PHYSIO-BIBLIOGRAPHY G-I

Gaastra P. (1959) – Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance – Meded. Landbouwhogeschool, Wageningen 59: 1–68 – https://books.google.be/books/about/Photosynthesis_of_Crop_Plants_as_Influen.html?id=uH9wHQAACAAJ&redir_esc=y – (On our blog : https://plantstomata.wordpress.com/2018/03/15/photosynthesis-light-co2-temperature-and-stomatal-diffusion-resistance/ )

Gabriel y Galán J. M., et al. (2011) – Biometry of stomata in Blechnum species (Blechnaceae) with some taxonomic and ecological implications for the ferns – Revista De Biologia Tropical 59: 403-415 –

Gadi V. K., Hussain R., Bordoloi S., Hossain S., Singh S., Garg A., Sekharan S., Karangat R., Lingaraj S. (2019) – Relating stomatal conductance and surface area with evapotranspiration induced suction in a heterogeneous grass cover – Journal of Hydrology 568: 867-876 – DOI 10.1:016/j.jhydrol.2018.11.048 –http://adsabs.harvard.edu/abs/2019JHyd..568..867G – (On our blog : https://plantstomata.wordpress.com/2019/03/24/relating-stomatal-conductance-and-surface-area-with-evapotranspiration/ )

Gaedeke N., Klein M., Kolukisaoglu U., Forestier C., Muller A., Ansorge M., Becker D.Mamnun Y., Kuchler K., Schulz B., Mueller-Roeber B., Martinoia E. (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movementEMBO Journal 20: 18751887 – DOI: 10.1093/emboj/20.8.1875 – (On our blog : https://plantstomata.wordpress.com/2016/05/24/atmrp5-and-stomatal-movement/)

Gagen M., Finsinger W., McCarroll D., Wagner F. (2009) – Changes in plant water use efficiency over the recent past reconstructed using palaeo plant records from the boreal forest – EGU General Assembly 2009, held 19-24 April, 2009 in Vienna, Austria – http://meetings.copernicus.org/egu2009, p.10803 – https://ui.adsabs.harvard.edu/abs/2009EGUGA..1110803G/abstract – (On our blog : https://plantstomata.wordpress.com/2022/03/07/reductions-in-stomatal-conductance-via-changes-in-stomatal-density-and-pore-length/ )

Gago J.Daloso D de M.Figueroa C. M.Flexas J.Fernie A. R.Nikoloski Z. (2016) – Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach – Plant Physiol. 171265279 – doi: 10.1104/pp.15.01660 – Epub 2016 Mar 14. – https://www.ncbi.nlm.nih.gov/pubmed/26977088 – (On our blog : https://plantstomata.wordpress.com/2019/04/28/relationships-of-leaf-net-photosynthesis-stomatal-conductance-and-mesophyll-conductance-to-primary-metabolism/ )

Gago J., de Menezes Daloso D., Figueroa C. M., Flexas J., Fernie A. R., Nikoloski Z. (2016) – Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach – Plant Physiology 171(1) – DOI: https://doi.org/10.1104/pp.15.01660 – http://www.plantphysiol.org/content/171/1/265 – (On our blog : https://plantstomata.wordpress.com/2017/11/07/a-multispecies-meta-analysis-approach-with-leaf-net-photosynthesis-and-stomatal-conductance/)

Gahir S., Bharath P., Raghavendra A. S. (2020) – The role of gasotransmitters in movement of stomata: mechanisms of action and importance for plant immunity – Biologia plantarum 64: 623-632 – DOI: 10.32615/bp.2020.071https://bp.ueb.cas.cz/artkey/bpl-202001-0132.php – (On our blog : https://plantstomata.wordpress.com/2020/09/10/the-role-of-gasotransmitters-in-movement-of-stomata/ )

Gahir S., Sunitha V., Bharath P., Raghavendra A.S. (2020) – Protein Phosphatases in Guard Cells: Key Role in Stomatal Closure and Opening – In: Pandey G.K. (eds) Protein Phosphatases and Stress Management in Plants. Springer, Cham – http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-48733-1_8http://link-springer-com-443.webvpn.fjmu.edu.cn/chapter/10.1007%2F978-3-030-48733-1_8#citeas – (On our blog : https://plantstomata.wordpress.com/2020/12/29/the-roles-of-pps-in-signal-transduction-of-stomatal-guard-cells/ )

Gailing O., Langenfeld-Heyser R., Polley A., Finkeldey R. (2008) – Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments – Global Change Biology 14: 1934–1946 – https://doi.org/10.1111/j.1365-2486.2008.01621.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2486.2008.01621.x – (On our blog : https://plantstomata.wordpress.com/2018/05/08/quantitative-trait-loci-affecting-stomatal-density-and-growth/ )

Galatis B. (1974) – Ultastructural studies on stomatal development – PhD thesis – University of Athens, Greece –

Galatis B. (1977) – Differentiation of stomatal meristemoids and guard cell mother cells into guard-like cells in Vigna sinensis leaves after colchicine treatment: An ultrastructural and experimental – Planta 136: 103–114 – doi: 10.1007/BF00396185 –  https://www.ncbi.nlm.nih.gov/pubmed/24420314 – (On our blog : https://plantstomata.wordpress.com/2018/03/15/colchicine-treatment-and-differentiation-of-stomatal-meristemoids/

Galatis B. (1980) – Microtubules and guard cell morphogenesis in Zea mays L. – Cell Sci. 45: 211-244 – http://jcs.biologists.org/content/joces/45/1/211.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/19/microtubules-play-a-critical-role-in-guard-cell-morphogenesis-of-stomata/ )

Galatis B. (1982) – The organization of microtubules in guard cell mother cells of Zea mays – Canadian Journal of Botany 60(7): 1148-1166 – https://doi.org/10.1139/b82-145 – http://www.nrcresearchpress.com/doi/10.1139/b82-145 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/organization-of-microtubules-in-guard-cell-mother-cells/ )

Galatis B., Apostolakos P. (1991) – Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings of Zea mays – Protoplasma 165: 11–26 – (On our blog : https://plantstomata.wordpress.com/2016/05/24/aberrant-stomata-and-microtubules/)

Galatis B., Apostolakos P. (2004) – The role of the cytoskeleton in the morphogenesis and function of stomatal complexes – New Phytologist 161(3): 613-639 – DOI: 10.1046/j.1469-8137.2003.00986.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2003.00986.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cytoskeleton-in-the-morphogenesis-and-function-of-stomatal-complexes/ ) – https://wordpress.com/post/plantstomata.wordpress.com/65730

Galatis B., Apostolakos P. (2010) – A new callose function – Involvement in differentiation and function of fern stomatal complexes – Plant Signal Behav. 5(11): 1359–1364 – doi:  10.4161/psb.5.11.12959 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115234/ – (On our blog : https://plantstomata.wordpress.com/2018/08/15/callose-and-differentiation-and-function-of-fern-stomatal-complexes/

Galatis B., Apostolakos P., Katsaros C. (1983) – Synchronous organization of two preprophase microtubule bands and final cell plate arrangement in subsidiary cell mother cells of some Triticum species – Protoplasma 117: 24–39 – https://doi.org/10.1007/BF01281781 – https://link.springer.com/article/10.1007%2FBF01281781 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/preprophase-microtubule-bands-and-final-cell-plate-arrangement-in-subsidiary-cell-mother-cells-of-stomata/ )

Galatis B., Apostolakos P., Katsaros C. (1983) – Microtubules and their organizing centres in differentiating guard cells of Adiantum capillus-veneris – Protoplasma 115: 176–192 – https://doi.org/10.1007/BF01279808 – https://link.springer.com/article/10.1007%2FBF01279808#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/17/microtubules-in-differentiating-stomata/ )

Galatis B., Apostolakos P., Katsaros C. (1984) – Positional inconsistency between preprophase microtubule band and final cell plate arrangement during subsidiary cell and hair cell formation in two Triticum species  – Canadian Journal of Botany 62: 343–359 – https://doi.org/10.1139/b84-053 – http://www.nrcresearchpress.com/doi/abs/10.1139/b84-053?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/preprophase-microtubule-band-and-final-cell-plate-arrangement-during-subsidiary-cell-formation-in-stomata/ )

Galatis B., Apostolakos P., Katsaros C., Loukari H. (1982) – Pre-prophase microtubule band and local wall thickening in guard cell mother cells of some Leguminosae – Ann. Bot. 50: 779-791 – https://doi.org/10.1093/oxfordjournals.aob.a086422 – https://academic.oup.com/aob/article-abstract/50/6/779/161078?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/19/the-organization-of-pre-prophase-microtubule-bands-pmbs-and-gmcs-becoming-detectably-thickened/ )

Galatis B., Apostolakos P., Palafoutas D. (1986) – Studies on the formation of ‘floating’ guard cell mother cells in Anemia

Galatis B.,  Mitrakos K. (1979) – On the differential divisions and preprophase microtubule bands involved in the development of stomata of Vigna sinensis L. – J. Cell Sci. 37: 11–37 – PMID: 479319 – https://www.ncbi.nlm.nih.gov/pubmed/479319 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/differential-divisions-and-preprophase-microtubule-bands-involved-in-the-development-of-stomata/ )

Galatis B.,  Mitrakos K. (1980) – The ultrastructural cytology of the differentiating guard cells of Vigna sinensis – Amer. J. Bot. 67: 1243-1261 – DOI: 10.2307/2442367 – https://www.jstor.org/stable/2442367?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/21/the-ultrastructural-cytology-of-stomata/ )

Galbiati M., Matus J. T., Francia P., Rusconi F., Cañón P., Medina C., Conti L., Cominelli E., Tonelli C., Arce-Johnson P. (2011) – The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress – BMC Plant Biology 11: 142 – https://doi.org/10.1186/1471-2229-11-142 – https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-11-142 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/vvmyb60-modulates-physiological-responses-in-stomata-2/ )

Galbiati M., Simoni L., Pavesi G., Cominelli E.,1 , Francia P., Vavasseur A., Nelson T., Bevan M., Tonelli C. (2008) – Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells – The Plant Journal 53: 750–762 – doi: 10.1111/j.1365-313X.2007.03371.x – https://air.unimi.it/retrieve/handle/2434/40407/175510/Gene%20trap%20lines%20identify%20Arabidopsis%20genes.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/arabidopsis-genes-expressed-in-stomatal-guard-cells/ )

Galdon‐Armero J., Fullana‐Pericas M., Mulet P. A., Conesa M. A., Martin C., Galmes J. (2018) – The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato) – The Plant Journal 96: 607– 619 – https://doi.org/10.1111/tpj.14055https://onlinelibrary.wiley.com/doi/10.1111/tpj.14055 – (On our blog : https://plantstomata.wordpress.com/2021/03/14/an-important-role-for-both-trichomes-and-stomata-in-drought-tolerance-in-tomato/ )

Gallagher K., Smith L. G. (1997) – Asymmetric cell division and cell fate in plants – Current Opinion in Cell Biology 9(6): 842-848 – https://doi.org/10.1016/S0955-0674(97)80086-5https://www.sciencedirect.com/science/article/abs/pii/S0955067497800865?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/12/05/cell-polarity-and-division-orientation-are-closely-tied-to-the-process-of-cell-fate-specification-in-stomatal-development/ )

Gallagher K., Smith L. G. (1999) – Discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis – Development 126(20): 4623-4633 – https://doi.org/10.1242/dev.126.20.4623https://journals.biologists.com/dev/article/126/20/4623/40479/discordia-mutations-specifically-misorient – (On our blog : https://plantstomata.wordpress.com/2021/12/05/dcd-mutations-disrupt-an-actin-dependent-process-necessary-for-the-guidance-of-phragmoplasts-during-cytokinesis-in-stomatal-asymmetrically-dividing-cells/ )

Gallagher K., Smith L. G. (2000) – Roles for polarity and nuclear determinants in specifying daughter cell fates after an asymmetric cell division in the maize leaf – Curr. Biol. 10(19): 1229-1232 – https://doi.org/10.1016/S0960-9822(00)00730-2https://www.cell.com/current-biology/fulltext/S0960-9822(00)00730-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982200007302%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2021/12/05/specification-of-stomatal-subsidiary-cell-fate-depends-on-polarization-of-smcs-and-on-inheritance-of-the-appropriate-daughter-nucleus/ )

Galmés J., Flexas J., Savé R., Medrano H. (2007) –  Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery – Plant and Soil 290: 139-155 – DOI:10.1007/s11104-006-9148-6 – https://www.academia.edu/25508650/Water_relations_and_stomatal_characteristics_of_Mediterranean_plants_with_different_growth_forms_and_leaf_habits_responses_to_water_stress_and_recovery – (On our blog : https://plantstomata.wordpress.com/2018/03/15/different-growth-forms-and-leaf-habits-of-mediterranean-plants-water-relations-and-stomatal-characteristics/ )

Galmés J., et al. (2007) – Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms – New Phytologist 175: 81-93 –

Galmés J., et al. (2013) – Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters – Plant, Cell & Environment 36: 920-935 –

Gálusová T., Piršelová B., Rybanský L., Krasylenko Y., Mészáros P., Blehová A., Bardáčová M., Moravčíková J., Matušíková I. (2020) – Plasticity of Soybean Stomatal Responses to Arsenic and Cadmium at the Whole Plant Level – Pol. J. Environ. Stud. 2020;29(5):3569–3580 – https://doi.org/10.15244/pjoes/116444 – http://www.pjoes.com/Plasticity-of-Soybean-Stomatal-Responses-nto-Arsenic-and-Cadmium-at-the-Whole-nPlant,116444,0,2.html – (On our blog : https://plantstomata.wordpress.com/2022/05/14/stomatal-responses-to-arsenic-and-cadmium/ )

Gamm M., Héloir M.-C., Adrian M. (2015) – Trehalose and trehalose-6-phosphate induce stomatal movements and interfere with ABA-induced stomatal closure in grapevine 49(3): – Journal international des sciences de la vigne et du vin https://doi.org/10.20870/oeno-one.2015.49.3.84https://oeno-one.eu/article/view/84 – (On our blog : https://plantstomata.wordpress.com/2020/11/04/the-effects-of-sugars-especially-trehalose-and-t6p-on-grapevine-stomatal-movements/ )

Gan Y., Zhou L., Shen Z.-J., Shen Z.-X., Zhang Y.-Q., Wang G.-X. (2010) – Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants – Botanical Studies (2010) 51: 325-336 – http://ejournal.sinica.edu.tw/bbas/content/2010/3/Bot513-06.pdf – http://connection.ebscohost.com/c/articles/60102322/stomatal-clustering-new-marker-environmental-perception-adaptation-terrestrial-plants – (On our blog : https://plantstomata.wordpress.com/2016/10/24/stomatal-clustering-is-correlated-with-environmental-signals-2/)

Gang L., Lu L., Yongyi D., Dongsheng A., Yongxiu L., Weihong L., Xinyou Y.,
Wenwen L., Jingqing S., Yanbao Z., Jianfeng D., Weiping C., Chunjiang Z. (2012)
– Testing two models for the estimation of leaf stomatal conductance in four greenhouse crops Cucumber, Chrysanthemum, Tulipa and Lilium Agricultural and Forest Meteorology 165: 92-103 –

Gangadhara M. (1973) – Effect of growth regulators on structure and development in Lagenaria leucantha (Duch.) Rusby – M. Sci. diss., S. P. Univ., India –

Gangadhara M., Inamdar J. A. (1975) – Action of growth regulators on the cotyledonary stomata of Cucumis sativus L.: Structure and ontogeny – Biologia plantarum 17: 292-303 – DOI: 10.1007/BF02921223https://bp.ueb.cas.cz/artkey/bpl-197504-0011_Action-of-growth-regulators-on-the-cotyledonary-stomata-ofCucumis-sativus-L-Structure-and-ontogen.php?back=/magno/bpl/1975/mn4.php?secid=3 – (On our blog : https://plantstomata.wordpress.com/2021/09/29/growth-regulators-affect-the-frequency-of-stomata-epidermal-cells-stomatal-index-size-of-guard-and-epidermal-cells/ )

Gangadhara M., Rao T. B., Inamdar J. A., Patel R. M. (1977) – Effect of growth regulators on the structure of cotyledonary and hypocotyledonary stomata of Gossypium herbaceum var. Digvijay – Phyton 18: 9-28 – https://www.zobodat.at/pdf/PHY_18_1_2_0009-0028.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/21/growth-regulators-and-stomata-of-gossypium/ )

Gao C.-J., Xia X.-J., Shi K., Zhou Y.-H., Yu J. Q. (2012) – Response of stomata to global climate changes and the underlying regulation mechanism of stress responses – Plant Physiology Journal 48(1): 19-28 – https://www.researchgate.net/publication/288531601_Response_of_stomata_to_global_climate_changes_and_the_underlying_regulation_mechanism_of_stress_responses – (On our blog : https://plantstomata.wordpress.com/2021/02/21/response-of-stomata-to-global-climate-changes/ )

Gao G. L., Feng Q., Zhang X. Y., Si J. H., Yu T. F. (2018) – An overview of stomatal and non-stomatal limitations to photosynthesis of plants – Arid Zone Research 35: 929-937 –

[ 高冠龙, 冯起, 张小由, 司建华, 鱼腾飞 (2018). 植物叶片光合作用的气孔与非气孔限制研究综述. 干旱区研究, 35,929-937.]

Gao J., Tian K. (2019) – Stem and leaf traits as co-determinants of canopy water flux – Plant Diversity 41(4): 258-265 – DOI: 10.1016/j.pld.2019.06.003https://www.researchgate.net/publication/333882884_Stem_and_leaf_traits_as_co-determinants_of_canopy_water_flux – (On our blog : https://plantstomata.wordpress.com/2022/03/20/the-potential-of-using-stomatal-density-as-a-trait-to-predict-canopy-water-flux/ )

Gao J., Wang N., Wang G. X. (2013)Saccharomyces cerevisiae induced stomatal closure mainly mediated by salicylhydroxamic acid- sensitive peroxidases in Vicia faba – Plant Physiol. Biochem. 65: 27–31 – doi: 10.1016/j.plaphy.2013.01.008 – https://www.sciencedirect.com/science/article/pii/S0981942813000272 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/yeast-induces-stomatal-closure-mainly-mediated-by-salicylhydroxamic-acid-sensitive-peroxidases/ )

Gao J., Wang N., Xu S. S., Li Y., Wang Y., Wang G. X. (2013) – Exogenous application of trehalose induced H2O2 production and stomatal closure in Vicia faba – Biologia Plantarum 57: 380–384 – https://doi.org/10.1007/s10535-012-0285-x – https://link.springer.com/article/10.1007%2Fs10535-012-0285-x#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/21/trehalose-induces-h2o2-production-and-stomatal-closure/

Gao Q., Yu M., Zhou C. (2013) – Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs –  PLOS ONE 11(12): e0169382 – https://doi.org/10.1371/journal.pone.0169382https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084200 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/differences-in-responses-of-stomatal-conductance-to-moisture-stresses/ )

Gao Q., Yu M., Zhang X., Xu H., Huang Y. (2005) – Modeling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment – Functional Plant Biology 32: 583–598 – https://doi.org/10.1071/FP04092http://www.publish.csiro.au/fp/FP04092 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/seasonal-and-diurnal-dynamics-of-stomatal-conductance/ )

Gao Q., Zhao P., Zeng X., Cai X., Shen W. (2002) – A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress – Plant, Cell & Environment 25: 13731381 – https://doi.org/10.1046/j.1365-3040.2002.00926.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2002.00926.x – (On our blog : https://plantstomata.wordpress.com/2018/03/19/a-model-of-stomatal-conductance-to-quantify-the-relationship-between-leaf-transpiration-microclimate-and-soil-water-stress/ )

Gao Q., Zhao P., Zeng X., Cai X., Shen W. (2002) – A model of stomatal conductance to quantify relationship between leaf transpiration, microclimate and soil water stress – Plant, Cell and Environment 25: 1373-1381 – http://onlinelibrary.wiley.com/store/10.1046/j.1365-3040.2002.00926.x/asset/j.1365-3040.2002.00926.x.pdf;jsessionid=0C4FD8D4E020DF3DC0F996706AB8B81E.f03t02?v=1&t=j7jepxi1&s=b27aa1d8111383898ab6c89fceeb6ccdb9dd65a6 – (On our blog : https://plantstomata.wordpress.com/2017/09/13/a-model-of-stomatal-conductance/)

Gao X. Q., Chen J., Wei P., Ren F., Chen J., Wang X. (2008) – Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture – Plant Cell Rep. 27: 1655–1665 – doi: 10.1007/s00299-008-0581-2 – Epub 2008 Jul 9 – https://www.ncbi.nlm.nih.gov/pubmed/18612643 – (On our blog :  https://plantstomata.wordpress.com/2018/03/21/actin-filaments-and-stomatal-aperture/ )

Gao X.-Q., Li C.-G., Wei P.-C., Zhang X.-Y., Chen J., Wang X.-C. (2005) – The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba – Plant Physiol. 139: 1207–1216 – (On our blog : https://plantstomata.wordpress.com/2016/05/25/tonoplasts-in-guard-cells-are-important-for-stomatal-movement/)

Gao X.-Q., Wang X.-L., Ren F., Chen J., Wang X.-C. (2009) – Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement – Plant, Cell & Environment 32: 1108–1116 – doi: 10.1111/j.1365-3040.2009.01993.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2009.01993.x – (On our blog : https://plantstomata.wordpress.com/2018/08/16/the-interactive-function-of-actin-and-vacuole-in-stomatal-movement-regulation/

Gao X., Zou C., Wang L., Zhang F. (2006) – Silicon decreases transpiration rate and conductance from stomata of maize plants. – J. Plant Nutr. 29: 1637-2647 – (http://www.tandfonline.com/doi/abs/10.1080/01904160600851494#.VREt3pPF-6E) – (On our blog : https://plantstomata.wordpress.com/2015/08/13/the-effect-of-silicon-on-stomata/).

Gao Y.‐Q., Wu W.‐H., Wang Y. (2017) – The K+ channel KZM2 is involved in stomatal movement by modulating inward K+ currents in maize guard cells –  Plant J. 92: 662– 675 – https://doi.org/10.1111/tpj.13712https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.13712 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/kzm2-functions-as-a-negative-regulator-to-modulate-the-k-currents/ )

Gao Z., Li Z., Chen J. (2017) – Stomatal Conductance Model Establishment and Simulation for Potted Apple Trees under Drought Stress – 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) – DOI: 10.1109/ICMTMA.2017.0083 https://ieeexplore.ieee.org/document/7832246 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomatal-conductance-model-establishment-and-simulation-under-drought-stress/ )

Garcia-Amorena I., Wagner F., van Hoof T. B., Gomez Manzaneque F. (2006) – Stomata responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase; refining the stomatal-based CO2 proxy – Rev. Palaebot. Palynol. 141: 303-312 – https://pdfs.semanticscholar.org/9c34/f061b72aedd6d669ed917a773abea6522690.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/19/stomata-responses-to-the-anthropogenic-atmospheric-co2-increase/ )

Garcia-Forner N., Adams H. D., Sevanto S., Collins A. D., Dickman L. T., Hudson P. J., Zeppel M. J., Jenkins M. W., Powers H., Martínez-Vilalta J., Mcdowell N. G..(2016) – Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation – Plant Cell Environ. 39: 38–49  – https://www.ncbi.nlm.nih.gov/pubmed/26081870?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/21/new-perspectives-for-stomatal-regulation/ )

García-León M., Cuyas L., Abd El-Moneim D., Rodriguez L., Belda-Palazon B.,  Sánchez-Quant E., Fernández Y., Roux B., Zamarreño A. M., Garcia-Mina J. M., Nussaume L., Rodriguez P. L., Paz-Ares J., Leonhardt N., Rubio V. (2019) – Stomatal aperture and turnover of ABA receptors are regulated by Arabidopsis ALIX – Plant Cell – https://doi.org/10.1105/tpc.19.00399http://www.plantcell.org/content/early/2019/07/30/tpc.19.00399 – (On our blog : https://plantstomata.wordpress.com/2019/08/24/arabidopsis-alix-and-stomatal-aperture/ )

Garcia-Mata C., Gay R.Sokolovski S.Hills A., Lamattina L.,  Blatt M. R. (2003) – Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways – Proc. Natl Acad. Sci. USA 100: 1111611121 – (On our blog : https://plantstomata.wordpress.com/2015/10/04/stomata-and-nitric-oxide/)

Garcia-Mata C., Lamattina L. (2002) – Nitric oxide and abscisic acid cross talk in guard cells – Plant Physiol. 128: 790–792 – doi: 10.1104/pp.011020 – (On our blog : https://plantstomata.wordpress.com/2016/05/25/no-and-aba-in-stomata/)

Garcia–Mata C., Lamattina L. (2003) – Abscisic acid, nitric oxide and stomatal closure – is nitrate reductase one of the missing links? – Trends. Plant Sci. 8: 20–26 – PMID: 12523996 – https://www.ncbi.nlm.nih.gov/pubmed/12523996 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/nr-as-a-putative-component-in-the-signaling-cascade-of-aba-induced-stomatal-closure/ )

Garcia-Mata C., Lamattina L. (2007) – Abscisic acid (ABA) inhibits light- induced stomatal opening through calcium-and nitric oxide-mediated signaling pathways – Nitric Oxide 17: 143–151 – doi: 10.1016/j.niox.2007.08.001 – https://www.sciencedirect.com/science/article/pii/S1089860307000973 – (On our  blog : https://plantstomata.wordpress.com/2018/04/16/calcium-and-nitric-oxide-mediated-signaling-pathways-aba-and-stomatal-opening/ )

Garcia-Mata C., Lamattina L. (2009) – Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress – Plant Physiology 150: 531-531 – DOI: https://doi.org/10.1104/pp.126.3.1196 – http://www.plantphysiol.org/content/126/3/1196 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/nitric-oxide-induces-stomatal-closure/ )

Garcia-Mata C., Lamattina L. (2010) – Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling – New Phytol. 188: 977–984 – doi: 10.1111/j.1469-8137.2010.03465.x – (On our blog : https://plantstomata.wordpress.com/2016/05/25/h2s-in-stomata/ )

García-Mata C., Lamattina L. (2013) – Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange – Plant Sci. 201–202: 66–73 – doi: 10.1016/j.plantsci.2012.11.007 – https://www.sciencedirect.com/science/article/pii/S0168945212002403 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/gasotransmitters-are-guard-cell-signaling-molecules-and-regulators-of-leaf-gas-exchange-in-stomata/ )

Gardner M. J.Baker A. J.Assie J.-M.Poethig R. S.Haseloff J. P.Webb A. A. R. (2009) – GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression – Journal of Experimental Botany 60: 213226 – doi: 10.1093/jxb/ern292 – (On our blog : https://plantstomata.wordpress.com/2016/05/25/gal4-gfp-enhancer-trap-lines-and-stomatal-guard-cells/ )

Gargava A., Arya C., Raghavan S. R. (2016) – Smart Hydrogel-Based Valves Inspired by the Stomata in Plants – ACS Appl. Mater. Interfaces  8 (28): 18430–18438 – DOI: 10.1021/acsami.6b04625 – http://pubs.acs.org/doi/abs/10.1021/acsami.6b04625 – (On our blog : https://plantstomata.wordpress.com/2018/01/06/hydrogel-based-valves-inspired-by-stomata/ )

Garner D. B., Paolillo D. J. Jr. (1973) – On the functioning of stomata in Funaria – Bryologist 76: 423-427 – doi:10.2307/3241726 – https://www.jstor.org/stable/3241726?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/19/the-functioning-of-stomata-in-mosses/ )

Garnier E., Berger A. (1987) – The influence of drought on stomatal conductance and water potential of peach trees growing in the field – Sci. Hortic. 32: 249–263 – https://doi.org/10.1016/0304-4238(87)90091-4https://www.sciencedirect.com/science/article/pii/0304423887900914?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/influence-of-drought-on-stomatal-conductance/ )

Garrec J.‐P., Vavasseur A., Michaowicz G., Laffray D. (1983) – Stomatal movements and repartition of the elements K, Cl, Na, P, Ca, Mg and S in the stomatal complexes of Vicia faba and Commelina communis. Electron probe studies – Z. Pflanzenphysiol. 112: 35– 42 – https://doi.org/10.1016/S0044-328X(83)80060-9https://www.sciencedirect.com/science/article/abs/pii/S0044328X83800609?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/12/05/differences-in-the-total-ionic-amount-between-open-and-closed-states-in-the-stomatal-complexes/ )

Garrrigues M. (2021) – Advances in selected plant physiology aspects – Edited by Giuseppe Montanaro and Bartolomeo Dichio – Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia – ISBN 978-953-51-0557-2 – https://www.academia.edu/37819632/ADVANCES_IN_SELECTED_PLANT_PHYSIOLOGY_ASPECTS?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/11/17/plant-physiology-aspects/ )

Garrison J. R., Caplan J. S., Douhovnikoff V., Mozdzer T. J., Logan B. A. (2021) – Responses of stomatal features and photosynthesis to porewater N enrichment and elevated atmospheric CO2 in Phragmites australis, the common reed – American Journal of Botany 108(4): 718–725 –doi:10.1002/ajb2.1638https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1040&context=bio_pubs – (On our blog : https://plantstomata.wordpress.com/2022/04/27/changes-in-stomatal-features-co-occur-with-previously-described-responses-of-p-australis-to-eco2-and-nenr/ )

Gaskell M. L., Pearce R. B. (1983) – Stomatal Frequency and Stomatal Resistance of Maize Hybrids Differing in Photosynthetic Capability – Crop Sci 23(1): – https://doi.org/10.2135/cropsci1983.0011183X002300010051xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1983.0011183X002300010051x – (On our blog : https://plantstomata.wordpress.com/2020/05/28/stomatal-frequency-and-stomatal-resistance/ )

Gautier H., Vavasseur A., Gans P,. Lasceve G. (1991) – Relationship between respiration and photosynthesis in guard cell and mesophyll cell protoplasts of Commelina communis L. – Plant Physiol. 95: 636–641 – PMID: 16668030 – PMCID: PMC1077579 – https://www.ncbi.nlm.nih.gov/pubmed/16668030 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/respiration-and-photosynthesis-in-stomatal-and-mesophyll-cell-protoplasts/ )

Gautier H., Vavasseur A., Lasceve G., Boudet A. M. (1992) – Redox processes in the blue light response of guard cell protoplasts of Commelina communis L. – Plant Physiol. 98: 34–38 – https://doi.org/10.1104/pp.98.1.34 – http://www.plantphysiol.org/content/98/1/34 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/redox-processes-in-the-blue-light-response-of-stomatal-protoplasts/

Gay A. P., Hurd R.G. (1975) – The influence of light on stomatal density in the tomato – New Phytologist 75: 37-46 – https://doi.org/10.1111/j.1469-8137.1975.tb01368.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1975.tb01368.x – (On our blog : https://plantstomata.wordpress.com/2018/03/21/light-and-stomatal-density/ )

Gayatri G., Agurla S., Kuchitsu K., Anil K., Podile A. R., Raghavendra A. S. (2017) – Stomatal closure and rise in ROS/NO of Arabidopsis guard cells by tobacco microbial elicitors: Cryptogein and Harpin – Front. Plant Sci. 8: 1096 – https://doi.org/10.3389/fpls.2017.01096https://www.frontiersin.org/articles/10.3389/fpls.2017.01096/full – (On our blog : https://plantstomata.wordpress.com/2020/09/10/stomatal-responses-to-the-typical-elicitors-from-microbial-pathogens-of-other-plants/ )

 Gayatri G., Agurla S., Raghavendra A. S. (2013) – Nitric oxide in guard cells as an important secondary messenger during stomatal closure – Front. Plant Sci. 4: 425 – doi: 10.3389/fpls.2013.00425 – https://www.ncbi.nlm.nih.gov/pubmed/24194741 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/nitric-oxide-in-stomata-a-secondary-messenger-during-stomatal-closure/ )

Ge X.-M., Cai H.-L., Lei X., Zhou X., Yue M., He J.-M. (2015) – Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis – Plant J. 82: 138–150 – doi: 10.1111/tpj.12799 – https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.12799 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/g%ce%b1-mediates-ethylene%e2%80%90induced-stomatal-closure-via-h2o2-production/ )

Gee G., Federer C. (1972) – Stomatal resistance during senescence of hardwood leaves – Water Resources Research 8: 1456-1460 – DOI: 10.1029/WR008I006P01456https://www.semanticscholar.org/paper/Stomatal-resistance-during-senescence-of-hardwood-Gee-Federer/428c0b197bb8a048ab0832df9ff9e5acd6dace90 – (On our blog : https://plantstomata.wordpress.com/2021/09/25/stomatal-resistance-during-senescence/ )

Gedenk E. (2017) – Research team uses supercomputing to understand processes leading to increased drought resistance in food and fuel crops – https://phys.org/news/2017-04-team-supercomputing-drought-resistance-food.html – (On our blog : https://plantstomata.wordpress.com/2017/04/19/supercomputing-stomata-and-increased-drought-resistance-in-food-and-fuel-crops/)

Geetika G., van Oosterom E. J., George-Jaeggli B., Mortlock M. Y., Deifel K. S., McLean G., Hammer G. L. (2018) – Genotypic variation in whole-plant transpiration efficiency in sorghum only partly aligns with variation in stomatal conductance – Functional Plant Biology – https://doi.org/10.1071/FP18177https://www.publish.csiro.au/FP/FP18177 – (On our blog : https://plantstomata.wordpress.com/2019/12/04/whole-plant-transpiration-per-unit-of-green-leaf-area-tgla-was-monitored-continuously-and-stomatal-conductance-and-maximum-photosynthetic-capacity-were-measured-during-sunny-conditions/ )

Gehring C. A., Irving H. R., McConchie R. M., Parish R. W. (1997) – Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells – Ann. Bot. 80: 485-489 – https://doi.org/10.1006/anbo.1997.0471 – https://www.sciencedirect.com/science/article/pii/S0305736497904716 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/jasmonates-and-closure-of-stomata/ )

Gehring C. A., McConchie R. M., Venis M. A., Parish R. W. (1998) – Auxin-binding-protein antibodies and peptides influence stomatal opening and alter cytoplasmic pH – Planta 205: 581-586 – DOI: 10.1007/s004250050359 – https://www.ncbi.nlm.nih.gov/pubmed/9684362 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/auxin-binding-protein-antibodies-and-peptides-influence-stomatal-opening/ )

Geiger D., Maierhofer T., Al-Rasheid K. A., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C., Marten I., Grill E., Romeis T., Hedrich R. (2011) – Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1 – Sci. Signal. 4:ra32 – doi: 10.1126/scisignal.2001346 – (On our blog : https://plantstomata.wordpress.com/2016/05/25/the-guard-cell-anion-channel-slah3-and-the-receptor-rcar1-in-stomatal-closure/ )

Geiger D., Scherzer S., Mumm P., Marten I., Ache P., Matschi S., Liese A., Wellmann C., Al-Rasheid K. A., Grill E., et al. (2010) – Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities – Proc. Natl Acad. Sci. USA 107: 8023–8028 – doi: 10.1073/pnas.0912030107 – (On our blog : https://plantstomata.wordpress.com/2016/05/26/slac1-cdpk-and-stomatal-guard-cells/ )

Geiger D., Scherzer S., Mumm P., Stange A., Marten I., Bauer H., Ache P., Matschi S., Liese A., Al-Rasheid K.A., Romeis T., Hedrich R. (2009) – Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair – Proc. Natl. Acad. Sci. USA 106: 21425–21430 –  http://www.pnas.org/content/106/50/21425.full – (On our blog : https://plantstomata.wordpress.com/2016/04/04/the-role-of-guard-cell-anion-channel-slac1-in-stomatal-movement/ )

Geilfus C._M., Mithöfer A., Ludwig‐Müller J., Zörb C., Muehling K. H. (xxxx) – Chloride‐inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt‐stressed Vicia faba – New Phytologist 208(3): 803 – 816 – DOI: 10.1111/nph.13507 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-208-i-3-nph13507 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/chloride%e2%80%90inducible-transient-apoplastic-alkalinizations-induce-stomata-closure/)

Geis J. W. (1973) – Biogenic silica in selected species of deciduous – Soil Science 1973: 113-130 – https://journals.lww.com/soilsci/Abstract/1973/08000/BIOGENIC_SILICA_IN_SELECTED_SPECIES_OF_DECIDUOUS.8.aspx – (On our blog : https://plantstomata.wordpress.com/2021/10/17/94509/ )

Geisler M. J., Deppong D. O., Nadeau J. A., Sack F. D. (2003) – Stomatal neighbor cell polarity and division in Arabidopsis – Planta 216: 571-579 – (On our blog : https://plantstomata.wordpress.com/2016/05/26/stomatal-neighbor-cell-polarity-and-division/ )

Geisler M. J., Nadeau J., Sack F. D. (2000) – Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation – Plant Cell 12: 2075– 2086 – http://www.plantcell.org/content/12/11/2075.abstract – (On our blog : https://plantstomata.wordpress.com/2015/10/05/the-too-many-mouths-mutation-and-the-stomatal-spacing-pattern/ )

Geisler M. J., Sack F. D. (2002) – Variable timing of developmental progression in the stomatal pathway in Arabidopsis cotyledons – New Phytol. 153: 469–476 – DOI: 10.1046/j.0028-646X.2001.00332.x – http://dx.doi.org/10.1046/j.0028-646X.2001.00332.x – (On our blog : https://plantstomata.wordpress.com/2016/05/27/timing-of-developmental-progression-in-the-stomatal-pathway/ )

Geisler M. J., Yang M., Sack F. D. (1998) – Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips – Planta 205: 522–530 – http://dx.doi.org/10.1007/s004250050351 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/regulation-of-stomatal-initiation-and-patterning/ )

Geng S., Misra B. B., de Armas E., Huhman D. V., Alborn H. T., Sumner L. W., Chen S. (2016) – Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics – The Plant Journal 88: 947–962 –doi: 10.1111/tpj.13296 – (On our blog : https://plantstomata.wordpress.com/2016/08/09/co2-induced-stomatal-closure-is-mediated-by-ja-signaling/ )

Geng S., Yu B., Zhu N., Dufresne C., Chen S. (2017) –  Metabolomics and proteomics of Brassica napus guard cells in response to low CO2 – Frontiers Molecular Biosciences 4:51 – https://doi.org/10.3389/fmolb.2017.00051 –https://www.frontiersin.org/articles/10.3389/fmolb.2017.00051/full – (On our blog : https://plantstomata.wordpress.com/2019/04/02/the-low-stomatal-co2-response-is-mediated-by-a-complex-crosstalk-between-different-phytohormones/ )

Gepstein S., Jacobs M., Taiz L. (1982) – Inhibition of stomatal opening in Vicia faba epidermal tissue by vanadate and abscisic acid – Plant Sci. Lett. 28: 63–72 – https://doi.org/10.1016/S0304-4211(82)80008-4 – https://www.sciencedirect.com/science/article/pii/S0304421182800084 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/inhibition-of-stomatal-opening-by-vanadate-and-aba/ )

Gepstein S., Thimann K. V. (1980) – Changes in the abscisic acid content of oat leaves during senescence – PNAS 77(4): 2050-2053 – https://doi.org/10.1073/pnas.77.4.2050https://www.pnas.org/content/77/4/2050 – (On our blog : https://plantstomata.wordpress.com/2021/08/27/stomatal-closure-causes-aba-accumulation-and-aba-may-be-the-proximal-cause-of-leaf-senescence/ )

Gerardin T., Douthe C., Flexas J., Brendel O. (2018) – Shade and drought growth conditions strongly impact dynamic responses of stomata to variations in irradiance in Nicotiana tabacum – Environ. Exp. Bot. 153: 188–197 – doi: 10.1016/j.envexpbot.2018.05.019https://hal.archives-ouvertes.fr/hal-01891743https://www.sciencedirect.com/science/article/abs/pii/S0098847218302247?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/12/19/physiological-factors-might-be-the-main-driver-of-variations-in-stomatal-conductance-dynamics-within-a-species-grown-under-different-environmental-conditions/ )

Germanà M. A., Germanà M. P., Motisi A., Sottile F. (2002) – Research on stomata frequency and size in several citrus species – In: Proceedings of 7th International Citrus Congress, International Society of Citriculture. Acireale, Italy, 100-102 –

Gerosa G., Derghi F., Cieslik S. (2007) – Comparison of different algorithms for stomatal ozone flux determination from micrometeorological measurements – Water Air Soil Poll. 179: 309–321 – https://doi.org/10.1007/s11270-006-9234-7https://link.springer.com/article/10.1007/s11270-006-9234-7 – (On our blog : https://plantstomata.wordpress.com/2022/05/26/the-equivalence-of-two-algorithms-found-in-the-literature-to-derive-ozone-stomatal-fluxes-and-both-based-on-the-similarity-between-ozone-stomatal-fluxes-and-water-vapour-stomatal-fluxes/ )

Gerosa G., Finco A., Mereu S., Denti A. B., Marzuoli R. (2011) – (Evapo)Transpiration Measurements Over Vegetated Surfaces as a Key Tool to Assess the Potential Damages of Air Gaseous Pollutant for Plants – in Book : From Measurements to Agricultural and Environmental Applications – DOI: 10.5772/21526https://www.academia.edu/17195420/_Evapo_Transpiration_Measurements_Over_Vegetated_Surfaces_as_a_Key_Tool_to_Assess_the_Potential_Damages_of_Air_Gaseous_Pollutant_for_Plants?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/06/29/evapotranspiration-measurement/ )

Gerosa G., Marzuoli R., Cieslik S., Ballarin-Denti A. (2004) – Stomatal ozone fluxes over a barley field in Italy; “Effective exposure” as a possible link between exposure- and flux-based approaches – Atmos. Environ. 38: 2421–2432 – https://doi.org/10.1016/j.atmosenv.2003.12.040https://www.sciencedirect.com/science/article/abs/pii/S1352231004001141?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/01/25/stomatal-ozone-fluxes-and-assessment-of-ozone-risk-to-vegetation-in-a-realistic-way-a-new-concept-of-effective-exposure-was-developed/ )

Gerosa G., Mereu S., Finco A., Marzuoli R. (2012) – Stomatal Conductance Modeling to Estimate the Evapotranspiration of Natural and Agricultural Ecosystems – In book: Evapotranspiration – Remote Sensing and Modeling – DOI: 10.5772/725https://publicatt.unicatt.it/retrieve/handle/10807/28887/43471/Gerosa%202012%20-Stomatal_conductance_modeling_to_estimate_the_evapotranspiration_of_natural_and_agricultural_ecosystems.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-conductance-modeling-to-estimate-the-evapotranspiration/ )

Getty Images (xxxx) – Pictures of stomata – https://www.gettyimages.be/fotos/stomata?sort=mostpopular&mediatype=photography&phrase=stomata – (On our blog : https://plantstomata.wordpress.com/2018/02/10/stock-photos-of-stomata/

Ghanavati F., Eskandari H. (2011) – Relationship between the chloroplast number in stomatal guard cells, flow cytometry and ploidy level in Onobrychis spp. – Journal Behnejadi Nahal and Bazr 3: 1-27 – SEED AND PLANT IMPROVEMENT JOURNAL 27-1(3): 427-439 – https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=210537 – (On our blog : https://plantstomata.wordpress.com/2019/03/05/chloroplast-number-in-stomatal-guard-cells-flow-cytometry-and-ploidy-level/ )

Ghannoum O., Conroy J. P. Driscoll S. P., Paul M. J., Foyer C. H., Lawlor D. W. (2003) – Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses – New Phytologist 159: 599–608 – https://doi.org/10.1046/j.1469-8137.2003.00835.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.1469-8137.2003.00835.x – (On our blog : https://plantstomata.wordpress.com/2018/09/26/inhibition-of-photosynthesis-in-the-four-c4-grasses-under-water-stress-is-dependent-mainly-on-biochemical-limitations/

Gharun M., Turnbull T., Pfautsch S., Adams M. (2015) – Stomatal structure and physiology do not explain differences in water use among montane eucalypts – Oecologia 177(4): 1171-1181 – http://link.springer.com/article/10.1007%2Fs00442-015-3252-3 – (On our blog : https://plantstomata.wordpress.com/2015/04/10/stomata-in-eucalyptus-dicots/).

Ghimire C. P., Bruijnzeel L. A., Lubczynski M. W., Zwartendijk B. W., Odongo V. O., Ravelona M., van Meerveld H. J. (2018) – Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs – Tree Physiology 38(7): 1053-1070 – https://doi.org/10.1093/treephys/tpy004 –https://academic.oup.com/treephys/article-abstract/38/7/1053/4980879 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/transpiration-and-stomatal-conductance/ )

Ghorbanli M., Bakhshi khaniki G., Bakand Z. (2009) – Air pollution effects on fresh and dry weight, amount of proline, number of stomata, trichome and epidermal cells in Nerium oleander and Robinia pseudoacacia in Tehran city – Pajouhesh and Sazandegi 77: 28–34 –

Ghosh A. K., Ichii M., Asanuma K., Kusutani A. (1996) – Optimum and sub-optimal temperature effects on stomata and photosynthesis rate of determinate soybeans – Acta Hortic 440: 81-86 –  doi: 10.17660/actahortic.1996.440.15https://pubmed.ncbi.nlm.nih.gov/11541592/ – (On our blog : https://plantstomata.wordpress.com/2021/03/23/higher-temperature-increased-stomatal-size-but-decreased-its-frequency-and-increased-net-photosynthesis-and-stomatal-conductance/ )

Ghosh A. K., Ichijiki K., Toyota M., Kusutani A., Asanuma K. (2000) – Water Potential, Stomatal Dimension and Leaf Gas Exchange in Soybean Plants under Long-term Moisture Deficit – Jpn. J. Trop. Agr. 44(1): 30-37 – https://www.jstage.jst.go.jp/article/jsta1957/44/1/44_1_30/_pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/03/moisture-deficit-decreased-the-area-of-stomatal-aperture-per-unit-area-which-reduced-the-leaf-gas-exchange-rate-along-with-a-higher-stomatal-resistance/ )

Ghosh A. K., Sasmal B. G., Das P. K. (2004) – Stomatal frequency, size and genetics of tossa jute (Corchorus olitorius L.) – Trop. Agric. 81: 149-156 – https://www.researchgate.net/publication/287573515_Stomatal_frequency_size_and_genetics_of_tossa_jute_Corchorus_olitorius_L – (On our blog : https://plantstomata.wordpress.com/2019/05/25/stomata-of-tossa-jute-corchorus-olitorius-l/ )

Ghuge S. A., Carucci A., Rodrigues-Pousada R. A., Tisi A., Franchi S., Tavladoraki P., Angelini R., Cona A. (2015) – The MeJA-inducible copper amine oxidase AtAO1 is expressed in xylem tissue and guard cells – Plant Signal. Behav. 10, e1073872 – https://doi.org/10.1080/15592324.2015.1073872https://www.tandfonline.com/doi/full/10.1080/15592324.2015.1073872 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/a-strong-atao1-gene-expression-occurs-also-in-guard-cells-of-leaves-and-flowers/ )

Giannoutsou E., Apostolakos P., Galatis B. (2011) – Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses – Protoplasma 248(2): 373-390 – doi: 10.1007/s00709-010-0180-2 – Epub 2010 Jul 20 – https://www.ncbi.nlm.nih.gov/pubmed/20644970 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cortical-endoplasmic-reticulum-aggregations-in-developing-stomatal-complexes/ )

Giannoutsou E., Apostolakos P., Galatis B. (2016) – Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays – Planta · July 2016 – DOI: 10.1007/s00425-016-2574-7 – https://www.researchgate.net/publication/305661902_Spatio-temporal_diversification_of_the_cell_wall_matrix_materials_in_the_developing_stomatal_complexes_of_Zea_mays – (On our blog : https://plantstomata.wordpress.com/2016/07/29/cell-wall-matrix-materials-in-developing-stomata/ )

Giannoutsou E., Sotiriou P., Nikolakopoulou T. L., Galatis B., Apostolakos P. (2020) – Callose and homogalacturonan epitope distribution in stomatal complexes of Zea mays and Vigna sinensis – Protoplasma 257: 141–156 – https://doi.org/10.1007/s00709-019-01425-8 – https://link.springer.com/article/10.1007/s00709-019-01425-8#citeas – (On our blog : https://plantstomata.wordpress.com/2021/08/09/callose-and-homogalacturonan-epitope-distribution-in-stomatal-complexes/ )

Gibbs J. A., Mcausland L., Robles-Zazueta C. A., Murchie E. H., Burgess A. J. (2021) – A Deep Learning Method for Fully Automatic Stomatal Morphometry and Maximal Conductance Estimation – Front. Plant Sci., 02 December 2021 – https://doi.org/10.3389/fpls.2021.780180https://www.frontiersin.org/articles/10.3389/fpls.2021.780180/full – (On our blog : https://plantstomata.wordpress.com/2022/05/02/a-rapid-method-to-assess-gas-fluxes-in-plants-based-on-stomata-morphometry/ )

Giday G. H. (2014) – On the role of abscisic acid in the regulation of phenotypic and genetic variation in stomatal closing ability – PhD Thesis, Aarhus University, Aarhus, Denmark –

Giday G. H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2013) Foliar abscisic acid content underlies genotypic variation in stomatal responsiveness after growth at high relative air humidity – Ann. Bot. 112(9): 1857-1867 – (On our blog : https://plantstomata.wordpress.com/2016/02/05/genotypic-variation-in-stomatal-responsiveness/).

Giday G. H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2014) – Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth – J. Exp. Bot. 65(15): 4361-4370 – (On our blog : https://plantstomata.wordpress.com/2015/10/05/a-growth-aba-related-threshold-for-stomatal-sensitivity-to-desiccation/)

Giday G. H., Kjær K. H., Fanourakis D., Ottosen C.-O. (2013) – Smaller stomata require less severe leaf drying to close: A case study in Rosa hydrida – Journal of Plant Physiology. 170(15): 1309-1316 – https://doi.org/10.1016/j.jplph.2013.04.007https://pubmed.ncbi.nlm.nih.gov/23726470/ – (On our blog : https://plantstomata.wordpress.com/2020/11/21/stomatal-size-explains-much-of-the-intraspecific-variation-in-the-regulation-of-transpiration-upon-water-deprivation-on-rose/ )

Giday H. , Kjaer K. H., Ottosen C.-O., Fanourakis D. (2013) – Cultivar differences in plant transpiration rate at high relative air humidity are not related to genotypic variation in stomatal responsiveness – Acta Horticulturae 1064(1064): 99–106 – DOI : 10.17660/ActaHortic.2015.1064.12https://www.actahort.org/books/1064/1064_12.htm – (On our blog : https://plantstomata.wordpress.com/2021/02/19/plant-water-loss-can-be-used-as-a-screening-criterion-for-enhanced-stomatal-responsiveness-only-at-moderate-rh-conditions/ )

Gil P. M., Gurovich L., Schaffer B., Garcia N., Iturriaga R. (2009) – Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia – Plant Signaling & Behavior 4(2): 100-108 – Electrical_signaling_stomatal_conductanc.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/a-communication-mechanism-involved-in-signaling-for-stomatal-closure-as-a-result-of-hypoxia-in-the-root-zone/ )

Gilbert M. E., Zwieniecki M. A., Holbrook N. M. (2011) – Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought – Journal of Experimental Botany 62(8): 2875–2887 – doi:10.1093/jxb/erq461https://scholar.harvard.edu/holbrooklab/files/jeb_v62_no8_p2875.full_.pdf – (On our blog : https://plantstomata.wordpress.com/2020/02/27/independent-variation-in-photosynthetic-capacity-and-stomatal-conductance-leads-to-differences-in-intrinsic-water-use-efficiency/ )

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Imaging the release of calcium from organelles during stomatal closure  Plant Cell 3: 333–344 –

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Role of calcium in signal transduction of Commelina guard cells – Plant Cell 3: 333344 – http://www.ncbi.nlm.nih.gov/pubmed/12324599 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/ca-and-transduction-pathways-linking-aba-perception-to-stomatal-closure/)

Gilroy S., Read N. D., Trewavas A. J. (1990) – Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure – Nature 346: 769-771 – doi: 10.1038/346769a0 – https://www.nature.com/articles/346769a0 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/ca2-and-insp3-may-act-as-second-messengers-leading-to-stomatal-closure/ )

Gimenez C., Fereres E., Ruz C., Orgaz F. (1997) – Water relations and gas exchange of olive trees: diurnal and seasonal patterns of leaf water potential, photosynthesis and stomatal conductance – Acta Hortic 449: 411–416 – DOI: 10.17660/ActaHortic.1997.449.57https://www.actahort.org/books/449/449_57.htm – (On our blog : https://plantstomata.wordpress.com/2019/04/07/diurnal-and-seasonal-patterns-of-leaf-water-potential-photosynthesis-and-stomatal-conductance/ )

Giménez C., Gallardo M., Thompson R. B. (2005) – Plant Water Relations – In : Encyclopedia of Soils in the Environment 2005: 231–238  – https://doi.org/10.1016/B0-12-348530-4/00459-8 – https://www.sciencedirect.com/science/article/pii/B0123485304004598 – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stomatal-conductance – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66113 )

Gimenez-Ibanez S., Boter M., Ortigosa A., García-Casado G., Chini A., Lewsey M. G., Ecker J. R., Ntoukakis V., Solano R. (2016) – JAZ2 controls stomata dynamics during bacterial invasion – New Phytologist (2017): Online Version of Record – DOI: 10.1111/nph.14354 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14354/abstract;jsessionid=7CCDFADCAFE977E2DCD0A6C68A238DF3.f01t04 – (https://plantstomata.wordpress.com/2016/12/26/a-coi1-jaz2-myc234-anac195572-module-responsible-for-the-regulation-of-stomatal-aperture/)

Gimeno T. E., Crous K. Y., Cooke J., O’Grady A. P., Ösvaldsson, Medlyn B. E., Ellsworth D. S. (2015) – Conserved stomatal behaviour under elevated CO2 and varying water availability in a mature woodland – Functional Ecology 30(5): – https://doi.org/10.1111/1365-2435.12532 –https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12532 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/conserved-stomatal-behaviour-under-elevated-co2-and-varying-water-availability/ )

Gimeno T. E., Ogee J., Bosc A., Genty B., Wohl S., Wingate L. (2015) – Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms? – Science.gov (United States) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html – (On our blog : https://plantstomata.wordpress.com/2022/03/06/a-novel-method-to-obtain-detectable-and-robust-estimates-of-nocturnal-transpiration-and-stomatal-conductance-in-the-dark-gnight/ )

Gimeno T. E., Saavedra N., Ogee J., Medlyn B. E., Wingate L. (2019) – A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types – Journal of Experimental Botany 70(5): 1639-1651 – https://doi.org/10.1093/jxb/erz020https://academic.oup.com/jxb/article/70/5/1639/5306169?login=true – (On our blog : https://plantstomata.wordpress.com/2021/12/07/non-stomatal-limitations-predict-stomatal-behaviour/ )

Gindel I. (1969) – Stomatal number and size as related to soil moisture in tree xerophytes in Israel – Ecology 50: 263-267 – https://doi.org/10.2307/1934854 – https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1934854 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-number-and-size-as-related-to-soil-moisture-in-tree-xerophytes/ )

Gindel I. (1969) – Stomatal constellation in the leaves of cotton, maize and wheat plants as a function of soil moisture – Physiologia Plantarum 22: 1143-1151 –

Gindel I. (1970) – The nocturnal behaviour of xerophytes grown under arid conditions – New Phytol. 69: 399-404 – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1970.tb02438.x – (On our blog : https://plantstomata.wordpress.com/2021/12/11/stomata-of-xerophytes-opening-at-night/ )

Giorio P., Sorrentino G., D’Andria R. (1999) – Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit – Environ Exp Bot. 42(2): 95–104 – doi: 10.1016/S0098-8472(99)00023-4https://www.sciencedirect.com/science/article/abs/pii/S0098847299000234 – (On our blog : https://plantstomata.wordpress.com/2018/11/14/stomatal-behaviour-leaf-water-status-and-photosynthetic-response-under-water-deficit/ )

Giresi P., Chieppa J., Aspinwall M. (2020) – Genetic variation in stomatal density and nighttime stomatal conductance in switchgrass (Panicum virgatum): climate and trait associations – Soars 2020 – University of North Florida – https://unfsoars.domains.unf.edu/genetic-variation-in-stomatal-density-and-nighttime-stomatal-conductance-in-switchgrass-panicum-virgatum-climate-and-trait-associations/ – (On our blog : https://plantstomata.wordpress.com/2022/04/07/stomatal-density-tended-to-be-greater-in-genotypes-from-warmer-climates-which-in-turn-drove-higher-gsn-values-resulting-in-greater-daytime-stomatal-conductance-gs-and-net-photosynthesis-asat/ )

Gitaitis R. D. (1979) – The ingress of Pseudomonas alboprecipitrans Rosen in sweet corn (Zea mays saccharata (Sturtevant) Bailey in relation to stomatal apetrture and infection court – PhD dissertation, University of Florida, Gainesville – 82 pp.

Gitaitis R. D., Samuelson D. A., Strandberg J. O. (1981) – Scanning electron microscopy of the ingress and establishment of Pseudomonas alboprecipitrans in sweet corn leaves – Phytopathology 71(2): 171-175 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1981Articles/Phyto71n02_171.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/16/closed-and-open-stomata-can-serve-as-portals-of-ingress-for-the-small-bacteria/ )

Gitz D. C., Liu-Gitz L., Britz S. J., Sullivan J. H. (2005) – Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars – Environmental and Experimental Botany 53: 343-355 – https://doi.org/10.1016/j.envexpbot.2004.04.005 – https://www.sciencedirect.com/science/article/pii/S0098847204000711 – (On lour blog : https://plantstomata.wordpress.com/2018/03/22/ultraviolet-b-effects-on-stomatal-density/ )

Givnish T. J. (1986) – Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration – In: Givnish TJ, ed. On the economy of plant form and function – Cambridge University Press, 171–213 –

GK Scientist (2021) – Mechanism of Stomatal Movement – https://gkscientist.com/mechanism-of-stomatal-movement/ – (On our blog : https://plantstomata.wordpress.com/2022/03/31/104799/ )

Glaz B., Morris D. R., Daroub S. H. (2004) – Sugarcane Photosynthesis, Transpiration, and Stomatal Conductance Due to Flooding and Water Table – Crop Sci. 44: 1633–1641 – https://pdfs.semanticscholar.org/3403/a4ac763b5c917acc56d54b0d62c9f345d49e.pdf – (On our blog : https://plantstomata.wordpress.com/2019/07/23/stomatal-conductance-due-to-flooding-and-water-table/ )

Glenn E. P., Nagler P. L., Morino K., Kevin R. Hultine K. R. (2013) – Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment – Plant and Soil 371(1–2): 655–672 – https://link.springer.com/article/10.1007/s11104-013-1803-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/03/stomatal-conductance-of-tamarix-in-a-high-salinity-environment/)

Glinka Z. (1971) – The effect of epidermal cell water potential on stomatal response to illumination of leaf discs of Vicia faba – Physiol. Plant. 24: 476-479 – https://doi.org/10.1111/j.1399-3054.1971.tb03521.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1971.tb03521.x – (On our blog : https://plantstomata.wordpress.com/2018/03/23/epidermal-cell-water-potential-and-stomatal-response/

Glinka Z., Meidner H., (1967)The Measurement of Stomatal Responses to Stimuli in Leaves and Leaf Discs – Journal of Experimental Botany 19(58): 152-166 – https://www.jstor.org/stable/23687153 – (On our blog : https://plantstomata.wordpress.com/2021/11/19/95883/ )

Głowacka K., Kromdijk J., Kucera K., Xie J., Cavanagh A. P., Leonelli L., Leakey A. D. B., Ort D. R., Niyogi K. K., Long S. P. (2018) – Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop – Nat Commun 9868 – https://doi.org/10.1038/s41467-018-03231-xhttps://www.nature.com/articles/s41467-018-03231-x – (On our blog : https://plantstomata.wordpress.com/2022/04/08/plants-with-increased-psbs-expression-show-less-stomatal-opening-in-response-to-light-resulting-in-a-25-reduction-in-water-loss-per-co2-assimilated-under-field-conditions/ )

Glowacka K., Tretyn A., Gorecki R. J., Lee S. H. (2006) – EGTA inhibits floral induction of Pharbitis nil via its influence on gas exchange properties of stomata – Acta Physiologiae Plantarum 28: 5 – ISSN :0137-5881 – https://www.infona.pl/resource/bwmeta1.element.agro-article-65972cbe-3f0b-4cfb-8ffa-697e86dcafb5 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/egta-inhibits-floral-induction-via-its-influence-on-stomata/)

Göbel L., Coners H., Hertel D., Willinghöfer S., Leuschner C. (2019) – The Role of Low Soil Temperature for Photosynthesis and Stomatal Conductance of Three Graminoids From Different Elevations – Front. Plant Sci., 18 March 2019 –  https://doi.org/10.3389/fpls.2019.00330https://www.frontiersin.org/articles/10.3389/fpls.2019.00330/full – (On our blog : https://plantstomata.wordpress.com/2022/01/14/low-soil-temperature-photosynthesis-and-stomatal-conductance/ )

Godoski J., Kuhn J. M., Schroeder J. I. (2011) – Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells – Nature Cell Biology 12: 87-93 – doi:10.1038/ncb2009  – http://www.nature.com/ncb/journal/v12/n1/fig_tab/ncb2009_F5.html – (On our blog : https://plantstomata.wordpress.com/2016/04/07/carbonic-anhydrases-function-early-in-the-co2-signalling-pathway-in-stomata/)

Goh C. H., Dietrich P., Steinmeyer R., Schreiber U., Nam H. G,. Hedrich R. (2002) – Parallel recordings of photosynthetic electron transport and K+-channel activity in single guard cells – Plant J. 32: 623–630 – DOI: 10.1046/j.1365-313X.2002.01451.x – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Parallel-recordings-of-photosynthetic-electron-transport-and-K–channel-activity-in-single-guard-cells-1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/20/parallel-recordings-of-photosynthetic-electron-transport-and-k-channel-activity-in-single-guard-cells-of-stomata/ )

Goh C. H, Hedrich R., Nam H. G. (2002) – Evidence for the functional organization of chloroplast in adaxial guard cells of Vicia faba leaves by single cell analysis – Plant Sci. 162: 965–972 – doi: 10.1016/S0168-9452(02)00047-Xhttps://www.sciencedirect.com/science/article/pii/S016894520200047X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/03/10/the-chloroplasts-of-adaxial-gcs-of-stomata-have-a-highly-expressive-functional-organization-and-that-the-photosynthetic-apparatus-of-adaxial-gcs-is-well-adapted-to-elevated-light-intensities/ )

Goh C. H., Kinoshita T., Oku T., Shimazaki K. I. (1996) – Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplast  – Plant Physiol. 111: 433–440 – https://www.jstor.org/stable/4277180?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/23/inhibition-of-blue-light-dependent-h-pumping-by-aba-in-stomatal-protoplasts/ )

Goh C.-H., Ko S.-M, Park Y.-I., Kim C.-S., Song K.-J. (2011) – Regulation of Dark-Induced Stomatal Closure in Arabidopsis Dynamin-Like Protein 1E (adl1e) Mutant Leaves – Journal of Plant Biology 54(2): 112-118 – DOI: 10.1007/s12374-011-9149-8 – https://www.infona.pl/resource/bwmeta1.element.springer-2f3d3081-d229-309b-933a-38c10a528b9a – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-closure-in-the-dark-is-governed-by-cytosolic-atp-concentration-which-is-stimulated-by-mitochondrial-activity/)

Goh C.-H., Oku T., Shimazaki K. (1995) – Properties of proton pumping in response to blue light and fusicoccin in guard cell protoplasts isolated from adaxial epidermis of Vicia leaves – Plant Physiol 109: 187–194 – https://doi.org/10.1104/pp.109.1.187http://www.plantphysiol.org/content/109/1/187?ijkey=5474bd1a29fca2fa14f340a3fd667c6b0ca5f710&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/proton-pumping-in-response-to-blue-light-and-fusicoccin-in-stomatal-guard-cell-protoplasts/ )

Goh C.-H., Oku T., Shimazaki K.-I. (1997) – Photosynthetic properties of adaxial guard cells from Vicia leaves – Plant Science 127: 149 159 – https://doi.org/10.1016/S0168-9452(97)00122-2 –https://www.sciencedirect.com/science/article/pii/S0168945297001222 – (On our blog : https://plantstomata.wordpress.com/2019/03/14/photosynthetic-properties-of-adaxial-stomatal-guard-cells/ )

Goh C.-H., Schreiber U., Hedrich R. (1999) – New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli – Plant, Cell Environ. 2: 1057–1070 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/New-approaches-for-monitoring-chlorophyll-fluorescence-of-single-guard-cells-and-protoplast-in-response-to-physiological-stimuli.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/12/chlorophyll-fluorescence-quenching-analysis-allows-profound-insights-into-stomatal-physiology/ )

Goh C. J., Avadhani P. N., Loh C. S., Hanegraaf C., Arditti J. (1977) – Diurnal stomatal and acidity rhythms in orchid leaves – New Phytol. 78: 365-372 – DOI: 10.1111/j.1469-8137.1977.tb04840.xhttps://www.jstor.org/stable/2433361?seq=1#page_scan_tab_contents  – (On our blog : https://plantstomata.wordpress.com/2018/03/22/diurnal-stomatal-and-acidity-rhythms/ )

Gökbayrak Z., Dardeniz A., Bal M. (2008) – Stomatal density adaptation of grapevine to windy conditions – Trakia Journal of Sciences 6(1): 18-22 – http://tru.uni-sz.bg/tsj/Vol6N01_2008/Gokbayrak%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/29/stomatal-density-adaptation-to-windy-conditions/ )

Gollan T., Passioura J.B., Munns R. (1986) – Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves – Aust. J. Plant Physiol. 13: 459–464 – DOI: 10.1071/PP9860459 – https://www.researchgate.net/publication/262994599_Soil_water_status_affects_the_stomatal_conductance_of_fully_turgid_wheat_and_sunflower_leaves_Aust_J_Plant_Physiol_13_459-464 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/soil-water-status-affects-the-stomatal-conductance/ )

Gollan T.Schurr U., Schulze E.-D. (1992) – Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap – Australian Journal of Plant Physiology 13: 459464  – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01488.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/27/stomatal-response-to-drying-soil/)

Gollan T. N., Turner N. C., Schulze E.-D. (1985) – The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. III. In the sclerophnyllous woody species Nerium oleander – Oecologia 65: 356-362 – DOI: 10.1007/BF00378909 – https://www.ncbi.nlm.nih.gov/pubmed/28310439 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/soil-water-status-rather-than-leaf-water-status-controls-responses-of-stomata-and-leaf-gas-exchange/

Golldack D., Li C., Mohan H., Probst N. (2014) – Tolerance to drought and salt stress in plants: unraveling the signaling networks – Front. Plant Sci. 22 April 2014 – https://doi.org/10.3389/fpls.2014.00151 – https://www.frontiersin.org/articles/10.3389/fpls.2014.00151/full – (On our blog : https://plantstomata.wordpress.com/2018/01/27/the-specific-role-of-stomatal-signaling/ )

Goltz S. M., Tanner C. B. (1972) – Seed onion temperatures and their effect on stomata – Hort. Scvience 7: 180-181 –

Gomes Dias G. de M., Rodrigues Soares J. D., Pasqual M., Lara Silva R. A., de Almaida Rodrigues L. C., Pereira F. J., de Castro E. M. (2014) – Photosynthesis and leaf anatomy of Anthurium cv. Rubi plantlets cultured in vitro under different silicon (Si) concentrations – Australian J. Crop Sci. AJCS 8(8): 1160-1167 – ISSN:1835-2707 – https://pdfs.semanticscholar.org/8a93/4a54f0acbe7f9c8e0dc43496a05d41d552ed.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/04/photosynthesis-leaf-anatomy-and-stomata-of-plantlets-cultured-in-vitro-under-different-silicon-concentrations/ )

Gomes M. M. A., Lagoa A. M. M. A., Medina C. L., Machado E. C., Machado M. A. (2004) – Interactions between leaf water potential, stomatal conductance and abscisic acid content of orange trees submitted to drought stress (Interações entre potencial da água na folha, condutância estomática e conteúdo de ácido abscísico em laranjeiras submetidas a estresse hídrico) – Braz. J. Plant Physiol. 16(3): – http://dx.doi.org/10.1590/S1677-04202004000300005 – ISSN 1677-9452 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202004000300005 – (On our blog : https://plantstomata.wordpress.com/2019/03/29/water-stress-increased-aba-content-with-consequent-stomatal-closure-and-decreased-y2-values/ )

Gomes S. A. R. (1987) – Responses of seedlings of tropical woody plants to environmental stresses with emphasis on Theobroma cacao and Hevea brasiliensis – Energy Technology Data Exchange (ETDEWEB) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/stomatal-responses-to-environmental-stresses-at-seedlings-of-tropical-woody-plants/ )

Gomez L. D., Gilday A., Feil R., Lunn J. E., Graham I. A. (2010) –  AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growthand responsiveness to ABA in germinating seeds and stomatal guard cells – PlantJournal 64:113 – doi: 10.1111/j.1365-313X.2010.04312.x – Epub 2010 Sep 7 – https://www.ncbi.nlm.nih.gov/pubmed/20659274 – (On our blog : https://plantstomata.wordpress.com/2018/03/24/tps1-gene-product-plays-an-essential-role-in-responsiveness-to-aba-in-stomata/

Gómez-Rodríguez O., Zavaleta-Mejía E., González-Hernández V. A., Livera-Muñoz M., Cárdenas-Soriano E. (2007) – Physiological and morphological adaptations in tomato intercropped with Tagetes erecta and Amaranthus hypochondriacus – Rev. Fitotec. Mex. 30 (4): 421 – 428 – http://www.redalyc.org/articulo.oa?id=61030409 ISSN 0187-7380 – http://www.redalyc.org/html/610/61030409/ – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-conductance-physiological-and-morphological-adaptations/)

Gomi K., Ogawa D., Katou S., Kamada H., Nakajima N., Saji H., Soyano T.Sasabe M.Machida Y.Mitsuhara I., Ohashi1 Y., Seo S. (2005) – A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco – Plant Cell Physiol. 46: 1902–1914 – doi: 10.1093/pcp/pci211 – (On our blog : https://plantstomata.wordpress.com/2016/05/28/ntmpk4-is-involved-in-ja-signaling-and-in-stomatal-movement/ )

Gommers C. (2020) – Keep cool and open up: temperature-induced stomatal opening – https://plantae.org/keep-cool-and-open-up-temperature-induced-stomatal-opening/ – (On our blog : https://plantstomata.wordpress.com/2020/10/21/temperature-induced-stomatal-opening-2/ )

Gong L., Liu X.-D., Zeng Y.-Y., Tian X.-Q., Li Y.-L, Turner N. C., Fang X.-W. (2021) – Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages – Plant Physiology 186(1): 782–797 – https://doi.org/10.1093/plphys/kiab090https://academic.oup.com/plphys/article-abstract/186/1/782/6146994?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2022/04/02/the-physiological-and-biophysical-mechanisms-that-may-have-been-responsible-for-the-evolution-of-a-stomatal-response-to-aba-in-the-earliest-seed-plants/ )

Gong Y., Alassimone J., Muroyama A., Amador G., Varnau R., Liu A., Bergmann D. C. (2021) – Arabidopsis stomatal polarity protein BASL mediates distinct processes before and after cell division to coordinate cell size and fate assymetries – Development doi: 10.1242/dev.199919https://www.biorxiv.org/content/10.1101/2021.06.18.448880v1 – (On our blog : https://plantstomata.wordpress.com/2021/10/27/stomatal-basl-mediates-distinct-processes-before-and-after-cell-division/ )

Gong Y., Alassimone J., Varnau R., Sharma N., Cheung L. S., Bergmann D. C. (2021) – Tuning self-renewal in the Arabidopsis stomatal lineage by hormone and nutrient regulation of asymmetric cell division – Plant Biology – DOI: 10.7554/eLife.63335https://elifesciences.org/articles/63335 – (On our blog : https://plantstomata.wordpress.com/2021/07/09/a-framework-for-a-mechanistic-understanding-of-how-nutritional-status-and-environmental-factors-tune-stem-cell-behavior-in-the-stomatal-lineage/ )

Gonugunta V. K., Srivastava N., Puli M. R., Raghavendra A. S. (2008) – Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid – Plant Cell Environ. 31: 1717–1724 – doi: 10.1111/j.1365-3040.2008.01872.x – (On our blog : https://plantstomata.wordpress.com/2016/05/28/no-aba-and-stomatal-closure/ )

Gonugunta V. K., Srivastava N., Raghavendra A. S. (2009) – Cytosolic alkalinization is a common and early messenger preceding the production of ROS and NO during stomatal closure by variable signals, including abscisic acid, methyl jasmonate and chitosan – Plant Signal. Behav. 4: 561–564 – doi: 10.4161/psb.4.6.8847 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688314/ – (On our blog : https://plantstomata.wordpress.com/2018/03/24/levels-of-reactive-oxygen-species-ros-nitric-oxide-no-and-cytosolic-calcium-ca2-increase-significantly-during-stomatal-closure/

Gonzales-Guzman M., Pizzio G.A., Antoni R., Vera-Sirera, Merilo E., Bassel G. W., Fernandez M. A., Holdsworth M. J., Perez-Amador M. A., Kollist H., Rodriguez P. L. (2012) – Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid – The Plant Cell Online 24: 2483-2496 – doi: 10.1105/tpc.112.098574 – https://www.ncbi.nlm.nih.gov/pubmed/22739828 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/arabidopsis-pyrpylrcar-receptors-play-a-major-role-in-quantitative-regulation-of-stomatal-aperture/)

Gonzalez-Fernandez I., Bermejo V., Elvira S., de la Torre D., Gonzalez A., Navarrete L., Sanz J., Calvete H., Garcia-Gomez H., Lopez A., Serra J., Lafarge A., Armesto A. P., Calvo A., Alonso R. (2013) – Modelling ozone stomatal flux of wheat under Mediterranean conditions – Atmospheric Environment 67: 149–160 – https://doi.org/10.1016/j.atmosenv.2012.10.043 – https://www.sciencedirect.com/science/article/pii/S1352231012010254 – (On our blog : https://plantstomata.wordpress.com/2018/12/12/regional-model-parameterizations-are-more-suitable-for-ozone-risk-assessment-stomatal-flux/

Gonzalez-Guzman M. Pizzio G. A., Antoni R., Vera-Sirera F., Merilo E., Bassel G. W., Fernandez M. A., Holdsworth M. J., Perez-Amador M. A., Kollist H., Rodriguez P. L. (2012) – Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid – Plant Cell 24(6): 2483-96 – doi: 10.1105/tpc.112.098574 – Epub 2012 Jun 26 – https://pubmed.ncbi.nlm.nih.gov/22739828/ – (On our blog : https://plantstomata.wordpress.com/2021/01/28/aba-perception-by-pyr-pyls-plays-a-major-role-in-regulation-of-stomatal-aperture/ )

Gonzalez-Hernandez V. A., Manjarrez-Sandoval P., Mendoza-Onofre L., Engleman E. M. (1986) – Leaf elongation rate and stomatal diffusive resistance of sorghum plants under water stress at different developmental stages – Sorghum Newsletter 29: 91 – https://eurekamag.com/research/001/875/001875259.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/leaf-elongation-rate-and-stomatal-diffusive-resistance-under-water-stress/ )

Gonzalez-Rodriguez H., Maiti R., Rodriguez Balboa P. C., Marmolejo Moncivaias J. G., Kumari A. (2016) – Comparative Leaf Surface Anatomy of Woody Species of Tamaulipan Thornscrub, North-Eastern Mexico and its Possible Relation with Taxonomic Delimitation and Drought Resistance – International Journal of Bio-Resource & Stress Management 7 (5): 1109-1119 – https://www.masader.om/eds/detail?db=asn&an=120544960&isbn=09763988 – (On our blog : https://plantstomata.wordpress.com/2020/04/24/stomata-and-drought-resistance/ )

Goodfellow J., Eamus D., Duff G. (1997) – Diurnal and seasonal changes in the impact of CO2 enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet–dry tropics of Australia – Tree Physiology 17: 291-299 – https://www.academia.edu/34058561/Diurnal_and_seasonal_changes_in_the_impact_of_CO2_enrichment_on_assimilation_stomatal_conductance_and_growth_in_a_long-term_study_of_Mangifera_indica_in_the_wet-dry_tropics_of_Australia – (On our blog : https://plantstomata.wordpress.com/2018/09/26/changes-in-the-impact-of-co2-enrichment-on-assimilation-stomatal-conductance-and-growth/)

PAVLO GORDIICHUK, SARAH COLEMAN, GE ZHANG, MATTHIAS KUEHNE, TEDRICK T. S. LEW, MINKYUNG PARK, JIANQIAO CUI, ALLAN M. BROOKS, KARAGHEN HUDSON, ANNE M. GRAZIANO, DANIEL J. M. MARSHALL, ZAIN KARSAN, SHEILA KENNEDY, MICHAEL S. STRANO (2021) – Augmenting the living plant mesophyll into a photonic capacitor – SCIENCE ADVANCES 7(37) – DOI: 10.1126/sciadv.abe9733https://www.science.org/doi/10.1126/sciadv.abe9733 – (On our blog : https://plantstomata.wordpress.com/2021/09/30/to-transform-living-plants-into-photonic-substrates-infiltrating-the-mesophyll-of-the-plant-leaf-through-the-surface-stomata-pores-dispersing-the-particles-onto-the-three-dimensional-3d-surface-are/ )

Göring H., Koshuchowa S., Deckert C. (1990) – Influence of gibberellic acid on stomatal movement – Biochem. Physiol. Pflanz. 186: 367-374 – https://doi.org/10.1016/S0015-3796(11)80235-0 – https://www.sciencedirect.com/science/article/pii/S0015379611802350 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/influence-of-ga-on-stomatal-movement/

Gorton H. L. (1990) – Stomates and pulvini: a comparison of two rhythmic, turgor-mediated movement systems – in Satter R. L., Gorton H. L., Vogelmann T. C. (EDS.) : “The Pulvinus : motor organ for leaf movement” – Rockville, Md. (USA): American Society of Plant Physiologists 1990 – ISBN 09-430-88178. p. 223-237 –

Gorton H. L., Williams W. E., Assmann S. M. (1993) – Circadian rhythms in stomatal responsiveness to red and blue light – Plant Physiol 103: 399–406 – https://doi.org/10.1104/pp.103.2.399 http://www.plantphysiol.org/content/103/2/399?ijkey=28e5368928dc972dd2a90c2080aebbe7715abcf4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/circadian-rhythms-in-stomatal-responsiveness-to-red-and-blue-light/ )

Gorton H. L., Williams W. E., Binns M. E. (1988) – Repeated measurements of aperture for individual stomates – Plant Physiol. 89: 387–390 – PMID: 16666553 PMCID: PMC1055851 – https://www.ncbi.nlm.nih.gov/pubmed/16666553 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/repeated-measurements-of-aperture-for-individual-stomates/

Gorton H. L., Williams W. E., Binns M. E., Gemmell C. N., Leheny E. A., Shepherd A. C. (1989) – Circadian stomatal rhythms in epidermal peels from Vicia faba – Plant Physiol 90: 1329–1334 – https://doi.org/10.1104/pp.90.4.1329http://www.plantphysiol.org/content/90/4/1329?ijkey=fc43b703c8b277dfda2ba2266cd713bd568bc0c6&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/circadian-stomatal-rhythms/ )

Gostin I. N. (2009) – Air Pollution Effects on the Leaf Structure of some Fabaceae Species – Not. Bot. Hort. Agrobot. Cluj 37(2): 57-63 – 3078-12994-2-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/30/air-pollution-and-stomata-of-some-fabaceae/)

Goto T., Matsuno T., Yoshida Y., Kageyama Y. (2002) – Photosynthetic, Evapotranspiratory and Leaf Morphological Properties of Chrysanthemum Grown under Root Restriction as Affected by Fertigation Frequency – Journal of the Japanese Society for Horticultural Science 71(2): 277-287 – http://doi.org/10.2503/jjshs.71.277 – https://www.jstage.jst.go.jp/article/jjshs1925/71/2/71_2_277/_article – (On our blog : https://plantstomata.wordpress.com/2017/11/18/photosynthesis-evapotranspiration-fertigation-frequency-and-stomata/)

Gotoh E., Oiwamoto K., Inoue S.-i., Shimazaki K.-i., Doi M. (2019) – Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana – Journal of Experimental Botany 70(4): 1367–1374 – https://doi.org/10.1093/jxb/ery450 –https://academic.oup.com/jxb/article/70/4/1367/5257106 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/bl-dependent-stomatal-opening-occurs-in-obligate-cam-plants-independently-of-photosynthetic-co2-assimilation-mode/ )

Gotow K., Kondo N., Syôno K. (1982) – Effect of CO2 on volume change of guard cell protoplast from Vicia faba L. – Plant Cell Physiol. 23: 1063–1070 – 

Gotow K., Sakaki T., Kondo N., Kobayashi K., Syôno K (1985) – Light‐induced alkalinization of the suspending medium of guard cell protoplasts from Vicia faba – Plant Physiology 79: 825-828 – https://doi.org/10.1104/pp.79.3.825 – http://www.plantphysiol.org/content/79/3/825 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/light%e2%80%90induced-alkalinization-of-the-suspending-medium-of-stomatal-protoplasts/ )

Gotow K., Tanaka K., Kondo N., Kobayashi K., Syono K. (1985) –  Light activation of NADPmalate dehydrogenase in guard cell protoplasts from Vicia faba L. – Plant Physiol. 79: 829–832 – https://doi.org/10.1104/pp.79.3.829 – http://www.plantphysiol.org/content/79/3/829.short – (On our blog : https://plantstomata.wordpress.com/2018/12/13/the-physiological-significance-of-light-dependent-activation-of-nadp-mdh-in-stomata/ )

Gotow K., Shimazaki K.-I., Kondo N., Syôno K (1984) – Photosynthesis-dependent volume regulation in guard cell protoplasts from Vicia faba L. – Plant Cell Physiol. 25: 671–675 – https://academic.oup.com/pcp/article-abstract/25/4/671/1911872?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/24/volume-regulation-in-stomatal-protoplasts/ )

Gotow K., Taylor S., Zeiger E. (1988) – Photosynthetic carbon fixation in guard cell protoplasts of Vicia faba L.: evidence from radiolabel experiments – Plant Physiology 86: 700–705 – https://doi.org/10.1104/pp.86.3.700 – http://www.plantphysiol.org/content/86/3/700.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/pga-is-a-primary-carboxylation-product-of-the-pcrp-in-stomata/

Gottwald T. R., Graham J. H. (1992) – A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens – Phytopathology 82: 930-935 –

Goudriaan J., van Laar H. H. (1978) – Relations between Leaf Resistance, C02-Concentration and C02-Assimilation in Maize, Beans, Lalang Grass and Sunflower – PHOTOSYNTHETICA 12 (3): 241-249 – https://edepot.wur.nl/218530 – (On our blog : https://plantstomata.wordpress.com/2021/09/29/93852/ )

Govil C. M. (1985) – Stomatal response of chlorocholine chloride and indole-3-acetic acid in Commelina communis L. – Proceedings: Plant Sciences 95(3): 67–172 – https://doi.org/10.1007/BF03053068https://link.springer.com/article/10.1007/BF03053068#citeas – (On our blog : https://plantstomata.wordpress.com/2019/08/28/chlorocholine-chloride-treatments-caused-depletion-of-k-from-the-stomatal-guard-cells-while-indoleacetic-acid-resulted-in-accumulation-of-k/ )

Gowing D. J., Jones H. G., Davies W. J. (1993) Xylem-transported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture – Plant, Cell & Environment 16: 453459 – (On our blog : https://plantstomata.wordpress.com/?s=Xylem-transported+abscisic+acid%3A )

Grabov A., Blatt M. R. (1997) – Parallel control of the inward‐rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells – Planta 201: 8495 – https://doi.org/10.1007/BF01258684 – https://link.springer.com/article/10.1007/BF01258684#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/24/control-of-the-inward%e2%80%90rectifier-k-channel-by-cytosolic-free-ca2-and-ph-in-stomata/

Grabov A., Blatt M. R. (1998a) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells – Proc. Natl Acad. Sci. USA 95: 47784783 – (On our blog / https://plantstomata.wordpress.com/2016/05/29/ca-membrane-voltage-aba-and-stomata/ )

Grabov A., Blatt M. R. (1998b) –  Co-ordination of signaling elements in guard cell ion channel control – J. Exp. Bot. 49: 351360 – https://www.jstor.org/stable/23695968?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/27/signaling-elements-in-stomatal-guard-cell-ion-channel-control/ )

Grabov A., Blatt M.R. (1999) – A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells – Plant Physiol. 119:277–287 – http://dx.doi.org/10.1104/pp.119.1.277 – (On our blog : https://plantstomata.wordpress.com/2016/05/30/hyperpolarization-in-stomata/ )

Grabov A., Leung J.Giraudat J.Blatt M. R. (1997) – Alteration of anion channel kinetics in wild-type andabi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid – Plant J. 12: 203213 – (On our blog : https://plantstomata.wordpress.com/2016/05/30/aba-and-anion-channel-kinetics-in-stomata/)

Grace J., Okali D. U. U., Fasehun F. E. (1982) – Stomatal conductance of two tropical trees during the wet season in Nigeria – J Appl Ecol 19: 659–670 – DOI: 10.2307/2403497 – https://www.jstor.org/stable/2403497?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/26/stomatal-conductance-of-two-tropical-trees-during-the-wet-season/ )

Graham J. H., Gottwald T. R., Riley T. D., Achor D. (1992) – Penetration Through Leaf Stomata and Growth of Strains of Xanthomonas campestris in Citrus Cultivars Varying in Susceptibility to Bacterial Diseases – The American Phytopathological Society 82(11): 1319-1325 – DOI: 10.1094/Phyto-82-1319https://www.apsnet.org/publications/phytopathology/backissues/Documents/1992Articles/Phyto82n11_1319.PDF – (On our blog : https://plantstomata.wordpress.com/2021/04/07/89625/ )

Graham L.R.D., Ultich A. (1972) – Potassium deficiency-induced changes in stomatal behaviour, leaf water potentials, and root system permeability in Beta vulgaris – Plant Physiol. Lancaster 49: 105-109 –

Graham R. D., Ulrich A. (1972) – Potassium deficiency-induced changes in stomatal behavior, leaf water potentials, and root system permeability in Beta vulgaris L. – Plant Physiol. 49: 105-109 – https://doi.org/10.1104/pp.49.2.105 http://www.plantphysiol.org/content/49/2/105 – (On our blog : https://plantstomata.wordpress.com/2020/06/10/leaf-water-potentials-like-stomatal-apertures-appear-to-be-strongly-related-to-leaf-potassium-concentration/ )

Graham S. (2001) – Scientists Discover Mechanism by which Plants Hold Water During Drought – https://www.scientificamerican.com/article/scientists-discover-mecha/ (On our blog : https://plantstomata.wordpress.com/2019/04/03/stomatal-mechanism-by-which-plants-hold-water-during-drought/ )

Graner E. A. (1940) – Tratamento de mandioca pela colchicina. I. Nota preliminar sobre poliploidia indicada pela diferença de tamanho dos estômatos – Jornal de Agronomia 3: 83-98 –

Graner E. A. (1942) – Tratamento de mandioca pela colchicina: II. formas poliplóides obtidas – Bragantia 2 (2): – https://doi.org/10.1590/S0006-87051942000200001  – https://www.scielo.br/j/brag/a/fKkGpXhmTccW3JwXXgW8twL/?lang=pt – (On our blog : https://plantstomata.wordpress.com/2022/01/12/there-is-a-correlation-between-chromosome-duplication-and-increase-of-the-major-diameter-of-stomata/ )

Graniti A. (1969) – Fusicoccin: a fungal toxin that opens stomata – Nature 223(5210): 1070–1071 – https://doi.org/info:doi/

Granot D., Kelly G. (2019) – Evolution of Guard-Cell Theories: The Story of Sugars – Trends in Plant Science – https://doi.org/10.1016/j.tplants.2019.02.009 –https://www.cell.com/trends/plant-science/fulltext/S1360-1385(19)30051-2?rss=yes – (On our blog : https://plantstomata.wordpress.com/2019/03/10/the-evolution-of-stomatal-guard-cell-osmoregulation-theories-with-an-emphasis-on-the-role-of-sugars/ )

Granot D., Lugassi N., Kottapalli J., Kelly G. (2015) – Sensing Sugar and Saving Water – Procedia Environmental Sciences 29: 3 – DOI: 10.1016/j.proenv.2015.07.123 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fca83b2f-76cb-3f52-a583-ecd2769eecbb – (On our blog : https://plantstomata.wordpress.com/2017/10/09/sugars-close-stomata-via-a-non-osmotic-mechanism/)

Grant B. L. (2022) – What Are Stomata: Stoma Plant Pores And How They Work – Gardening Know How – https://www.gardeningknowhow.com/garden-how-to/info/what-are-stomata.htm/?print=1&loc=bot – (On our blog : https://plantstomata.wordpress.com/2022/03/26/104455/ )

Grant B. W., Vatnick I. (1998) – A multi-week inquiry for an undergraduate introductory biology laboratory: Investigating correlations between environmental variables and leaf stomata density – Journal of College Science Teaching 28: 109-112 – http://www.science.widener.edu/~grant/projects/pubs/grantvatnick1998.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/67469

Grant B. W., Vatnick I. (2004) – Environmental Correlates of Leaf Stomata Density -Teaching Issues and Experiments in Ecology (TIEE) -Ecological Society of America (Esa) – 1: 2004 – (http://www.esa.org/tiee/vol/v1/experiments/stomata/stomata_description.html) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/leaf-stomata-density-and-the-environment/)

Grant O. M., Chaves M. M., Jones H. G. (2006) –  Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions – Physiologia Plantarum 127(3): 507–518 – https://doi.org/10.1111/j.1399-3054.2006.00686.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2006.00686.x – (On our blog : https://plantstomata.wordpress.com/2019/08/12/the-robustness-and-sensitivity-of-thermal-imaging-for-detecting-changes-in-stomatal-conductance/ )

Grant O. M., Davies M. J., James C. M., Johnson A. W., Leinonen I., Simpson D. W. (2012) – Thermal imaging and carbon isotope composition indicate variation amongst strawberry (Fragaria × ananassa) cultivars in stomatal conductance and water use efficiency – Environmental and Experimental Botany 76: 7–15 – https://doi.org/10.1016/j.envexpbot.2011.09.013https://www.sciencedirect.com/science/article/abs/pii/S0098847211002395?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/12/03/although-the-results-indicate-substantial-variation-in-gs-and-wue-between-cultivars-generally-all-cultivars-responded-to-water-deficit-by-lowering-gs-and-hence-increasing-wue/ )

Grantz D. A. (1984) – Guard cell regulation of stomatal response: chloroplast function and abscisic acid metabolism in guard cells of Commelina communis and Vicia faba – Dissertation Abstracts International, B Sciences and Engineering 45(1): 17 – https://eurekamag.com/research/001/378/001378825.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/chloroplast-function-and-aba-metabolism-in-stomatal-guard-cells/ )

Grantz D. A. (1989) – Effect of cool temperatures on photosynthesis and stomatal conductance in field-grown sugarcane in Hawaii – Field Crops Research 22: 143–155 – https://doi.org/10.1016/0378-4290(89)90064-6https://www.sciencedirect.com/science/article/abs/pii/0378429089900646?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/06/23/cool-temperatures-and-stomatal-conductance/ )

Grantz D. A. (1990) – Plant responses to atmospheric humidity – Plant, Cell & Environm. 13: 667–679 – https://doi.org/10.1111/j.1365-3040.1990.tb01082.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1990.tb01082.x – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/72211 )

Grantz D. A., Assmann S. M. (1991) – Stomatal response to blue-light: water-use efficiency in sugarcane and soybean – Plant Cell Environ. 14 683–690 – DOI: 10.1111/j.1365-3040.1991.tb01541.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01541.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/24/blue-light-stimulated-stomata/)

Grantz D. A., Ho T. H. D., Uknes S. J., Cheeseman J. M., Boyer J. S. (1985) – Metabolism of abscisic acid in guard cells of Vicia faba L. and Commelina communis L. – Plant Physiol. 78: 51–56 – doi: 10.1104/pp.78.1.51 – https://www.jstor.org/stable/4269281?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/26/metabolism-of-aba-in-stomata/

Grantz D. A., Karr M., Birkhardt J. (2020) – Heterogeneity of Stomatal Pore Area Is Suppressed by Ambient Aerosol in the Homobaric Species, Vicia faba – Front. Plant Sci., 25 June 2020 – https://doi.org/10.3389/fpls.2020.00897https://www.frontiersin.org/articles/10.3389/fpls.2020.00897/full – (On our blog : https://plantstomata.wordpress.com/2022/04/11/deposition-of-hygroscopic-aerosol-may-create-a-thin-aqueous-film-across-the-leaf-surface-that-connects-neighboring-stomata-to-each-other-and-to-the-leaf-interior/ )

Grantz D. A., Linscheid B. S., Grulke N. (2019) – Differential Responses of Stomatal Kinetics and Steady State Conductance to Abscisic Acid in a Fern: Comparison with a Gymnosperm and an Angiosperm – New Phytol. 222: 1883–1892 – https://doi.org/10.1111/nph.15736 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15736?af=R – (On our blog : https://plantstomata.wordpress.com/2019/02/12/stomatal-kinetics-may-provide-insight-into-phylogeny-and-stomatal-regulatory-strategies-with-potential-application-to-selection-for-crop-improvement/ )

Grantz D. A., Meinzer F. C. (1990) – Stomatal response to humidity in a surgarcane field: simultaneous porometric and micrometeorological measurements – Plant Cell Environ 13: 27–37 – https://doi.org/10.1111/j.1365-3040.1990.tb01296.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1990.tb01296.x – (On our blog : https://plantstomata.wordpress.com/2021/04/10/significant-stomatal-response-to-vapour-pressure-in-well%e2%80%90irrigated-sugarcane/ )

Grantz D. A., Moore P. H., Zeiger F. (1987) – Stomatal responses to light and humidity in sugarcane. Prediction of daily time courses and identification of potential selection criteria – Plant, Cell and Environment 10: 197–204 –

Grantz D. A., Schwartz A. (1988) – Guard cells of Commelina communis L. do not respond metabolically to osmotic stress in isolated epidermis: implications for stomatal responses to drought and humidity – Planta 174: 166–173 – doi: 10.1007/BF00394768 – https://www.ncbi.nlm.nih.gov/pubmed/24221472 – (On our blog : https://plantstomata.wordpress.com/2018/09/29/stomatal-responses-to-drought-and-humidity/ )

Grantz D. A., Zeiger E. (1986) – Stomatal responses to light and leaf-air water vapour pressure differences show similar kinetics in sugarcane and soybean – Plant Physiology 81: 865-868 – PMID: 16664916 PMCID: PMC1075441 – https://www.ncbi.nlm.nih.gov/pubmed/16664916 – (On our blog : https://plantstomata.wordpress.com/2018/10/20/stomatal-responses-to-light-and-leaf-air-water-vapour-pressure/ )

Grantz D. A., Zhang X. J., Carlson T. (1999) – Observations and model simulations link stomatal inhibition to impaired hydraulic conductance following ozone exposure in cotton – Plant, Cell & Environment  22(10): 1201-1210 – DOI: 10.1046/j.1365-3040.1999.00486.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1999.00486.x – (On our blog : https://plantstomata.wordpress.com/2020/02/27/model-simulations-link-stomatal-inhibition-to-impaired-hydraulic-conductance/)

Grantz D. A., Zhang X. J., Massman W. J., Delany A., Pederson J. R. (1997) – Ozone deposition to cotton (Gossypium hirsutum L.) field: stomatal and surface wetness effects during the California Ozone Deposition Experiment – Agric. For. Meteor. 85: 19-31 – https://doi.org/10.1016/S0168-1923(96)02396-9https://www.sciencedirect.com/science/article/pii/S0168192396023969 – (On our blog : https://plantstomata.wordpress.com/2019/04/28/ozone-deposition-to-cotton-is-largely-controlled-by-stomatal-responses/ )

Grantz D. A., Zhang X. J., Massman W. J., Delany A., Pederson J. R. (1997) – Ozone deposition to a cotton (Gossypium hirsutum L.) field: Stomatal and surface wetness effects during the California ozone deposition experiment – Agricultural and Forest Meteorology 85: 19–31 – https://doi.org/10.1016/S0168-1923(96)02396-9https://www.sciencedirect.com/science/article/pii/S0168192396023969?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/10/15/stomatal-and-surface-wetness-effects-during-the-california-ozone-deposition-experiment/ )

Grantz D. A., Zhang X. J., Massman W. J., den Hartog G., Neumann H. H., Pederson J. R. (1995) – Effects of stomatal conductance and surface wetness on ozone deposition in field-grown grape – Atmos. Environ. 29: 3189-3198 – https://doi.org/10.1016/1352-2310(95)00129-M –
https://www.sciencedirect.com/science/article/pii/135223109500129M – (On our blog : https://plantstomata.wordpress.com/2019/04/28/effects-of-stomatal-conductance-and-surface-wetness-on-ozone-deposition/ )

Grantz D. A., Zinsmeister D., Burkhardt J. (2018) – Ambient aerosol increases minimum leaf conductance and alters the aperture–flux relationship as stomata respond to vapor pressure deficit (VPD) – New Phytol. Online Version – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15102?af=R – (On our blog : https://plantstomata.wordpress.com/2018/04/01/aerosol-exposure-decreased-stomatal-apertures-at-each-level-of-vapor-pressure-deficit-vpd-and-increased-stomatal-conductance-at-comparable-levels-of-aperture/ )

Grassi G., Magnani F. (2005)Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees – Plant Cell Environ. 28: 834-849 – https://doi.org/10.1111/j.1365-3040.2005.01333.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2005.01333.x – (http://cat.inist.fr/?aModele=afficheN&cpsidt=16860662) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomata-drought-and-leaf-ontogeny/)

Gray A., Liu L., Facette M. (2020) – Flanking Support: How Subsidiary Cells Contribute to Stomatal Form and Function – Front Plant Sci. 11: 881 –  doi: 10.3389/fpls.2020.00881https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343895/ – (On our blog : https://plantstomata.wordpress.com/2021/03/30/anatomical-mechanical-and-biochemical-consequences-of-subsidiary-cells-on-stomatal-function/ )

Gray J. (2005) – Guard cells: transcription factors regulate stomatal movements – Curr. Biol. 15: 593–595 –

Gray J., Peirce G. J. (1919) – The Influence of Light Upon the Action of Stomata and Its Relation to the Transpiration of Certain Grains – Am. J. Bot. 6( 4): 131-155 – https://www.jstor.org/stable/2435124?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/29/light-stomata-and-transpiration/ )

Gray J. E. (2007) – Plant Development: Three Steps for Stomata – Curr. Biol. 17(6): 213-215 – https://doi.org/10.1016/j.cub.2007.01.032 – http://www.sciencedirect.com/science/article/pii/S0960982207008706 – (On our blog : https://plantstomata.wordpress.com/2017/09/18/three-steps-for-stomata/)

Gray J. E. (2012) – Stomatal development and evolution – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/signalling-mechanisms-regulating-stomatal-closure-most-probably-evolved-shortly-after-stomatal-pores-themselves/ )

Gray J. E. (2017) – The Gray Lab Website – https://www.sheffield.ac.uk/mbb/staff/juliegray – (On our blog : https://plantstomata.wordpress.com/2018/01/07/the-gray-lab-website/ )

Gray J. E. (xxxx) – EPF2 and the Molecular Regulation of Stomatal Development – GTR – https://gtr.ukri.org/projects?ref=BB%2FI002154%2F1 – (On our blog : https://plantstomata.wordpress.com/2020/03/05/project-epf2-and-the-molecular-regulation-of-stomatal-development/ )

Gray J. E., Franks P. J., Hetherington A., Jiang K., Veneklaas E., Casson S. (2017) – Stomata: Sensors of Climate Change – WON – https://wun.ac.uk/wun/research/view/stomata-sensors-of-climate-change – (On our blog : https://plantstomata.wordpress.com/2018/01/23/studying-stomata-for-producing-crops-better-adapted-to-future-climate-scenarios/ )

Gray J. E., Hetherington A. M. (2004) – Plant Development: YODA the Stomatal Switch – Current Biology 14(12): R488-R490 – DOI: 10.1016/j.cub.2004.06.019 – https://www.infona.pl/resource/bwmeta1.element.elsevier-67257323-4837-3992-96bc-149e114f2383 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/yoda-the-stomatal-switch/)

Gray J. E., Holroyd G. H., van der Lee F. M., Bahrami A. R, Sijmons P. C., Woodward F. I., Schuch W., Hetherington A. M. (2000) – The HIC signalling pathway links CO2 perception to stomatal development – Nature 408: 713716 – DOI: 10.1038/35047071  –  (On our blog : https://plantstomata.wordpress.com/2016/05/30/hic-co2-and-stomatal-development/)

Gray A. , Liu L., Facette M. (2020) – Flanking support: how subsidiary cells contribute to stomatal form and function – Frontiers in Plant Science 11: 881 – https://doi.org/10.3389/fpls.2020.00881https://www.frontiersin.org/articles/10.3389/fpls.2020.00881/full – (On our blog : https://plantstomata.wordpress.com/2022/02/07/how-subsidiary-cells-contribute-to-stomatal-form-and-function/ )

Green R. L., Beard J. B., Casnoff D. M. (1990) – Leaf Blade Stomatal Characterizations and Evapotranspiration Rates of 12 Cool-season Perennial Grasses – HORTSCIENCE 25(7): 760-761 – file:///C:/Users/wille/Downloads/[HortScience]%20Leaf%20Blade%20Stomatal%20Characterizations%20and%20Evapotranspiration%20Rates%20of%2012%20Cool-season%20Perennial%20Grasses%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/05/02/under-nonlimiting-soil-moisture-conditions-stomatal-density-was-not-reliably-associated-with-evapotranspiration-rate/ )

Green S. R., McNaughton K. G. (1997) – Modelling effective stomatal resistance for calculating transpiration from an appletree – Agric. Forest Meteorol. 83(1‐2): 1‐26 –

Greene D. W., Bukovac M. J. (1974) – Stomatal penetration: effect of surfactants and role in foliar absorption – American Journal of Botany 61(1): 100-106 –https://doi.org/10.1002/j.1537-2197.1974.tb06033.xhttps://doi.org/10.2307/2441250https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1974.tb06033.x – (On our blog : https://plantstomata.wordpress.com/2020/05/23/the-importance-of-stomatal-penetration-in-foliar-absorption-under-conditions-of-plant-culture/ )

Greenwood D. R., Scarr M. J., Christophel D. C. (2003) – Leaf stomatal frequency in the Australian tropical tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric CO2 – Palaeography, Palaeocliatology, Palaeoecology 196 (3-4): 375-393 – DOI: 10.1016/S0031-0182(03)00465-6 https://www.researchgate.net/publication/222676434_Leaf_stomatal_frequency_in_the_Australian_tropical_rainforest_tree_Neolitsea_dealbata_Lauraceae_as_a_proxy_measure_of_atmospheric_pCO2 – (On our blog : : https://plantstomata.wordpress.com/2018/03/25/leaf-stomatal-frequency-as-a-proxy-measure-of-atmospheric-co2/ )

Gregory F. G., Pearse H. (1937) – The effect on the behaviour of stomata of alternating periods of light and darkness of short duration – Annals of Botany New Series 1: 3–10 – https://www.jstor.org/stable/42908404 – (On our blog : https://plantstomata.wordpress.com/2021/06/28/the-behaviour-of-stomata-of-alternating-periods-of-light-and-darkness-of-short-duration/ )

Grein M., Roth-Nebelsick A., Konrad W. (2006) – Reconstruction of palaeoatmospheric carbon dioxide using stomatal densities of various beech plants (Fagaceae): testing and application of a mechanistic model – American Geophysical Union, Fall Meeting 2006, abstract id. PP21B-1691 – http://adsabs.harvard.edu/abs/2006AGUFMPP21B1691G – (On our blog : https://plantstomata.wordpress.com/2018/04/24/reconstruction-of-atmospheric-co2-using-stomatal-densities/ )

Gresham C. A. (1975) – Stomatal resistance in a loblolly pine plantation – Ph.D. Dissertation, Duke University, Durham, NC, 177 p.

Grewal S. (2014) – Auxin keeps stomata in the dark – The Node –  – (On our blog : https://plantstomata.wordpress.com/2015/03/11/light-and-auxin-signals-regulate-stomatal-development/).

Grieu P., Guehl J. M., Aussenac G. (1988) – The effects of soil and atmospheric drought on photosynthesis and stomatal control of gas exchange in three coniferous species – Physiol. Plant. 73: 97-104 – https://doi.org/10.1111/j.1399-3054.1988.tb09199.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1988.tb09199.x – (On our blog : https://plantstomata.wordpress.com/2019/04/28/effects-of-soil-and-atmospheric-drought-on-photosynthesis-and-stomatal-control-of-gas-exchange/ )

Griffith M. P., Magellan T. M., Tomlinson P. B. (2014) – Variation in leaflet structure in Cycas (Cycadales: Cycadaceae): does anatomy follow phylogeny and geography? – International Journal of Plant Sciences 175: 241–255 –

Grondin A.Rodrigues O.Verdoucq L.Merlot S.Leonhardt N.Maurel C. (2015) – Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation – The Plant Cell 27(7): 1945-1954 – http://dx.doi.org/10.1105/tpc.15.00421 – http://www.plantcell.org/content/27/7/1945.abstract – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/29/aquaporins-abaost1-and-stomata/)

Gross K. , Homlicher A., Weinreich A., Wagner E.. (1996) – Effect of shade on stomatal conductance, net photosynthesis, photochemical efficiency and growth of oak saplings – µAnnales des sciences forestières, INRA/EDP Sciences 53 (2-3): 279-290 – ffhal-00883051f https://hal.archives-ouvertes.fr/hal-00883051/document – (On our blog : https://plantstomata.wordpress.com/2021/03/25/effect-of-shade-on-stomatal-conductance/ )

Gross L. (2006) – Protein kinases and plant pores – PLoS Biol 4(10): e358 – https://doi.org/10.1371/journal.pbio.0040358 – https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0040358 – (On our blog : https://plantstomata.wordpress.com/2018/12/07/protein-kinases-and-plant-pores/

Gross L. J., Kirschbaum M. U. F, Pearcy R. W. (1991) – A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation – Plant Cell and Environment 14(9): 881 – 893 – https://doi.org/10.1111/j.1365-3040.1991.tb00957.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1991.tb00957.x – (On our blog : https://plantstomata.wordpress.com/2018/03/25/stomatal-conductance-c3-cycle-intermediates-photorespiration-and-rubisco-activation/ )

Grossiord C., Buckley T. N., Cernusak L. A., Novick K. A., Poulter B., Siegwolf R. T. W., Sperry J. S., McDowell N. G. (2020) – Plant responses to rising vapor pressure deficit – https://sperry.biology.utah.edu/publications/Grossiord_et_al_2020.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/27/an-abundance-of-evidence-suggests-that-stomatal-conductance-declines-under-high-vpd-and-transpiration-increases-in-most-species-up-until-a-given-vpd-threshold/ )

Grulke N. E. (2000) – An analysis of short-, medium-, and long-term O3 exposure in influencing stomatal conductance of ponderosa pine. In: Karnosky, D. F. (Ed.), 19th International IUFRO Meeting for Specialists in Air Pollution Effects on Forest Ecosystems. May 28e 31, Houghton, MI, pp. 35 (Book of Abstracts).

Grulke N. E., Alonso R., Nguyen T., Cascio C., Dobrowolski W. (2004) – Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics – Tree Physiology. 24(9): 1001-1010 –https://doi.org/10.1093/treephys/24.9.1001 – https://www.fs.usda.gov/treesearch/pubs/53846 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomata-open-at-night-in-pole-sized-and-mature-ponderosa-pine/)

Grulke N.E., Neufeld H.S., Davison A.W., Roberts M., Chappelka A.H. (2007) – Stomatal behavior of ozone-sensitive and -insensitive coneflowers (Rudbeckia laciniata var. digitata) in Great Smoky Mountains National Park – New Phytol. 173: 100–109 – (On our blog : https://plantstomata.wordpress.com/2016/06/01/o3-sensitivity-and-stomatal-behavior/)

Grünhage L., Pleijel H., Mills G., Bender J., Danielsson H., Lehmann Y., Jean-François Castell, Bethenod O. (2012) – Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield – Environmental Pollution 165: 147–157 – https://doi.org/10.1016/j.envpol.2012.02.026 – https://www.sciencedirect.com/science/article/pii/S0269749112000991 – (On our blog : https://plantstomata.wordpress.com/2018/10/21/functions-describing-the-influence-of-phenology-and-soil-moisture-on-stomatal-flux/ )

Grusak M. A., Pomper K. W. (1999) – Influence of pod stomatal density and pod transpiration on the calcium concentration of snap bean pods – J. Amer. Soc. Hort. Sci. 124(2): 194-198 – https://doi.org/10.21273/JASHS.124.2.194https://journals.ashs.org/jashs/view/journals/jashs/124/2/article-p194.xml – (On our blog : https://plantstomata.wordpress.com/2020/07/27/influence-of-pod-stomatal-density-and-pod-transpiration-on-the-calcium-concentration/ )

Grüters U., Fangmeier A., Jager H.-J. (1995) – Modelling stomatal responses of spring wheat (Triticum aestivum L. cv. Turbo) to ozone at different levels of water supply – Environ. Poll. 87: 141-149 – https://doi.org/10.1016/0269-7491(94)P2600-E –https://www.sciencedirect.com/science/article/pii/0269749194P2600E – (On our blog: https://plantstomata.wordpress.com/2019/04/28/modelling-stomatal-responses-to-ozone-at-different-levels-of-water-supply/ )

Gu Z.-F., Wang W.-q.,Zhu A.-p., Zhu X.-m., He H.-l., P. J., Song, Run C. (2004) – Effect of chlorophyll content and stoma density on cucumber resistance to downy mildew – J. Shanghai Univ. Agric. Sci. 22: 381-384 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHNX200404012.htm – (On our blog : https://plantstomata.wordpress.com/2018/03/25/stomatal-resistance-to-downy-mildew/ )

Guaquetá N. O., Davenport T. L., Burg S. P., Fischer G., Martinez N. (2007) – Comportamiento estomatal en frutas y hojas de banana, carambola, guayaba y cítricos en condiciones naturales y bajo almacenamiento hipobárico (Stomatal compartmentalization in fruits an leaves of banana, starfruit, guava and citrus crops in natural conditions and under hypobaric storage) – Undergraduate thesis – Agronomy Faculty, Universidad Nacional de Colombia, Bogota – https://www.researchgate.net/profile/Gerhard_Fischer/publication/258239032_Comportamiento_estomatal_en_frutas_y_hojas_de_banano_carambola_guayaba_y_citricos_en_condiciones_naturales_y_bajo_almacenamiento_hipobarico/links/02e7e52784375cbe3b000000.pdf – (On our blog : https://plantstomata.wordpress.com/2020/11/30/stomatal-compartmentalization-in-fruits-an-leaves-of-banana-starfruit-guava-and-citrus-crops-in-natural-conditions-and-under-hypobaric-storage/ )

Guàrdia M., Fernàndez J., Elena G., Fleck I. (2012) – Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest – Tree Physiol. 32(7): 829-838 – doi: 10.1093/treephys/tps035 – Epub 2012 Apr 26 – https://www.ncbi.nlm.nih.gov/pubmed/22539636 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-patchiness-under-water-stress/ )

Gubb C., Blanusa T., Griffiths A., Pfranq C. (2022) – Potted plants can remove the pollutant nitrogen dioxide indoors – Air Qual Atmos Health 15: 479–490 – https://doi.org/10.1007/s11869-022-01171-6https://link.springer.com/article/10.1007/s11869-022-01171-6#citeas – (On our blog : https://plantstomata.wordpress.com/2022/03/17/stomata-and-indoor-no2/ )

Gudesblat G. E., Betti C., Russinova E. (2012) – Brassinosteroids tailor stomatal production to different environments – Trends Plant Sci. 17: 685–687 – http://hdl.handle.net/1854/LU-3106385 – https://biblio.ugent.be/publication/3106385 – (On our blog : https://plantstomata.wordpress.com/2018/03/25/brassinosteroids-and-stomatal-production/

Gudesblat G. E., Iusem N. D., Morris P. C. (2007) – Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide – New Physiol. 173: 713-721 – doi: 10.1111/j.1469-8137.2006.01953.x – (On our blog : https://plantstomata.wordpress.com/2016/06/01/the-important-role-of-mpk3-in-the-perception-of-aba-and-h2o2-in-stomata/)

Gudesblat G. E., Iusem N. D., Morris P. C. (2007) – Arabidopsis MPK3, a Key Signalling Intermediate in Stomatal Function – Plant Signal Behav. 2(4): 271–272 – PMCID: PMC2634147 – http://pubmedcentralcanada.ca/pmcc/articles/PMC2634147/ – (On our blog : https://plantstomata.wordpress.com/2017/11/25/mpk3-a-key-signalling-intermediate-in-stomatal-function/)

Gudesblat G. E., Schneider-Pizon J., Betti C., Mayerhofer J., Vanhoutte I., van Dongen W., Boeren S., Zhiponova M., de Vries S., Jonak C., Russinova E. (2012) –  SPEECHLESS integrates brassinosteroid and stomata signalling pathways  Nat Cell Biol 14: 548-554 – doi: 10.1038/ncb2471 – (On our blog : https://plantstomata.wordpress.com/2015/10/23/4728/) and (https://wordpress.com/post/plantstomata.wordpress.com/86487)

Gudesblat G. E., Torres P. S., Vojnov A. A. (2009) – Stomata and pathogens; Warfare at the gates – Plant Signal Behav 4(12): 1114-1116 – http://dx.doi.org/10.4161/psb.4.12.10062 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819434/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/pamp-triggered-stomatal-closure-and-several-mechanisms-to-evade-stomatal-defense/)

Gudesblat G. E., Torres P. S., Vojnov A. A. (2009)Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor – Plant Physiol. 149: 1017–1027 – doi: 10.1104/pp.108.126870 – (On our blog : https://plantstomata.wordpress.com/2016/06/06/phytopathogens-and-stomatal-response/)

Guehl J. M. (2002) – Trees for the future (Improving water use efficiency and adaptation to drought constraints – The Marcus Wallenberg Prize Symposium
Stockholm, 27 September 2002 – https://mwp.org/content/uploads/2017/03/Jean-Marc-Guehl.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/20/102487/ )

Guehl J. M., Aussenac G. (1987) – Photosynthesis decrease and stomatal control of gas exchange in Abies alba Mill in response to vapor pressure deficit – Plant Physiol. 83: 316-322 – https://doi.org/10.1104/pp.83.2.316http://www.plantphysiol.org/content/83/2/316 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/photosynthesis-decrease-and-stomatal-control-of-gas-exchange-in-response-to-vapor-pressure-deficit/ )

Guerfel M., Boujnah D., Baccouri B., Zarrouk M. (2007) – Evaluation of Morphological and Physiological Traits for Drought Tolerance in 12 Tunisian Olive Varieties (Olea europaea L.) – Journal of Agronomy 6: 356-361 – DOI: 10.3923/ja.2007.356.361https://scialert.net/fulltext/?doi=ja.2007.356.361 – (On our blog : https://plantstomata.wordpress.com/2021/03/11/88527/ )

Guerrieri R., Belmecheri S., Ollinger S. V., Asbjornsen H., Jennings K., Xiao J., Stocker B. D., Martin M., Hollinger D. Y., Bracho-Garrillo R., Clark K., Dore S., Kolb T., J. Munger J. W., Novick K., Richardson A. D. (2019) – Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency – PNAS 116(34): 16909-16914 – https://doi.org/10.1073/pnas.1905912116https://www.pnas.org/content/116/34/16909 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/the-role-of-photosynthesis-and-stomatal-conductance-on-rising-forest-water-use-efficiency/ )

Guicherd P. (1994) – Water relations of European silver fir (Abies alba Mill) in 2 natural stands in the French Alps subject to contrasting climatic conditions – Ann. For. Sci.  51(6): 599-611 – DOI: 10.1051/forest:19940606https://www.afs-journal.org/articles/forest/abs/1994/06/AFS_0003-4312_1994_51_6_ART0006/AFS_0003-4312_1994_51_6_ART0006.html – (On our blog : https://plantstomata.wordpress.com/2021/04/02/diurnal-and-seasonal-variations-in-water-potential-stomatal-conductance-and-transpiration/ )

Guilioni L., Jones H. G., Leinonen I., Lhomme J. P. (2008) – On the relationships between stomatal resistance and leaf temperatures in thermography – Agric. For. Meteorol. 148: 1908–1912 – https://doi.org/10.1016/j.agrformet.2008.07.009https://www.sciencedirect.com/science/article/pii/S0168192308002074?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/relationships-between-stomatal-resistance-and-leaf-temperatures-in-thermography/ )

Guilló A., Alonso M. Á., Juan A. (2013) – New insights into seminal and stomatal morphology and their contribution to the taxonomy of the Old World succulent perennial Salicornioideae – Plant Systematics and Evolution 299(6): 1185–1203 – https://doi.org/10.1007/s00606-013-0788-8 – https://link.springer.com/article/10.1007/s00606-013-0788-8#citeas – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-morphology-and-the-taxonomy-of-succulent-perennial-salicornioideae/)

Guillier C., Gamm M., Lucchi G., Truntzer C., Pecqueur D., Ducoroy P., Adrian M., Héloir M.-C., (2015) – Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew-Infected Grapevine Leaves – Mol. Plant Microbe. Interact. 28: 1227–1236 – https://doi.org/10.1094/MPMI-05-15-0115-Rhttps://apsjournals.apsnet.org/doi/10.1094/MPMI-05-15-0115-R – (On our blog : https://plantstomata.wordpress.com/2019/06/07/two-glycoproteins-involved-in-stomatal-deregulation/ )

Guimaraes R. L., Stotz H. U. (2004) –  Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection – Plant Physiol. 136: 3703–3711 – https://doi.org/10.1104/pp.104.049650 – http://www.plantphysiol.org/content/136/3/3703 – (On our blog : https://plantstomata.wordpress.com/2018/03/25/oxalate-acts-via-1-accumulation-of-osmotically-active-molecules-to-induce-stomatal-opening-and-2-inhibition-of-aba-induced-stomatal-closure/

Guirguis N. S., Soubhy I., Khalil M. A., Stino G. R. (1995) – Leaf stomata and stem lenticels as a means of identification of some stone fruits stocks – Acta Hort. 409: 229-240 – https://doi.org/10.17660/ActaHortic.1995.409.30https://www.ishs.org/ishs-article/409_30 – (On our blog : https://plantstomata.wordpress.com/2022/05/05/leaf-stomata-and-stem-lenticels-of-some-stone-fruits-stocks/ )

Gülcan R., Misirli A. (1990) – Importance of stomata in evaluating the vigour of Prunus mahalep rootstocks – Proceedings of 23rd International Hort. Congr. Firenze (Italy), 27 August-1 September – Abst. Contributed Papers, No. 4030 –

Gumber H. K., McKenna J. F., Tolmie A. F., Jalovec A. M., Kartick A. C., Graumann K., Bass H. W. (2019) – MLKS2 is an ARM domain and F-actin-associated KASH protein that functions in stomatal complex development and meiotic chromosome segregation – Nucleus 10: 144–166 – https://doi.org/10.1080/19491034.2019.1629795https://www.tandfonline.com/doi/full/10.1080/19491034.2019.1629795 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/mlks2-functions-in-stomatal-complex-development-and-meiotic-chromosome-segregation/ )

Gunar L. I., Zlotnikova I. F., Panichkin L. A. (1975) – Electro-physiological investigation of cells of the stomata complex in Spiderwort – Soviet Plant Physiol. 22: 704-707 –

Gunasekera D., Berkowitz G. A. (1992) – Heterogeneous stomatal closure in response to leaf water deficits is not a universal phenomenon – Plant Physiology 98: 660-665 – PMID: 16668692 – PMCID: PMC1080241 –https://www.ncbi.nlm.nih.gov/pubmed/16668692 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/heterogeneous-stomatal-closure-in-response-to-leaf-water-deficits-is-not-a-universal-phenomenon/ )

Gunderson C. A., Sholtis J. D., Wullschleger S. D., Tissue D. T., Hanson P. J. & Norby R. J. (2002) – Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment – Plant, Cell and Environment 25: 379– 393 – https://doi.org/10.1046/j.0016-8025.2001.00816.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.0016-8025.2001.00816.x – (On our blog : https://plantstomata.wordpress.com/2018/10/21/environmental-and-stomatal-control-of-photosynthetic-enhancement-in-the-canopy/ )

Guo F. Q., Young .J, Crawford N. M. (2003) – The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis – Plant Cell 15: 107–117 – doi:  10.1105/tpc.006312 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC143464/– (On our blog : https://plantstomata.wordpress.com/2018/09/30/an-anion-transporter-that-functions-in-stomatal-opening/ )

Guo H., Xiao C., Liu Q., Li R., Yan Z., Yao X., Hu H. (2021) – Two galacturonosyltransferases function in plant growth, stomatal development, and dynamics – Plant Physiology 187(4): 2820–2836 – https://doi.org/10.1093/plphys/kiab432https://academic.oup.com/plphys/article-abstract/187/4/2820/6374456?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2022/03/31/the-role-of-gaut10-and-gaut11-in-stomatal-dimension-and-dynamics-through-modulation-of-pectin-biosynthesis-and-distribution-in-stomatal-guard-cell-walls/ )

Guo J. S., Ogle K. (2018) – Antecedent soil water content and vapor pressure deficit interactively control water potential in Larrea tridentata – New Phytol. Online Version – https://doi.org/10.1111/nph.15374 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15374?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/26/stomatal-responses-and-the-influence-of-antecedent-d-and-w-at-daily-and-subdaily-timescales/ )

Guo P., Xia X., Yin W. L. (2011) – A role for stomata in regulating water use efficiency in Populus × euramericana and characterization of a related gene, PdERECTA – Afr. J. Biotechnol. 10: 6904-6912 – https://doi.org/10.5897/AJB10.849 –  http://www.academicjournals.org/journal/AJB/article-stat/5EC173A26588 – (On our blog : https://plantstomata.wordpress.com/2018/03/25/stomata-regulating-water-use-efficiency/ )

Guo X., Ding X., Dong J. (2022) – Dichotomy of the BSL phosphatase signaling spatially regulates MAPK components in stomatal fate determination – Nat Commun 13: 2438 – https://doi.org/10.1038/s41467-022-30254-2https://www.nature.com/articles/s41467-022-30254-2#citeas – (On our blog : https://plantstomata.wordpress.com/2022/05/20/the-pivotal-mapk-signaling-in-stomatal-fate-determination-is-spatially-modulated-by-a-signaling-dichotomy-of-the-bsl-protein-phosphatases-in-arabidopsis/ )

Guo X., Wang L., Dong J. (2021) – Establishing asymmetry: stomatal division and differentiation in plants – New Phytol. 232: 60-67 – https://doi.org/10.1111/nph.17613https://pubmed.ncbi.nlm.nih.gov/34254322/ – (On our blog : https://plantstomata.wordpress.com/2022/04/20/recent-advances-in-external-cues-feeding-into-the-regulation-of-core-molecular-machinery-required-for-stomatal-development/ )

Guo X.-Y., Wang Y., Zhao P.-X., Yu G.-H., Zhang L.-Y., Xiong Y., Xiang C.-B. (2019) – AtEDT1/HDG11 regulates stomatal density and water use efficiency via ERECTA and E2Fa – New Phytologist – https://doi.org/10.1111/nph.15861 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15861?af=R& – (On our blog : https://plantstomata.wordpress.com/2019/04/22/a-possible-edt1-hdg11%e2%80%90erecta%e2%80%90e2fa-genetic-pathway-that-reduces-stomatal-density/ )

Guo Y., Kilcrease J., Hammond J., Pooler M. R. (2019) – Stomatal openings on boxwood leaves yield entry portals for leaf infection by Calonectria pseudonaviculata – Journal of Plant Pathology – https://doi.org/10.1007/s42161-019-00416-1https://www.ars.usda.gov/research/publications/publication/?seqNo115=343869 – (On our blog : https://plantstomata.wordpress.com/2020/08/29/inoculation-of-boxwood-leaves-with-calonectria-pseudonaviculata-at-different-leaf-sites-showed-that-infection-occurred-only-in-areas-where-stomata-were-present/ )

Guo Y., Zhao S., Jiang Y., Zhao Y., Huang S., Yuan M., Zhao Y. (2016) – Casein Kinase1-Like Protein2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor – Plant Cell – https://doi.org/10.1105/tpc.16.00078 – http://www.plantcell.org/content/early/2016/06/07/tpc.16.00078?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Cell_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/ckl2-regulates-actin-filament-reorganization-and-stomatal-closure-via-phosphorylation-of-adf/ )

Gupta A., Rico-Medina A., Cano-Delgado A. I. (2020) – The physiology of plant responses to drought – Science 368(6488): 266-269 – DOI: 10.1126/science.aaz7614https://science.sciencemag.org/content/368/6488/266 – (On our blog : https://plantstomata.wordpress.com/2020/04/18/plants-close-stomata-on-their-aboveground-segments/ )

Gupta A. (2016) – Effect of Air Pollutants on Plant Gaseous Exchange Process: Effect on Stomata and Respiration – In: Kulshrestha U., Saxena P. (eds) : Plant Responses to Air Pollution – Springer, Singapore – Print ISBN978-981-10-1199-3 – Online ISBN978-981-10-1201-3 – https://doi.org/10.1007/978-981-10-1201-3_8https://link.springer.com/chapter/10.1007/978-981-10-1201-3_8#citeas – (On our blog : https://plantstomata.wordpress.com/2020/03/02/the-effect-of-air-pollutants-on-stomata-as-well-as-on-respiration-leading-to-affect-gaseous-exchange/ )

Gupta B. (1961) – Correlation of Tissues in Leaves: 2. Absolute Stomatal Numbers – Annals of Botany 25(1): 71–77 – https://doi.org/10.1093/oxfordjournals.aob.a083734https://academic.oup.com/aob/article-abstract/25/1/71/169712?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2022/02/15/the-average-number-of-stomata-per-unit-area-of-a-leaf-is-inversely-proportional-to-the-area-of-the-lamina/ )

Gupta B., Kundu B. C. (1965) – Determination of average vein-islet, veinlet termination and stomatal , numbers of a leaf – Planta Med 13(2): 247-256 –
DOI: 10.1055/s-0028-1100119https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0028-1100119 – (On our blog :

Gupta K. J., Mur L. A. J., Ratcliffe R. G. (xxxx) – Guarding the guard cells? – New Phytologist 203(2): 349-351 – DOI: 10.1111/nph.12882 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-203-i-2-nph12882 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/guarding-the-guard-cells/)

Gupta M. (1992) – Effect of growth regulators on foliar stomata of Vicia faba L. – Adv. Pl. Sci. 5. 483-495 –

Gupta P., Bhatnagar A. K. (2015) – Spatial distribution of arsenic in different leaf tissues and its effect on structure and development of stomata and trichomes in mung bean, Vigna radiata (L.) Wilczek – Environmental and Experimental Botany 109: 12–22 – http://www.sciencedirect.com/science/article/pii/S0098847214002007 – (On our blog : https://plantstomata.wordpress.com/2016/12/22/arsenic-and-its-effect-on-structure-and-development-of-stomata-and-trichomes/)

Gupta S. C., Paliwal G. S., Gupta M. (1965) – The Development of Stomata in Vegetative and Reproductive Organs of Bupleurum tenue Buch.-Ham. ex D. Don – Ann Bot 29(4): 645-654 – http://aob.oxfordjournals.org/content/29/4/645.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/12/stomata-in-bupleurum-tenue-apiaceae/)

Guseman J. M., Lee J. S., Bogenschutz N. L., Peterson K. M., Virata R. E., Xie B., Kanaoka M. M., Hong Z., Torii K. U. (2010) – Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASELIKE 8) – Development 137:1731–1741 – doi: 10.1242/dev.049197 – http://dev.biologists.org/content/137/10/1731 – (On our blog : https://plantstomata.wordpress.com/2016/06/06/cell-to-cell-connectivity-and-stomatal-patterning/)

Gushwa N.N., Hayashi D., Kemper A., Abram B., Taylor J.E., Upton J., Tay C.F. Fiedler S., Pullen S., Miller L.P., Tallman G., (2003) – Thermotolerant guard cell protoplasts of tree tobacco do not require exogenous hormones to survive in culture and are blocked from reentering the cell cycle at the G1-to-S transition – Plant Physiology 132(4): 1925-1940 – DOI: 10.2307/4281272https://eurekamag.com/research/003/987/003987307.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/thermotolerant-stomatal-guard-cell-protoplasts-and-exogenous-hormones/ )

Gutiérez M. V., Meinzer F. C., Grantz D. A. (1994) – Regulation of transpiration in coffee hedgerows: covariation of environmental variables and apparent responses of stomata to wind and humidity – Plant, Cell & Environment 17(12): 1305–1313 – DOI: 10.1111/j.1365-3040.1994.tb00532.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00532.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/responses-of-stomata-to-wind-and-humidity/)

Gutschick V.P., Simonneau T. (2002) – Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying – Plant Cell and Environment 25(11): 1423 – 1434 – DOI: 10.1046/j.1365-3040.2002.00937.x – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-3040.2002.00937.x – (On our blog : https://plantstomata.wordpress.com/2018/03/25/modelling-stomatal-conductance/ )

Guttenberg H. (1959) – Die physiologische Anatomie der Spaltöffnungen – Handbuch der Pflanzenphysiologie 17: 399–414 –

Guyot G., Scoffoni C., Sack L. (2011) – Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control – Plant Cell and Environment 35(5): 857-871 – DOI: 10.1111/j.1365-3040.2011.02458.x – https://www.researchgate.net/publication/51787626_Combined_impacts_of_irradiance_and_dehydration_on_leaf_hydraulic_conductance_Insights_into_vulnerability_and_stomatal_control – (On our blog : https://plantstomata.wordpress.com/2016/09/10/irradiance-and-dehydration-insights-into-vulnerability-and-stomatal-control/)

Guyot M. (1964) – Action de la colchicine sur le développement des stomates de Vicia faba L. – C. R. Séanc. Soc. Biol. 158: 1722–1726 –

Guyot M. (1970) – Action de la colchicine sur la différenciation des cellules stomatiques – Bulletin de la Société Botanique de France 117:sup2, 229-237 – DOI: 10.1080/00378941.1970.10838859https://www.tandfonline.com/doi/pdf/10.1080/00378941.1970.10838859 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/action-de-la-colchicine-sur-la-differenciation-des-cellules-stomatiques/ )

Guyot M., Pikusz M. A., Humbert C. (1968) – Action de la colchicine sur les stomates de Dianthus caryophyllus – Comptes Rendus de l’Académie des Sciences de Paris 266: 1251-1252 –

Güzel-Deger A., Scherzer S., Nuhkat M., Kedzierska J., Kollist H., Brosché M., Unyayar S., Boudsocq M., Hedrich R., Roelfsema M. R. G. (2015) –  Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure – New Phytologist 208(1): 162-173 – DOI: 10.1111/nph.13435  –http://onlinelibrary.wiley.com/doi/10.1111/nph.13435/full – (On our blog : https://plantstomata.wordpress.com/2015/06/13/molecular-mechanisms-underlying-the-mamp-response-and-its-interrelation-with-aba-signaling/)

Guzman-Delgado P., Laca E., Zwieniecki M. (2020) – Unraveling foliar water uptake pathways: the contribution of stomata and the cuticle – https://d197for5662m48.cloudfront.net/documents/publicationstatus/44935/preprint_pdf/e2ea75f9be8c1e9fbf475bd6c41034a4.pdf – (On our blog : https://plantstomata.wordpress.com/2022/04/08/the-potential-mechanisms-of-fwu-and-the-significance-of-both-stomatal-and-cuticular-pathways-for-plant-productivity-and-survival/)

Gyenge J. E., Fernandez M. E., Schlichter T. (2007) – Influence of radiation and drought on gas exchange of Austrocedrus chilensis seedlings – (Influencia de la radiación y la sequía en el intercambio gaseoso de plantines de Austrocedrus chilensis) – Bosque (Valdivia) 28(3): 220-225 – http://dx.doi.org/10.4067/S0717-92002007000300006 – https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002007000300006 – (On our blog : https://plantstomata.wordpress.com/2022/02/27/early-stomatal-closure-could-result-in-damage-in-leaves-or-the-base-of-the-stem-by-overheating-explaining-low-survival-when-grown-without-shade/)

Ha J., Martinez H. (2018) – Influence of Environmental Pollution on Leaf Properties of Urban Trees in China and USA: A Comparative Study using Stomatal Density – Asian Journal of Plant Science and Research 8(6): 1-7 – http://www.imedpub.com/articles/influence-of-environmental-pollution-on-leaf-properties-of-urban-trees-in-china-and-usa-a-comparative-study-using-stomatal-density.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/02/influence-of-environmental-pollution-on-stomatal-density/ )

Ha M. Morrow M., Algiers K. (2022) – 17.1.2.2: Stomatal Opening and Closure – ASCCC Open Educational Resources Initiative – https://bio.libretexts.org/@go/page/32036 – (On our blog : https://plantstomata.wordpress.com/2022/03/22/stomatal-movements-4/ )

Ha N., Seo E., Kim S., Lee S. J. (2021) – Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway – Sci Rep 1111556 – https://doi.org/10.1038/s41598-021-91073-x https://www.nature.com/articles/s41598-021-91073-x – (On our blog : https://plantstomata.wordpress.com/2021/07/04/adsorption-of-nanoparticles-and-their-infiltration-through-stomatal-pathway/ )

Ha W., Kolb T. E., Springer A. E., Dore S., O’Donnell F. C., Martinez Morales R., Lopez S. M., Koch G. W. (2014) – Evapotranspiration comparisons between eddy covariancemeasurements and meteorological and remote-sensing-basedmodels in disturbed ponderosa pine forests – Ecohydrology 2014 –  DOI: 10.1002/eco.1586https://www.academia.edu/14632422/Evapotranspiration_comparisons_between_eddy_covariance_measurements_and_meteorological_and_remote_sensing_based_models_in_disturbed_ponderosa_pine_forests?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/04/04/evapotranspiration-comparisons-and-stomatal-conductance/ )

Ha Y., Shang Y., Nam K. H. (2016) – Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis – J. Exp. Bot. 67: 6297–6308 – doi: 10.1093/jxb/erw385https://pubmed.ncbi.nlm.nih.gov/27856707/ – (On our blog : https://plantstomata.wordpress.com/2021/07/08/brs-can-positively-and-negatively-modulate-aba-induced-stomatal-closure/ )

Ha Y. M., Shang Y., Yang D., Nam K. H. (2018) – Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure – Biochem Biophys Res Commun. 504(1): 143-148 – doi: 10.1016/j.bbrc.2018.08.146 – Epub 2018 Aug 29 – PMID: 30170727 – https://pubmed.ncbi.nlm.nih.gov/30170727/ – (On our blog : https://plantstomata.wordpress.com/2021/07/08/the-regulation-of-stomatal-movement-is-finely-controlled-by-the-combined-effects-of-plant-hormones-aba-and-br/ )

Haberlandt G. (1887) – Zur Kenntniss des Spaltöffnungsapparates –
Flora 70: 97-109

Haberlandt G. (1932) – Zur Physiologie und Pathologie der Spaltöffnungen. I. Mitteilung – Sitzber. K. Preuss. Akad. 3. Berlin 10: 358-369 – (On our blog : https://plantstomata.wordpress.com/2017/07/29/physiology-and-pathology-of-stomata-i-communication-in-german/)

Haberlandt G. (1934) – Zur Physiologie und Pathologie der Spaltöffnungen. II. Die Spaltöffnungen von Artbastarden – Sitzber. K. Preuss. Akad. 3. Berlin 12: 115-151 – (On our blog : https://plantstomata.wordpress.com/2017/07/29/physiology-and-pathology-of-stomata-ii-stomata-of-species-hybrids-in-german/)

Habermann E., Dias de Oliveira E. A., Ribeiro Contin D., San Martin J. A. B., Curtarelli L., Gonzalez-Meler M. A., Martinez C. A. (2019) – Stomatal Development and Conductance of a Tropical Forage Legume Are Regulated by Elevated [CO2] Under Moderate Warming – Front. Plant Sci., 31 May 2019 | https://doi.org/10.3389/fpls.2019.00609https://www.frontiersin.org/articles/10.3389/fpls.2019.00609/full – (On our blog : https://plantstomata.wordpress.com/2019/08/18/control-on-stomatal-opening-under-eco2-was-not-changed-by-a-warmer-environment/ )

Habermann H. M. (1973) – Evidence for two photoreactions and possible involvement of phytochrome in light dependent stomatal opening – Plant Physiol. 51: 543-548 – PMID: 16658366 – PMCID: PMC366302 – https://www.ncbi.nlm.nih.gov/pubmed/16658366 – (On our blog : https://plantstomata.wordpress.com/2018/09/29/two-photoreactions-and-phytochrome-in-light-dependent-stomatal-opening/ )

Hachez C., Milhiet T., Heinen R. B., Chaumont F. (2017) – “Roles of aquaporins in stomata,” in Plant aquaporins: from transport to signalling, in Springer Book Series “Signaling and Communication in Plants, eds F. Chaumont and S. Tyerman (Berlin: Springer-Verlag), 167–183 – doi: 10.1007/978-3-319-49395-4_8https://link.springer.com/chapter/10.1007%2F978-3-319-49395-4_8 – (On our blog : https://plantstomata.wordpress.com/2020/07/06/the-main-reverse-genetics-data-linking-the-modulation-of-aquaporin-activity-to-the-control-of-the-aperture-of-stomata/ )

Hachez C., Ohashi-Ito K., Dong J., Bergmann D. C.(2011) –  Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA – Plant Physiol. 155: 1458–1472 – https://doi.org/10.1104/pp.110.167718 – http://www.plantphysiol.org/content/early/2011/01/18/pp.110.167718 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/hypothesis-about-the-activity-of-fama-the-shape-of-its-regulatory-network-and-the-creation-of-a-new-set-of-stomatal-specific-or-stomatal-enriched-reporters/

Hacke U., Sauter J. J. (1995) – Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f purpurea. and Populus balsamifera – Journal of Experimental Botany 46: 1177– 1183 – https://doi.org/10.1093/jxb/46.9.1177 –https://academic.oup.com/jxb/article-abstract/46/9/1177/575795?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/14/xylem-embolism-in-summer-investigated-in-relation-to-leaf-water-potential-and-stomatal-conductance/ )

Haefner J. W., Buckley T. N., Mott K.A. (1997) – A spatially explicit model of patchy stomatal responses to humidity – Plant, Cell & Environment 20: 10871097 – DOI: 10.1046/j.1365-3040.1997.d01-137.x  – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-137.x/full –  (On our blog : https://plantstomata.wordpress.com/2017/08/28/model-of-patchy-stomatal-responses-to-humidity/)

Hafez M. G. A. (1958) – Effects of Rosemary and Thyme Oil Vapors on the Stomata of Cherry Laurel – Plant Physiol. 33(3): 181-185 – doi: 10.1104/pp.33.3.181

Hafez M. G. A. (1960) – Studies in Stomatal Behavior. I. Effects of Moving and Still Air on Stomata of Eupatorium and Mentha – Plant Physiol. 35(5): 651–653 – doi: 10.1104/pp.35.5.651https://www.ncbi.nlm.nih.gov/pmc/articles/PMC406020/ – (On our blog : https://plantstomata.wordpress.com/2021/12/05/96721/ )

Hafez M. G. A., Younis M. E. (1960) – Studies in stomatal behaviour. Effects of moving, still, and carbon dioxide-freeair on the stomata of some plants – A’in Sharma Sci Bull, Cairo 5:

Hafez M. G. A., Younis M. E. (1969) – Studies in stomatal behaviour. Effects of moving and still air on the stomata of some plants – Acta biologica Academiae Scientiarum Hungaricae 20(3): 335-340 – https://www.researchgate.net/publication/17790133_Studies_in_stomatal_behaviour_Effects_of_moving_and_still_air_on_the_stomata_of_some_plants )

Hafez M. G. A., Younis M. E. (1970) – Studies in stomatal behaviour. Effects of moving carbon dioxide-free and still air on the stomata of some plants – Acta Biologica Academiae Scientiarum Hungaricae 20(3): 335-340 – https://www.researchgate.net/publication/328829700_Studies_in_stomatal_behaviour_Effects_of_moving_carbon_dioxide-free_and_still_air_on_the_stomata_of_some_plants

Hagen F. (1918) – Zur Physiologie des Spaltöffnungsapparates – Beitr. allg. Bot. 1: 260–291 –

Haifield J. L., Carlson R. E. (1978) – Photosynthetically active radiation, CO2 uptake and stomata1 dimusivc resistance profiles within soybean canopies – Agron. J. 70: 592-596 –

Hall A. E., Kaufmann M. R. (1975) – Stomatal response to environment with Sesamum indicum L. – Plant Physiol. 55: 455-459 – https://doi.org/10.1104/pp.55.3.455 – http://www.plantphysiol.org/content/55/3/455 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/large-humidity-gradients-may-contribute-to-mid-day-closure-of-stomata/ )

Hall A. E., Schulze E.-D. (1980) – Stomatal response to environment and a possible interrelation between stomatal effects on transpiration and CO2 assimilation – Plant, Cell & Environment 3(6): 467-474 – https://doi.org/10.1111/1365-3040.ep11587040 – https://onlinelibrary.wiley.com/doi/full/10.1111/1365-3040.ep11587040 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-response-to-environment/ )

Hall A. E., Schulze E.-D., Lange O. L. (1976) – Current perspectives of steady state stomatal response to environment – In Lange O. L., Kappen L., Schulze E.-D., eds, – Water and Plant Life. Ecological Studies 19. Springer, Berlin, 169–185 – https://doi.org/10.1007/978-3-642-66429-8_11https://link.springer.com/chapter/10.1007%2F978-3-642-66429-8_11 – (On our blog : https://plantstomata.wordpress.com/2018/09/29/steady-state-stomatal-response-to-environment/ )

Hall A. E., Yermanos D. M. (1975) – Leaf Conductance and Leaf Water Status of Sesame Strains in Hot, Dry Climates – Crop Science 15(6): 789-793 – https://doi.org/10.2135/cropsci1975.0011183X001500060015xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1975.0011183X001500060015x – (On our blog: https://plantstomata.wordpress.com/2021/10/08/leaf-conductance-and-leaf-water-status-in-hot-dry-climates/ )

Hall D. M., Jones R. L. (1961) – The role of carbon dioxide in the light response of stomata. I. – J. Exp. Bot. 1: 29-62 –

Hall L. N., Langdale J. A. (1996) – Molecular genetics of cellular differentiation in leaves – New Phytol. 132: 533-553 – https://doi.org/10.1111/j.1469-8137.1996.tb01873.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1996.tb01873.x – (On our blog : https://plantstomata.wordpress.com/2018/04/16/understanding-cellular-differentiation-in-the-epidermis-stomata/ )

Hall R. D., Riksen-Bruinsma T., Weyens G., Lefèbvre M., Dunwell J. M., Krens F. A. (1996) – Stomatal guard cells are totipotent – Plant Physiology 112: 889–892 – http://dx.doi.org/10.1104/pp.112.3.889 – http://www.plantphysiol.org/content/112/3/889.abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/24/stomatal-guard-cells-retain-full-totipotent-capacity-2/)

Hall R. D., Riksen-Bruinsma T., Weyens G., Lefèbvre M., Dunwell J. M., van Tunen A., Krens F. A. (1997) – Sugar beet guard cell protoplasts demonstrate a remarkable capacity for cell division enabling applications in stomatal physiology and molecular breeding – Journal of Experimental Botany 48(307): 255-263 – ISSN 0022-0957 – http://library.wur.nl/WebQuery/wurpubs/305165 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/isolation-of-stomata-protoplasts-extensive-cell-division-colony-formation-and-plants-regeneration-from-guard-cell-derived-colonies/)

Hall R. D., Riksen-Bruinsma T., Weyens G. J., Rosquin I. J., Denys P. N., Evans I. J., Lathouwers J. E., Lefèbvre M. P., Dunwell J. M., van Tunen A., Krens F. A. (1996) – A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells – Nat. Biotechnol. 14, 1133–1138 – (On our blog : https://plantstomata.wordpress.com/2016/06/07/the-generation-of-transgenic-sugar-beets-from-stomatal-guard-cells/)

Hall R. D., Verhoeven H. A., Krens F. A. (1995) – Computer-assisted identification of protoplasts responsible for rare division events reveals guard cell totipotency – Plant Physiol 107: 1379-1386 – https://doi.org/10.1104/pp.107.4.1379 – http://www.plantphysiol.org/content/107/4/1379 – (On our blog : https://plantstomata.wordpress.com/2018/12/14/stomatal-guard-cell-totipotency/ )

Halmeck W. (2016) – Why do guard cells have chloroplasts? [online] – Quora – https://www.quora.com/Why-do-guard-cells-have-chloroplasts

Hamada N., Baba H. (1930) – On the number of chloroplasts in the guard cells in mulberry – J. Sericultural Sci. 1: 305-309 –

Hamani A. K. M., Li S., Chen J. Amin A. S., Wang G., Xiaojun S., Zain M., Gao Y. (2021) –  Linking exogenous foliar application of glycine betaine and stomatal characteristics with salinity stress tolerance in cotton (Gossypium hirsutum L.) seedlings – BMC Plant Biol 21: 146 – https://doi.org/10.1186/s12870-021-02892-zhttps://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-021-02892-z#citeas – (On our blog : https://plantstomata.wordpress.com/2022/03/29/applying-5-mm-gb-could-be-an-optional-choice-for-protecting-cotton-seedlings-from-nacl-stress-through-promoting-the-stomatal-functions/ )

Hamanishi E. T., Thomas B. R., Campbell M. M. (2012) – Drought induces alterations in the stomatal development program in Populus – J. Exp. Bot. 63: 4959–4971 – https://academic.oup.com/jxb/article/63/13/4959/487768 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/drought-and-stomatal-development/ )

Hamerlynck E., Knapp A. K. (1996) – Photosynthetic and stomatal responses to high temperature and light in two oaks at the western limit of their range – Tree Physiology 16(6): 557–565 – https://doi.org/10.1093/treephys/16.6.557https://pubmed.ncbi.nlm.nih.gov/14871709/ – (On our blog : https://plantstomata.wordpress.com/2022/02/01/heat-treatment-leads-to-sharp-reductions-in-stomatal-conductance/ )

Hamidah, Putri D., Purnobasuki H. (2020) – Correlation of lead (Pb) content towards the number of stomata on the plant Dracaena marginata tricolor in some places of Surabaya City – E3S Web Conf vol.153 – https://doi.org/10.1051/e3sconf/202015302002https://www.e3s-conferences.org/articles/e3sconf/abs/2020/13/e3sconf_corectijjss2020_02002/e3sconf_corectijjss2020_02002.html – (On our blog : https://plantstomata.wordpress.com/2020/05/10/correlation-of-lead-pb-content-towards-the-number-of-stomata/ )

Hamido S. A., Ebel R. C., Morgan K. T. (2019) – Interaction of Huanglongbing and Foliar Applications of Copper on Water Relations of Citrus sinensis cv. Valencia – Plants 8(9): 298 – https://doi.org/10.3390/plants8090298https://www.mdpi.com/2223-7747/8/9/298/htm – (On our blog : https://plantstomata.wordpress.com/2019/12/09/interaction-of-huanglongbing-and-foliar-applications-of-copper-on-water-relations/ )

Hamilton D. W. A.,  Hills A., Blatt M. R. (2001) – Extracellular Ba2 and voltage interact to gate Ca2 channels at the plasma membrane of stomatal guard cells – FEBS Letters 491 (2001) 99-103 – http://onlinelibrary.wiley.com/store/10.1016/S0014-5793(01)02176-7/asset/feb2s0014579301021767.pdf?v=1&t=ip5xzwp2&s=16a1dd5e6e60dc5a7e36dea9e88360ec36821ea3 – (On our blog : https://plantstomata.wordpress.com/2016/06/07/extracellular-ba2%C2%87-and-voltage-interact-in-stomatal-guard-cells/)

Hamilton D. W. A.,  Hills A., Köhler B., Blatt M. R. (2000) – Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid – Proc. Natl Acad. Sci. USA 97: 49674972 – (On our blog : https://plantstomata.wordpress.com/2016/06/07/aba-ca2-and-stomatal-guard-cells/)

Hamlyn G. J. (1998) – Stomatal control of photosynthesis and transpiration – J. of Exp. Bot. 49: 387 –

Hamoud M., El-Banna S., Mostafa G. G., Mohamed Y., Hassan M. (2022) – Ascorbic acid and Proline alleviate the adverse effects of salinity stress in Duranta erecta L. var. variegata plants – Research Square – https://doi.org/10.21203/rs.3.rs-1343974/v1https://assets.researchsquare.com/files/rs-1343974/v1/40ca574a-6fac-4146-b335-6887354e44e6.pdf?c=1645110551 – (On our blog : https://plantstomata.wordpress.com/2022/02/24/proline-and-ascorbic-acid-alleviate-the-negative-effects-of-salinity-increasing-significantly-all-stomata-parameters/ )

Han C., Hua W., Li J., Qiao Y., Yao L., Hao W., Fan M., de Jaeger G., Li
R., Yang W., et al. (2022)
– TOR promotes guard cell starch degradation by regulating the activity of b-AMYLASE1 in Arabidopsis – Plant Cell 34: 1038–1053 –

Han C., Liu Y., Shi W., Qiao Y., Wang L., Tian Y., Fan M., Deng Z., Lau O. S., De Jaeger G., Bai M.-Y. (2020) – KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor – Nature Communications 11, Art. 4214 – https://doi.org/10.1038/s41467-020-18048-whttps://www.nature.com/articles/s41467-020-18048-w#citeas – (On our blog : https://plantstomata.wordpress.com/2021/01/22/multiple-regulatory-mechanisms-are-in-place-for-snrk1-to-modulate-stomatal-development-in-response-to-changing-environments/ )

Han S., Tang R., Anderson L. K., Woerner T. E., Pei Z. M. A. (2003) – A cell surface receptor mediates extracellular Ca2+ sensing in guard cells – Nature 425: 196–200 – doi: 10.1038/nature01932 – https://www.nature.com/articles/nature01932 – (On our blog : https://plantstomata.wordpress.com/2018/03/26/receptor-mediates-extracellular-ca2-sensing-in-stomata/ )

Han S. K., Herrmann A., Yang J., Iwasaki R., Sakamoto T., Desvoyes B., Kimura S., Gutierrez C., Kim E.-D., Keiko U. Torii K. U. (2022) – Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage – Developmental Cell 57(5): 569-582.e6 – ISSN 1534-5807 – https://doi.org/10.1016/j.devcel.2022.01.014
https://www.sciencedirect.com/science/article/pii/S1534580722000399 – (On our blog : https://plantstomata.wordpress.com/2022/04/24/a-timely-proliferative-cell-cycle-is-critical-for-stomatal-lineage-identity/ )

Han S. K., Kwak J. M., Qi X. (2021) – Stomatal Lineage Control by Developmental Program and Environmental Cues – Front. Plant Sci., 11 October 2021 – https://doi.org/10.3389/fpls.2021.751852 – https://www.frontiersin.org/articles/10.3389/fpls.2021.751852/full – (On our blog : https://plantstomata.wordpress.com/2021/12/02/the-developmental-program-governing-cell-fate-and-dynamics-of-stomatal-lineage-cells-at-the-cell-state-or-single-cell-level/ )

Han S. K., Qi X., Sugihara K., Dang J. D., Endo T. A., Miller K. L., Kim E.-D., Miura T., Torii K. U. (2018) – MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata – Dev. Cell 45(3): 303-315 – https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30285-5 – (On our blog : https://plantstomata.wordpress.com/2018/05/09/mute-cell-state-switch-and-the-single-symmetric-division-to-create-stomata/ )

Han S. K., Torii K. U. (2016) – Lineage-specific stem cells, signals and asymmetries during stomatal development – Development 143: 1259-1270 – http://dev.biologists.org/content/143/8/1259 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/the-intrinsic-and-extrinsic-factors-that-control-stomatal-development/)

Han S. K., Torii K. U. (2019) – Linking cell cycle to stomatal differentiationCurrent Opinion in Plant Biology 51: 66-73 – https://doi.org/10.1016/j.pbi.2019.03.010https://www.sciencedirect.com/science/article/pii/S1369526619300202#fig0005 – (On our blog : https://plantstomata.wordpress.com/2019/08/10/how-cell-cycle-regulators-are-transcriptionally-regulated-and-contributing-to-each-step-of-stomatal-lineage-progression/ )

Han S.-K., Yang J., Arakawa M., Iwasaki R., Sakamoto T., Kimura S.,Kim E.-D., Torii K. U. (2021) –  Deceleration of cell cycle underpins a switch from proliferative- to terminal division in plant stomatal lineage – bioRxiv – https://doi.org/10.1101/2021.05.17.442671https://www.biorxiv.org/content/10.1101/2021.05.17.442671v2 – (On our blog : https://plantstomata.wordpress.com/2021/07/22/a-molecular-framework-of-the-proliferation-to-differentiation-switch-within-the-stomatal-lineage-and-a-timely-proliferative-cell-cycle-is-critical-for-the-stomatal-fate-specification/ )

Han T., Qi F.., Yu T., Yang X., Zhang X., Li K. (2022) – Characteristic of Stomatal Conductance and Optimal Stomatal Behaviour in an Arid Oasis of Northwestern China – Sustainability 14: 968 – https://doi.org/ 10.3390/su14020968file:///C:/Users/wille/Downloads/sustainability-14-00968-v2.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/02/a-better-understanding-of-stomata-behavior-in-responding-to-climate-change/ )

Han X.Hu Y.Zhang G.Jiang Y.Chen X.Yu D. (2018) – Jasmonate negatively regulates stomatal development in Arabidopsis cotyledons – Plant Physiol. 176(3):  – https://doi.org/10.1104/pp.17.00444 – http://www.plantphysiol.org/content/early/2018/03/01/pp.17.00444 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/jasmonate-and-myc-transcription-factors-negatively-regulate-stomatal-development/ )

Hanan N. P., Prince S. D. (1997) – Stomatal conductance of West-Central supersite vegetation in HAPEX-Sahel: measurements and empirical models – Journal of Hydrology 188: 536-562 – DOI:10.1016/S0022-1694(96)03192-7https://www.sciencedirect.com/science/article/abs/pii/S0022169496031927?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/08/20/estimation-of-stomatal-conductance-and-canopy-conductance-gc/ )

Hanebuth W. F., Raschke K. (1973) – Stomatal aperture in Zea mays controlled by light or CO2? – Plant Physiol. (suppl.) 51: 9 –

Hanson D. T., Green L. E., Pockman W. T. (2013) – Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus – Front. Plant Sci. 4:365 – doi: 10.3389/fpls.2013.00365 –  https://www.frontiersin.org/articles/10.3389/fpls.2013.00365/full – (On our blog : https://plantstomata.wordpress.com/2018/03/26/decoupling-of-stomatal-and-mesophyll-conductance-induced-by-vein-cutting/ )

Hanson K. R. (1963) – Active and inactive transport across cell membranes – In Stomata and Water Relationsof Plants’, Ed. Zelitch, Bull. 664, Connecticut Agricultural Experiment Station, 43-57 –

Hanson M. (xxxx) – Guard cells surrounding a pore in a plant leaf – http://www.biotech.cornell.edu/guard-cells-surrounding-pore-plant-leaf – (On our blog : https://plantstomata.wordpress.com/2019/04/15/stomatal-guard-cells-3/ )

Hanstein S. M., Felle H. H. (2002) – CO2-triggered chloride release from guard cells in intact fava bean leaves: kinetics of the onset of stomatal closure – Plant Physiol 130:940–950 – doi: 10.1101/gad.1550707  – (On our blog : https://plantstomata.wordpress.com/?s=CO2-triggered+chloride)

Hao F., Zhao S., Dong H., Zhang H., Sun L., Miao C. (2010) – Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis – J. Integr. Plant Biol. 52: 298–307 – doi: 10.1111/j.1744-7909.2010.00920.x – https://www.ncbi.nlm.nih.gov/pubmed/20377690 – (On our blog : https://plantstomata.wordpress.com/2018/03/26/nia1-and-nia2-are-involved-in-sa%e2%80%90stimulated-stomatal-closure/ )

Hao L. H., Wang W.-X., Chen C., Wang Y.-F., Liu T., Li X., Shang Z. L. (2012) –  Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species – Mol. Plant 5: 852–864  – PMID:22138967 –  http://dx.doi.org/10.1093/mp/ssr095 – http://www.cell.com/molecular-plant/abstract/S1674-2052(14)60201-X – (On our blog : https://plantstomata.wordpress.com/2018/03/26/eatp-promoted-stomatal-opening-possibly-involves-the-heterotrimeric-g-protein-ros-cytosolic-ca2-and-plasma-membrane-h-atpase/ )

Haque M. S., de Sousa A., Soares C., Kjaer K. H., Fidalgo F., Rosenqvist E., Ottosen C-O. (2017) – Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance – Frontiers in Plant Science 8: 1602 –  https://doi.org/10.3389/fpls.2017.01602 – https://www.frontiersin.org/articles/10.3389/fpls.2017.01602/full– (On our blog : https://plantstomata.wordpress.com/2020/03/04/temperature-variation-under-continuous-light-maintains-the-diurnal-pattern-in-stomatal-conductance/ )

Hara K., Kajita R., Torii K. U., Bergmann D. C., Kakimoto T. (2007) -The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule – Gene Dev 21: 1720–1725 doi:10.1101/gad.1550707http://genesdev.cshlp.org/content/21/14/1720.full – (On our blog : https://plantstomata.wordpress.com/2016/06/08/epf1-and-stomatal-patterning/)

Hara K., Yokoo T., Kajita R., Onishi T., Yahata S., Peterson K. M., Torii K. U., Kakimoto T. (2009) – Epidermal Cell Density is Autoregulated via a Secretory Peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis Leaves – Plant and Cell Physiology 50(6): 1019–1031 – https://doi.org/10.1093/pcp/pcp068https://academic.oup.com/pcp/article/50/6/1019/1920846 – (On our blog : https://plantstomata.wordpress.com/2020/01/15/epidermal-cell-density-is-autoregulated-via-a-secretory-peptide-epidermal-patterning-factor-2/ )

Harada A., Shimazaki K. (2009) – Measurement of changes in cytosolic Ca2+ in Arabidopsis guard cells and mesophyll cells in response to blue light – Plant Cell Physiol. 50: 360–373 – doi: 10.1093/pcp/pcn203 – (On our blog : https://plantstomata.wordpress.com/2016/06/10/cytosolic-ca2-in-guard-cells-and-blue-light/)

Harayama H., Kitao M., Agathokleous E., Ishida A. (2019) – Effects of major vein blockage and aquaporin inhibition on leaf hydraulics and stomatal conductance – Proc. R. Soc. B 286 – http://doi.org/10.1098/rspb.2019.0799https://royalsocietypublishing.org/doi/10.1098/rspb.2019.0799 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/major-vein-blockage-aquaporin-inhibition-and-stomatal-conductance/ )

Harbinson J., van Meeteren U., van Rensen R. (2005) – The use of imaging of the efficiency of photosystem II electron transport to visualise the effect of dry storage on the photosynthesis and stomatal closure of cut rose stems – Acta Horticulturae 669: 57-69 – DOI:  10.17660/ActaHortic.2005.669.6https://www.actahort.org/books/669/669_6.htm – (On our blog : https://plantstomata.wordpress.com/2019/12/10/the-effect-of-dry-storage-on-the-photosynthesis-and-stomatal-closure/ )

Hardy  J.P., Anderson V.J., Gardner  J.S. (1995) – Stomatal characteristics, conductance ratios and drought-induced leaf modifications of semiarid grassland species – Am. J. Bot. 82: 1-7 – https://doi.org/10.1002/j.1537-2197.1995.tb15641.xhttp://www.jstor.org/discover/10.2307/2445779?sid=21106223288733&uid=4&uid=3737592&uid=2 – (On our blog : https://plantstomata.wordpress.com/2018/03/26/stomatal-characteristics-conductance-ratios-and-drought-induced-leaf-modifications-of-semiarid-grassland-species/ )

Hari P., Mäkelä A. (2003) – Annual pattern of photosynthesis in Scots pine in the boreal zone – Tree Physiology 23: 145–155 – doi: 10.1093/treephys/23.3.145https://pubmed.ncbi.nlm.nih.gov/12566265/ – (On our blog : https://plantstomata.wordpress.com/2021/09/01/an-optimal-stomatal-control-model-of-photosynthesis/ )

Hari P., Mäkelä A., Korpilahti E., Holmberg M. (1986) – Optimal control of gas exchange – Tree Physiology 2: 169–175 – https://doi.org/10.1093/treephys/2.1-2-3.169https://academic.oup.com/treephys/article-abstract/2/1-2-3/169/1623649?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/09/01/instantaneous-stomatal-response-is-postulated-and-the-solution-suggests-that-very-rapid-oscillations-provide-optimal-co2-uptake/ )

Hari P., Mäkelä A., Pohja T. (2000) – Surprising implications of the optimality hypothesis of stomatal regulation gain support in a field test – Australian Journal of Plant Physiology 27: 77–80 – https://doi.org/10.1071/PP99050https://www.publish.csiro.au/FP/PP99050 – (On our blog : https://plantstomata.wordpress.com/2021/09/01/the-optimality-hypothesis-of-stomatal-regulation/ )

Harms H. (1936) – Beziehungen zwischen Stomataweite, Lichtstärke und Lichtfarbe – Planta 25: 155-193 – DOI: 10.1007/BF01909183 – https://www.jstor.org/stable/23357681?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/26/stomatal-width-light-intensity-and-color-of-light/ )

Harper G. J., Camm E. L. (1993) – Effects of frozen storage duration and soil temperature on the stomatal conductance and net photosynthesis of Picea glauca seedlings – Can. J. For. Res. 23: 2459–2466 – https://doi.org/10.1139/x93-305https://www.nrcresearchpress.com/doi/10.1139/x93-305 – (On our blog : https://plantstomata.wordpress.com/2019/06/05/effects-of-frozen-storage-duration-and-soil-temperature-on-the-stomatal-conductance/ )

Harris B. J., Harrison C. J., Hetherington A. M., Williams T. A. (2020) – Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata – Curr. Bio. 30(11): 2001–2012 –
DOI: 10.1016/j.cub.2020.03.048https://www.cell.com/current-biology/fulltext/S0960-9822(20)30418-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982220304188%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2021/05/16/the-reductive-evolution-of-stomata/ )

Harris M. J., Outlaw W. H. Jr. (1990) – Histochemical technique: A low‐volume, enzyme‐amplified immunoassay with sub‐fmol sensitivity. Application to measurement of abscisic acid in stomatal guard cells – https://doi.org/10.1111/j.1399-3054.1990.tb09068.x –https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1990.tb09068.x – (On our blog : https://plantstomata.wordpress.com/2019/02/05/measurement-of-aba-in-stomatal-guard-cells/ )

Harris M. J., Outlaw W.H., Jr. (1991) – Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status – Plant Physiol. 95: 171-173 – https://doi.org/10.1104/pp.95.1.171 – http://www.plantphysiol.org/content/95/1/171 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/adjustment-of-guard-cell-aba-levels-to-leaf-water-status/ )

Harris M. J., Outlaw W. H. Jr., Mertens R., Weiler E. W. (1988) – Water‐stress‐induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme‐amplified immunoassay – Proceedings of the National Academy of Sciences, USA 85: 2584-2588 – https://doi.org/10.1073/pnas.85.8.2584 –https://www.pnas.org/content/85/8/2584 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/water%e2%80%90stress%e2%80%90induced-changes-in-the-aba-content-of-stomata/ )

Harris T. M. (1932) – The fossil flora of scores by sound, East Greenland: part 2: description of seed plants incertae sedis together with a discussion of certain Cycadophyte cuticles – Alexander Doweld –

Harrison E. L., Cubas L. A., Gray J. E., Hepworth C. (2019) – The influence of stomatal morphology and distribution on photosynthetic gas exchange – Plant J., Early view – https://doi.org/10.1111/tpj.14560https://onlinelibrary.wiley.com/doi/10.1111/tpj.14560 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/the-interplay-between-stomatal-gaseous-exchange-and-photosynthesis-is-complex/ )

Harrison R. D., Daniell J. W., Cheshire J. M. Jr. (1989) – Net photosynthesis and stomatal conductance of peach seedlings and cuttings in response to changes in soil water potential – Journal of the American Society for Horticultural Science (USA) – ISSN : 0003-1062 – http://agris.fao.org/agris-search/search.do?recordID=US9021821 – (On our blog : https://plantstomata.wordpress.com/2019/03/22/net-photosynthesis-and-stomatal-conductance-in-response-to-changes-in-soil-water-potential/ )

Harsh L. N., Sen D. N. (1974) – Further observations of cation-stimulated stomatal opening in isolated epidermal peelings of Asphodelus tenuifolius CAV and Allium cepa L. -Biochem. Physiol. Pflanzen 165: 216-219 –

Hart H. (1929) – Relation of stomatal behavior to stem-rust resistance in wheat –  J. Agric. Res 39: 929–948 – https://naldc.nal.usda.gov/download/IND43967653/PDF – (On our blog : https://plantstomata.wordpress.com/2022/02/12/stomatal-behavior-and-stem-rust-resistance/ )

Hartung W. (1983) – The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta – Plant Cell Environ. 6: 42742! – (On our blog : https://plantstomata.wordpress.com/2016/06/12/aba-and-the-guard-cell-plasmalemma/)

Hartung W., Heilmeier H. (1993) – Stomatal responses to abscisic acid in natural environments – In: Jackson M.B., Black C.R. (eds) Interacting Stresses on Plants in a Changing Climate. NATO ASI Series (Series I: Global Environmental Change), vol 16. Springer, Berlin, Heidelberg, 525-542 – DOI: 10.1007/978-3-642-78533-7_33https://link.springer.com/chapter/10.1007/978-3-642-78533-7_33 – (On our blog : https://plantstomata.wordpress.com/2019/03/14/aba-has-an-important-stress-physiological-role-as-a-root-to-shoot-signal-influencing-stomatal-responses-to-environmental-perturbations-under-natural-conditions/ )

Hartung W., Slovik S. (1991) – Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves – The New Phytologist 119: 361-382 – https://doi.org/10.1111/j.1469-8137.1991.tb00036.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1991.tb00036.x – (On our blog : https://plantstomata.wordpress.com/2019/02/04/stomatal-regulation-by-aba-in-leaves/ )

Hartung W., Wilkinson S., Davies W. J. (1998) – Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell. – J. Exp. Bot. 49: 361-367 – https://www.jstor.org/stable/23695969?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/28/ph-and-aba-concentration-at-the-primary-sites-of-action-in-stomata-influence-stomatal-aperture/ )

Haryanti S. (2010) – Jumlah dan Distribusi Stomata pada Daun Beberapa Spesies Tanaman – Buletin Anatomi dan Fisiologi XVIII(2): 21-28 – https://media.neliti.com/media/publications/60035-ID-jumlah-dan-distribusi-stomata-pada-daun.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/13/jumlah-dan-distribusi-stomata/ )

Haryanti S. (2010) – Pengaruh Naungan yang Berbeda terhadap Jumlah Stomata dan Ukuran Porus Stomata Daun Zephyranthes rosea Lindl – In Bahasa. Buletin Anatomi dan Fisiologi, XVIII(1): 41-48 –

Haryanti S., Tetrinica M. (2009) – Optimalisasi Pembukaan Porus Stomata Daun Kedelai (Glycine max (L) merril) pada Pagi Hari dan Sore – In Bahasa – BIOMA. 11(1): 18-23 –

Hasan M., Gong L., Nie Z.-F., Li F.-P., Ahammed G. J., Fang X.-W. (2021) – ABA-induced stomatal movements in vascular plants during dehydration and rehydration – Environmental and Experimental Botany 186: 104436 – https://doi.org/10.1016/j.envexpbot.2021.104436https://www.sciencedirect.com/science/article/abs/pii/S0098847221000654 – (On our blog : https://plantstomata.wordpress.com/2021/07/18/the-role-of-aba-in-the-stomatal-movement-of-seed-and-seedless-plants-under-dehydration-and-rehydration/ )

Hasan M. M., Rahman M. A., Skalicky M., Alabdallah N. M., Waseem M., Jahan M. S., Ahammed G. J., El-Mogy M. M., El-Yazied A. A., Ibrahim M. F. M., Fang X. W. (2021) – Ozone Induced Stomatal Regulations, MAPK and Phytohormone Signaling in Plants – Int J Mol Sci. 22(12): 6304 – doi: 10.3390/ijms22126304 – PMID: 34208343 – PMCID: PMC8231235 – https://pubmed.ncbi.nlm.nih.gov/34208343/ – (On our blog : https://plantstomata.wordpress.com/2021/11/17/the-effects-of-ozone-on-stomatal-regulation-through-guard-cell-signaling-by-phytohormones/ )

Hasanah Y., Mawarni L., Hanum H., Hanum C., Nasution M. R., (2020) – The role of Magnesium Sulphate in the formation of chlorophyll and density of stomata of soybean varieties (Glycine max (L.) Merril) – IOP Conf. Ser.: Earth Environ. Sci. 454: 012158 – https://doi.org/10.1088/1755-1315/454/1/012158https://iopscience.iop.org/article/10.1088/1755-1315/454/1/012158 – (On our blog : https://plantstomata.wordpress.com/2022/02/06/the-role-of-magnesium-sulphate-in-the-formation-of-chlorophyll-and-stomatal-density/ )

Hasemann G., Jung G., Wild A. (1990) – The loss of structural integrity in damaged spruce needles from locations exposed to air pollution: II. Epidermis and stomata (dermal tissue) – Journal of Phytopathology 128: 33-45 – https://doi.org/10.1111/j.1439-0434.1990.tb04249.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0434.1990.tb04249.x – (On our blog : https://plantstomata.wordpress.com/2019/03/15/the-loss-of-structural-integrity-in-damaged-spruce-needles-in-epidermis-and-stomata-due-to-air-pollution/ )

Hashimoto-Sugimoto M., Higaki T., Yaeno T., Nagami A., Irie M., Fujimi M., Miyamoto M., Akita K., Negi J., Shirasu K., Hasezawa H., Iba K. (2013) – A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses – Nature Communications 4, Article number:2215 – doi:10.1038/ncomms3215 – http://www.nature.com/ncomms/2013/130730/ncomms3215/full/ncomms3215.html – (On our blog : https://plantstomata.wordpress.com/2016/03/30/a-munc13-like-protein-and-stomatal-responses/)

Hashimoto-Sugimoto M., Negi J., Monda K., Higaki T., Isogai Y., Nakano T., Hasezawa S.., Iba K. (2016) – Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis – J. Exp. Bot.doi: 10.1093/jxb/erw134 – http://jxb.oxfordjournals.org/content/early/2016/03/30/jxb.erw134.full – (On our blog : https://plantstomata.wordpress.com/2016/05/20/ht1-a-critical-regulator-for-co2-signaling-and-involved-in-stomatal-opening/)

Hashimoto-Sugimoto M., Negi J., Young J., Israelsson M., Schroeder J. I., Iba K. (2006) – Arabidopsis HT1 kinase controls stomatal movements in response to CO – Nature Cell Biology 8: 391397– (On our blog : https://plantstomata.wordpress.com/2016/05/20/ht1-kinase-controls-stomatal-movements/)

Hasper T. B., Dusenge M. E., Breuer F., Uwizeye F. K., Wallin G., Uddling J. (2017) – Stomatal CO2 responsiveness and photosynthetic capacity of tropical woody species in relation to taxonomy and functional traits – Oecologia 184(1): 43-57 – DOI: 10.1007/s00442-017-3829-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00442-017-3829-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/stomatal-co2-responsiveness-in-relation-to-taxonomy-and-functional-traits/)

Hassan I. A. (2004) – Interactive Effects of Salinity and Ozone Pollution on Photosynthesis, Stomatal Conductance, Growth, and Assimilate Partitioning of Wheat (Triticum aestivum L.) – Photosynthetica  42(1): 111–116 – https://link.springer.com/article/10.1023%2FB%3APHOT.0000040578.93542.61?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/10/05/interactive-effects-of-salinity-and-ozone-pollution-on-stomatal-conductance/)

Hassan I. A., Ashmore M. R., Bell J. N. B. (1994) – Effects of O3 on the stomatal behaviour of Egyptian varieties of radish (Raphanus sativus L. cv. Baladey) and turnip (Brassica rapa L. cv Sultani) – New Phytologist 128: 243-249 – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1994.tb04008.x – (On our blog : https://plantstomata.wordpress.com/2018/04/16/effects-of-o3-on-the-stomatal-behaviour/ )

Hassani N. J. M. (2018) – Stomata its Structure and Mechanism of Stomatal Movements – Forestrypedia – https://forestrypedia.com/stomata-its-structure-and-mechanism-of-stomatal-movements/ – (On our blog : https://plantstomata.wordpress.com/2022/03/23/structure-and-mechanism-of-stomatal-movements/ )

Hassidim M.Dakhiya Y.Turjeman A.Hussien D.Shor E.Anidjar A.Goldberg K.Green R. M. (2017) – CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the Circadian Control of Stomatal Aperture – 

Hassiotou F., Evans J. R., Ludwig M., Veneklaas E. J. (2009) – Stomatal crypts may facilitate diffusion of CO(2) to adaxial mesophyll cells in thick sclerophylls – Plant Cell Environ. 32(11): 1596-1611 – doi: 10.1111/j.1365-3040.2009.02024.x – Epub 2009 Jul 17 – https://www.ncbi.nlm.nih.gov/pubmed/19627563 – (On our blog : https://plantstomata.wordpress.com/2018/01/27/possible-functions-of-stomatal-crypts/ )

Hattori T., Sonobe K., Inanaga S., An P., Tsuji W., Araki H., Eneji A. E., Morita S. (2007) – Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon – Environ. Exp. Bot. 60: 177– 182 –  DOI: 10.1016/j.envexpbot.2006.10.004  – https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=ACS&version=1.0&coi=1%3ACAS%3A528%3ADC%252BD2sXislWgtro%253D&md5=86860e5312a0869890186da47c00257e – (On our blog : https://plantstomata.wordpress.com/2020/11/04/silicon-application-could-affect-stomatal-conductance-in-sorghum-seedlings-through-the-modification-of-plant-water-relations/ )

Haubrick L. L., Torsethaugen G., Assmann S. M. (2006) – Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts – Physiol. Plant. 128: 134–143 – https://doi.org/10.1111/j.1399-3054.2006.00708.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2006.00708.x – (On our blog : https://plantstomata.wordpress.com/2019/03/15/control-of-stomatal-aperture-and-potassium-currents/ )

Haus M. J., Li M., Chitwood D. H., Jacobs T. W. (2018) – Long-distance and trans-generational stomatal patterning by CO2 across Arabidopsis organs – Front Plant Sci. 9: 1714 – doi: 10.3389/fpls.2018.01714https://www.frontiersin.org/articles/10.3389/fpls.2018.01714/full – (On our blog : https://plantstomata.wordpress.com/2019/12/29/identifying-developmental-steps-responsible-for-altered-stomatal-patterning-to-pco2-and-its-trans-generational-inheritance/ )

Havis J. R. (1980) – Container moisture state and stomatal resistance in nursery plants – HortScience 15(5): 638-639 ref.9 – ISSN : 0018-5345 – https://www.cabdirect.org/cabdirect/abstract/19810390722 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/container-moisture-state-and-stomatal-resistance/ )

Haworth M.Elliott-Kingston C., Gallagher A., Fitzgerald A., McElwain J. C. (2012) – Sulphur dioxide fumigation effects on stomatal density and index of non-resistant plants: implications for the stomatal palaeo-[CO2] proxy method – Review of Palaeobotany and Palynology 182: 44-54 – https://doi.org/10.1016/j.revpalbo.2012.06.006 – https://www.sciencedirect.com/science/article/pii/S0034666712001546 – (On our blog : https://plantstomata.wordpress.com/2018/10/22/the-sd-si-ratios-of-fossil-plants-may-serve-as-indicators-of-the-effectiveness-of-stomatal-reconstructions-of-palaeo-co2/ )

Haworth M.Elliott-Kingston C., McElwain J. C. (2011) – Stomatal control as a driver of plant evolution – J. Exp. Bot. 62 (8): 2419-2423 – doi: 10.1093/jxb/err086 – http://jxb.oxfordjournals.org/content/62/8/2419.full – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomatal-control-and-plant-evolution/)

Haworth M.Elliott-Kingston C., McElwain J. C. (2011) – The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers – Oecologia 167: 11-19 – DOI: 10.1007/s00442-011-1969-1 – https://www.ncbi.nlm.nih.gov/pubmed/21461935 – (On our blog : https://plantstomata.wordpress.com/2018/03/15/stomatal-index-responses-of-araucariaceae-conifers/ )

Haworth M.Elliott-Kingston C., McElwain J. C. (2013) – Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants – Oecologia 171: 71–82 – doi: 10.1007/s00442-012-2406-9 – https://www.infona.pl/resource/bwmeta1.element.springer-97d8b071-46ba-3605-9d82-99c60bd0d034 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/physiological-and-morphological-responses-of-stomata-to-elevated-co2/)

Haworth M.Fitzgerald A., McElwain J. C. (2011) – Cycads show no stomatal-density and index response to elevated carbon dioxide and subambient oxygen – Australian Journal of Botany 59: 629–638 – https://doi.org/10.1071/BT11009 – http://www.publish.csiro.au/BT/BT11009?CFID=35207001&CFTOKEN=3723f8ed14392a7-71694F41-96DE-DEEC-346CD1882EE06135 – (On our blog : https://plantstomata.wordpress.com/2018/03/29/67659/

Haworth M.Gallagher A.Elliott-Kingston C.Raschi A.Marandola D.McElwain J. C. (2010) – Stomatal index responses of Agrostis canina to carbon dioxide and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy – New Phytologist 188845855 – doi: 10.1111/j.1469-8137.2010.03403.xPMID: 20704659https://pubmed.ncbi.nlm.nih.gov/20704659/ – (On our blog : https://plantstomata.wordpress.com/2021/12/19/stomatal-reconstructions-of-palaeo-co2-during-past-episodes-of-global-scale-volcanism-probably-reflect-atmospheric-co2-and-not-so2/ )

Haworth M.Heath J.McElwain J. C. (2010) – Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers – Annals of Botany 105: 411418 – Doi: 10.1093/aob/mcp309 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826259/ – (On our blog : https://plantstomata.wordpress.com/2018/04/14/differences-in-the-response-sensitivity-of-stomatal-index-to-atmospheric-co2/

Haworth M., Hesselbo S. P., McElwain J. C., Robinson S. A., Brunt J. W. (2005) – Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidaceae) – Geology 33: 749-752 – doi: 10.1130/G21736.1 – https://www.academia.edu/31865286/Mid-Cretaceous_pCO2_based_on_stomata_of_the_extinct_conifer_Pseudofrenelopsis_Cheirolepidiaceae_ – (On our blog : https://plantstomata.wordpress.com/2018/12/14/mid-cretaceous-pco2-based-on-stomata-of-an-extinct-conifer/

Haworth M., Killi D.,  Materassi A.,  Raschi A. (2015) – Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control – Am. J. Bot. 102(5): 677-688 – http://www.amjbot.org/content/102/5/677.full – (On our blog : https://plantstomata.wordpress.com/2017/11/23/a-model-of-stomatal-control-strategies-in-response-to-co2/)

Haworth M., Killi D.,  Materassi A.,  Raschi A., Centritto M. (2016) – Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2] – Front Plant Sci. 7: 1568 – doi:  10.3389/fpls.2016.01568 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078776/ – (On our blog : https://plantstomata.wordpress.com/2018/08/29/impaired-stomatal-control-may-increase-the-vulnerability-of-plants-to-water-deficit-and-high-temperatures/

Haworth M., Marino G., Brunetti C., Killi D., De Carlo A., Centritto M. (2018) – The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.) – A Case Study of the 2017 Heat Wave – Plants 7(4): 76 – https://doi.org/10.3390/plants7040076 – http://www.mdpi.com/2223-7747/7/4/76 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/the-impact-of-heat-stress-and-water-deficit-on-stomatal-physiology-of-olive/ )

Haworth M., Marino G., Centritto M. (2017) – The impact of atmospheric composition on the evolutionary development of stomatal control and biochemistry of photosynthesis over the past 450 ma – In: Nuno de la Rosa, L., Müller, G. (Eds.), Evolutionary Developmental Biology: A Reference Guide. Springer, Amsterdam, pp. 1–12 –

Haworth M., Marino G., Cosentino S. L., Brunetti C., Riggi,E., Avola G., Loreto F., Centritto M. (2018) – Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.) – Environ. Exp. Bot. 147: 116–124 – DOI: 10.1016/j.envexpbot.2017.11.002 – https://www.sciencedirect.com/science/article/abs/pii/S0098847217302733 – (On our blog : https://plantstomata.wordpress.com/2018/10/21/the-high-photosynthesis-is-underpinned-by-highly-effective-stomatal-control/ )

Haworth M., Marino G., Loreto F., Centritto M. (2021) – Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops – Oecologia 197867–883   – https://doi.org/10.1007/s00442-021-04857-3https://link.springer.com/article/10.1007/s00442-021-04857-3 – (On our blog : https://plantstomata.wordpress.com/2021/07/06/the-interaction-between-stomatal-morphology-and-physiology/ )

Haworth M., Raschi A. (2014) – PROJECT PEA (Project PEA (Photosynthesis and Earth Atmospheres): Investigating the effect of evolutionary adaptation to high atmospheric carbon dioxide concentrations in fossil and living plants) – Final Report Summary – Project ID: 275626 – European Commission – CORDIS – Project website: http://www.daa.cnr.it/index.php/it/attivita/progetti-internazionali /497-project-pea- – http://cordis.europa.eu/result/rcn/140589_en.html – (On our blog : https://plantstomata.wordpress.com/2017/11/18/stomata-and-high-atmospheric-co2-concentrations-in-fossil-and-living-plants/)

Haworth M., Scutt C. P., Douthe C., Marino G., Gaudio T., Loreto F., Flexas J. Centritto M. (2018) – Allocation of the epidermis to stomata relates to stomatal physiological control: Stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty – Environmental and Experimental Botany 151: 55-63  – DOI: 10.1016/j.envexpbot.2018.04.010 – https://www.researchgate.net/publication/324682498_Allocation_of_the_epidermis_to_stomata_relates_to_stomatal_physiological_control_Stomatal_factors_involved_in_the_evolutionary_diversification_of_the_angiosperms_and_development_of_amphistomaty – (On our blog : https://plantstomata.wordpress.com/2018/09/21/stomatal-factors-involved-in-the-evolutionary-diversification-of-the-angiosperms/ )

Hayashi M., Inoue S., Takahashi K., Kinoshita T. (2011) – Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells – Plant Cell Physiol 52: 1238–1248 – doi: 10.1093/pcp/pcr072 –  (On our blog : https://plantstomata.wordpress.com/2016/06/12/bl-induced-phosphorylation-of-the-plasma-membrane-h-atpase-in-stomata/)

Hayashi M., Inoue S., Ueno Y., Kinoshita T. (2017) – A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening – Scientific Reports 7, Article number: 45586 – doi: 10.1038/srep45586 – https://www.nature.com/articles/srep45586 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/a-raf-like-protein-kinase-bhp-and-stomatal-opening/)

Hayashi M., Kinoshita T. (2011) Crosstalk between blue-light- and aba-signaling pathways in stomatal guard cells – Plant Signaling & Behavior 6(11): 1662-1664 – DOI: 10.4161/psb.6.11.17800  – http://www.tandfonline.com/doi/abs/10.4161/psb.6.11.17800 – (On our blog : https://plantstomata.wordpress.com/2016/06/12/14165/)

Hayashi M., Sugimoto H., Takahashi H., Seki M., Shinozaki K., Sawasaki T., Kinoshita T., Inoue S.-i. (2020) – Raf-like kinases CBC1 and CBC2 negatively regulate stomatal opening by negatively regulating plasma membrane H+-ATPase phosphorylation in Arabidopsis – Photochem. Photobiol. Sci. 19: 88-98 – DOI: 10.1039/C9PP00329Khttps://pubs.rsc.org/en/content/articlehtml/2020/pp/c9pp00329k – (On our blog : https://plantstomata.wordpress.com/2022/04/07/cbc1-and-cbc2-act-as-negative-regulators-of-stomatal-opening-probably-via-inhibition-of-pm-h-atpase-activity/ )

Hayat F., Ahmed M. A.., Zarebanadkouki M., Javaux M., Cai G., Carminati A. (2020) – Transpiration Reduction in Maize (Zea mays L.) in Response to Soil Drying – Frontiers in Plant Science 10: 1695 – https://doi.org/10.3389/fpls.2019.01695https://dial.uclouvain.be/pr/boreal/object/boreal:226237 – (On our blog : https://plantstomata.wordpress.com/2020/03/04/stomata-closure-during-soil-drying-is-caused-by-the-loss-of-soil-hydraulic-conductivity-in-a-predictable-way/ )

Hays B. (2016) – Agave genes could inspire new drought-resistant plants – UPI Science News 2016-12-06 – http://www.upi.com/Science_News/2016/12/06/Agave-genes-could-inspire-new-drought-resistant-plants/2391481046942/ – (On our blog : https://plantstomata.wordpress.com/2016/12/07/the-stomata-genes-of-agave-and-future-improved-drought-resistance-capabilities/)

He J., Liang Y.-K. (2018) – Stomata – eLS –https://doi.org/10.1002/9780470015902.a0026526https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0026526 – (On our blog : https://plantstomata.wordpress.com/2018/12/04/stomata-6/ ) 

He J., Ma X.-G., Zhang Y., Sun T.-F., Xu F.-F., Chen Y.-P., Liu X., Yue M. (2013) – Role and interrelationship of Ga protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves – Plant Physiology 161: 15701583 – DOI: 10.1104/pp.112.211623 – https://www.ncbi.nlm.nih.gov/pubmed/23341360 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/72237

He J., Xu H., She X.-P., Song X.-G., Zhao W.-M. (2005) – The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean – Funct. Plant Biol. 32: 237–247 – doi: 10.1071/FP04185 – (On our blog : https://plantstomata.wordpress.com/?s=interrelationship+of+hydrogen+peroxide)

He J., Yue X., Wang R., Zhang Y. (2011) – Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. – J. Exp. Bot. 62: 2657–2666 – doi: 10.1093/jxb/erq431 – (On our blog : https://plantstomata.wordpress.com/2016/06/12/ethylene-and-stomatal-closure-2/)

He J., Zhang L., He S. Y., Ryser E. T., Li H., Zhang W. (2022) – Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana – Environmental Pollution 292, Part B: 118448 – https://doi.org/10.1016/j.envpol.2021.118448https://www.sciencedirect.com/science/article/abs/pii/S0269749121020303 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/the-important-role-of-stomata-in-the-internationalization-of-engineered-nanoparticles-enps-in-plants/ )

He J., Zhang R.-X;, Kim D. S., Sun P., Liu H., Liu Z., Hetherington A. M., Liang Y.-K. (2020) – ROS of Distinct Sources and Salicylic Acid Separate Elevated CO2-Mediated Stomatal Movements in Arabidopsis – Front. Plant Sci. –https://doi.org/10.3389/fpls.2020.00542https://www.frontiersin.org/articles/10.3389/fpls.2020.00542/full – (On our blog : https://plantstomata.wordpress.com/2021/09/29/sa-added-to-a-list-of-plant-hormones-that-together-with-ros-from-distinct-sources-distinguish-two-branches-of-eco2-mediated-stomatal-movements/ )

He J., Zhang R.-X., Peng K., Tagliavia C., Li S., Xue S., Liu A., Hu H., , Zhang J., Hubbard K. E., Held K., McAinsh M. R., Gray J. E., Kudla J., Schroeder J. I., Liang Y.-K. Hetherington A. M. (2018) – The BIG protein distinguishes the process of CO2-induced stomatal closure from the inhibition of stomatal opening by CO2 – New Phytologist – https://pdfs.semanticscholar.org/21e9/6ee336990a58ef5713468224c20865677838.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/29/big-is-a-signaling-component-involved-in-the-elevated-co2-mediated-control-of-stomatal-development/ )

He J.-M., Ma X. G., Zhang Y., Sun T. F., Xu F. F., Chen Y. P., Liu X., Yue M. (2013) – Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves – Plant Physiology 161: 1570–1583 – https://doi.org/10.1104/pp.112.211623http://www.plantphysiol.org/content/161/3/1570 – (On our blog : https://plantstomata.wordpress.com/2019/06/27/ultraviolet-b-induced-stomatal-closure/ )

He J.-M., She X._P., Liu C., Zhao W. M. (2004) – Stomatal and nonstomatal limitations of photosynthesis in mung bean leaves under the combination of enhanced UV-B radiation and NaCl stress (in Chinese) –  Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30: 53–58 – PMID: 15583409 – https://www.ncbi.nlm.nih.gov/pubmed/15583409?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/06/27/stomatal-and-nonstomatal-limitations-of-photosynthesis-2/ )

He J.-M., Xu H., She X.-P., Song X.-G., Zhao W.-M. (2005) – The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B induced stomatal closure in broad bean – Funct Plant Biol 32: 237–247 –  https://doi.org/10.1071/FP04185http://www.publish.csiro.au/fp/FP04185 – (On our blog : https://plantstomata.wordpress.com/2019/06/27/uv-b-induced-stomatal-closure/ )

He J.-M., Yue X.-Z., Wang R.-B., Zhang Y. (2011) – Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. –  J Exp Bot 62: 2657–2666 – doi:10.1093/jxb/erq431https://www.researchgate.net/profile/Junmin_He/publication/49734575_Ethylene_mediates_UV-B-induced_stomatal_closure_via_peroxidase-dependent_hydrogen_peroxide_synthesis_in_Vicia_faba_L/links/55d1f39c08ae0b8f3ef7728c.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/27/ethylene-mediates-uv-b-induced-stomatal-closure-via-peroxidase-dependent-h2o2-generation/ )

He J.-M., Zhang Z., Wang R.-B., Chen Y.-P. (2011) – UV-B-induced stomatal closure occurs via ethylene-dependent NO generation in Vicia faba – Funct. Plant Biol. 38, 293-302 – https://doi.org/10.1071/FP10219 – http://www.publish.csiro.au/FP/FP10219?CFID=35207001&CFTOKEN=3723f8ed14392a7-71694F41-96DE-DEEC-346CD1882EE06135 – (On our blog : https://plantstomata.wordpress.com/2018/03/29/ethylene-participates-in-the-uv-b-induced-stomatal-closure/ )

He Y., Zhou K., Wu Z., Li B., Fu J., Lin C., Jiang D. (2019) – Highly Efficient Nanoscale Analysis of Plant Stomata and Cell Surface Using Polyaddition Silicone Rubber – Frontiers in Plant Science Vol. 10/Art. 1569 – doi: 10.3389/fpls.2019.01569 – Highly_Efficient_Nanoscale_Analysis_of_Plant_Stoma.pdf – (On our blog : https://plantstomata.wordpress.com/2020/01/04/highly-efficient-nanoscale-analysis-of-plant-stomata/ )

Heath J. (1998) – Stomata of trees growing in CO2-enriched air show reduced sensitivity to vapour pressure deficit and drought – Plant Cell Environ. 21: 1077–1088 – doi: 10.1046/j.1365-3040.1998.00366.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00366.x – (On our blog : https://plantstomata.wordpress.com/2018/10/22/stomata-of-trees-growing-in-co2-enriched-air-show-reduced-sensitivity-to-vapour-pressure-deficit-and-drought/ )

Heath O. V. S. (1938) – An experimental investigation on the mechanism of stomatal movement with some preliminary observations on the response of the guard cells to “shock” – New Phytol.5: 385-395 – https://www.jstor.org/stable/2428308?seq=1#page_scan_tab_contents – (on our blog : https://plantstomata.wordpress.com/2019/06/27/the-mechanism-of-stomatal-movement/ )

Heath O. V. S. (1939) – Experimental studies of the relation between
carbon assimilation and stomatal movement. I. Apparatus and technique – Ann. Bot., 3: 469-495 –

Heath O. V. S. (1947) – Role of starch in light-induced stomatal movement, and a new reagent for staining stomatal starch – Nature (Lond.) 159: 647–648 – https://doi.org/10.1038/159647b0https://www.nature.com/articles/159647b0 – (On our blog : https://plantstomata.wordpress.com/2021/11/16/starch-and-light-induced-stomatal-movement/ )

Heath O. V. S. (1948) – Studies in stomatal action. Control of stomatal movement by a reduction in the normal carbon dioxide content of the air – Nature (London) 161: 179-181 – doi: 10.1038/161179a0https://www.nature.com/articles/161179a0 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/control-of-stomatal-movement-by-a-reduction-in-the-normal-co2-content-of-the-air/ )

Heath O. V. S. (1949) – Studies in stomatal behaviour. II. The role of starch in the light response of stomata. Part I. Review of literature and experiments on the relation between aperture and starch content in the stomata of Pelargonium zonale – New Phytol. 48: 186-211 – https://www.jstor.org/stable/2429111 – (On our blog : https://plantstomata.wordpress.com/2021/11/16/the-relation-between-stomatal-aperture-and-starch-content-in-the-stomata/ )

Heath O. V. S. (1950) – Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata– Journal of Experimental Botany 1: 2962 –  https://doi.org/10.1093/jxb/1.1.29https://academic.oup.com/jxb/article-abstract/1/1/29/653279?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/06/14/the-role-of-co2-in-the-light-response-of-stomata/ )

Heath O. V. S. (1951) – Response of Stomata to Subnormal Carbon Dioxide Concentrations – Journal of Experimental Botany 2(1): 110 – https://doi-org.eres.qnl.qa/10.1093/jxb/2.1.110https://academic-oup-com.eres.qnl.qa/jxb/article/2/1/110/495694?login=true – (On our blog : https://plantstomata.wordpress.com/2021/12/17/response-of-stomata-to-subnormal-co2-concentrations/ )

Heath O. V. S. (1951) – Assimilation by green leaves with stomatal control eliminated – Symposia Soc. Exper. Biol. 5: 94–114 –

Heath O. V. S. (1952) – Studies in stomatal behaviour. II. The rôle of starch in the light response of stomata. Part 2. The light response of stomata of Allium cepa L., together with some preliminary observations on the temperature response – New Phytologist 51: 30–47 – https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1952.tb06113.x – (On our blog : https://plantstomata.wordpress.com/2021/11/16/the-light-response-of-stomata/ )

Heath O. V. S. (1959) – Light and carbon dioxide in stomatal movements – Handb. Pfl. Physiol./ W. Ruhland (Ed.) Encyclopedia of Plant Physiology 17/1: 415-464 – https://doi.org/10.1007/978-3-642-94755-1_19https://link.springer.com/chapter/10.1007/978-3-642-94755-1_19#citeas – (On our blog : https://plantstomata.wordpress.com/2021/11/16/light-and-co2-in-stomatal-movements/ )

Heath O. V. S. (1959) – The water relations of stomatal cells and the mechanisms of stomatal movement –  in F. C. STEWARD (Ed.), Plant Physiology, a Treatise Vol. 2: 193-250, Academic Press, New York.

Heath O. V. S. (1975) – Stomata – Oxford University Press, UK – ISBN 0199141649 –

Heath O. V. S., Mansfield T. A. (1969) – The movements of stomata. In The physiology of plant growth and development. Wilkins M. B. Edit. 303-322. – Mac Graw-Hill, London.

Heath O. V. S., Mansfield T. A., Meidner H. (1965) – Light-induced stomatal
opening and the postulated role of glycollic acid – Nature 207: 960-962 –

Heath O. V. S., Meidner H. (1957) – Inter-relations of carbon dioxide and temperature as affecting stomata of Allium cepa L. and their bearing on mid-day closure – Nature (London) 180: 181-182 – https://doi.org/10.1038/180181a0https://www.nature.com/articles/180181a0

Heath O. V. S., Meidner H. (1981) – Feedback Processes in the Opening of Leaf Stomata in Light – 

Heath O. V. S., Milthorpe F. L. (1950) – Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata, Part II – Preliminary experiments on the interrelations of light intensity, carbon dioxide concentration and rate of air flow in controlling the movement of wheat stomataJournal of Experimental Botany 1227-243https://doi.org/10.1093/jxb/1.2.227https://academic.oup.com/jxb/article-abstract/1/2/227/573863?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/11/16/the-interrelations-of-light-intensity-co2-concentration-and-rate-of-air-flow-in-controlling-the-movement-of-stomata/ )

Heath O. V. S., Orchard B. (1956) – Studies in stomatal behaviour. VII. Effects of anaerobic conditions upon stomatal movement a test of Williams’ hypothesis of stomatal mechanism – J. of Exper. Bot. 7: 313–325 – https://doi.org/10.1093/jxb/7.3.313https://academic.oup.com/jxb/article-abstract/7/3/313/546523?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/11/16/effects-of-anaerobic-conditions-upon-stomatal-movement/ )

Heath O. V. S., Orchard B. (1957) – Mid-day closure of stomata – Nature (Lond.) 180: 180–181 – https://doi.org/10.1038/180180a0https://www.nature.com/articles/180180a0

Heath O. V. S., Penman H. L. (1941) – Experimental Studies of the Relation between Carbon Assimilation and Stomatal Movement: II. The Use of the Resistance Porometer in Estimating Stomatal Aperture and Diffusive Resistance: Part I. A Critical Study of the Resistance Porometer withan appendix by HL Penman – Annals of Botany 5(19): 455-500 – https://doi.org/10.1093/oxfordjournals.aob.a087402https://academic.oup.com/aob/article-abstract/5/3/455/183313?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/12/27/98384/ )

Heath O. V. S., Russell J. (1954) – Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by the mesophyll. Part I. Effects of Light Independent of Carbon Dioxide and their Transmission from One Part of the Leaf to Another – J. Exp. Bot. 5: 1-15 – https://www.jstor.org/stable/23686118?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/15/studies-in-stomatal-behaviour-vi-light-responses-of-wheat-stomata-i-independent-of-co2/ )

Heath O. V. S., Russell J. (1954) – Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by mesophyll. Part II. Interactions with carbon dioxide – J. Exp. Bot. 5: 269–292 –  https://doi.org/10.1093/jxb/5.2.269https://academic.oup.com/jxb/article-abstract/5/2/269/508595?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/09/11/a-highly-significant-diurnal-rhythm-of-stomatal-movement-under-constant-illumination-and-temperature-is-shown-to-occur-in-wheat/ )

Heath S. M., Southworth D., D’Allura J. (xxxx) – Localization of Nickel in Epidermal Subsidiary Cells of Leaves of Thlaspi montanum var. Siskiyouense (Brassicaceae) Using Energy-Dispersive X-Ray Microanalysis – International Journal of Plant Sciences 158(2) : – https://www.journals.uchicago.edu/doi/10.1086/297429 – (On our blog : https://plantstomata.wordpress.com/2020/12/05/nickel-was-localized-in-the-subsidiary-cells-that-surround-guard-cells-but-not-in-guard-cells/ )

Heber U., Neimanis S., Lange O. L. (1986) – Stomatal aperture, photosynthesis and water fluxes in mesophyll cells as affected by the abscission of leaves. Simultaneous measurements of gas exchange, light scattering and chlorophyll fluorescence – Planta 167: 554–562 – https://doi.org/10.1007/BF00391232https://link.springer.com/article/10.1007%2FBF00391232 – (On our blog : https://plantstomata.wordpress.com/2019/04/01/photosynthesis-followed-the-stomatal-responses-increasing-during-opening-and-decreasing-during-closure/ )

Hechler W. D., Dawson J. O., DeLucia E. H. (1991) – Stomatal conductance of seedlings of three oak species subjected to nitrogen fertilization and drought treatments – In: McCormick, Larry H.; Gottschalk, Kurt W., eds. Proceedings, 8th Central Hardwood Forest Conference; 1991 March 4-6; University Park, PA. Gen. Tech. Rep. NE-148. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: 188-193 – https://www.nrs.fs.fed.us/pubs/3498 – (On our blog : https://plantstomata.wordpress.com/2021/04/17/stomatal-conductance-of-seedlings-subjected-to-nitrogen-fertilization-and-drought-treatments/ )

Heckenberger U., Schurr U., Schulze E.-D. (1996) – Stomatal response to abscisic acid fed into the xylem of intact Helianthus annuus (L.) plants – J. Exp. Bot. 47: 1405-1412 – https://doi.org/10.1093/jxb/47.9.1405 – https://academic.oup.com/jxb/article/47/9/1405/470986 – (On our blog : https://plantstomata.wordpress.com/2018/03/31/stomatal-response-to-aba-fed-into-the-xylem/ )

Hedrich R. (1994) – Voltage‐dependent chloride channels in plant cells: identification, characterization, and regulation of a guard cell anion channel – Current Topics in Membranes 4 : 1 33 – https://doi.org/10.1016/S0070-2161(08)60816-3 https://www.sciencedirect.com/science/article/pii/S0070216108608163 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/identification-characterization-and-regulation-of-a-stomatal-guard-cell-anion-channel/ )

Hedrich R. (2012) – Ion channels in plants – Physiol Rev 92(4): 1777-1811 – doi: 10.1152/physrev.00038.2011https://pubmed.ncbi.nlm.nih.gov/23073631/ – (On our blog : https://plantstomata.wordpress.com/2021/03/07/anion-channels-in-stomatal-guard-cells-and-other-plant-cells-are-key-targets-within-often-complex-signaling-networks/ )

Hedrich R. (2017) – Evolution of stomatal movements – Chair of Botany I – Plant Physiology and Biophysics, Julius-von-Sachs-Platz 2, 97082 Würzburg – https://www.biozentrum.uni-wuerzburg.de/en/bot1/research/privdoz-dr-rob-roelfsema/evolution-of-stomatal-movements/ – (On our blog : https://plantstomata.wordpress.com/2022/03/02/evolution-of-stomatal-movements/ )

Hedrich R. (2018) – Stomatal movement – guard cell physiology – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof_dr_rainer_hedrich/stomata_guard_cell_action/ – (On our blog : https://plantstomata.wordpress.com/2017/09/20/aba-receptors-and-stomatal-movement/)

Hedrich R., Baumann I., Raschke K. (1989) – The “Blendor Method” for the preparation of guard-cell protoplasts in large numbers and from leaves with adhering epidermis. (Abstr.) – Plant Physiol. 89: Suppl. 148 –

Hedrlch R., Busch H., Raschke K. (1990) – Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells – EMBO J. 9: 3889-3892  – (On our blog : https://plantstomata.wordpress.com/2016/06/12/activation-of-the-anion-channel-by-ca2-and-nucleotides-in-guard-cells/)

Hedrich R., Geiger D. (2017) – Biology of SLAC1‐type anion channels – from nutrient uptake to stomatal closure – New Phytologist 216(1): 46-61 – DOI: 10.1111/nph.14685 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-216-i-1-nph14685 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/stomatal-closure-and-the-biology-of-slac1%e2%80%90type-anion-channels/)

Hedrich R., Geiger D., Ache P., Al-Rascheid K. (2012) – Biology of guard cell anion channels  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/new-insights-into-the-structure-function-and-physiology-of-stomatal-anion-channels/ )

Hedrich R., Marten I. (1993) – Malate-induced feedback regulation of plasma membrane anion channels could provide a carbon dioxide sensor to guard cells.- EMBO J. 12:897–901 – (On our blog : https://plantstomata.wordpress.com/2016/06/14/malate-co2-and-stomata/)

Hedrich R., Marten I., Lohse G., Dietrich P., Winter H., Lohaus G., Heldt H.-W. (1994) – Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration – Plant J. 6: 741–748 – DOI: 10.1046/j.1365-313X.1994.6050741.x  – (On our blog : https://plantstomata.wordpress.com/2016/06/15/malate-sensitive-anion-channels-co2-and-stomata/)

Hedrich R., Neimanis S., Savchenko G., Felle H. H., Kaiser W. M., Heber U. (2001) –  Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply – Planta 213: 594–601 – (On our blog : https://plantstomata.wordpress.com/2016/06/15/physiological-aspects-of-stomatal-function/)

Hedrich R., Shabala S. (2018) – Stomata in a saline world – Current Opinion in Plant Biology 46: 87-95 – https://doi.org/10.1016/j.pbi.2018.07.015 – https://www.sciencedirect.com/science/article/pii/S1369526618300451 – (On our blog : https://plantstomata.wordpress.com/2018/08/22/the-major-plasma-membrane-transporters-that-mediate-stomata-movements/ )

Hei S., Liu Z., Huang A., She X. (2017) – The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis – Functional Plant Biology – https://doi.org/10.1071/FP17180 http://www.publish.csiro.au/fp/FP17180 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/the-regulator-of-g-protein-signalling-protein-mediates-d-glucose-induced-stomatal-closure/)

Heichel G. H. (1971) – Stomatal movements, frequencies, and resistances in two maize varieties differing in photosynthetic capacity – J. Exp. Bot. 22: 644-649 – https://doi.org/10.1093/jxb/22.3.644 – https://academic.oup.com/jxb/article/22/3/644/575381 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-movements-frequencies-and-resistances/ )

Heichel G. H. (1971) – Genetic control of epidermal cell and stomatal frequency in maize – Crop Sci 11: 830-832 – https://doi.org/10.2135/cropsci1971.0011183X001100060019xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1971.0011183X001100060019x – (On our blog : https://plantstomata.wordpress.com/2021/03/28/a-simple-genetic-system-controls-epidermal-cell-and-stomatal-frequency-2/)

Heichel G. H., Anagnostakis S. (1978) – Stomata1 response to light of Solanum pennellii, Lycopersicon esculentum, and a graft-induced chimera – Plant Physiol. 62: 387-390 –

Heilmeier H., Schulze E._D., Fan J., Hartung W. (2007) – General relations of stomatal responses to xylem sap abscisic acid under stress in the rooting zone – A global perspective – Flora 202(8): 624-636 – DOI: 10.1016/j.flora.2007.06.002 – https://www.infona.pl/resource/bwmeta1.element.elsevier-97e68036-3247-3e24-b77a-d49b6af59b2a – (On our blog : https://plantstomata.wordpress.com/2017/10/09/the-responsiveness-of-stomata-to-xylem-sap-aba-concentration/)

Heine H. (2020) – How plants ensure regular seed spacing – Phys.Org. https://phys.org/news/2020-09-regular-seed-spacing.html – (On our blog : https://plantstomata.wordpress.com/2020/09/16/how-plants-ensure-regular-seed-spacing/)

Heinen R. B., Bienert G. P., Cohen D., Chevalier A. S., Uehlein N., Hachez C., Kaldenhoff R., Le Thiec D., Chaumont F. (2014) – Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays – Plant Molecular Biology 86(3): 335-350 – DOI: 10.1007/s11103-014-0232-7 – https://www.infona.pl/resource/bwmeta1.element.springer-e191f415-c2ca-3421-a84e-86c672d11cc9 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/zmpips-may-have-various-physiological-roles-in-stomatal-complexes/)

Helige H., Weber F. (1950) – Stomata-Zahl ergrünter Hydrangea-Kelchblatter –
Phyton 2: 299-301 –

Heller F. O. (1966) – Cytologische Untersuchungen belichteter und verdunkelter Schliesszellen – Dipl.-Arbeit Darmstadt –

Heller F. O. (1979) – Lichtmikroskopische und ultraviolettmikroskopische Untersuchung des Form- und Strukturwandels lebender Schliesszellen bei ihren Reaktionen auf verschiedene ökologische Faktoren – Diss. Darmstadt D 17 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/changes-of-stomatal-structure-during-reactions-on-ecological-factors-in-german/)

Heller F. O., Kausch W. (1971) – Licht- und ultraviolettmikroskopische Beobachtungen an Schliesszellen nach ihrer Reaktion auf verschiedene Umweltbedingungen – Ber. Dtsch. Bot. Ges. 84(9): 541-549 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/microscopic-observations-of-stomata-after-their-responses-to-environmental-factors-in-german/)

Heller F. O., Kausch W., Trapp L. (1971) – UV-mikroskopischer Nachweis von Strukturänderungen in Schliesszellen von Vicia faba L. – Naturwissennschaften 58: 419- 420 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/structural-changes-in-stomata-of-vicia-faba-l-in-german/)

Heller F. O., Resch A. (1967) – Funktionell bedingter Strukturwechsel in den Schliesszellen von Vicia faba – Planta 75: 243-252 – (On our blog : https://plantstomata.wordpress.com/2017/07/30/structure-of-nuclei-and-functional-change-in-stomata-in-german/)

Henderson-Sellers A., McGuffie K., Gross C. (1995) – Sensivity of global climate model simulations to increased stomatal resistance and CO2 increases – Journal of Climate 8: 1738-1756 – <a href=”https://doi.org/10.1175/1520-0442(1995)008https://doi.org/10.1175/1520-0442(1995)008<1738:SOGCMS>2.0.CO;2 – https://journals.ametsoc.org/doi/pdf/10.1175/1520-0442%281995%29008%3C1738%3ASOGCMS%3E2.0.CO%3B2 – (On our blog : https://plantstomata.wordpress.com/2018/10/22/sensivity-of-global-climate-model-simulations-to-increased-stomatal-resistance-and-co2-increases/ )

Hendrickson A. (1926) – Certain water relations of the genus Prunus – Hilgardia 1(19): 479-524 – DOI:10.3733/hilg.v01n19p479https://hilgardia.ucanr.edu/Abstract/?a=hilg.v01n19p479 – (On our blog : https://plantstomata.wordpress.com/2022/02/18/the-behavior-of-stomata-in-relation-to-transpiration/ )

Hennessey T. L., Field C. B. (1991) – Circadian Rhythms in Photosynthesis : Oscillations in Carbon Assimilation and Stomatal Conductance under Constant Conditions – Plant Physiology 96(3): – https://doi.org/10.1104/pp.96.3.831http://www.plantphysiol.org/content/96/3/831.short – (On our blog : https://plantstomata.wordpress.com/2019/03/21/oscillations-in-carbon-assimilation-and-stomatal-conductance-under-constant-conditions/ )

Hennessey T. L., Freeden A., Field C. B. (1993) – Environmental effects on circadian rhythms in photosynthesis and stomatal opening – Planta 189: 369–376 – https://doi.org/10.1007/BF00194433https://link.springer.com/article/10.1007%2FBF00194433#citeas – (On our blog : https://plantstomata.wordpress.com/2019/09/21/environmental-effects-on-circadian-rhythms-in-stomatal-opening/)

Henry A., Stuart-Williams H., Dixit S., Kumar A., Farquhar G. (2019) – Stomatal conductance responses to evaporative demand conferred by rice drought-yield QTL qDTY12.1 – Functional Plant Biology xxx: – http://www.publish.csiro.au/FP/justaccepted/FP18126 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/stomatal-conductance-responses-to-evaporative-demand/ )

Henry C., John G. P., Pan R., Bartlett M. K., Fletcher L. R., Scoffoni C., Sack L. (2019) – A stomatal safety-efficiency trade-off constrains responses to leaf dehydrationNature Communications 10, Article number: 3398 – https://www.nature.com/articles/s41467-019-11006-1 – (On our blog : https://plantstomata.wordpress.com/2019/08/12/80044/ )

Henson I. E., Alagarswamy G., Mahalakshmi V., Bidinger F. R., (1983) – Stomatal Response to Water Stress and its Relationship to Bulk Leaf Water Status and Osmotic Adjustment in Pearl Millet (Pennisetum americanum [L.] Leeke) – Journal of Experimental Botany 34(141): 442-450 – https://www.jstor.org/stable/23690625?seq=1 – (On our blog : https://plantstomata.wordpress.com/2019/11/28/localized-adjustment-by-the-stomatal-complex-in-response-to-environmental-differences-leaf-ageing-and-or-ontogenetic-change-is-responsible-for-the-uncoupling-of-stomatal-from-bulk-leaf-water-status/ )

Henson I. E., Jensen C. R., Turner N. C. (1989) – Leaf gas exchange and water relations of lupins and wheat. III. Abscisic acid and drought-induced stomatal closure – Aust. J. Plant Physiol. 16: 429–442 – https://doi.org/10.1071/PP9890429 – http://www.publish.csiro.au/FP/PP9890429 – (On our blog : https://plantstomata.wordpress.com/2018/10/22/drought-induced-stomatal-closure-could-be-mediated-by-aba/ )

Henson I. E., Alagarswamy G., Bidinger F. R., Mahalakshmi V., (1982) – Stomatal response of pearl millet (Pennisetum americanum [L.] Leeke) to leaf water status and environmental factors in the field – Plant Cell Environ. 5: 65–74 –

Henson I. E., Mahalakshmi V., Bidinger F. R., Alagarswamy G., (1981) – Stomatal Responses of Pearl Millet (Pennisetum americanum (L.) Leeke) Genotypes, in Relation to Abscisic Acid and Water Stress – Journal of Experimental Botany 32(131): 1211-1221 – https://core.ac.uk/download/pdf/219472913.pdf – (On our blog : https://plantstomata.wordpress.com/2021/08/27/endogenous-aba-generated-during-a-water-stress-mediates-stomatal-responses-to-such-stress/ )

Henson I. E., Mahalakshmi V., Alagarswamy G., Bidinger F. R. (1984) – The Effect of Flowering on Stomatal Response to Water Stress in Pearl Millet (Pennisetum americanum [L.] Leeke) – Journal of Experimental Botany 35(151): 219-226 – https://www.jstor.org/stable/23690887?seq=1 – (On our blog : https://plantstomata.wordpress.com/2019/12/04/the-tendency-of-stomata-to-remain-open-despite-water-stress-and-loss-of-bulk-leaf-%cf%88p-is-related-to-the-presence-of-an-emerged-panicle/ )

Henson I. E., Turner N. C. (1991) – Stomatal responses to abscisic acid in three lupin species – New Phytol. 117: 529–534 – https://doi.org/10.1111/j.1469-8137.1991.tb00957.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1991.tb00957.x – (On our blog : https://plantstomata.wordpress.com/2018/03/31/stomatal-responses-to-aba/ )

Hentschel R., Hommel R. , Poschenrieder W., Grote R., Holst J.Biernath C., Gessler A., Priesack E. (2016) – Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech – Trees 30(1): 153-174 – http://link.springer.com/article/10.1007%2Fs00468-015-1284-2 – (On our blog : https://plantstomata.wordpress.com/2016/04/02/stomatal-conductance-and-intrinsic-wue/)

Hentzen A. F., Smart L. B., Wimmers L. E., Fang H. H., Schroeder J. I.., Bennett A. B. (1996) – Two plasma membrane H+-ATPase genes expressed in guard cells of Vicia faba are also expressed throughout the plant – Plant Cell Physiol. 37: 650–659 – https://doi.org/10.1093/oxfordjournals.pcp.a028994 – http://citeseerx.ist.psu.edu/viewdoc/downloaddoi: 10.1.1.1013.193&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/22/h-atpase-genes-expressed-in-guard-cells/ )

Henzell R. G. (1974) – The effects of lowering the leaf water potential on the stomatal resistance and photosynthetic rate of some Sorghum bicolor (L.) Moench genotypes – Dissertation Abstracts International, B 34(12): 5763B-5764B – https://eurekamag.com/research/000/538/000538216.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/variation-for-stomatal-sensitivity-to-decreasing-soil-water-potential/ )

Henzell R. G., McCree K. J., Van Bavel C. H. M., Schertz K. F. (1976) – Sorghum genotype variation in stomatal sensitivity of leaf water deficit – Crop Sci. 16: 660-662 – https://doi.org/10.2135/cropsci1976.0011183X001600050015xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1976.0011183X001600050015x – (On our blog : https://plantstomata.wordpress.com/2020/12/08/stomatal-sensitivity-may-be-an-important-element-of-intergenotype-variation-in-resistance-to-drought/ )

Hepler P. K. (1981) – Morphogenesis of tracheary elements and guard cells. In: Kiermayer O, ed. Cytomorphogenesis in plants. Wien, NY, USA: Springer-Verlag 327–347 –

Hepworth C. (2016) – The role of stomata in regulating water and nutrient availability: Model to crop studies – PhD thesis, University of Sheffield.

Hepworth C., Caine R. S., Harrison E. L., Sloan J., Gray J. E. (2016) – Stomatal development: focusing on the grasses – Current Opinion in Plant Biology 41: 1-7 – https://doi.org/10.1016/j.pbi.2017.07.009 – https://www.sciencedirect.com/science/article/pii/S1369526617300997 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/insights-into-how-grasses-regulate-the-production-of-stomata/ ) – – (On our blog : https://plantstomata.wordpress.com/2019/02/06/stomatal-development-key-ontogenetic-steps-for-which-knowledge-of-the-underpinning-molecular-mechanisms-remains-outstanding/ )

Hepworth C., Doheny-Adams T., Hunt L., Cameron D. D., Gray J. E. (2015) – Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake – New Phytologist 2: 336-341 – doi: 10.1111/nph.13598 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.13598 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/manipulating-stomatal-density-enhances-drought-tolerance/ )

Hepworth C., Doheny-Adams T., Hunt L., Cameron D. D., Gray J. E. (2015) – Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake – New Phytologist 208(2): 336-341 – ISSN 0028-646X – http://eprints.whiterose.ac.uk/90224/ – http://dx.doi.org/10.1111/nph.13598 – (On our blog : https://plantstomata.wordpress.com/2016/06/15/stomatal-density-drought-tolerance-and-nutrient-uptake-2/)

Hepworth C., Turner C., Landim M. G.,  Cameron D.D., Gray J. E. (2015) – Balancing water uptake and loss through the coordinated regulation of stomatal and root development – PloS one 11(6): e0156930 – https://doi.org/10.1371/journal.pone.0156930 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156930 – (On our blog : https://plantstomata.wordpress.com/2018/03/31/plants-can-balance-water-uptake-and-loss-through-coordinated-regulation-of-both-stomatal-and-root-development/ )

Herbst M. (1995) – Stomatal behavior in a beech canopy: an analysis of Bowen ratio measurements compared with porometer data – Plant Cell Environ. 18: 1010-1018 – https://doi.org/10.1111/j.1365-3040.1995.tb00611.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1995.tb00611.x – (On our blog : https://plantstomata.wordpress.com/2018/10/22/stomatal-behavior-in-a-beech-canopy/ )

Herčík F. (1964) – Influence of alpha rays on stomatal movements – Biol Plant 6: 315 –  https://doi.org/10.1007/BF02931015 – https://link.springer.com/article/10.1007%2FBF02931015#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/20/alpha-rays-and-stomatal-movements/ )

Herde O., Peña-Cortés H., Willmitzer L., Fisahn J. (1997) – Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants – Plant Cell Environ. 20: 136-141 – https://doi.org/10.1046/j.1365-3040.1997.d01-11.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1997.d01-11.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/stomatal-responses-to-ja-la-and-aba-in-wild-type-and-aba-deficient-tomato-plants/ )

Hernández A. R. de (1954) – Relationship between Chromosome Number and
Stomata Size in Certain Pineapple Varieties – JOURNAL OF AGRICULTURE OF UNIVERSITY OF PUERTO RICO 199-204 – file:///C:/Users/wille/Downloads/12707-Article%20Text-12359-1-10-20180214%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/23/the-difference-in-the-size-of-the-stomata-of-the-diploid-and-triploid-strains-was-found-to-be-highly-significant/ )

Hernández G. G., Winter K., Slot M. (2020) – Similar temperature dependence of photosynthetic parameters in sun and shade leaves of three tropical tree species – Tree Physiology 40: 637–651 – doi:10.1093/treephys/tpaa015 – (On our blog : https://plantstomata.wordpress.com/2022/04/17/to-improve-the-representation-of-the-shade-fraction-of-carbon-uptake-dynamics-in-tropical-forests-better-understanding-of-stomatal-sensitivity-of-shade-leaves-to-temperature-and-vapor-pressure-defici/ )

Hernández M., Terrazas T., Delgado A., Luna-Cavazoz M. (2007) Myrtillocactus geometrizans (Mart. ex. Pfeiff.) console (Cactaceae) stomata: variation along its distribution range – Revista Fitotecnia Mexicana 30: 235240 – https://www.researchgate.net/publication/287867917_Myrtillocactus_geometrizans_Mart_ex_Pfeiff_console_cactaceae_stomata_Variation_along_its_distribution_range – (On our blog : https://plantstomata.wordpress.com/2018/03/31/stomatal-size-and-density-variation/ )

Hernandez M. J., Montes F., Ruiz F., Lopez G., Pita P. (2016) – The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes – Ann Bot. 117(6):1063-1071 – doi: 10.1093/aob/mcw031- Epub 2016 Apr 6 -PMID: 27052343 – PMCID: PMC4866316 – http://aob.oxfordjournals.org/content/early/2016/04/05/aob.mcw031.abstract – (On our blog : https://plantstomata.wordpress.com/2016/04/09/stomatal-conductance-under-two-watering-regimes/)

Hernandez M. L., Passas H. J., Smith L. G. (1999) – Clonal Analysis of Epidermal Patterning during Maize Leaf Development – Developmental Biology 216: 646-658 – DOI: 10.1006/dbio.1999.9429 – https://www.infona.pl/resource/bwmeta1.element.elsevier-529854cb-eba4-3560-b971-7f287f019542 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/lineage-does-not-account-for-the-linear-patterning-of-stomata/)

Hernández M. P., ArambarriI A. M. (2010) – Stomatal distribution, stomatal density and daily leaf movement in Acacia aroma (Leguminosae) – Bol. Soc. Argent. Bot. 45(3-4): Córdoba jul./dic. 2010 – versión On-line ISSN 1851-2372 – http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-23722010000200007 – (On our blog : https://plantstomata.wordpress.com/2018/01/29/stomatal-distribution-stomatal-density-and-daily-leaf-movement/ )

Hernandez‐Santana V., Fernández J. E., Rodriguez‐Dominguez C. M., Romero R., Diaz‐Espejo A. (2016) – The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air water deficit – Agricultural and Forest Meteorology 218: 92–101 – https://doi.org/10.1016/j.agrformet.2015.11.013https://www.sciencedirect.com/science/article/abs/pii/S0168192315007649?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/02/19/a-method-to-estimate-gs-and-use-it-either-as-a-reliable-water-stress-indicator/ )

Hernandez‐Santana V., Rodriguez‐Dominguez C. M., Fernández J. E., Diaz‐Espejo A. (2016) – Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress – Tree Physiology 36: 725–735 – https://doi.org/10.1093/treephys/tpv146https://academic.oup.com/treephys/article/36/6/725/1753367 – (On our blog : https://plantstomata.wordpress.com/2019/11/21/role-of-leaf-hydraulic-conductance-in-the-regulation-of-stomatal-conductance/ )

Héroult A., Lin Y.-S., Bourne A., Medlyn B. E.Ellsworth D. S. (2013) – Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought – Plant Cell Environ. 36: 262274 – doi: 10.1111/j.1365-3040.2012.02570.x – (On our blog : https://plantstomata.wordpress.com/2016/06/16/photosynthesis-and-stomatal-conductance-2/)

Herppich W. B., von Willert D. J. (1995) – Dynamic changes in leaf bulk water relations during stomatal oscillations in mangrove species: continuous analysis using a dewpoint hygrometer – Physiologia Plantarum 94: 479-485 – https://doi.org/10.1111/j.1399-3054.1995.tb00957.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1995.tb00957.x– (On our blog : https://plantstomata.wordpress.com/2018/10/28/dynamic-changes-in-leaf-bulk-water-relations-during-stomatal-oscillations/ )

Herrera A. M., Cuberos M. (2007) – Stomatal size, density and conductante in leaves of some xerophytes from a thorn scrub in Venezuela differing in carbon fixaton pathway – (Tamaño, densidad y conductancia de estomas en hojas de algunas xerofitas de un matorral espinoso de Venezuela que difieren en ruta de fijación de carbono) – saber.ula.ve Collections Ecotropicos – 003(2) – http://www.saber.ula.ve/handle/123456789/25659 – (On our blog : https://plantstomata.wordpress.com/2022/04/18/105541/ )

Herrera-Martínez V., Rios-Hernández L., Garcidueñas-Piña C., Lara-Ibarra A., Adabache-Ortiz A., Soria-Guerra R. E., Pérez-Molphe-Balch E., José Francisco Morales-Domínguez J. F. (2015) – Effect of Culture Conditions on Stomatal Density and Stomatal Index in Four Cactus Species – Haseltonia 20 : 43-50 –https://doi.org/10.2985/026.020.0108 – http://www.bioone.org/doi/abs/10.2985/026.020.0108 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/effect-of-culture-conditions-on-stomatal-density-and-stomatal-index/ )

Herrera-Ubaldo H. (2020) – MicroRNAs and the control of stomatal development (PNAS) – Proc. Natl. Acad. Sci. USA – doi:  10.1073/pnas.1919722117https://plantae.org/micrornas-and-the-control-of-stomatal-development-pnas/ – (On our blog : https://plantstomata.wordpress.com/2020/07/25/micrornas-and-the-control-of-stomatal-development/ )

Herrick J. D., Maherali H., Thomas R. B. (2004) –  Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long term CO2 enrichment – New Phytol. 162: 387–396 – doi: 10.1111/j.1469-8137.2004.01045.xhttps://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.2004.01045.x – (On our blog : https://plantstomata.wordpress.com/2018/10/23/decreased-stomatal-conductance-in-co2-enrichment-is-consistent-over-long-periods-of-time-and-under-varying-environmental-conditions/ )

Herrmann A., Torii K. U. (2021) – Shouting out loud : signaling modules in the regulation of stomatal development – Plant Physiology 185: 765-780 – https://doi.org/10.1093/plphys/kiaa061https://academic.oup.com/plphys/article/185/3/765/6041592 – (On our blog : https://plantstomata.wordpress.com/2021/10/28/signaling-modules-in-the-regulation-of-stomatal-development/ )

Herscocovich S., Tallman G., Zeiger E. (1992) – Long term survival of vicia guard cell protoplasts in cell culture – Plant Science 81(2): 237-244 – DOI10.1016/0168-9452(92)90047-phttps://eurekamag.com/research/007/522/007522931.php – (On our blog : https://plantstomata.wordpress.com/2021/09/21/survival-of-vicia-guard-cell-protoplasts-in-cell-culture/ )

Hetherington A. M. (2000) – Guard cells – Current Biology 11(15): – https://www.cell.com/current-biology/pdf/S0960-9822(01)00358-X.pdf – (On our blog : https://plantstomata.wordpress.com/2021/02/27/88401/ )

Hetherington A. M. (2001) – Guard cell signaling – Cell 107: 711–714  doi: 10.1016/S0092-8674(01)00606-7http://www.sciencedirect.com/science/article/B6WSN-4C5GRS7-4/2/e130eb02c64675889e94242fcb119c84 – On our blog : https://plantstomata.wordpress.com/2016/06/16/aba-signaling-in-stomata/)

Hetherington A. M. ( ) – The Guard Cell Group – http://www.bristol.ac.uk/biology/research/plant/hetherington/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/the-guard-cell-group-research-on-stomata/)

Hetherington A. M. (2012) – The involvement of the cytoskeleton and lipids in the regulation of stomatal aperture – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-cytoskeleton-and-lipids-in-the-regulation-of-stomatal-aperture/ )

Hetherington A. M. (2016) – Interview with Alistair Hetherington, Editor-in-Chief, New Phytologisthttps://youtu.be/rp-tCQirh14 – (On our blog : https://plantstomata.wordpress.com/2019/08/28/video-interview-with-alistair-hetherington/ )

Hetherington  A. M., Brownlee C. (2004) – The generation of Ca2+ signals in plantsAnnu. Rev. Plant Biol. 55: 401427 – (On our blog : https://plantstomata.wordpress.com/2016/06/16/ca2-signals-and-stomata/)

Hetherington A. M., Davies B. (1998) – Stomatal Biology – Papers presented at the Annual Meeting of the Society for Experimental Biology, University of Kent, 7-11 April 1997 – Journal of Experimental Botany (United Kingdom), 1998 –

Hetherington A. M., Davies W. J., Holroyd G., McAinsh M., Tagliavia C. (2006) – Identification of Arabidopsis guard cell CO2 signalling mutants using infrared thermography – Comparative Biochemistry and Physiology – Part A: Molecular and Integrative Physiology 143 (4): S142 – doi: 10.1016/j.cbpa.2006.01.053 – http://www.research.lancs.ac.uk/portal/en/publications/identification-of-arabidopsis-guard-cell-co2-signalling-mutants-using-infrared-thermography(6f67d77e-85ef-435a-9591-7420d925b38b).html – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-co2-signalling-mutants-and-stomatal-behavior/)

Hetherington A. M., De Silva D. L. R., Cox R. C., Mansfield T. A. (1986) – Abscisic acid, calcium ions and stomatal function – In : Molecular and cellular aspects of calcium in plant development, Springer, Boston, MA, 387-388 – https://scholar.google.com/citations?user=n4t995wAAAAJ&hl=en#d=gs_md_cita-d&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Den%26user%3Dn4t995wAAAAJ%26cstart%3D100%26pagesize%3D100%26citation_for_view%3Dn4t995wAAAAJ%3ANhqRSupF_l8C%26tzom%3D-120 – (On our blog : https://plantstomata.wordpress.com/2021/04/25/aba-ca2-and-stomatal-function/ )

Hetherington A. M.Gray J. E.Leckie C. P.McAinsh M. R.Ng C.Pical C.Priestley A. J.Staxén I.Webb A. A. R. (1998) – The control of specificity in guard cell signal transduction – 

Hetherington A. M.McAinsh M. R., Leckie C. P., Webb A. A. R., Gray J. E. (1999) – Calcium ions as common intermediates in guard cell signal transduction – Journal of Experimental Botany 50(suppl.): S71 –

Hetherington A. M., Quatrano R. S. (1991) – Mechanisms of action of abscisic acid at the cellular level – New Phytologist 119(1): 9-12 – https://scholar.google.com/citations?user=n4t995wAAAAJ&hl=en#d=gs_md_cita-d&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Den%26user%3Dn4t995wAAAAJ%26citation_for_view%3Dn4t995wAAAAJ%3Aeq2jaN3J8jMC%26tzom%3D-120 – (On our blog : https://plantstomata.wordpress.com/2021/04/25/action-of-aba-at-the-cellular-level-stomata/)

Hetherington A. M., Woodward F. I. (2003) – The role of stomata in sensing and driving environmental change Nature 424: 901–908 – doi: 10.1038/nature01843 –  – (On our blog : https://plantstomata.wordpress.com/2015/08/20/stomata-and-the-environment/)

Hettenhausen C., Baldwin I. T., Wu J. (2012) – Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000 – Plant Physiol. 158: 759–776 – doi: 10.1104/pp.111.190074 –  – (On our blog : https://plantstomata.wordpress.com/2016/10/10/ntmpk4-plays-an-essential-role-in-co2-and-darkness-induced-activation-of-guard-cell-anion-channels-in-stomata/)

Hew C. S., Lee G. L., Wong S. C. (1980) – Occurrence of non-functional stomata in the flowers of tropical orchids – Ann. Bot. 46: 195-201 –  (On our blog : https://plantstomata.wordpress.com/2017/07/19/non-functional-stomata-in-the-flowers-of-tropical-orchids/)

Hew C. S., Lee G. L., Wong S. C. (1987) – Factors affecting the longevity of cut Aranda flower – Acta Horticulturae 205: 195-202 – https://wwwlib.teiep.gr/images/stories/acta/Acta%20205/205_28.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/03/nonfunctional-floral-stomata-in-orchids-hydroxylquinoline-sulfate-and-silverthiosulfate-complex/ )

Hey S. J., Bacon A., Burnett E., Neill S. J. (1997) – Abscisic acid signal transduction in epidermal cells of Pisum sativum L. Argenteum: both dehydrin mRNA accumulation and stomatal responses require protein phosphorylation and dephosphorylation – Planta 202: 85–92 – https://doi.org/10.1007/s004250050106 https://link.springer.com/article/10.1007%2Fs004250050106#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/14/both-dehydrin-mrna-accumulation-and-stomatal-responses-require-protein-phosphorylation-and-dephosphorylation/ )

Hicklenton P. R., Reekie J. Y., Gordon R. J., Percival D. C. (2000) – Seasonal Patterns of Photosynthesis and Stomatal Conductance in Lowbush Blueberry Plants Managed in a Twoyear Production Cycle – HORTSCIENCE 35(1): 55–59 – file:///C:/Users/wille/Downloads/[23279834%20-%20HortScience]%20Seasonal%20Patterns%20of%20Photosynthesis%20and%20Stomatal%20Conductance%20in%20Lowbush%20Blueberry%20Plants%20Managed%20in%20a%20Two-year%20Production%20Cycle.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/08/seasonal-patterns-of-photosynthesis-and-stomatal-conductance/ )

Hidayati S. R. (2009) – Analisis Karakteristik Stomata, Kadar Klorofil dan Kandungan Logam Berat Pada Daun Pohon Pelindung Jalan Kawasan Lumpur Porong Sidoarjo – In Bahasa. Skripsi. Fakultas Sains dan Teknologi, Universitas Islam Negeri Malang, Malang.

Higaki K. N. H. S., Takumi (2014) – Carta-based semi-automatic detection of stomatal regions on an arabidopsis cotyledon surface – PLANT MORPHOLOGY 26(1): 9–12 –

Higaki T., Kutsuna N., Hasezawa S. (2013) – Lips database with lipservice: a microscopic image database of intracellular structures in arabidopsis guard cells – BMC plant biology 13(1): 81 –

Higaki T., Hashimoto-Sugimoto M., Akita K., Iba K., Hasezawa S. (2014) – Dynamics and Environmental Responses of PATROL1 in Arabidopsis Subsidiary Cells – Plant and Cell Physiology 55(4): 773–780 – https://doi.org/10.1093/pcp/pct151 –https://academic.oup.com/pcp/article/55/4/773/1813362 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/patrol1-may-contribute-to-stomatal-movement-by-translocations-of-pm-h-atpase-in-subsidiary-cells/ )

Higaki T.,  Kutsuna N.,  Hosokawa Y.,  Akita K.,  Ebine K.,  Ueda T., Kondo N., Hasezawa S. (2012) – Statistical organelle dissection of Arabidopsis guard cells using image database LIPS – Sci. Rep. 2: 405 – https://www.nature.com/articles/srep00405 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/statistical-organelle-dissection-of-arabidopsis-guard-cells-using-image-database-lips/ )

Higaki T., Kutsuna N., Sano T., Kondo N., Hasezawa S. (2010) – Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells – The Plant Journal 61: 156–165 – doi:10.1111/j.1365-313X.2009.04032.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04032.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/17/role-of-actin-bundling-in-stomatal-movement-during-diurnal-cycles/ )

Hill A. C., Littlefield N. (1969) – Ozone. Effect on apparent photosynthesis, rate of transpiration, and stomatal closure in plants – Environ. Sci. Technol. 3(1): 52-56 – https://doi.org/10.1021/es60024a002https://pubs.acs.org/doi/abs/10.1021/es60024a002# – (On our blog : https://plantstomata.wordpress.com/2020/02/27/effect-of-ozone-on-stomatal-closure/ )

Hill B. S., Findlay G. P. (1981) – The power of movement in plants: the role of osmotic machines – Quarterly Reviews of Biophysics 14(2): 173-222 –  doi:10.1017/S0033583500002249 – https://www.cambridge.org/core/journals/quarterly-reviews-of-biophysics/article/div-classtitlethe-power-of-movement-in-plants-the-role-of-osmotic-machinesdiv/E57F7A4CFFFCE5333CBCC30178F5A8B6 – (On our blog : https://plantstomata.wordpress.com/2018/04/16/the-opening-and-closing-of-stomata/ )

Hill K. E., Barr C., Tibby J., Hill R. S., Watling J. R. (2019) – A comparison of stomatal traits between contemporary and fossil leaves of Melaleuca quinquenervia: Do they reflect climate variation? – Review of Palaeobotany and Palynology 271, 104109 – ISSN 0034-6667 – https://doi.org/10.1016/j.revpalbo.2019.104109
https://www.sciencedirect.com/science/article/pii/S0034666719300211 – (On our blog : https://plantstomata.wordpress.com/2022/03/21/stomatal-size-is-a-highly-plastic-trait-in-this-species-and-changes-do-not-necessarily-reflect-functional-changes-in-the-leaves/ )

Hill K. E., Guerin G. R., Hill R. S., Watling J. R. (2015) – Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp.angustissima along a latitude gradient in southern Australia – Australian Journal of Botany 62(8): 657-665 – http://dx.doi.org/10.1071/BT14204 – http://www.publish.csiro.au/paper/BT14204.htm – (On our blog : https://plantstomata.wordpress.com/2016/04/11/environmental-factors-influencing-plasticity-in-stomatal-traits/)

Hiller G. H. (1884) – Untersuchungen iiber die Epidermis der Blüthenblatter –
Jahrb. Wiss. Bot. 15: 411-451 –

Hills A., Chen Z. H., Amtmann A., Blatt M. R., Lew V. L. (2012) – OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. – Plant Physiol 159: 1026–1042 – https://doi.org/10.1104/pp.112.197244 – http://www.plantphysiol.org/content/159/3/1026 – (On our blog : https://plantstomata.wordpress.com/2018/10/26/onguard-a-computational-platform-for-quantitative-kinetic-modeling-of-guard-cell-physiology/ )

Hinckley T. M., Braatne J. H. (1994) – Stomata. In: Wilkinson RE (ed) Plant-environment interactions – Marcel Dekker, New York, 323–355 –

Hinckley T. M., Duhme F., Hinckley A. R., Richter H. (1980) – Water relations of drought-hardy shrubs: osmotic potential and stomatal reactivity – Plant, Cell & Environment 3: 131-140 – https://doi.org/10.1111/1365-3040.ep11580919 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11580919 – (On our blog : https://plantstomata.wordpress.com/2018/10/23/osmotic-potential-and-stomatal-reactivity/ )

Hinckley T. M., Ritchie G. A. (1970) – Within crown patterns of transpiration, water stress and stomatal activity in Abies amabilis – For. Sci. 16: 490-492 –

Hines P. J. (2008) – To be or not to be – Science Signaling 1(46): ec398 – DOI: 10.1126/scisignal.146ec398https://stke.sciencemag.org/content/1/46/ec398?etoc= – (On our blog : https://plantstomata.wordpress.com/2020/04/12/to-be-or-not-to-be/ )

Hines P. J. (2017) – Making more of your stomata – Science 355(6330): 1169 – doi: 10.1126/science.355.6330.1169-a – https://www.ncbi.nlm.nih.gov/pubmed/28302826https://www.researchgate.net/publication/315322445_Making_more_of_your_stomata – (On our blog : https://plantstomata.wordpress.com/2018/01/07/making-more-of-your-stomata/ )

Hines P. J. (2019) – Speeding up stomatal responses – Science 363(6434):1411-1412 – DOI: 10.1126/science.363.6434.1411-fhttps://science.sciencemag.org/content/363/6434/1411.6

Hirano E. (1931) – Relative abundance of stomata in Citrus and some related genera – Bot.Gaz. 92: 296-310 – https://www.journals.uchicago.edu/doi/pdf/10.1086/334198 – (On our blog : https://plantstomata.wordpress.com/2021/04/09/relative-abundance-of-stomata-in-citrus/ )

Hirano T., Kiyota M., Aiga I. (1990-1991) – The Effects of Dust by Covering and Plugging Stomata and by Increasing Leaf Temperature on Photosynthetic Rate of Plant Leaves – Journal of Agricultural Meteorology 46(4): 215-222 – https://doi.org/10.2480/agrmet.46.215 – https://www.jstage.jst.go.jp/article/agrmet1943/46/4/46_4_215/_article – (On our blog : https://plantstomata.wordpress.com/2018/02/18/dust-affects-net-photosynthetic-rate-by-covering-and-plugging-stomata-and-by-increasing-leaf-temperature/ )

Hirasawa T., Wakabayashi K., Touya S., Ishihara K. (1995) – Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants (Helianthus annuus L.) grown under different conditions – Plant Cell Physiol. 36: 955- 964 – https://doi.org/10.1093/oxfordjournals.pcp.a078866 – https://academic.oup.com/pcp/article-abstract/36/6/955/1814217?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/10/23/stomatal-responses-to-water-deficits-and-aba/ )

Hirayama S., Yuasa A. (1937) – Occurrence of inclusion bodies in the guard cells of the stomata of mosaic-tobacco plants – Ann. Phytopath. Soc. Japan. V: 197-306 – DOI: 10.3186/jjphytopath.6.305 – https://www.jstage.jst.go.jp/article/jjphytopath1918/6/4/6_4_305/_pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/31/inclusion-bodies-occur-in-the-stomata-of-mosaic-tobacco-plants/ )

Hirich A., Jelloul A., Choukr-Allah R., Jacobsen S.-E. (2014) – Saline Water Irrigation of Quinoa and Chickpea: Seedling Rate, Stomatal Conductance and Yield Responses – J. Agron. Crop Sci. 200(5): 378-389 – DOI: 10.1111/jac.12072 – http://onlinelibrary.wiley.com/doi/10.1111/jac.12072/full – (On our blog : https://plantstomata.wordpress.com/2017/10/03/effect-of-saline-water-irrigation-on-stomatal-conductance/)

Hirose T., Ikeda M., Izuta T., Miyake H., Totsuka T. (1994) – Stomatal oscillation in peanut leaves observed under field conditions – Japan. J. Crop Sci. 63: 162–163 – https://doi.org/10.1626/jcs.63.162 –https://www.jstage.jst.go.jp/article/jcs1927/63/1/63_1_162/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/07/77432/ )

Hirt R. B. (1938) – Relation of stomata to infection of Pinus strobus by Cronartium ribicola – Phytopathology 28: 180-190 –

Hitron O., Zur B. (1990) – Differences in stomatal response within a cotton canopy – BIOTRONICS 19: 39-48 – https://www.researchgate.net/publication/31903331_DIFFERENCES_IN_STOMATAL_RESPONSE_WITHIN_A_COTTON_CANOPY – (On our blog : https://plantstomata.wordpress.com/2021/01/07/the-lower-bulk-modulus-of-elasticity-of-top-leaves-is-responsible-for-their-lower-threshold-leaf-water-potential-actuating-the-stomatal-feedback-system/ )

Hiyama T., Kochi K., Kobayashi N., Sirisampan S. (2005) –  Seasonal variation in stomatal conductance and physiological factors observed in a secondary warm-temperate forest – Ecological Research 20: 333–346 – https://doi.org/10.1007/s11284-005-0049-6 – https://link.springer.com/article/10.1007/s11284-005-0049-6#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/26/seasonal-variation-in-stomatal-conductance/ )

Hiyama A., Takemiya A., Munemasa S., Okuma E., Sugiyama N., Tada Y., Murata Y., Shimazaki K-i. (2017) – Blue light and CO2 signals converge to regulate light-induced stomatal opening – Nat Commun (Nature communications) 8(1):1284] – DOI: 10.1038/s41467-017-01237-5 – https://pdf.manuscriptpro.com/search/Abstract~29101334/1/d2d0481f/Blue-light-and-CO2-signals-converge-to-regulate-light-induced-stomatal-opening.https://www.nature.com/articles/s41467-017-01237-5 – (On our blog : https://plantstomata.wordpress.com/2017/11/05/cbcs-regulate-stomatal-aperture-by-integrating-signals-from-bl/)

Ho C.-M. (2021) – The coordination of stomatal patterning and cuticle formation during leaf development – IPMB – https://ipmb.sinica.edu.tw/en/activities/highlights/427 – (On our blog : https://plantstomata.wordpress.com/2022/03/29/stomatal-patterning-and-cuticle-formation/ )

Ho C.-M. K., Bringmann M., Oshima Y., Mitsuda N., Bergmann D. C. (2021) – Transcriptional profiling reveals signatures of latent developmental potential in Arabidopsis stomatal lineage ground cells – PNAS 118 (17): e2021682118 – https://doi.org/10.1073/pnas.2021682118https://www.pnas.org/content/118/17/e2021682118 – (On our blog : https://plantstomata.wordpress.com/2021/07/06/the-mixed-potential-of-the-stomatal-lineage-ground-cell-slgc-as-a-model-to-explore-how-cells-might-balance-potential-to-differentiate-with-a-reentry-into-proliferation/ )

Ho C.-M. K., Paciorek T., Abrash E., Bergmann D. C. (2016) – Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases – Dev. Cell. 38(4): 345-357 – doi: 10.1016/j.devcel.2016.07.016 – PMID: 27554856 – http://www.cell.com/developmental-cell/pdf/S1534-5807(16)30509-3.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/31/vsts-interact-with-integral-er-membrane-proteins-and-are-required-for-erecta-mediated-signaling/ )

Hoang P. T. N., Schubert V., Meister A., Fuchs J., Schubert I. (2019) – Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds – Scientific Reports 9, Article number 3234 – https://www.nature.com/articles/s41598-019-39332-w – (On our blog : https://plantstomata.wordpress.com/2019/04/01/genome-size-is-positively-correlated-with-stomatal-guard-cell-and-nucleus-volume/ )

Hochberg U., Bonel A. G., David-Schwartz R., Degu A., Fait A., Cochard H., Peterlunger E., Herrera J. C. (2017) – Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability – Planta 245(6): 1091-1104 – DOI: 10.1007/s00425-017-2662-3 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00425-017-2662-3 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/the-adjustment-of-stomatal-and-hydraulic-conductance-differs-from-petiole-embolism-vulnerability/)

Hochberg U., Windt C. W., Ponomarenko A., Zhang Y.-J., Gersony J., Rockwell F. E., Holbrook N. M. (2017) – Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems – Plant Physiol 174: 764–775 – DOI: 10.1104/pp.16.01816 – http://www.plantphysiol.org/content/174/2/764 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-closure-basal-leaf-embolism-and-shedding/)

Hodgson J. G., Moore H. D. (1972) – Stomata Variations in Canada Thistle and Response to Herbicides – Weed Science 20(1): 68-70 – doi:10.1017/S0043174500034974https://www.cambridge.org/core/journals/weed-science/article/abs/stomata-variations-in-canada-thistle-and-response-to-herbicides/C0E653664D54CC04694C7931C6B50D2E – (On our blog : https://plantstomata.wordpress.com/2021/12/16/97711/ )

Hodgson J. G., Sharafi M., Jalili A., Díaz S., Montserrat-Martí G., Palmer C., Cerabolini B., Pierce S., Hamzehee B., Asri Y., Jamzad Z., Wilson P., Raven J. A., Band S. R., Basconcelo S., Bogard A., Carter G., Charles M., Castro-Díez P., Cornelissen J. H. C., Funes G., Jones G., Khoshnevis M., Pérez-Harguindeguy N., Pérez-Rontomé M. C., Shirvany F. A., Vendramini F., Yazdani S., Abbas-Azimi R., Boustani S., Dehghan M., Guerrero-Campo J., Hynd A., Kowsary E., Kazemi-Saeed F., Siavash B., Villar-Salvador P., Craigie R., Naqinezhad A., Romo-Díez A., de Torres Espuny L., Simmons E., (2010) – Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? – Ann Bot (Lond) 105(4): 573–584 – https://doi.org/10.1093/aob/mcq011 – https://academic.oup.com/aob/article/105/4/573/190942 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/stomatal-vs-genome-size-in-angiosperms/ )

Hofmann N. R. (2008) – They All Scream for ICE1/SCRM2: Core Regulatory Units in Stomatal Development – The Plant Cell, 20(7): 1732- – http://www.plantcell.org/content/20/7/1732.full – (On our blog : https://plantstomata.wordpress.com/2016/06/16/ice1scrm2-and-stomatal-development/)

Hofstra G., Hesketh J. D. (1969) – The effect of temperature on stomatal aperture in different species – Canad. J. Bot. 47: 1307-1310 – https://doi.org/10.1139/b69-184 – http://www.nrcresearchpress.com/doi/abs/10.1139/b69-184 – (On our blog : https://plantstomata.wordpress.com/2018/04/01/stomatal-apertures-increased-with-increasing-air-temperatures/ )

Hogg A., Uddling J., Ellsworth D., Carroll M. A., Pressley S., Lamb B., Vogel C. (2007) – Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest – Tellus. B 59(3): 514–525 – https://doi.org/10.1111/j.1600-0889.2007.00269.xhttps://www.tandfonline.com/doi/abs/10.1111/j.1600-0889.2007.00269.x – (On our blog : https://plantstomata.wordpress.com/2022/01/25/stomatal-conductance-showed-expected-patterns-of-behaviour-with-respect-to-photosynthetic-photon-flux-density-ppfd-and-vapour-pressure-defecit-vpd/ )

Hogg E. H., Hurdle P. A. (1997) – Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit – Tree Physiol 17: 501–509 – DOI:10.1093/TREEPHYS/17.8-9.501https://www.semanticscholar.org/paper/Sap-flow-in-trembling-aspen%3A-implications-for-to-Hogg-Hurdle/926608f8542407cec6a63925ee21c9939665b735 – (On our blog : https://plantstomata.wordpress.com/2021/03/13/sap-flow-implications-for-stomatal-responses-to-vapor-pressure-deficit/ )

Holbrook N. M., Shashidhar V. R., James R. A., Munns R. (2002) – Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. – J Exp Bot. 53(373): 1503-1514 – doi: 10.1093/jexbot/53.373.1503 – (On our blog : https://plantstomata.wordpress.com/2016/06/16/stomata-and-response-of-grafted-plants-to-soil-drying/ )

Holland N., Richardson A. D. (2009) – Stomatal Length Correlates with Elevation of Growth in Four Temperate Species – Journal of Sustain Forestry 28: 63-73 –http://dx.doi.org/10.1080/10549810802626142 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/changes-in-stomatal-traits-with-elevation/).

Hollinger D. Y. (1987) – Photosynthesis and stomatal conductance patterns of two fern species from different forest understoreys – J. Ecol. 75: 925-935 – DOI:10.2307/2260304 – https://www.jstor.org/stable/2260304?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/01/photosynthesis-and-stomatal-conductance-patterns/ )

Holmes C. D., Ducker J. A. (2018) – SynFlux: a synthetic dataset of atmospheric deposition and stomatal uptake at flux tower sites (1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.1402054https://zenodo.org/record/1402054#.Yo9hPShBxD8 – (On our blog : https://plantstomata.wordpress.com/2022/05/26/a-synthetic-dataset-of-atmospheric-deposition-and-stomatal-uptake/ )

Holmes M. G., Klein W. H. (1985) – Evidence for phytochrome involvement in light-mediated stomatal movements in Phaseolus vulgaris L. – Planta 166: 348–353 – doi: 10.1007/BF00401172 – https://www.ncbi.nlm.nih.gov/pubmed/24241517 – (On our blog : https://plantstomata.wordpress.com/2018/10/23/phytochrome-involvement-in-light-mediated-stomatal-movements/ )

Holmes M. G., Klein W. H. (1986) – Photocontrol of dark circadian rhythms in stomata of Phaseolus vulgaris L. – Plant Physiol. 82: 28–33 – DOI: 10.1104/pp.82.1.28https://www.ncbi.nlm.nih.gov/pubmed/16665006?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/09/21/photocontrol-of-dark-circadian-rhythms-in-stomata/ )

Holroyd G. H., Hetherington A. M., Gray J. E. (2002) A role for the cuticular waxes in the environmental control of stomatal development – New Phytologist 153: 433439 – DOI: 10.1046/j.0028-646X.2001.NPH326.doc.x – (On our blog : https://plantstomata.wordpress.com/2016/06/18/cuticular-waxes-and-stomatal-development/)

Hölscher D., Fuchser J., Knop K., Menezes R. C., Buerkert A., Svatoš A., Schubert U. S., Schneider B. (2015) – High resolution mass spectrometry imaging reveals the occurrence of phenylphenalenone-type compounds in red paracytic stomata and red epidermis tissue of Musa acuminata ssp. zebrina cv. ‘Rowe Red’ – Phytochemistry 116: 239-245 – DOI10.1016/j.phytochem.2015.04.010 – https://www.infona.pl/resource/bwmeta1.element.elsevier-f9db20ee-ddee-3e71-9c04-77ea72e18231 – (On our blog : https://plantstomata.wordpress.com/2017/10/14/the-occurrence-of-phenylphenalenone-type-compounds-in-red-paracytic-stomata/)

Hölttä T., Lintunen A., Chan T., Mäkelä A., Nikinmaa E. (2017) – A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source–sink flux – Tree Physiology 37(7): 851–868 – https://doi.org/10.1093/treephys/tpx011https://academic.oup.com/treephys/article/37/7/851/3046413 – (On our blog : https://plantstomata.wordpress.com/2020/01/24/a-steady-state-stomatal-model-of-balanced-leaf-gas-exchange-hydraulics-and-maximal-source-sink-flux/ )

Homann U. (1998) – Fusion and fission of plasma-membrane material accommodates for osmotically induced changes in the surface area of guard-cell protoplasts – Planta 206: 329–333 – https://doi.org/10.1007/s004250050408 – https://link.springer.com/article/10.1007/s004250050408#citeas – (On our blog : https://plantstomata.wordpress.com/2018/04/01/osmotically-induced-fusion-and-fission-of-plasma-membrane-material-in-stomatal-protoplasts-are-ca2-independent-and-modulated-by-membrane-tension/

Homann U., Meckel T., Hewing J., Hütt M.-T., Hurst A. (2007) – Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells – Eur J Cell Biol 86(8):489-500 – doi: 10.1016/j.ejcb.2007.05.003 – Epub 2007 Jun 28 – https://pubmed.ncbi.nlm.nih.gov/17602785/ – (On our blog : https://plantstomata.wordpress.com/2021/02/03/kat1-is-located-in-the-cellulose-fibrils-intermediate-areas-of-the-pm-of-stomatal-guard-cells/ )

Homann U., Thiel G. (1999) Unitary exocytotic and endocytotic events in guard cell protoplasts during osmotically driven Volume changes. – FEBS Letters 460: 495499 – (On our blog : https://plantstomata.wordpress.com/2016/06/18/about-guard-cell-protoplasts/)

Honda K., Yamada N., Yoshida R., Ihara H., Sawa T., Akaike T., Iwai S. (2015) – 8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis – Plant Cell Physiol. 56: 1481–1489 – doi: 10.1093/pcp/ pcv069 – https://www.ncbi.nlm.nih.gov/pubmed/25975264 – (On our blog : https://plantstomata.wordpress.com/2018/04/01/8-mercapto-cgmp-mediates-the-h2s-signaling-cascade-in-stomata/ )

Hong D., Jeon B. W., Kim S. Y., Hwang J. U., Lee Y. (2016) – The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis – New Phytol. 209: 624–635 – doi: 10.1111/nph.13625https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.13625 – (On our blog : https://plantstomata.wordpress.com/2022/04/04/rop2-and-ric7-suppress-excess-stomatal-opening-by-inhibiting-exo70b1-2/ )

Hong T., Lin H., He D. (2018) – Characteristics and correlations of leaf stomata in different Aleurites montana provenances – PLOSOne 13(12): e0208899 – https://doi.org/10.1371/ journal.pone.0208899Characteristics_and_correlations_of_leaf_stomata_i.pdf – (On our blog : https://plantstomata.wordpress.com/2019/09/05/dense-small-stomata-can-quickly-adapt-to-changes-in-the-environment/ )

Honour S. J., Webb A. A. R., Mansfield T. A. (1995) – The responses of stomata to abscisic acid and temperature are interrelated – Proc. Royal Soc B – https://doi.org/10.1098/rspb.1995.0044https://royalsocietypublishing.org/doi/10.1098/rspb.1995.0044 – (On our blog : https://plantstomata.wordpress.com/2020/08/02/the-responses-of-stomata-to-aba-and-temperature-are-interrelated/ )

Honour S. J., Webb A. A. R., Mansfield T. A. (1995) – The responses of stomata to abscisic-acid and temperature are interrelated – Proc. R. Soc. B Biol. Sci. 259: 301–306 doi: 10.1098/rspb.1995.0044 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/interactions-between-aba-and-temperature-on-stomatal-movements/)

Hoover W. S. (1986) – Stomata and stomatal clusters in Begonia: Ecological response in 2 Mexican species – Biotropica 18:16–21 – https://www.jstor.org/stable/2388356?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/01/variation-in-mean-cluster-size-number-of-stomata-cluster-stomatal-length-and-number-of-stomata-mm2/ )

Hoover W. S. (1988) – Investigations on stomata and stomatal clusters in Begonia: a possible stomatal indicator of tropical seasonal climate change – Phytologia 65(2): 89-96 – https://www.biodiversitylibrary.org/page/13188242#page/1/mode/1up – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomata-and-climate-change-2/ )

Hopmans P. A. M. (1971) – Rhythms in stomatal opening of bean leaves – Ritmen in de opening van de huidmondjes bij de boon – Mededelingen Landbouwhogeschool Wageningen 71(3): 1-86 – Stomatal cycling in beans, PhD thesis 1971.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/rhythms-in-stomatal-opening/)

Hopmans P. A. M. (1973) – Effect of blue and red radiation on cycling stomata of bean – Netherlands Journal of Agricultural Science 21(2): 117-123 – ISSN 0028-2928 – https://doi.org/10.18174/njas.v21i2.17255https://library.wur.nl/WebQuery/wurpubs/567503file:///C:/Users/wille/Downloads/17255-Article%20Text-18376-1-10-20200221.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/17/effect-of-blue-and-red-radiation-on-cycling-stomata-of-bean/ )

Hopper D. W., Ghan R., Cramer G. R. (2014) – A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes – Horticulture Research 1(2)  – doi:10.1038/hortres.2014.2 – https://www.nature.com/articles/hortres20142 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/stomatal-response-differences-in-grapevine-genotypes/)

Hoque T. S., Uraji M., Ye W., Hossain M. A., Nakamura Y., Murata Y. (2012) – Methylglyoxal-induced stomatal closure accompanied by peroxidase- mediated ROS production in Arabidopsis – J. Plant Physiol. 169: 979–986 – doi: 10.1016/j.jplph.2012.02.007 https://www.sciencedirect.com/science/article/pii/S0176161712000983 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/methylglyoxal-induced-stomatal-closure-and-peroxidase-mediated-ros-production/ )

Hõrak H. (2021) – Shaping a flexoskeleton: pectate lyase PLL12 facilitates stomatal movements – The Plant Cell ; koab163 – https://doi.org/10.1093/plcell/koab163https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koab163/6298602 – (On our blog : https://plantstomata.wordpress.com/2021/07/21/pectate-lyase-pll12-facilitates-stomatal-movements/ )

Hõrak H. (2022) – MYB16 expression in the stomatal lineage: Wrong place at the wrong time leads to stomata side-by-side – The Plant Cell 34(1): 8–9 – https://doi.org/10.1093/plcell/koab268https://academic.oup.com/plcell/article/34/1/8/6420713 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/stomatal-clustering-can-arise-as-a-consequence-of-altered-cell-polarity-in-asymmetrically-dividing-stomatal-lineage-cells/ )

Hõrak H., Kollist H., Merilo E. (2017) – Fern stomatal responses to ABA and CO2 depend on species and growth conditions – Plant Physiol 174: 672–679 – 

Hõrak H., Koolmeister K., Merilo E., Kollist H. (2021) – Concentration matters: different stomatal CO 2 -responses at sub-ambient and above-ambient CO 2 levels – Preprint DOI: 10.1101/2021.05.13.443984https://www.researchgate.net/publication/351612145_Concentration_matters_different_stomatal_CO_2_-responses_at_sub-ambient_and_above-ambient_CO_2_levels – (On our blog : https://plantstomata.wordpress.com/2021/05/28/different-stomatal-co2-responses-at-sub-ambient-and-above-ambient-co-2-levels/ )

Hõrak H.Sierla M.Tõldsepp K.Wang C.Wang Y.-S.Nuhkat M.Valk E.Pechter P., Merilo E. Salojärvi J.Overmyer K.Loog M.Brosché M.Schroeder J. I., Kangasjärvi J., Kollist H. (2016) – A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO2-Induced Stomatal Closure – The Plant Cell 28(10): 2493-2509 – http://dx.doi.org/10.1105/tpc.16.00131 – http://www.plantcell.org/content/28/10/2493.short?rss=1 – (On our blog : https://plantstomata.wordpress.com/2016/11/13/roles-of-map-kinases-and-ghr1-in-co2-induced-stomatal-closure/)

Hornberg C., Weiler E.W. (1984) – High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells – Nature 310: 321324 – https://www.nature.com/articles/310321a0 – (On our blog : https://plantstomata.wordpress.com/2016/06/18/binding-sites-for-aba-in-stomata/ )

Horrer D.Flütsch S.Pazmino D.Matthews J.S.Thalmann M.Nigro A.Leonhardt N.Lawson T.Santelia D. (2016) – Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening – Curr Biol 26362370 –  doi: 10.1016/j.cub.2015.12.036 – https://www.ncbi.nlm.nih.gov/pubmed/26774787?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/19/guard-cell-starch-degradation-has-an-important-role-in-plant-growth-by-driving-stomatal-responses-to-light/

Horst R. J., Fujita H., Lee J. S., Rychel A. L., Garrick J. M., Kawaguchi M., Peterson K. M., Torii K. U. (2015) – Molecular framework of a regulatory circuit initiating two-dimensional spatial patterning of stomatal lineage – PLOS Genetics 11e1005374 – https://doi.org/10.1371/journal.pgen.1005374 – http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005374Google Scholar – (On our blog : https://plantstomata.wordpress.com/2018/04/02/a-regulatory-circuit-initiating-two-dimensional-spatial-patterning-of-stomatal-lineage/ )

Horton R. F. (1971) – Stomatal opening : the role of abscisic acid – Can. J. Bot. 49: 583–585 – https://doi.org/10.1139/b71-092 –https://www.nrcresearchpress.com/doi/abs/10.1139/b71-092 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-role-of-aba-in-stomatal-opening/ )

Horton R. F., Moran L. (1972) – Abscisic Acid Inhibition of Potassium
Influx into Stomatal Guard Cells – Z. Pflanzenphysiol. 66: 193-196 –

Horváth E. M., Peter S. O., Joët T., Rumeau D., Courmac L., Horvath G. V., Kavanagh T. A., Schäfer C., Peltier G., Medgyesy P. (2000) – Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure – Plant Physiol. 123: 1337–1350 – https://doi.org/10.1104/pp.123.4.1337 – http://www.plantphysiol.org/content/123/4/1337 – (On our blog : https://plantstomata.wordpress.com/2018/10/28/the-plastid-nadphplastoquinone-oxidoreductase-performs-a-significant-physiological-role-by-facilitating-photosynthesis-at-moderate-stomatal-closure/ )

Hoshika Y., Fares S., Pellegrini E., Conte A., Paoletti E. (2020) – Water use strategy affects avoidance of ozone stress by stomatal closure in Mediterranean trees—A modelling analysis – Plant, Cell & Environment 43(3): 611-623 – ISSN:0140-7791 – https://doi.org/10.1111/pce.13700https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13700 – (On our blog : https://plantstomata.wordpress.com/2020/08/13/water-use-strategy-affects-avoidance-of-ozone-stress-by-stomatal-closure/ )

Hoshika Y., Fares S., Savi F., Gruening C., Goded Ballarin I., De Marco A., Sicard P., Paoletti E. (2017) – Stomatal conductance models for ozone risk assessment at canopy level in two Mediterranean evergreen forests – AGRICULTURAL AND FOREST METEOROLOGY 234-235: 212-221 – JRC106175 – 10.1016/j.agrformet.2017.01.005www.sciencedirect.com/science/article/pii/S0168192317300059https://publications.jrc.ec.europa.eu/repository/handle/JRC106175 – (On our blog : https://plantstomata.wordpress.com/2022/02/28/maximum-stomatal-conductance-was-72-higher-in-umbrella-pine-than-in-holm-oak-leading-to-higher-stomatal-ozone-flux/ )

Hoshika Y., Hajima T., Shimizu Y., Takigawa M., Omasa K. (2011) – Estimation of stomatal ozone uptake of deciduous trees in East Asia – Annals of Forest Science 68: 607–616 – DOI 10.1007/s13595-011-0051-9 – Estimation_of_stomatal_ozone_uptake_of_d.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/an-approach-based-on-stomatal-ozone-uptake-would-be-a-useful-tool-for-ozone-risk-assessment-in-east-asia/)

Hoshika Y., Katata G., Deushi M., Watanabe M., Koike T., Paoletti E. (2015) – Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests – Sci. Rep. 5: 09871 – doi: 10.1038/srep09871 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/carbon-and-water-balance-of-temperate-deciduous-forests-and-stomatal-sluggishness/)

Hoshika Y., Omasa K., Paoletti E. (2013) – Both ozone exposure and soil water stress are able to induce stomatal sluggishness – Environmental and Experimental Botany 88: 19–23 – https://doi.org/10.1016/j.envexpbot.2011.12.004 – https://www.sciencedirect.com/science/article/abs/pii/S009884721100311X – (On our blog : https://plantstomata.wordpress.com/2018/10/28/both-ozone-exposure-and-water-stress-caused-stomata-to-be-sluggish/ )

Hoshika Y., Osada Y., de Marco A., Penuelas J., Paoletti E. (2018) – Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops – Global Ecol Biogeogr. 27: 257–275 – https://www.creaf.uab.es/global-ecology/Pdfs_UEG/2018%20GlobEcolBiogeog.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/09/global-diurnal-and-nocturnal-parameters-of-stomatal-conductance/

Hoshika Y., Paoletti E., Omasa K. (2012) – Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan – Atmospheric Environment 55: 271–278 – doi:10.1016/j.atmosenv.2012.02.083 – http://park.itc.u-tokyo.ac.jp/joho/Omasa/505.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/28/parameterization-of-stomatal-conductance-model-to-estimate-stomatal-ozone-uptake/ )

Hoshika Y., Watanabe M., Inada N., Koike T. (2012) – Modeling of stomatal conductance for estimating ozone uptake of Fagus crenata under experimentally enhanced free-air ozone exposure – Water Air, and Soil Pollution 223: 3893–3901 – https://doi.org/10.1007/s11270-012-1158-9 – https://link.springer.com/article/10.1007/s11270-012-1158-9#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/14/ozone-induced-stomatal-closure-should-be-implemented-to-stomatal-conductance-model-for-estimating-ozone-uptake/

Hoshika Y., Watanabe M., Inada N., Koike T. (2013) – Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata) – Annals of Botany 112: 1149–1158 – doi: 10.1093/aob/mct166 – https://www.ncbi.nlm.nih.gov/pubmed/23904447 – (On our blog : https://plantstomata.wordpress.com/2018/12/14/model-based-analysis-of-avoidance-of-ozone-stress-by-stomatal-closure/

Hosoi S., Iino M., Shimazaki K. (1988) – Outward rectifying K+ channel in stomatal guard cell protoplasts. – Plant Cell Physiol. 29: 907–911 – https://doi.org/10.1093/oxfordjournals.pcp.a077594 – https://academic.oup.com/pcp/article-abstract/29/6/907/1833599?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/02/outward-rectifying-k-channel-in-stomatal-protoplasts/ )

Hosotani S., Yamauchi S., Kobayashi H., Fuji S., Koya S., Shimazaki K.-i., Takemiya A. (2021) – A BLUS1 kinase signal and a decrease in intercellular CO2 concentration are necessary for stomatal opening in response to blue light – The Plant Cell 33(5): 1813–1827 – https://doi.org/10.1093/plcell/koab067https://academic.oup.com/plcell/article/33/5/1813/6151705 – (On our blog : https://plantstomata.wordpress.com/2021/11/29/mechanistic-insights-into-the-blue-light-regulation-of-stomatal-opening/ )

Hossain M. A., Munemasa S., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2011) – Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis – Plant Physiol 156430438 – https://doi.org/10.1104/pp.111.172254 – https://pdfs.semanticscholar.org/5582/bd18cd52e57d896e24269c009bcc54964ca4.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/06/involvement-of-endogenous-aba-in-meja-induced-stomatal-closure/ )

Hossain M. S., Ye W., Hossain M. A., Okuma E., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2013) – Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. – Biosci. Biotechnol. Biochem. 77: 977–983 – doi: 10.1271/bbb.120928 – https://www.jstage.jst.go.jp/article/bbb/77/5/77_120928/_pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/03/glucosinolate-degradation-products-induce-stomatal-closure-accompanied-by-extracellular-ros-production/ )

Hossain M. A., Ye W., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2014) – Cyclic adenosine 5′ -diphosphoribose (cADPR) cyclic guanosine 3′ ,5′ – monophosphate positively function in Ca2+ elevation in methyl jasmonate- induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cells – Plant Biol. 16: 1140–1144 – doi: 10.1111/plb.12175 – https://onlinelibrary.wiley.com/doi/abs/10.1111/plb.12175 – (On our blog : https://plantstomata.wordpress.com/2018/04/02/cadpr-and-cgmp-function-in-ca2cyt-elevation-in-meja%e2%80%90induced-stomatal-closure/ )

Hossain M. B., Matsuyama N., Kawasaki M. (2016) – Hydathode morphology and role of guttation in excreting sodium at different concentrations of sodium chloride in eddo – Plant Prod. Sci. 19(4): 528-539 –

Hosseini H. R., Chehrazi M., Nabati D.,Mahmoodi M. (2018) – Colchicine-induced autotetraploidy and altered plant cytogenetic and morphophysiological traits in Catharanthus roseus (L.) G. Don – Advances in Horticultural Science 32(2): 229-238 – DOI: 10.13128/ahs-20845https://www.researchgate.net/publication/327184216_Colchicine-induced_autotetraploidy_and_altered_plant_cytogenetic_and_morphophysiological_traits_in_Catharanthus_roseus_L_G_Don – (On our blog : https://plantstomata.wordpress.com/2022/04/03/chromosome-number-length-and-diameter-of-stomata-and-chloroplast-number-in-stomata-of-guard-cells-increased-with-increased-ploidy-level-whereas-the-numbers-of-stomata-decreased-in-tetraploid-plants/ )

Hosy E., Vavasseur A., Mouline K., Dreyer I., Gaymard F., Porée F., Boucherez J., Lebaudy A., Bouchez D., Véry A.-A., Simonneau T.,  Thibaud J.-B., Sentenac H. (2003) – The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration – Pnas 100(9): 5549-5554doi:10.1073/pnas.0733970100 – http://www.pnas.org/content/100/9/5549.full – (On our blog : https://plantstomata.wordpress.com/2016/03/29/the-arabidopsis-outward-k-channel-gork-and-stomata/ )

Hoth S., Hedrich R. (1999) – Susceptibility of the guard-cell K+-uptake channel KST1 to Zn2+ requires histidine residues in the S3-S4 linker and in the channel pore – Planta 209(4): 543-546 – ISSN :0032-0935 – journal e-ISSN : 1432-2048 – https://www.infona.pl/resource/bwmeta1.element.springer-f7db803e-235e-3a67-b953-73e2de3cb298 – (On our blog : https://plantstomata.wordpress.com/207/10/17/susceptibility-of-the-stomata-k-uptake-channel-kst1-to-zn2-requires-histidine-residues/)

Hoth S., Hedrich R. (1999) – Distinct molecular bases for pH sensitivity of guard cell K+ channels KST1 and KAT1 – Journal of Biological Chemistry 274: 11599–11603 – http://www.jbc.org/content/274/17/11599.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/03/distinct-molecular-bases-for-ph-sensitivity-of-stomatal-k-channels-kst1-and-kat1/ )

Hou C.-Y. (2019) – A Synthetic Ion Channel Makes Plants Grow Faster – https://www.the-scientist.com/the-literature/a-synthetic-ion-channel-makes-plants-grow-faster-66349 – (On our blog : https://plantstomata.wordpress.com/2020/08/29/stomatal-kinetics/ )

Hou S. G., Shen H. X., Shao H. W. (2020) – PAMP-induced peptide 1 cooperates with salicylic acid to regulate stomatal immunity in Arabidopsis thaliana –  Plant Signal Behav. 14(11): 1666657 – doi: 10.1080/15592324.2019.1666657https://pubmed.ncbi.nlm.nih.gov/31526105/ – (On our blog : https://plantstomata.wordpress.com/2020/08/15/pip1-and-sa-may-form-a-positive-feedback-loop-to-regulate-ros-mediated-stomatal-immunity/ )

Hou Z. H., Liu G. H., Hou L. X., Wang L. X., Liu X. (2013) – Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene-induced stomatal closure in Arabidopsis thaliana – J Integr Agric 12: 251–262 – https://doi.org/10.1016/S2095-3119(13)60224-5https://www.sciencedirect.com/science/article/pii/S2095311913602245?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/07/09/pao-is-a-source-of-h2o2-generation-in-arabidopsis-guard-cells-and-plays-crucial-roles-in-stomatal-movement/ )

Hou Z., Wang L., Liu J., Hou L., Liu X. (2013) – Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana – J. Integr. Plant Biol. 55: 277–289 – doi: 10.1111/jipb.12004 – https://www.ncbi.nlm.nih.gov/pubmed/23134300 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/the-d-l-cdes-generated-h2s-is-involved-in-the-regulation-of-ethylene-induced-stomatal-closure/</spa

Houbaert A., Zhang C., Tiwari M., Wang K., de Marcos Serrano A., Savatin D. V., Urs M. J., Zhiponova M. Gudesblat G. E., Vanhoutte I., Eeckhout D., Boeren S., Karimi M., Betti C., Jacobs T., Fenoli C., Mena M. de Vries S., De Jaeger G., Russinova E. (2018) – POLAR-guided signalling complex assembly and localization drive asymmetric cell division – https://www.nature.com/articles/s41586-018-0714-x – Nature 563: 574-578 – (On our blog : https://plantstomata.wordpress.com/2019/01/15/the-plant-specific-protein-polar-as-a-stomatal-lineage-scaffold/ )

Hovenden M. J. (2001) – The influence of temperature and genotype on the growth and stomatal morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae) – Australian Journal of Botany 49(4): 427-434 – https://doi.org/10.1071/BT01001https://www.publish.csiro.au/BT/BT01001 – (On our blog : https://plantstomata.wordpress.com/2020/05/22/specific-leaf-area-stomatal-density-and-stomatal-index-did-not-vary-with-either-temperature-or-genotype/ )

Hovenden M. J., Brodribb T. (2000) – Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in Southern Beech, Nothofagus cunninghamii – Australian Journal of Plant Physiology 27: 451–456 – https://doi.org/10.1071/PP99164 – https://www.publish.csiro.au/fp/PP99164 – (On our blog : https://plantstomata.wordpress.com/2021/09/18/altitude-of-origin-has-a-strong-influence-on-the-photo-synthetic-performance-and-stomatal-conductance/ )

Hovenden M. J., Vander Schoor J. K., Osanai Y. (2012) – Relative humidity has dramatic impacts on leaf morphology but little effect on stomatal index or density in Nothofagus cunninghamii (Nothofagaceae) – Australian Journal of Botany 60(8) 700-706 – https://doi.org/10.1071/BT12110 – http://www.publish.csiro.au/bt/bt12110 – (On our blog – https://plantstomata.wordpress.com/2017/11/23/relative-humidity-has-little-effect-on-stomatal-index-or-density/)

Howe G. F. (1959) – Time course of the photosynthetic induction periods and photosynthetic rhythms in certain higher plants as related to changes in degree of stomatal opening – PhD Thesis Ohio State University 246 pp. – https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1486476430057593&disposition=inline – (On our blog : https://plantstomata.wordpress.com/2021/12/24/rhythmic-fluctuations-appeared-only-after-the-leaf-had-been-subjected-to-a-4-minute-period-of-darkness-it-was-inferred-that-the-4-minute-period-of-darkness-was-causally-related-to-the-subsequent-phot/ )

Howell R. K., Kremer D. F. (1972) – Ozone Injury to Soybean Cotyledonary Leaves – Journal of Environmental Quality 1(1): 94-96 – https://doi.org/10.2134/jeq1972.00472425000100010023xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/jeq1972.00472425000100010023x – (On our blog : https://plantstomata.wordpress.com/2021/10/27/94757/ )

Hronková M.Wiesnerová D.Šimková M. Skůpa P.Dewitte W.Vráblová M.,  Zažímalová E.Šantrůček J. (2015) – Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves – J. Exp. Bot. 66(15): 4621-4630 – doi: 10.1093/jxb/erv233 – http://jxb.oxfordjournals.org/content/66/15/4621.abstract – (On our blog : https://plantstomata.wordpress.com/2016/06/18/stomagen-and-stomatal-development/ )

Hsiao T. C. (1976) – Stomatal ion transport – In Encyclopedia of Plant Physiology. II. Transport in Plants. Part B. Tissues and organs.  Edited by U. Lutthe and G. Pitman.  Springer, Berlin, Heidelberg, New York.  Chapt. 3 –

Hsiao T. C., Allaway W. G., Evans L. T. (1973) – Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba – Plant Physiol. 51: 82-88 – https://pubmed.ncbi.nlm.nih.gov/16658302/ – http://www.jstor.org/stable/4263074?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/03/action-spectra-for-guard-cell-rb-uptake-and-stomatal-opening/ )

Hsie B. S.Mendes K. R.Antunes W. C., Endres L.Campos M. L. O.Souza F. C.Santos N. D.Singh B.Arruda E. C. P.Pompelli M. F. (2015) – Jatropha curcas L. (Euphorbiaceae) modulates stomatal traits in response to leaf-to-air vapor pressure deficit – Biomass and Bioenergy 81: 273-281 – https://doi.org/10.1016/j.biombioe.2015.07.014 – https://www.sciencedirect.com/science/article/pii/S0961953415300532#! – (On our blog : https://plantstomata.wordpress.com/2018/04/23/modulation-of-stomatal-traits-in-response-to-leaf-to-air-vapor-pressure-deficit/

Hsu P. K., Dubeaux G., Takahashi Y., Schroeder J. I. (2020) – Signaling mechanisms in abscisic acid-mediated stomatal closure – Plant J. 105(2): 307-321 – doi: 10.1111/tpj.15067 – Epub 2020 Dec 9 – PMID: 33145840 – PMCID: PMC7902384 – https://pubmed.ncbi.nlm.nih.gov/33145840/ – (On our blog : https://plantstomata.wordpress.com/2021/10/03/signaling-mechanisms-in-aba-mediated-stomatal-closure/ )

Hsu K.-H., Liu C.-C., Wu S.-J. Kuo Y.-Y., Lu C.-A., Wu C.-R., Lian P.-J., Hong C.-Y., Ke Y.-T., Huang J.-H., Yeh C.-H. (2014) – Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening – Plant Molecular Biology 86(1-2): 125-137 – DOI: 10.1007/s11103-014-0217-6 – https://www.infona.pl/resource/bwmeta1.element.springer-2f566746-7587-3983-834c-8c744578ac14 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/osrzfp34-may-modulate-genes-to-control-stomata-opening/)

Hsu P.-K., Dubeaux G., Takahashi Y., Schroeder J. I. (2021) – Signaling mechanisms in abscisic acid-mediated stomatal closure – Plant J. 105(2): 307-321 – doi:10.1111/tpj.15067

Hsu P.-K., Takahashi Y., Munemasa S., Merilo E., Laanemets K., Waadt R., Pater D., Kollist H., Schroeder J. I. (2018) – Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase – 

Hsu P.-K., Takahashi Y., Merilo E., Costa A., Zhang L., Kernig K., Lee K. H., Schroeder J. I. (2021) – Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response – PNAS 118 (47) e2107280118 – https://doi.org/10.1073/pnas.2107280118https://www.pnas.org/content/118/47/e2107280118 – (On our blog : https://plantstomata.wordpress.com/2021/11/25/genes-and-signaling-mechanisms-in-the-elusive-high-vpd-induced-stomatal-closing-response-pathway/ )

Hu H., Boisson-Dernier A., Israelsson-Nordstrom M., Bohmer M., Xue S., Ries A., Godoski J., Kuhn J. M., Schroeder J. I., (2010) – Carbonic anhydrases are upstream regulators of CO2- controlled stomatal movements in guard cells – Nature Cell Biol. 12: 87–93 – doi: 10.1038/ncb2009 –  https://www.nature.com/articles/ncb2009 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/carbonic-anhydrases-are-upstream-regulators-of-co2-controlled-stomatal-movements/ )

Hu H., Rappel W.-J., Occhipinti R., Ries A., Böhmer M., You L. (2015) – Distinct Cellular Locations of Carbonic Anhydrases Mediate CO2 Control of Stomatal Movements – Plant Physiology 169(2) – DOI: 10.1104/pp.15.00646– https://www.researchgate.net/publication/280911463_Distinct_Cellular_Locations_of_Carbonic_Anhydrases_Mediate_CO2_Control_of_Stomatal_Movements – (On our blog : https://plantstomata.wordpress.com/2016/03/14/carbonic-anhydrases-and-co2-control-of-stomatal-movements/)

Hu H., Sparks D. (1991) – Zinc Deficiency Inhibits Chlorophyll Synthesis and Gas Exchange in ‘Stuart’ Pecan – HORTSCIENCE 26(3): 267-268 – file:///C:/Users/wille/Downloads/[23279834%20-%20HortScience]%20Zinc%20Deficiency%20Inhibits%20Chlorophyll%20Synthesis%20and%20Gas%20Exchange%20in%20%60Stuart’%20Pecan.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/02/leaf-chlorophyll-content-stomatal-conductance-and-net-photosynthesis-were-adversely-affected-by-zn-deficiency/ )

Hu J., Li Y., Jeong B. R. (2020) – Silicon Alleviates Temperature Stresses in Poinsettia by Regulating Stomata, Photosynthesis, and Oxidative Damages – Agronomy 10: 1419 – doi:10.3390/agronomy10091419file:///C:/Users/wille/Downloads/agronomy-10-01419%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/01/23/silicon-alleviates-temperature-stresses-by-regulating-stomata/ )

Hu J.-J., Xing Y.-W., Su T., Huang Y.-J., Zhou Z.-K. (2019) – Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2 – Annals of Botany, mcz020 – https://doi.org/10.1093/aob/mcz020 –https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcz020/5376641?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/13/inverse-response-to-atmospheric-pco2-of-stomatal-frequency/ )

Hu J.-J., Xing Y.-W., Turkington R., Jacques F. M. B., Su T., Huang Y.-J., Zhou Z.-K. (2015) – A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels – Annals of Botany 115: 777–788 – doi:10.1093/aob/mcv007, available online at http://www.aob.oxfordjournals.org https://watermark.silverchair.com/mcv007.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/03/29/pco2-and-stomatal-frequency/ )

Hu K.-D., Tang J., Zhao D.-L., Hu L.-Y., Li Y.-H., Liu Y.-S., Jones R., Zhang H. (2014) – Stomatal closure in sweet potato leaves induced by sulfur dioxide involves H2S and NO signaling pathways – Biol. Plant. 58: 676–680 – doi: 10.1007/s10535-014- 0440-7 – https://link.springer.com/article/10.1007%2Fs10535-014-0440-7 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/so2-induced-stomatal-closure-is-mediated-by-h2s-and-no-signaling-pathways/ )

Hu Y., Wu Q., Peng Z., Sprague S. A., Wang W., Nakata P. A., Cheng N., Hirschi K. D., White F. F., Park S. (2017) – Silencing of osgrxs17 in rice improves drought stress tolerance by modulating ros accumulation and stomatal closure – Nat. Sci. Rep. 7: 15950 – https://doi.org/10.1038/s41598-017-16230-7https://www.nature.com/articles/s41598-017-16230-7#citeas – (On our blog : https://plantstomata.wordpress.com/2021/11/19/a-critical-link-between-osgrxs17-the-modulation-of-stomatal-guard-cell-h2o2-concentrations-and-stomatal-closure/ )

Hua D., Wang C., He J., Liao H., Duan Y., Zhu Z., Guo Y, Chen Z, Gong Z. (2012) – A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis – Plant Cell 24: 2546– 2561 – doi: 10.1105/tpc.112.100107 – https://www.ncbi.nlm.nih.gov/pubmed/22730405 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/ghr1-mediates-aba-and-h2o2-regulated-stomatal-movement/ )

Huang A.-X., She X.-P., Cao B., Zhang B., Mu J;, Zhang S.-J. (2009) – Nitric oxide, actin reorganization and vacuoles change are involved in PEG 6000-induced stomatal closure in Vicia faba – Physiol Plant 136: 45–56 – https://doi.org/10.1111/j.1399-3054.2009.01212.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2009.01212.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/stomatal-closure-induced-by-peg-6000-may-be-intimately-associated-with-no-levels/ )

Huang A. X., She X. P., Zhang Y. Y., Zhao J. L. (2013) – Cytosolic acidification precedes nitric oxide removal during inhibition of ABA induced stomatal closure by fusicoccin – Russ. J. Plant Physiol. 60: 60–68 – doi: 10.1134/S1021443712060076 – https://link.springer.com/article/10.1134/S1021443712060076 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/fc-induces-no-removal-and-reduces-no-level-via-cytosolic-acidification-in-guard-cells/ )

Huang B., Wang Y., Huang S., Ma S. (2011) – Guard cells on adaxial and abaxial epidermes of Erythrina corallodendron sepals – Biologia plantarum 55: 716 – DOI: 10.1007/s10535-011-0174-8http://bp.ueb.cas.cz/artkey/bpl-201104-0017_guard-cells-on-adaxial-and-abaxial-epidermes-of-erythrina-corallodendron-sepals.php – (On our blog : https://plantstomata.wordpress.com/2021/01/23/stomatal-guard-cells-on-the-adaxial-and-the-abaxial-epidermes-of-sepals-sensed-environmental-conditions-differently/ )

Huang G., Yang Y., Y. Yang, Zhu L., Peng S., Li Y., (2021) – Temperature responses of photosynthesis and stomatal conductance in rice and wheat plants – Agricultural and forest meteorology 300: 108322 – doi: 10.1016/j.agrformet.2021.108322https://pubag.nal.usda.gov/catalog/7259350 – (On our blog : https://plantstomata.wordpress.com/2022/02/28/the-first-study-using-the-optimal-stomata-models-to-interpret-the-differential-g%e2%82%9b-t-relationships-and-highlights-the-importance-of-estimating-g%e2%82%98-and-the-photosynthetic-limitations-befo/ )

Huang J.-U., Eun S.-O., Lee Y. (2000) – Structure and function of actin filaments in mature guard cells. In Actin: A Dynamic Framework for Multiple Plant Cell Functions (eds C.J. Staiger, F. Baluska, D. Volkmann & P.W. Barlow), pp. 427–436 – Kluwer Academic Publishers, Dordrecht, the Netherlands –

Huang J. U., Jeon B. W., Hong D., Lee Y. (2011) – Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure – Plant Cell Environ. 34: 2172–2182 – doi: 10.1111/j.1365-3040.2011.02413.x – https://www.ncbi.nlm.nih.gov/pubmed/21883287 – (On our blog : https://plantstomata.wordpress.com/2018/04/08/rop2-gtpase-inhibits-aba-and-co2-induced-stomatal-closure/ )

Huang J.-U., Lee Y. (2001) – Abscisic Acid-Induced Actin Reorganization in Guard Cells of Dayflower Is Mediated by Cytosolic Calcium Levels and by Protein Kinase and Protein Phosphatase Activities – Plant Physiology 125(4): 2120-2128 – http://www.plantphysiol.org/content/plantphysiol/125/4/2120.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/06/protein-kinases-and-phosphatases-participate-in-actin-remodeling-in-guard-cells-during-aba-induced-stomatal-closure/ )

Huang J. U., Suh S., Yi H. J., Kim J., Lee Y. (1997) – Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. – Plant Physiology 115: 335–342 – (On our blog : https://plantstomata.wordpress.com/2016/06/24/actin-filaments-and-stomatal-movements/)

Huang L., Chen L., Wang L., Yang Y., Rao Y., Ren D., Dai L., Gao Y., Zou W., Lu X., Zhang G., Zhu L., Hu J., Chen G., Shen L., Dong G., Gao Z., Guo L., Qian Q., Zeng D. (2019) – A Nck‐associated Protein 1‐like Protein Affects Drought Sensitivity by Its Involvement in Leaf Epidermal Development and Stomatal Closure in Rice – Plant Journ. – https://doi.org/10.1111/tpj.14288 –https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14288?af=R – (On our blog : https://plantstomata.wordpress.com/2019/02/17/drought-sensitivity-and-involvement-in-leaf-epidermal-development-and-stomatal-closure/ )

Huang L., Murray F., Yang X. (1994)  Interaction between mild NaCl salinity and sublethal SO2 pollution on wheat Triticum aestivum cultivar ‘Wilgoyne’ (Ciano/Gallo). I. Responses of stomatal conductance, photosynthesis, growth and assimilate partitioning – Agriculture, Ecosystems & Environment 48(2): 163-178 – https://doi.org/10.1016/0167-8809(94)90087-6 – http://www.sciencedirect.com/science/article/pii/0167880994900876 – (On our blog : https://plantstomata.wordpress.com/2017/10/05/mild-nacl-salinity-did-not-provide-an-effective-protection-against-so2-uptake-in-wheat-leaves-by-increasing-stomatal-resistance-during-so2-fumigation/)

Huang R. F., Wang X. C. (1997) – Abscisic acid-induced changes in the orientation of cortical microtubules and their effects on stomatal movement of Vicia faba L. – Acta Botanica Sinica 39: 375–378 – https://www.researchgate.net/publication/289369876_Abscisic_acid-induced_changes_in_the_orientation_of_cortical_microtubules_and_THEIR_effects_on_stomatal_movement_of_Vicia_faba – (On our blog : https://plantstomata.wordpress.com/2018/10/28/aba-induced-changes-in-the-orientation-of-cortical-microtubules-and-their-effects-on-stomatal-movement/ )

Huang R. F., Wang X. C. (1997) – Roles of cytoplasmic microtubules in the regulation of stomatal movement – Acta Botanica Sinica 39: 253–258 –

Huang R. F., Wang X. C., Lou C. H. (2000) – Cytoskeletal inhibitors suppress the stomatal opening of Vicia faba L. induced by fusicoccin and IAA – Plant Sci. 156: 65-71 – https://www.sciencedirect.com/science/article/pii/S0168945200002405 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/fc-and-iaa-induced-stomatal-opening-with-or-without-kcl-in-the-dark/ )

Huang R. F, Zhu M. J., Kang Y., Chen J., Wang X. C. (2002) – Identification of plasma membrane aquaporin in guard cells of Vicia faba and its role in stomatal movement – Acta Botanica Sinica 44: 42–48 – https://europepmc.org/article/cba/368593 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/aquaporins-are-associated-with-stomatal-movement/ )

Huang S., Ding M., Roelfsema M. R. G., Dreyer I., Scherzer S., Al-Rasheid K. A. S., Gao S., Nagel G., Hedrich R., Konrad K. R. (2021) – Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel – Science Advances 7 (28): eabg4619 – DOI: 10.1126/sciadv.abg4619 – https://www.sciencedaily.com/releases/2021/07/210709193604.htm – (On our blog : https://plantstomata.wordpress.com/2021/07/18/91708/ )

Huang S., Waadt R., Nuhkat M., Kollist H., Hedrich R., Roelfsema M. R. G. (2019) – Ca2+ signals in guard cells enhance the efficiency by which ABA triggers stomatal closure – New Phytologist 224(1): 177-187 – https://doi.org/10.1111/nph.15985https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15985?af=R – (On our blog : https://plantstomata.wordpress.com/2019/06/13/ca2-signals-are-likely-to-activate-cpks-which-enhance-the-activity-of-s%e2%80%90type-anion-channels-and-boost-stomatal-closure/ )

Huang X., Lin S., He S., Lin X., Liu J., Chen R., Li H. (2018) – Characterization of stomata on floral organs and scapes of cut ‘Real’ gerberas and their involvement in postharvest water loss – Postharvest Biology and Technology 142: 39-45 – https://doi.org/10.1016/j.postharvbio.2018.04.001https://www.sciencedirect.com/science/article/abs/pii/S0925521417311560 – (On our blog : https://plantstomata.wordpress.com/2020/11/16/critical-involvement-of-stomata-on-the-lower-epidermis-of-sepals-in-water-loss-of-cut-gerberas/ )

Huang X. Y.Chao D. Y.Gao J. P.Zhu M. Z.Shi M.Lin H. X. (2009) – A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control – Genes Dev. 2318051817 – doi:  10.1101/gad.1812409 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720257/ – (On our blog : https://plantstomata.wordpress.com/2018/04/06/dst-regulates-drought-and-salt-tolerance-via-stomatal-aperture-control/ )

Huang Y.-C. (2015) – Leaf stomatal response to blue light and CO2 concentration in six fern species – Master Thesis. NTU, Taipei, Taiwan

Huang Y. -C., Wu H.-C., Wang Y.-D., Liu C.-H., Lin C.-C., Luo D.-L., Jinn T.-L. (2017) – PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement. – Plant Physiol 174(2): 748–763 – https://doi.org/10.1104/pp.17.00335 – http://www.plantphysiol.org/content/174/2/748 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/pme34-mediates-heat-response-by-controlling-the-stomatal-aperture/)

Huang Z.Xu Z.Blumfield T. J.Bubb K. (2008) – Variations in relative stomatal and biochemical limitations to photosynthesis in a young blackbutt (Eucalyptus pilularis) plantation subjected to different weed control regimes – Tree Physiology 289971005 – DOI: 10.1093/treephys/28.7.997 – https://www.ncbi.nlm.nih.gov/pubmed/18450564 – (On our blog : https://plantstomata.wordpress.com/2018/04/06/relative-stomatal-and-biochemical-limitations-to-photosynthesis/ )

Hubbard K. E., Hotta C. T., Gardner M. J., Bark S. J., Dalchau N., Dontamala S., Dodd A. N., Webb A. A. R. (2007) – Circadian Rhythms in Stomata: Physiological and Molecular Aspects – in Rhythms in Plants, Chapter 8, 157-177 – Editors: Prof. Dr. Stefano Mancuso, Dr. Sergey Shabala, Springer Verlag, Heidelberg, ISBN 978-3-540-68069-7 – https://www.microsoft.com/en-us/research/publication/circadian-rhythms-stomata-physiological-molecular-aspects/ – (On our blog : https://plantstomata.wordpress.com/2017/09/23/the-physiological-mechanisms-by-which-the-circadian-clock-may-regulate-stomatal-movements/)

Hubbard K. E., Siegel R. S., Valerio G., Brandt B., Schroeder J. I. (2012) –  Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses – Annals of Botany 109(1): 5-17 – doi: 10.1093/aob/mcr252 – http://aob.oxfordjournals.org/content/109/1/5 – (On our blog : https://plantstomata.wordpress.com/2016/06/21/aba-co2-ca-in-stomata/ )

Hubbard K. E., Webb A. A. R. (2015) – Circadian rhythms in stomata: physiological and molecular aspects. In S. Mancuso, S. Shabala, eds, Rhythms in Plants. Springer International Publishing, Cham, Switzerland, 231–255 – https://doi.org/10.1007/978-3-319-20517-5_9https://link.springer.com/chapter/10.1007/978-3-319-20517-5_9#citeas – (On our blog : https://plantstomata.wordpress.com/2019/11/15/the-physiological-mechanisms-by-which-the-clock-might-regulate-stomatal-movements-and-the-benefits-that-circadian-regulation-of-stomatal-behaviour-could-confer-to-the-plant/ )

Hubbard R. M., Stiller V., Ryan M. G., Sperry J. S. (2001) – Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine – Plant, Cell & Environm. 24: 113–121 – https://doi.org/10.1046/j.1365-3040.2001.00660.x – http://sperry.biology.utah.edu/publications/PCE01.pdf – (On our  blog : https://plantstomata.wordpress.com/2018/10/29/stomatal-conductance-and-photosynthesis-vary-linearly-with-plant-hydraulic-conductance/ )

Huber A. E., Melcher P. J., Piñeros M. A., Setter T. L., Bauerle T. L. (2019) – Signal coordination before, during and after stomatal closure in response to drought stress – New Phytologist 224(2): 675-688 – https://doi.org/10.1111/nph.16082https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16082 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/onset-of-stomatal-closure-was-most-closely-correlated-with-the-hydraulic-signal-from-changes-in-leaf-turgor/ )

Huber B., Kinder E., Obermüller, Ziegenspeck H. (1956) – Spaltöffnungs-Dünnstschnitte im Elektronenmikroskop – Protoplasma (Wien) 46: 380–393 – https://doi.org/10.1007/BF01248889https://link.springer.com/article/10.1007%2FBF01248889 – (On our blog : https://plantstomata.wordpress.com/2021/11/16/cross-sections-of-stomata/ )

Hughes J., Hepworth C., Dutton C., Dunn J. A., Hunt L., Stephens J., Waugh R., Cameron D. D., Gray J. E. (2017) – Reducing stomatal density in barley improves drought tolerance without impacting on yield – Plant Physiol. 174: 776–787 – https://doi.org/10.1104/pp.16.01844 – http://www.plantphysiol.org/content/early/2017/05/01/pp.16.01844 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/the-potential-of-manipulating-stomatal-frequency/)

Hughes J. D. (2017) – Reducing stomatal density in Hordeum vulgare improves
drought tolerance and water use efficiency – PhD Thesis University of Sheffield – https://etheses.whiterose.ac.uk/19860/1/JHughesThesisFinal.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/27/the-manipulation-of-stomatal-density-could-be-utilised-in-order-to-futureproof-crops-against-future-climate-change/ )

Hughes T. E., Langdale J. A. (2021) – SCARECROW is deployed in distinct developmental contexts during rice and maize leaf development – bioRxiv – https://doi.org/10.1101/2021.11.29.470347 – Development (2022) – doi: 10.1242/dev.200410https://journals.biologists.com/dev/article/149/7/dev200410/274881/SCARECROW-is-deployed-in-distinct-contexts-during – (On our blog : https://plantstomata.wordpress.com/2022/04/20/scarecrow-is-implicated-in-stomatal-patterning/ )

Hugouvieux V., Barber C. E., Daniels M. J. (1998) – Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: A system for studying early infection events in bacterial pathogenesis – Mol. Plant Microbe Interact. 11(6): 537-543 –

Hultine K. R., Marshall J. D. (2000) – Altitude trends in conifer leaf morphology and stable carbon isotope composition – Oecologia 123: 32–40 – https://dbg.org/wp-content/uploads/2018/07/altitude_trends_in_conifer_leaf_morphology.pdf – (On our blog : https://plantstomata.wordpress.com/2021/05/02/altitude-trends-and-stomatal-density/ )

Hultine K. R., Marshall J. D. (2001) – A comparison of three methods for determining the stomatal density of pine needles – Journal of Experimental Botany 52(355): 369–373 – https://doi.org/10.1093/jexbot/52.355.369 – https://academic.oup.com/jxb/article/52/355/369/558373 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/three-methods-for-determining-the-stomatal-density/ )

Humbert C., Guyot M. (1969) – Action de la colchicine sur le développement des stomates paracytiques – Bull. Soc. Bot. Fr. 116: 301-310 – DOI: 10.1080/00378941.1969.10838672 – http://www.tandfonline.com/doi/abs/10.1080/00378941.1969.10838672 – (On our blog : https://plantstomata.wordpress.com/2017/09/05/colchicine-tropocinesis-and-stomatal-differentiation-in-french/)

Humble G. D., Fischer R. A., Hsiao T. C. (1970) – A research brief. . . POTASSIUM ROLE found essential IN STOMATAL FUNCTIONING for plant life – CALIFORNIA AGRICULTURE, APRIL, 1970, p. 10 – file:///C:/Users/wille/Downloads/ca2404p10-174002.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/06/potassium-role-in-stomatal-functioning/ )

Humble G. D., Hsiao T. C. (1969) – Specific requirement of potassium for light-activated opening of stomata in epidermal strips – Plant Physiol., Lancaster 46: 230-234 – PMID: 16657051 PMCID: PMC396067 – https://www.ncbi.nlm.nih.gov/pubmed/16657051 – (On our blog: https://plantstomata.wordpress.com/2018/12/14/specific-requirement-of-potassium-for-light-activated-opening-of-stomata-in-epidermal-strips/

Humble G. D., Hsiao T. C. (1970) – Light-dependent Influx and Efflux of Potassium of Guard Cells during Stomatal Opening and Closing – Plant Physiol. 46: 483–487 – PMCID: PMC396620 – https://www.ncbi.nlm.nih.gov/pubmed/16657490 – (On our blog : https://plantstomata.wordpress.com/2018/04/06/influx-and-efflux-of-potassium-of-guard-cells-during-stomatal-opening-and-closing/

Humble G. D., Raschke K. (1971) – Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis – Plant Physiol. 48: 447–453 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-opening-and-potassium-transport/)

Humphrey B. J., Zelitch I., Kuiper P. J. C. (1964) – Method of closing plant stomata with alkenyl succinic acids – Patent – https://patents.google.com/patent/US3399990A/en – (On our blog : https://plantstomata.wordpress.com/2022/01/14/closing-plant-stomata-with-alkenyl-succinic-acids-patent/ )

Humphries J. A., Vejlupkova Z., Luo A., Meeley R. B., Sylvester A. W., Fowler . E., Smith L. G. (2011) – ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize – Plant Cell 23: 2273–2284 – DOI: 10.1105/tpc.111.085597 – https://www.ncbi.nlm.nih.gov/pubme – (On our blog : https://plantstomata.wordpress.com/2018/10/28/rops-play-a-key-role-in-polarization-of-plant-cell-division-and-cell-growth-and-reveals-a-role-for-a-receptor-like-protein-in-spatial-localization-of-rops/ )

Hunt E. R., Weber J. A., Gates G. M. (1985) – Effects of nitrate application on Amaranthuts powellii Wats. II. Stomatal response to vapor pressure difference is consistent with optimization of stomatal conductance – Plant Physiol 79: 614-618 – PMID: 16664461 – PMCID: PMC1074940 –https://www.ncbi.nlm.nih.gov/pubmed/16664461 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/stomatal-response-to-vapor-pressure-difference-is-consistent-with-optimization-of-stomatal-conductance/ )

Hunt E. R., Weber J. A., Gates G. M. (1985) – Effects of nitrate application on Amaranthuts powellii Wats. III. Optimal allocation of leaf nitrogen for photosynthesis and stomatal conductance – Plant Physiol. 79: 619-624 – https://www.semanticscholar.org/paper/Effects-of-Nitrate-Application-on-Amaranthus-Wats.-Hunt-Weber/43c1f3b14ba4ee248a0ffa10a1c68ce58f0bcb65 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/optimal-allocation-of-leaf-nitrogen-for-photosynthesis-and-stomatal-conductance/ )

Hunt L., Amsbury S., Baillie A., Movahedi M., Mitchell A., Afsharinafar M., Swarup K., Denyer T., Hobbs J. K., Swarup R., Fleming A. J., Gray J. E. (2017) – Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein – Plant Physiol 174: 689–699 – http://eprints.whiterose.ac.uk/111884/1/Plant%20Physiol.-2017-Hunt-pp.16.01715.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-stomatal-outer-cuticular-ledge/)

Hunt L., Bailey K. J., Gray J. E. (2010) – The signalling peptide EPFL9 is a positive regulator of stomatal development – New Phytol. 186: 609–614 – doi: 10.1111/j.1469-8137.2010.03200.x – https://www.jstor.org/stable/27797588?seq=1#page_scan_tab_contents– (On our blog : https://plantstomata.wordpress.com/2018/04/03/epfl9-a-positive-regulator-of-stomatal-development-increases-stomatal-density-and-clustering/ )

Hunt L., Fuksa M., Klem K., Lhotakova Z., Oravec M., Urban O., Albrechtova J. (2021) – Barley Genotypes Vary in Stomatal Responsiveness to Light and CO2 Conditions – Plants 10(11): 2533 – https://doi.org/10.3390/plants10112533https://www.mdpi.com/2223-7747/10/11/2533/htm – (On our blog : https://plantstomata.wordpress.com/2022/02/07/stomatal-responsiveness-to-light-and-co2-conditions/ )

Hunt L., Gray J. E. (2009) – The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development – Curr Biol 19: 864– 869 – doi:10.1016/j.cub.2009.03.069 – (On our blog : https://plantstomata.wordpress.com/2016/06/24/signaling-peptide-epf2-and-stomata/)

Hunt L., Gray J. E. (2010) – BASL and EPF2 act independently to regulate asymmetric divisions during stomatal development. – Plant Signal Behav. 5: 278–280 – DOI 10.4161/psb.5.3.10704 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881277/ – (On our blog : https://plantstomata.wordpress.com/2018/04/08/epf2-and-basl-operate-independently-to-control-stomatal-development/ )

Hunt L., Mills L. N., Pical C., Leckie C. P., Aitken F. L., Kopka J., Mueller-Roeber B., McAinsh M. R., Hetherington A. M., Gray J. E. (2003) – Phospholipase C is required for the control of stomatal aperture by ABA – Plant J 34: 47-55 – https://doi.org/10.1046/j.1365-313X.2003.01698.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2003.01698.x – (On our blog : https://plantstomata.wordpress.com/2018/12/06/phospholipase-c-is-involved-in-the-amplification-of-the-calcium-signal-responsible-for-reductions-in-stomatal-aperture-in-response-to-aba/

Hunter G. (2013) – Evaluating Eriogonum corymbosum tolerance to frequent irrigation and evaluating its significant morphological variations for potential cultivars – Thesis UTAH STATE UNIVERSITY, 2013, 76 pages; 1541717.

Huntingford C., Smith D. M., Davies W. J., Falk R., Sitch S., Mercado L. M. (2015) – Combining the [ABA] and net photosynthesis-based model equations of stomatal conductance – Ecological Modelling 300: 81–88 – (http://www.sciencedirect.com/science/article/pii/S0304380015000174) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/model-equations-of-stomatal-conductance/).

Huntingford C., Oliver R. J., Mercado L. M., Sitch S. (2018) – Technical Note: A simple theoretical model framework to describe plant stomatal sluggishness in response to elevated ozone concentrations – Biogeosciences discussion paper preprint – https://doi.org/10.5194/bg-2018-206 – https://www.biogeosciences-discuss.net/bg-2018-206/ – (On our blog : https://plantstomata.wordpress.com/2018/05/10/elevated-ozone-concentrations-and-stomatal-sluggishness/ )

Hurley B., Lee D., Mott A., Wilton M., Liu J., Liu Y. C., Angers S., Coaker G., Guttman D. S., Desveaux D. (2014) – The Pseudomonas syringae Type III Effector HopF2 Suppresses Arabidopsis Stomatal Immunity – PLoS ONE 9(12): e114921 – https://doi.org/10.1371/journal.pone.0114921https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114921 – (On our blog : https://plantstomata.wordpress.com/2021/11/09/hopf2-may-be-a-bifunctional-t3se-with-adp-ribosyltransferase-activity-required-for-inhibiting-apoplastic-immunity-and-an-independent-function-required-to-inhibit-stomatal-immunity/ )

Hurst A. C., Meckel T., Tayefeh S., Thiel G., Homann U. (2004) – Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba – Plant J. 37: 391-397 – https://doi.org/10.1046/j.1365-313X.2003.01972.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2003.01972.x – (On our blog : https://plantstomata.wordpress.com/2018/04/03/trafficking-of-the-plant-k-inward-rectifier-kat1-in-stomatal-protoplasts/ )

Husby C. E., (2009) – Ecophysiology and Biomechanics of Equisetum giganteum in South America – FIU Electronic Theses and  Dissertations – PhD Thesis Florida International University – https://www.academia.edu/6199634/Ecophysiology_and_Biomechanics_of_Equisetum_Giganteum_in_South_America?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/11/02/ecophysiology-biomechanics-and-stomatal-conductance/ )

Husby C. E., Delatorre-Herrera J., Oberbauer S., Grau A., Novara L. (2014) – Stomatal conductance patterns of Equisetum giganteum stems in response to environmental factors in South America – Botany 92(10): 701-712 – doi: 10.1139/cjb-2013-0312 – (http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2013-0312#.VQg8jhDF-6E) – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2013-0312?journalCode=cjb – (On our blog : https://plantstomata.wordpress.com/2016/08/30/stomatal-conductance-patterns-of-equisetum-giganteum-stems/)

Husebye H., Chadchawan S., Winge P., Thangstad O. P., Bones A. M., (2002) – Guard Cell- and Phloem Idioblast-Specific Expression of Thioglucoside Glucohydrolase 1 (Myrosinase) in Arabidopsis – ASPB Plant Physiol. – https://doi.org/10.1104/pp.010925http://www.plantphysiol.org/content/128/4/1180?ijkey=214b5e7afad0af28a5eed4d4b321f8de2af76914&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2020/08/27/stomatal-guard-cell-and-phloem-idioblast-specific-expression-of-thioglucoside-glucohydrolase-1-myrosinase/ )

Husted S., Schjoerring J. K., Nielsen K. H., Nemitz E., Sutton M. A. (2000) – Stomatal compensation points for ammonia in oilseed rape plants under field conditions – Agricultural and Forest Meteorology 105(4): 371-383 – ISSN :0168-1923 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fe21f744-b26b-3bc7-ba64-06c13506997b – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-closure-in-the-dark-is-governed-by-cytosolic-atp-concentration-which-is-stimulated-by-mitochondrial-activity/)

Hutmacher R. B., Krieg D. R. (1983) – Photosynthetic rate control in cotton. Stomatal and nonstomatal factors – Plant Physiol. 73: 658–661 –

Huxman T. E., Monson R. K. (2003) – Stomatal responses of C3, C3‐C4 and CFlaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour – Plant, Cell & Environment 26(2): 313-322 – https://doi.org/10.1046/j.1365-3040.2003.00964.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.00964.x – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-responses-to-light-and-intercellular-co2-concentration/ )

Hwang H., Yoon J., Kim H. Y., Min M. K., Kim J. A., Choi E.-H. , Lan W., Bae Y.-M., Luan S., Cho H., Kim B.-G. (2013) – Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells – PLoS One 8: e72541 – https://doi.org/10.1371/journal.pone.0072541https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072541 – (On our blog : https://plantstomata.wordpress.com/2019/07/29/two-homologous-channels-with-antagonistic-interaction-presents-new-information-for-potassium-channel-regulation-in-plants-especially-in-stomatal-regulation/ )

Hwang H., Yoon J., Cho H., Kim H. Y. (2013) – OsKAT2 is the prevailing functional inward rectifier potassium channels in rice guard cell – Plant Signaling & Behavior 8(12): – https://doi.org/10.4161/psb.26643https://www.tandfonline.com/doi/full/10.4161/psb.26643 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/oskat2-will-be-the-prime-target-for-engineering-the-stomatal-guard-cell-movement-to-improve-drought-tolerance-in-monocot-plants/ )

Hwang J. U., Eun S. O., Lee Y. (2000) – Structure and function of actin filaments in mature guard cells. In Actin: A Dynamic Framework for Multiple Plant Cell Functions, C.J. Staiger, F. Baluska, D. Volkmann, and P.W. Barlow, eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 427–436 – https://doi.org/10.1007/978-94-015-9460-8_24https://link.springer.com/chapter/10.1007/978-94-015-9460-8_24 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/a-model-for-the-function-of-cortical-actin-filaments-in-guard-cells-in-daily-stomatal-movements/ )

Hwang J.-U., Jeon B. W., Hong D., Lee Y. (2011) – Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure – Plant Cell Environ. 34: 2172–2182 – doi: 10.1111/j.1365-3040.2011.02413.x https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2011.02413.x – (On our blog : https://plantstomata.wordpress.com/2019/04/02/rop2-is-inactivated-by-aba-and-this-inactivation-is-required-for-the-timely-stomatal-closure/ )

Hwang J.-U., Lee Y. (2001) – Abscisic acid-induced actin reorganization in guard cells of dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities – Plant Physiol 125: 2120–2128 – https://doi.org/10.1104/pp.125.4.2120 – https://www.ncbi.nlm.nih.gov/pubmed/11299391 – (On our blog : https://plantstomata.wordpress.com/2018/12/16/protein-kinases-and-phosphatases-participate-in-actin-remodeling-in-stomata-during-aba-induced-stomatal-closure/

Hwang J.-U., Suh S., Yi H., Kim J., Lee Y. (1997) – Actin filaments modulates both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. – Plant Physiol 115: 335–342 – DOI: 10.1104/pp.115.2.335 – https://www.ncbi.nlm.nih.gov/pubmed/12223811 – (On our blog : https://plantstomata.wordpress.com/2018/12/16/actin-filaments-modulates-both-stomatal-opening-and-inward-k-channel-activities/

Hyeon-Hye K., Gregory D. G., Raymond M. W., John C. S. (2004) – Stomatal conductance of lettuce grown under or exposed to different light qualities – Ann Bot 94: 691-967 –

Ichida A. M., Pei Z. M., Baizabal-Aguirre V. M., Turner K. J., Schroeder J. I. (1997) – Expression of a Cs+-resistant guard cell K+ channel confers Cs+-resistant, light-induced stomatal opening in transgenic Arabidopsis –  Plant Cell 9: 1843–1857 – https://doi.org/10.1105/tpc.9.10.1843 – http://www.plantcell.org/content/9/10/1843da88c855bfc194e5e3cd85fb33a739f74a16.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/03/expression-of-a-cs-resistant-guard-cell-k-channel-confers-cs-resistant-light-induced-stomatal-opening/

Ichie T., Inoue Y., Takahashi N., Kamiya K., Kenzo T. (2016) – Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest – Journal of Plant Research 129(4): 626-636 – DOI: 10.1007/s10265-016-0795-2 – http://link.springer.com/article/10.1007%2Fs10265-016-0795-2https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S10265-016-0795-2 (On our blog : https://plantstomata.wordpress.com/2016/03/29/stomata-in-malaysian-tree-species/)

Ichihashi T., Katagiri K. (1985) – Thickness and stomata density of leaves in Morus acidosa – Journal of Sericultural Science of Japan 54(3): 241-242 – https://eurekamag.com/research/029/447/029447421.php

Idris A., Linatoc A. C., Aliyu A. M., MuhammadS. M., Abu Bakar M. F. B. (2018) – Effect of Light on the Photosynthesis, Pigment Content and Stomatal Density of Sun and Shade Leaves of Vernonia amygdalina – International Journal of Engineering & Technology 7(4.30): 209-212 – https://www.sciencepubco.com/index.php/ijet/article/view/22122/10798 – (On our blog: https://plantstomata.wordpress.com/2020/03/05/effect-of-light-on-stomatal-density-of-sun-and-shade-leaves/ )

Idso S.B. (1987) – An apparent discrepancy between porometry and thermometry relative to the dependence of plant stomatal conductance on air vapor pressure deficit –  Agr. and Forest Meteorol. 40: 105 – 106 – DOI: 10.1016/0168-1923(87)90058-X – https://www.sciencedirect.com/science/article/pii/016819238790058X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/04/03/dependence-of-plant-stomatal-conductance-on-air-vapor-pressure-deficit/

Idso S. B. (1991) – A general relationship between CO2-induced increases in net photosynthesis and concomitant reductions in stomatal conductance – Environmental and Experimental Botany 31: 381–383 – https://doi.org/10.1016/0098-8472(91)90035-M – https://www.sciencedirect.com/science/article/abs/pii/009884729190035M – (On our blog : https://plantstomata.wordpress.com/2018/12/16/simultaneous-measurements-of-net-photosynthesis-and-stomatal-conductance/ )

Idso S. B., Allen S. G., Kimball B. A.,Choudhury B. J. (1988) – Problems with porometry: Measuring stomatal conductances of potentially transpiring plants – Agric. For. Meteorol. 43: 49-58 – https://doi.org/10.1016/0168-1923(88)90005-6https://www.sciencedirect.com/science/article/pii/0168192388900056 -n – (On our blog : https://plantstomata.wordpress.com/2020/06/10/measuring-stomatal-conductances-of-potentially-transpiring-plants/ )

Idso S. B., Kimball B. A., Akin D. E., Kridler J. (1993) – A general relationship between CO2-induced reductions in stomatal conductance and concomitant increases in foliage temperature – Environmental and Experimental Botany 33(3): 443-446 – DOI: 10.1016/0098-8472(93)90047-J – https://www.sciencedirect.com/science/article/abs/pii/009884729390047J – (On our blog : https://plantstomata.wordpress.com/2018/12/16/simultaneous-measurements-of-the-temperatures-and-stomatal-conductances/ )

Idu M., Olorunfemi D. I., Omonhinmin A. C. (2000) – Systematics value of stomata in some Nigerian hardwood species of Fabaceae – Plant Biosym. 134(1): 53-60 –

Ifiwera Awon Oro (2022) – Stoma la Stomata – Living in Belgium – https://yo.living-in-belgium.com/stoma-vs-stomata-12549 – (On our blog : https://plantstomata.wordpress.com/2022/03/28/stomata-in-yoruba-language/ )

Igamberdiev A. U., Mikkelsen T. N., Ambus P., Bauwe H., Lea P. J., Gardeström P. (2004) – Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase – Photosynth. Res. 81: 139–152 – doi: 10.1023/B:PRES.0000035026.05237.echttps://link.springer.com/article/10.1023%2FB%3APRES.0000035026.05237.ec – (On our blog : https://plantstomata.wordpress.com/2019/12/26/photorespiration-participates-in-stomatal-regulation/ )

Iida H., Mähönen A. P. (2020) – Growth-mediated sensing of long-term cold in plants (some proteins that regulate stomatal development show localization that is polarized to one side of the cell before division) – Nature 583: 690-691 – doi: 10.1038/d41586-020-02060-7https://www.nature.com/articles/d41586-020-02060-7 – (On our blog : https://plantstomata.wordpress.com/2020/08/02/growth-mediated-sensing-of-long-term-cold-in-plants-stomatal-development/ )

Iino M., Ogawa T., Zeiger E. (1985) – Kinetic properties of the blue light response of stomata – Proceedings of the National Academy of Sciences, USA 82: 8019-8023 – https://doi.org/10.1073/pnas.82.23.8019 – https://www.pnas.org/content/82/23/8019.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Proc_Natl_Acad_Sci_U_S_A_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/the-steady-state-stomatal-conductances-under-continuous-blue-light/

Iio A., Fukasawa H., Nose Y., Kakubari Y. (2004) – Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan – Trees 18: 510–517 – https://doi.org/10.1007/s00468-004-0327-x – https://link.springer.com/article/10.1007/s00468-004-0327-x#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/16/stomatal-closure-induced-by-high-vapor-pressure-deficit-limited-midday-photosynthesis/

Ilan N., Moran N., Schwarz A. (1995) – The role of potassium channels in the temperature control of stomatal aperture – Plant Physiol. 108: 1161–1170 – doi: 10.1104/pp.108.3.1161http://www.plantphysiol.org/content/108/3/1161 – (On our blog : https://plantstomata.wordpress.com/2019/08/18/the-role-of-potassium-channels-in-the-temperature-control-of-stomatal-aperture/ )

Ilan N., Schwarz A., Moran N. (1994) – External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba. – Journal General Physiology 103: 807–831 – PMCID: PMC2219221 – https://www.ncbi.nlm.nih.gov/pubmed/8035163 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/ph-effects-on-the-depolarization-activated-k-channels-in-stomatal-protoplasts/ )

Ilan N., Schwarz A., Moran N. (1996) – External protons enhance the activity of the hyperpolarization‐activated K+ channels in guard cell protoplasts of Vicia faba – Journal of Membrane Biology 154: 169-181 – https://doi.org/10.1007/s002329900142 – https://link.springer.com/article/10.1007%2Fs002329900142#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/18/external-protons-enhance-the-activity-of-the-hyperpolarization%e2%80%90activated-k-channels-in-stomatal-protoplasts/

Ilgin M., Caglar S. (2009) – Comparison of leaf stomatal features in some local and foreign apricot (Prunus armeniaca L.) genotypes – Afr. J. Biotechnol. 8: 1074-1077 – eISSN: 1684-5315 – file:///C:/Users/wille/Downloads/60027-Article%20Text-110016-1-10-20100927.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/09/89740/ )

Iljin W. S. (1914) – Die Regulierung der Spaltöffnungen in Zusammenhang mit der Veränderung des osmotischen Druckes – Beih. z. Bot. Zentralbl. 32: 15-35 –

Iljin W. S. (1933) – Über Öffnen der Stomata bei starken Welken der Pflanzen – Jahrb. f. wiss. Bot. 77: 220-251 –

Iljin W. S. (1957) – Drought resistance in plants and physiological processes. – Annual Review of Plant Physiology 8: 257-274 – https://doi.org/10.1146/annurev.pp.08.060157.001353https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.08.060157.001353 – (On our blog : https://plantstomata.wordpress.com/2019/11/15/influence-of-drought-upon-certain-physiologic-processes-and-upon-such-reactions-as-stomatal-function/ )

Imamura S. (1943) – Untersuchungen über den Mechanismus der Turgorschwankung der Spaltöffnungsschliesszellen – Jap. J. Bot. 12: 82-88; 251-346 –

Imes D., Mumm P., Böhm J., Al-Rasheid K. A. S., Marten I., Geiger D., Hedrich R. (2013) – Open Stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells – Plant J. 74: 372–382 – doi: 10.1111/tpj.12133 – (On our blog : https://plantstomata.wordpress.com/2016/06/24/ost1-is-addressing-both-s-slac-and-r-quac-type-guard-cell-anion-channels-in-arabidopsis-stomata/)

Inada S., Ohgishi M., Mayama T., Okada K., Sakai T. (2004) – RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana – Plant Cell 16: 887–896 — https://www.ncbi.nlm.nih.gov/pubmed/15031408?dopt=Abstract&holding=npg – (On our blog : https://plantstomata.wordpress.com/2016/12/07/phototropin-rpt2-nph3-and-stomatal-opening/)

Inamdar J. A. (1970) – Action of growth regulators on the development of stomata of Abelmoschus esculentus Moench. – Flora 159: 497-502 – (On our blog  : https://plantstomata.wordpress.com/2017/07/14/growth-regulators-and-the-development-of-stomata-of-abelmoschus-okra-malvaceae/)

Inamdar J. A., Aleykutty K. M. (Sr. AVITA), Murthy G. S. R. (1980) – Effect of Growth Regulators on the Structure and Ontogeny of Cotyledonary Stomata of Helianthus annuus – Phyton (Austria) 20(1-3): 3-14 – https://www.zobodat.at/pdf/PHY_20_1_2_0003-0014.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/10/effect-of-growth-regulators-on-the-structure-and-ontogeny-of-cotyledonary-stomata/ )

Inamdar J. A., Gangadhara M. (1975) – Effect of Growth Regulators on Stomatal Structure and Development in the Cotyledons of Lagenaria leucantha (Duch.) Rusby – Australian Journal of Botany 23(1): 13-25 – http://dx.doi.org/10.1071/BT9750013 – http://www.publish.csiro.au/bt/BT9750013 – (On our blog : https://plantstomata.wordpress.com/2016/12/27/growth-regulators-stomatal-structure-and-development/)

Inamdar J. A., Gangadhara M., More P. G., Patel R. N. (1977) – Epidermal structure and ontogeny of stomata in some Centrospermae – Feddes Repertorium 88(7-8): 465-476 – DOI: 10.1002/fedr.19770880707https://eurekamag.com/research/005/377/005377164.php – (On our blog : https://plantstomata.wordpress.com/2021/09/21/stomata-in-some-centrospermae/ )

Inamdar J. A., Gangadhara M., Puranik M. B. (1975) – Action of growth substances and temperature on stomatal structure and development in the cotyledons of Luffa aegyptica Miller – Proc. Indian natn. Sci. Acad. 41 B(6): 526-538 – https://insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol41B_1975_6_Art02.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/31/action-of-growth-substances-and-temperature-on-stomatal-structure-and-development/ )

Inamdar J. A., Gangadhara M., Rao M. S. (1975) – Effect of Growth Regulators on Stomatal Structure and Development in the Cotyledons of Cucurbita maxima Duch. – Geobios 1: 113-117 –

Inamullah, Isoda A. (2005) – Adaptive Responses of Soybean and Cotton to Water Stress: I. Transpiration Changes in Relation to Stomatal Area and Stomatal Conductance – Plant Production Science 8(1) : – https://doi.org/10.1626/pps.8.16https://www.tandfonline.com/doi/abs/10.1626/pps.8.16 – (On our blog : https://plantstomata.wordpress.com/2021/01/11/transpiration-changes-in-relation-to-stomatal-area-and-stomatal-conductance/ )

Incoll L. D., Jewer P. C. (1987) Cytokinins and stomata. In: Zeiger E., Farquhar G. D.Cowan I. R., eds. Stomatal function. Stanford, CA, USA: Stanford University Press, 281292

Incoll L. D., Whitelam G. C. (1977) – Effect of kinetin on stomata of grass Anthephora pubescens Nees – Planta 137: 243–245 – doi: 10.1007/Bf00388157 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/effect-of-kinetin-on-stomata/).

In Defense of Plants (Blog) – (2019) – The Drought Alert System of Terrestrial Plants has an Underwater Origin – http://www.indefenseofplants.com/blog/2019/3/5/the-drought-alert-system-of-terrestrial-plants-has-an-underwater-origin – (On our blog : https://plantstomata.wordpress.com/2019/05/31/the-drought-alert-system-of-terrestrial-plants-has-an-underwater-origin/ )

Indiana University (2011) – Rising CO2 is causing plants to release less water to the atmosphere, researchers say – https://phys.org/news/2011-03-co2-atmosphere.html – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomata-and-co2-4/)

Indiana University (2011) – “Rising carbon dioxide is causing plants to have fewer pores, releasing less water to the atmosphere” – ScienceDaily – <www.sciencedaily.com/releases/2011/03/110303111624.htm> –

Ingram G. C. (2005) – Plant Development: Spacing out Stomatal Pores – Current Biology 15(17): 663-665 – https://doi.org/10.1016/j.cub.2005.08.026https://www.cell.com/current-biology/references/S0960-9822(05)00946-2 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/spacing-out-stomatal-pores/ )

Innes S. N. (2015) – Effects of UV radiation and air humidity on morphology, stomatal function and photosynthesis of Euphorbia pulcherrima – The Norwegian University of Life Sciences Norges Miljø- og Biovitenskapelige Universitet Master Thesis, 66 pp. – https://brage.bibsys.no/xmlui/bitstream/handle/11250/293298/Innes2015.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/effects-of-uv-radiation-and-air-humidity-on-stomata/)

Inoue H., Katoh Y. (1987) – Calcium inhibits ion-stimulated stomatal opening in epidermal strips of Commelina communis L. – Journal of Experimental Botany 38: 142149 – (On our blog : https://plantstomata.wordpress.com/2016/06/25/ca-leads-to-the-suppression-of-stomatal-opening/)

Inoue H., Noguchi M., Kubo K. (1985) – Ion-stimulated stomatal opening induced by preillumination in epidennal strips of Commelina communis – Plant Physiol. 79: 389-393  – https://doi.org/10.1104/pp.79.2.389 – http://www.plantphysiol.org/content/79/2/389.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/the-photosynthetic-electron-transport-system-in-stomatal-chloroplasts-is-a-basic-system-of-energy-acquirement-for-stomatal-opening/ )

Inoue K. T., Jackson R.D., Pinter P. J. Jr., Reginato R. J. (1989) – Influences of extractable soil water and vapor pressure deficit on transpiration and stomatal resistance in differentially irrigated wheat – Japanese Journal of Crop Science, Tokyo 58(3): 430-437 –  https://doi.org/10.1626/jcs.58.430https://www.jstage.jst.go.jp/article/jcs1927/58/3/58_3_430/_article – (On our blog : https://plantstomata.wordpress.com/2021/03/14/influences-of-extractable-soil-water-and-vapor-pressure-deficit-on-transpiration-and-stomatal-resistance-2/ )

Inoue K., Sakuratani T., Uchijima Z. (1979) – Diurnal changes in stomatal resistance for rice and cucumber leaves under field conditions. Read at The Annual Meeting of SAMJ, April 1979 –

Inoue K., Sakuratani T., Uchijima Z. (1984) – Stomatal resistance of rice leaves as influenced by radiation intensity and air humidity – J. Agric. Meteorol. 40: 235–242 – https://doi.org/10.2480/agrmet.40.235https://www.jstage.jst.go.jp/article/agrmet1943/40/3/40_3_235/_article – (On our blog : https://plantstomata.wordpress.com/2019/11/25/stomatal-resistance-as-influenced-by-radiation-intensity-and-air-humidity/ )

Inoue S.-i., Iwashita N., Takahashi Y., Gotoh E., Okuma E., Hayashi M., Tabata R., Takemiya A., Murata Y., Doi M., Kinoshita T., Shimazaki K.-i. (2017) – Brassinosteroid Involvement in Arabidopsis thaliana Stomatal Opening – Plant Cell Physiol. 258(6): 1048-1058 – doi: 10.1093/pcp/pcx049https://www.ncbi.nlm.nih.gov/pubmed/28407091 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/endogenous-br-is-required-in-guard-cells-with-the-ability-to-open-stomata-in-response-to-light-probably-through-regulation-of-kin-channel-activity/ )

Inoue S.-i., Kinoshita T. (2017) – Blue light regulation of stomatal opening and the plasma membrane H+-ATPase – Plant Physiol 174: 531–538 – http://www.plantphysiol.org/content/174/2/531 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/the-blue-light-signaling-pathway-in-stomata-and-its-regulation-of-the-pm-h-atpase-activity/)

Inoue S.-i., Kinoshita T. (2017) – Blue light regulation of stomatal opening and the plasma membrane H+-ATPase – in Blog, Plant Physiology, Plant Physiology: Updates, Research, Research Blog /by Mary Williams – https://plantae.org/update-blue-light-regulation-of-stomatal-opening-and-the-plasma-membrane-h-atpase/ – (On our blog : https://plantstomata.wordpress.com/2021/03/11/88546/ )

Inoue S.-i., Takemiya A., Shimazaki K. (2010) – Phototropin signaling and stomatal opening as a model case – Curr. Opin. Plant Biol. 13: 587593doi:10.1016/j.pbi.2010.09.002 –  (On our blog : https://plantstomata.wordpress.com/2016/06/25/phototropin-mediated-signaling-process-of-stomatal-guard-cells/)

Inoue T., Sunaga M., Ito M., Yuchen Q., Matsushilma Y., Sakoda K., Yamori W. (2021) – Minimizing VPD Fluctuations Maintains Higher Stomatal Conductance and Photosynthesis, Resulting in Improvement of Plant Growth in Lettuce – Front. Plant Sci., 01 April 2021 – https://doi.org/10.3389/fpls.2021.646144https://www.frontiersin.org/articles/10.3389/fpls.2021.646144/full – (On our blog : https://plantstomata.wordpress.com/2021/04/16/the-drastic-vpd-fluctuation-induced-gradual-decrease-in-stomatal-conductance-and-co2-assimilation-rate-during-the-measurements/ )

Inoue Y. (1991) – Remote and Real-Time Sensing of Transpiration and Stomata( Resistance Based on Infrared Thermometry – JARQ 25: 159-164 – https://www.jircas.go.jp/sites/default/files/publication/jarq/25-3-159-164_0.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/27/stomatal-resistance-based-on-infrared-thermometry/ )

Inoue Y., Jackson R. D., Pinter P. J. Jr., Reginato R. J. (1989) – Influences of extractable soil water and vapor pressure deficit on transpiration and stomatal resistance in differentially irrigated wheat – Jap. Journ. Crop Science 58(3): 430-437 – DOI: 10.1626/jcs.58.430https://www.researchgate.net/publication/270354571_Influences_of_Extractable_Soil_Water_and_Vapor_Pressure_Deficit_on_Transpiration_and_Stomatal_Resistance_in_Differentially_Irrigated_Wheat – (On our blog : https://plantstomata.wordpress.com/2019/04/29/influences-of-extractable-soil-water-and-vapor-pressure-deficit-on-transpiration-and-stomatal-resistance/ )

Inoue Y. et al. (1989) – Energy balance model for cscimating transpiration and s1oma1al resistance in wheat leaves in the field – Jpn. J. Crop Sci., 58 (ex.2): 145- 146 [In Japanese) –

Inoue Y. et al. (1990) – Remote estimation of leaf transpiration and stomata! resistance based on infrared thermometry – Agr. For. Meteorol. 51: 21-33 –

Inoue Y. et al. (1990) – Monitoring of transpiration and stomatal resistance in a corn canopy with remote means – Jpn. J. Crop Sci. 59 (ex.I): 204-205 (In
Japanese) –

Inoue Y. et al. (1990) – Stomatal behavior and relationship between photosynchesis and transpiration in field-grown cotton as affected by CO2 enrichment – Jpn.
J. Crop Sci. 59: 510-517 –

Iqbal S. M., Rauf C. A., Ayub N., Ghafoor A. (2002) – Morphological Characters of Chickpea Cultivars Related to Resistance Against Blight – INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 4(4): 496-499 – doi: 1560–8530/2002/04–4–496–499http://www.fspublishers.org/published_papers/26232_..pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/16/number-and-size-of-stomata-guard-cells-and-stomatal-aperture-of-six-chickpea-cultivars-resistanct-against-blight/ )

Irmak S., Mutiibwa D. (2009) – On the Dynamics of Stomatal Resistance: Relationships between Stomatal Behavior and Micrometeorological Variables and Performance of Jarvis-Type Parameterization – Transactions of the ASABE (American Society of Agricultural and Biological Engineers) 52(6):1923-1939 – DOI: 10.13031/2013.29219https://www.researchgate.net/publication/275576134_On_the_Dynamics_of_Stomatal_Resistance_Relationships_between_Stomatal_Behavior_and_Micrometeorological_Variables_and_Performance_of_Jarvis-Type_Parameterization – (On our blog : https://plantstomata.wordpress.com/2022/01/19/stomatal-behavior-and-micrometeorological-variables-a-new-modified-jarvis-type-model/ )

Irmak S., Mutiibwa D., Irmak A., Arkebauer T. J., Weiss A., Martin D. L., Eisenhauer D. E. (2008) – On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density – Agricultural and Forest Meteorology 148: 1034–1044 – https://doi.org/10.1016/j.agrformet.2008.02.001 – https://www.sciencedirect.com/science/article/pii/S0168192308000439 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/the-scaling-up-leaf-stomatal-resistance-to-canopy-resistance/

Irvine J., Perks M. P., Magnani F., Grace J. (1998) – The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance – Tree Physiol. 18: 393–402 – PMID: 12651364 – https://www.ncbi.nlm.nih.gov/pubmed/12651364 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/stomatal-control-of-transpiration-and-hydraulic-conductance/ )

Irving H. R., Gehring C. A., Parish R. W. (1992) – Changes in cytosolic pH and calcium in guard cells precede stomatal movements – Proc. Natl Acad. Sci. USA, 89: 1790–1794 – (On our blog : https://plantstomata.wordpress.com/2016/06/25/stomatal-movements-ph-and-ca/)

Iqbal N., Nazar R., Syeed S., Masood A., Khan N. A. (2011) – Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard – Journal of Experimental Botany 62: 4955–4963 – doi: 10.1093/jxb/err204 – Epub 2011 Jun 24 – https://www.ncbi.nlm.nih.gov/pubmed?cmd=Retrieve&list_uids=21705383&dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/09/10/exogenously-sourced-ethylene-increases-stomatal-conductance/ )

Iseki K., Olaleye O. (2018) – A new indicator of leaf stomatal conductance based on thermal imaging for field grown cowpea – Plant Production Sciencehttps://doi.org/10.1080/1343943X.2019.1625273https://www.tandfonline.com/doi/full/10.1080/1343943X.2019.1625273 – (On our blog : https://plantstomata.wordpress.com/2019/12/03/a-new-indicator-of-leaf-stomatal-conductance-based-on-thermal-imaging/ )

Ishida A., Toma T., Marjenah M. (1999) – Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree – Tree Physiology 19: 467–473 – DOI: 10.1093/treephys/19.7.467 – https://www.ncbi.nlm.nih.gov/pubmed/12651553 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/low-pn-at-midday-is-the-result-of-both-a-reduction-in-the-photochemical-process-and-an-increase-in-stomatal-limitation/

Ishihara K., Ebara H., Hirasawa T., Ogura T. (1978) – The Relationship between Environmental Factors and Behaviour of Stomata in the Rice Plants : VII. The relation between nitrogen content in leaf blades and Stomatal aperture – Japanese Journal of Crop Science 47(4): 664-673 – https://doi.org/10.1626/jcs.47.664 – https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_664/_article – (On our blog : https://plantstomata.wordpress.com/2018/01/28/nitrogen-content-in-leaf-blades-and-stomatal-aperture/ )

Ishihara K., Hirasawa T., Iida O., Kimura M. (1981) – Diurnal Course of Transpiration Rate, Stomatal Aperture, Stomatal Conductance, Xylem Water Potential and Leaf Water Potential in the Rice Plants under the Different Growth Conditions – Japanese Journal of Crop Science 50: 25-37 – https://doi.org/10.1626/jcs.50.25 – https://www.jstage.jst.go.jp/article/jcs1927/50/1/50_1_25/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/diurnal-course-of-transpiration-rate-stomatal-aperture-and-stomatal-conductance-under-different-growth-conditions/ )

Ishihara K., Iida O., Hirasawa T., Ogura T. (1979) – Relationship between nitrogen content in leaf blades and photosynthetic rate of rice plants with reference to stomatal aperture and conductance – Jpn J Crop Sci 48: 543-550 – https://doi.org/10.1626/jcs.48.543https://www.jstage.jst.go.jp/article/jcs1927/48/4/48_4_543/_article – (On our blog : https://plantstomata.wordpress.com/2020/03/10/nitrogen-content-in-leaf-blades-photosynthetic-rate-of-rice-plants-with-reference-to-stomatal-aperture-and-conductance/ )

Ishihara K., Hirasawa T., Iida O., Ogura T. (1979) – An Improved Infiltration Method for Measuring the Narrow Stomatal Aperture of Leaf Blades in Rice Plants – Japanese Journal of Crop Science 48: 319-320 – https://doi.org/10.1626/jcs.48.319 –https://www.jstage.jst.go.jp/article/jcs1927/48/2/48_2_319/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/infiltration-method-for-measuring-the-narrow-stomatal-aperture/ )

Ishihara K., Iida O., Hirasawa T., Ogura T. (1978) – Relationship between Potassium Content in Leaf Blades and Stomatal Aperture in Rice Plants – Japanese Journal of Crop Science 47: 719-720 –  https://doi.org/10.1626/jcs.47.719 –https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_719/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/potassium-content-in-leaf-blades-and-stomatal-aperture/ )

Ishihara K., Nishihara T., Ogura T. (1971) – The relationship between environmental factors and behaviour of stomata in the rice plant. 1. On the measurement of the stomatal aperture – Proc. Japan. Soc. Crop Sci. 40: 491-496 – https://doi.org/10.1626/jcs.40.491 –https://www.jstage.jst.go.jp/article/jcs1927/40/4/40_4_491/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/measurement-of-stomatal-aperture/ )

Ishihara K., Nishihara T., Ogura T. (1971) – The relationship between environmental factors and behaviour of stomata in the rice plant. 2. On the diurnal movement of the stomata – Proc. Japan. Soc. Crop Sci. 40: 497-504 – DOI: 10.1626/jcs.40.497https://www.researchgate.net/publication/274879878_The_Relationship_between_Environmental_Factors_and_Behaviour_of_Stomata_in_the_Rice_Plant_2_On_the_diurnal_movement_of_the_stomata – (On our blog : https://plantstomata.wordpress.com/2019/04/29/the-diurnal-movement-of-stomata/ )

Ishihara K., Ishida Y., Ogura T. (1971) – The relationship between environmental factors and behavior of stomata in the rice plant. Part 2. On the diurnal movement of the stomata – Japanese Journal of Crop Science 40(4): 497-504 – https://eurekamag.com/research/027/710/027710842.php – On our blog : https://plantstomata.wordpress.com/2022/01/08/the-diurnal-movement-of-the-stomata/ )

Ishihara K., Ishida Y., Ogura T. (1971) – The relationship between environmental factors and behavior of stomata in the rice plant. Part 3. On the aperture of the stomata and their diurnal movement in leaves at various positions on the stem – Proc. Crop Sci. Soc. Japan 40(4): 502-512 (in Japanese) – https://eurekamag.com/research/014/766/014766744.php – (On our blog :

Ishihara K., Nishihara T., Ogura T., Ushijima T., Tazaki T. (1972) – The relationship between environmental factors and behaviour of stomata in the rice plant. 4. The relation between stomatal aperture and photosynthetic rate – Proc. Japan. Soc. Crop Sci. 41: 93-101 – https://doi.org/10.1626/jcs.41.93 –https://www.jstage.jst.go.jp/article/jcs1927/41/1/41_1_93/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/the-relation-between-stomatal-aperture-and-photosynthetic-rate/ )

Ishihara K., Sago R., Ogura T. (1978) – The Relationship between Environmental Factors and Behaviour of Stomata in the Rice Plants : V. Effects of partial excision of root system on diurnal course of stomatal aperture – Japanese Journal of Crop Science 47 (4): 499-505 – http://doi.org/10.1626/jcs.47.499https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_499/_article – (On our blog: https://plantstomata.wordpress.com/2017/09/23/effects-of-partial-excision-of-root-system-on-diurnal-course-of-stomatal-aperture/)

Ishihara K., Sago R., Ogura T. (1978) – The Relationship between Environmental Factors and Behaviour of Stomata in the Rice Plants : VI. Comparison between the diurnal course of stomatal aperture of rice plants grown in the border and interior of paddy fields – Japanese Journal of Crop Science 47(4): 515-528 – DOI: 10.1626/jcs.47.515https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_515/_article – (On our blog : https://plantstomata.wordpress.com/2019/04/29/the-diurnal-course-of-stomatal-aperture-of-rice-plants-grown-in-the-border-and-in-the-interior-of-paddy-fields/ )

Ishimaru K., Shirota K., Higa M., Kawamitsu Y. (2001) – Identification of quantitative trait loci for adaxial and abaxial stomatal frequencies in Oryza sativa – Plant Physiol. Biochem. 39: 173-177 – https://doi.org/10.1016/S0981-9428(00)01232-8https://www.sciencedirect.com/science/article/abs/pii/S0981942800012328 – (On our blog : https://plantstomata.wordpress.com/2019/11/15/quantitative-trait-loci-for-adaxial-and-abaxial-stomatal-frequencies/ )

Islam M. M., Hossain M. A., Jannat R., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2010) – Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. – Plant Cell Physiol. 51: 1721–1730 – doi: 10.1093/pcp/pcq131 – (On our blog : https://plantstomata.wordpress.com/2016/06/25/aba-and-meja-signaling-in-arabidopsis-stomata/ )

Islam M. M., Tani C., Watanabe-Sugimoto M., Uraji M., Jahan M. S., Masuda C., et al. (2009) –  Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells – Plant Cell Physiol. 50: 1171–1175 – doi: 10.1093/pcp/pcp066 – https://academic.oup.com/pcp/article/50/6/1171/1920663 – (On our blog : https://plantstomata.wordpress.com/2018/04/03/two-myrosinases-function-downstream-of-ros-production-and-upstream-of-cytosolic-ca2elevation-in-aba-and-meja-signaling-in-stomata/

Islam M. M., Ye W., Matsushima D., Khokon M. A., Munemasa S., Nakamura Y., et al. (2015) – Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana – Biosci. Biotechnol. Biochem. 79: 59–62 – doi: 10.1080/09168451.2014.951028 – https://www.ncbi.nlm.nih.gov/pubmed/25144495 – (On our blog : https://plantstomata.wordpress.com/2018/04/05/acrolein-inhibits-light-induced-stomatal-opening/ )

Islam M. M., Ye W., Matsushima D., Munemasa S., Okuma E., Nakamura,Y., Biswas Md. S., Mano J., Murata Y. (2016) – Reactive carbonyl species mediate abscisic acid signaling in guard cells – Plant Cell Physiol. 57: 2552–2563 – doi: 10.1093/pcp/pcw166 – https://www.ncbi.nlm.nih.gov/pubmed/27838658 – (On our blog : https://plantstomata.wordpress.com/2018/04/08/rcs-is-involved-in-aba-induced-stomatal-closure/ )

Ismail M. R., Yusoff M. K., Mahmood M. (2004) – Growth, water relations, stomatal conductance and proline concentration in water stressed banana (Musa sp.) plants. Asian J. Plant Sci. 3: 709-713 – http://scialert.net/abstract/?doi=ajps.2004.709.713 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-conductance-in-water-stressed-banana/ )

Isner J.-C., Begum A., Nuehse T., Hetherington A. M., Frans J.M.Maathuis F. J. M., (2018) – KIN7 Kinase Regulates the Vacuolar TPK1 K+ Channel during Stomatal Closure – Current Biology 28(3): 466-472 – e4ISSN 0960-9822 – https://doi.org/10.1016/j.cub.2017.12.046https://www.sciencedirect.com/science/article/pii/S0960982217316792 – (On our blog : https://plantstomata.wordpress.com/2021/04/26/new-components-involved-in-stomata-signaling-and-a-new-mechanism-potentially-involved-in-fine-tuning-aba-and-co2-induced-stomatal-closure/ )

Isner J.-C., Xu Z., Costa J. M., Monnet F., Batstone T., Ou X., Deeks M. J., Genty B., Jiang K., Hetherington A. M. (2017) – Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness – New Phytol. – doi:10.1111/nph.14655 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14655/abstract – (On our blog : https://plantstomata.wordpress.com/2017/06/26/stomatal-response-to-darkness-and-the-scarwave-complex/)

Israel W. K. D.C. (2019) – Carbon isotope discrimination and stomatal function in C4 grasses – Thesis (Ph.D.)–Western Sydney University – https://researchdirect.westernsydney.edu.au/islandora/object/uws%3A59822 – (On our blog : https://plantstomata.wordpress.com/2022/05/10/the-two-main-objectives-of-this-thesis-were-to-1-investigate-how-stomatal-responses-regulate-leaf-iwue-by-exploring-the-physiological-mechanisms-underpinning-the-highly-responsive-c4-grass-stomata/ )

Israel W. K., Watson-Lazowski A., Chen Z.-H., Ghannoum O. (2021) – High intrinsic water use efficiency is underpinned by high stomatal aperture and guard cell potassium flux in C3 and C4 grasses grown at glacial CO2 and low light – Journal of Experimental Botany -erab477 – https://doi.org/10.1093/jxb/erab477https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/erab477/6413752?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/11/01/water-use-efficiency-is-underpinned-by-high-stomatal-aperture/ )

Israelsson M., Siegel R. S., Young J., Hashimoto-Sugimoto M., Iba K., Schroeder J. I. (2006) – Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis – Current Opinion in Plant Biology 9: 654663 – doi:10.1016/j.pbi.2006.09.006 – (On our blog : https://plantstomata.wordpress.com/2016/06/30/aba-co2-and-ca2-in-stomata/)

Issak M., Okuma E., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, or chitosan-induced stomatal closure in Arabidopsis thaliana. – Biosci. Biotechnol. Biochem. 77: 1111–1113 – doi: 10.1271/bbb.120980 – https://www.ncbi.nlm.nih.gov/pubmed/23649239 – (On our blog : https://plantstomata.wordpress.com/2018/04/05/neither-endogenous-aba-nor-endogenous-jasmonic-acid-is-involved-in-sa-yel-or-cht-induced-stomatal-closure/ )

Issoufou H. B.-A., Delzon S., Laurent J.-P., Saâdou L., Mahamane A., Cappelaere B., Demarty J., Oï M., Rambal S., Seghieri J. (2013) – Change in water loss regulation after canopy clearcutof a dominant shrub in Sahelian agrosystems, Guiera senegalensis J. F. Gmel – Trees 27: 1011–1022 – DOI: 10.1007/s00468-013-0852-6https://www.academia.edu/24094954/Change_in_water_loss_regulation_after_canopy_clearcut_of_a_dominant_shrub_in_Sahelian_agrosystems_Guiera_senegalensis_J_F_Gmel?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/02/05/change-in-water-loss-regulation-after-canopy-clearcut-and-stomatal-behaviour/ )

Istiqomah G. (2016) – Pembuatan Multimedia Interaktif Anatomi Daun Kelas XI SMA Berdasarkan Analisis Jumlah Stomata dan Kadar Klorofil Tumbuhan di Jalan Tanjungpura dan Imam Bonjol – In Bahasa. Skripsi. Fakultas Keguruan dan Ilmu Pendidikan, Universitas Tanjungpura, Pontianak.

Issukindarsyah, Sulistyaningsih E., Indradewa D., Susila Putra E. T. (2021) – The effect of light intensities on morphophysiological and biochemical of black pepper (Piper nigrum L.) – E3S Web of Conferences 306, 01009 – https://doi.org/10.1051/e3sconf/202130601009https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/82/e3sconf_icadai21_01009.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/25/plants-exposed-to-higher-light-intensity-have-a-higher-number-of-stomata/ )

Itai C., Meidner H. (1973a) – Effect of Abscisic Acid on Solute Transport in Epidermal Tissue – Nature 271: 653-654 –

Itai C., Meidner H. (1973b) – Functional Epiderma] Cells are Necessary for Abscisic Acid Effects on Guard Cells – J. Exp. Bot. 29: 765-770 –

Itai C., Weyers J. D. B., Hillman J. R ., Meidner H., Willmer C. (1973) –
Abscisic Acid and Guard Cells of Commelina communis – Nature 271:
652-653 –

Itai C., Roth-Bejerano N., Zvilich M. (1982) – Involvement of epidermal cells in stomata movement: The effect of ABA – Physiologia Plantarum 55: 35–38 – doi:10.1111/j.1399-3054.1982.tb00281.x – (On our blog : https://plantstomata.wordpress.com/2016/07/01/epidermal-cells-thus-seem-to-play-a-role-in-stomatal-movement/)

ITbM (Institute of Transformative Bio-Molecules, Nagoya University) (2018) –  Discovery of compounds that keep plants fresh – Phys.Org. April 10, 2018 – https://phys.org/news/2018-04-discovery-compounds-fresh.html – (On our blog : https://plantstomata.wordpress.com/2018/12/18/compounds-that-keep-plants-fresh/

ITbM (Institute of Transformative Bio-Molecules, Nagoya University) (2019) – Proposed Signaling Pathway of Stomata Opening in Response to Blue Light (IMAGE)https://www.eurekalert.org/multimedia/pub/167367.php?from=390151 – (On our blog : https://plantstomata.wordpress.com/2019/08/15/pathway-of-stomata-opening/ )

Iudanova S. S., Maletskaia E. I., Maletskii S. I. (2004) – Epiplastome variation of the number of chloroplasts in stomata guard cells of sugar beet (Beta vulgaris L.) – Genetika 40(7): 930-939 – https://eurekamag.com/research/012/046/012046314.php – (On our blog : https://plantstomata.wordpress.com/2019/08/15/pathway-of-stomata-opening/ )

Iura M. (1934) – On the size of the guard cells, as well as the number of chloroplasts in them in the leaf of Brassica. (Japanese)

Ivashikina N.Deeken R.Fischer S.Ache P.Hedrich R. (2005) – AKT2/3 subunits render guard cell K+channels Ca2+ sensitive. – J Gen Physiol 125: 483–492 – doi: 10.1085/jgp.200409211 – (On our blog : https://plantstomata.wordpress.com/2016/07/01/akt23-subunit-constitutes-the-ca2-sensitivity-of-the-guard-cell-k-uptake-channel-in-stomata/)

Iwai S., Ogata S., Yamada N., Onjo M., Sonoike K., Shimazaki K. I. (2019) – Guard cell photosynthesis is crucial in abscisic acid-induced stomatal closure – Plant Direct 3(5):e00137 – doi: 10.1002/pld3.137 – eCollection 2019 May – https://www.ncbi.nlm.nih.gov/pubmed/31245777 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/ros-generated-through-pet-act-as-signaling-molecules-in-aba-induced-stomatal-closure/ )