-to-aba-fed-into-the-xylem/ )

Hedrich R. (XXXX) – Stomatal movement – guard cell physiology – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof_dr_rainer_hedrich/stomata_guard_cell_action/ – (On our blog : https://plantstomata.wordpress.com/2017/09/20/aba-receptors-and-stomatal-movement/)

Hedrich R. (1994) – Voltage‐dependent chloride channels in plant cells: identification, characterization, and regulation of a guard cell anion channel – Current Topics in Membranes 4 : 1 33 – https://doi.org/10.1016/S0070-2161(08)60816-3 –https://www.sciencedirect.com/science/article/pii/S0070216108608163 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/identification-characterization-and-regulation-of-a-stomatal-guard-cell-anion-channel/ )

Hedrich R., Baumann I., Raschke K. (1989) – The “Blendor Method” for the preparation of guard-cell protoplasts in large numbers and from leaves with adhering epidermis. (Abstr.) – Plant Physiol. 89, Suppl., 148 – (Abstract not found)

Hedrlch R., Busch H., Raschke K. (1990) – Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells – EMBO J. 9: 3889-3892 – PubMedCASMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/12/activation-of-the-anion-channel-by-ca2-and-nucleotides-in-guard-cells/)

Hedrich R., Geiger D. (xxxx) – Biology of SLAC1‐type anion channels – from nutrient uptake to stomatal closure – New Phytologist 216(1): 46 – 61 – DOI10.1111/nph.14685 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-216-i-1-nph14685 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/stomatal-closure-and-the-biology-of-slac1%e2%80%90type-anion-channels/)

Hedrich R., Geiger D., Ache P., Al-Rascheid K. (2012) – Biology of guard cell anion channels  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/new-insights-into-the-structure-function-and-physiology-of-stomatal-anion-channels/ )

Hedrich R., Marten I. (1993) – Malate-induced feedback regulation of plasma membrane anion channels could provide a carbon dioxide sensor to guard cells.- EMBO J. 12:897–901. – MedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/14/malate-co2-and-stomata/)

Hedrich R., Marten I., Lohse G., Dietrich P., Winter H., Lohaus G., Heldt H.-W. (1994) – Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. – Plant J. 6:741–748. –DOI: 10.1046/j.1365-313X.1994.6050741.x –  CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/15/malate-sensitive-anion-channels-co2-and-stomata/)

Hedrich R., Neimanis S., Savchenko G., Felle H. H., Kaiser W. M., Heber U. (2001) –  Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply. – Planta 213: 594–601 – [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/06/15/physiological-aspects-of-stomatal-function/)

Hedrich R., Shabala S. (2018) – Stomata in a saline world – Current Opinion in Plant Biology 46: 87-95 – https://doi.org/10.1016/j.pbi.2018.07.015 – https://www.sciencedirect.com/science/article/pii/S1369526618300451 – (On our blog : https://plantstomata.wordpress.com/2018/08/22/the-major-plasma-membrane-transporters-that-mediate-stomata-movements/ )

Hei S., Liu Z., Huang A., She X. (2017) – The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis – Functional Plant Biology – https://doi.org/10.1071/FP17180 http://www.publish.csiro.au/fp/FP17180 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/the-regulator-of-g-protein-signalling-protein-mediates-d-glucose-induced-stomatal-closure/)

Heichel G. H. (1971) – Stomatal movements, frequencies, and resistances in two maize varieties differing in photosynthetic capacity – J. Exp. Bot. 22: 644-649 – https://doi.org/10.1093/jxb/22.3.644 – https://academic.oup.com/jxb/article/22/3/644/575381 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-movements-frequencies-and-resistances/ )

Heilmeier H., Schulze E._D., Fan J., Hartung W. (2007) – General relations of stomatal responses to xylem sap abscisic acid under stress in the rooting zone – A global perspective – Flora 202(8): 624-636 – DOI10.1016/j.flora.2007.06.002 – https://www.infona.pl/resource/bwmeta1.element.elsevier-97e68036-3247-3e24-b77a-d49b6af59b2a – (On our blog : https://plantstomata.wordpress.com/2017/10/09/the-responsiveness-of-stomata-to-xylem-sap-aba-concentration/)

Heinen R. B., Bienert G. P., Cohen D., Chevalier A. S., Uehlein N., Hachez C., Kaldenhoff R., Le Thiec D., Chaumont F. (2014) – Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays – Plant Molecular Biology 86(3): 335-350 – DOI10.1007/s11103-014-0232-7 – https://www.infona.pl/resource/bwmeta1.element.springer-e191f415-c2ca-3421-a84e-86c672d11cc9 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/zmpips-may-have-various-physiological-roles-in-stomatal-complexes/)

Heller F. O. (1966) – Cytologische Untersuchungen belichteter und verdunkelter Schliesszellen – Dipl.-Arbeit Darmstadt –

Heller F. O. (1979) – Lichtmikroskopische und ultraviolettmikroskopische Untersuchung des Form- und Strukturwandels lebender Schliesszellen bei ihren Reaktionen auf verschiedene ökologische Faktoren – Diss. Darmstadt 1979, D 17. – (On our blog : https://plantstomata.wordpress.com/2017/07/28/changes-of-stomatal-structure-during-reactions-on-ecological-factors-in-german/)

Heller F. O., Kausch W. (1971) – Licht- und ultraviolettmikroskopische Beobachtungen an Schliesszellen nach ihrer Reaktion auf verschiedene Umweltbedingungen – Ber. Dtsch. Bot. Ges. 84(9): 541-549 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/microscopic-observations-of-stomata-after-their-responses-to-environmental-factors-in-german/)

Heller F. O., Kausch W., Trapp L. (1971) – UV-mikroskopischer Nachweis von Strukturänderungen in Schliesszellen von Vicia faba L. – Naturwissennschaften 58: 419- 420 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/structural-changes-in-stomata-of-vicia-faba-l-in-german/)

Heller F. O., Resch A. (1967) – Funktionell bedingter Strukturwechsel in den Schliesszellen von Vicia faba – Planta 75: 243-252 – (On our blog : https://plantstomata.wordpress.com/2017/07/30/structure-of-nuclei-and-functional-change-in-stomata-in-german/)

Henderson-Sellers A., McGuffie K., Gross C. (1995) –  Sensivity of global climate model simulations to increased stomatal resistance and CO2 increases – Journal of Climate 8: 1738-1756 – https://doi.org/10.1175/1520-0442(1995)008<1738:SOGCMS>2.0.CO;2 – https://journals.ametsoc.org/doi/pdf/10.1175/1520-0442%281995%29008%3C1738%3ASOGCMS%3E2.0.CO%3B2 – (On our blog : https://plantstomata.wordpress.com/2018/10/22/sensivity-of-global-climate-model-simulations-to-increased-stomatal-resistance-and-co2-increases/ )

Hennessey T. L., Field C. B. (1991) – Circadian Rhythms in Photosynthesis : Oscillations in Carbon Assimilation and Stomatal Conductance under Constant Conditions – Plant Physiology 96(3): – DOI: https://doi.org/10.1104/pp.96.3.831http://www.plantphysiol.org/content/96/3/831.short – (On our blog : https://plantstomata.wordpress.com/2019/03/21/oscillations-in-carbon-assimilation-and-stomatal-conductance-under-constant-conditions/ )

Henry A., Stuart-Williams H., Dixit S., Kumar A., Farquhar G. (2019) – Stomatal conductance responses to evaporative demand conferred by rice drought-yield QTL qDTY12.1 – Functional Plant Biology xxx: – http://www.publish.csiro.au/FP/justaccepted/FP18126 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/stomatal-conductance-responses-to-evaporative-demand/ )

Henson I. E., Jensen C. R., Turner N. C. (1989) – Leaf gas exchange and water relations of lupins and wheat. III. Abscisic acid and drought-induced stomatal closure – Aust. J. Plant Physiol. 16: 429–442 – https://doi.org/10.1071/PP9890429 – http://www.publish.csiro.au/FP/PP9890429 – (On our blog : https://plantstomata.wordpress.com/2018/10/22/drought-induced-stomatal-closure-could-be-mediated-by-aba/ )

Henry C., John G. P., Pan R., Bartlett M. K., Fletcher L. R., Scoffoni C., Sack L. (2019) – A stomatal safety-efficiency trade-off constrains responses to leaf dehydrationNature Communications 10, Article number: 3398 – https://www.nature.com/articles/s41467-019-11006-1 – (On our blog : https://plantstomata.wordpress.com/2019/08/12/80044/ )

Henson I. E., Turner N. C. (1991) – Stomatal responses to abscisic acid in three lupin species. – New Phytol. 117: 529–534 – https://doi.org/10.1111/j.1469-8137.1991.tb00957.x – [Google Scholar] [CrossRef] – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1991.tb00957.x – (On our blog : https://plantstomata.wordpress.com/2018/03/31/stomatal-responses-to-aba/ )

Hentschel R., Hommel R. , Poschenrieder W., Grote R., Holst J.Biernath C., Gessler A., Priesack E. (2016) – Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech – Trees, February 2016, Volume 30, Issue 1, pp 153-174 – http://link.springer.com/article/10.1007%2Fs00468-015-1284-2 – (On our blog : https://plantstomata.wordpress.com/2016/04/02/stomatal-conductance-and-intrinsic-wue/)

Hentzen A. F., Smart L. B., Wimmers L. E., Fang H. H., Schroeder J. I.., Bennett A. B. (1996) – Two plasma membrane H+-ATPase genes expressed in guard cells of Vicia faba are also expressed throughout the plant – Plant Cell Physiol. 37: 650–659 – https://doi.org/10.1093/oxfordjournals.pcp.a028994 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1013.193&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/22/h-atpase-genes-expressed-in-guard-cells/ )

Henzell R. G., McCree K. J., Van Bavel C. H. M., Schertz K. F. (1976) – Sorghum genotype variation in stomatal sensitivity of leaf water deficit – Crop Sci. 16: 660-662 –

Hepler P. K. (1981) – Morphogenesis of tracheary elements and guard cells. In: Kiermayer O, ed. Cytomorphogenesis in plants. Wien, NY, USA: Springer-Verlag 327–347 –

Hepworth C. (2016) – The role of stomata in regulating water and nutrient availability: Model to crop studies – PhD thesis, University of Sheffield.

Hepworth C., Adams T. D., Hunt L., Cameron D. D., Gray J. E. (2015) – Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake – New Phytologist 2: 336-341 – doi: 10.1111/nph.13598 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.13598 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/manipulating-stomatal-density-enhances-drought-tolerance/ )

Hepworth C., Caine R. S., Harrison E. L., Sloan J., Gray J. E. (2016) – Stomatal development: focusing on the grasses – Current Opinion in Plant Biology 41: 1-7 – https://doi.org/10.1016/j.pbi.2017.07.009 – https://www.sciencedirect.com/science/article/pii/S1369526617300997 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/insights-into-how-grasses-regulate-the-production-of-stomata/ ) – – (On our blog : https://plantstomata.wordpress.com/2019/02/06/stomatal-development-key-ontogenetic-steps-for-which-knowledge-of-the-underpinning-molecular-mechanisms-remains-outstanding/ )

Hepworth C., Doheny-Adams T., Hunt L., Cameron D. D., Gray J. E. (2015) – Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. – New Phytologist, 208 (2): 336-341 – ISSN 0028-646X – http://eprints.whiterose.ac.uk/90224/ – http://dx.doi.org/10.1111/nph.13598 – (On our blog : https://plantstomata.wordpress.com/2016/06/15/stomatal-density-drought-tolerance-and-nutrient-uptake-2/)

Hepworth C., Turner C., Landim M. G.,  Cameron D.D., Gray J. E. (2015) – Balancing water uptake and loss through the coordinated regulation of stomatal and root development – PloS one 11 (6), e0156930 – https://doi.org/10.1371/journal.pone.0156930 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156930 – (On our blog : https://plantstomata.wordpress.com/2018/03/31/plants-can-balance-water-uptake-and-loss-through-coordinated-regulation-of-both-stomatal-and-root-development/ )

Herbst M. (1995) – Stomatal behavior in a beech canopy: an analysis of Bowen ratio measurements compared with porometer data – Plant Cell Environ. 18: 1010-1018 – https://doi.org/10.1111/j.1365-3040.1995.tb00611.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1995.tb00611.x – (On our blog : https://plantstomata.wordpress.com/2018/10/22/stomatal-behavior-in-a-beech-canopy/ )

Herde O., Peña-Cortés H., Willmitzer L., Fisahn J. (1997) – Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants – Plant Cell Environ. 20: 136-141 – https://doi.org/10.1046/j.1365-3040.1997.d01-11.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1997.d01-11.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/stomatal-responses-to-ja-la-and-aba-in-wild-type-and-aba-deficient-tomato-plants/ )

Herppich W. B., von Willert D. J. (1995) – Dynamic changes in leaf bulk water relations during stomatal oscillations in mangrove species: continuous analysis using a dewpoint hygrometer – Physiologia Plantarum 94: 479-485 – https://doi.org/10.1111/j.1399-3054.1995.tb00957.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1995.tb00957.x- (On our blog : https://plantstomata.wordpress.com/2018/10/28/dynamic-changes-in-leaf-bulk-water-relations-during-stomatal-oscillations/ )

Herrera-Martínez V., Rios-Hernández L., Garcidueñas-Piña C., Lara-Ibarra A., Adabache-Ortiz A., Soria-Guerra R. E., Pérez-Molphe-Balch E., José Francisco Morales-Domínguez J. F. (2015) – Effect of Culture Conditions on Stomatal Density and Stomatal Index in Four Cactus Species – Haseltonia 20 : 43-50 –https://doi.org/10.2985/026.020.0108 – http://www.bioone.org/doi/abs/10.2985/026.020.0108 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/effect-of-culture-conditions-on-stomatal-density-and-stomatal-index/ )

Herčík F. (1964) -Influence of alpha rays on stomatal movements – Biol Plant 6: 315 –  https://doi.org/10.1007/BF02931015 – https://link.springer.com/article/10.1007%2FBF02931015#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/20/alpha-rays-and-stomatal-movements/ )

Herde O., Peña-Cortés H., Willmitzer L., Fisahn J. (1997) – Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. – Plant Cell Environ. 20: 136-141 – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-3040.1997.d01-11.x – (On our blog : https://plantstomata.wordpress.com/2018/03/31/stomatal-responses-to-ja-la-and-aba/ )

Hernández M., Terrazas T., Delgado A., Luna-Cavazoz M. (2007) Myrtillocactus geometrizans (Mart. ex. Pfeiff.) console (Cactaceae) stomata: variation along its distribution range – Revista Fitotecnia Mexicana 30: 235240 – Google Scholar – https://www.researchgate.net/publication/287867917_Myrtillocactus_geometrizans_Mart_ex_Pfeiff_console_cactaceae_stomata_Variation_along_its_distribution_range – (On our blog : https://plantstomata.wordpress.com/2018/03/31/stomatal-size-and-density-variation/ )

Hernandez M. J., Montes F., Ruiz F., Lopez G., Pita P. (2016) – The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes – Ann Bot first published online April 6, 2016 – doi:10.1093/aob/mcw031 – Abstract, Full Text (HTML), Full Text (PDF), http://aob.oxfordjournals.org/content/early/2016/04/05/aob.mcw031.abstract – (On our blog : https://plantstomata.wordpress.com/2016/04/09/stomatal-conductance-under-two-watering-regimes/)

Hernandez M. L., Passas H. J., Smith L. G. (1999) – Clonal Analysis of Epidermal Patterning during Maize Leaf Development – Developmental Biology 216: 646-658 – DOI10.1006/dbio.1999.9429 – https://www.infona.pl/resource/bwmeta1.element.elsevier-529854cb-eba4-3560-b971-7f287f019542 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/lineage-does-not-account-for-the-linear-patterning-of-stomata/)

Hernández M. P., ArambarriI A. M. (2010) – Stomatal distribution, stomatal density and daily leaf movement in Acacia aroma (Leguminosae) – Bol. Soc. Argent. Bot. 45(3-4): Córdoba jul./dic. 2010 – versión On-line ISSN 1851-2372 – http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-23722010000200007 – (On our blog : https://plantstomata.wordpress.com/2018/01/29/stomatal-distribution-stomatal-density-and-daily-leaf-movement/ )

Héroult A., Lin Y.-S., Bourne A., Medlyn B. E.Ellsworth D. S. (2013) – Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. – Plant Cell Environ. 36, 262274 (2013). – doi: 10.1111/j.1365-3040.2012.02570.x.  – CASISIPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/06/16/photosynthesis-and-stomatal-conductance-2/)

Herrick J. D., Maherali H., Thomas R. B. (2004) –  Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long term CO2 enrichment – New Phytol. 162: 387–396 – doi: 10.1111/j.1469-8137.2004.01045.x – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.2004.01045.x – (On our blog : https://plantstomata.wordpress.com/2018/10/23/decreased-stomatal-conductance-in-co2-enrichment-is-consistent-over-long-periods-of-time-and-under-varying-environmental-conditions/ )

Hetherington A. M. ( ) – The Guard Cell Group – http://www.bristol.ac.uk/biology/research/plant/hetherington/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/the-guard-cell-group-research-on-stomata/)

Hetherington A. M. (2001) – Guard cell signaling. – Cell 107: 711–714 CASISIPubMedArticleCrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/16/aba-signaling-in-stomata/)

Hetherington A. M. (2012) – The involvement of the cytoskeleton and lipids in the regulation of stomatal aperture – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-cytoskeleton-and-lipids-in-the-regulation-of-stomatal-aperture/ )

Hetherington  A. M., Brownlee C. (2004) – The generation of Ca2+ signals in plants. Annu. Rev. Plant Biol. 55, 401427. – CrossRefPubMedCAS | – (On our blog : https://plantstomata.wordpress.com/2016/06/16/ca2-signals-and-stomata/)

Hetherington A. M., Davies W. J., Holroyd G., McAinsh M., Tagliavia C. (2006) – Identification of Arabidopsis guard cell CO2 signalling mutants using infrared thermography – Comparative Biochemistry and Physiology – Part A: Molecular and Integrative Physiology 143 (4): S142 – 10.1016/j.cbpa.2006.01.053 – http://www.research.lancs.ac.uk/portal/en/publications/identification-of-arabidopsis-guard-cell-co2-signalling-mutants-using-infrared-thermography(6f67d77e-85ef-435a-9591-7420d925b38b).html – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-co2-signalling-mutants-and-stomatal-behavior/)

Hetherington A. M.Gray J. E.Leckie C. P.McAinsh M. R.Ng C.Pical C.Priestley A. J.Staxén I.Webb A. A. R. (1998) – The control of specificity in guard cell signal transduction – 

Hetherington A. M., Woodward F. I. (2003) – The role of stomata in sensing and driving environmental change. Nature 424: 901–908 – doi: 10.1038/nature01843 – PubMed Abstract | CrossRef Full Text | Google Scholar , Medline – (On our blog : https://plantstomata.wordpress.com/2015/08/20/stomata-and-the-environment/).

Hettenhausen C., Baldwin I. T.,Wu J. (2012) – Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000. – Plant Physiol. 158, 759–776. doi: 10.1104/pp.111.190074 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/10/10/ntmpk4-plays-an-essential-role-in-co2-and-darkness-induced-activation-of-guard-cell-anion-channels-in-stomata/)

Hew C. S., Lee G. L., Wong S. C. (1980) – Occurrence of non-functional stomata in the flowers of tropical orchids – Ann. Bot. 46: 195-201 –  (On our blog : https://plantstomata.wordpress.com/2017/07/19/non-functional-stomata-in-the-flowers-of-tropical-orchids/)

Higaki K. N. H. S., Takumi (2014) – Carta-based semi-automatic detection of stomatal regions on an arabidopsis cotyledon surface – PLANT MORPHOLOGY 26(1): 9–12 –

Higaki T., Kutsuna N., Hasezawa S. (2013) – Lips database with lipservice: a microscopic image database of intracellular structures in arabidopsis guard cells – BMC plant biology 13(1): 81 –

Higaki T., Hashimoto-Sugimoto M., Akita K., Iba K., Hasezawa S. (2014) – Dynamics and Environmental Responses of PATROL1 in Arabidopsis Subsidiary Cells – Plant and Cell Physiology 55(4): 773–780 – https://doi.org/10.1093/pcp/pct151 –https://academic.oup.com/pcp/article/55/4/773/1813362 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/patrol1-may-contribute-to-stomatal-movement-by-translocations-of-pm-h-atpase-in-subsidiary-cells/ )

Higaki T.,  Kutsuna N.,  Hosokawa Y.,  Akita K.,  Ebine K.,  Ueda T., Kondo N., Hasezawa S. (2012) – Statistical organelle dissection of Arabidopsis guard cells using image database LIPS – Sci. Rep. 2: 405 – https://www.nature.com/articles/srep00405 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/statistical-organelle-dissection-of-arabidopsis-guard-cells-using-image-database-lips/ )

Higaki T., Kutsuna N., Sano T., Kondo N., Hasezawa S. (2010) – Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells – The Plant Journal, 61: 156–165 – doi:10.1111/j.1365-313X.2009.04032.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04032.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/17/role-of-actin-bundling-in-stomatal-movement-during-diurnal-cycles/ )

Hill B. S., Findlay G. P. (1981) – The power of movement in plants: the role of osmotic machines – Quarterly Reviews of Biophysics 14(2): 173-222 –  doi:10.1017/S0033583500002249 – https://www.cambridge.org/core/journals/quarterly-reviews-of-biophysics/article/div-classtitlethe-power-of-movement-in-plants-the-role-of-osmotic-machinesdiv/E57F7A4CFFFCE5333CBCC30178F5A8B6 – (On our blog : https://plantstomata.wordpress.com/2018/04/16/the-opening-and-closing-of-stomata/ )

Hill K. E., Guerin G. R., Hill R. S., Watling J. R. (2015) – Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp.angustissima along a latitude gradient in southern Australia – Australian Journal of Botany 62(8): 657-665 http://dx.doi.org/10.1071/BT14204 – http://www.publish.csiro.au/paper/BT14204.htm – (On our blog : https://plantstomata.wordpress.com/2016/04/11/environmental-factors-influencing-plasticity-in-stomatal-traits/)

Hills A., Chen Z. H., Amtmann A., Blatt M. R., Lew V. L. (2012) – OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. – Plant Physiol 159: 1026–1042 – DOI: https://doi.org/10.1104/pp.112.197244 – CrossRefCAS | – http://www.plantphysiol.org/content/159/3/1026 – (On our blog : https://plantstomata.wordpress.com/2018/10/26/onguard-a-computational-platform-for-quantitative-kinetic-modeling-of-guard-cell-physiology/ )

Hinckley T. M., Braatne J. H. (1994) – Stomata. In: Wilkinson RE (ed) Plant-environment interactions – Marcel Dekker, New York, 323–355 –

Hinckley T. M., Duhme F., Hinckley A. R., Richter H. (1980) – Water relations of drought-hardy shrubs: osmotic potential and stomatal reactivity – Plant, Cell & Environment 3: 131-140 –  https://doi.org/10.1111/1365-3040.ep11580919 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11580919 – (On our blog : https://plantstomata.wordpress.com/2018/10/23/osmotic-potential-and-stomatal-reactivity/ )

Hines P. J. (2017) – Making more of your stomata – Science 355(6330): 1169 – doi: 10.1126/science.355.6330.1169-a – https://www.ncbi.nlm.nih.gov/pubmed/28302826https://www.researchgate.net/publication/315322445_Making_more_of_your_stomata – (On our blog : https://plantstomata.wordpress.com/2018/01/07/making-more-of-your-stomata/ )

Hirano E. (1931) – Relative abundance of stomata in Citrus and some related genera. – Bot.Gaz. 92:296-310.

Hirano T., Kiyota M., Aiga I. (1990-1991) – The Effects of Dust by Covering and Plugging Stomata and by Increasing Leaf Temperature on Photosynthetic Rate of Plant Leaves – Journal of Agricultural Meteorology 46(4): 215-222 – https://doi.org/10.2480/agrmet.46.215 – https://www.jstage.jst.go.jp/article/agrmet1943/46/4/46_4_215/_article – (On our blog : https://plantstomata.wordpress.com/2018/02/18/dust-affects-net-photosynthetic-rate-by-covering-and-plugging-stomata-and-by-increasing-leaf-temperature/ )

Hirasawa T., Wakabayashi K., Touya S., Ishihara K. (1995) – Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants (Helianthus annuus L.) grown under different conditions – Plant Cell Physiol. 36: 955- 964 – https://doi.org/10.1093/oxfordjournals.pcp.a078866 – https://academic.oup.com/pcp/article-abstract/36/6/955/1814217?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/10/23/stomatal-responses-to-water-deficits-and-aba/ )

Hirose T., Ikeda M., Izuta T., Miyake H., Totsuka T. (1994) – Stomatal oscillation in peanut leaves observed under field conditions – Japan. J. Crop Sci. 63: 162–163 – https://doi.org/10.1626/jcs.63.162 –https://www.jstage.jst.go.jp/article/jcs1927/63/1/63_1_162/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/07/77432/ )

Hirich A., Jelloul A., Choukr-Allah R., Jacobsen S.-E. (2014) – Saline Water Irrigation of Quinoa and Chickpea: Seedling Rate, Stomatal Conductance and Yield Responses – J. Agron. Crop Sci. 200(5): 378-389 – DOI: 10.1111/jac.12072 – http://onlinelibrary.wiley.com/doi/10.1111/jac.12072/full – (On our blog : https://plantstomata.wordpress.com/2017/10/03/effect-of-saline-water-irrigation-on-stomatal-conductance/)

Hiyama T., Kochi K., Kobayashi N., Sirisampan S. (2005) –  Seasonal variation in stomatal conductance and physiological factors observed in a secondary warm-temperate forest – Ecological Research 20: 333–346 – https://doi.org/10.1007/s11284-005-0049-6 – https://link.springer.com/article/10.1007/s11284-005-0049-6#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/26/seasonal-variation-in-stomatal-conductance/ )

Hiyama A., Takemiya A., Munemasa S., Okuma E., Sugiyama N., Tada Y., Murata Y., Shimazaki K-i. (2017) – Blue light and CO2 signals converge to regulate light-induced stomatal opening – Nat Commun (Nature communications) 8(1):1284] – DOI: 10.1038/s41467-017-01237-5 – https://pdf.manuscriptpro.com/search/Abstract~29101334/1/d2d0481f/Blue-light-and-CO2-signals-converge-to-regulate-light-induced-stomatal-opening.https://www.nature.com/articles/s41467-017-01237-5 – (On our blog : https://plantstomata.wordpress.com/2017/11/05/cbcs-regulate-stomatal-aperture-by-integrating-signals-from-bl/)

Hirayama S., Yuasa A. (1937) – Occurrence of inclusion bodies in the guard cells of the stomata of mosaic-tobacco plants – Ann. Phytopath. Soc. Japan. V: 197-306 – DOI: 10.3186/jjphytopath.6.305 – [CrossRef] – https://www.jstage.jst.go.jp/article/jjphytopath1918/6/4/6_4_305/_pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/31/inclusion-bodies-occur-in-the-stomata-of-mosaic-tobacco-plants/ )

Ho C. M., Paciorek T., Abrash E., Bergmann D. C. (2016) – Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases. – Dev. Cell. 38(4): 345-357. – doi: 10.1016/j.devcel.2016.07.016 – PMID: 27554856 – http://www.cell.com/developmental-cell/pdf/S1534-5807(16)30509-3.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/31/vsts-interact-with-integral-er-membrane-proteins-and-are-required-for-erecta-mediated-signaling/ )

Hoang P. T. N., Schubert V., Meister A., Fuchs J., Schubert I. (2019) – Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds – Scientific Reports 9, Article number 3234 – https://www.nature.com/articles/s41598-019-39332-w – (On our blog : https://plantstomata.wordpress.com/2019/04/01/genome-size-is-positively-correlated-with-stomatal-guard-cell-and-nucleus-volume/ )

Hochberg U., Bonel A. G., David-Schwartz R., Degu A., Fait A., Cochard H., Peterlunger E., Herrera J. C. (2017) – Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability – Planta 245(6): 1091-1104 – DOI10.1007/s00425-017-2662-3 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00425-017-2662-3 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/the-adjustment-of-stomatal-and-hydraulic-conductance-differs-from-petiole-embolism-vulnerability/)

Hochberg U., Windt C. W., Ponomarenko A., Zhang Y.-J., Gersony J., Rockwell F. E., Holbrook N. M. (2017) – Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems. – Plant Physiol 174: 764–775 – DOI: 10.1104/pp.16.01816 – http://www.plantphysiol.org/content/174/2/764 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-closure-basal-leaf-embolism-and-shedding/)

Hodgson J. G., Sharafi M., Jalili A., Díaz S., Montserrat-Martí G., Palmer C., Cerabolini B., Pierce S., Hamzehee B., Asri Y., Z. Jamzad P. Wilson J. A. Raven S. R. Band S. BasconceloA. Bogard G. Carter M. Charles P. Castro-Díez J. H. C. Cornelissen G. Funes G. JonesM. Khoshnevis N. Pérez-Harguindeguy M. C. Pérez-Rontomé F. A. Shirvany F. VendraminiS. Yazdani R. Abbas-Azimi S. Boustani M. Dehghan J. Guerrero-Campo A. Hynd E. KowsaryF. Kazemi-Saeed B. Siavash P. Villar-Salvador R. Craigie A. Naqinezhad A. Romo-DíezL. de Torres Espuny E. Simmons (2010) – Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? – Ann Bot (Lond) 105: 573–584 – https://doi.org/10.1093/aob/mcq011 – https://academic.oup.com/aob/article/105/4/573/190942 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/stomatal-vs-genome-size-in-angiosperms/ )

Hofmann N. R. (2008) – They All Scream for ICE1/SCRM2: Core Regulatory Units in Stomatal Development – The Plant Cell, July 2008 vol. 20 no. 7 1732 – http://www.plantcell.org/content/20/7/1732.full – (On our blog : https://plantstomata.wordpress.com/2016/06/16/ice1scrm2-and-stomatal-development/)

Hofstra G., Hesketh J. D. (1969) – The effect of temperature on stomatal aperture in different species – Canad. J. Bot. 47: 1307-1310 – https://doi.org/10.1139/b69-184 – http://www.nrcresearchpress.com/doi/abs/10.1139/b69-184 – (On our blog : https://plantstomata.wordpress.com/2018/04/01/stomatal-apertures-increased-with-increasing-air-temperatures/ )

Holbrook N. M., Shashidhar V. R., James R. A., Munns R. (2002) – Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. – J Exp Bot. 2002 Jun;53(373):1503-1514. – doi:10.1093/jexbot/53.373.1503 – CASPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/06/16/stomata-and-response-of-grafted-plants-to-soil-drying/ )

Holland N., Richardson A. D. (2009) – Stomatal Length Correlates with Elevation of Growth in Four Temperate Species. – Journal of Sustain Forestry 28, 63-73 –http://dx.doi.org/10.1080/10549810802626142 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/changes-in-stomatal-traits-with-elevation/).

Hollinger D. Y. (1987) – Photosynthesis and stomatal conductance patterns of two fern species from different forest understoreys – J. Ecol. 75: 925-935 – DOI 10.2307/2260304 – (CrossRef, ISI) – https://www.jstor.org/stable/2260304?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/01/photosynthesis-and-stomatal-conductance-patterns/ )

Holmes M. G., Klein W. H. (1985) – Evidence for phytochrome involvement in light-mediated stomatal movements in Phaseolus vulgaris L. – Planta 166: 348–353 – doi: 10.1007/BF00401172 – https://www.ncbi.nlm.nih.gov/pubmed/24241517 – (On our blog : https://plantstomata.wordpress.com/2018/10/23/phytochrome-involvement-in-light-mediated-stomatal-movements/ )

Holroyd G. H., Hetherington A. M., Gray J. E. (2002) A role for the cuticular waxes in the environmental control of stomatal development. – New Phytologist 153: 433439 – DOI: 10.1046/j.0028-646X.2001.NPH326.doc.x – CrossRef |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/06/18/cuticular-waxes-and-stomatal-development/)

Hölscher D., Fuchser J., Knop K., Menezes R. C., Buerkert A., Svatoš A., Schubert U. S., Schneider B. (2015) – High resolution mass spectrometry imaging reveals the occurrence of phenylphenalenone-type compounds in red paracytic stomata and red epidermis tissue of Musa acuminata ssp. zebrina cv. ‘Rowe Red’ – Phytochemistry 116: 239-245 – DOI10.1016/j.phytochem.2015.04.010 – https://www.infona.pl/resource/bwmeta1.element.elsevier-f9db20ee-ddee-3e71-9c04-77ea72e18231 – (On our blog : https://plantstomata.wordpress.com/2017/10/14/the-occurrence-of-phenylphenalenone-type-compounds-in-red-paracytic-stomata/)

Homann U. (1998) – Fusion and fission of plasma-membrane material accommodates for osmotically induced changes in the surface area of guard-cell protoplasts. – Planta 206: 329–333 – https://doi.org/10.1007/s004250050408 – https://link.springer.com/article/10.1007/s004250050408#citeas – (On our blog : https://plantstomata.wordpress.com/2018/04/01/osmotically-induced-fusion-and-fission-of-plasma-membrane-material-in-stomatal-protoplasts-are-ca2-independent-and-modulated-by-membrane-tension/

Homann U., Thiel G. (1999) Unitary exocytotic and endocytotic events in guard cell protoplasts during osmotically driven Volume changes. – FEBS Letters 460: 495499. – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/06/18/about-guard-cell-protoplasts/)

Honda K., Yamada N., Yoshida R., Ihara H., Sawa T., Akaike T., Iwai S. (2015) – 8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. – Plant Cell Physiol. 56, 1481–1489. – doi: 10.1093/pcp/ pcv069 – https://www.ncbi.nlm.nih.gov/pubmed/25975264 – (On our blog : https://plantstomata.wordpress.com/2018/04/01/8-mercapto-cgmp-mediates-the-h2s-signaling-cascade-in-stomata/ )

Honour S. J., Webb A. A. R., Mansfield T. A. (1995) – The responses of stomata to abscisic-acid and temperature are interrelated. – Proc. R. Soc. B Biol. Sci. 259, 301–306. doi: 10.1098/rspb.1995.0044 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/02/15/interactions-between-aba-and-temperature-on-stomatal-movements/)

Hoover W. S. (1986) – Stomata and stomatal clusters in Begonia: Ecological response in 2 Mexican species – Biotropica 18:16–21 – https://www.jstor.org/stable/2388356?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/01/variation-in-mean-cluster-size-number-of-stomata-cluster-stomatal-length-and-number-of-stomata-mm2/ )

Hopmans P. A. M. (1971) – Rhythms in stomatal opening of bean leaves – Ritmen in de opening van de huidmondjes bij de boon – Mededelingen Landbouwhogeschool Wageningen 71(3): 1-86 – Stomatal cycling in beans, PhD thesis 1971.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/rhythms-in-stomatal-opening/)

Hopper D. W., Ghan R., Cramer G. R. (2014) – A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes – Horticulture Research 1, Nr.: 2  – doi:10.1038/hortres.2014.2 – https://www.nature.com/articles/hortres20142 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/stomatal-response-differences-in-grapevine-genotypes/)

Hoque T. S., Uraji M., Ye W., Hossain M. A., Nakamura Y., Murata Y. (2012) – Methylglyoxal-induced stomatal closure accompanied by peroxidase- mediated ROS production in Arabidopsis. – J. Plant Physiol. 169, 979–986. – doi: 10.1016/j.jplph.2012.02.007 – https://www.sciencedirect.com/science/article/pii/S0176161712000983 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/methylglyoxal-induced-stomatal-closure-and-peroxidase-mediated-ros-production/ )

Hõrak H., Kollist H., Merilo E. (2017) – Fern stomatal responses to ABA and CO2 depend on species and growth conditions. – Plant Physiol 174: 672–679 – 

Hõrak H.Sierla M.Tõldsepp K.Wang C.Wang Y.-S.Nuhkat M.Valk E.Pechter P., Merilo E. Salojärvi J.Overmyer K.Loog M.Brosché M.Schroeder J. I., Kangasjärvi J., Kollist H. (2016) – A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO2-Induced Stomatal Closure – The Plant Cell October 2016 vol. 28 no. 10 2493-2509 – doi: http://dx.doi.org/10.1105/tpc.16.00131 – http://www.plantcell.org/content/28/10/2493.short?rss=1 – (On our blog : https://plantstomata.wordpress.com/2016/11/13/roles-of-map-kinases-and-ghr1-in-co2-induced-stomatal-closure/)

Hornberg C., Weiler E.W. (1984) – High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. – Nature 310, 321324 – https://www.nature.com/articles/310321a0 – CrossRef |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/06/18/binding-sites-for-aba-in-stomata/ )

Horrer D.Flütsch S.Pazmino D.Matthews J.S.Thalmann M.Nigro A.Leonhardt N.Lawson T.Santelia D. (2016) – Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening – Curr Biol 26362370 –  doi: 10.1016/j.cub.2015.12.036 – https://www.ncbi.nlm.nih.gov/pubmed/26774787?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/19/guard-cell-starch-degradation-has-an-important-role-in-plant-growth-by-driving-stomatal-responses-to-light/

Horst R. J., Fujita H., Lee J. S., Rychel A. L., Garrick J. M., Kawaguchi M., Peterson K. M., Torii K. U. (2015) – Molecular framework of a regulatory circuit initiating two-dimensional spatial patterning of stomatal lineage. – PLOS Genetics 11e1005374 – https://doi.org/10.1371/journal.pgen.1005374 –  [PubMed Abstract] CrossRefPubMed – http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005374Google Scholar – (On our blog : https://plantstomata.wordpress.com/2018/04/02/a-regulatory-circuit-initiating-two-dimensional-spatial-patterning-of-stomatal-lineage/ )

Horton R. F. (1971) – Stomatal opening : the role of abscisic acid – Can. J. Bot. 49: 583–585 – https://doi.org/10.1139/b71-092 –https://www.nrcresearchpress.com/doi/abs/10.1139/b71-092 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-role-of-aba-in-stomatal-opening/ )

Horváth E. M., Peter S. O., Joët T., Rumeau D., Courmac L., Horvath G. V., Kavanagh T. A., Schäfer C., Peltier G., Medgyesy P. (2000) – Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure – Plant Physiol. 123: 1337–1350 – DOI: https://doi.org/10.1104/pp.123.4.1337 – http://www.plantphysiol.org/content/123/4/1337 – (On our blog : https://plantstomata.wordpress.com/2018/10/28/the-plastid-nadphplastoquinone-oxidoreductase-performs-a-significant-physiological-role-by-facilitating-photosynthesis-at-moderate-stomatal-closure/ )

Hoshika Y., Hajima T., Shimizu Y., Takigawa M., Omasa K. (2011) – Estimation of stomatal ozone uptake of deciduous trees in East Asia – Annals of Forest Science (2011) 68:607–616 DOI 10.1007/s13595-011-0051-9 – Estimation_of_stomatal_ozone_uptake_of_d.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/an-approach-based-on-stomatal-ozone-uptake-would-be-a-useful-tool-for-ozone-risk-assessment-in-east-asia/)

Hoshika Y., Katata G., Deushi M., Watanabe M., Koike T., Paoletti E. (2015) – Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. – Sci. Rep. 5, 09871; doi: 10.1038/srep09871 (2015). – (On our blog : https://plantstomata.wordpress.com/2016/07/04/carbon-and-water-balance-of-temperate-deciduous-forests-and-stomatal-sluggishness/)

Hoshika Y., Omasa K., Paoletti E. (2013) – Both ozone exposure and soil water stress are able to induce stomatal sluggishness – Environmental and Experimental Botany 88: 19–23 – https://doi.org/10.1016/j.envexpbot.2011.12.004 – https://www.sciencedirect.com/science/article/abs/pii/S009884721100311X – (On our blog : https://plantstomata.wordpress.com/2018/10/28/both-ozone-exposure-and-water-stress-caused-stomata-to-be-sluggish/ )

Hoshika Y., Osada Y., de Marco A., Penuelas J., Paoletti E. (2018) – Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops – Global Ecol Biogeogr. 27: 257–275 – https://www.creaf.uab.es/global-ecology/Pdfs_UEG/2018%20GlobEcolBiogeog.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/09/global-diurnal-and-nocturnal-parameters-of-stomatal-conductance/

Hoshika Y., Paoletti E., Omasa K. (2012) – Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan – Atmospheric Environment 55: 271–278 – doi:10.1016/j.atmosenv.2012.02.083 – http://park.itc.u-tokyo.ac.jp/joho/Omasa/505.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/28/parameterization-of-stomatal-conductance-model-to-estimate-stomatal-ozone-uptake/ )

Hoshika Y., Watanabe M., Carrari E., Paoletti E., Koike T. (2017) – Ozone-induced stomatal sluggishness changes stomatal parameters of Jarvis-type model in white birch and deciduous oak – Plant Biology, accepted for publication – DOI: 10.1111/plb.12632 – (On our blog : https://plantstomata.wordpress.com/2017/09/24/ozone-induced-stomatal-sluggishness-changes-stomatal-parameters/)

Hoshika Y., Watanabe M., Inada N., Koike T. (2012) – Modeling of stomatal conductance for estimating ozone uptake of Fagus crenata under experimentally enhanced free-air ozone exposure – Water Air, and Soil Pollution 223: 3893–3901 – https://doi.org/10.1007/s11270-012-1158-9 – https://link.springer.com/article/10.1007/s11270-012-1158-9#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/14/ozone-induced-stomatal-closure-should-be-implemented-to-stomatal-conductance-model-for-estimating-ozone-uptake/

Hoshika Y., Watanabe M., Inada N., Koike T. (2013) – Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata) – Annals of Botany 112: 1149–1158 – doi: 10.1093/aob/mct166 – https://www.ncbi.nlm.nih.gov/pubmed/23904447 – (On our blog : https://plantstomata.wordpress.com/2018/12/14/model-based-analysis-of-avoidance-of-ozone-stress-by-stomatal-closure/

Hosoi S., Iino M., Shimazaki K. (1988) – Outward rectifying K+ channel in stomatal guard cell protoplasts. – Plant Cell Physiol. 29: 907–911 – https://doi.org/10.1093/oxfordjournals.pcp.a077594 – https://academic.oup.com/pcp/article-abstract/29/6/907/1833599?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/02/outward-rectifying-k-channel-in-stomatal-protoplasts/ )

Hossain M. A., Munemasa S., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2011) – Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis – Plant Physiol 156430438 – https://doi.org/10.1104/pp.111.172254 – https://pdfs.semanticscholar.org/5582/bd18cd52e57d896e24269c009bcc54964ca4.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/06/involvement-of-endogenous-aba-in-meja-induced-stomatal-closure/ )

Hossain M. S., Ye W., Hossain M. A., Okuma E., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2013) – Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. – Biosci. Biotechnol. Biochem. 77,:977–983. – doi: 10.1271/bbb.120928 – https://www.jstage.jst.go.jp/article/bbb/77/5/77_120928/_pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/03/glucosinolate-degradation-products-induce-stomatal-closure-accompanied-by-extracellular-ros-production/ )

Hossain M. A., Ye W., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2014) – Cyclic adenosine 5′ -diphosphoribose (cADPR) cyclic guanosine 3′ ,5′ – monophosphate positively function in Ca2+ elevation in methyl jasmonate- induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cells. – Plant Biol. 16: 1140–1144. – doi: 10.1111/plb.12175 – https://onlinelibrary.wiley.com/doi/abs/10.1111/plb.12175 – (On our blog : https://plantstomata.wordpress.com/2018/04/02/cadpr-and-cgmp-function-in-ca2cyt-elevation-in-meja%e2%80%90induced-stomatal-closure/ )

Hosy E., Vavasseur A., Mouline K., Dreyer I., Gaymard F., Porée F.Boucherez J., Lebaudy A., Bouchez D., Véry A.-A., Simonneau T. Thibaud J.-B., Sentenac H. (2003) – The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration – Pnas 100 (9) 55495554; doi:10.1073/pnas.0733970100 – http://www.pnas.org/content/100/9/5549.full – (On our blog : https://plantstomata.wordpress.com/2016/03/29/the-arabidopsis-outward-k-channel-gork-and-stomata/ )

Hoth S., Hedrich R. (1999) – Susceptibility of the guard-cell K+-uptake channel KST1 to Zn2+ requires histidine residues in the S3-S4 linker and in the channel pore – Planta 209(4): 543-546 – ISSN :0032-0935 – journal e-ISSN :1432-2048 – https://www.infona.pl/resource/bwmeta1.element.springer-f7db803e-235e-3a67-b953-73e2de3cb298 – (On our blog : https://plantstomata.wordpress.com/207/10/17/susceptibility-of-the-stomata-k-uptake-channel-kst1-to-zn2-requires-histidine-residues/)

Hoth S., Hedrich R. (1999) – Distinct molecular bases for pH sensitivity of guard cell K+ channels KST1 and KAT1. – Journal of Biological Chemistry 274: 11599–11603 – http://www.jbc.org/content/274/17/11599.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/03/distinct-molecular-bases-for-ph-sensitivity-of-stomatal-k-channels-kst1-and-kat1/ )

Hou Z., Wang L., Liu J., Hou L., Liu X. (2013) – Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. – J. Integr. Plant Biol. 55: 277–289. – doi: 10.1111/jipb.12004 – https://www.ncbi.nlm.nih.gov/pubmed/23134300 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/the-d-l-cdes-generated-h2s-is-involved-in-the-regulation-of-ethylene-induced-stomatal-closure/</spa

Hou Z. H., Liu G. H., Hou L. X., Wang L. X., Liu X. (2013) – Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene-induced stomatal closure in Arabidopsis thaliana – J Integr Agric 12: 251–262 – https://doi.org/10.1016/S2095-3119(13)60224-5https://www.sciencedirect.com/science/article/pii/S2095311913602245?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/07/09/pao-is-a-source-of-h2o2-generation-in-arabidopsis-guard-cells-and-plays-crucial-roles-in-stomatal-movement/ )

Houbaert A., Zhang C., Tiwari M., Wang K., de Marcos Serrano A., Savatin D. V., Urs M. J., Zhiponova M. Gudesblat G. E., Vanhoutte I., Eeckhout D., Boeren S., Karimi M., Betti C., Jacobs T., Fenoli C., Mena M. de Vries S., De Jaeger G., Russinova E. (2018) – POLAR-guided signalling complex assembly and localization drive asymmetric cell division – https://www.nature.com/articles/s41586-018-0714-x – Nature 563: 574-578 – (On our blog : https://plantstomata.wordpress.com/2019/01/15/the-plant-specific-protein-polar-as-a-stomatal-lineage-scaffold/ )

Hovenden M. J.,  Vander Schoor J. K., Osanai Y. (2012) – Relative humidity has dramatic impacts on leaf morphology but little effect on stomatal index or density in Nothofagus cunninghamii (Nothofagaceae) – Australian Journal of Botany 60(8) 700-706 https://doi.org/10.1071/BT12110 – http://www.publish.csiro.au/bt/bt12110 – (On our blog – https://plantstomata.wordpress.com/2017/11/23/relative-humidity-has-little-effect-on-stomatal-index-or-density/)

Hronková M.Wiesnerová D.Šimková M. Skůpa P.Dewitte W.Vráblová M.,  Zažímalová E.Šantrůček J. (2015) – Light-induced STOMAGEN-mediated stomatal development in Arabidopsisleaves – J. Exp. Bot. (2015) 66 (15):4621-4630.doi: 10.1093/jxb/erv233 – http://jxb.oxfordjournals.org/content/66/15/4621.abstract – (On our blog : https://plantstomata.wordpress.com/2016/06/18/stomagen-and-stomatal-development/ )

Hsiao T. C. (1976) – Stomatal ion transport – In Encyclopedia of Plant Physiology. II. Transport in Plants. Part B. Tissues and organs.  Edited by U. Lutthe and G. Pitman.  Springer, Berlin, Heidelberg, New York.  Chapt. 3 – Google Scholar

Hsiao T. C., Allaway W. G., Evans L. T. (1973) – Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba – Plant Physiol. 51: 82-88 – http://www.jstor.org/stable/4263074?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/03/action-spectra-for-guard-cell-rb-uptake-and-stomatal-opening/ )

Hsie B. S.Mendes K. R.Antunes W. C., Endres L.Campos M. L. O.Souza F. C.Santos N. D.Singh B.Arruda E. C. P.Pompelli M. F. (2015) – Jatropha curcas L. (Euphorbiaceae) modulates stomatal traits in response to leaf-to-air vapor pressure deficit – Biomass and Bioenergy 81: 273-281 – https://doi.org/10.1016/j.biombioe.2015.07.014 – https://www.sciencedirect.com/science/article/pii/S0961953415300532#! – (On our blog : https://plantstomata.wordpress.com/2018/04/23/modulation-of-stomatal-traits-in-response-to-leaf-to-air-vapor-pressure-deficit/

Hsu K.-H., Liu C.-C., Wu S.-J. Kuo Y.-Y., Lu C.-A., Wu C.-R., Lian P.-J., Hong C.-Y., Ke Y.-T., Huang J.-H., Yeh C.-H. (2014) – Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening – Plant Molecular Biology 86(1-2): 125-137 – DOI10.1007/s11103-014-0217-6 – https://www.infona.pl/resource/bwmeta1.element.springer-2f566746-7587-3983-834c-8c744578ac14 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/osrzfp34-may-modulate-genes-to-control-stomata-opening/)

Hsu P.-K., Takahashi Y., Munemasa S., Merilo E., Laanemets K., Waadt R., Pater D., Kollist H., Schroeder J. I. (2018) – Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase – 

Hu H., Boisson-Dernier A., Israelsson-Nordstrom M., Bohmer M., Xue S., Ries A., Godoski J., Kuhn J. M., Schroeder J. I. (2010) – Carbonic anhydrases are upstream regulators of CO2- controlled stomatal movements in guard cells – Nat. Cell Biol. 12: 87–93 – doi: 10.1038/ncb2009 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.nature.com/articles/ncb2009 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/carbonic-anhydrases-are-upstream-regulators-of-co2-controlled-stomatal-movements/ )

Hu H., Rappel W.-J., Occhipinti R., Ries A., Böhmer M., You L. (2015) – Distinct Cellular Locations of Carbonic Anhydrases Mediate CO2 Control of Stomatal Movements – Plant Physiology  08/2015; 169(2). DOI: 10.1104/pp.15.00646 -Source: PubMed– https://www.researchgate.net/publication/280911463_Distinct_Cellular_Locations_of_Carbonic_Anhydrases_Mediate_CO2_Control_of_Stomatal_Movements – (On our blog : https://plantstomata.wordpress.com/2016/03/14/carbonic-anhydrases-and-co2-control-of-stomatal-movements/)

Hu J.-J., Xing Y.-W., Su T., Huang Y.-J., Zhou Z.-K. (2019) – Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2 – Annals of Botany, mcz020, https://doi.org/10.1093/aob/mcz020 –https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcz020/5376641?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/13/inverse-response-to-atmospheric-pco2-of-stomatal-frequency/ )

Hu J.-J., Xing Y.-W., Turkington R., Jacques F. M. B., Su T., Huang Y.-J., Zhou Z.-K. (2015) – A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels – Annals of Botany 115: 777–788 – doi:10.1093/aob/mcv007, available online at http://www.aob.oxfordjournals.org https://watermark.silverchair.com/mcv007.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/03/29/pco2-and-stomatal-frequency/ )

Hu K.-D., Tang J., Zhao D.-L., Hu L.-Y., Li Y.-H., Liu Y.-S., Jones R., Zhang H. (2014) – Stomatal closure in sweet potato leaves induced by sulfur dioxide involves H2S and NO signaling pathways. – Biol. Plant. 58, 676–680. – doi: 10.1007/s10535-014- 0440-7 – https://link.springer.com/article/10.1007%2Fs10535-014-0440-7 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/so2-induced-stomatal-closure-is-mediated-by-h2s-and-no-signaling-pathways/ )

Hua D., Wang C., He J., Liao H., Duan Y., Zhu Z., Guo Y, Chen Z, Gong Z. (2012) – A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. – Plant Cell 24, 2546– 2561. – doi: 10.1105/tpc.112.100107 – https://www.ncbi.nlm.nih.gov/pubmed/22730405 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/ghr1-mediates-aba-and-h2o2-regulated-stomatal-movement/ )

Huang A.-X., She X.-P., Cao B., Zhang B., Mu J;, Zhang S.-J. (2009) – Nitric oxide, actin reorganization and vacuoles change are involved in PEG 6000-induced stomatal closure in Vicia faba – Physiol Plant 136: 45–56 – https://doi.org/10.1111/j.1399-3054.2009.01212.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2009.01212.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/stomatal-closure-induced-by-peg-6000-may-be-intimately-associated-with-no-levels/ )

Huang A. X., She X. P., Zhang Y. Y., Zhao J. L. (2013) – Cytosolic acidification precedes nitric oxide removal during inhibition of ABA induced stomatal closure by fusicoccin. – Russ. J. Plant Physiol. 60, 60–68. – doi: 10.1134/S1021443712060076 – https://link.springer.com/article/10.1134/S1021443712060076 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/fc-induces-no-removal-and-reduces-no-level-via-cytosolic-acidification-in-guard-cells/ )

Huang J.-U., Eun S.-O., Lee Y. (2000) – Structure and function of actin filaments in mature guard cells. In Actin: A Dynamic Framework for Multiple Plant Cell Functions (eds C.J. Staiger, F. Baluska, D. Volkmann & P.W. Barlow), pp. 427–436. Kluwer Academic Publishers, Dordrecht, the Netherlands<

Huang J. U., Jeon B. W., Hong D., Lee Y. (2011) – Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure. – Plant Cell Environ. 34, 2172–2182 – doi: 10.1111/j.1365-3040.2011.02413.x – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/21883287 – (On our blog : https://plantstomata.wordpress.com/2018/04/08/rop2-gtpase-inhibits-aba-and-co2-induced-stomatal-closure/ )

Huang J.-U., Lee Y. (2001) – Abscisic Acid-Induced Actin Reorganization in Guard Cells of Dayflower Is Mediated by Cytosolic Calcium Levels and by Protein Kinase and Protein Phosphatase Activities – Plant Physiology 125(4): 2120-2128 – http://www.plantphysiol.org/content/plantphysiol/125/4/2120.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/06/protein-kinases-and-phosphatases-participate-in-actin-remodeling-in-guard-cells-during-aba-induced-stomatal-closure/ )

Huang J. U., Suh S., Yi H. J., Kim J., Lee Y. (1997) – Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. – Plant Physiology 115: 335–342 – PubMed |CAS | [PMC free article] – (On our blog : https://plantstomata.wordpress.com/2016/06/24/actin-filaments-and-stomatal-movements/)

Huang L., Chen L., Wang L., Yang Y., Rao Y., Ren D., Dai L., Gao Y., Zou W., Lu X., Zhang G., Zhu L., Hu J., Chen G., Shen L., Dong G., Gao Z., Guo L., Qian Q., Zeng D. (2019) – A Nck‐associated Protein 1‐like Protein Affects Drought Sensitivity by Its Involvement in Leaf Epidermal Development and Stomatal Closure in Rice – Plant Journ. – https://doi.org/10.1111/tpj.14288 –https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14288?af=R – (On our blog : https://plantstomata.wordpress.com/2019/02/17/drought-sensitivity-and-involvement-in-leaf-epidermal-development-and-stomatal-closure/ )

Huang L., Murray F., Yang X. (1994) – Interaction between mild NaCl salinity and sublethal SO2 pollution on wheat Triticum aestivum cultivar ‘Wilgoyne’ (Ciano/Gallo). I. Responses of stomatal conductance, photosynthesis, growth and assimilate partitioning – Agriculture, Ecosystems & Environment 48(2): 163-178 – https://doi.org/10.1016/0167-8809(94)90087-6 – http://www.sciencedirect.com/science/article/pii/0167880994900876 – (On our blog : https://plantstomata.wordpress.com/2017/10/05/mild-nacl-salinity-did-not-provide-an-effective-protection-against-so2-uptake-in-wheat-leaves-by-increasing-stomatal-resistance-during-so2-fumigation/)

Huang R. F., Wang X. C. (1997) – Abscisic acid-induced changes in the orientation of cortical microtubules and their effects on stomatal movement of Vicia faba L. – Acta Botanica Sinica 39: 375–378 – https://www.researchgate.net/publication/289369876_Abscisic_acid-induced_changes_in_the_orientation_of_cortical_microtubules_and_THEIR_effects_on_stomatal_movement_of_Vicia_faba – (On our blog : https://plantstomata.wordpress.com/2018/10/28/aba-induced-changes-in-the-orientation-of-cortical-microtubules-and-their-effects-on-stomatal-movement/ )

Huang R. F., Wang X. C. (1997) – Roles of cytoplasmic microtubules in the regulation of stomatal movement – Acta Botanica Sinica 39: 253–258 – (Article not found)

Huang R. F., Wang X. C., Lou C. H. (2000) – Cytoskeletal inhibitors suppress the stomatal opening of Vicia faba L. induced by fusicoccin and IAA – Plant Sci. 156: 65-71 – https://www.sciencedirect.com/science/article/pii/S0168945200002405 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/fc-and-iaa-induced-stomatal-opening-with-or-without-kcl-in-the-dark/ )

Huang S., Waadt R., Nuhkat M., Kollist H., Hedrich R., Roelfsema M. R. G. (2019) – Ca2+ signals in guard cells enhance the efficiency by which ABA triggers stomatal closure – New Phytologist https://doi.org/10.1111/nph.15985https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15985?af=R – (On our blog : https://plantstomata.wordpress.com/2019/06/13/ca2-signals-are-likely-to-activate-cpks-which-enhance-the-activity-of-s%e2%80%90type-anion-channels-and-boost-stomatal-closure/ )

Huang X. Y.Chao D. Y.Gao J. P.Zhu M. Z.Shi M.Lin H. X. (2009) – A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control – Genes Dev. 2318051817 – doi:  10.1101/gad.1812409 – Abstract/FREE Full TextGoogle Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720257/ – (On our blog : https://plantstomata.wordpress.com/2018/04/06/dst-regulates-drought-and-salt-tolerance-via-stomatal-aperture-control/ )

Huang Y. -C., Wu H.-C., Wang Y.-D., Liu C.-H., Lin C.-C., Luo D.-L., Jinn T.-L. (2017) – PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement. – Plant Physiol 174(2): 748–763 – DOI: https://doi.org/10.1104/pp.17.00335 – http://www.plantphysiol.org/content/174/2/748 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/pme34-mediates-heat-response-by-controlling-the-stomatal-aperture/)

Huang Z.Xu Z.Blumfield T. J.Bubb K. (2008)Variations in relative stomatal and biochemical limitations to photosynthesis in a young blackbutt (Eucalyptus pilularis) plantation subjected to different weed control regimes. – Tree Physiology 289971005 – DOI 10.1093/treephys/28.7.997 – https://www.ncbi.nlm.nih.gov/pubmed/18450564 – (On our blog : https://plantstomata.wordpress.com/2018/04/06/relative-stomatal-and-biochemical-limitations-to-photosynthesis/ )

Hubbard K. E., Hotta C. T., Gardner M. J., Bark S. J., Dalchau N., Dontamala S., Dodd A. N., Webb A. A. R. (2007) – Circadian Rhythms in Stomata: Physiological and Molecular Aspects – in Rhythms in Plants, Chapter 8, 157-177 – Editors: Prof. Dr. Stefano MancusoDr. Sergey Shabala, Springer Verlag, Heidelberg, ISBN 978-3-540-68069-7 – https://www.microsoft.com/en-us/research/publication/circadian-rhythms-stomata-physiological-molecular-aspects/ – (On our blog : https://plantstomata.wordpress.com/2017/09/23/the-physiological-mechanisms-by-which-the-circadian-clock-may-regulate-stomatal-movements/)

Hubbard K. E., Webb A. A. R. (2015) – Circadian rhythms in stomata: physiological and molecular aspects. In S. Mancuso, S. Shabala, eds, Rhythms in Plants. Springer International Publishing, Cham, Switzerland, 231–255 –

Hubbard K. E., Siegel R. S., Valerio G., Brandt B., Schroeder J. I. (2012) –  Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. – Annals of Botany, 2012, 109,(1) 5 – 17; doi: 10.1093/aob/mcr252 – http://aob.oxfordjournals.org/content/109/1/5 – (On our blog : https://plantstomata.wordpress.com/2016/06/21/aba-co2-ca-in-stomata/ )

Hubbard R. M., Ryan M. G., Stiller V., Sperry J. S. (2001) – Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine – Plant, Cell & Environm. 24: 113–121 – https://doi.org/10.1046/j.1365-3040.2001.00660.x – http://sperry.biology.utah.edu/publications/PCE01.pdf &#8211; (On our  blog : https://plantstomata.wordpress.com/2018/10/29/stomatal-conductance-and-photosynthesis-vary-linearly-with-plant-hydraulic-conductance/ )

Hughes J., Hepworth C., Dutton C., Dunn J. A., Hunt L., Stephens J., Waugh R., Cameron D. D., Gray J. E. (2017) – Reducing stomatal density in barley improves drought tolerance without impacting on yield. – Plant Physiol. 174: 776–787 – DOI: https://doi.org/10.1104/pp.16.01844 – http://www.plantphysiol.org/content/early/2017/05/01/pp.16.01844 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/the-potential-of-manipulating-stomatal-frequency/)

Hultine K. R., Marshall J. D. (2001) – A comparison of three methods for determining the stomatal density of pine needles – Journal of Experimental Botany 52(355): 369–373 – https://doi.org/10.1093/jexbot/52.355.369 – https://academic.oup.com/jxb/article/52/355/369/558373 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/three-methods-for-determining-the-stomatal-density/ )

Humbert C., Guyot M. (1969) – Action de la colchicine sur le développement des stomates paracytiques – Bull. Soc. Bot. Fr. 116: 301-310 – DOI: 10.1080/00378941.1969.10838672 – http://www.tandfonline.com/doi/abs/10.1080/00378941.1969.10838672 – (On our blog : https://plantstomata.wordpress.com/2017/09/05/colchicine-tropocinesis-and-stomatal-differentiation-in-french/)

Humble G. D., Hsiao T. C. (1969) – Specific requirement of potassium for light-activated opening of stomata in epidermal strips. – Plant Physiol 44: 230–234 [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/02/15/ion-uptake-is-an-integral-part-of-stomatal-opening/ )

Humble G. D., Hsiao T. C. (1969) – Specific requirement of potassium for light-activated opening of stomata in epidermal strips – Plant Physiol., Lancaster 46: 230-234 – PMID: 16657051 PMCID: PMC396067 – https://www.ncbi.nlm.nih.gov/pubmed/16657051 – (On our blog : https://plantstomata.wordpress.com/2018/12/14/specific-requirement-of-potassium-for-light-activated-opening-of-stomata-in-epidermal-strips/

Humble G. D., Hsiao T. C. (1970) – Light-dependent Influx and Efflux of Potassium of Guard Cells during Stomatal Opening and Closing – Plant Physiol. 46: 483–487 – PMCID: PMC396620 – Abstract/FREE Full Text – https://www.ncbi.nlm.nih.gov/pubmed/16657490 – (On our blog : https://plantstomata.wordpress.com/2018/04/06/influx-and-efflux-of-potassium-of-guard-cells-during-stomatal-opening-and-closing/

Humble G. D., Raschke K. (1971) – Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. – Plant Physiol. 48: 447–453 [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-opening-and-potassium-transport/)

Humphries J. A., Vejlupkova Z., Luo A., Meeley R. B., Sylvester A. W., Fowler . E., Smith L. G. (2011) – ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize – Plant Cell 23: 2273–2284 – DOI: 10.1105/tpc.111.085597 – https://www.ncbi.nlm.nih.gov/pubme – (On our blog : https://plantstomata.wordpress.com/2018/10/28/rops-play-a-key-role-in-polarization-of-plant-cell-division-and-cell-growth-and-reveals-a-role-for-a-receptor-like-protein-in-spatial-localization-of-rops/ )

Hunt E. R., Weber J. A., Gates G. M. (1985) – Effects of nitrate application on Amaranthuts powellii Wats. II. Stomatal response to vapor pressure difference is consistent with optimization of stomatal conductance – Plant Physiol 79: 614-618 – PMID: 16664461 – PMCID: PMC1074940 –https://www.ncbi.nlm.nih.gov/pubmed/16664461 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/stomatal-response-to-vapor-pressure-difference-is-consistent-with-optimization-of-stomatal-conductance/ )

Hunt E. R., Weber J. A., Gates G. M. (1985) – Effects of nitrate application on Amaranthuts powellii Wats. III. Optimal allocation of leaf nitrogen for photosynthesis and stomatal conductance – Plant Physiol. 79: 619-624 – https://www.semanticscholar.org/paper/Effects-of-Nitrate-Application-on-Amaranthus-Wats.-Hunt-Weber/43c1f3b14ba4ee248a0ffa10a1c68ce58f0bcb65 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/optimal-allocation-of-leaf-nitrogen-for-photosynthesis-and-stomatal-conductance/ )

Hunt L., Amsbury S., Baillie A., Movahedi M., Mitchell A., Afsharinafar M., Swarup K., Denyer T., Hobbs J. K., Swarup R., Fleming A. J., Gray J. E. (2017) – Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. – Plant Physiol 174: 689–699 – http://eprints.whiterose.ac.uk/111884/1/Plant%20Physiol.-2017-Hunt-pp.16.01715.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-stomatal-outer-cuticular-ledge/)

Hunt L., Bailey K. J., Gray J. E. (2010) – The signalling peptide EPFL9 is a positive regulator of stomatal development – New Phytol. 186: 609–614 – doi: 10.1111/j.1469-8137.2010.03200.x – https://www.jstor.org/stable/27797588?seq=1#page_scan_tab_contents – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2018/04/03/epfl9-a-positive-regulator-of-stomatal-development-increases-stomatal-density-and-clustering/ )

Hunt L., Gray J. E. (2009) – The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development – Curr Biol 19: 864– 869 – 10.1016/j.cub.2009.03.069.- CrossRefMedlineWeb of ScienceGoogle Scholar – View ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/2016/06/24/signaling-peptide-epf2-and-stomata/)

Hunt L., Gray J. E. (2010) – BASL and EPF2 act independently to regulate asymmetric divisions during stomatal development. – Plant Signal Behav. 5: 278–280 – DOI 10.4161/psb.5.3.10704 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881277/ – (On our blog : https://plantstomata.wordpress.com/2018/04/08/epf2-and-basl-operate-independently-to-control-stomatal-development/ )

Hunt L., Mills L. N., Pical C., Leckie C. P., Aitken F. L., Kopka J., Mueller-Roeber B., McAinsh M. R., Hetherington A. M., Gray J. E. (2003) – Phospholipase C is required for the control of stomatal aperture by ABA – Plant J 34: 47-55 – https://doi.org/10.1046/j.1365-313X.2003.01698.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2003.01698.x – (On our blog : https://plantstomata.wordpress.com/2018/12/06/phospholipase-c-is-involved-in-the-amplification-of-the-calcium-signal-responsible-for-reductions-in-stomatal-aperture-in-response-to-aba/

Hunter G. (2013) – Evaluating Eriogonum corymbosum tolerance to frequent irrigation and evaluating its significant morphological variations for potential cultivars – Thesis UTAH STATE UNIVERSITY, 2013, 76 pages; 1541717.

Huntingford C., Smith D. M., Davies W. J., Falk R., Sitch S., Mercado L. M. (2015) – Combining the [ABA] and net photosynthesis-based model equations of stomatal conductance – Ecological Modelling, Volume 300, 24 March 2015, Pages 81–88. (http://www.sciencedirect.com/science/article/pii/S0304380015000174) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/model-equations-of-stomatal-conductance/).

Huntingford C., Oliver R. J., Mercado L. M., Sitch S. (2018) – Technical Note: A simple theoretical model framework to describe plant stomatal sluggishness in response to elevated ozone concentrations – Biogeosciences discussion paper preprint – https://doi.org/10.5194/bg-2018-206 – https://www.biogeosciences-discuss.net/bg-2018-206/ – (On our blog : https://plantstomata.wordpress.com/2018/05/10/elevated-ozone-concentrations-and-stomatal-sluggishness/ )

Hurst A. C., Meckel T., Tayefeh S., Thiel G., Homann U. (2004) – Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba – Plant J. 37: 391-397 – https://doi.org/10.1046/j.1365-313X.2003.01972.x – [PubMed] – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2003.01972.x – (On our blog : https://plantstomata.wordpress.com/2018/04/03/trafficking-of-the-plant-k-inward-rectifier-kat1-in-stomatal-protoplasts/ )

Husby C. E., Delatorre-Herrera J., Oberbauer S., Grau A., Novara L. (2014) – Stomatal conductance patterns of Equisetum giganteum stems in response to environmental factors in South America – Botany, 2014, 92(10): 701-712, 10.1139/cjb-2013-0312. (http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2013-0312#.VQg8jhDF-6E) – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2013-0312?journalCode=cjb – (On our blog : https://plantstomata.wordpress.com/2016/08/30/stomatal-conductance-patterns-of-equisetum-giganteum-stems/)

Husted S., Schjoerring J. K., Nielsen K. H., Nemitz E., Sutton M. A. (2000) – Stomatal compensation points for ammonia in oilseed rape plants under field conditions – Agricultural and Forest Meteorology 105(4): 371-383 – ISSN :0168-1923 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fe21f744-b26b-3bc7-ba64-06c13506997b – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-closure-in-the-dark-is-governed-by-cytosolic-atp-concentration-which-is-stimulated-by-mitochondrial-activity/)

Huxman T. E., Monson R. K. (2003) – Stomatal responses of C3, C3‐C4 and CFlaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour – Plant, Cell & Environment 26(2): 313-322 – https://doi.org/10.1046/j.1365-3040.2003.00964.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.00964.x – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-responses-to-light-and-intercellular-co2-concentration/ )

Hwang H., Yoon J., Kim H. Y., Min M. K., Kim J. A., Choi E.-H. , Lan W., Bae Y.-M., Luan S., Cho H., Kim B.-G. (2013) – Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells – PLoS One 8: e72541 – https://doi.org/10.1371/journal.pone.0072541https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072541 – (On our blog : https://plantstomata.wordpress.com/2019/07/29/two-homologous-channels-with-antagonistic-interaction-presents-new-information-for-potassium-channel-regulation-in-plants-especially-in-stomatal-regulation/ )

Hwang J. U., Eun S. O., Lee Y. (2000) – Structure and function of actin filaments in mature guard cells. In Actin: A Dynamic Framework for Multiple Plant Cell Functions, C.J. Staiger, F. Baluska, D. Volkmann, and P.W. Barlow, eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 427–436 – https://doi.org/10.1007/978-94-015-9460-8_24https://link.springer.com/chapter/10.1007/978-94-015-9460-8_24 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/a-model-for-the-function-of-cortical-actin-filaments-in-guard-cells-in-daily-stomatal-movements/ )

Hwang J.-U., Jeon B. W., Hong D., Lee Y. (2011) – Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure – Plant Cell Environ. 34: 2172–2182 – doi: 10.1111/j.1365-3040.2011.02413.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2011.02413.x – (On our blog : https://plantstomata.wordpress.com/2019/04/02/rop2-is-inactivated-by-aba-and-this-inactivation-is-required-for-the-timely-stomatal-closure/ )

Hwang J.-U., Lee Y. (2001) – Abscisic acid-induced actin reorganization in guard cells of dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities – Plant Physiol 125: 2120–2128 – https://doi.org/10.1104/pp.125.4.2120 – https://www.ncbi.nlm.nih.gov/pubmed/11299391 – (On our blog : https://plantstomata.wordpress.com/2018/12/16/protein-kinases-and-phosphatases-participate-in-actin-remodeling-in-stomata-during-aba-induced-stomatal-closure/

Hwang J.-U., Suh S., Yi H., Kim J., Lee Y. (1997) – Actin filaments modulates both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. – Plant Physiol 115: 335–342 – DOI: 10.1104/pp.115.2.335 – https://www.ncbi.nlm.nih.gov/pubmed/12223811 – (On our blog : https://plantstomata.wordpress.com/2018/12/16/actin-filaments-modulates-both-stomatal-opening-and-inward-k-channel-activities/

Ichida A. M., Pei Z. M., Baizabal-Aguirre V. M., Turner K. J., Schroeder J. I. (1997) – Expression of a Cs+-resistant guard cell K+ channel confers Cs+-resistant, light-induced stomatal opening in transgenic Arabidopsis –  Plant Cell 9: 1843–1857 – DOI: https://doi.org/10.1105/tpc.9.10.1843 – http://www.plantcell.org/content/9/10/1843da88c855bfc194e5e3cd85fb33a739f74a16.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/03/expression-of-a-cs-resistant-guard-cell-k-channel-confers-cs-resistant-light-induced-stomatal-opening/

Ichie T., Inoue Y., Takahashi N., Kamiya K., Kenzo T. (2016) – Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest – Journal of Plant Research 129(4): 626-636 – DOI10.1007/s10265-016-0795-2 http://link.springer.com/article/10.1007%2Fs10265-016-0795-2https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S10265-016-0795-2 (On our blog : https://plantstomata.wordpress.com/2016/03/29/stomata-in-malaysian-tree-species/)

Idso S.B. (1987) – An apparent discrepancy between porometry and thermometry relative to the dependence of plant stomatal conductance on air vapor pressure deficit –  Agr. and Forest Meteorol. 40: 105 – 106 – DOI 10.1016/0168-1923(87)90058-X – https://www.sciencedirect.com/science/article/pii/016819238790058X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/04/03/dependence-of-plant-stomatal-conductance-on-air-vapor-pressure-deficit/ – (No abstract found)

Idso S. B. (1991) – A general relationship between CO2-induced increases in net photosynthesis and concomitant reductions in stomatal conductance – Environmental and Experimental Botany 31: 381–383 – https://doi.org/10.1016/0098-8472(91)90035-M – https://www.sciencedirect.com/science/article/abs/pii/009884729190035M – (On our blog : https://plantstomata.wordpress.com/2018/12/16/simultaneous-measurements-of-net-photosynthesis-and-stomatal-conductance/ )

Idso S. B., Kimball B. A., Akin D. E., Kridler J. (1993) – A general relationship between CO2-induced reductions in stomatal conductance and concomitant increases in foliage temperature – Environmental and Experimental Botany 33(3): 443-446 – DOI: 10.1016/0098-8472(93)90047-J – https://www.sciencedirect.com/science/article/abs/pii/009884729390047J – (On our blog : https://plantstomata.wordpress.com/2018/12/16/simultaneous-measurements-of-the-temperatures-and-stomatal-conductances/

Iino M., Ogawa T., Zeiger E. (1985) – Kinetic properties of the blue light response of stomata – Proceedings of the National Academy of Sciences, USA 82: 8019-8023 – https://doi.org/10.1073/pnas.82.23.8019 – https://www.pnas.org/content/82/23/8019.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Proc_Natl_Acad_Sci_U_S_A_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/the-steady-state-stomatal-conductances-under-continuous-blue-light/

Iio A., Fukasawa H., Nose Y., Kakubari Y. (2004) – Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan – Trees 18: 510–517 – https://doi.org/10.1007/s00468-004-0327-x – https://link.springer.com/article/10.1007/s00468-004-0327-x#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/16/stomatal-closure-induced-by-high-vapor-pressure-deficit-limited-midday-photosynthesis/

Ilan N., Moran N., Schwarz A. (1995) – The role of potassium channels in the temperature control of stomatal aperture – Plant Physiol. 108: 1161–1170 – doi: 10.1104/pp.108.3.1161 – http://www.plantphysiol.org/content/108/3/1161 – (On our blog : https://plantstomata.wordpress.com/2019/08/18/the-role-of-potassium-channels-in-the-temperature-control-of-stomatal-aperture/ )

Ilan N., Schwarz A., Moran N. (1994) – External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba. – Journal General Physiology 103: 807–831 – PMCID: PMC2219221 – https://www.ncbi.nlm.nih.gov/pubmed/8035163 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/ph-effects-on-the-depolarization-activated-k-channels-in-stomatal-protoplasts/ )

Ilan N., Schwarz A., Moran N. (1996) – External protons enhance the activity of the hyperpolarization‐activated K+ channels in guard cell protoplasts of Vicia faba – Journal of Membrane Biology 154: 169-181 – https://doi.org/10.1007/s002329900142 – https://link.springer.com/article/10.1007%2Fs002329900142#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/18/external-protons-enhance-the-activity-of-the-hyperpolarization%e2%80%90activated-k-channels-in-stomatal-protoplasts/

Iljin W. S. (1914) – Die Regulierung der Spaltöffnungen in Zusammenhang mit der Veränderung des osmotischen Druckes – Beih. z. Bot. Zentralbl. 32: 15-35.

Iljin W. S. (1933) – Über Öffnen der Stomata bei starken Welken der Pflanzen – Jahrb. f. wiss. Bot. 77: 220-251.

Iljin W. S. (1957) – Drought resistance in plants and physiological processes. – A. Rev. Pl. Physiol, 8, 257. – CrossRefCAS | – (No abstract).

Imamura S. (1943) – Untersuchungen über den Mechanismus der Turgorschwankung der Spaltöffnungsschliesszellen – Jap. J. Bot. 12: 82-88; 251-346.

Imes D., Mumm P., Böhm J., Al-Rasheid K. A. S., Marten I., Geiger D., Hedrich R. (2013) – Open Stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. – Plant J. 74, 372–382. doi: 10.1111/tpj.12133 – PubMed Abstract | CrossRef Full TextMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/06/24/ost1-is-addressing-both-s-slac-and-r-quac-type-guard-cell-anion-channels-in-arabidopsis-stomata/)

Inada S., Ohgishi M., Mayama T., Okada K., Sakai T. (2004) – RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. – Plant Cell 16, 887–896 (2004). – https://www.ncbi.nlm.nih.gov/pubmed/15031408?dopt=Abstract&holding=npg – (On our blog : https://plantstomata.wordpress.com/2016/12/07/phototropin-rpt2-nph3-and-stomatal-opening/)

Inamdar J. A. (1970) – Action of growth regulators on the development of stomata of Abelmoschus esculentus Moench. – Flora 159: 497-502 – (On our blog  : https://plantstomata.wordpress.com/2017/07/14/growth-regulators-and-the-development-of-stomata-of-abelmoschus-okra-malvaceae/)

Inamdar J. A., Aleykutty K. M. (Sr. AVITA), Murthy G. S. R. (1980) – Effect of Growth Regulators on the Structure and Ontogeny
of Cotyledonary Stomata of Helianthus annuus – Phyton (Austria) 20(1-3): 3-14 – https://www.zobodat.at/pdf/PHY_20_1_2_0003-0014.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/10/effect-of-growth-regulators-on-the-structure-and-ontogeny-of-cotyledonary-stomata/ )

Inamdar J. A., Gangadhara M. (1975) – Effect of Growth Regulators on Stomatal Structure and Development in the Cotyledons of Lagenaria leucantha (Duch.) Rusby – Australian Journal of Botany 23(1) 13 – 25 – http://dx.doi.org/10.1071/BT9750013 – http://www.publish.csiro.au/bt/BT9750013 – (On our blog : https://plantstomata.wordpress.com/2016/12/27/growth-regulators-stomatal-structure-and-development/)

Inamdar J. A., Gangadhara M., Rao M. S. (1975) – Effect of Growth Regulators on Stomatal Structure and Development in the Cotyledons of Cucurbita maxima Duch. – Geobios 1: 113-117 – (Article not found)

Incoll L. D., Jewer P. C. (1987) Cytokinins and stomata. In: Zeiger E., Farquhar G. D.Cowan I. R., eds. Stomatal function. Stanford, CA, USA: Stanford University Press, 281292.

Incoll L. D., Whitelam G. C. (1977) – Effect of kinetin on stomata of grass Anthephora pubescens nees. – Planta 137, 243–245. doi: 10.1007/Bf00388157 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/02/15/effect-of-kinetin-on-stomata/).

In Defense of Plants (Blog) – (2019) – The Drought Alert System of Terrestrial Plants has an Underwater Origin – http://www.indefenseofplants.com/blog/2019/3/5/the-drought-alert-system-of-terrestrial-plants-has-an-underwater-origin – (On our blog : https://plantstomata.wordpress.com/2019/05/31/the-drought-alert-system-of-terrestrial-plants-has-an-underwater-origin/ )

Indiana University (2011) – Rising CO2 is causing plants to release less water to the atmosphere, researchers say – https://phys.org/news/2011-03-co2-atmosphere.html – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomata-and-co2-4/)

Indiana University (2011) – “Rising carbon dioxide is causing plants to have fewer pores, releasing less water to the atmosphere.” – ScienceDaily – <www.sciencedaily.com/releases/2011/03/110303111624.htm>.

Innes S. N. (2015) – Effects of UV radiation and air humidity on morphology, stomatal function and photosynthesis of Euphorbia pulcherrima – The Norwegian University of Life Sciences Norges Miljø- og Biovitenskapelige Universitet Master Thesis, 66 pp. – https://brage.bibsys.no/xmlui/bitstream/handle/11250/293298/Innes2015.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/effects-of-uv-radiation-and-air-humidity-on-stomata/)

Inoue H., Katoh Y. (1987) – Calcium inhibits ion-stimulated stomatal opening in epidermal strips of Commelina communis L. – Journal of Experimental Botany 38, 142149. – CrossRefCAS | – (On our blog : https://plantstomata.wordpress.com/2016/06/25/ca-leads-to-the-suppression-of-stomatal-opening/)

Inoue H., Noguchi M., Kubo K. (1985) – Ion-stimulated stomatal opening induced by preillumination in epidennal strips of Commelina communis – Plant Physiol. 79: 389-393  – https://doi.org/10.1104/pp.79.2.389 – http://www.plantphysiol.org/content/79/2/389.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/the-photosynthetic-electron-transport-system-in-stomatal-chloroplasts-is-a-basic-system-of-energy-acquirement-for-stomatal-opening/ )

Inoue S.-i., Iwashita N., Takahashi Y., Gotoh E., Okuma E., Hayashi M., Tabata R., Takemiya A., Murata Y., Doi M., Kinoshita T., Shimazaki K.-i. (2017) – Brassinosteroid Involvement in Arabidopsis thaliana Stomatal Opening – Plant Cell Physiol. 258(6): 1048-1058 – doi: 10.1093/pcp/pcx049 – https://www.ncbi.nlm.nih.gov/pubmed/28407091 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/endogenous-br-is-required-in-guard-cells-with-the-ability-to-open-stomata-in-response-to-light-probably-through-regulation-of-kin-channel-activity/ )

Inoue S.-i., Kinoshita T. (2017) – Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. – Plant Physiol 174: 531–538 – http://www.plantphysiol.org/content/174/2/531 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/the-blue-light-signaling-pathway-in-stomata-and-its-regulation-of-the-pm-h-atpase-activity/)

Inoue S.-i., Takemiya A., Shimazaki K. (2010) – Phototropin signaling and stomatal opening as a model case. – Curr. Opin. Plant Biol. 13, 587593 (2010). -doi:10.1016/j.pbi.2010.09.002 –  CASPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/06/25/phototropin-mediated-signaling-process-of-stomatal-guard-cells/)

Inoue Y., Jackson R. D., Pinter P. J. Jr., Reginato R. J. (1989) – Influences of extractable soil water and vapor pressure deficit on transpiration and stomatal resistance in differentially irrigated wheat – Jap. Journ. Crop Science 58(3): 430-437 – DOI: 10.1626/jcs.58.430 – https://www.researchgate.net/publication/270354571_Influences_of_Extractable_Soil_Water_and_Vapor_Pressure_Deficit_on_Transpiration_and_Stomatal_Resistance_in_Differentially_Irrigated_Wheat – (On our blog : https://plantstomata.wordpress.com/2019/04/29/influences-of-extractable-soil-water-and-vapor-pressure-deficit-on-transpiration-and-stomatal-resistance/ )

Irmak S., Mutiibwa D., Irmak A., Arkebauer T. J., Weiss A., Martin D. L., Eisenhauer D. E. (2008) – On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density -Agricultural and Forest Meteorology 148: 1034–1044 – https://doi.org/10.1016/j.agrformet.2008.02.001 – https://www.sciencedirect.com/science/article/pii/S0168192308000439 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/the-scaling-up-leaf-stomatal-resistance-to-canopy-resistance/

Irvine J., Perks M. P., Magnani F., Grace J. (1998) – The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance – Tree Physiol. 18: 393–402 – PMID: 12651364 – https://www.ncbi.nlm.nih.gov/pubmed/12651364 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/stomatal-control-of-transpiration-and-hydraulic-conductance/ )

Irving H. R., Gehring C. A., Parish R. W. (1992) – Changes in cytosolic pH and calcium in guard cells precede stomatal movements. – Proc. Natl Acad. Sci. USA, 89: 1790–1794 – CrossRef |PubMed | [PMC free article] – (On our blog : https://plantstomata.wordpress.com/2016/06/25/stomatal-movements-ph-and-ca/)

Ishida A., Toma T., Marjenah M. (1999) – Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree – Tree Physiology 19: 467–473 – DOI: 10.1093/treephys/19.7.467 – https://www.ncbi.nlm.nih.gov/pubmed/12651553 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/low-pn-at-midday-is-the-result-of-both-a-reduction-in-the-photochemical-process-and-an-increase-in-stomatal-limitation/

Ishihara K., Ebara H., Hirasawa T., Ogura T. (1978) – The Relationship between Environmental Factors and Behaviour of Stomata in the Rice Plants : VII. The relation between nitrogen content in leaf blades and Stomatal aperture – Japanese Journal of Crop Science 47(4): 664-673 – https://doi.org/10.1626/jcs.47.664 – https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_664/_article – (On our blog : https://plantstomata.wordpress.com/2018/01/28/nitrogen-content-in-leaf-blades-and-stomatal-aperture/ )

Ishihara K., Hirasawa T., Iida O., Kimura M. (1981) – Diurnal Course of Transpiration Rate, Stomatal Aperture, Stomatal Conductance, Xylem Water Potential and Leaf Water Potential in the Rice Plants under the Different Growth Conditions – Japanese Journal of Crop Science 50: 25-37 – https://doi.org/10.1626/jcs.50.25 – https://www.jstage.jst.go.jp/article/jcs1927/50/1/50_1_25/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/diurnal-course-of-transpiration-rate-stomatal-aperture-and-stomatal-conductance-under-different-growth-conditions/ )

Ishihara K., Hirasawa T., Iida O., Ogura T. (1979) – An Improved Infiltration Method for Measuring the Narrow Stomatal Aperture of Leaf Blades in Rice Plants – Japanese Journal of Crop Science 48: 319-320 – https://doi.org/10.1626/jcs.48.319 –https://www.jstage.jst.go.jp/article/jcs1927/48/2/48_2_319/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/infiltration-method-for-measuring-the-narrow-stomatal-aperture/ )

Ishihara K., Iida O., Hirasawa T., Ogura T. (1978) – Relationship between Potassium Content in Leaf Blades and Stomatal Aperture in Rice Plants – Japanese Journal of Crop Science 47: 719-720 –  https://doi.org/10.1626/jcs.47.719 –https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_719/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/potassium-content-in-leaf-blades-and-stomatal-aperture/ )

Ishihara K., Nishihara T., Ogura T. (1971) – The relationship between environmental factors and behaviour of stomata in the rice plant. 1. On the measurement of the stomatal aperture – Proc. Japan. Soc. Crop Sci. 40: 491-496 – https://doi.org/10.1626/jcs.40.491 –https://www.jstage.jst.go.jp/article/jcs1927/40/4/40_4_491/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/measurement-of-stomatal-aperture/ )

Ishihara K., Nishihara T., Ogura T. (1971) – The relationship between environmental factors and behaviour of stomata in the rice plant. 2. On the diurnal movement of the stomata – Proc. Japan. Soc. Crop Sci. 40: 497-504 – DOI: 10.1626/jcs.40.497 – https://www.researchgate.net/publication/274879878_The_Relationship_between_Environmental_Factors_and_Behaviour_of_Stomata_in_the_Rice_Plant_2_On_the_diurnal_movement_of_the_stomata – (On our blog : https://plantstomata.wordpress.com/2019/04/29/the-diurnal-movement-of-stomata/ )

Ishihara K., Nishihara T., Ogura T., Ushijima T., Tazaki T. (1972) – The relationship between environmental factors and behaviour of stomata in the rice plant. 4. The relation between stomatal aperture and photosynthetic rate – Proc. Japan. Soc. Crop Sci. 41: 93-101 – https://doi.org/10.1626/jcs.41.93 –https://www.jstage.jst.go.jp/article/jcs1927/41/1/41_1_93/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/the-relation-between-stomatal-aperture-and-photosynthetic-rate/ )

Ishihara K., Sago R., Ogura T. (1978) – The Relationship between Environmental Factors and Behaviour of Stomata in the Rice Plants : V. Effects of partial excision of root system on diurnal course of stomatal aperture – Japanese Journal of Crop Science 47 (4): 499-505 – http://doi.org/10.1626/jcs.47.499https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_499/_article – (On our blog: https://plantstomata.wordpress.com/2017/09/23/effects-of-partial-excision-of-root-system-on-diurnal-course-of-stomatal-aperture/)

Ishihara K., Sago R., Ogura T. (1978) – The Relationship between Environmental Factors and Behaviour of Stomata in the Rice Plants : VI. Comparison between the diurnal course of stomatal aperture of rice plants grown in the border and interior of paddy fields – Japanese Journal of Crop Science 47(4): 515-528 – DOI: 10.1626/jcs.47.515 – https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_515/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/the-diurnal-course-of-stomatal-aperture-of-rice-plants-grown-in-the-border-and-in-the-interior-of-paddy-fields/ )

Ishimaru K., Shirota K., Higa M., Kawamitsu Y. (2001) – Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa – Plant Physiol. Biochem. 39: 173-177 –

Islam M. M., Hossain M. A., Jannat R., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2010) – Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. – Plant Cell Physiol. 51: 1721–1730 – doi: 10.1093/pcp/pcq131. – [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/06/25/aba-and-meja-signaling-in-arabidopsis-stomata/ )

Islam M. M., Tani C., Watanabe-Sugimoto M., Uraji M., Jahan M. S., Masuda C., et al. (2009) –  Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells – Plant Cell Physiol. 50: 1171–1175. – 10.1093/pcp/pcp066 – [PubMed] [Cross Ref] – https://academic.oup.com/pcp/article/50/6/1171/1920663 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/two-myrosinases-function-downstream-of-ros-production-and-upstream-of-cytosolic-ca2elevation-in-aba-and-meja-signaling-in-stomata/

Islam M. M., Ye W., Matsushima D., Khokon M. A., Munemasa S., Nakamura Y., et al. (2015) – Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana. – Biosci. Biotechnol. Biochem. 79, 59–62. – doi: 10.1080/09168451.2014.951028 – https://www.ncbi.nlm.nih.gov/pubmed/25144495 – (On our blog : https://plantstomata.wordpress.com/2018/04/05/acrolein-inhibits-light-induced-stomatal-opening/ )

Islam M. M., Ye W., Matsushima D., Munemasa S., Okuma E., Nakamura,Y., Biswas Md. S., Mano J., Murata Y. (2016) – Reactive carbonyl species mediate abscisic acid signaling in guard cells. – Plant Cell Physiol. 57, 2552–2563. – doi: 10.1093/pcp/pcw166 – https://www.ncbi.nlm.nih.gov/pubmed/27838658 – (On our blog : https://plantstomata.wordpress.com/2018/04/08/rcs-is-involved-in-aba-induced-stomatal-closure/ )

Ismail M. R., Yusoff M. K., Mahmood M. (2004) – Growth, water relations, stomatal conductance and proline concentration in water stressed banana (Musa sp.) plants. Asian J. Plant Sci., 3: 709-713. (http://scialert.net/abstract/?doi=ajps.2004.709.713) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-conductance-in-water-stressed-banana/ ).

Isner J.-C., Xu Z., Costa J. M., Monnet F., Batstone T., Ou X., Deeks M. J., Genty B., Jiang K., Hetherington A. M. (2017) – Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness – New Phytol. – doi:10.1111/nph.14655 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14655/abstract – (On our blog : https://plantstomata.wordpress.com/2017/06/26/stomatal-response-to-darkness-and-the-scarwave-complex/)

Israelsson M., Siegel R. S., Young J., Hashimoto-Sugimoto M., Iba K., Schroeder J. I. (2006) – Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. – Current Opinion in Plant Biology 9, 654663. – doi:10.1016/j.pbi.2006.09.006 –CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/06/30/aba-co2-and-ca2-in-stomata/)

Issak M., Okuma E., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, or chitosan-induced stomatal closure in Arabidopsis thaliana. – Biosci. Biotechnol. Biochem. 77, 1111–1113. doi: 10.1271/bbb.120980 – https://www.ncbi.nlm.nih.gov/pubmed/23649239 – (On our blog : https://plantstomata.wordpress.com/2018/04/05/neither-endogenous-aba-nor-endogenous-jasmonic-acid-is-involved-in-sa-yel-or-cht-induced-stomatal-closure/ )

Itai C., Roth-Bejerano N., Zvilich M. (1982) – Involvement of epidermal cells in stomata movement: The effect of ABA – Physiologia Plantarum, 55: 35–38. doi:10.1111/j.1399-3054.1982.tb00281.x – Wiley Online Library – (On our blog : https://plantstomata.wordpress.com/2016/07/01/epidermal-cells-thus-seem-to-play-a-role-in-stomatal-movement/)

ITbM (Institute of Transformative Bio-Molecules, Nagoya University) (2018) –  Discovery of compounds that keep plants fresh – Phys.Org. April 10, 2018 – https://phys.org/news/2018-04-discovery-compounds-fresh.html – (On our blog : https://plantstomata.wordpress.com/2018/12/18/compounds-that-keep-plants-fresh/

ITbM (Institute of Transformative Bio-Molecules, Nagoya University) (2019) – Proposed Signaling Pathway of Stomata Opening in Response to Blue Light (IMAGE)https://www.eurekalert.org/multimedia/pub/167367.php?from=390151 – (On our blog : https://plantstomata.wordpress.com/2019/08/15/pathway-of-stomata-opening/ )

Iura M. (1934) – On the size of the guard cells, as well as the number of chloroplasts in them in the leaf of Brassica. (Japanese)

Ivashikina N.Deeken R.Fischer S.Ache P.Hedrich R. (2005) – AKT2/3 subunits render guard cell K+channels Ca2+ sensitive. – J Gen Physiol 125:483492. – doi: 10.1085/jgp.200409211 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/01/akt23-subunit-constitutes-the-ca2-sensitivity-of-the-guard-cell-k-uptake-channel-in-stomata/)

Advertisements