Jackson M. B., Hall K. C. (1987) – Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits – Plant Cell Environ. 10: 121–130 – https://doi.org/10.1111/1365-3040.ep11602085 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11602085 – (On our blog : https://plantstomata.wordpress.com/2018/04/05/early-stomatal-closure-in-waterlogged-pea-plants-is-mediated-by-aba-in-the-absence-of-foliar-water-deficits/ )
Jackson M. B., Kowalewska A. K. B. (1983) – Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants – J. Exp. Bot. 34: 493-506 – https://doi.org/10.1093/jxb/34.5.493 – https://academic.oup.com/jxb/article-abstract/34/5/493/453248?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2020/06/10/messages-from-roots-induce-foliar-desiccation-and-stomatal-closure/
Jackson M. B., Saker L. R., Crisp C. M., Else M. A., Janowiak F. (2003) – Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure – Plant and Soil 253(1): 103–113 – https://link.springer.com/article/10.1023%2FA%3A1024588532535?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/10/05/stomatal-closure-and-ionic-and-ph-signalling-from-roots-to-shoots/)
Jacob J., Lawlor D. W. (1991) – Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants – Journal of Experimental Botany 42: 1003-1011 – DOI: 10.1093/jxb/42.8.1003 – https://www.researchgate.net/publication/31163283_Stomatal_and_Mesophyll_Limitations_of_Photosynthesis_in_Phosphate_Deficient_Sunflower_Maize_and_Wheat_Plants – (On our blog : https://plantstomata.wordpress.com/2020/02/28/stomatal-and-mesophyll-limitations-of-photosynthesis-in-phosphate-deficient-plants/ )
Jacob T., Ritchie S., Assmann S. M., Gilroy S. (1999) – Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity – Proc. Natl. Acad. Sci. USA 96: 12192–12197 – (On our blog : https://plantstomata.wordpress.com/2016/07/01/aba-signal-transduction-in-stomata-is-mediated-by-pld-activity/)
Jacobs C. M. J., van den Hurk B. M. M., de Bruin H. A. R. (1996) – Stomatal behavior and photosynthetic rate of unstressed grapevines in semi-arid conditions – Agric Forest Meteorology 80: 111–134 – https://doi.org/10.1016/0168-1923(95)02295-3– https://www.sciencedirect.com/science/article/pii/0168192395022953 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/stomatal-behavior-of-unstressed-grapevines-in-semi-arid-conditions/ )
Jacobsen S.-E.., Liu F., Jensen C. R. (2009) – Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.) – Scientia Horticulturae 122(2): 281-287 – DOI: 10.1016/j.scienta.2009.05.019 – http://static-curis.ku.dk/portal/files/15292895/Jacobsen_SE.pdf – On our blog : https://plantstomata.wordpress.com/2017/09/19/abas-role-for-regulation-of-stomata-under-drought-in-quinoa/)
Jafri A., Ahmad R. (1995) – Effect of soil salinity on leaf development, stomatal size and its distribution in cotton (Gossypium hirsutum L.) – Pakistan Journal of Botany 27: 297-303 –
Jahan M. S., Ogawa K., Nakamura Y., Shimoishi Y., Mori I. C., Murata Y. (2008) – Deficient glutathione in guard cells facilitates abscisic acid-induced stomatal closure but does not affect light-induced stomatal opening – Biosci. Biotechnol. Biochem. 72: 2795–2798 – doi: 10.1271/bbb.80407 – https://www.ncbi.nlm.nih.gov/pubmed/18838781 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/the-role-of-glutathione-gsh-in-stomatal-movements/ )
Jaime R., Serichol C., Alcántara J. M., Rey P. J. (2014) – Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments – Plant Biol (Stuttg) 16(2): 354-364 – doi: 10.1111/plb.12064 – Epub 2013 Aug 19 – PMID: 23957244 – https://pubmed.ncbi.nlm.nih.gov/23957244/ – (On our blog : https://plantstomata.wordpress.com/2022/09/05/the-ability-to-regulate-photosynthetic-rate-and-stomatal-conductance-may-be-related-to-niche-differentiation/ )
Jaiwal P. K., Bhamble S. (1983) – Influence of Morphactin on Leaf Morphology and Stomatal Apparatus of Vigna radiata (L.) Wilczek – Giornale Botanico Italiano https://doi.org/10.1080/11263508309428078 – https://www.researchgate.net/publication/249034444_Influence_of_Morphactin_on_Leaf_Morphology_and_Stomatal_Apparatus_of_Vigna_radiata_L_Wilczek – (On our blog : https://plantstomata.wordpress.com/2016/07/26/the-effect-of-morphactin-on-stomata/) –
doi: https://doi.org/10.1101/073015 – https://www.biorxiv.org/content/early/2016/09/01/073015 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-new-function-for-plant-mpks-as-protein-kinase-inhibitors-guard-cell-co2-signaling/)
, , , , , , , , , , , , , , , , , , , , , , Natural Variation in Arabidopsis Cvi-0 Accession Uncovers Regulation of Guard Cell CO2 Signaling by MPK12 –Jalakas P., Huang Y.-C., Yeh Y.-H., Zimmerli L., Merilo E., Kollist H., Brosché M. (2017) – The role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis stomatal responses is beyond ABA signaling – Plant Physiol 174(2): 665–671 – https://doi.org/10.1104/pp.17.00220 – http://www.plantphysiol.org/content/174/2/665 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/a-function-for-era1-in-stomatal-opening/)
Jalakas P., Merilo E., Kollist H., Brosche M. (2018) – ABA‐mediated regulation of stomatal density is OST1‐independent – Plant Direct 2(9): e00082 – https://doi.org/10.1002/pld3.82 – https://onlinelibrary.wiley.com/doi/full/10.1002/pld3.82 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/aba%e2%80%90mediated-regulation-of-stomatal-density-is-ost1%e2%80%90independent/ )
Jalakas P., Merilo E., Kollist H., Brosche M. (2018) – Complexity of ABA signaling for stomatal development and aperture regulation – BioRxiv May 31, 2018 – doi: https://doi.org/10.1101/335810 – https://www.biorxiv.org/content/early/2018/05/31/335810 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/two-signaling-pathways-to-regulate-stomatal-conductance/ )
Jalakas P., Takahashi Y., Waadt R., Schroeder J. I., Merilo E. (2021) – Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit – New Phytol. 232(2): 468-475 – doi: 10.1111/nph.17592 – Epub 2021 Jul 29 – PMID: 34197630 -PMCID: PMC8455429 – https://pubmed.ncbi.nlm.nih.gov/34197630/ – (On our blog : https://plantstomata.wordpress.com/2022/07/31/three-components-that-participate-in-vpd-induced-stomatal-closure/ )
Jalakas P., Yarmolinsky D., Hannes Kollist H., Brosche M. (2017) – Isolation of Guard-cell Enriched Tissue for RNA Extraction – Bio-Protocol 7(15) – DOI: https://bio-protocol.org/e2447 – 10.21769/BioProtoc.2447 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/isolation-of-guard-cell-enriched-tissue-for-rna-extraction/ )
James S. A., Bell D. T. (2000) – Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp. globulus leaves – Tree Physiology 20: 815–823 – (On our blog : https://plantstomata.wordpress.com/2021/12/12/97374/ )
Jamieson A. P., Willmer C. M. (1984) – Functional Stomata in a Variegated Leaf Chimera of Pelargonium zonale L. without Guard Cell Chloroplasts – Journal of Experimental Botany 35(156): 1053-1059 – https://www.jstor.org/stable/23691123?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/10/09/chloroplasts-are-not-essential-for-the-normal-functioning-of-stomata/ )
Jammes F., Leonhardt N., Tran D., Bousserouel H., Véry A.-A., Renou J.-P.,Vavasseur A., Kwak J. M., Sentenac H., Bouteau F., Leung J. (2014) – Acetylated 1,3-diaminopropane antagonizes abscisic acid-mediated stomatal closing in Arabidopsis – Plant J. 79: 322–333 – doi: 10.1111/tpj.12564 – https://www.ncbi.nlm.nih.gov/pubmed/24891222 – (On our blog : https://plantstomata.wordpress.com/2018/04/08/acetyl-dap-could-refrain-stomates-from-complete-closure-to-sustain-co2-diffusion/ )
Jammes F., Song C., Shin D., Munemasa S., Takeda K., Gu D., Choa D., Lee S., Giordo R., Sritubtim S., Leonhardt N., Ellis B. E., Murata Y., Kwak J. M. (2009) – MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling – Proc. Natl. Acad. Sci. U.S.A. 106: 20520–20525 – doi: 10.1073/pnas.0907205106 – (On our blog : https://plantstomata.wordpress.com/2016/07/01/mpk9-and-mpk12-function-downstream-of-ros-to-regulate-guard-cell-aba-signaling-positively/)
Jammes F., Yang X., Xiao S., Kwak J. M. (2011) – Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response – Plant Signal. Behav. 6: 1875–1877 – doi: 10.4161/psb.6.11.17933 – (On our blog : https://plantstomata.wordpress.com/2016/07/01/regulation-of-stomatal-apertures-by-mpk9-and-mpk12-contributes-to-the-first-line-of-defense-against-pathogens/)
Janan P. D. (1974) – The diffusion of carbon dioxide and water vapour through stomata – J. Expt. Bot. 25: 927-936 –
Jane G.T., Green T. G. A. (1985) – Patterns of stomatal conductance in six evergreen tree species from a new zealand cloud forest – Botanical Gazette 146(3): 413-420 – https://eurekamag.com/research/006/075/006075863.php – (On our blog : https://plantstomata.wordpress.com/2022/01/09/patterns-of-stomatal-conductance-2/ )
Jang C.‐J., Nakajima N., Kondo N. (1996) – Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. – Plant Cell Physiology 37: 697–701 – https://doi.org/10.1093/oxfordjournals.pcp.a029001 – https://academic.oup.com/pcp/article-pdf/37/5/697/5147219/37-5-697.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/18/disruption-of-microtubules-seems-to-be-a-specific-effect-of-aba-in-stomata/ )
Jangra R., Damen H., Lee J. S. (2019) – MKP1 acts as a key modulator of stomatal development – Journal Plant Signaling & Behavior 14(7): https://doi.org/10.1080/15592324.2019.1604017 – https://www.tandfonline.com/doi/abs/10.1080/15592324.2019.1604017 – (On our blog : https://plantstomata.wordpress.com/2019/08/25/a-novel-role-of-mkp1-in-plant-development/ )
Jannat R., Uraji M., Morofuji M., Islam M. M., Bloom R. E., Nakamura Y., McClung C. R., Schroeder J. I., Mori I. C., Murata Y. (2011) – Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells – J. Plant Physiol. 168: 1919–1926 – doi: 10.1016/j.jplph.2011.05.006 – https://pdfs.semanticscholar.org/e6f7/143785beda04e311bf426915b4527414b827.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/08/aba-inducible-cytosolic-h2o2-elevation-functions-in-aba-induced-stomatal-closure/ )
Jannat R., Uraji M., Morofuji M., Hossain M. A., Islam M. M., Nakamura Y., Mori I. C., Murata Y. (2011) – The roles of CATALASE2 in abscisic acid signaling in Arabidopsis guard cells – Bioscience, Biotechnology and Biochemistry 75(10): 2034-2036 – DOI: 10.1271/bbb.110344 – https://www.researchgate.net/publication/51699067_The_roles_of_CATALASE2_in_abscisic_acid_signaling_in_Arabidopsis_guard_cells – (On our blog : https://plantstomata.wordpress.com/2019/10/22/the-roles-of-catalase2-in-aba-signaling-in-stomatal-guard-cells/ )
Janowska B., Mansfeld N., Andrzejak R. (2014) – Effect of BA and GA3 on the Morphological Features of Stomata in the Leaf Epidermis of the Zantedeschia albomaculata cv. ‘Albomaculata’ – Not Bot Horti Agrobo 42(1): 104-108 – http://www.notulaebotanicae.ro/index.php/nbha/article/download/9318/7687 – (On our blog : https://plantstomata.wordpress.com/2015/03/26/stomata-in-zantedeschia-monocots/).
Jansen M. A. K., Van Den Noort R. E.. (2000) – Ultraviolet-B radiation induces complex alterations in stomatal behaviour – Physiol Plant 110: 189–194 – https://doi.org/10.1034/j.1399-3054.2000.110207.x – https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.2000.110207.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/ultraviolet-b-radiation-induces-complex-alterations-in-stomatal-behaviour/ )
Janu V., Raghuvanshi R. K. (2011) – Microscopic studies on epidermal cells and stomatal behavior of some globular cacti (Mammillaria spp.) – Insight Botany 1(1): 1–4 – DOI: 10.5567/BOTANY-IK.2011.1.4 – http://insightknowledge.org/fulltext/?doi=BOTANY-IK.2011.1.4 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/stomatal-behavior-of-some-globular-cacti/ )
Jara-Rojas F., Ortega-Farias S., Valdés-Gomez H., Poblete C., del Pozo A. (2009) – Model Validation for Estimating the Leaf Stomatal Conductance in cv. Cabernet Sauvignon Grapevines – Chilean Journal of Agricultural Research 69(1): 88-96 – Model_Validation_for_Estimating_the_Leaf.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/model-validation-for-estimating-the-leaf-stomatal-conductance/ )
Jardine K. J. (2008) – The Exchange of Acetaldehyde between Plants and the Atmosphere: Stable Carbon Isotope and Flux Measurements – Marine and Atmospheric Science Stony Brook University – https://www.proquest.com/docview/304396191 – (On our blog : https://plantstomata.wordpress.com/2022/09/08/plant-stomata-were-found-to-be-the-dominant-pathway-for-theexchange-of-acetaldehyde-with-the-atmosphere-with-stomatal-conductanceinfluencing-both-emission-and-uptake-fluxes/ )
Jarman P. D. (1974) – The diffusion of carbon dioxide and water vapour through stomata – Journal of Experimental Botany 25: 927-936 – https://doi.org/10.1093/jxb/25.5.927 – https://academic.oup.com/jxb/article-abstract/25/5/927/431879?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/08/diffusion-of-co2-and-water-vapour-through-stomata/ )
1998) – The coupled response of stomatal conductance to photosynthesis and transpiration – Journal of Experimental Botany 49: 399–406 – DOI: 10.1093/jexbot/49.suppl_1.399 – https://www.jstor.org/stable/23695973?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/19/stomata-respond-to-a-signal-in-proportion-to-the-degree-to-which-the-photosynthetic-capacity-is-realized/ )
, (Jarvis A. J., Mansfield T. A., Davies W. J. (2002) – Stomatal behavior, photosynthesis and transpiration under rising CO2 – Plant, Cell and Environment 22: 639–648 – https://doi.org/10.1046/j.1365-3040.1999.00407.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1999.00407.x – (On our blog : https://plantstomata.wordpress.com/2019/11/28/stomatal-behavior-under-rising-co2/ )
Jarvis A. J., Young P. C., Taylor C. J., Davies W. J. (1999) – An analysis of the dynamic response of stomatal conductance to a reduction in humidity over leaves of Cedrella oderata – Plant, Cell & Environm. 22: 913–924 – https://doi.org/10.1046/j.1365-3040.1999.00446.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1999.00446.x – (On our blog : https://plantstomata.wordpress.com/2018/12/18/the-dynamic-response-of-stomatal-conductance-to-a-reduction-in-humidity-over-leaves/ )
1976) – The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field – Philosophical Transactions of the Royal Society London, Series B 273: 593–610 – DOI: 10.1098/rstb.1976.0035 – http://rstb.royalsocietypublishing.org/content/273/927/593 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/variations-in-leaf-water-potential-and-stomatal-conductance-found-in-canopies/ )
(Jarvis P. G. (1980) – Stomatal response to water stress in conifers. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperatures stress – John Wiley and Sons 105- 122 –
Jarvis P. G. (1981) – Stomatal conductance, gaseous exchange and transpiration – In Plants and their Atmospheric Environment (edited bv Grace J. – Ford E. D. and Jarvis P. G. 175-204 – Blackwells, Oxford –
1980) – Reduced stomatal responses to light, carbon dioxide and abscisic acid in the presence of sodium ions – Plant, Cell and Environment 3: 279–283 – https://doi.org/10.1111/1365-3040.ep11581831 – – https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11581831 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/control-of-stomatal-movements-by-light-co2-and-aba-at-the-level-of-cation-uptake-or-extrusion/ )
(Jarvis P. G., Mansfield T. A. (1981) – Stomatal Physiology – Edn. Cambridge University Press, London 89-130 – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/physiology-of-stomata/)
Jarvis P.G., McNaughton K.G. (1986) – Stomatal control of transpiration: Scaling up from leaf to region – Adv. Ecol. Res. 15: 1–49 – https://doi.org/10.1016/S0065-2504(08)60119-1 – – https://www.sciencedirect.com/science/article/pii/S0065250408601191 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/transpiration-depends-on-stomatal-conductance/ )
1981) – The control of transpiration and photosynthesis by the stomata. In Stomatal Physiology (eds P.G. Jarvis & T.A. Mansfield) 247–279 – Cambridge University Press, New York –
(https://doi.org/10.1016/0002-1571(67)90015-5 – https://www.sciencedirect.com/science/article/abs/pii/0002157167900155 – (On our blog : https://plantstomata.wordpress.com/2022/07/06/the-theory-can-be-used-to-calculate-stomatal-aperture-from-either-mass-flow-or-diffusion-porometer-measurements/ )
Rose C. W., Begg J. E. (1967) – An experimental and theoretical comparison of viscous and diffuse resistance to gas flow through amphistomatous leaves – Agr. Meteorol. 4: 103-117 –Jarvis P. G., Slatyer R. O. (1970) – The role of the mesophyll cell wall in leaf transpiration – Planta 90: 303–322 –https://doi.org/10.1007/BF00386383 – https://link.springer.com/article/10.1007%2FBF00386383#citeas – (On our blog : https://plantstomata.wordpress.com/2022/01/01/doubt-on-the-validity-of-the-long-standing-assumption-that-the-water-vapour-pressure-at-the-evaporation-sites-stomata-is-equal-to-the-saturation-vapour-pressure-under-all-conditions/ )
Jayakody H., Liu S., Whitty M., Petrie P. (2017) – Microscope image based fully automated stomata detection and pore measurement method for grapevines – Plant Methods 13(1): 94 – https://doi.org/10.1186/s13007-017-0244-9 – https://plantmethods.biomedcentral.com/articles/10.1186/s13007-017-0244-9 – (On our blog : https://plantstomata.wordpress.com/2019/10/08/fully-automated-stomata-detection-and-pore-measurement-method/ )
Jayakody H. S., Petrie P., de Boer H., Whitty M., (2020) – A Generalised Approach for High-throughput Instance Segmentation of Stomata in Microscope Images – Research Square – doi: 10.21203/rs.3.rs-33223/v1 – https://www.researchsquare.com/article/rs-33223/v1 – (On our blog : https://plantstomata.wordpress.com/2020/07/27/high-throughput-instance-segmentation-of-stomata-in-microscope-images/ )
Jeffree C. E., Johnson R. P. C., Jarvis P. G. (1971) – Epicuticular wax in the stomatal antechamber of sitka spruce and its effect on the diffusion of water vapour and carbon dioxide – Planta 98: 1-10 – doi: 10.1007/BF00387018 – https://www.ncbi.nlm.nih.gov/pubmed/24493303 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/wax-filled-stomatal-antechambers-are-excellent-antitranspirants-2/ )
Jefferson J. L., Maxwell R. M., Constantine P. G. (2017) – Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model – AMS – https://doi.org/10.1175/JHM-D-16-0053.1 – https://journals.ametsoc.org/doi/full/10.1175/JHM-D-16-0053.1 – (On our blog : https://plantstomata.wordpress.com/2020/05/04/sensitivity-of-photosynthesis-and-stomatal-resistance-parameters/ )
Jelbert G. (2018) – Stomatal data vs ice core measurements to measure CO2 levels – https://skepticalscience.com/plant-stomata-co2-levels.htm – (On our blog : https://plantstomata.wordpress.com/2018/03/29/stomatal-data-vs-ice-core-measurements-to-measure-co2-levels/
Jenkins B. C. (1944) – The relations of stomatal size and generation to the yielding ability of bulked wheat hybrids – MSc. Thesis University of Alberta, Department of Field Crops – https://www.biodiversitylibrary.org/item/245140#page/5/mode/1up – (On our blog : https://plantstomata.wordpress.com/2022/01/03/the-relation-between-stomatal-size-and-yield-has-no-selection-value/ )
Jeon B. W., Acharya B. R., Assmann S. M. (2019) – The Arabidopsis heterotrimeric G protein β subunit, AGB1, is required for guard cell calcium sensing and calcium‐induced calcium release – Plant Journ. – https://doi.org/10.1111/tpj.14318 –https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14318?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/19/g-protein-signaling-via-agb1-agg1-agg2-is-essential-for-cao%e2%80%90regulation-of-stomatal-apertures/ )
Jeon B. W., Hwang J. U., Hwang Y., Song W. Y., Fu Y., Gu Y., Bao F., Cho D., Kwak J. M., Yang Z., Lee Y. (2008) – The Arabidopsis small G protein ROP2 is activated by light in guard cells and inhibits light-induced stomatal opening – Plant Cell 20(1): 75-87 – doi: 10.1105/tpc.107.054544 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254924/ – (On our blog : https://plantstomata.wordpress.com/2018/04/17/rop2-is-activated-by-light-in-guard-cells-and-inhibits-light-induced-stomatal-opening/ )
Jeong H., Ryu J.-H., Na S.-i., Cho J. (2020) – Estimation of Stomatal Conductance using Crop Water Stress Index based on the Thermal Image at a Leaf Scale – EGU2020-11926 – https://doi.org/10.5194/egusphere-egu2020-11926EGU General Assembly 2020 – https://meetingorganizer.copernicus.org/EGU2020/EGU2020-11926.html?EGUSphere – (On our blog : https://plantstomata.wordpress.com/2020/06/08/estimation-of-stomatal-conductance-using-crop-water-stress-index/ )
Jeong S. J., Song J. S., Kim W. S., Lee D. W., Kim ,H. D., Kim K. J., Yoo, R. H., Cho J. G. (2008) – Evaluation of selected foliage plants for improvement of indoor humidity – Horticulture, Environment and Biotechnology 49(6): 439-446 – ISSN 0253-6498 – https://www.cabi.org/isc/FullTextPDF/2009/20093029647.pdf – (On our blog : https://plantstomata.wordpress.com/2022/06/13/the-ability-of-the-indoor-foliage-plants-to-increase-humidity-seemed-to-be-more-related-to-their-transpiration-abilities-than-their-total-leaf-area-and-stomata/ )
Jewaria P. K., Hara T., Tanaka H., Kondo T., Betsuyaku S., Sawa S., Sakagami Y., Aimoto S., Kakimoto T. (2008) – Differential effects of the peptides stomagen, EPF1, and EPF2 on activation of the MAP kinase MPK6 and the SPCH protein level – Plant Cell Physiol. 49(6): 934-943 – doi: 10.1093/pcp/pct076 – https://www.ncbi.nlm.nih.gov/pubmed/23686240 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/effects-of-epf1-and-epf2-on-activation-of-the-map-kinase-mpk6-and-the-spch-protein-level-in-stomata/ )
Jewer P. C., Incoll L. D. (1980) – Promotion of stomatal opening in the grass Anthephora pubescens Nees by a range of natural and synthetic cytokinins. – Planta150: 218–221 – doi: 10.1007/Bf00390829 – https://www.ncbi.nlm.nih.gov/pubmed/24306685 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/natural-and-synthetic-cytokinins-for-stomatal-opening/ )
Jewer P. C., Incoll L. D., Howarth G. L. (1981) – Stomatal responses in isolated epidermis of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perr – Planta 153: 238–245 – doi: 10.1007/BF00383893 – https://www.ncbi.nlm.nih.gov/pubmed/24276827 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-responses-in-isolated-epidermis-of-the-crassulacean-acid-metabolism-plant/ )
Jewer P. C., Incoll L. D., Shaw I. (1982) – Stomatal response of Argenteum—a mutant of Pisum sativum L. with readily detachable leaf epidermis – Planta 155: 146–153 – https://doi.org/10.1007/BF00392545 – https://link.springer.com/article/10.1007/BF00392545#citeas – (On our blog : https://plantstomata.wordpress.com/2023/01/03/the-advantages-of-using-epidermis-from-argenteum-mutant-for-experiments-on-stomatal-movements/ )
Jewer P. C., Neales T. F., Incoll L. D. (1985) – Stomatal responses to carbon dioxide of isolated epidermis from a C 3 plant, the Argenteum mutant of Pisum sativum L., and a crassulacean-acid-metabolism plant Kalanchoë diagremontiana Hamet et Perr – Planta 164(4): 495-500 – https://www.jstor.org/stable/23388454 – (On our blog : https://plantstomata.wordpress.com/2021/10/18/94546/ )
Jezek M., Blatt M. R. (2017) – The membrane transport system of the guard cell and its integration for stomatal dynamics – Plant Physiol 174: 487–519 – https://doi.org/10.1104/pp.16.01949 – http://www.plantphysiol.org/content/174/2/487 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/the-membrane-transport-system-of-stomata/)
Jezek M., Hills A., Blatt M. R., Lew V. L. (2019) – A constraint‐relaxation‐recovery mechanism for stomatal dynamics – Plant, Cell & Environment – https://doi.org/10.1111/pce.13568 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13568?af=R – (On our blog : https://plantstomata.wordpress.com/2019/04/29/a-constraint%e2%80%90relaxation%e2%80%90recovery-mechanism-for-stomatal-dynamics/ )
Jezek M., Silva-Alvim F.A.L., Hills A., Donald N., Ischka M. R., Shadbolt J., He B., Lawson T., Harper J. F., Wang Y., Lew V. L., Blatt M. R. (2021) – Guard cell endomembrane Ca2+-ATPases underpin a ‘carbon memory’ of photosynthetic assimilation that impacts on water-use efficiency – Nat. Plants (2021) – https://doi.org/10.1038/s41477-021-00966-2 – https://www.nature.com/articles/s41477-021-00966-2#citeas – (On our blog : https://plantstomata.wordpress.com/2021/07/31/an-unforeseen-latency-or-carbon-memory-of-guard-cells-that-affects-stomatal-dynamics-photosynthesis-and-water-use-efficiency/ )
Jia J. B., Liu W. N., Wen S. Z., Wang Z. C. (2019) – Effects of CO2 concentration and soil moisture on leaf stomatal traits and gas exchange parameters of Phoebe bournei – Science of Soil and Water Conservation 17: 1-7 –
[ 贾剑波, 刘文娜, 文仕知, 王忠诚 (2019). 水碳控制条件对闽楠叶片气孔特征和气体交换参数的影响. 中国水土保持科学, 17,1-7.] |
Jia M.-z., Liu L.-y., Geng C., Song C.-p., Jiang J. (2021) – Activation of ACC synthase 2/6 increases stomatal density and cluster on the Arabidopsis leaf epidermis during drought – bioRxiv – https://doi.org/10.1101/2021.04.27.441570 – https://www.biorxiv.org/content/10.1101/2021.04.27.441570v1.full – (On our blog : https://plantstomata.wordpress.com/2022/04/03/acc-synthase-acs2-6-activation-integrated-stomatal-individual-development-with-space-setting-between-stomata/ )
Jia W., Davies W. J. (2006) – Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. – Plant Physiol. 143: 68–77 – doi: 10.1104/pp.106.089110 – http://www.plantphysiol.org/content/143/1/68 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/effect-of-nitrate-addition-on-sap-ph-and-closure-of-stomata-via-an-aba-based-mechanism/ )
Jia W, Zhang J (1999) – Stomatal closure is induced rather by prevailing xylem abscisic acid than by accumulated amount of xylem‐derived abscisic acid – Physiologia Plantarum 106: 268–275 – https://doi.org/10.1034/j.1399 -3054.1999.106303.x – https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.1999.106303.x – (On our blog : https://plantstomata.wordpress.com/2018/12/18/stomata-mainly-respond-to-the-prevailing-aba-concentration-in-the-xylem-stream/ )
Jia W., Zhang J. (2008) – Stomatal movements and long-distance signalling in plants – Plant Signal Behav. 3: 772–777 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634372/ – (On our blog : https://plantstomata.wordpress.com/2018/04/17/natural-and-synthetic-cytokinins-for-stomatal-opening/ )
Jia X., Mao K., Wang P., Wang Y., Jia X., Huo L., Sun X., Che R., Gong X., Ma F. (2021) – Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit – Hortic Res 8: 81 – https://doi.org/10.1038/s41438-021-00521-2 – https://www.nature.com/articles/s41438-021-00521-2#citeas – (On our blog : https://plantstomata.wordpress.com/2021/08/05/mdatg8i-oe-apple-lines-exhibited-higher-wue-than-wt-under-long-term-moderate-drought-conditions-stomatal-aperture/ )
Jian S. Q., Zhao C. Y., Zhao Y., Peng S. Z., Peng H. H. (2011) – Based on image processing technology estimating leaves stomatal density of Populus euphratica and analysis of its ecological significance – Acta Ecol. Sin. 31: 4818–4825 –
Jiang C.-J., Nakajima N., Kondo N. (1996) – Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. – Plant Cell Physiol. 37: 697-701 – https://doi.org/10.1093/oxfordjournals.pcp.a029001 – https://academic.oup.com/pcp/article/37/5/697/1818552 – (On our blog : https://plantstomata.wordpress.com/2018/04/18/aba-and-microtubules-in-stomata/ )
Jiang G.-F., Brodribb T. J., Roddy A. B., Lei J.-Y., Si H.-T., Pahadi P., Zhang Y.-J., Cao K.-F. (2021) – Contrasting Water Use, Stomatal Regulation, Embolism Resistance, and Drought Responses of Two Co-Occurring Mangroves – Water 13: 1945 (16 pp.) – https://doi.org/10.3390/ w13141945 – file:///C:/Users/wille/Downloads/water-13-01945-v3.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/01/avicennia-marina-adopts-a-drought-tolerance-strategy-with-high-cavitation-resistance-while-bruguiera-gymnorrhiza-uses-a-drought-avoidance-like-strategy-with-aba-related-sensitive-stomatal-control-to/ )
Jiang J., Li C., Kong D.,Guo F., Wei H. (2020) – Light-Mediated Signaling and Metabolic Changes Coordinate Stomatal Opening and Closure – Front. Plant Sci., 04 December 2020 | https://doi.org/10.3389/fpls.2020.601478 – https://www.frontiersin.org/articles/10.3389/fpls.2020.601478/full – (On our blog : https://plantstomata.wordpress.com/2022/04/04/knowledge-on-the-mechanisms-regulating-the-trade-off-between-stomatal-opening-and-closure-may-have-potential-applications-toward-generating-superior-crops/ )
Jiang J., Wang P., An G., Wang P., Song C. P. (2008) – The involvement of a P38-like MAP kinase in ABA-induced and H2O2-mediated stomatal closure in Vicia faba L. – Plant Cell Rep 27: 377–385 – DOI: 10.1007/s00299-007-0449-x – https://www.ncbi.nlm.nih.gov/pubmed/17924117?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/10/04/activation-of-p38-like-map-kinase-modulates-stomatal-guard-cell-ros-signaling-in-response-to-stress/ )
Jiang K., Sorefan K., Deeks M. J., Bevan M. W., Hussey P. J., Hetherington A. M. (2012) – The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis – Plant Cell 24 : 2031–2040 – doi: 10.1105/tpc.112.096263 – http://www.plantcell.org/content/24/5/2031 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/regulation-of-actin-reassembly-through-arp2-3-complex-activity-is-crucial-for-stomatal-regulation/ )
Jiang Q., Roche D., Monaco T. A., Hole D. (2006) – Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes – Plant Biology 8: 515–521 – https://doi.org/10.1055/s-2006-923964 – https://onlinelibrary.wiley.com/doi/abs/10.1055/s-2006-923964 – (On our blog : https://plantstomata.wordpress.com/2019/06/13/stomatal-conductance-is-a-key-parameter-to-assess-limitations-to-photosynthesis-and-growth-potential/ )
Jiang X. X., Zou A. L., Wang Y. Y., Zhou X. L., Ji C. J. (2018) – Leaf stomatal traits of woody plants and their response to nitrogen addition in typical forests in Eastern China – Acta Scientiarum Naturalium Universitatis Pekinensis 54: 839-847 –
[ 姜星星, 邹安龙, 王媛媛, 周序力, 吉成均 (2018). 我国东部典型森林木本植物的气孔特征及其对氮添加的响应. 北京大学学报(自然科学版), 54,839-847.] |
Jiang Y., Wu K., Lin F., Qu Y., Liu X., Zhang Q. (2014) – Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis – Planta 239: 565–575 – https://doi.org/10.1007/s00425-013-1999-5 – https://link.springer.com/article/10.1007%2Fs00425-013-1999-5 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/pld%ce%b11-and-pa-regulate-microtubular-organization-and-ca2increases-during-aba-induced-stomatal-closing/ )
Jiao Q., Chen T., Niu G., Zhang H., Zhou C., Hong Z. (2020) – N-glycosylation is involved in stomatal development by modulating the release of active abscisic acid and auxin in Arabidopsis – J. Exp. Bot. 71: 5865–5879 – https://doi.org/10.1093/jxb/eraa321 – https://academic.oup.com/jxb/article-abstract/71/19/5865/5869872?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/01/27/n-glycosylation-is-involved-in-stomatal-development/ )
Jiao X.-C., Song X.-M., Zhang D.-L., Du Q.-J., Li J.-M. (2019) – Coordination between vapor pressure deficit and CO2 on the regulation of photosynthesis and productivity in greenhouse tomato production – Scientific Reports 9, Article number: 8700 – https://www.nature.com/articles/s41598-019-45232-w – (On our blog : https://plantstomata.wordpress.com/2019/08/13/the-interaction-of-vpd-and-co2-on-plant-water-status-stomatal-characteristics-and-gas-exchange-parameters/ )
Jiao Y., Gao Z., Wang R. (2021) – Application of segregation process in observing the leaf stomatal structure of Michelia plants – Anhui Forestry Science and Technology 47(1): 26-29 –
Jibrill S. M., Jakada B. H. (2015) – Leaf Epidermal Structures and Stomata Ontogeny in Some Members of the Family Cucurbitaceae – International Journal of Plant & Soil Science 9(2): 1-9, Article no.IJPSS.20615 – DOI: 10.9734/IJPSS/2016/20615 – Jakada922015IJPSS20615.pdf – (On our blog : https://plantstomata.wordpress.com/2016/06/08/stomata-in-cucurbitaceae-3/)
Jin M., Guo M., Yue G., Li J., Yang S., Zhao P., Su Y. (2018) – An unusual strategy of stomatal control in the desert shrub Ammopiptanthus mongolicus – Plant Physiology and Biochemistry 125: 13-26 – ISSN 0981-9428 – https://doi.org/10.1016/j.plaphy.2018.01.017 – https://www.sciencedirect.com/science/article/pii/S0981942818300238 – (On our blog : https://plantstomata.wordpress.com/2022/04/12/the-strategy-of-stomatal-control-found-in-a-mongolicus-may-in-certain-extents-reflect-the-acclimatory-divergence-for-plants-coping-with-persistent-stress-of-water-deficit/ )
Jin X., Wang R., Albert R., Chen S., Assmann S. M. (2012) – Metabolomics of Arabidopsis guard cells – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/metabolomics-of-stomata/ )
Jin X., Wang R. S., Zhu M., Jeon B. W., Albert R., Chen S., et al. (2013) – Abscisic acid–responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants – Plant Cell 25: 4789–4811 – doi: 10.1105/tpc.113.119800 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903988/ – (On our blog : https://plantstomata.wordpress.com/2018/04/10/aba-functions-upstream-to-regulate-other-hormones-in-stomata/ )
Jin Z., Pei Y. (2016) – Hydrogen sulfide: the shutter button of stomata in plants – Science China Life Sciences 59(11): 1187-1188 – DOI: 10.1007/s11427-016-0265-3 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11427-016-0265-3 – (On our blog : https://plantstomata.wordpress.com/2017/10/11/h2s-the-shutter-button-of-stomata/)
Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H., Pei Y. (2013) – Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis – Plant Physiol. Biochem. 62: 41–46 – https://doi.org/10.1016/j.plaphy.2012.10.017 –https://www.sciencedirect.com/science/article/abs/pii/S0981942812002872?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/01/16/h2s-may-be-an-important-link-in-stomatal-regulation-by-aba-via-ion-channels/ )
Jinno N. (1985) – Possible Role of Subsidiary Cells on the Stomatal Movement in Commelina benghalensis subsp. – 長崎大学教育学部自然科学研究報告. 36: 7-15 – http://hdl.handle.net/10069/32518 –http://naosite.lb.nagasaki-u.ac.jp/dspace/handle/10069/32518 – (On our blog : https://plantstomata.wordpress.com/2019/05/05/subsidiary-cells-have-an-important-role-on-the-stomatal-closure/ )
Jinno N. (1988) – Methionine induced stomatal opening in Commelina
communis – Scientific Bulletin of the Faculty of Education, Nagasaki University 39: 61–71 –
https://ci.nii.ac.jp/naid/120006972472/ – https://nagasaki-u.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=7593&item_no=1&page_id=13&block_id=21 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/91370 )
Jinno N., Fujino M. (1981) – Effects of Calcium-complexing Agents, Sodium Oxalate and Sodium Citrate on Stomatal Opening and Closing of Commelina communis L. – Sci. Bull. Fac. Educ., Nagasaki Univ. 32: 83-88 – https://core.ac.uk/download/pdf/58760923.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/07/formation-of-a-calcium-complex-may-activate-atpase-responsible-for-active-transport-of-k-in-stomata/ )
Jinno N., Kuraishi S. (1982) – Acid-induced stomatal opening in Commelina communis and Vicia faba Broadbeans, effects of externally applied hydrogen ion and fusicoccin on stomatal opening and potassium ion changes in guard cells – Plant and Cell Physiology 23(7): 1169-1174 – DOI: 10.1093/oxfordjournals.pcp.a076458 – https://eurekamag.com/research/014/943/014943698.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/stomatal-opening-can-be-caused-by-salt-accumulation-and-or-changes-of-the-physicochemical-conditions-in-the-cell-wall-of-the-guard-cells/ )
Jo E.-A., Tewari R. K., Hahn E.-J., Paek K.-Y. (2009) – In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets – Plant Cell Tiss Organ Cult 96: 307–315 – DOI: 10.1007/s11240-008-9488-4 – https://www.academia.edu/39814270/In_vitro_sucrose_concentration_affects_growth_and_acclimatization_of_Alocasia_amazonica_plantlets – (On our blog : https://plantstomata.wordpress.com/2019/11/16/increasing-sucrose-supply-also-increased-sugars-and-starch-content-and-number-of-stomata-and-decreased-water-potential-and-size-of-stomata-during-in-vitro-growth-period/ )
Joachimiak A., Grabowska-Joachimiak A. (2000) – Stomatal cell length and ploidy level in four taxa belonging to the Phleum sect. Phleum – Acta Biologica Cracoviensia Series Botanica 42: 103–107 – ISSN : 0001-5296 – https://www.cabdirect.org/cabdirect/abstract/20013041569 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/stomatal-cell-length-can-be-a-rapid-and-useful-indirect-ploidy-level-indicator/ )
Johansson K. S. L., El-Soda M., Pagel E., Meyer R. C., Tõldsepp K., Nilsson A. K., Brosché M., Kollist H., Uddling J., Andersson M. X. (2020) – Genetic controls of short- and long-term stomatal CO2 responses in Arabidopsis thaliana – Annals of Botany 126(1): 179–190 – https://doi.org/10.1093/aob/mcaa065 – https://academic.oup.com/aob/article/126/1/179/5820690 – (On our blog : https://plantstomata.wordpress.com/2020/06/23/84937/ )
John Innes Centre (2017) – Changing of the guard: Research sheds light on how plants breathe – Science Daily 2017-09 – https://www.sciencedaily.com/releases/2017/09/170921101743.htm – (On our blog : https://plantstomata.wordpress.com/2017/09/22/the-first-full-3d-model-of-a-guard-cell/)
John Innes Centre (2020) – Plant water saving system works like clockwork, it transpires – https://phys.org/news/2020-03-clockwork-transpires.html – (On our blog : https://plantstomata.wordpress.com/2020/03/18/stomata-and-the-circadian-clock/ )
Johns G. G. (1978) – Transpirational, leaf area, stomatal and photosynthetic responses to gradually induced water stress in four temperate herbage species – Aust. J. Plant Physiol. 5(2): 113-125 – DOI: 10.1071/PP9780113 – https://www.semanticscholar.org/paper/Transpirational%2C-Leaf-Area%2C-Stomatal-and-Responses-Johns/ffc08e3f0a287dad2b4fe41ecc4ecc7e7ca395ba – (On our blog : https://plantstomata.wordpress.com/2021/09/25/stomatal-and-photosynthetic-responses-to-gradually-induced-water-stress/ )
Johnson C. (2001) – The getting of plant wisdom – ABC Science 2001 http://www.abc.net.au/science/articles/2001/05/10/293607.htm – (On our blog : https://plantstomata.wordpress.com/2015/03/14/stomata-in-different-levels-of-carbon-dioxide-and-light/ )
Johnson D. A., Caldwell M. M. (1976) – Water potential components, stomatal function, and liquid phase water transport resistance of four arctic and alpine species in relation to moisture stress – Physiol. Plant. 36: 271-278 – https://doi.org/10.1111/j.1399-3054.1976.tb04427.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1976.tb04427.x – (On our blog : https://plantstomata.wordpress.com/2019/03/16/water-potential-components-stomatal-function-and-liquid-phase-water-transport-resistance-in-relation-to-moisture-stress/ )
Johnson D. M., Domec J.-C., Woodruff D. R., McCulloh K. A., Meinzer F. C. (2013) – Contrasting hydraulic strategies in two tropical lianas and their host trees – American Journal of Botany 100(2): 374–383 – doi:10.3732/ajb.1200590 – https://www.academia.edu/32629516/Johnson_et_al_AJB_2013?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/15/reduced-stomatal-conductance-prevented-leaf-or-stem-%ef%bf%bcembolism/ )
Johnson D. M., McCulloh K. A., Meinzer F. C., Woodruff D. R., Eissenstat D. M. (2011) – Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species – Tree Physiol. 31(6): 659-668 – doi: 10.1093/treephys/tpr050 – Epub 2011 Jun 30 – PMID: 21724585 – https://www.fs.usda.gov/treesearch/pubs/39940 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stem-and-leaf-vulnerability-to-hydraulic-dysfunction-and-measuring-in-situ-daily-patterns-of-stomatal-conductance-in-the-field/)
Johnson D. M., Woodruff D. R., McCulloh K. A., Meinzer F. C. (2009) – Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species – Tree Physiology 29: 879–887 – doi: 10.1093treephys.ipp031 – https://naldc.nal.usda.gov/download/31639/PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/10/leaf-hydraulics-water-potential-and-stomatal-conductance-in-temperate-and-tropical-trees/ )
Johnson J. D. (1984) – The effects of ethylene on stomatal conductance and transpiration at various levels of water stress – Plant Physiol. 75: s-129 –
Johnson J. D., Ferrell W. K. (1983) – Stomatal response to vapour pressure deficit and the effect of plant water stress – Plant Cell Environ. 6: 451–456 – https://doi.org/10.1111/1365-3040.ep11588103 –https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11588103 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/stomatal-response-to-vapour-pressure-deficit/ )
Johnson R. (2007) – Control of Leaf Stomatal Opening – Colby J. Res. Meth. 9: 14-17 – https://www.colby.edu/academics_cs/courses/BI214/upload/lab5-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/20/techniques-for-analysis-of-stomatal-aperture/)
Johnson R. (2007) – Control of Leaf Stomatal Opening – Colby J. Res. Meth. 9:14-17 – https://www.colby.edu/academics_cs/courses/BI214/upload/lab5-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/07/control-of-leaf-stomatal-opening/ )
Johnsson M., Issaias S., Brogardh T., Johnsson A. (1976) – Rapid, blue-light-induced transpiration response restricted to plants with grass-like stomata – Physiol Plant 36: 229–232 – https://doi.org/10.1111/j.1399-3054.1976.tb04418.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1976.tb04418.x – (On our blog : https://plantstomata.wordpress.com/2018/04/18/grass%e2%80%90like-graminaceous-stomata-and-blue-light-induced-transpiration-response/ )
Jonard F., André F., Ponette Q., Vincke C., Jonard M. (2011) – Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003 – J. Hydrol. 409: 371-381 – https://www.academia.edu/18191857/Sap_flux_density_and_stomatal_conductance_of_European_beech_and_common_oak_trees_in_pure_and_mixed_stands_during_the_summer_drought_of_2003?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/08/15/92174/ )
Jones H. G. (1973) – Limiting factors in photosynthesis – New Phytol 72: 1089-1094 –
Jones H. G. (1973) – Partitioning stomatal and nonstomatal limitations to photosynthesis – Plant, Cell Environ 8: 98-104 –
Jones H. G. (1974) – Assessment of stomatal control of plant water status – New Phytol. 73: 851–859 – https://doi.org/10.1111/j.1469-8137.1974.tb01314.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1974.tb01314.x – (On our blog : https://plantstomata.wordpress.com/2019/07/20/studying-the-role-of-stomata-in-controlling-leaf-water-status/ )
Jones H. G. (1977) – Transpiration in barley lines with differing stomatal frequencies – J Exp Bot 28: 162–168 – https://doi.org/10.1093/jxb/28.1.162 – https://academic.oup.com/jxb/article-abstract/28/1/162/501971?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/20/the-size-of-stomata-and-differences-in-stomatal-frequency/ )
Jones H. G. (1981) – The use of stochastic modelling to study the influence of stomatal behaviour on yield–climate relationships – In: Rose DA, Charles‐Edwards DA, eds. Mathematics and plant physiology – London: Academic Press, 231–244 –
1985) – Partitioning stomatal and non-stomatal limitations to photosynthesis – Plant, Cell and Environment 8: 95–104 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/stomatal-and-non-stomatal-limitations-to-photosynthesis/ )
(Jones H. G. (1987) – Breeding for stomatal characters – In: Stomatal Function Eds. E. Zeiger, G.D. Farquhar, I.R. Cowan – Stanford University Press, Stanford., 431-443 –
Jones H.G. (1998) – Stomatal control of photosynthesis and transpiration – J. Exp. Bot. 49: 387-398 – http://jxb.oxfordjournals.org/content/49/Special_Issue/387.short – (On our blog : https://plantstomata.wordpress.com/2016/02/15/the-control-exerted-by-stomata-over-transpiration-and-photosynthesis/ ).
Jones H. G. (1999) – Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces – Plant Cell Environ 22: 1043–1055 – https://plantstomata.wordpress.com/2016/07/04/thermography-and-stomatal-conductance/ ) (On our blog :
Jones H. G. (1999) – Use of infrared thermometry for estimation of stomatal conductance in irrigation scheduling – Agricultural and Forest Meteorology 95: 139–149 – https://doi.org/10.1016/S0168-1923(99)00030-1 – https://www.sciencedirect.com/science/article/pii/S0168192399000301 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/infrared-thermometry-for-estimation-of-stomatal-conductance/ )
Jones H. G. (2014) – Stomata – In Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (122-152) – Cambridge: Cambridge University Press – doi:10.1017/CBO9780511845727.007 – https://www.cambridge.org/core/books/abs/plants-and-microclimate/stomata/AFF4FF56E4359AEB99825BEE75EED3FF# – (On our blog : https://plantstomata.wordpress.com/2022/03/15/smartphone-stomata-detection-to-rapidly-characterize-leaf-surface-and-smartphone-based-nanosensor-detection-for-in-field-applications-of-plant-nanobionics/ )
Jones H. G., Fanjul L (1983) – Effects of water stress and CO2 exchange in apple – In: Stress Effects on Photosynthesis (R Marcelle, ed) 75-84 –
Jones H. G., Stoll M., Santos T., de Sousa C., Chaves M. M., Grant O. M. (2002) – Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine – Journal of Experimental Botany 53: 2249–2260 – PMID: 12379792 – https://www.ncbi.nlm.nih.gov/pubmed/12379792 – (On our blog : https://plantstomata.wordpress.com/2018/04/11/infrared-thermography-for-monitoring-stomatal-closure/ )
Jones H. G., Sutherland R.A. (1991) – Stomatal control of xylem embolism – Plant Cell Environ. 14(6): 607-612 – doi:10.1111/j.1365-3040.1991.tb01532.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1991.tb01532.x – (On our blog : https://plantstomata.wordpress.com/2018/04/19/stomatal-control-of-xylem-embolism/ )
Jones L., Milne J. L., Ashford D., McCann M. C., McQueen-Mason S. J. (2003) – Cell wall arabinan is essential for guard cell function – Proceedings of the National Academy of Sciences, USA 100: 11783–11788 – https://doi.org/10.1073/pnas.1832434100 – https://www.pnas.org/doi/full/10.1073/pnas.1832434100 – (On our blog : https://plantstomata.wordpress.com/2023/03/30/arabinans-maintain-flexibility-in-the-stomatal-guard-cell-wall-by-preventing-homogalacturonan-polymers-from-forming-tight-association/ )
Jones L., Milne J. L., Ashford D., McQueen-Mason S. J. (2005) – A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species – Planta 221: 255–264 – DOI: 10.1007/s00425-004-1432-1 – https://www.ncbi.nlm.nih.gov/pubmed/15578215 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/pectins-and-phenolic-esters-have-a-conserved-functional-role-in-stomatal-guard-cell-walls/ ):
Jones L. A. (2011) – Anatomical adaptations of four Crassula species to water availability – Bioscience Horizons 4(1,1): 13–22 – https://doi.org/10.1093/biohorizons/hzr002 – https://academic.oup.com/biohorizons/article/4/1/13/238409 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/stomatal-adaptations-to-water-availability/ )
Jones M. M., Rawson H. M. (2006) – Influence of Rate of Development of Leaf Water Deficits upon Photosynthesis, Leaf Conductance, Water Use Efficiency, and Osmotic Potential in Sorghum – Physiologia Plantarum 45(1): 103-111 – DOI: 10.1111/j.1399-3054.1979.tb01672.x – https://www.researchgate.net/publication/229898840_Influence_of_Rate_of_Development_of_Leaf_Water_Deficits_upon_Photosynthesis_Leaf_Conductance_Water_Use_Efficiency_and_Osmotic_Potential_in_Sorghum – (On our blog : https://plantstomata.wordpress.com/2021/01/07/stomatal-closure-occurs-slowly-over-a-wide-range-of-leaf-water-potential-the-range-being-greater-for-slower-rates-of-stress/ )
Jones M. R., Leith I. D., Raven J. A., Fowler D., Sutton M. A., Nemitz E., Cape J. N., Sheppard L. J., Smith R. I. (2007) – Concentration-dependent NH3 deposition processes for moorland plant species with and without stomata – Atmospheric Environment 41(39): 8980-8994 – DOI: 10.1016/j.atmosenv.2007.08.015 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5c59d159-9a8b-3414-833c-9e9a06771f12 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/concentration-dependent-nh3-deposition-processes-with-and-without-stomata/)
, (1970) – Suppression of stomatal opening in leaves treated with abscisic acid. Journal of Experimental Botany 21: 714–719 – doi: 10.1093/jxb/21.3.714 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/aba-and-stomatal-behaviour/)
Jones R. J., Mansfield T. A. (1972) – Effects of abscisic acid and its esters on stomatal aperture and the transpiration ratio – Physiol.
Plant. 26: 321-327 – https://doi.org/10.1111/j.1399-3054.1972.tb01117.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1972.tb01117.x – (On our blog : https://plantstomata.wordpress.com/2020/06/10/effects-of-aba-and-its-esters-on-stomatal-aperture/ )
Jorba J., Tapia L., Sant D. (1985) – Photosynthesis, leaf water potential, and stomatal conductance in Olea europaea under wet and drought conditions – Acta Hortic. 171: 237-246 – doi: 10.17660/ActaHortic.1985.171.21 – https://www.actahort.org/books/171/171_21.htm – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-conductance-in-olive-trees-under-wet-and-drought-conditions/ )
Jordan F. L., Yoklic M., Morino K., Brown P., Seaman R., Glenn E. P., (2009) – Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district – Agricultural and Forest Meteorology 149(5): 899-912 – https://doi.org/10.1016/j.agrformet.2008.11.010 – http://www.sciencedirect.com/science/article/pii/S0168192308003201 – (On our blog : https://plantstomata.wordpress.com/2017/10/02/consumptive-water-use-and-stomatal-conductance/)
Jordan G. J., Carins-Murphy M., Brodribb T. (2014) – Acclimation to humidity modifies the link between leaf size and the density of veins and stomata – (http://www.brodribblab.org.au/publication/acclimation-to-humidity-modifies-the-link-between-leaf-size-and-the-density-of-veins-and-stomata/) – (On our blog : https://plantstomata.wordpress.com/2015/01/30/stomata-during-leaf-acclimation/).
Jordan G. J., Carins-Murphy M., Brodribb T. (2016) – Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade – Ann. Bot. – http://www.brodribblab.org.au/publication/cell-expansion-not-cell-differentiation-predominantly-co-ordinates-veins-and-stomata-within-and-among-herbs-and-woody-angiosperms-grown-under-sun-and-shade/ – (On our blog : https://plantstomata.wordpress.com/2017/09/30/57420/)
Jordan G.J., Carpenter R. J., Brodribb T. J. (2014) – Using fossil leaves as evidence for open vegetation – Palaeogeography, Palaeoclimatology, Palaeoecology 395: 168-175 – DOI: 10.1016/j.palaeo.2013.12.035 – https://www.infona.pl/resource/bwmeta1.element.elsevier-440650e4-46ff-39f0-acb4-c501b3707339 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/amphistomatic-fossil-leaves-of-dicotyledonous-angiosperms-provide-a-strong-proxy-for-open-vegetation/)
Jordan G. J., Carpenter R. J., Holland B. R., Beeton N. J., Woodhams M. D., Brodribb T. J. (2020) – Links between environment and stomatal size through evolutionary time in Proteaceae – Proc. Royal Soc. B – https://doi.org/10.1098/rspb.2019.2876 – https://royalsocietypublishing.org/doi/full/10.1098/rspb.2019.2876 – (On our blog : https://plantstomata.wordpress.com/2020/01/30/stomatal-size-is-significantly-affected-by-environmental-factors-other-than-atmospheric-co2/ )
Jordan G. J., Carpenter R. J., Koutoulis A., Price A., Brodribb T. J. (2015) – Environmental adaptation in stomatal size independent of the effects of genome size. – New Phytol. 205(2): 608-617 – doi: 10.1111/nph.13076. Epub 2014 Sep 30 – PMID: 25266914 – (On our blog : https://plantstomata.wordpress.com/2016/02/19/6196/).
Jordan G. J. , Weston P. H., Carpenter R. J. , Dillon R. A., Brodribb T. J. (2008) – The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae – Amer. J. Bot. 95(5): 521-530 – (http://www.amjbot.org/content/95/5/521.full) – (On our blog : https://plantstomata.wordpress.com/2015/03/29/sunken-covered-and-encrypted-stomata/)
Jordan R. (2022) – Scientists Aims to Find Out How Other Plants are Able to Survive Drought – Nature World News – https://www.natureworldnews.com/articles/53592/20221011/scientists-aims-to-find-out-how-other-plants-are-able-to-survive-drought.htm – (On our blog : https://plantstomata.wordpress.com/2022/10/19/109194/ )
Jordan W. R., Brown K. W., Thomas J. C. (1975) – Leaf age as a determinant in stomatal control of water loss from cotton during water stress. – Plant Physiology 56: 595–599 – https://doi.org/10.1104/pp.56.5.595 – http://www.plantphysiol.org/content/56/5/595 – (On our blog : https://plantstomata.wordpress.com/2018/04/19/leaf-age-as-a-determinant-in-stomatal-control-of-water-loss/ )
Jordan-Meille L., Martineau E., Bornot Y., Lavres J., Abreu-Junior C. H., Domec J.-C. (2018) – How Does Water-Stressed Corn Respond toPotassium Nutrition? A Shoot-Root Scale ApproachStudy under Controlled Conditions – Agriculture 8: 180 – doi: 10.3390/agriculture8110180 – https://www.academia.edu/37951082/How_Does_Water-Stressed_Corn_Respond_to_Potassium_Nutrition_A_Shoot-Root_Scale_Approach_Study_under_Controlled_Conditions?email_work_card=title – (On our blog : https://plantstomata.wordpress.com/2018/12/11/water-stress-and-potassium-nutrition/ )
Joshi J., Stocker B. D., Hofhansl F., Zhou S., Dieckmann U., Prentice I. C. (2022) -Towards a unified theory of plant photosynthesis and hydraulics – Nat. Plants 8: 1304–1316 – https://doi.org/10.1038/s41477-022-01244-5 – https://www.nature.com/articles/s41477-022-01244-5 – (On our blog : https://plantstomata.wordpress.com/2022/11/13/109799/ )
Joshi P., Joshi N., Purohit S. D. (2006) – Stomatal characteristics during micropropagation of Wrightia tomentosa – Biologia Plantarum 2006: 275-278 – DOI:10.1007/s10535-006-0019-z – https://www.semanticscholar.org/paper/Stomatal-characteristics-during-micropropagation-of-Joshi-Joshi/cc84812061281afcf6555fc89e0186ca317da0c6 – (On our blog : https://plantstomata.wordpress.com/2020/02/17/stomatal-characteristics-during-micropropagation-2/ )
Joshi-Saha A., Valon C., Leung, J. A. (2011) – Brand New START: abscisic acid perception and transduction in the guard cell – Sci. Signal. 4:re4 – doi: 10.1126/scisignal.2002164 – http://stke.sciencemag.org/content/4/201/re4.full – (On our blog : https://plantstomata.wordpress.com/2018/04/11/aba-perception-and-transduction-in-stomata/ )
Josifoski R. (2018) – Plant Stomata density is related to the plant adaptation in the environment – Griffith University 1041 SCG Biological Systems – Lab Report 2 – Plant_Stomata_density_is_related_to_the.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/22/plant-stomata-density-and-adaptation-in-the-environment/ )
The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance – Plant J. 64: 563–576 – doi: 10.1111/j.1365-313X.2010.04352.x – (On our blog : https://plantstomata.wordpress.com/2016/07/04/atclcc-stomatal-movements-and-salt-tolerance/)
, Kroniewicz L., Dalmas F., Le Thiec D., Ephritikhine G., Thomine S., Barbier-Brygoo H., Vavasseur A., Filleur S., Leonhardt N. (2010) –Jost M., Glatki Jost M. (1975) – The relative water content in flag leaves of wheat (T. aestivum subsp. vulgare) in relation to the number and size of stomata – Agronomski Glasnik 37(5/6): 285-294 – https://eurekamag.com/research/000/552/000552231.php – (On our blog : https://plantstomata.wordpress.com/2022/02/19/the-relative-water-content-in-flag-leaves-of-wheat-in-relation-to-the-number-and-size-of-stomata/ )
Joudoi T., Shichiri Y., Kamizono N., Akaike T., Sawa T., Yoshitake J., Yamada N., Iwai S. (2013) – Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis – Plant Cell 25: 558–571 – doi: 10.1105/tpc.112.105049 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/8-nitro-cgmp-acts-as-a-guard-cell-signaling-molecule-in-stomata/)
Jover-Gil S., Candela H., Robles P., Aguilera V., Barrero J. M., Micol J. L., Ponce M. R. (2012) – The MicroRNA Pathway Genes AGO1, HEN1and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis – Plant Cell Physiol 53(7): 1322-1333 – doi: 10.1093/pcp/pcs077 – http://pcp.oxfordjournals.org/content/53/7/1322.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/24/the-microrna-pathway-genes-ago1-hen1and-hyl1-and-stomata/)
Juairiah L. (2014) – Studi Karakteristik Stomata Beberapa Jenis Tanaman Revegetasi di Lahan Pasca penambangan Timah di Bangka -Widyariset 17(2): 213-218 –
Juárez C. (2011) – Caracterización química y estomática y\ crecimiento de tallos de Acanthocereus tetragonus, A. subinermis e Hylocereus undatus – Tesis, Maestría en Ciencias (Master of Science thesis). Colegio de Postgraduados. Edo. de México. México. pp. 44 –
Juárez Lopez J. F. (xxxx) – Respuesta de la fotosíntesis a la concentración de CO2 : limitaciones estomáticas y bioquímicas de la fotosíntesis en Quercus ilex Subsp Ballota y Q. faginea – Tesis Universidad de Salamanca, Facultad de Biología, Area de Ecología –
Juárez-Lopez F. J., Escudero A., Mediavilla S. (2008) – Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span – Tree Physiology 28: 367–374 – https://doi.org/10.1093/treephys/28.3.367 –https://academic.oup.com/treephys/article/28/3/367/1655251 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/ontogenetic-changes-in-stomatal-and-biochemical-limitations-to-photosynthesis/ )
Jud W., Fischer L., Wohlfahrt G., Tissier A., Canaval E., Hansel A. (2015) – Nicotiana tabacum as model for ozone – plant surface reactions – Geophysical Research Abstracts 17 – EGU2015-3603 – EGU General Assembly 2015 – https://meetingorganizer.copernicus.org/EGU2015/EGU2015-3603.pdf – (On our blog : https://plantstomata.wordpress.com/2022/09/08/the-uptake-of-ozone-through-the-stomatal-pores-and-oxidative-effects-damaging-the-internal-leaf-tissue/ )
Juenger T., McKay J. K., Hausmann N., Keurntjes J. J. B., Sen S., Stowe K. A., Dawson T. E., Simms E. L., Richards J. H. (2005) – Identification and characterization of QTL underlying whole‐plant physiology in Arabidopsis thaliana: δ13C, stomatal conductance and transpiration efficiency – Plant, Cell & Environment 28(6): 697-708 –https://doi.org/10.1111/j.1365-3040.2004.01313.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2004.01313.x – (On our blog : https://plantstomata.wordpress.com/2019/11/02/allelic-effects-on-%ce%b413c-through-the-upstream-trait-of-stomatal-conductance-with-subsequent-consequences-for-whole-plant-transpiration-efficiency-and-water-loss/ )
Juma M. A., Hornung R. K. W. (1998) – Effects of induced water stress on coconut leaf stomata –
Jumrani K., Bhatia V. S., Pandey G. P. (2017) – Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean – Photosynthesis Research 131: 333–350 – https://doi.org/10.1007/s11120-016-0326-y – https://link.springer.com/article/10.1007/s11120-016-0326-y#citeas – (On our blog : https://plantstomata.wordpress.com/2019/06/13/elevated-temperatures-and-stomatal-density/ )
Jung C., Seo J. S., Han S. W., Koo Y. J., Kim C. H., Song S. I., Nahm B. H., Choi Y. D., Cheong J.-J. (2007) – Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis – Plant Physiol. 146: 623–635 – https://doi.org/10.1104/pp.107.110981 – http://www.plantphysiol.org/content/146/2/623 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/overexpression-of-atmyb44-enhances-stomatal-closure/ )
Jung J.-Y., Kim Y.-W., Kwak J. M., Hwang J.-U., Young J., Schroeder J. I., Hwang I., Lee Y. (2002) – Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. – Plant Cell 14: 2399–2412 – (On our blog : https://plantstomata.wordpress.com/2016/07/05/pi3p-and-pi4p-play-an-important-role-in-the-modulation-of-stomatal-movements/)
Juniza M., Chatri M. (2022) – KARAKTERISTIK STOMATA DARI BEBERAPA SPESIES PADA FAMILIA MELASTOMACEAE – Prosiding Seminar Nasional Biologi 1(2): 1585–1589 – https://doi.org/10.24036/prosemnasbio/vol1/202 – https://semnas.biologi.fmipa.unp.ac.id/index.php/prosiding/article/view/202 – (On our blog : https://plantstomata.wordpress.com/2022/08/23/108309/ )
Junlin L., Lei H., Yanhua S., Hongen G., Zhang H.(2019) – Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure – Plant Physiology and Biochemistry 143: 340-350 – doi: 10.1016/j.plaphy.2019.09.012 – Epub 2019 Sep 6 – PMID: 31541989 – https://pubmed.ncbi.nlm.nih.gov/31541989/ – (On our blog : https://plantstomata.wordpress.com/2023/02/11/amslac1-is-functionally-conserved-for-aba-and-drought-induced-stomata-closure/ )
Juhrbandt J., Leuschner C., Hölscher D. (2004) – The relationship between maximal stomatal conductance and leaf traits in eight Southeast Asian early successional tree species – Forest Ecol Management 202: 245–256 – https://doi.org/10.1016/j.foreco.2004.07.021 – https://www.sciencedirect.com/science/article/pii/S0378112704005389 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/leaf-size-might-be-a-good-predictor-for-maximal-stomatal-conductance-2/ )
Julius-Maximilians-Universität Würzburg (2019) – How plants learned to save water – Phys.Org. FEBRUARY 21, 2019 – https://phys.org/news/2019-02-how-plants-learned-to-save.html – (On our blog : https://plantstomata.wordpress.com/2019/08/10/80028/ )
Jumrani K., Bhatia V. S., Pandey G. P. (2017) – Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean – Photosynth Res. 131(3): 333-350 – doi: 10.1007/s11120-016-0326-y – Epub 2016 Dec 26 – https://www.ncbi.nlm.nih.gov/pubmed/?term=Bhatia+stomata – (On our blog : https://plantstomata.wordpress.com/2020/01/06/impact-of-elevated-temperatures-on-specific-leaf-weight-and-stomatal-density/ )
Jung C., Seo J. S., Han S. W., Koo Y. J., Kim C. H., Song S. I., Nahm B. H., Choi Y. D., Cheong J.-J. (2007) – Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis – Plant Physiol. 146: 623–635 – https://doi.org/10.1104/pp.107.110981 – http://www.plantphysiol.org/content/146/2/623 – (On our blog : https://plantstomata.wordpress.com/2020/03/07/overexpression-of-atmyb44-enhances-stomatal-closure-2/ )
Jung J.‐Y., Kim Y.‐W., Kwak J.M., Hwang J.‐U., Young J., Schroeder J. I., Hwang I., Lee Y. ( 2002) – Phosphatidylinositol 3‐ and 4‐phosphate are required for normal stomatal movements – The Plant Cell 14: 2399– 2412 – https://doi.org/10.1105/tpc.004143 – http://www.plantcell.org/content/14/10/2399 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/pi3p-and-pi4p-play-an-important-role-in-the-modulation-of-stomatal-closing/ )
Jung P. K., Scott H. D. (1980) – Leaf water potential, stomatal resistance, and temperature relations in field-grown soybeans – Agron. J. 72: 986-990 –
Jurca M., Sjölander J., Ibáñez C., Matrosova A., Johansson , Kozarewa I., Takata N., Bakó L., Webb A. A. R., Israelsson M., Eriksson M. E. (2022) – ZEITLUPE Promotes ABA-Induced Stomatal Closure in Arabidopsis and Populus – Frontiers in Plant Science 13 – DOI: 10.3389/fpls.2022.829121 – https://www.researchgate.net/publication/358967274_ZEITLUPE_Promotes_ABA-Induced_Stomatal_Closure_in_Arabidopsis_and_Populus – (On our blog : https://plantstomata.wordpress.com/2022/03/27/zeitlupe-ztl-a-blue-light-photoreceptor-and-clock-component-regulates-aba-induced-stomatal-closure/ )
Jurczyk B., Grzesiak M., Pociecha E., Wlazło M., Rapacz M., (2019) – Diverse Stomatal Behaviors Mediating Photosynthetic Acclimation to Low Temperatures in Hordeum vulgare – Frontiers in Plant Science 09 January 2019 – https://doi.org/10.3389/fpls.2018.01963 – https://www.frontiersin.org/articles/10.3389/fpls.2018.01963/full – (On our blog : https://plantstomata.wordpress.com/2020/01/04/diverse-stomatal-behaviors-mediating-photosynthetic-acclimation-to-low-temperatures/ )
Jurczyk B., Janowiak F., Rapacz M., ( ) – Variation in waterlogging-triggered stomatal behavior contributes to changes in the cold acclimation process in prehardened Lolium perenne and Festuca pratensis – https://www.academia.edu/29446157/Variation_in_waterlogging-triggered_stomatal_behavior_contributes_to_changes_in_the_cold_acclimation_process_in_prehardened_Lolium_perenne_and_Festuca_pratensis – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64806)
Jurenic I. (2016) – Natural variation in stomatal responsiveness of Arabidopsis thaliana plants grown at high and moderate relative humidity (MSc thesis) – Wageningen University & Research – https://www.wur.nl/en/article/Natural-variation-in-stomatal-responsiveness-of-Arabidopsis-thaliana-plants-grown-at-high-and-moderate-relative-humidity..htm – (On our blog : https://plantstomata.wordpress.com/2018/01/24/humidity-and-stomatal-responsiveness/ )
Kadi-Bennane S., Ait-Said S., Smail-Saadoun N. (2005) – Etude adaptative de trois populations de Pistacia atlantica Desf. ssp. atlantica (Ain oussara – Messaad – Taissa) par le biais du complexe stomatique – In M.M. Oliveira and V. Cordeiro (Eds.). – Proceedings of the XIII Meeting of the Mediterranean Research Group for Almond and Pistachio (GREMPA). Mirandela (Portugal), 1-5 June 2003: 365-368 –
Kagan M. L., Novoplansky N., Sachs T. (1991) – Variable cell lineages form the functional pea epidermis – Annals of Botany 69: 303–312 – https://doi.org/10.1093/oxfordjournals.aob.a088346 –https://academic.oup.com/aob/article-abstract/69/4/303/172678?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/16/an-intracellular-program-which-generates-stomatal-patterns-during-rather-than-preceding-development/ )
Kagan M. L., Novoplansky N., Sachs T. (1992) – Variable cell lineages during the formation of stomatal patterns – Annals of Botany 69: 303-312 –
Kaiser E., Morales A., Harbinson J., Heuvelink E., Marcelis L. F. M. (2020) – High Stomatal Conductance in the Tomato Flacca Mutant Allows for Faster Photosynthetic Induction – Front. Plant Sci. 25 August 2020 – https://doi.org/10.3389/fpls.2020.01317 – https://www.frontiersin.org/articles/10.3389/fpls.2020.01317/full – (On our blog : https://plantstomata.wordpress.com/2021/11/08/high-stomatal-conductance-in-tomato-flacca-mutant-it-keeps-its-stomata-open-at-all-times-at-the-cost-of-reduced-water-use-efficiency/ )
Kagan M. L., Sachs T. (1991) – Development of immature stomata: evidence for epigenetic selection of a spacing pattern – Dev. Biol. 146: 100-105 – https://doi.org/10.1016/0012-1606(91)90450-H – https://www.sciencedirect.com/science/article/pii/001216069190450H – (On our blog : https://plantstomata.wordpress.com/2018/01/27/development-of-immature-stomata/ )
Kaiser H. (1999) – Die stomatäre Reaktion von Sambucus nigra und Aegopodium podagraria in Abhängigkeit von Licht und Luftfeuchte – PhD Thesis Christian-Albrechts-Universität zu Kiel 129 pp. – https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00000359/d359.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/27/die-stomatare-reaktion-in-abhangigkeit-von-licht-und-luftfeuchte/ )
Kaiser H. (2009) – The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll – Plant, Cell and Environment 32: 1091–1098 – doi: 10.1111/j.1365-3040.2009.01990.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2009.01990.x – (On our blog : https://plantstomata.wordpress.com/2018/09/22/the-relation-between-stomatal-aperture-and-gas-exchange/ )
Kaiser H., Eckstein J., Beyschlag W., Kappen L. (1999) – Variabilität stomatärer Aperturen bei Auftreten fleckenhafter Chlorophyllfluoreszenz – Bielefelder Ökologische Beiträge 14: 246–252 –
Kaiser H., Grams T. E. E. (2006) – Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica – Journal of Experimental Botany 57(9): 2087–2092 – https://doi.org/10.1093/jxb/erj165 – https://academic.oup.com/jxb/article/57/9/2087/623683 – (On our blog : https://plantstomata.wordpress.com/2019/10/19/stomatal-movements-can-be-induced-by-electrical-signals/ )
Kaiser H., Kappen L. (1997) – In situ observations of stomatal movements in different light‐dark regimes: the influence of endogenous rhythmicity and long‐term adjustments – Journal of Experimental Botany 48: 1583–1589 – https://doi.org/10.1093/jxb/48.8.1583 –https://academic.oup.com/jxb/article/48/8/1583/501886 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/the-influence-of-endogenous-rhythmicity-and-long%e2%80%90term-adjustments-on-stomatal-movements/ )
Kaiser H., Kappen L. (2000) – In-situ-observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey – Journal of Experimental Botany 51: 1741–1749 – DOI: 10.1093/jexbot/51.351.1741 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/In-situ-observations-of-stomatal-movements-of-Glycyrrhiza-inflata-under-desert-conditions-of-Glycyrrhiza-inflata-under-desert-conditions.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/16/76380/ )
Kaiser H., Kappen L. (2001) – Stomatal oscillations at small apertures: indications for a fundamental imperfection of stomatal feedback-control inherent in the stomatal turgor mechanism – Journal of Experimental Botany 52: 1303–1313 – https://doi.org/10.1093/jexbot/52.359.1303 –https://academic.oup.com/jxb/article/52/359/1303/510917 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/stomatal-oscillations-at-small-apertures/ )
Kaiser H. & Legner N. (2007) – Localization of mechanisms involved in hydropassive and hydroactive stomatal responses of Sambucus nigra to dry air – Plant Physiology 143: 1068–1077 – DOI: 10.1104/pp.106.089334 –https://www.ncbi.nlm.nih.gov/pubmed/17158586 – (On our blog : https://plantstomata.wordpress.com/2019/03/17/mechanisms-involved-in-hydropassive-and-hydroactive-stomatal-responses-to-dry-air/ )
Kaiser H., Paoletti E. (2014) – Dynamic stomatal changes. In: Tausz M, Grulke N (eds) Trees in a changing environment: ecophysiology, adaptation, and future survival – Springer, Dordrecht, Netherlands, pp 61–82.
Kakulas F., Evans J. R., Ludwig M., Veneklaas E. (2009) – Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls – Plant Cell and Environment 32(11):1596-611 – Doi: 10.1111/j.1365-3040.2009.02024.x – https://www.researchgate.net/publication/26690884_Stomatal_crypts_may_facilitate_diffusion_of_CO2_to_adaxial_mesophyll_cells_in_thick_sclerophylls – (On our blog : https://plantstomata.wordpress.com/2019/08/06/stomatal-crypts-may-facilitate-diffusion-of-co2/ )
Kala J., De Kauwe M. G., Pitman A. J., Lorenz R., Medlyn B. E., Wang Y. -P., Lin Y. -S., Abramowitz G., (2015) – Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b) – DOI:10.5194/gmd-8-3877-2015 – https://ui.adsabs.harvard.edu/abs/2015GMD…..8.3877K/abstract (On our blog : https://plantstomata.wordpress.com/2020/10/25/an-optimal-stomatal-conductance-scheme-in-the-australian-community-climate-earth-systems-simulator/ )
Kala J., De Kauwe M. G., Pitman A. J., Medlyn B. E., Wang Y.-P., Lorenz R., Perkins-Kirkpatrick S. E. (2016) – Impact of the representation of stomatal conductance on model projections of heatwave intensity – Scientific Reports 6, Article number: 23418 – doi: 10.1038/srep23418 – https://www.nature.com/articles/srep23418 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/impact-of-the-representation-of-stomatal-conductance-on-model-projections-of-heatwave-intensity/ )
Kalariya K. A., Mehta D., Goswami N., Singh A. L., Chakraborty K., Mahatma M. K., Zala P. V., Patel C. B. (2017) – Stomatal clustering pattern in Arachis hypogea L. under water deficit stress – Indian J. Experim. Biol. 55:880-883 – http://nopr.niscair.res.in/bitstream/123456789/43225/1/IJEB%2055%2812%29%20880-883.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/28/stomatal-clustering-pattern-under-water-deficit-stress/ )
Kalariya K. A., Shahi D., Singh A. L., Roy S. (2021) – Stomatal Development and Impact of Stomatal Movement on Secondary Metabolism in Medicinal Plants – JSM Environmental Science & Ecology 9(1): 1074 – https://www.jscimedcentral.com/EnvironmentalScience/environmentalscience-9-1074.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/28/formation-of-stomata-is-under-strict-genetic-control-but-is-governed-greatly-by-the-conditions-like-temperature-light-pathogens-etc/ )
Kale L., Nakurte I., Jalakas P., Kunga-Jegere L., Brosché M., Rostoks N. (2019) – Arabidopsis mutant dnd2 exhibits increased auxin and abscisic acid content and reduced stomatal conductance – Plant Physiol Biochem. 140: 18-26 – doi: 10.1016/j.plaphy.2019.05.004 – Epub 2019 May 3 -PMID: 31078052 – https://pubmed.ncbi.nlm.nih.gov/31078052/ – (On our blog : https://plantstomata.wordpress.com/2021/01/27/arabidopsis-dnd2-mutant-exhibited-aba-overaccumulation-and-stomatal-phenotypes-which-may-contribute-to-the-observed-improvement-in-drought-stress-resistance/ )
Kalliola M., Jakobson L., Davidsson P., Pennanen V., Waszczak C., Yarmolinsky D., Zamora O., Tapio Palva E., Kariola T., Kollist H., Brosché M. (2019) – The role of strigolactones in regulation of stomatal conductance and plant-pathogen interactions in Arabidopsis thaliana – biorxiv – doi: https://doi.org/10.1101/573873 – https://www.biorxiv.org/content/10.1101/573873v2 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/the-role-of-strigolactones-in-regulation-of-stomatal-conductance/ )
Kalliola M., Jakobson L., Davidsson P., Pennanen V., Waszczak C., Yarmolinsky D., Zamora O., Tapio Palva E., Kariola T., Kollist H., Brosché M. (2020) – Differential role of MAX2 and strigolactones in pathogen, ozone, and stomatal responses – Plant Direct 4: e00206 – doi: 10.1002/pld3.206 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047155/ – (On our blog : https://plantstomata.wordpress.com/2020/12/31/differential-role-of-max2-and-strigolactones-in-pathogen-ozone-and-stomatal-responses/ )
Kamakura M., Kosugi Y., Muramatsu K., Muraoka H. (2011) – Simulations and observations of patchy stomatal behavior in leaves of Quercus crispula, a cool-temperate deciduous broad-leaved tree species – Journal of Plant Research 2011 – DOI:10.1007/s10265-011-0460-8 – https://www.semanticscholar.org/paper/Simulations-and-observations-of-patchy-stomatal-in-Kamakura-Kosugi/eb149e19ceb030c8489d52f5b24df359f5f1972a – (On our blog : https://plantstomata.wordpress.com/2019/03/15/patchy-stomatal-behavior-in-leaves/ )
Kamakura M., Kosugi Y., Takanashi S., Matsumoto K., Okumura M., Philip E. (2011) – Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees – Tree Physiology 31(2): 160-168 – DOI:10.1093/treephys/tpq102 –https://www.semanticscholar.org/paper/Patchy-stomatal-behavior-during-midday-depression-Kamakura-Kosugi/a534b058ab8042d8c5fad92a719fb4b13b08c668 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/patchy-stomatal-behavior-during-midday-depression-of-leaf-co%e2%82%82-exchange/ )
Kamakura M., Kosugi Y., Takanashi S., Tobita H., Uemura A., Utsugi H. (2012) – Observation of the scale of patchy stomatal behavior in leaves of Quercus crispula using an Imaging-PAM chlorophyll fluorometer – Tree Physiology 32: 839-846 – doi: 10.1093/treephys/tps053 – https://www.academia.edu/18409128/Observation_of_the_scale_of_patchy_stomatal_behavior_in_leaves_of_Quercus_crispula_using_an_Imaging-PAM_chlorophyll_fluorometer?auto=download – (On our blog : https://plantstomata.wordpress.com/2019/11/20/the-spatial-scale-of-stomatal-patches/ )
Kamakura M., Kosugi Y., Takanashi S., Uemura A., Utsugi H., Kassim A. R. (2018) – Occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees distributed in a south-east asian tropical rainforest in peninsular Malaysia – Tree Physiol. 35: 61–70 – doi: 10.1093/treephys/tpu109 – https://academic.oup.com/treephys/article/35/1/61/1675621 – (On our blog : https://plantstomata.wordpress.com/2019/12/10/stomatal-patchiness-and-its-spatial-scale-in-leaves-from-various-sizes-of-trees/ )
Kambhampati R. (2012) – Structure of stomata of leaves and their working mechanism – India Study Channel – http://www.indiastudychannel.com/resources/151733-Structure-Of-Stomata-Of-Leaves-And-Their-Working-Mechanism.aspx – (On our blog : https://plantstomata.wordpress.com/2017/12/21/stomata-and-their-working-mechanism/)
Kaminski K. P., Koerup K., Nielsen K. L., Liu F.,Topjerg H. B., Kirk H. G., Andersen M. N. (2014) – Gas-exchange, water use efficiency and yield responses of elite potato (Solanum tuberosum L.) cultivars to changes in atmospheric carbon dioxide concentration, temperature and relative humidity – Agricultural and Forest Meteorology 187: 36-45 – https://www.sciencedirect.com/science/article/pii/S0168192313003043 – (On our blog : https://plantstomata.wordpress.com/2018/08/29/stomatal-function-gas-exchange-water-use-efficiency-and-yield-responses-to-changes-in-atmospheric-co2-concentration-temperature-and-relative-humidity/ )
Kamiya N., Itoh J.‐I., Morikami A., Nagato Y., Matsuoka M. (2003) – The SCARECROW gene’s role in asymmetric cell divisions in rice plants – The Plant Journal 36: 45– 54 – https://doi.org/10.1046/j.1365-313X.2003.01856.x – https://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.2003.01856.x – (On our blog : https://plantstomata.wordpress.com/2021/02/07/osscr-is-involved-not-only-in-the-asymmetric-division-of-the-cortex-endodermis-progenitor-cell-but-also-during-stomata-and-ligule-formation/ )
Kammer P. M., Steiner J. S., Schöb C. (2015) – Arabis alpina and Arabidopsis thaliana have different stomatal development strategies in response to high altitude pressure conditions – Alpine Botany, 125(2): 101-112 – http://doi.org/10.5167/uzh-112101 – http://www.zora.uzh.ch/112101/– (On our blog : https://plantstomata.wordpress.com/2016/08/04/17522/)
Kamrani Y. Y., Shomali A., Aliniaeifard S., Oksana Lastochkina O., Moosavi-Nezhad M., Nima Hajinajaf N., Talar U. (2022) – Regulatory Role of Circadian Clocks on ABA Production and Signaling, Stomatal Responses, and Water-Use Efficiency under Water-Deficit Conditions – MDPI Cells 11(7): 1154 – https://doi.org/10.3390/cells11071154 – https://www.mdpi.com/2073-4409/11/7/1154 – (On our blog : https://plantstomata.wordpress.com/2022/04/19/the-circadian-clock-through-aba-directs-plants-to-modulate-their-stomatal-responses-and-feedback-mechanisms-to-ensure-survival-and-to-enhance-their-fitness-under-drought-conditions/ )
Kamululdeen J., Yunusa I., Bruhl J., Prychid C., Zerihun A. (2016) – Plasticity in stomatal density and morphology in okra and tomatoes in response to soil and water salinity, pp. 45-53. – http://doi.org/10.17660/ActaHortic.2016.1112.7 – (On our blog : https://plantstomata.wordpress.com/2016/08/09/17789/)
Kana T. M., Miller J. H. (1977) – Effect of colored light on stomatal opening rates of Vicia faba L. – Plant Physiol. 59: 181 183 – PMCID: PMC542360 – PMID: 16659812 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC542360/ – (On our blog : https://plantstomata.wordpress.com/2019/03/17/only-a-single-pigment-system-is-responsible-for-initiating-the-light-induced-opening-response-in-stomata/ )
Kanaoka M. M., Pillitteri L. J., Fujii H., Yoshida Y., Bogenschutz N. L., Takabayashi J., Zhu J-K., Torii K. U. (2008) – SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation – Plant Cell 20: 1775–1785 – doi: 10.1105/tpc.108.060848 – (On our blog : https://plantstomata.wordpress.com/2016/07/05/screamice1-and-scream2-and-stomatal-differentiation/)
KanCRN Collaborative Research Network (1999) – Leaf stomata as bioindicators of global warming – (kancrn.org/stomata/index.cfm)
Kane C. N., Jordan G. J., Jansen S., McAdam S. A. M. (2020) – A Permeable Cuticle, Not Open Stomata, Is the Primary Source of Water Loss From Expanding Leaves – Frontiers in Plant Science 11:774 –
DOI: 10.3389/fpls.2020.00774 – https://europepmc.org/article/pmc/pmc7325764 – (On our blog : https://plantstomata.wordpress.com/2020/07/29/a-permeable-cuticle-not-open-stomata-is-the-primary-source-of-water-loss-from-expanding-leaves/)
Kane M. E. (1985) – “DEVELOPMENTAL MORPHOLOGY AND PHYSIOLOGY OF HETEROPHYLLOUS AQUATIC ANGIOSPERMS (ABSCISIC ACID, HALORAGACEAE, LEAF DEVELOPMENT, WATER STRESS, STOMATA)” (1985) – Dissertations and Master’s Theses (Campus Access) – Paper AAI8516677 – https://digitalcommons.uri.edu/dissertations/AAI8516677 – (On our blog : https://plantstomata.wordpress.com/2021/08/18/stomatal-differentiation/ )
Kaneko D. (2015) – Relation between Ocean SST Dipoles and Downwind Continental
Croplands Assessed for Early Management Using Satellite-based
Photosynthesis Models – Geophysical Research Abstracts 17 – EGU2015-9349-1 –
EGU General Assembly 2015 – https://meetingorganizer.copernicus.org/EGU2015/EGU2015-9349-1.pdf – (On our blog : https://plantstomata.wordpress.com/2022/08/26/solar-radiation-surface-air-temperature-and-water-stress-all-directly-affect-grain-vegetation-photosynthesis-and-all-affect-stomata-opening/ )
Kanemasu E. T., Tanner C. B. (1969) – Stomatal diffusion resistance of snap beans. I. Influence of leaf-water potential – Plant Physiol. 44: 1547-1552 – DOI: https://doi.org/10.1104/pp.44.11.1547 – http://www.plantphysiol.org/content/44/11/1547 – (On lour blog : https://plantstomata.wordpress.com/2018/04/20/the-leaf-water-potential-and-stomatal-diffusion-resistance/ )
Kanemasu E. T., Tanner C. B. (1969) – Stomatal diffusion resistance of snap beans. II. Effect of light – Plant Physiol. 44: 1542-1546 – DOI 10.1104/pp.44.11.1542 – http://www.plantphysiol.org/content/44/11/1542 – (On our blog : https://plantstomata.wordpress.com/2018/04/20/the-effect-of-light-on-the-stomatal-resistance/ )
Kanemasu E. T., Thurtell G. W., Tanner C. B. (1969) – Design, calibration and field use of a stomatal diffusion porometer – Plant Physiol. 44: 881-885 – https://doi.org/10.1104/pp.44.6.881 – http://www.plantphysiol.org/content/44/6/881 -(On our blog : https://plantstomata.wordpress.com/2018/04/19/a-stomatal-diffusion-porometer/ )
Kanezawa R. (xxxx) – Induced tetraploidy in Japanese Cypress (Chamaecyparis obtusa Endl.) – file:///C:/Users/wille/Downloads/esrh039004%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/19/stomata-in-chamaecyparis-investigated-by-the-sump-method/ )
Kang C.-Y., Lian H.-L., Wang F.-F., Huang J.-R., Yang H.-Q. (2009) – Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis – Plant Cell 21: 2624–2641 – DOI: 10.1105/tpc.109.069765 – (On our blog : https://plantstomata.wordpress.com/2016/07/05/cryptochromes-phytochromes-cop1-and-stomatal-development/)
Kang X., Xu G., Lee B., Chen C., Zhang H., Kuang R., Ni M. (2018) – HRB2 and BBX21 interaction modulates Arabidopsis ABI5 locus and stomatal aperture – Plant, Cell & Environment – Online Version of Record – https://doi.org/10.1111/pce.13336 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/pce.13336 – (On our blog : https://plantstomata.wordpress.com/2018/05/28/two-light-signalling-proteins-repress-aba-signalling-to-sustain-gas-exchange-during-periodic-drought/ )
Kang Y., Outlaw W. H. Jr., Andersen P. C., Fiore G. B. (2007) – Guard-cell apoplastic sucrose concentration – a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. – Plant Cell Environ. 30: 551–558 – doi: 10.1111/j.1365-3040.2007.01635.x – – https://www.ncbi.nlm.nih.gov/pubmed/17407533 – (On our blog : https://plantstomata.wordpress.com/2018/04/11/apoplastic-sucrose-concentration-and-stomatal-aperture-size/ )
Kang Y., Outlaw Jr. W. H., Fiore G .B., Riddle K .A. (2007) – Guard cell apoplastic photosynthate accumulation corresponds to a phloem-loading mechanism – J. Exp. Bot. 58: 4061-4070 – https://doi.org/10.1093/jxb/erm262 – https://academic.oup.com/jxb/article/58/15-16/4061/447689 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/differences-in-phloem-loading-mechanisms-predict-differences-in-the-in-planta-regulatory-environment-of-stomatal-guard-cells/ )
Kangasiärvi J. (2012) – Apoplastic ROS and stomatal signaling – processes and components involved – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/apoplastic-ros-and-stomatal-signaling/ )
Kangur O., Steppe K., Schreel J., von der Crone J., Sellin A. (2021) – Variation in nocturnal stomatal conductance and development of predawn disequilibrium between soil and leaf water potentials in nine temperate deciduous tree species – FUNCTIONAL PLANT BIOLOGY 48(5): 483–492 – https://doi.org/10.1071/FP20091 – https://biblio.ugent.be/publication/8704400 – (On our blog : https://plantstomata.wordpress.com/2021/07/23/how-nocturnal-stomatal-conductance-differs-among-potted-saplings-in-wet-and-dry-soil-conditions/ )
1987) – In situ observations of stomatal movements – Journal of Experimental Botany 38: 126–141 – https://doi.org/10.1093/jxb/48.8.1583 – https://www.jstor.org/stable/23691652?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/20/in-situ-observations-of-stomatal-movements/ )
, , (Kappen L., Haeger S. (1991) – Stomatal responses of Tradescantia albiflora to changing air humidity in light and in darkness – J Exp Bot 42: 979–986 – https://doi.org/10.1093/jxb/42.8.979 – https://academic.oup.com/jxb/article-abstract/42/8/979/706528?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/17/stomatal-responses-to-changing-air-humidity-in-light-and-in-darkness/ )
Kappen L., Schultz G., Vanselow R. (1995) – Direct observation of stomatal movements – In ED Schulze, MM Caldwell, eds, Eco- physiology of Photosynthesis 231-246 – Springer-Verlag – https://doi.org/10.1007/978-3-642-79354-7_11 – https://link.springer.com/chapter/10.1007/978-3-642-79354-7_11#citeas – (On our blog : https://plantstomata.wordpress.com/2020/03/24/direct-observation-of-stomatal-movements/ )
Kar R. K., Parvin N., Laha D. (2013) – Differential Role of Ethylene and Hydrogen Peroxide in Dark-induced Stomatal Closure – Pakistan Journal of Biological Sciences 16(24): 1991-1996 – DOI: 10.3923/pjbs.2013.1991.1996 – https://scialert.net/abstract/?doi=pjbs.2013.1991.1996 – (On our blog : https://plantstomata.wordpress.com/2021/04/17/a-probable-action-of-ethylene-and-hydrogen-peroxide-in-closing-stomata/ )
Kara S., Ozseker E. (1999) – Investigations on leaf characteristics and stomatal distribution of yuvarlak cekirdeksiz grape cultivar grafted on different rootstocks (Farklı anaclar uzerinde asılı yuvarlak cekirdeksiz uzum cesidinin yaprak ozellikleri ve stoma dagılımı uzerinde bir arastırma) – J. AARI, Anadolu 9: 76-85 –
Karabourniotis G., Tzobanoglou D., Nikolopoulos D., Liakopoulos G. (2001) – Epicuticular phenolics over guard cells: exploitation for in situ stomatal counting by fluorescence microscopy and combined image analysis – Ann. Bot. 87: 631–639 – https://doi.org/10.1006/anbo.2001.1386 – https://www.sciencedirect.com/science/article/pii/S0305736401913861 – (On our blog : https://plantstomata.wordpress.com/2018/04/21/in-situ-stomatal-counting-by-fluorescence-microscopy-and-combined-image-analysis/ )
Karubuy C. N. S., Rahmadaniarti A., Wanggai J. (2018) – Stomatal Characteristic and Chlorophyll Content of Black Pine Seedling Leaf
[Sundacarpus amarus (Blume) C.N.Page] at Several Shaded Intensities/KARAKTERISTIK STOMATA DAN KANDUNGAN KLOROFIL DAUN ANAKAN KAYU CINA (Sundacarpus amarus (Blume) C.N.Page) PADA BEBERAPA INTENSITAS NAUNGAN – Jurnal Kehutanan Papuasia 4 (1): 45–56 – file:///C:/Users/wille/Downloads/adminJournalPA,+Karubuy+dkk.JKP%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2023/03/12/113846/ )
Karanam A., He D., Hsu P.-K., Schulze S., Dubeaux G., Karmakar R., Schroeder J. I., Rappel W.-J. (2021) – Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling – Plant Physiology – DOI: 10.1093/plphys/kiab344 – https://www.researchgate.net/publication/353789953_Boolink_a_graphical_interface_for_open_access_Boolean_network_simulations_and_use_in_guard_cell_CO2_signaling – (On our blog : https://plantstomata.wordpress.com/2021/08/16/boolink-used-in-guard-cell-co2-signaling/ )
Karapetyan S., Dong X. (2018) – Redox and the circadian clock in plant immunity: A balancing act – Free Radic Biol Med. 119: 56-61 – doi: 10.1016/j.freeradbiomed.2017.12.024 – Epub 2017 Dec 19 – PMID: 29274381 – PMCID: PMC5986284 – https://pubmed.ncbi.nlm.nih.gov/29274381/ – (On our blog : https://plantstomata.wordpress.com/2022/09/23/the-roles-of-the-circadian-clock-as-a-robust-overseer-and-the-cellular-redox-as-a-dynamic-executor-of-plant-defense/ )
Karavolias N. G., Patel D., Seong K., Tjahjadi M., Gueorguieva G.-A., Tanaka J., Dahlbeck D., Cho M -J., Niyogi K. K., Staskawicz B. J. (2021) – CRISPR/Cas9 knockout of EPFL10 reduces stomatal density while maintaining photosynthesis and enhancing water conservation in rice – bioRxiv – https://doi.org/10.1101/2021.12.21.473329 – https://www.biorxiv.org/content/10.1101/2021.12.21.473329v1.full.pdf – (On our blog : https://plantstomata.wordpress.com/2023/02/04/modest-reductions-in-stomatal-densities-may-be-a-climate-adaptive-approach-in-rice-that-can-safeguard-yield/ )
Environmental pollution – ISSN 0269-7491 – 158(3): 788-794 – https://doi.org/10.1016/j.envpol.2009.10.006 – https://www.sciencedirect.com/science/article/pii/S0269749109004862 – (On our blog : https://plantstomata.wordpress.com/2018/04/11/stomatal-density-and-stomatal-pore-surface-potentially-good-bio-indicators-for-urban-habitat-quality/ )
, , , , , , Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. –Kardiman R., Ræbild A. (2018) – Relationship between stomatal density, size and speed of opening in Sumatran rainforest species – Tree Physiol. 38: 696-705 – doi:10.1093/treephys/tpx149 – https://academic.oup.com/treephys/article/38/5/696/4654273 – (On our blog : https://plantstomata.wordpress.com/2022/04/16/gs-dark-gs-op-and-speed-of-stomatal-opening-were-associated-with-biomass-growth/ )
Kareltschikoff S. (1866) – Ueber die Verteilung der Spaltöffnungen auf den Blättern – Bull. Soc. imp. naturalistes de Moscou. –
Karlsson P. E. (1986) – Blue light regulation of stomata in wheat seedlings. I. Influence of red background illumination at initial conductance level – Physiologia Plantarum 66: 202-220 – https://doi.org/10.1111/j.1399-3054.1986.tb02409.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb02409.x – (On our blog : https://plantstomata.wordpress.com/2018/09/14/red-background-illumination-increased-the-sensitivity-of-the-stomatal-conductance-response-to-low-intensity-blue-light/ )
Karlsson P. E. (1986) – Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism – https://doi.org/10.1111/j.1399-3054.1986.tb02410.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb02410.x – (On our blog : https://plantstomata.wordpress.com/2018/12/03/the-blue-light-response-of-wheat-stomata-did-not-exhibit-action-dichroism/ )
Karlsson P. E. (1988) – Phytochrome is not involved in the red-light-enhancement of the stomatal blue-light-response in wheat seedlings – Physiol Plant 74: 544-548 – https://doi.org/10.1111/j.1399-3054.1988.tb02016.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1988.tb02016.x – (On our blog : https://plantstomata.wordpress.com/2018/12/03/red%e2%80%90light%e2%80%90enhancement-of-the-stomatal-blue%e2%80%90light%e2%80%90response-in-wheat-seedlings-does-not-involve-a-change-in-the-photostationary-state-of-phytochrome/ )
Karlsson P. E., Assmann S. M. (1990) – Rapid and specific modulation of stomatal conductance by blue-light in ivy (Hedera helix): an approach to assess the stomatal limitation of carbon assimilation. – Plant Physiol 94: 440–447 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/the-blue-light-response-of-stomata/ )
Karlsson P. E., Bogomolni R. A., Zeiger E. (1992) – High performance liquid chromatography of pigments from guard cell protoplasts and mesophyll tissue of Vicia faba L. – Photochemistry and Photobiology 55: 605-610 – https://doi.org/10.1111/j.1751-1097.1992.tb04283.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1992.tb04283.x – (On our blog : https://plantstomata.wordpress.com/2019/04/29/chromatography-of-pigments-from-guard-cell-protoplasts/ )
Karlsson P. E., Schwartz A. (1988) – Characterisation of the effects of metabolic inhibitors, ATPase inhibitors and a potassium-channel blocker on stomatal opening and closing in isolated epidermis of Commelina communis L. – Plant, Cell Environm. 11: 165-172 – https://doi.org/10.1111/j.1365-3040.1988.tb01133.x-https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1988.tb01133.x – (On our blog : https://plantstomata.wordpress.com/2019/05/06/the-effects-of-metabolic-inhibitors-atpase-inhibitors-and-a-potassium-channel-blocker-on-stomatal-opening-and-closing/ )
Karvé A. (1959/1961) – Die Wirkung verschiedener Lichtqualitäten auf die Öffnungsbewegung der Stomata – Z. Bot. 49: 47-72 –
Kasai M., Koide K., Ichikawa Y. (2012) – Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants – Int. Journ. Agronomy 2012: Art. ID 751731 – https://doi.org/10.1155/2012/751731 – https://www.hindawi.com/journals/ija/2012/751731/ – (On our blog : https://plantstomata.wordpress.com/2022/09/13/transplantation-of-soybean-plants-into-larger-pots-increases-the-plant-photosynthetic-matter-production-and-increases-the-rate-of-co2-diffusion-via-leaf-stomata/ )
Kashtoh H., Baek K.-H. (2021) – Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure – Plants 10: 2774 – https://doi.org/10.3390/plants10122774 – file:///C:/Users/wille/Downloads/plants-10-02774%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/30/the-slac1-anion-channel-and-kat1-potassium-channel-and-their-regulatory-components-emphasizing-their-significance-in-stomatal-guard-cell-response-to-various-stimuli/ )
Kassam A. H. (1973) – The influence of light and water deficit upon diffusive resistance of leaves of Vicia faba L. – New Phytologist 72(3) – https://doi.org/10.1111/j.1469-8137.1973.tb04407.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1973.tb04407.x – (On our blog : https://plantstomata.wordpress.com/2020/02/09/83042/ )
Kastori R., Petrović M. (1972) – The effect of some biogenic elements on the stomatal apparatus in maize plants – Matica srpska Novi Sad 42: 124-135 –
Kataria N., Singh N. (2014) – Assessing the effects of applied potassium on selected Vigna radiata L. genotypes under water deficit – International Journal of Advanced Research 2(10): 369-385 – ISSN 2320-5407 – http://www.journalijar.com/uploads/613_IJAR-4241.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/22/effects-of-applied-potassium-on-selected-vigna-radiata-l-genotypes-and-stomatal-conductance-under-water-deficit/ )
Kato Y., Okami M. (2010) – Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions – Field Crops Res. 117: 9–17 – https://doi.org/10.1016/j.fcr.2009.12.003 – https://www.sciencedirect.com/science/article/pii/S0378429009003335?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/root-growth-dynamics-and-stomatal-behaviour/ )
Katul G., Manzoni S., Palmroth S., Oren R. (2010) – A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. – Ann Bot 105: 431–442 – doi: 10.1093/aob/mcp292 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826246/ – (On our blog : https://plantstomata.wordpress.com/2018/04/20/a-stomatal-optimization-theory/ )
2009) – Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange – Plant, Cell & Environment 32: 968–979 – https://doi.org/10.1111/j.1365-3040.2009.01977.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.01977.x – (On our blog : https://plantstomata.wordpress.com/2018/04/23/leaf-stomatal-responses-to-vapour-pressure-deficit-under-current-and-co2-enriched-atmosphere/ )
, (Katz M. (1949) – Sulfur dioxide in the atmosphere and its relation to plant life – Industrial and engineering chemistry 41(11): 2450-2465 – https://cac.yorku.ca/files/2012/12/article3.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/29/sulfur-dioxide-in-the-atmosphere-and-stomatal-behaviour/ )
Kaufman P. B., Cacsell S. J. (1963) – Striking features in the development of internodal epidermis in the oat plant (Avena sativa) – Michigan Bot. 2: 115-121 –
Kaufman P. B., Petering L. B., Yocum C. S., Baic D. (1970) – Ultrastructural studies on stomata development in internodes of Avena sativa – Amer. J. Bot. 57: 33-49 – http://www.jstor.org/stable/pdf/2440378.pdf?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/13/ultrastructural-studies-on-stomata-development-in-oat-internodes/ )
Kaufman P. B., Petering L. B., Soni S. L. (1971) – Ultrastructural studies on cellular differentiation in internodal epidermis of Avena sativa – Phytomorphology 20 (3): 281-309 – (On our blog : https://plantstomata.wordpress.com/2017/03/20/ultrastructural-studies-on-stomata-in-avena-monocots/)
Kaufmann K. (1927) – Anatomie und Physiologie der Spaltöffnungsapparate mit verholtzten Schliesszellmembranen – Planta 3: 27-59
Kaufmann M. R. (1976) – Stomatal response of Engelmann spruce to humidity, light, and water stress – Plant Physiol 57: 898-901 – https://doi.org/10.1104/pp.57.6.898 – http://www.plantphysiol.org/content/57/6/898 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/stomatal-response-to-humidity-light-and-water-stress/ )
Kaufmann M. R. (1976) – Stomatal response of Citrus jambhiri to water stress and humidity – Physiol. Plant. 38(2): 105‐108 –
Kaufmann M. R. (1979) – Stomatal control and development of water deficit in Engelmann spruce seedlings during drought – Can J Forest Res 9 : 297-304 – https://doi.org/10.1139/x79-051 – http://www.nrcresearchpress.com/doi/10.1139/x79-051 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/stomatal-control-and-development-of-water-deficit-during-drought/ )
Kaufmann M. R. (1982a) – Leaf conductance as a function of photosynthetic photon flux density and absolute humidity difference from leaf to air – Plant Physiol. 69: 1018-1022 – https://doi.org/10.1104/pp.69.5.1018 – http://www.plantphysiol.org/content/69/5/1018 – (On our blog : https://plantstomata.wordpress.com/2018/04/30/ppfd-and-dah-are-primary-factors-controlling-stomatal-function/ )
Kaufmann M. R. (1982 b) – Evaluation of season, temperature, and water stress effects on stomata using a leaf conductance model – Plant Physiol. 69: 1023-1026 – https://doi.org/10.1104/pp.69.5.1023 – http://www.plantphysiol.org/content/69/5/1023 – (On our blog : https://plantstomata.wordpress.com/2018/04/23/season-temperature-and-water-stress-effects-on-stomata/ )
Kaufmann M. R., Eckard A. N. (1977) – A portable instrument for rapidly measuring conductance and transpiration of conifers and other species – Forest Sci 23 : 227-237 – https://doi.org/10.1093/forestscience/23.2.227 – https://academic.oup.com/forestscience/article-abstract/23/2/227/4675809?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/20/an-improved-porometer/ )
Kaufmann M. R., Levy Y. (1976) – Stomatal response of Citrus jambhiri to water stress and humidity – Physiol. Plant. 38: 105-108 – https://doi.org/10.1111/j.1399-3054.1976.tb04867.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1976.tb04867.x – (On our blog : https://plantstomata.wordpress.com/2018/04/20/stomatal-response-to-water-stress-and-humidity/ )
Kaufman P. B., Dayanandan P. (1975) – Stomatal movements associated with potassium fluxes – Amer. J. Bot. 62(3): 221- 231 – DOI: 10.1002/j.1537-2197.1975.tb12347.x – https://www.researchgate.net/publication/322860579_STOMATAL_MOVEMENTS_ASSOCIATED_WITH_POTASSIUM_FLUXES – (On our blog : https://plantstomata.wordpress.com/2018/11/12/potassium-fluxes-associated-with-stomatal-movements/ )
Kaufman P. B., Petering L. B., Yocum C. S., Baic D. (1970) – Ultrastructural studies on stomatal development in internodes of Avena sativa – American Journal of Botany 57: 33–49 – https://doi.org/10.1002/j.1537-2197.1970.tb09789.x –https://app.dimensions.ai/details/publication/pub.1100715290 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/ultrastructural-studies-on-stomatal-development-in-internodes/ )
Kaul R. B. (1976) – Anatomical observations on floating leaves – Aquatic Botany 2: 215-234 – https://doi.org/10.1016/0304-3770(76)90022-X – https://www.sciencedirect.com/science/article/abs/pii/030437707690022X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/06/08/functional-stomata-on-floating-leaves/ )
Kaur A., Kapoor R., Vikal Y., Kalia A. (2020) – Colchicine-induced chromosome doubling in Pennisetum interspecific hybrids and its effect on plant morphology – Indian J. Genet. 80(1) 58-63 – DOI: 10.31742/IJGPB.80.1.7 – https://www.isgpb.org/documents/archive/7-58-63-arshpreet-kaur-1.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/05/plants-containing-significantly-lower-stomatal-frequency-and-larger-stomata-size-were-selected-for-further-analysis-by-chromosome-counting/ )
Kaur S. (2004) – Stomatal responses of lemon (Citrus medica) to exhaust emissions from vehicles using different types of fuel – Pollution Research 23(3): 451-454 – https://www.researchgate.net/publication/288409916_Stomatal_responses_of_lemon_Citrus_medica_to_exhaust_emissions_from_vehicles_using_different_types_of_fuel – (On our blog : https://plantstomata.wordpress.com/2022/12/24/vehicular-exhaust-emissions-play-an-important-role-in-altering-the-stomatal-responses/ )
Kavanagh K. L., Dickinson M. B., Bova A. S. (2010) – A Way Forward for Fire-Caused Tree Mortality Prediction: Modeling A Physiological Consequence of Fire – Fire Ecology 6: 80–94 –https://doi.org/10.4996/fireecology.0601080 – https://fireecology.springeropen.com/articles/10.4996/fireecology.0601080#citeas – On our blog : https://plantstomata.wordpress.com/2021/10/17/the-main-physiological-response-preceding-death-is-stomatal-closure-due-to-disruption-of-water-flow-in-the-sapwood/ )
Kawamitsu Y., Agata W., Hiyane S., Murayama S., Nose A., Shinjyo C. (1996) – Relation between leaf gas exchange rate and stomata – Jpn J Crop Sci 65: 626–633 – https://doi.org/10.1626/jcs.65.626 – https://www.jstage.jst.go.jp/article/jcs1927/65/4/65_4_626/_article/-char/ja/ – (On our blog : https://plantstomata.wordpress.com/2020/03/10/83694/ )
Kawamitsu Y., Hiyane S.-i., Tamashiro Y., Hakoyama S. (2002) – Regulation of photosynthesis and water use efficiency in relation to stomatal frequency and interveinal distance in C3- and C4-grass species – Environmental Control in Biology 40: 365-374 –
Kawamitsu Y., Yoda S., Agata W. (1993) – Humidity pretreatment affects the responses of stomata and CO2 assimilation to vapor pressure difference in C3 and C4 plants – Plant Cell Physiology 34: 113–119 – https://doi.org/10.1093/oxfordjournals.pcp.a078384 – https://academic.oup.com/pcp/article-abstract/34/1/113/1852987 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/humidity-pretreatment-affects-the-responses-of-stomata-to-vapor-pressure-difference-in-c3-and-c4-plants/ )
Kawamoto N., Del Carpio D. P., HofmannA., Mizuta Y., Kurihara D., Higashiyama T., Uchida N.,Torii K.U., Colombo L., Groth G., Simon R. (2020) – A Peptide Pair Coordinates Regular Ovule Initiation Patterns with Seed Number and Fruit Size – Current Biology – https://doi.org/10.1016/j.cub.2020.08.050 – https://www.cell.com/current-biology/fulltext/S0960-9822(20)31240-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982220312409%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2020/09/16/a-peptide-pair-coordinates-regular-ovule-initiation-patterns/ )
Kaymakanova M., Stoeva N., Mincheva T. (2008) – Salinity and ts effects on the physiological response of bean (Phaseolus vulgaris L.) – Journal of Central European Agriculture 2008,9(4): 749-755 – https://jcea.agr.hr/en/issues/article/643 – (On our blog : https://plantstomata.wordpress.com/2022/08/26/salinity-causes-changes-in-stomata-status-conductivity-number-and-size/ )
Kazama H., Dan H., Imaseki H., Wasteneys G. O. (2004) – Transient Exposure to Ethylene Stimulates Cell Division and Alters the Fate and Polarity of Hypocotyl Epidermal Cells – Plant Physiol. 134(4): 1614–1623 -doi: 10.1104/pp.103.031088 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419835/ – (On our blog : https://plantstomata.wordpress.com/2022/02/03/stomatal-complexes-developing-after-the-ethylene-treatment-had-a-significant-increase-in-the-number-of-stomatal-subsidiary-cells/ )
Kazama H., Mineyuki Y. (1997) – Alteration of division polarity and preprophase band orientation in stomatogenesis by light – Journal of Plant Research 110: 489–493 – https://doi.org/10.1007/BF02506810 – https://link.springer.com/article/10.1007/BF02506810 – (On our blog : https://plantstomata.wordpress.com/2019/05/06/alteration-of-division-polarity-and-preprophase-band-orientation-in-stomatogenesis-by-light/ )
Kazama H., Sugimoto K., Suzuki R. (1995) – Nuclear migration mechanism of the stomatal subsidiary mother cell of hypocotyl epidermis of Cucumis sativus L. – Journal of Cell Biochemistry 21A: 241 –
Kearns E. V., Assmann S. M. (1993) – Update on guard‐cells: The guard cell-environment connection – Plant Physiol. 102: 711–715 – DOI: 10.1104/pp.102.3.711 – http://www.plantphysiol.org/content/102/3/711 – (On our blog : https://plantstomata.wordpress.com/2019/03/17/the-stomatal-guard-cell-environment-connection/ )
Kebeish R., Niessen M., Oksaksin M., Blume C., Peterhaensel C. (2012) – Constitutive and dark-induced expression of Solanum tuberosum phosphoenolpyruvate carboxylase enhances stomatal opening and photosynthetic performance of Arabidopsis thaliana – Biotechnology and Bioengineering 109(2): 536-544 – DOI: 10.1002/bit.23344 – https://www.researchgate.net/publication/51682200_Constitutive_and_darkinduced_expression_of_Solanum_tuberosum_phosphoenolpyruvate_carboxylase_enhances_stomatal_opening_and_photosynthetic_performance_of_Arabidopsis_thaliana – (On our blog : https://plantstomata.wordpress.com/2016/04/02/phosphoenolpyruvate-carboxylase-enhances-stomatal-opening/)
Keel S. G., Pepin S., Leuzinger S., Korner C. (2007) – Stomatal conductance in mature deciduous forest trees exposed to elevated CO2 – Trees 21: 151-159 – https://doi.org/10.1007/s00468-006-0106-y – (http://link.springer.com/article/10.1007%2Fs00468-006-0106-y) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/co2-effects-on-stomata-of-mature-deciduous-forest-trees/)
Keeley J. E., Osmond C. B., Raven J. A. (1984) – Stylites, a vascular land plant without stomata absorbs CO2 via its roots – Nature 310: 694–695 – https://doi.org/10.1038/310694a0 – https://www.nature.com/articles/310694a0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/08/17/stylites-derives-nearly-all-of-its-photosynthetic-carbon-through-its-roots/ )
Keenan T., Sabate S., Gracia C. (2010) – Soil water stress and coupled photosynthesis–conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis – Agr. Forest Meteorol. 150: 443–453 – https://doi.org/10.1016/j.agrformet.2010.01.008 – https://www.sciencedirect.com/science/article/abs/pii/S0168192310000110?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/20/the-relative-roles-of-stomatal-mesophyll-conductance-and-biochemical-limitations-to-photosynthesis/ )
Keerthisinghe S. R. (2010) – Mustaches regulates bilateral symmetry in stomata – MSc. Thesis University of British Columbia 2008 – file:///C:/Users/wille/Downloads/ubc_2011_spring_keerthisinghe_sandra.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/21/mustaches-mus-is-a-leucine-rich-repeat-receptor-like-kinase-lrr-rlk-required-for-stomatal-morphogenesis-that-acts-primarily-after-the-two-young-gcs-form/ )
Keerthisinghe S. R., Nadeau J. A., Lucas J. R., Nakagawa T., Sack F. D. (2015) – The Arabidopsis leucine-rich repeat receptor-like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis -The Plant Journal 8(5): 684 – 694 – DOI: 10.1111/tpj.12757 – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-81-i-5-tpj12757 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/mustaches-enforces-stomatal-bilateral-symmetry/)
Keitel C., Adams M. A., Holst T., Matzarakis A., Mayer H., Rennenberg H., Gessler A. (2003) – Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.) – Plant Cell Environ 26: 1157–1168 – https://doi.org/10.1046/j.1365-3040.2003.01040.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.01040.x – (On our blog : https://plantstomata.wordpress.com/2021/06/11/a-short-term-measure-for-stomatal-conductance/ )
Kelle A. (1934) – Zur Physiologie der Nebenzellen des Spaltöffnungsapparates. – Diss. Münster
Keller B. U., Hedrich R., Raschke K. (1989) – Voltage-dependent anion channels in the plasma membrane of guard cells. – Nature 341: 450–453 – (On our blog : https://plantstomata.wordpress.com/2016/07/05/anion-channels-in-the-plasma-membrane-of-stomata/)
Keller F., Bassin S., Ammann C., Fuhrer J. (2007) – High-resolution modelling of AOT40 and stomatal ozone uptake in wheat and grassland: a comparison between 2000 and the hot summer of 2003 in Switzerland – Environ Pollut. 146(3): 671-677 – doi: 10.1016/j.envpol.2006.06.025 – Epub 2006 Aug 28 – PMID: 16938370 – https://pubmed.ncbi.nlm.nih.gov/16938370/ – (On our blog : https://plantstomata.wordpress.com/2023/01/07/modelling-of-the-accumulated-stomatal-ozone-flux-can-be-used-to-differentiate-ozone-risks-between-regions-and-years-at-a-national-scale/ )
Keller K. H., Stein T. R. (1967) – A two-dimensional analysis of porous membrane transport – Mathematical Biosciences 1(3): 421-437 – ISSN 0025-5564 – https://doi.org/10.1016/0025-5564(67)90012-0 – https://www.sciencedirect.com/science/article/pii/0025556467900120 – (On our blog : https://plantstomata.wordpress.com/2022/12/25/a-two-dimensional-analysis-of-porous-membrane-transport/ )
Keller K. M., Lienert S., Bozbiyik A., Stocker T. F., Churakova O.V., David C. Frank D. C., Klesse S., Charles D. Koven C. D., Leuenberger M., Riley W. J., Saurer M., Siegwolf R., Weigt R. B., Joos F. (2016) – 20th-century changes in carbon isotopes and water-use efficiency: Tree-ring based evaluation of the CLM4.5 and LPX-Bern models – https://bg.copernicus.org/preprints/bg-2016-515/bg-2016-515-manuscript-version3.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/05/103238/ )
Keller T., Häsler R. (1984) – The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir – Oecologia (Berl) 64: 284–286 – https://doi.org/10.1007/BF00376884 – https://link.springer.com/article/10.1007/BF00376884#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/29/influence-of-a-fall-fumigation-with-ozone-on-the-stomatal-behavior/ )
Keller T., Häsler R. (1987) – Some effects of long-term ozone fumigations on Norway spruce. I. Gas exchange and stomatal response – Trees 1: 129–133 – https://doi.org/10.1007/BF00203581 – https://link.springer.com/article/10.1007/BF00203581 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/long-term-ozone-fumigations-and-stomatal-response/ )
Kelliher F. M., Kirkham M. B., Hunt J. E. (2000) – Photosynthesis and stomatal conductance of the New Zealand tree, Meryta sinclairii, grown under two watering regimes – New Zealand Journal of Botany 38(3): 515-519 – DOI: 10.1080/0028825X.2000.9512700 – https://www.tandfonline.com/doi/pdf/10.1080/0028825x.2000.9512700 – (On our blog : https://plantstomata.wordpress.com/2021/12/18/97886/ )
Kelliher F. M., Kirkham M. B., Tauer C. G. (1980) – Stomatal resistance, transpiration, and growth of drought-stressed eastern cottonwood – Can. J. For. Res. 10: 447-451 – DOI: 10.1139/x80-073 – https://www.researchgate.net/publication/237867649_Stomatal_resistance_transpiration_and_growth_of_drought-stressed_eastern_cottonwood – (On our blog : https://plantstomata.wordpress.com/2019/04/29/stomatal-resistance-transpiration-and-growth-of-drought-stressed-eastern-cottonwood/ )
Kelliher F. M., Tauer C. G. (1980) – Stomatal resistance and growth of drought-stressed eastern cottonwood from a wet and dry site – Silvae Genetica 29: 5-6 – https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1980/Vol._29_Heft_5-6/29_5-6_166.pdf – (On our blog : https://plantstomata.wordpress.com/2021/08/31/stomatal-resistance-and-growth/ )
Kellomäki S., Wang K.-Y. (1997) – Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine – Plant Cell Environ. 20: 995–1006 – doi: 10.1111/j.1365-3040.1997.tb00676.x – https://doi.org/10.1016/S0269-7491(97)00084-5 – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1997.tb00676.x – (On our blog : https://plantstomata.wordpress.com/2018/04/30/elevated-o3-and-co2-concentrations-and-stomatal-conductance/ )
Kelly C. K., Beerling D. J. (1995) – Plant Life Form, Stomatal Density and Taxonomic Relatedness: A Reanalysis of Salisbury (1927) – Functional Ecology 9(3): 422-431 – https://doi.org/10.2307/2390005 – https://www.jstor.org/stable/2390005?seq=1 – (On our blog : https://plantstomata.wordpress.com/2021/03/26/stomatal-density-and-plant-life-form/ )
Kelly C. K., Woodward F. I. (1995) – The influence of CO2 concentration on stomatal density – New Phytologist 131: 311-327 –
Kelly G., Brandsma D., Egbaria A., Stein O., Doron-Faigenboim, Lugassi N., Belausov E., Zernach H., Shaya F., Carmi N., Sade N., Granot D. (2021) – Guard cells control hypocotyl elongation through HXK1, HY5, and PIF4 – Commun Biol 4: 765 – https://doi.org/10.1038/s42003-021-02283-y – https://www.nature.com/articles/s42003-021-02283-y#citeas – (On our blog : https://plantstomata.wordpress.com/2021/06/29/guard-cells-hxk1-hy5-and-pif4/ )
Kelly G., Lugassi N., Belausov E., Wolf D., Khamaisi B., Brandsma D., Kottapalli J., Fidel L., Ben-Zvi B., Egbaria A., Acheampong A. K., Zheng C., Or E., Distelfeld A., David-Schwartz R., Carmi N., Granot D. (2017) – The Solanum tuberosum KST1 partial promoter as a tool for guard cell expression in multiple plant species – J Exp Bot. 68(11): 2885-2897 – doi: 10.1093/jxb/erx159 – PMID: 28531314 – PMCID: PMC5853950 – https://pubmed.ncbi.nlm.nih.gov/28531314/ – (On our blog : https://plantstomata.wordpress.com/2021/06/29/kst1ppro-can-be-used-to-drive-constitutive-guard-cell-expression-in-monocots-and-dicots/ )
Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z., Belausov E., Granot D. (2013) – Hexokinase mediates stomatal closure – Plant Journal 75: 977–988 (2013) – doi: 10.1111/tpj.12258 – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-75-i-6-tpj12258 – (On our blog: https://plantstomata.wordpress.com/2017/10/22/surplus-sucrose-is-carried-toward-the-stomata-by-the-transpiration-stream-and-stimulates-stomatal-closure-via-hxk/)
Kelly W. B., Esser J. E., Schroeder J. I. (1995) – Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels – Plant J. 8:479–489 – (On our blog : https://plantstomata.wordpress.com/2016/07/05/cytosolic-calciumg-protein-modulators-and-stomata/)
Kennard J. L., Cleary A. L. (1997) – Pre-mitotic nuclear migration in subsidiary mother cells of Tradescantia occurs in G1 on the cell cycle and requires F-actin – Cell Motility and Cytoskeleton 36: 55–67 – https://doi.org/10.1002/(SICI)1097-0169(1997)36:1<55::AID-CM5>3.0.CO;2-G –https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0169%281997%2936%3A1%3C55%3A%3AAID-CM5%3E3.0.CO%3B2-G – (On our blog : https://plantstomata.wordpress.com/2019/04/29/pre-mitotic-nuclear-migration-in-subsidiary-mother-cells-of-stomata/ )
Kenzo T., Yoneda R., Sano M., Araki M., Shimizu A., Tanaka-Oda A., Chann S. (2012) – Variations in Leaf Photosynthetic and Morphological Traits with Tree Height in Various Tree Species in a Cambodian Tropical Dry Evergreen Forest – Japan Agricultural Research Quarterly: JARQ 46(2): 167-180 – ISSN:0021-3551 – (https://www.jstage.jst.go.jp/article/jarq/46/2/46_2_167/_pdf) – (On our blog : https://plantstomata.wordpress.com/2015/04/16/stomata-and-tree-height/)
Kereston R. (2022) – Stomata Molecular Switches and the Future of Agriculture with Dr. Sixue Chen – University of Florida/Genetics Institute – https://biotech.ufl.edu/stomata-molecular-switches-and-the-future-of-agriculture-with-dr-sixue-chen/ – https://express.adobe.com/page/O29V2vHgAwcej/ – (On our blog : https://plantstomata.wordpress.com/2022/03/15/stomata-molecular-switches/ )
Kerl H. W. (1929) – Beitrag zur Kenntnis der Spaltöffnungsbewegung – Planta 9: 407-463 –
Kerr P. S., Rufty T. W., Huber S. C. (1985) – Endogenous rhythms in photosynthesis, sucrose phosphate synthase activity, and stomatal resistance in leaves of soybean (Glycine max L. Merr.) – Plant Physiol. 77: 275–280 – DOI: 10.1104/pp.77.2.275 – https://www.ncbi.nlm.nih.gov/pubmed/16664041?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/09/21/endogenous-rhythms-in-photosynthesis-sucrose-phosphate-synthase-activity-and-stomatal-resistance/ )
–
https://www.jstor.org/stable/23695572 – (On our blog : https://plantstomata.wordpress.com/2022/02/06/contrasting-evidence-for-an-interaction-between-cuticular-transpiration-and-stomatal-sensitivity-to-air-humidity-is-presented/ )
Cuticular water permeability and its physiological significance – Journal of Experimental Botany 47(305): 1813-1832 –https://doi.org/10.1046/j.1469-8137.1997.00847.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.1997.00847.x – (On our blog : https://plantstomata.wordpress.com/2019/04/29/cuticular-water-permeance-and-its-effect-on-stomatal-response-to-air-humidity/ )
New Phytologist 153(3): 509-515 – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00330.x/full – (On our blog : https://plantstomata.wordpress.com/2016/07/05/na-stomata-and-salt-tolerance/)
, , , Sodium-related partial stomatal closure and salt tolerance of Aster tripolium –Ketellapper H. J. (1959) – The mechanism of stomatal movement – Amer. Jour. Bot. 46(3): 225-231 – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stomatal-movement-mechanism/)
Ketellapper H. J. (1963) – Stomatal physiology – Annual Rev. Pl. Physiol. 14: 249-270 – https://doi.org/10.1146/annurev.pp.14.060163.001341 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.14.060163.001341?journalCode=arplant.1 – (On our blog : https://plantstomata.wordpress.com/2018/04/30/stomatal-physiology-2/ )
Keys S. C. (1976) – Stomatal activity patterns of Provenance plantations of Abies concolor and Abies grandis – MSci Thesis – file:///C:/Users/wille/Downloads/KeysStevenC1977%20(2).pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/15/stomatal-activity-patterns-of-provenance-plantations/ )
Khalil A. M., Grace J. (1993) – Does xylem sap ABA control the stomatal behaviour of water stressed Sycamore (Acer pseudoplatanus L.) seedlings? – Journal of Experimental Botany 44: 1127-1134 – https://doi.org/10.1093/jxb/44.7.1127 –https://academic.oup.com/jxb/article-abstract/44/7/1127/480326?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/04/does-xylem-sap-aba-control-the-stomatal-behaviour/ )
Khan A., Zheng J., Tan D. K. Y., Khan A., Akhtar K., Kong X., Munsif F., Iqbal A., Afridi M. Z., Ullah A., Fahad S., Zhou R. (2019) – Changes in Leaf Structural and Functional Characteristics when Changing Planting Density at Different Growth Stages Alters Cotton Lint Yield under a New Planting Model – Agronomy 9(12): 859- https://doi.org/10.3390/agronomy9120859 – https://www.mdpi.com/2073-4395/9/12/859/htm – (On our blog : https://plantstomata.wordpress.com/2021/09/18/changes-in-leaf-structural-and-functional-characteristics-of-different-cotton-varieties-in-order-to-change-the-planting-densities-to-improve-lint-yield-under-a-new-planting-model/ )
Khan F., Yousaf Z., Ahmed H. S., Arif A., Rehman H. A., Younas A., Rashid M., Tariq Z., Raiz N. (2014) – Stomatal Patterning: An Important Taxonomic Tool for Systematical Studies of Tree Species of Angiosperm – Annual Research & Review in Biology 4(24): 4034-4053 – http://www.journalrepository.org/media/journals/ARRB_32/2014/Jul/Khan4242014ARRB10073_1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/08/stomatal-patterning-as-an-important-taxonomic-tool/)
Khan M., Rozhon W., Bigeard J., Pflieger D., Husar S., Pitzschke A., Teige M., Jonak C., Hirt H., Poppenberger B. (2013) – Brassinosteroid-regulated GSK3/Shaggy-like Kinases phosphorylate mitogen-activated protein (MAP) Kinase Kinases, which control stomata development in Arabidopsis thaliana – Journal of Biological Chemistry 288: 7519–7527 – doi:10.1074/jbc.M112.384453 – http://www.jbc.org/content/288/11/7519.full – (On our blog : https://plantstomata.wordpress.com/2018/04/23/bin2-phosphorylates-mkk4-which-inhibits-its-activity-against-mpk6-in-a-mapk-module-that-controls-stomata-patterning/ )
Khan M. A., Khan M. H. (2016) – Foliar application of abscisic acid and salicylic acid enhances photosynthesis and stomatal conductance of sunflower (Helianthus annuus L.) under water-deficit stress – Photosynthetica 54(3): 424-433 –
Khan M. N., Zhang J., Luo T., Liu J., Rizwan M., Fahad S., Xu Z., Hu L. (2019) – Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration – Ind. Crops Prod. 140: 111597 – https://doi.org/10.1016/j.indcrop.2019.111597 – https://www.sciencedirect.com/science/article/abs/pii/S0926669019306077?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2023/02/18/the-stomatal-traits-such-as-number-stomatal-length-and-width-were-greatly-improved-in-melatonin-primed-treatment/ )
Khan P. S. S. V., Kozai T., Nguyen Q. T., Kubota C., Dhawan V. (2003) – Growth and Water Relations of Paulownia fortunei Under Photomixotrophic and Photoautotrophic Conditions – Biologia Plantarum 46:161–166 – https://doi.org/10.1023/A:1022844720795 – https://link.springer.com/article/10.1023%2FA%3A1022844720795#citeas – (On our blog : https://plantstomata.wordpress.com/2020/02/17/stomata-and-photomixotrophic-and-photoautotrophic-conditions/ )
Khan R., Rehman F., Gulafshan, Khan A., (2020) – Effect of salinity (Na2SO4) on stomata, and yield parameters of Indian mustard (Brassica juncea L) var. Goldi – Int J Nanomater Nanotechnol Nanomed 6(2): 021-023 – DOI: 10.17352/2455-3492.000036 – https://www.peertechzpublications.com/articles/IJNNN-6-136.php – (On our blog : https://plantstomata.wordpress.com/2021/02/03/due-to-salinity-levels-stomata-become-destroyed-without-showing-any-damage-of-physiological-characters/ )
Khanna R., Li J., Tseng T.-S., Schroeder J. I., Ehrhardt D. W., Briggs W.R. (2014) – COP1 Jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure – Mol. Plant. 7: 1441–1454 – https://www.cell.com/molecular-plant/pdf/S1674-2052(14)60947-3.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/03/cop1-is-revealed-as-a-potential-coordinator-of-cytoskeletal-and-electrophysiological-activities-required-for-stomatal-guard-cell-function/ )
Khatoon S., Majid S. A., Bibi A., Javed G., Ulfat A. (2016) – Yield stability evaluation of wheat (Triticum aestivum L.) cultivated on different environments of district Poonch (AJK) Pakistan based upon water-related parameters – International Journal of Agronomy and Agricultural Research (IJAAR) 8(4): 11-21 – ISSN: 2223-7054 –
https://www.researchgate.net/publication/319954996_Yield_stability_evaluation_of_wheat_Triticum_aestivum_L_cultivated_on_different_environments_of_district_Poonch_AJK_Pakistan_based_upon_water-related_parameters – (On our blog : https://plantstomata.wordpress.com/2020/03/22/the-more-thermostable-genotypes-holding-an-optimum-relative-water-content-and-more-stomatal-size-and-frequency-had-more-biological-yield/ )
Khazaei H., Mohammady S., Monneveux P., Stoddard F. (2011) – Determination of direct and indirect effects of carbon isotope discrimination (∆), stomatal characteristics and water use efficiency on grain yield in wheat using sequential path analysis – Australian Journal of Crop Sciences 5(4): 466-472 – https://researchportal.helsinki.fi/en/publications/determination-of-direct-and-indirect-effects-of-carbon-isotope-di – (On our blog : https://plantstomata.wordpress.com/2020/07/05/85021/ )
Khazaei H., Monneveux P., Hongbo S., Mohammady S. (2010) – Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet. Resour. Crop Evol. 57: 307-314 – http://link.springer.com/article/10.1007%2Fs10722-009-9471-x – (On our blog : https://plantstomata.wordpress.com/2016/02/16/water-use-efficiency-and-stomatal-characteristics/ ).
Khazaei H., O’Sullivan, Silanpää M. J., Stoddard F. L. (2014) – Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.) – Theor Appl Genet. 127(11): 2371–2385 –DOI: 10.1007/s00122-014-2383-y – https://www.researchgate.net/publication/265342275_Use_of_synteny_to_identify_candidate_genes_underlying_QTL_controlling_stomatal_traits_in_faba_bean_Vicia_faba_L – (On our blog : https://plantstomata.wordpress.com/2016/11/16/synteny-and-identification-of-candidate-genes-underlying-qtl-controlling-stomatal-traits/ )
Khazaei H., Street K., Santanen A., Bari A., Stoddard F. L. (2013) – Do faba bean (Vicia faba L.) accessions from environments with contrasting seasonal moisture availabilities differ in stomatal characteristics and related traits? – Genet. Resour. Crop Evol. 60: 23-43 – doi:10.1007/s10722-013-0002-46363 – http://link.springer.com/article/10.1007%2Fs10722-013-0002-4 – (On our blog : https://plantstomata.wordpress.com/2016/11/16/stomatal-characteristics-and-the-environment/ )
Khokon M. A. R., Hossain M. A., Munemasa S., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2010) – Yeast elicitor-induced stomatal closure and peroxidase- mediated ROS production in Arabidopsis – Plant Cell Physiol. 51: 1915–1921 – doi: 10.1093/pcp/pcq145 – https://www.ncbi.nlm.nih.gov/pubmed/20876608 – (On our blog : https://plantstomata.wordpress.com/2018/04/23/yel-induces-stomatal-closure-accompanied-by-ros-production-mediated-by-peroxidases-and-no-production/ )
Khokon M., Jahan M. S., Rahman T., Hossain M. A., Muroyama D., Minami I., Munemasa S, Mori I. C., Nakamura Y, Murata Y.(2011) – Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. – Plant Cell Environ. 34: 1900–1906 – doi: 10.1111/j.1365-3040.2011.02385.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2011.02385.x – (On our blog : https://plantstomata.wordpress.com/2018/04/24/aitc-induces-stomatal-closure/ )
Khokon M. A. R., Okuma E., Hossain M. A., Munemasa S., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2011) – Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis – Plant Cell Environ. 34: 434–443 – doi: 10.1111/j.1365-3040.2010.02253.x – (On our blog : https://plantstomata.wordpress.com/2016/07/06/salicylic-acid-induced-stomatal-closure/)
Khokon M. A. R., Salam M. A., Jammes F., Ye W., Hossain M. A., Uraji M., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2015) – Two guard cell MAPKs, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana – Plant Biology (Stuttg) 17: 946–952 – doi: 10.1111/plb.12321 – (https://plantstomata.wordpress.com/page/11/). – (On our blog : https://plantstomata.wordpress.com/2015/02/19/stomatal-closure-in-arabidopsis-thaliana/ ).
Khokon M. A. R., Salam M. A., Jammes F., Ye W., Hossain M. A., Okuma E., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2017) – MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana – Bioscience Biotechnology and Biochemistry 81(7):1-7 – DOI: 10.1080/09168451.2017.1308244 – https://www.researchgate.net/publication/315826548_MPK9_and_MPK12_function_in_SA-induced_stomatal_closure_in_Arabidopsis_thaliana – (On our blog : https://plantstomata.wordpress.com/2018/08/14/mpk9-and-mpk12-are-positive-regulators-of-sa-signaling-in-stomata/ )
Khokon M. A. R., Uraji M., Munemasa S., Okuma E., Nakamura Y., Mori I. C., et al. (2010) – Chitosan-induced stomatal closure accompanied by peroxidase- mediated reactive oxygen species production in Arabidopsis – Biosci. Biotechnol. Biochem. 74: 2313–2315 – doi: 10.1271/bbb.100340 – https://www.ncbi.nlm.nih.gov/pubmed/21071853 – (On our blog : https://plantstomata.wordpress.com/2018/05/02/chitosan-induces-ros-production-mediated-by-peroxidase-resulting-in-stomatal-closure/ )
Khorsgani O. A., Flores F. B., PessarakliM. (2018) – Plant signaling pathways involved in stomatal movement under drought stress conditions ) – Advances in Plants & Agriculture Research 8 (3) : EISSN: 2373-6402 – https://medcraveonline.com/APAR/plant-signaling-pathways-involved-in-stomatal-movement-under-drought-stress-conditions.html -(On our blog : https://plantstomata.wordpress.com/2020/12/10/improved-stomatal-responses-under-various-environmental-conditions-particularly-stress-conditions-and-specifically-drought-stress/ )
Kiani-Pouya A., Rasouli F., Rabbi B., Falakboland Z., Yong M., Chen Z.-H., Zhou M., Shabala S. (2020) – Stomatal traits as a determinant of superior salinity tolerance in wild barley – Journal Plant Physiology 245: – https://doi.org/10.1016/j.jplph.2019.153108 –https://www.sciencedirect.com/science/article/pii/S0176161719302378 – (On our blog : https://plantstomata.wordpress.com/2020/05/11/stomatal-traits-and-superior-salinity-tolerance/ )
Kilic S. (2009) – Anatomical and Pollen Characters in the Silene L. (Caryophyllaceae) from Turkey – Botany Research Journal 2: 34-44 – http://medwelljournals.com/abstract/?doi=brj.2009.34.44 – (On our blog : https://plantstomata.wordpress.com/2018/03/27/stomata-in-the-silene-caryophyllaceae/ )
Kilic S., Karatas A., Cavusoglu K., Unlu H., Ozdamar H.U., Padem
H. (2010) – Effects of different light treatments on the stomata movements
of tomato (Lycopersicon esculentum Mill. cv. Joker) seedlings – J. Ani.
Vet. Adv. 9(1): 131-135 –
Kim C. Y. (2012) – Stomatal responses of C3 and C4 Cyperus species(Cyperaceae) in Korea to elevated CO2 concentration, M.S.D. Dissertation, Sungshin Women’s University, Seoul, Korea.
Kim D. J., Lee J. S. (2007) – Current theories for mechanism of stomatal opening: Influence of blue light: Mesophyll cells and sucrose – J. Plant Biol. 50: 523-556 – http://link.springer.com/article/10.1007%2FBF03030704 – (On our blog : https://plantstomata.wordpress.com/2016/02/16/mechanism-of-stomatal-opening/ )
Kim E. D., Dorrity M. W., Fitzgerald B. A., Seo H., Sepuru K. M., Queitsch C., Mitsuda N., Han S.-K., Torii K. U. (2022) – Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment – Nat. Plants (2022) – https://doi.org/10.1038/s41477-022-01304-w – https://www.nature.com/articles/s41477-022-01304-w#citeas – (On our blog : https://plantstomata.wordpress.com/2022/12/21/dynamic-chromatin-accessibility-and-stomatal-cell-fate-commitment/ )
Kim H. H., Goins G. D., Wheeler R. M., Sager J. C. (2004) – Stomatal conductance of lettuce grown under or exposed to different light qualities – Ann. Bot. 94(5): 691-697 – https://doi.org/10.1093/aob/mch192 – https://academic.oup.com/aob/article/94/5/691/151928 – (On our blog : https://plantstomata.wordpress.com/2020/09/08/stomatal-conductance-is-responsive-to-spectral-quality-during-growth/ )
Kim H., Lee S. J. (xxxx) – Stomata‐Inspired Membrane Produced Through Photopolymerization Patterning – Advanced Functional Materials 25(28): 4496 – 4505 – DOI: 10.1002/adfm.201501445 – https://www.infona.pl/resource/bwmeta1.element.wiley-adfm-v-25-i-28-adfm201501445 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/a-stomata%e2%80%90inspired-membrane/)
Kim H., Lee S. J. (2016) – Fabrication of Triple-parted Stomata-inspired Membrane with Stimulus-responsive Functions – Sci Rep 6: 21258 – https://doi.org/10.1038/srep21258 – https://www.nature.com/articles/srep21258 – (On our blog : https://plantstomata.wordpress.com/2022/04/12/105293/ )
Kim H., Ridenour J. B., Dunkle L. D., Bluhm B. H. (2011) – Regulation of Stomatal Tropism and Infection by Light in Cercospora zeae-maydis: Evidence for Coordinated Host/Pathogen Responses to Photoperiod? – PLoS Pathog 7(7): e1002113 – https://doi.org/10.1371/journal.ppat.1002113 – https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002113 – (On our blog : https://plantstomata.wordpress.com/2022/02/03/a-novel-molecular-mechanism-underlying-stomatal-tropism-in-a-foliar-fungal-pathogen/ )
Kim J., Joo Y., Kyung J., Jeon M., Park J. Y., Lee H. G., Chung D. S., Lee E., Lee I. (2018) – A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus – Science.gov (United States) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/in-terrestrial-leaves-of-ranunculus-trichophyllus-abi3-mediated-activation-of-the-adaxial-genes-rthd-zipiiis-and-stomagen-and-vdn7-established-leaf-polarity-and-stomata-and-vessel-develo/ )
Kim J., van Iersel M. W. (2008) – ABA drenches induce stomatal closure and prolong shelf life of Salvia splendens – Southern Nursery Assn. Res. Conf. 53: 107-111 – SNA Research Conference Vol. 53 – https://www.researchgate.net/profile/Marc_Van_Iersel2/publication/258514885_ABA_dreches_induce_stomatal_closure_and_prolong_shelf_life_of_Salvia_splendens/links/55c633c308aea2d9bdc5452f/ABA-dreches-induce-stomatal-closure-and-prolong-shelf-life-of-Salvia-splendens.pdf – (On our blog : https://plantstomata.wordpress.com/2020/12/09/aba-drenches-induce-stomatal-closure-and-prolong-shelf-life/ )
Kim J., Verma S. (1991) – Modelling canopy stomatal conductance in a temperate grassland ecosystem – Agric Forest Meteorol. 55: 149–166 – doi: 10.1016/0168-1923(91)90028-O – https://www.sciencedirect.com/science/article/pii/016819239190028O – (On our blog : https://plantstomata.wordpress.com/2019/05/06/modelling-canopy-stomatal-conductance/ )
Kim J.-H., Oh Y., Yoon H., Hwang I., Chang Y.-S. (2015) – Iron Nanoparticle-Induced Activation of Plasma Membrane H+-ATPase Promotes Stomatal Opening in Arabidopsis thaliana – Environ. Sci. Technol. 49(2): 1113–1119 – –https://doi.org/10.1021/es504375t – https://pubs.acs.org/doi/10.1021/es504375t – (On our blog : https://plantstomata.wordpress.com/2022/01/31/nzvi-enhances-stomatal-opening-by-inducing-the-activation-of-plasma-membrane-h-atpase/ )
Kim J. S., Jeong W. G., Sung M. W. (1987) – Effects of abscisic acid on the epidermal structure and ontogeny of stomata in Orostachys malacophyllus leaves -Korean Journal of Botany 30(1): 21-30 –
https://eurekamag.com/research/005/287/005287395.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/effects-of-aba-on-the-epidermal-structure-and-stomata/ )
Kim L., Balani S., Edelberg M., Macke N. (2021) – Effects of Various Environmental Factors on Stomatal Density, Area, and Potential Conductance Index – Journal of Emerging Investigators – www.emerginginvestigators.org – 4(1) – https://emerginginvestigators.org/articles/effects-of-various-environmental-factors-on-stomatal-density-area-and-potential-conductance-index/pdf – (On our blog : https://plantstomata.wordpress.com/2022/04/02/making-generalizations-about-the-impact-of-co2-in-combination-with-other-environmental-factors-is-risky/ )
Kim M., Hepler P. K., Eun S. O., Ha K. S., Lee Y. (1995) – Actin filaments in mature guard cells are radially distributed and involved in stomatal movement – Plant Physiol. 109: 1077–1084 – (On our blog https://plantstomata.wordpress.com/2016/07/06/microfilaments-participate-in-stomatal-aperture-regulation/ )
Kim S.-H., Lieth J. H. (2003) – A Coupled Model of Photosynthesis, Stomatal Conductance and Transpiration for a Rose Leaf (Rosa hybrida L.) – Annals of Botany 91(4): 771-781 – https://doi.org/10.1093/aob/mcg080 –https://academic.oup.com/aob/article/91/7/771/177691 – (On our blog : https://plantstomata.wordpress.com/2019/03/22/a-coupled-model-of-photosynthesis-stomatal-conductance-and-transpiration/ )
Kim S. J., Hahn E. J., Heo J. W., Paek K. Y. (2004) – Effects of LEDs on net photosynthetic rate, growth and leaf stomata of Chrysantemum plantlets in vitro – Sci. Hort. 101: 143- 151 – https://doi.org/10.1016/j.scienta.2003.10.003 – (On our blog : https://plantstomata.wordpress.com/2018/04/24/effects-of-leds-on-stomata/ )
Kim T. H., Böhmer M., Hu H., Nishimura N., Schroeder J. I. (2010) – Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling – Annu. Rev. Plant Biol. 61: 561-591 – doi: 10.1146/annurev-arplant-042809-112226 – (On our blog : https://plantstomata.wordpress.com/2016/02/16/abscisic-acid-co2-and-ca2-signaling-in-stomata/)
Kim T. H., Böhmer M., Hu H., Nishimura N., Schroeder J. I. (2016) – Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling – Annu. Rev. Plant Biol. 67: 537-568 –
Kim T. W., Michniewicz M., Bergmann D. C., Wang Z. Y. (2012) – Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway – Nature 482: 419-422 – doi: 10.1038/nature10794 – (On our blog : https://plantstomata.wordpress.com/2015/10/27/regulation-of-stomatal-development-by-brassinosteroid/).
Kim T. W., Youn J. H., Park T. K., Kim E. J., Park C. H., Wang Z. Y., Kim S. K., Kim T. W. (2018) – OST1 activation by the brassinosteroid-regulated kinase CDG1-LIKE1 in stomatal closure – Plant Cell 30: 1848-1863 – https://doi.org/10.1105/tpc.18.00239 – http://www.plantcell.org/content/30/8/1848 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/a-cell-type-specific-br-signaling-branch-through-which-br-acts-synergistically-with-aba-in-regulating-stomatal-closure/ ) RETRACTION ! : The authors of the above article request that it be retracted from The Plant Cell. On October 7, 2019, we recognized that several images for biochemical analyses in the article were intentionally manipulated to generate preferred results. Through our detailed inspection, we found that the first author, Tae-Woo Kim, had inappropriately manipulated data in a number of figures. Tae-Woo Kim has admitted to these instances of misconduct. (On our blog: https://plantstomata.wordpress.com/2020/01/21/ost1-activation-by-the-brassinosteroid-regulated-kinase-cdg1-like1-in-stomatal-closure/ )
Kim Y.-W., Moon H.-k. (2013) – Comparison of physiological factors, pores, and DNA content between 5-year-old lily-flower seedlings and somatic seedlings (plants derived from somatic embryos) – Journal of the Korean Forestry Society 102(4): 537–542 – https://doi.org/10.14578/JKFS.2013.102.4.537 – https://www.koreascience.or.kr/article/JAKO201304260596460.page1ff8 – (On our blog : https://plantstomata.wordpress.com/2021/05/10/90773/ )
Kimball B. A., Jackson R. D., Pinter P. J. Jr., Reginato R. J. (1988) – Remote estimation of transpiration rate and stomatal resistance in cotton with infrared leaf temperature and micro-met data Agron. Abstract 1988 : 21 –
Kimmerer T. W., Kozlowski T. T. (1981) – Stomatal Conductance and Sulfur Uptake of Five Clones of Populus tremuloides Exposed to Sulfur Dioxide – Plant Physiology – https://doi.org/10.1104/pp.67.5.990 – http://www.plantphysiol.org/content/67/5/990.short – (On our blog : https://plantstomata.wordpress.com/2019/03/22/stomatal-conductance-is-important-in-determining-relative-susceptibility-of-the-poplar-clones-to-pollution-stress/ )
Kimura H., Hashimoto-Sugimoto M., Iba K., Terashima I., Yamori W. (2020) – Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light – Journal of Experimental Botany 71(7): 2339–2350 – https://doi.org/10.1093/jxb/eraa090 – https://academic.oup.com/jxb/article-abstract/71/7/2339/5755861 – (On our blog : https://plantstomata.wordpress.com/2020/05/04/there-is-room-to-optimize-stomatal-responses-leading-to-greater-photosynthesis-and-biomass-accumulation-in-fluctuating-light-in-nature/ )
Kimura K., Yasutake D., Yamanami A., Kitano M. (2020) – Spatial examination of leaf-boundary-layer conductance using artificial leaves for assessment of light airflow within a plant canopy under different controlled greenhouse conditions – Agricultural and Forest Meteorology 280: 107773
– 10.1016/j.agrformet.2019.107773 – https://www.sciencedirect.com/science/article/pii/S0168192319303892?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/13/82788/ )
Kimura Y., Aoki S., Ando E., Kitatsuji A., Watanabe A., Ohnishi M., Takahashi K., Inoue S.-i., Nakamichi N., Tamada Y., Kinoshita T. (2015) – A Flowering Integrator, SOC1, Affects Stomatal Opening in Arabidopsis thaliana – Plant and Cell Physiology 56(4): 640–649 – https://doi.org/10.1093/pcp/pcu214 – https://academic.oup.com/pcp/article/56/4/640/2756391 – (On our blog : https://plantstomata.wordpress.com/2019/07/29/soc1-is-involved-in-the-regulation-of-stomatal-opening-via-transcriptional-regulation-in-guard-cells/ )
Kindermann (1902) – über die auffallende Widerstandskraft der Schliesszellen gegen schädliche Einflüsse – Sitzungsber. der Wiener Akademie CXI Abt. 1
Kingori G. G., Nyamori A. J., Khasungu I. D. (2016) – Improving Seed Potato Leaf Area Index, Stomatal Conductance and Chlorophyll Accumulation Efficiency through Irrigation Water, Nitrogen and Phosphorus Nutrient Management – Journ. Agric. Studies 4(1): – https://doi.org/10.5296/jas.v4i1.8908 –http://www.macrothink.org/journal/index.php/jas/article/view/8908 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/improving-stomatal-conductance-efficiency-through-irrigation-water-nitrogen-and-phosphorus-nutrient-management/ )
Kinhal V. (2022) – Stomatal Conductance: Functions, Measurement, and Applications – CID Bio-Science – https://cid-inc.com/blog/stomatal-conductance-functions-measurement-and-applications/ – (On our blog : https://plantstomata.wordpress.com/2023/01/21/112614/ )
Kinose Y., Azuchi F., Uehara Y., Kanomata T., Kobayashi A., Yamaguchi M., Izuta T. (2014) – Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla – Environ. Pollut. 194: 235–245 – https://doi.org/10.1016/j.envpol.2014.07.030 – https://www.sciencedirect.com/science/article/pii/S0269749114003297?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/02/02/modeling-of-stomatal-conductance-to-estimate-stomatal-ozone-uptake/ )
Kinose Y., Yamaguchi M., Matsumura H., Izuta T. (2020) – Impact Assessment of Ozone Absorbed through Stomata on Photosynthetic Carbon Dioxide Uptake by Japanese Deciduous Forest Trees: Implications for Ozone Mitigation Policies – Forests 11: 137- doi:10.3390/f11020137 – (On our blog : https://plantstomata.wordpress.com/2020/02/02/impact-assessment-of-ozone-absorbed-through-stomata-on-photosynthetic-co2-uptake/ )
Kinoshita T. (2018) – Video Showing Rose Leaves Sprayed with Various Stomata Closing Compounds Over Time (VIDEO) – Plant & Cell Physiology –https://www.eurekalert.org/multimedia/pub/167365.php – (On our blog : https://plantstomata.wordpress.com/2018/04/09/various-stomata-closing-compounds/ )
Kinoshita T., Doi M., Suetsugu N., Kagawa T., Wada M., Shimazaki K. (2001) – phot1 and phot2 mediate blue light regulation of stomatal opening – Nature 414: 656–660 – doi: 10.1038/414656a – (On our blog : https://plantstomata.wordpress.com/2016/07/06/phot1-and-phot2-act-redundantly-as-blue-light-receptors-mediating-stomatal-opening/)
Kinoshita T., Emi T., Tominaga M., Sakamoto K., Shigenaga A., Doi M., Shimazaki K.-i. (2003) – Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean – Plant Physiol. 133: 1453–1463 – doi: 10.1104/pp.103.029629 – EMBO J 18: 5548–5558 – DOI: 10.1093/emboj/18.20.5548 – (On our blog : https://plantstomata.wordpress.com/2016/07/06/bl-activates-the-plasma-membrane-h-atpase-via-phosphorylation-of-the-c-terminus-by-a-serinethreonine-protein-kinase/)
Kinoshita T., Hayashi Y. (2011) – New insights into the regulation of stomatal opening by blue light and plasma membrane H(+)-ATPase – Int Rev Cell Mol Biol. 289:89-115 – doi: 10.1016/B978-0-12-386039-2.00003-1 – https://www.ncbi.nlm.nih.gov/pubmed/21749899 – (On our blog : https://plantstomata.wordpress.com/2019/07/29/the-regulation-of-stomatal-opening-by-blue-light-and-plasma-membrane-h-atpase/ )
1995) – Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean – Plant Cell 7: 1333–1342 – DOI: 10.1105/tpc.7.8.1333 – (On our blog : https://plantstomata.wordpress.com/2016/07/06/ca2-regulates-the-activity-of-plasma-membrane-h-atpases-in-stomata/)
, (Kinoshita T., Ono N., Hayashi Y., Morimoto S., Nakamura S., Soda M., Kato Y., Ohnishi M., Nakano T., Inoue S.-i., Shimazaki K.-i. (2011) – FLOWERING LOCUS T Regulates Stomatal Opening – Current Biology 21(14): 1232-1238 – DOI: 10.1016/j.cub.2011.06.025 – https://www.infona.pl/resource/bwmeta1.element.elsevier-8b4022b4-fdb4-3ca8-96be-fd68e7850c2e – (On our blog : https://plantstomata.wordpress.com/2017/10/25/flowering-locus-t-ft-is-expressed-in-guard-cells-and-regulates-stomatal-opening/)
Kinoshita T., Shimazaki K. (1997) – Involvement of calyculin A- and okadaic acid-sensitive protein phosphatase in the blue light response of stomatal guard cells – Plant Cell Physiol. 38: 1281-1285 – https://doi.org/10.1093/oxfordjournals.pcp.a029117 – https://academic.oup.com/pcp/article/38/11/1281/1895060 – (On our blog : https://plantstomata.wordpress.com/2019/07/29/ca-and-oa-sensitive-protein-phosphatase-is-involved-in-the-bl-response-of-stomatal-guard-cells/ )
Kinoshita T., Shimazaki K. (1999) – Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells – EMBO J. 18: 5548-5558 – (On our blog : https://plantstomata.wordpress.com/2016/07/06/binding-of-a-14-3-3-protein-to-phototropins-in-stomatal-guard-cells/)
Kinoshita T., Shimazaki K. I. (2001) – Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin – Plant Cell Physiol. 42: 424–432 – doi: 10.1093/pcp/pce055 – https://www.ncbi.nlm.nih.gov/pubmed/11333314 – (On our blog : https://plantstomata.wordpress.com/2018/04/24/fusicoccin-and-the-phosphorylation-level-in-stomatal-plasma-membrane-h-atpase/ )
Kinoshita T., Shimazaki K. (2002) – Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light – Plant Cell Physiol. 43: 1359–1365 – https://doi.org/10.1093/pcp/pcf167 –https://academic.oup.com/pcp/article/43/11/1359/1934953 – (On our blog : https://plantstomata.wordpress.com/2019/05/02/requirement-of-14-3-3-protein-binding-in-activation-of-the-stomatal-guard-cell-plasma-membrane-h-atpase-by-blue-light/ )
Kinoshita T., Toh S., Torii K. U. (2021) – Chemical control of stomatal function and development – Curr. Opin. Plant Biol. 60: 102010 – doi: 10.1016/j.pbi.2021.102010 – https://www.sciencedirect.com/science/article/abs/pii/S1369526621000108#:~:text=Stomata%20control%20trade%2Doffs%20for,and%20water%20loss%20via%20transpiration.&text=Library%2Dbased%20chemical%20screens%20identified,stomatal%20numbers%20and%20division%20polarity – (On our blog : https://plantstomata.wordpress.com/2022/02/20/chemical-compounds-disrupting-cell-polarity-during-stomatal-development-identified/ )
Kirkham M. B. (2005) – Stomatal and Measurement of Stomatal Resistance – Principles of soil and plant water relations 2005: 379-401 – https://doi.org/10.1016/B978-012409751-3/50022-0 – https://www.sciencedirect.com/science/article/pii/B9780124097513500220 – (On our blog : https://plantstomata.wordpress.com/2019/02/13/measurement-of-stomatal-resistance/ )
Kirkham M. B. (2014) – Stomata and measurement of stomatal resistance – In : Principles of Soil and Plant Water Relations (Second Edition) – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/guard-cell – (On our blog : https://plantstomata.wordpress.com/2019/04/14/stomata-and-stomatal-resistance/ )
Kirkham M. B. (2014) – Chapter 24 – Stomatal anatomy and stomatal resistance in: Principles of soil and plant water relations (2nd. ed.) – Academic Press 2014: 431-445 — https://doi.org/10.1016/B978-0-12-420022-7.00024-0 – https://www.sciencedirect.com/science/article/pii/B9780124200227000240 (On our blog : https://plantstomata.wordpress.com/2017/09/26/soil-and-plant-water-relations/)
(1987) – Water stress in Eucalyptus pauciflora: comparison of effects on stomatal conductance with effects on the mesophyll capacity for photosynthesis, and investigation of a possible involvement of photoinhibition – Planta 171: 466-473 –
1988) – Observed and modelled stomatal responses to dynamic light environments in the shade plant AIocasia macrorrhiza – Plant, Cell & Environment 11: 111–121 – DOI: 10.1111/1365-3040.ep11604898 – https://www.researchgate.net/publication/227936493_Observed_and_modelled_stomatal_responses_to_dynamic_light_environments_in_the_shade_plant_AIocasia_macrorrhiza – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomatal-responses-to-dynamic-light-environments/ )
, (1998) – Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates – Planta 204: 16–26 – https://link.springer.com/article/10.1007%2Fs004250050225 – (On our blog : https://plantstomata.wordpress.com/2018/05/02/a-model-of-photosynthesis-showing-responses-of-net-assimilation-rate-and-stomatal-conductance-to-constant-light-levels-and-different-co2-concentrations/ )
, , , (Kirschbaum M. U. F., Pearcy R. W. (1988) – Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza – Plant Physiol. 86: 782–785 – PMCID: PMC1054570 – PMID: 16665988 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1054570/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/the-relative-importance-of-stomatal-and-biochemical-factors-in-photosynthetic-induction/ )
Kiselevsky D. B., Kuznetsova Y. E., Vasil’ev L. A., Lobysheva N. V., Zinovkin R. A., Nesov A. V., Shestak A. A., Samuilov V. D. (2010) – Effect of Ca2+ on programmed death of guard and epidermal cells of pea leaves – Biochemistry 75(5): 614–622 – https://doi.org/10.1134/S0006297910050111 – https://link.springer.com/article/10.1134%2FS0006297910050111#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/14/effect-of-ca2-on-programmed-death-of-stomatal-guard-cells/ )
Kisselew N. N. (1925) – Veränderung der Durchlässigkeit des Protoplasmas der Schliesszellen im Zusammenhange mit stomatären Bewegungen – Beih. Bot. Centralbl. 41 (I): 287-306 –
Kisselew N. N. (1928) – Der Temperatureinfluss auf die Stärkehydrolyse in Mesophyll- und Schliesszellen – Planta 6(1): 135-161 –
Kitano M., Eguchi H. (1989) – Dynamic analysis of stomatal responses by an improved method of leaf heat balance – Environmental and Experimental Botany -29(2): 175-185 – https://doi.org/10.1016/0098-8472(89)90050-6 –https://www.sciencedirect.com/science/article/abs/pii/0098847289900506 – (On our blog : https://plantstomata.wordpress.com/2019/04/03/the-improved-heat-balance-method-was-applicable-for-analysis-of-dynamic-stomatal-responses-to-the-environment/ )
Kitao M., Komatsu M., Hoshika Y., Yazaki K., Yoshimura K., Fujii S., Miyama T., Kominami Y. (2014) – Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model – Environmental Pollution 184: 457-463 – https://doi.org/10.1016/j.envpol.2013.09.023 – https://www.sciencedirect.com/science/article/pii/S0269749113004971 – (On our blog : https://plantstomata.wordpress.com/2019/09/06/seasonal-ozone-uptake-and-with-a-photosynthesis-dependent-stomatal-model/ )
Kleiber H., Mohr H. (1963) – Der Einfluss sichtbaber Strahlung auf die Stomata-Bildung in der Epidermis der Kotyledonen von Sinapis alba. L. – Z. Bot. 52: 78–85 –
Klein A., Itai C. (1989) – Is proline involved in stomata regulation of Commelina communis plants recovering from salinity stress? – Physiologia Plantarum 75(3): 399 – 404 – https://doi.org/10.1111/j.1399-3054.1989.tb04645.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-3054.1989.tb04645.x – (On our blog : https://plantstomata.wordpress.com/2018/04/24/proline-and-the-stomata-regulation-of-plants-recovering-from-salinity-stress/ )
Klein M., Cheng G., Chung M., Tallman G. (1996) – Effects of turgor potentials of epidermal cells neighbouring guard cells on stomatal opening in detached leaf epidermis and intact leaflets of Vicia Faba L (faba bean) – Plant, Cell & Environm. 19: 1399–1407 – https://doi.org/10.1111/j.1365-3040.1996.tb00018.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb00018.x – (On our blog : https://plantstomata.wordpress.com/2019/05/02/effects-of-turgor-potentials-of-epidermal-cells-neighbouring-guard-cells-on-stomatal-opening/ )
Klein M., Geisler M., Suh S. J., Kolukisaoglu H. U., Azevedo L., Plaza S., Curtis M. D., Richter A., Weder B., Schulz B., Martinoia E. (2004) – Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility – Plant J. 39: 219–236 – DOI: 10.1111/j.1365-313X.2004.02125.x – https://www.ncbi.nlm.nih.gov/pubmed/15225287 – (On our blog : https://plantstomata.wordpress.com/2018/04/24/involvement-of-atmrp4-in-the-complex-regulation-of-stomatal-aperture/ )
Klein M., Perfus-Barbeoch L., Frelet-Barrand A., Gaedeke N., Reinhardt D., Mueller-Roeber B., Martinoia E., Forestier C. (2003) – The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use – Plant J. 33: 119– 129 – https://doi.org/10.1046/j.1365-313X.2003.016012.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.2003.016012.x – (On our blog : https://plantstomata.wordpress.com/2018/05/02/multidrug-resistance%e2%80%90associated-proteins-mrps-are-important-components-of-stomatal-functioning/ )
Klein T. (2014) – The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours – Functional Ecology 28(6): 1313–1320 –
Klein T., Shpringer I., Fikler B., Elbaz G., Cohen S., Yakir D. (2013) – Relationships between stomatal regulation, water‐ use, and water‐use efficiency of two coexisting key Mediterranean tree species – Forest Ecol Manag 302: 34–42 – https://doi.org/10.1016/j.foreco.2013.03.044 – https://www.sciencedirect.com/science/article/pii/S0378112713001916 – (On our blog : https://plantstomata.wordpress.com/2019/05/02/stomatal-regulation-water%e2%80%90use-and-water%e2%80%90use-efficiency/ )
Kleinhenz M. D., Bamberg J. B., Palta J. P. (1995) – Use of stomatal
index as a marker to screen backcross populations of two wild potato
species segregating for freezing tolerance – Amer. Potato J. 72: 243–
250 – DOI: 10.1007/BF02855039 – https://www.researchgate.net/publication/225206191_Use_of_stomatal_index_as_a_marker_to_screen_backcross_populations_of_two_wild_potato_species_segregating_for_freezing_tolerance – (On our blog : https://plantstomata.wordpress.com/2021/12/07/stomatal-index-may-be-a-useful-screening-marker-in-breeding-programs-interested-in-improving-freezing-tolerance/ )
Klemm G. (1956) – Untersuchungen über den Transpirations-widerstand der Mesophyllmembranen und seine Bedeutung als Regulator für die stomatäre Transpiration – Planta 47: 547-587 –
Klermund C., Ranftl Q. L., Diener J., Bastakis E., Richter R., Schwechheimer C. (2016) – LLM-domain B-GATA transcription factors promote stomata development downstream from light signaling in Arabidopsis thaliana hypocotyls – The Plant Cell 28(3): 646-660
Kleszcz I., Sliwinska E., Popielarska-Konieczna M. (2015) – Stomata and ploidy level differentiation of plants obtained from Actinidia deliciosa var. deliciosa endosperm culture – BioTechnologia. Journal of Biotechnology, Computational Biology and Bionanotechnology 96: 1 – ISSN :0860-7796 – https://www.infona.pl/resource/bwmeta1.element.agro-1d0ad11f-cae3-411a-9215-c87fabc0d715 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/stomata-and-ploidy-level-differentiation/)
Klooster B., Palmer-Young E. (2004) – Water stress marginally increase stomatal density in E. canadensis, but not in A. geradii – Tillers 5: 35-40 – file:///C:/Users/wille/Downloads/45-1-166-2-10-20120604%20(3).pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/03/water-stress-marginally-increases-stomatal-density/ )
Klusener B., Young J. J., Murata Y., Allen G. J., Mori I. C., Hugouvieux V., Schroeder J. I. (2002) – Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells – Plant Physiol. 130: 2152–2163 – doi: 10.1104/pp.012187 – (On our blog : https://plantstomata.wordpress.com/2016/07/06/fungal-elicitors-activate-a-shared-branch-with-aba-in-the-stress-signal-transduction-pathway-in-stomata/ )
Knapp A. K. (1992) – Leaf gas exchange in Quercus macrocarpa (Fagaceae) – rapid stomatal responses to variability in sunlight in a tree growth form – Am J Bot 79: 599–604 – https://doi.org/10.1002/j.1537-2197.1992.tb14601.x – https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1992.tb14601.x – (On our blog : https://plantstomata.wordpress.com/2022/07/06/rapid-stomatal-responses-to-variability-in-sunlight/ )
Knapp A. K. (1993) – Gas exchange dynamics in C3 and C4 grasses: Consequences of differences in stomatal conductance – Ecology 74: 113–123 – https://doi.org/10.2307/1939506 – https://www.jstor.org/stable/1939506 – (On our blog : https://plantstomata.wordpress.com/2021/09/23/stomatal-conductance-and-gas-exchange-dynamics-in-c3-and-c4-grasses/ )
Knapp A. K., Cocke M., Hamerlynck E. P., Owensby C. E. (1994) – Effect of elevated CO2 on stomatal density and distribution in a C4 grass and a C3 Forb under field conditions – Ann. Bot. 74(6): 595-599 – https://doi.org/10.1006/anbo.1994.1159 – https://www.sciencedirect.com/science/article/pii/S0305736484711590 – (On our blog : https://plantstomata.wordpress.com/2018/04/27/effect-of-elevated-co2-on-stomatal-density-and-distribution/ )
Knapp A. K., Fahnestock J. T., Owensby C. E. (1994) – Elevated atmospheric CO2 alters stomatal responses to variable sunlight in a C4 grass – Plant, Cell & Environment 17: 189–195 – https://doi.org/10.1111/j.1365-3040.1994.tb00282.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1994.tb00282.x – (On our blog : https://plantstomata.wordpress.com/2019/05/07/elevated-atmospheric-co2-alters-stomatal-responses/ )
Knapp A. K., Hamerlynck E. P., Ham J. M., Owensby C. E. (1996) – Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form – Vegetatio 125: 31-41 – Responses_in_stomatal_conductance_to_ele.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/responses-in-stomatal-conductance-to-elevated-co2/ )
Knapp A. K., Smith W. K. (1988) – Effect of water stress on stomatal and photosynthetic responses in Subalpine plants to cloud patterns – America Journal of Botany 75: 851–858 – https://doi.org/10.1002/j.1537-2197.1988.tb13508.x – https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1988.tb13508.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/effect-of-water-stress-on-stomatal-responses-to-cloud-patterns/ )
Knapp A. K., Smith W. K. (1990a) – Contrasting stomatal responses to variable sunlight in two subalpine herbs – Am. J. Bot. 77: 226–231 – doi: 10.2307/2444644 – https://www.jstor.org/stable/2444644?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/28/contrasting-stomatal-responses-to-variable-sunlight/ )
Knapp A. K., Smith W. K. (1990b) – Stomatal and photosynthetic responses to variable sunlight – Physiol. Plant. 78: 160–165 – doi: 10.1111/j.1399-3054.1990.tb08731.x– (On our blog : https://plantstomata.wordpress.com/2016/07/06/variable-sunlight-and-stomatal-movements/)
Knauer J., Werner C., Zaehle A. (2015) – Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis – J. Geophys. Res.-Biogeosci. 120: 1894–1911 – https://doi.org/10.1002/2015JG003114 – https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JG003114 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/evaluating-stomatal-models-and-their-atmospheric-drought-response/ )
Knecht G. N., O’Leary J. W. (1972) – The effect of light intensity on stomate number and density of Phaseolus vulgaris L. leaves – Bot. Gaz. 133: 132-134 – DOI 10.1086/336626 – https://www.jstor.org/stable/2473811?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/28/light-intensity-and-stomate-number-and-density/ )
Knecht G. N., Orton E. R. (1970) – Stomata density in relation to winter hardiness of Ilex opaca Ait. – J. Am. Soc. Hortic. Sci. 95: 341-345 –
Knight R. C. (1916) – On the use of the porometer in stomatal investigation – Ann. Bot. 30: 57-
Knight R. C. (1917) – The interrelations of stomatal aperture, leaf water content, and transpiration rate – Ann. Bot. 31: 221-240 – https://doi.org/10.1093/oxfordjournals.aob.a089642 – https://www.jstor.org/stable/pdf/43236213.pdf?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/20/interrelations-of-stomatal-aperture-leaf-water-content-and-transpiration-rate/ )
Knight R. C. (1922) – Further Observations on the Transpiration, Stomata, Leaf Water-content, and Wilting of Plants – Annals of Botany. Vol. XXXVL No. CXLIH: 361-383 – https://ia800708.us.archive.org/view_archive.php?archive=/28/items/crossref-pre-1923-scholarly-works/10.1093%252Foxfordjournals.aob.a089774.zip&file=10.1093%252Foxfordjournals.aob.a089812.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/02/further-observations-on-the-transpiration-stomata-leaf-water-content-and-wilting-of-plants/ )
Knoppik D., Selinger H., Ziegler-Jöns A. (1986) – Differences between the flag leaf and of ear of a spring wheat cultivar (Triticum aestivum cv. Arkas) with respect to the CO2 response of assimilation, respiration and stomatal conductance – Physiologia Plantarum 68: 451-457 –
Koc M., Barutcular C., Genc I. (2001) – Association of stomatal sonductance and grain yield of bread wheat in Cukurova. 4th National field crops congres, Tekirdag, Turkey, 87-92 –
Koch M. S., Rawlik P. S. (1993) – Transpiration and stomatal conductance of two wetland macrophytes (Cladium jamaicense and Typha domingensis ) in the subtropical Everglades – American Journal of Botany 80(10): – https://doi.org/10.1002/j.1537-2197.1993.tb15346.x – https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1993.tb15346.x – (On our blog : https://plantstomata.wordpress.com/2020/05/22/transpiration-and-stomatal-conductance-2/ )
Kochler M., Kage H., Stützel H. (2007) – Modelling the effects of soil water limitations on transpiration and stomatal regulation of cauliflower – European Journal of Agronomy 26: 375-383 – DOI:10.1016/J.EJA.2006.12.003 – https://www.semanticscholar.org/paper/Modelling-the-effects-of-soil-water-limitations-on-Kochler-Kage/44ad25bbff6817cc4f9d971843787823b9dc0674 – (On our blog : https://plantstomata.wordpress.com/2021/08/20/one-model-of-transpiration-and-three-models-of-stomatal-conductance-based-on-either-soil-water-potential-leaf-water-potential-or-root-signals/ )
The Plant Journal 68(4): 670 –
, , , Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels –Kofidis G., Bosabalidis A. M., Moustakas M. (2007) – Combined effects of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae) – Environmental and Experimental Botany 60: 69–76 –
Kohl F. G. (1895) – Über Assimilationsenergie und Spaltöffnungsmechanik – Botanisches Centralblatt 64: 109-110 –
Kohl F. G. (1895) – Zur Mechanik der Spaltöffnungsbewegungen – Bot. Beiblatt zur Leopoldina 2.
Kohl F. G. (1897) – Die Protoplasmaverbindungen der Spaltöffnungsschließzellen und der Moosblätter – Bot. Centbl 72: 257–265 –
2002) – Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid – Plant J. 32: 185–194 – – (On our blog : https://plantstomata.wordpress.com/2016/07/06/protein-phosphorylation-ca2-channel-aba-and-stomata/)
(Köhler B., Hills A., Blatt M. R. (2003) – Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways – Plant Physiol 131: 385–388 – https://doi.org/10.1104/pp.016014 – http://www.plantphysiol.org/content/131/2/385 – (On our blog : https://plantstomata.wordpress.com/2018/04/28/qualitative-and-quantitative-differences-between-h2o2-and-aba-actions-in-stomata/ )
Koike T., Watanabe T., Toda H., Haibara K. (1998) – Morphological diversity of stomata of representative broadleaved trees in a temperate region: detection with the Sump method. – For Resour Environ 36: 57–65 –
Kokilavani V., Rajendiran, K. (2015) – Variations in foliar morphology and anatomy of Vigna unguiculata (L.) Walp. CV CO-3 after supplementary ultraviolet-B exposure – I.J.A.B.R. 5(1): 23-28 – http://scienceandnature.org/IJABR_Vol5(1)2015/IJABR_V5(1)15-5.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/30/stomata-after-supplementary-ultraviolet-b-exposure/ )
Kolb H. A., Marten I., Hedrich R. (1995) – Hodgkin-Huxley analysis of a GCAC1 anion channel in the plasma membrane of guard cells – J. Membr. Biol. 146(3): 273-282 – doi: 10.1007/BF00233947 – https://pubmed.ncbi.nlm.nih.gov/8568842/ – (On our blog : https://plantstomata.wordpress.com/2020/08/29/hodgkin-huxley-analysis-of-a-gcac1-anion-channel-in-the-plasma-membrane-of-guard-cells/
https://doi.org/10.1104/pp.18.00176 – http://www.plantphysiol.org/content/177/3/980 – (On our blog : https://plantstomata.wordpress.com/2018/07/16/ca-mediated-signaling-in-the-control-of-stomatal-movement-but-not-stomatal-development/ )
, , , Carbonic Anhydrase Mutants in Zea mays Have Altered Stomatal Responses to Environmental Signals – Plant Physiol. 2018 –Kolbe A. R., Studer A. J., Cornejo O. E., Cousins A. B. (2019) – Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO2 – BMC Genomics 20, Article number: 138 – https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5522-7 – (On our blog : https://plantstomata.wordpress.com/2019/08/15/the-importance-of-ca-for-c4-photosynthesis-and-its-role-in-stomatal-signaling/ )
Kolla V. A., Raghavendra A. S. (2007) – Nitric oxide is a signaling intermediate during bicarbonate-induced stomatal closure in Pisum sativum – Physiologia Plantarum 130: 91–98 – https://doi.org/10.1111/j.1399-3054.2007.00887.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.2007.00887.x – (On our blog : https://plantstomata.wordpress.com/2018/04/30/no-and-bicarbonate-induced-stomatal-closure/ )
Kolla V. A., Vavasseur A., Raghavendra A. S. (2007) – Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis –Planta 225: 1421–1429 – doi: 10.1007/s00425-006-0450-6 – (On our blog : https://plantstomata.wordpress.com/2016/07/06/h2o2-is-an-essential-secondary-messenger-during-bicarbonate-induced-stomatal-closure/)
FEBS Journal 278(22): 4277-4292 – DOI: 10.1111/j.1742-4658.2011.08370.x —
, , , Anion channels in plant cells –Kollist H., Moldau H., Mortensen L., Rasmussen S. K.,Jørgensen L. B. (2000) – Ozone Flux to Plasmalemma in Barley and Wheat is controlled by Stomata rather than by direct Reaction of Ozone with Cell Wall Ascorbate – Journal of Plant Physiology 156(5-6): 645-651 – DOI10.1016/S0176-1617(00)80226-6 – https://www.infona.pl/resource/bwmeta1.element.elsevier-7a8fdc42-2209-357d-8d42-1cd632dfbf41 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/ozone-flux-to-plasmalemma-is-controlled-by-stomata/)
Kollist T., Moldau H., Rasulov B., Oja V., Rämma H., Hüve K., Jaspers P., Kangasjärvi J., Kollist H. (2007) – A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant – Physiol Plant. 129: 796–803 – https://doi.org/10.1111/j.1399-3054.2006.00851.x – https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2006.00851.x – (On our blog : https://plantstomata.wordpress.com/2019/03/18/specifying-complex-molecular-and-genetic-interactions-in-rapid-responses-in-stomatal-guard-cells-in-vivo/ )
Kollist H., Nuhkat M., Roelfsema M. R. G. (2014) – Closing gaps: linking elements that control stomatal movement – New Phytol. 203, 44–62 – doi: 10.1111/nph.12832 – (On our blog : https://plantstomata.wordpress.com/2015/06/21/control-of-stomatal-movement/)
Koman V. B., Lew T. T. S., Wong M. H., Kwak S.-Y., Giraldo J. P., Strano M. S. (2017) – Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata in planta – Lab on a Chip 23 – DOI: 10.1039/c7lc00930e – https://pubs.rsc.org/en/content/articlelanding/2017/lc/c7lc00930e/unauth#!divAbstract – (On our blog : https://plantstomata.wordpress.com/2019/08/12/persistent-drought-monitoring-using-a-microfluidic-printed-electro-mechanical-sensor-of-stomata-in-planta/ )
Koman V. B., Park M., Lew T. T. S., Wan S., Yarwood E. S., Gong X., Shikdar T. S., Oliver R. J., Cui J., Gordiichuk P., Sarojam R., Strano M. S., (2022) – Emerging investigator series: linking nanoparticle infiltration and stomatal dynamics for plant nanobionics – Environmental Science: Nano – https://pubs.rsc.org/en/content/articlelanding/2022/en/d1en01154e/unauth – (On our blog : https://plantstomata.wordpress.com/2022/03/19/stomata-type-and-open-fraction-determine-the-pressure-drop-and-the-infiltration-efficiency-with-spinach-plants-having-the-most-active-stomata/ )
Konarska A. (2005) – Response of leaves of three plant species to aluminium stress – (Reakcja liści trzech gatunków roślin uprawnych na stres glinowy) – Acta Agrobotanica 58(1): 175-184 –https://doi.org/10.5586/aa.2005.023 – https://pbsociety.org.pl/journals/index.php/aa/article/view/aa.2005.023/1547 – (On our blog : https://plantstomata.wordpress.com/2022/03/09/increased-stomatal-density-with-increasingal-concentration/ )
Kondamudi R., Swamy K. N., Rao Y. V., Kiran T. V., Suman K., Rao D. S., Rao P. R., Subrahmanyam D., Sarla N., Ramana B. K., Voleti S. R. (2016) – Gas exchange, carbon balance and stomatal traits in wild and cultivated rice (Oryza sativa L.) genotypes – Acta Physiol Plant. 38(16): 1–9 – https://doi.org/10.1007/s11738-016-2173-z – https://europepmc.org/article/PMC/6103955 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/stomatal-traits-in-wild-and-cultivated-rice/ )
Kondo N., Maruta I. (1987) – Abscisic acid-induced stomatal closure in Vicia faba epidermal strips. Excretion of solutes from guard cells and increase in elastic modulus of guard cell wall – Plant Cell Physiology 28: 355–364 – https://doi.org/10.1093/oxfordjournals.pcp.a077303 –https://academic.oup.com/pcp/article-abstract/28/2/355/1854700?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/18/aba-may-cause-an-increase-in-the-elastic-modulus-of-the-cell-walls-of-stomatal-guard-cells/ )
Kondo N., Maruta I., Sugahara K. (1980) – Effects of sulfite and pH on abscisic acid-dependent transpiration and on stomatal opening. – Plant Cell Environ. 21: 817-828 – https://doi.org/10.1093/oxfordjournals.pcp.a076056 – https://academic.oup.com/pcp/article-abstract/21/5/817/1869178?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/04/30/effects-of-sulfite-and-ph-on-stomatal-opening/ )
Kondo N., Saji H. (1992) – Tolerance of plants to air pollutants. Shokubutsu no taiki osen taisei – Energy Technology Data Exchange (ETDEWEB) 1992-11-10 – (On our blog : https://plantstomata.wordpress.com/2022/09/26/stomata-and-the-tolerance-of-plants-to-air-pollutants/ )
Kondo T., Kajita R., Miyazaki A., Hokoyama M., Nakamura-Miura T., Mizuno S., Masuda Y., Irie K., Tanaka Y., Takada S., Kakimoto T., Sakagami Y. (2010) – Stomatal density is controlled by a mesophyll-derived signaling molecule – Plant Cell Physiol. 51: 1–8 – doi: 10.1093/pcp/pcp180 – Epub 2009 Dec 9 – https://www.ncbi.nlm.nih.gov/pubmed/20007289 – (On our blog : https://plantstomata.wordpress.com/2018/05/03/stomagen-is-a-mesophyll-to-epidermis-signaling-molecule-that-positively-regulates-stomatal-density/ )
Kong D., Hu H.-C., Okuma E., Lee Y., Lee H. S., Munemasa S., Cho D., Ju C., Pedoeim L., Rodriguez B., Wang J., Im W., Murata Y., Pei Z.-M., Kwak J. (2016) – L-Met Activates Arabidopsis GLR Ca2+ Channels Upstream of ROS Production and Regulates Stomatal Movement – Cell Reports 17(10): 2553-2561 – https://doi.org/10.1016/j.celrep.2016.11.015 – https://www.cell.com/cell-reports/fulltext/S2211-1247(16)31556-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS221112471631556X%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/02/15/l-met-regulates-stomatal-movement/ )
Kong D., Karve R., Willet A., Chen M. K., Oden J., Shpak E. D. (2012) – Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1 – Plant Physiology 159: 156-168 – https://doi.org/10.1104/pp.112.194563 – http://www.plantphysiol.org/content/159/1/156 – (On our blog : https://plantstomata.wordpress.com/2018/05/03/kobito1-and-stomatal-patterning/ )
Kong W., Yoo M.-J., Noble J. D., Kelley T. M., Li J., Kirst M., Assmann S. M., Chen S. (2019) – Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C3 to CAM transition – biorxiv – http://dx.doi.org/10.1101/607333 – https://www.biorxiv.org/content/biorxiv/early/2019/04/12/607333.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/03/c3-to-cam-transition-of-ice-plant-stomatal-guard-cells/ )
Konings A. G., Williams A. P., Gentine P., (2017) – Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation – Nature Geoscience 10(4): 284-288 – DOI: 10.1038/ngeo2903 – http://www.military-technologies.net/2017/12/07/how-grasslands-regulate-their-productivity-in-response-to-droughts/ – (On our blog : https://plantstomata.wordpress.com/2017/12/09/coordination-between-stomatal-closure-strategies-and-the-loss-of-xylem-conductance-under-drought/)
Kono A., Umeda-Hara C., Adachi S., Nagata N., Konomi M., Nakagawa T., Uchimiya H., Umeda M. (2007) – The Arabidopsis D-Type Cyclin CYCD4 Controls Cell Division in the Stomatal Lineage of the Hypocotyl Epidermis – The Plant Cell 19(4): 1265-1277 – http://dx.doi.org/10.1105/tpc.106.046763 – http://www.plantcell.org/content/19/4/1265.full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/cyclin-cycd4-controls-cell-division-in-the-stomatal-lineage/)
Konrad K. R. , Hedrich R. (2008) – The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells – Plant Journal 55: 161-173 – doi: 10.1111/j.1365-313X.2008.03498.x – https://www.ncbi.nlm.nih.gov/pubmed/18363788 – (On our blog : https://plantstomata.wordpress.com/2018/05/05/voltage-sensitive-dyes-provide-an-excellent-tool-for-the-study-of-changes-in-the-membrane-potential-in-vacuole-as-well-as-guard-cell-populations/ )
Konrad W., Katul G., Roth-Nebelsick A., Grein M. (2017) – A reduced order model to analytically infer atmospheric CO2 concentration from stomatal and climate data – Advances in Water Resources 104: 145–157 – https://doi.org/10.1016/j.advwatres.2017.03.018 – https://www.sciencedirect.com/science/article/pii/S0309170816305024 – (On our blog : https://plantstomata.wordpress.com/2019/08/13/a-reduced-order-model-to-analytically-infer-atmospheric-co2-concentration-from-stomatal-and-climate-data/ )
Konrad W., Roth-Nebelsick, A., Grein, M. (2008) – Modelling of stomatal density response to atmospheric CO2. – Journal of Theoretical Biology 253: 638–658 – https://doi.org/10.1016/j.jtbi.2008.03.032 – https://www.sciencedirect.com/science/article/pii/S0022519308001677 – (On lour blog : https://plantstomata.wordpress.com/2018/05/05/stomatal-density-response-to-atmospheric-co2/ )
Konstantinos P. A.., Toumi I., Panaglotis M. N., Roubelakis-Angelakis K. A.(2010) – ABA-dependent amine oxidases-derived H2O2 affects stomata conductance – Plant Signal. Behav.5: 1153–1156 – https://doi.org/10.4161/psb.5.9.12679 – https://www.tandfonline.com/doi/full/10.4161/psb.5.9.12679 – (On our blog : https://plantstomata.wordpress.com/2019/07/08/aba-dependent-amine-oxidases-derived-h2o2-affects-stomata-conductance/ )
Kopernická M., Tomáš J., Tóth T., Harangozo L’., Volnová B. (2016) – Bioaccumulation of cadmium by spring barley (Hordeum vulgare L.) and its effect on selected physiological and morphological parameters – Potravinárstvo: Scientific Journal for Food Industry 10(1): 100-106 ref.28 – https://www.cabdirect.org/globalhealth/abstract/20163050574 – (On our blog : https://plantstomata.wordpress.com/2022/09/06/stomata-and-contamination-by-cadmium/ )
1997) – Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. – Plant Journal 11: 871–882 – – (On our blog : https://plantstomata.wordpress.com/2016/07/07/stomatal-gene-expression-under-drought-stress-conditions/ )
, , . (Korn R. W. (1972) – Arrangement of stomata on the leaves of Pelargonium zonale and Sedum stahlii – Ann. Bot. 36: 325–333 – DOI: 10.1093/oxfordjournals.aob.a084592 – https://academic.oup.com/aob/article-abstract/36/2/325/190820?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/05/05/arrangement-of-stomata-in-pelargonium-zonale-and-sedum/ )
Korn R. W. (1993) – Evidence in dicots for stomatal patterning by inhibition. – International Journal of Plant Sciences 154: 367–377 – https://doi.org/10.1086/297118 – http://www.journals.uchicago.edu/doi/abs/10.1086/297118 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/stomatal-patterning-by-inhibition/ )
Korn R. W. (2009) – A new hypothesis for stomatal placement in Arabidopsis. – J. Theor. Biol. 260: 172–174 – DOI: 10.1016/j.jtbi.2009.05.012 – https://www.ncbi.nlm.nih.gov/pubmed/19481098 – (No abstract available)
Korn R. W., Fredrick G. W. (1973) – Development of D-type stomata in the leaves of Ilex crenata var. convexa – Ann. Bot. Lond. 37: 647-656 – DOI: 10.1093/oxfordjournals.aob.a084731 – https://academic.oup.com/aob/article-abstract/37/3/647/151284?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/08/28/development-of-d-type-stomata/ )
Körner C. (1981) – Stomatal behaviour and water potential in apricot (Prunus armeniaca) with symptoms of wilt disease (Chondrostereum) – Angewandte Botanik 55: 469–476 – ISSN : 0066-1759 –
Körner C. (1988) – Does global increase of CO2 alter stomatal density? – Flora 181: 253-257 – https://doi.org/10.1016/S0367-2530(17)33116-X – https://www.sciencedirect.com/science/article/pii/S036725301733116X – (On our blog : https://plantstomata.wordpress.com/2018/05/05/global-increase-of-co2-and-stomatal-density/ )
Körner C. (2017) – When meta-analysis fails: A case about stomata – Global Change Biology 23(7): 2533–2534 – https://doi.org/10.1111/gcb.13700 – https://onlinelibrary.wiley.com/doi/10.1111/gcb.13700 – (On our blog : https://plantstomata.wordpress.com/2020/09/09/when-meta-analysis-fails-a-case-about-stomata/ )
Körner C., Bannister P. (1985) – Stomatal responses to humidity in Nothofagus menziesii – NZ J Bot 23: 425–429 – https://doi.org/10.1080/0028825X.1985.10425347 – https://www.tandfonline.com/doi/abs/10.1080/0028825X.1985.10425347 – (On our blog : https://plantstomata.wordpress.com/2019/07/20/stomatal-responses-to-humidity-8/ )
Körner C., Bannister P., Mark A. F. (1986) – Altitudinal variation in stomatal conductance, nitrogen-content and leaf anatomy in different plant life forms in New-Zealand – Oecologia 69: 577–588 – doi: 10.1007/Bf00410366 – https://link.springer.com/article/10.1007%2FBF00410366 – (On our blog : https://plantstomata.wordpress.com/2019/07/20/altitudinal-variation-in-stomatal-conductance/ )
Körner C., Cochrane P. (1985) – Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient – Oecologia 74: 443–455 – doi: 10.1007/BF00378313 – https://www.ncbi.nlm.nih.gov/pubmed/28310877 – (On our blog : https://plantstomata.wordpress.com/2018/05/05/stomatal-responses-and-water-relations-along-an-elevational-gradient/ )
Koshuchowa S., Zoglauer K., Göring H (1990) – Structure of Guard Cells and Function of Stomata of Plants cultured in vitro – Biochemie und Physiologie der Pflanzen 186( 5–6): 289-299 – https://doi.org/10.1016/S0015-3796(11)80220-9 – http://www.sciencedirect.com/science/article/pii/S0015379611802209 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/structure-and-function-of-stomata-cultured-in-vitro/)
Kostaki K.-I., Coupel-Ledru A., Bonnell V. C., Gustavsson M., Sun P., Mclaughlin F. J., Fraser D. P., McLachlan D. H., Hetherington A. M., Dodd A. N., Franklin K. A. (2020) – Guard cells integrate light and temperature signals to control stomatal aperture – Plant Physiology – https://doi.org/10.1104/pp.19.01528 – http://www.plantphysiol.org/content/early/2020/01/16/pp.19.01528 – (On our blog : https://plantstomata.wordpress.com/2020/01/17/stomatal-guard-cells-integrate-light-and-temperature-signals-to-control-stomatal-aperture/ )
Kostina E., Wulff A., Julkunen-Tiitto R. (2001) – Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field – Trees 15: 483-491 – https://doi.org/10.1007/s00468-001-0129-3 – https://link.springer.com/article/10.1007/s00468-001-0129-3#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-responses-under-elevated-uv-b-radiation-in-the-field/)
Kosugi Y., Kobashi S., Shibata S. (xxxx) – Modeling Stomatal Conductance on Leaves of Several Temperate Evergreen Broad-leaved Trees – J. Jap. Soc. Reveget. Tech. 20(3): 158-167 – Modeling_Stomatal_Conductance_on_Leaves.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/modeling-stomatal-conductance/ )
Kottapalii J., David-Schwartz R., Khamaisi B., Brandsma D., Lugassi N., Egbaria A., Kelly G., Granot D. (2018) – Sucrose-induced stomatal closure is conserved across evolution – PLOS One 13(10): e0205359 – https://doi.org/10.1371/journal.pone.0205359 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205359 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/sucrose-induced-stomatal-closure/ )
Kottmeier C., Schnabl H. (1986) – The Km-value of phosphoenolpyruvate carboxylase as an indicator of swelling state of guard cell protoplasts – Plant Sci. 43: 213–217 – https://doi.org/10.1016/0168-9452(86)90020-8 –https://www.sciencedirect.com/science/article/pii/0168945286900208 – (On our blog : https://plantstomata.wordpress.com/2019/03/18/the-role-of-k-in-stimulating-the-affinity-of-pepcase-for-its-substrate-pep-and-its-possible-importance-in-stomatal-movement/ )
Koul M., Bhatnagar A. K. (2017) – Changes in the Leaf epidermal Features of Cyamopsis tetragonoloba (L.) Taub. in Response to Lead in Soil – Phytomorphology 67(1&2): 19-25 – https://www.researchgate.net/publication/331220737_Changes_in_the_Leaf_epidermal_Features_of_Cyamopsis_tetragonoloba_L_Taub_in_Response_to_Lead_in_Soil – (On our blog : https://plantstomata.wordpress.com/2019/04/10/pb-in-the-soil-is-transferred-from-the-roots-right-up-to-the-minor-veins-of-plant-leaves-where-stomata-and-epidermal-features-are-compromised/ )
Kouwenberg L. L. R., Kürschner W. M., McElwain J. C. (2007) – Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry – Rev. Mineral. Geochem. 66: 215-241 – https://doi.org/10.2138/rmg.2007.66.9 – https://pubs.geoscienceworld.org/msa/rimg/article-abstract/66/1/215/140806/stomatal-frequency-change-over-altitudinal?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/05/05/paleoaltimetry-and-stomatal-frequency/ )
Kouwenberg L. L. R. , Kürschner W. M., Visscher H. (2004) – Changes in Stomatal Frequency and Size During Elongation of Tsuga heterophylla Needles – Annals of Botany 94(4): 561–569 – https://doi.org/10.1093/aob/mch175 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242229/ – (On our blog : https://plantstomata.wordpress.com/2020/02/21/stomatal-frequency-and-size-during-elongation/ )
Kouwenberg L. L. R. , McElwain J. C. , Kürschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H. (2003) – Stomata frequency adjustment of four conifer species to historical changes in atmospheric CO2 – Am. J. Bot. 90. 610-619 – doi: 10.3732/ajb.90.4.610 – http://www.amjbot.org/content/90/4/610.full – (On our blog : https://plantstomata.wordpress.com/2016/12/30/historical-changes-in-atmospheric-co2-and-stomata-frequency-adjustment/) – No. of stomata per mm of needle length. Tsuga, Picea, Larix.
Kouwenberg L. L. R., Wagner R., Kürschner W. M., Visscher H. (2005) – Atmospheric CO2 fluctuations during the last millenium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles – Geology 33: 33-36 – https://doi.org/10.1130/G20941.1 – https://pubs.geoscienceworld.org/gsa/geology/article-abstract/33/1/33/129251/atmospheric-co2-fluctuations-during-the-last?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/18/co2-fluctuations-during-the-last-millenium-reconstructed-by-stomatal-frequency-analysis/ )
Kozkowski T. T., Pallardy S. G. (1979) – Stomatal responses of Fraxinus pennsylvanica seedlings during and after flooding – Physiol. Plant. 46: 155-158 – https://doi.org/10.1111/j.1399-3054.1979.tb06549.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1979.tb06549.x – (On our blog : https://plantstomata.wordpress.com/2020/06/10/stomatal-responses-of-seedlings-during-and-after-flooding/ )
Kraehmer H., Baur P. (2013) – Stomata – in : Weed Anatomy, 40-41 – ISBN 9781118503416, 9780470659861
Krajíčková A., Mejstřik V. (1984) – The effect of fly ash particles on the plugging of stomata – Environmental Pollution Series A, Ecological and Biological 36(1): 83-93 – https://doi.org/10.1016/0143-1471(84)90200-9 – https://www.sciencedirect.com/science/article/abs/pii/0143147184902009?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/12/23/the-stomata-of-two-experimental-plants-did-not-become-plugged-by-fly-ash-from-a-power-plant/ )
Kramer L. J., Bamberg J. (2019) – Comparing Methods of Ploidy Estimation in Potato (Solanum) Species – American Journal of Potato Research 96:419–426 – https://doi.org/10.1007/s12230-019-09729-4 – https://www.ars.usda.gov/ARSUserFiles/274/Bamberg%20lab%20procedures/KramerPloidyEst.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/23/three-predictors-of-ploidy-chloroplast-number-per-stomatal-guard-cell-c-guard-cell-length-gc-and-pollen-diameter-p/ )
Kramer P. J. (1988) – Changing concepts regarding plant water relations – Plant, Cell & Environment 11: 565-568 – https://doi.org/10.1111/j.1365-3040.1988.tb01796.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1988.tb01796.x – (On our blog : https://plantstomata.wordpress.com/2019/03/18/changing-concepts-regarding-plant-water-relations-stomatal-conductance/ )
Kramer P. J., Boyer J. S. (1995) – Stomata and gas exchange. In: Kramer P. J., Boyer J. S., Editors Water relations of plants and soils. London: Academic Press. 257–282 –
Krassilov V. A. (1978) – Electron microscopy of stomatal
guard cells – Paleontologicheskii Zhurnal 3:128–130 (in Russian) – [Красилов В.А. 1978. Электронная микроскопия
замыкающих клеток устьиц // Палеонтологический
журнал. № 3. С. 128–130.] –
Krassilov V. A., Berner A., Barinova S. (2013) – Morphology as Clue to Developmental Regulation: Stomata – Plant 1(3): 30-44 – doi: 10.11648/j.plant.20130103.11 – http://www.sciencepublishinggroup.com/journal/paperinfo.aspx?journalid=211&doi=10.11648/j.plant.20130103.11 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/correlation-of-stomatal-development-with-the-whole-plant-growth-habit-ecology-and-evolution/)
Kriedemann P. E. (1971) – Photosynthesis and Transpiration as a Function of Gaseous Diffusive Resistances in Orange Leaves – Physiologia Plantarum 24 (2) – https://doi.org/10.1111/j.1399-3054.1971.tb03482.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1971.tb03482.x – (On our blog : https://plantstomata.wordpress.com/2019/08/24/strictly-stomatal-control-of-photosynthesis/ )
Kriedemann P. E., Loveys B. R. (1975) – Hormonal Influences on Stomatal Physiology and Photosynthesis – In: Marcelle R. (eds) Environmental and Biological Control of Photosynthesis, 227-236. Springer, Dordrecht – (On our blog : https://plantstomata.wordpress.com/2019/08/24/hormonal-influences-on-stomatal-physiology/ )
Kriedemann P. E., Loveys B. R., Fuller G. L., Leopold A. C. (1972) – Abscisic acid and stomatal regulation – Plant Physiol. 49: 842–847 – PMCID: PMC366062 – PMID: 16658058- – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366062/ – (On our blog : https://plantstomata.wordpress.com/2018/05/06/stomatal-control-is-a-regulatory-function-of-aba/ )
Kriedemann P. E., Sands R., Foster R. C. (1983) – Salt tolerance and root-zone aeration in Helianthus annuus (L.) – Growth and stomatal response to solute uptake – In Marcelle R., Clijsters H., van Poucke M. (eds) – Effects of stress on photosynthesis. Advances in Agricultural Biotechnology, vol 3. Springer, Dordrecht – Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, Netherlands, 313-324 – https://doi.org/10.1007/978-94-009-6813-4_34 – https://link.springer.com/chapter/10.1007%2F978-94-009-6813-4_34#citeas – (On our blog : https://plantstomata.wordpress.com/2020/06/10/growth-and-stomatal-response-to-solute-uptake/ )
Kriedemann P. E., Smart R. E. (1971) – Effects of irradiance, temperature, and leaf water potential on photosynthesis of vine leaves – Photosynthetica (Prague) 213(1): 6-15 –
Kröber W. (2015) – Stomatal control, xylem hydraulics, and leaf morphology in the 40 BEF-CHINA tree species: trait interrelationships, functional diversity and tree growth prediction – PhD Thesis Martin-Luther-Universität Halle-Wittenberg 150 pp. – https://d-nb.info/1069532479/34 – (On our blog : https://plantstomata.wordpress.com/2018/03/27/67588/ )
Kröber W., Bruelheide H. (2014) – Transpiration and stomatal control: a cross-species study of leaf traits in 39 evergreen and deciduous broadleaved subtropical tree species – Trees 28: 901–914 – DOI 10.1007/s00468-014-1004-3 – https://d-nb.info/1069532479/34 – (On our blog : https://plantstomata.wordpress.com/2018/10/29/traits-of-the-leaf-economics-spectrum-to-be-linked-to-mean-stomatal-conductance-but-not-to-stomatal-regulation/ )
Kröber W., Heklau H., Bruelheide H. (2015) – Leaf morphology of 40 evergreen and deciduous broad leaved subtropical tree species and relationships to functional ecophysiological traits – Plant Biology 17: 373–383 –
Kröber W., Plath I., Heklau H., Bruelheide H. (2015) – Relating Stomatal Conductance to Leaf Functional Traits. – J. Vis. Exp. (104), e52738 – doi:10.3791/52738 – https://www.jove.com/video/52738/relating-stomatal-conductance-to-leaf-functional-traits – (On our blog : https://plantstomata.wordpress.com/2018/01/22/to-derive-parameters-of-stomatal-regulation-from-stomatal-conductance-measurements/ )
Kromdijk J., Głowacka K., Long S. P. (2019) – Predicting light-induced stomatal movements based on the redox state of plastoquinone: theory and validation – Photosynth. Res. 141: 83-97 – https://doi.org/10.1007/s11120-019-00632-x – https://link.springer.com/article/10.1007/s11120-019-00632-x#citeas – (On our blog : https://plantstomata.wordpress.com/2019/08/25/a-modification-of-an-empirical-stomatal-conductance-model/ )
Kromwijk J. A. M., Meinen E., Dueck T. A. (2014) – The effect of elevated CO2 on the vegetative and generative growth of Phalaenopsis – https://doi.org/10.17660/ActaHortic.2014.1025.23 – International Symposium on Orchids and Ornamental Plants – Royal Flora 2011, Chiang Mai, Thailand, 2012-01-09/2012-01-13 – https://library.wur.nl/WebQuery/wurpubs/453016 – (On our blog : https://plantstomata.wordpress.com/2022/03/07/the-effect-of-elevated-co2-on-the-vegetative-and-generative-growth-and-on-stomata/ )
Kropff M. J. (1987) – Physiological effects of sulfur dioxide. 1. The effect of SO2 on photosynthesis and stomatal regulation of Vicia faba L. – Plant, Cell and Environment 10: 753–760 – doi:10.1111/1365-3040.ep11604762 –
Kropff M. J. (1989) – Modelling short-term effects of sulphur dioxide. 1. A model for the flux of S02 into leaves and effects on leaf photosynthesis – Neth. J. Pl. Path. 95: 195-213 – https://edepot.wur.nl/217548 – (On our blog : https://plantstomata.wordpress.com/2021/05/10/the-flux-of-s02-into-leaves-and-stomatal-resistance/ )
Kropfitsch (1951) – Apfelgas-Wirkung auf Stomatazahl – Protoplasma 40: 256-265 –
Kropfitsch (1951) – UV-Bestrahlung und Stomatazahl – Protoplasma 40: 266-274 –
Kropfitsch (1951) – Spaltöffnungszahl und Heteroauxin – Protoplasma 40: 461-474 –
Kropp H., Ogle K. (2015) – Seasonal stomatal behavior of a common desert shrub and the influence of plant neighbors – Oecologia – 177: 345–355 – DOI: 10.1007/s00442-014-3187-0 – https://www.ncbi.nlm.nih.gov/pubmed/25526845 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/seasonal-stomatal-behavior-of-a-common-desert-shrub-and-the-influence-of-plant-neighbors/ )
Kroupitski Y., Golberg D., Belausov E., Pinto R., Swartzberg D., Granot D., Sela S. (2009) – Internalization of Salmonella in leaves is induced by light and involves chemotaxis and penetration through open stomata. – Appl Environ Microbiol. 2009 AEM.01084-09 – doi:10.1128/AEM.01084-0 – https://www.academia.edu/12699107/Internalization_of_Salmonella_enterica_in_Leaves_Is_Induced_by_Light_and_Involves_Chemotaxis_and_Penetration_through_Open_Stomata – (On our blog : https://plantstomata.wordpress.com/2018/05/07/salmonella-penetration-through-stomata/ )
Krug C. A. (1944) – Cytological observations in Citrus. IV. Number of chromosomes in the sub-family Aurantioideae with special reference to the genus Citrus – Bragantia 4(7): 413-428 – https://eurekamag.com/research/024/432/024432742.php – (On our blog : https://plantstomata.wordpress.com/2022/01/08/99278/ )
Krug C. A., Bacchi (1944) – Cytological observations in Citrus. V. Polyploidy in relation to the density and size of the stomata in Citrus and other genera of the Aurantioideae – Bragantia, Sao Paulo. 4: 429-447 – https://eurekamag.com/research/013/347/013347624.php – (On our blog : https://plantstomata.wordpress.com/2022/01/08/wide-differences-in-stomatal-density/ )
Krüger G. H. J., Jordaan A., Tiedt L. R., Strasser R. J., Kilbourn Louw M., Bemer J. M. (2017) – Opportunistic survival strategy of Welwitschia mirabilis: recent anatomical and ecophysiological studies elucidating stomatal behaviour and photosynthetic potential – Botany 95(12): 1109-1123 – https://doi.org/10.1139/cjb-2017-0095 – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2017-0095 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/leaf-surface-and-stomatal-structure-play-a-crucial-role-in-moisture-conservation-and-moderating-leaf-temperature-for-desert-survival/ )
Krukowski P. K., Visentin I., Russo G., Gresta F., Lovisolo C., Schubert A., Cardinale F. (2021) – Strigolactones are needed for full stomata memory of drought during the recovery phase – https://123dok.org/document/dzxmxo4y-strigolactones-needed-stomata-memory-drought-recovery-phase.html – (On our blog : https://plantstomata.wordpress.com/2022/04/02/strigolactones-and-stomata/ )
Kruse J., Adams M., Winkler B., Ghirardo A., Alfarraj S., Kreuzwieser J., Hedrich R., Schnitzler J.-P., Rennenberg H. (2019) – Optimization of photosynthesis and stomatal conductance in the date palm Phoenix dactylifera during acclimation to heat and drought – New Phytologist https://doi.org/10.1111/nph.15923 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15923?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/17/optimization-of-photosynthesis-and-stomatal-conductance-during-acclimation-to-heat-and-drought/ )
Kruse T., Tallman G., Zeiger E. (1989) – Isolation of Guard Cell Protoplasts from Mechanically Prepared Epidermis of Vicia faba Leaves – Plant Physiol. 90(4): 1382–1386PMID: 16666940 PMCID: PMC1061900 – https://www.ncbi.nlm.nih.gov/pubmed/16666940 – (On our blog : https://plantstomata.wordpress.com/2018/05/07/isolation-of-stomatal-protoplasts/ )
Kübarsepp L., Laanisto L., Niinemets Ü., Talts E., Tosens T. (2019) – Are stomata in ferns and allies sluggish? Stomatal responses to CO2, humidity and light and their scaling with size and density – The New Phytologist – https://doi.org/10.1111/nph.16159 – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16159 – (On our blog : https://plantstomata.wordpress.com/2020/06/08/mechanisms-controlling-stomatal-reactions-in-ferns-at-different-environmental-stimuli/ )
Kubichek S. A. (1978) – The mechanism for bending the walls of guard cells during the functioning of stomata in Tradescantia virginiana – Fiziologiya Rastenii 25(2): 323-327 – https://eurekamag.com/research/000/546/000546183.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/treatment-of-the-epidermis-with-5-pectinase-solution-led-the-stomatal-guard-cells-to-curve-which-resulted-in-closure-of-the-stoma/ )
Kubichek S. A. (1981) – Formation of chloroplasts in stomatal guard cells of Tradescantia virginica in darkness – Fiziologiya Rastenii 28(4): 767-773 – https://eurekamag.com/research/005/480/005480065.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/a-successive-conversion-of-proplastids-into-amyloplasts-and-then-into-chloroplasts-in-stomatal-guard-cells/ )
Kubichek S. A. (1982) – Formation of chloroplasts in guard cells of Virginia spiderwort stomata in the dark Tradescantia virginica – Soviet plant physiology (pub 1982) 28(1): 556-560 – https://eurekamag.com/research/015/880/015880725.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/formation-of-chloroplasts-in-stomatal-guard-cells/ )
Kubinovä L. (1991) – Stomata and mesophyll characteristics of
barley leaf as affected by light: stereological analysis – Journal
of Experimental Botany 42: 995–1001 –
Kubínová L. (1994) – Recent stereological methods for measuring leaf anatomical characteristics: estimation of the number and sizes of stomata and mesophyll cells – Journal of Experimental Botany 45: 119–127 – https://doi.org/10.1093/jxb/45.1.119 –https://academic.oup.com/jxb/article-abstract/45/1/119/476309?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/11/estimation-of-the-number-and-sizes-of-stomata/ )
Kubiske M. E., Abrams M. D. (1993) – Stomatal and nonstomatal limitations of photosynthesis in 19 temperate tree species on contrasting sites during wet and dry years – Plant Cell Environ. 16: 1123–1129 – https://doi.org/10.1111/j.1365-3040.1996.tb02070.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb02070.x – (On our blog : https://plantstomata.wordpress.com/2018/10/30/stomatal-and-nonstomatal-limitations-of-photosynthesis/ )
Kubiske M. E., Abrams M. D., Mostoller S. A. (1996) – Stomatal and
non-stomatal limitations of photosynthesis in relation to the drought and shade tolerance of tree species in open and understory environments – Trees 11: 76–82 – https://doi.org/10.1007/s004680050062 – https://link.springer.com/article/10.1007/s004680050062#citeas – (On our blog :
2000) – Osmotically evoked shrinking of guard-cell protoplasts causes vesicular retrieval of plasma membrane into the cytoplasm – Planta 210: 423–431– (On our blog : https://plantstomata.wordpress.com/2016/07/07/endocytosis-of-small-vesicles-into-the-cytoplasm-is-the-obligatory-process-in-stomata/)
, , . (Kubota T. (2017) – Stanford scientists reveal how grass developed a better way to breathe – http://news.stanford.edu/2017/03/16/grass-developed-better-way-breathe/ – (On our blog : https://plantstomata.wordpress.com/2017/09/23/how-grass-developed-a-better-way-to-breathe-stomata/)
Kubota T. (2018) – How plants build the perfect ventilation system – – https://www.futurity.org/plants-leaves-stomata-1860022/ – (On our blog : https://plantstomata.wordpress.com/2019/01/14/how-leaves-build-the-right-number-of-stomata-to-help-plants-optimize-productivity/ )
Kubota T. (2020) – Researchers find ‘cellular compass’ guides stem cell division in plants – https://news.stanford.edu/2020/09/17/cellular-compass-guides-plant-stem-cell-division/ (On our blog : https://plantstomata.wordpress.com/2020/09/24/the-different-factors-that-influence-the-cells-during-division/ )
2002) – Loading acetoxymethyl ester fluorescent dyes into the cytoplasm of Arabidopsis and Commelina guard cells – New Phytologist 153: 527–533 – – (On our blog : https://plantstomata.wordpress.com/2016/07/07/15580/)
, , , , . (Kudoyarova G. R., Veselov D. S., Faizov R. G., Veselova S. V., Ivanov E. A., Farkhutdinov R. G. (2007) – Stomata response to changes in temperature and humidity in wheat cultivars grown under contrasting climatic conditions – Russ. J. Plant Physiol. 54(1): 46-49 – (On our blog : https://plantstomata.wordpress.com/2016/02/16/stomata-response-to-changes-in-temperature-and-humidity/)
Kuijper J. (1915) – Contributions to the Physiology of Stomata in Saccharum officinarum – Arch. Sinkesindus. Nederland. Indie. 23: 1673-1700 – Exp. Sta. Rec. 35. 330 –
1961) – The effect of environmental factors on the transpiration of leaves, with special reference to stomatal light response – Mededel. Landbouwhogeschool Wageningen, Nederland 58: 1-16. (61(7): 1-49 – https://www.researchgate.net/publication/319290628_The_effects_of_environmental_factors_on_the_transpiration_of_leaves_with_special_reference_to_stomatal_light_response – (On our blog : https://plantstomata.wordpress.com/2018/05/06/stomatal-light-response/ )
(1964) – Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris – Pl. Physiol., Lancaster 39: 952-955 – https://doi.org/10.1104/pp.39.6.952 – (On our blog : https://plantstomata.wordpress.com/2016/07/16/stomatal-movement-and-wavelength/)
(Kulkarni M., Deshpande U. (2006) – Anatomical Breeding for Altered Leaf Parameters in Tomato Genotypes Imparting Drought Resistance Using Leaf Strength Index – Asian Journal of Plant Sciences 5: 414-420 – DOI: 10.3923/ajps.2006.414.420 – https://scialert.net/abstract/?doi=ajps.2006.414.420 – (On our blog : https://plantstomata.wordpress.com/2021/12/11/reduced-number-of-stomata-bigger-size-and-more-distance-between-them-was-highlighting-character-of-drought-resistant-genotypes/ )
Kulshreshtha K., Farooqui A., Srivastava K., Singh S. N., Ahmad K. J., Behl H. M. (1994) – Effect of diesel pollution on cuticular and epidermal features of Lantana camara Linn. and Syzygium cumini Linn. (Skeels) – Journal of Environmental Science and Health 29(2): 301-308 –
Kulshreshtha K., Rai A., Mohanty C. S., Roy R. K., Sharma S. C. (2009) – Particulate Pollution Mitigating Ability of Some Plant Species – Int. J. Environ. Res. 3(1): 137-142 – ISSN: 1735-6865 – http://www.bioline.org.br/pdf?er09016 – (On our blog : https://plantstomata.wordpress.com/2016/12/21/stomata-and-the-ability-of-individual-plant-species-to-intercept-and-mitigate-particulate-pollutants/)
Kulshreshtha K., Srivastava K., Ahmad K. J. (1994) – Effect of automobile exhaust pollution on leaf surface structure of Calotropis procera L. and Nerium indicum L. – Feddes Repertorium 105: 185-189 –
Kulshreshtha K., Yunus M., Dwivedi A. K., Ahmad K. J. (1980) – Effect of air pollution on the epidermal traits of Jasminum sambac – New Botanist 7: 193-197 –
Kumachova T. K., Beloshapkina O. O., Voronkov A. S. (2019) – The Maloideae (Rosaceae) Structural and Functional Features Determining Passive Immunity to Mycosis – Asian Journal of Research in Botany 2(1): 1-13 – Article no.AJRIB.47924 – file:///C:/Users/wille/Downloads/30060-Article%20Text-56389-1-10-20190326.pdf – (On our blog : https://plantstomata.wordpress.com/2022/06/13/stomata-of-the-maloideae-rosaceae-and-passive-immunity-to-mycosis/ )
Kumar A. S., Lakshmanan V., Caplan J. L., Powell D., Czymmek K. J., Levia D. F., Bais H. P. (xxxx) – Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata – The Plant Journal 72(4): 694-706 – DOI: 10.1111/j.1365-313X.2012.05116.x – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-72-i-4-tpj5116 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/stomata-and-the-plant-innate-immune-system-against-foliar-bacterial-infections/)
Kumar G., Dwivedi K. (2014) – Induced polyploidization in Brassica campestris L. (Brassicaceae) – Tsitol Genet. 48(2): 43-51 – PMID: 24818510 – https://pubmed.ncbi.nlm.nih.gov/24818510/ – (On our blog : https://plantstomata.wordpress.com/2022/09/11/induced-polyploidization-increase-of-stomatal-size-and-reduction-in-stomatal-frequency/ )
Kumar L., Kumar H. N. K., Jagannath S. (2018) – Assessment of air pollution impact on micromorphological and biochemical properties of Pentas lanceolata Forssk. and Cassia siamea Lam. – Tropical Plant Research 5(2): 141–151 – DOI: 10.22271/tpr.2018.v5.i2.019 – http://www.tropicalplantresearch.com/archives/2018/vol5issue2/19.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/02/assessment-of-air-pollution-impact-on-stomata/ )
Kumar M. M. (1992) – Evaluation of some indirect ploidy indicators in Coffea L. – Cafe cacao The vol, xxxvi – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-plastid-number-and-frequency-manifested-regular-and-distinct-differences-in-relation-to-ploidy-level/ )
Kumar M. M. (2011) – Variability in stomatal features and leaf venation pattern in Indian coffee (Coffea arabica L.) cultivars and their functional significance – Botanica Serbica 35(2): 111-119 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/functional-significance-of-stomatal-features-and-leaf-vein-architecture/ )
Kumar N. M., Tomar M., Bhatnagar A. K. (2000) – Influence of cadmium on growth and development of Vicia faba Linn. – Ind. J. Exp. Biol. 38: 819-823 – http://nopr.niscair.res.in/bitstream/123456789/24232/1/IJEB%2038(8)%20819-823.pdf– (On our blog : https://plantstomata.wordpress.com/2016/12/20/abnormalities-of-stomata-caused-by-soil-pollution/)
Kumar S. (xxxx) – Theories of Stomatal Movement – http://www.biologydiscussion.com/transpiration/stomatal-movement/theories-of-stomatal-movement-4-theories-with-diagram/14896 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-movement-2/ )
Kumar S., Tripathi S., Singh S. P., Prasad A., Akter F., Syed M. A., Badri J., Das S. P., Bhattarai R., Natividad M. A., Quintana M., Venkateshwarlu C., Raman A., Yadav S., Singh S. K., Swain P., Anandan A., Yadaw R. B., Mandal N. P., Verulkar S. B., Kumar A., Henry A. (2021) – Rice breeding for yield under drought has selected for longer flag leaves and lower stomatal density – J Exp Bot. 72(13): 4981-4992 – doi: 10.1093/jxb/erab160 – PMID: 33852008 – PMCID: PMC8219034 – https://pubmed.ncbi.nlm.nih.gov/33852008/ – (On our blog : https://plantstomata.wordpress.com/2023/03/01/drought-breeding-lines-and-drought-tolerant-varieties-showed-consistently-longer-flag-leaves-and-lower-stomatal-density-than-our-drought-susceptible-check-variety-ir64/ )
Kumar S. (xxxx) – Stomata: Structure, Number, Distribution and Type of Stomata | Transpiration – https://www.biologydiscussion.com/transpiration/stomata/stomata-structure-number-distribution-and-type-of-stomata-transpiration/14880 – (On our blog : https://plantstomata.wordpress.com/2021/09/17/in-depth-study-of-the-structure-number-distribution-and-types-of-stomata/ )
Kumari R. ( ) – Mechanism of transpiration in plants – http://www.rdscollege.ac.in/studymaterial/1594146556.pdf?uid= – (On our blog : https://plantstomata.wordpress.com/2022/02/18/stomata-and-transpiration-in-plants/ )
Kume A. (2001) – Harmful effects of radicals generated in polluted dew on the needles of Japanese Red Pine (Pinus densiflora) – New Phytologist, 2001 – https://www.academia.edu/39627231/Harmful_effects_of_radicals_generated_in_polluted_dew_on_the_needles_of_Japanese_Red_Pine_Pinus_densiflora_ – (On our blog : https://plantstomata.wordpress.com/2019/11/16/harmful-effects-of-radicals-generated-in-polluted-dew/ )
Kume A., Tanaka C. (1996) – Adaptation of stomatal response of Camellia rusticana to a heavy snowfall environment: Winter drought and net photosynthesis – Ecological Research 11: 207-216 – https://doi.org/10.1007/BF02347687 – https://www.academia.edu/39627209/Adaptation_of_stomatal_response_ofCamellia_rusticana_to_a_heavy_snowfall_environment_Winter_drought_and_net_photosynthesis?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2019/06/25/stomatal-response-to-a-heavy-snowfall/ )
Kümmler A. (1922) – Über die Funktion der Spaltöffnungen weissbunter Blätter – Jahrb. Wiss. Bot. 61: 610-669.
Kundu S. K., Tigerstedt P. M. A. (1998) – Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica) – Tree Physiol. 19: 47-52 – PMID: 12651331 – https://www.ncbi.nlm.nih.gov/pubmed/12651331 – (On our blog : https://plantstomata.wordpress.com/2018/05/06/phytomass-production-of-neem-seedlings-was-associated-with-stomatal-characteristics-during-the-early-stages-of-growth/ )
Küppers M. (1978) – Die Regulation der Spaltöffnungen von Corylus avellana L. in Abhängigkeit von Blattwasserzustand und Luftfeuchte – Dipl.-Arb. Bayreuth u. Frankfurt.
Küppers M. (1984) – Carbon relations and competition between woody species in a central European hedgerow II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway – Oecologia 64: 344–354 – PMID: 28311449 DOI: 10.1007/BF00379131 – https://www.ncbi.nlm.nih.gov/pubmed/28311449CrossRef – (On our blog : https://plantstomata.wordpress.com/2018/05/06/responses-of-stomata-to-humidity-light-intensity-and-leaf-water-status/ )
Küppers M., Heiland I., Schneider H., Neugebauer P. J., 2 (1999) – Light-flecks cause non-uniform stomatal opening – studies with special emphasis on Fagus sylvatica L. – Trees 14: 130-144 – https://doi.org/10.1007/PL00009759 – https://link.springer.com/article/10.1007%2FPL00009759?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/10/03/light-flecks-cause-non-uniform-stomatal-opening/)
Kuraishi S., Hashimoto Y., Shiraishi M. (1981) – Latent Periods of Cytokinin-induced Stomatal Opening in the Sunflower Leaf – Plant & Cell Physiol. 22(5): 911-916 – https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.865.8882&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/22/cytokinin-induced-stomatal-opening/ )
Kurniawan F. Y., Santoso A. D. (2020) – Stomata Profile Comparisons in Abaxial and Adaxial Zones of Dendrobium aphyllum and Arachnis flos-aeris Leaves – Biota 13(2): – https://doi.org/10.20414/jb.v13i2.310 – https://biota.ac.id/index.php/jb/article/view/310 – (On our blog : https://plantstomata.wordpress.com/2022/04/07/stomatal-characteristics-in-relation-to-the-environment/ )
Kuroda E., Kumura A. (1990) – Difference in single leaf photosynthesis between old and new rice varieties. I. Single-leaf photosynthesis and its dependence on stomatal conductance – Japanese Journal of Crop Science 59: 283-292 (in Japanese with English abstract) – https://doi.org/10.1626/jcs.59.283 –https://www.jstage.jst.go.jp/article/jcs1927/59/2/59_2_283/_article/-char/ja/ – (On our blog : https://plantstomata.wordpress.com/2019/02/06/single-leaf-photosynthesis-and-its-dependence-on-stomatal-conductance/ )
Kuromori T., Miyaji T., Yabuta Y., Shinozaki K. (2019) – Molecular and physiological analysis of Arabidopsis mutants defective in stomatal regulation – Plant and Cell Physiology 60(1): 23-30 –
Kuromori T., Seo M., Shinozaki K. (2018) – ABA Transport and Plant Water Stress Responses (in press) – Trends in Plant Science – https://doi.org/10.1016/j.tplants.2018.04.001 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30085-2 – (On our blog : https://plantstomata.wordpress.com/2018/05/07/aba-transport-stomata-and-water-stress-responses/ )
Kuromori T., Sugimoto E., Shinozaki K. (2014) – Inter‐tissue signal transfer of abscisic acid from vascular cells to guard cells – Plant Physiology 164: 1587– 1592 – https://doi.org/10.1104/pp.114.235556 – http://www.plantphysiol.org/content/164/4/1587 – (On our blog : https://plantstomata.wordpress.com/2019/11/21/signal-transfer-of-abscisic-acid-from-vascular-cells-to-guard-cells/ )
Kürschner W. M. (1996) – Leaf stomata as biosensors of palaeoatmospheric CO2 levels. –PhD thesis,Laboratory of Palaeobotany and Palynology, Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 5: 1–153.
Kürschner W. M., Van der Burgh J., Visscher H., Dilcher D. L. (1996) – Oak leaves as biosensors of Late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology 27: 299–312 – https://doi.org/10.1016/0377-8398(95)00067-4 – https://www.sciencedirect.com/science/article/pii/0377839895000674 – (On our blog : https://plantstomata.wordpress.com/2018/05/07/analysis-of-stomatal-parameters-on-fossil-leaves-has-the-potential-of-determining-changes-in-paleoatmospheric-co2/ )
Kürschner W. M., Wagner-Cremer F., Visscher E. H., Visscher H. (1997) – Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. – Geologische Rundschau 86: 512–517 – https://doi.org/10.1007/s005310050158 – https://link.springer.com/article/10.1007/s005310050158 – (On our blog : https://plantstomata.wordpress.com/2019/03/18/the-response-of-leaf-stomatal-frequency-to-a-future-co2-enriched-atmosphere/ )
Kusumi K. (2013) – Measuring stomatal density in rice – Bio-protocol 3: e753 – DOI:10.21769/BioProtoc.753 – https://bio-protocol.org/e753 – (On our blog : https://plantstomata.wordpress.com/2019/11/25/measuring-stomatal-density-2/ )
Kusumi K., Hashimura A., Yamamoto Y., Negi J., Iba K. (2017) – Contribution of the S‐type anion channel SLAC1 to stomatal control and its dependence on developmental stage in rice – Plant Cell Physiol. 58: 2085–2094 – https://doi.org/10.1093/pcp/pcx142 – https://academic.oup.com/pcp/article/58/12/2085/4356566 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/slac1-plays-a-crucial-role-in-regulating-stomata-in-rice-at-the-tillering-stage/ )
Kusumi K., Hirotsuka S., Kumamaru T., Iba K. (2012) – Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein – J. Exp. Bot. 63: 5635–5644 – doi: 10.1093/jxb/ers216 – (On our blog : https://plantstomata.wordpress.com/2016/07/16/stomatal-conductance-is-a-major-determinant-of-photosynthetic-rate/ )
Kusvuran S., Dasgan H. Y., Küçükkömürcü S., Abak K. (2010) – Relationship between drought tolerance and stomata density in melon – The 4th International Cucurbitaceae Symposium, 20th-24th September 2009, Changsha, Hunan, China – Acta Hort. 871: 291-300 – DOI: 10.17660/ActaHortic.2010.871.39 –https://www.actahort.org/books/871/871_39.htm – (On our blog : https://plantstomata.wordpress.com/2019/05/07/relationship-between-drought-tolerance-and-stomata-density/ )
Kuster V., Castro S. A., Vale F. H. (2016) – Morphological and physiological responses of three plant species occurring in distinct altitudes in the Neotropical savannah – Braz. J. Bot. 39(4): 1039-1049 – doi: 10.1007/s40415-016-0294-7 – https://www.deepdyve.com/lp/springer-journals/morphological-and-physiological-responses-of-three-plant-species-LCFe4tWzpa – (On our blog : https://plantstomata.wordpress.com/2017/11/16/stomatal-conductance-and-distinct-altitudes/)
Kutik J. (1973) – The relationships between quantitative characteristics of stomata and epidermal cells of leaf epidermis – Biologia Plantarum 15: 324–328 – https://doi.org/10.1007/BF02922444 – https://link.springer.com/article/10.1007/BF02922444 – (On our blog : https://plantstomata.wordpress.com/2019/05/25/the-relationships-between-quantitative-characteristics-of-stomata-and-epidermal-cells/ )
Kutter C., Schöb H., Stadler M., Meins Jr. F., Si-Ammour A. (2007) – MicroRNA-Mediated Regulation of Stomatal Development in Arabidopsis – The Plant Cell 18(8): 2417-2429 – http://dx.doi.org/10.1105/tpc.107. -50377 – http://www.plantcell.org/content/19/8/2417.full – (On our blog : https://plantstomata.wordpress.com/2016/03/24/the-mir824agl16-pathway-functions-in-the-satellite-meristemoid-lineage-of-stomatal-development/)
Kwak J. (2020) – Environmental changes trigger tiny RNA segments to modify plant pores involved in photosynthesis – https://www.eurekalert.org/pub_releases/2020-03/dgi-osm031920.php – https://plantstomata.wordpress.com/2020/03/21/open-sesame-micro-rnas-regulate-plant-pores/ )
Kwak J. M., Kim S. A, Hong S. W., Nam H. G. (1997) – Evaluation of 515 expressed sequence tags obtained from guard cells of Brassica campestris – Planta 202: 9 –17 – DOI: 10.1007/s004250050097 – https://www.ncbi.nlm.nih.gov/pubmed/9177047 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/515-expressed-sequence-tags-ests-obtained-from-stomata/ )
Kwak J. M., Mäser P., Schroeder J. I. (2008) – The clickable guard cell, version II: interactive model of guard cell signal transduction mechanisms and pathways. In The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. American Society of Plant Biologists, Rockville, e0114 – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243356/ – (On our blog : https://plantstomata.wordpress.com/2017/09/20/electronically-linked-model-of-guard-cell-signal-transduction-pathways/)
Kwak J. M., Moon J. H., Murata Y., Kuchitsu K., Leonhardt N., DeLong A.,Schroeder J. I. (2002) – Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis – Plant Cell 14: 2849–2861 doi: 10.1105/tpc.003335 – (On our blog : https://plantstomata.wordpress.com/2016/07/18/rcn1-aba-and-stomata/).
Kwak J. M., Mori I. C., Pei Z. M., Leonhardt N., Torres M. A., Dangl J. L., Bloom R., Bodde S., Jones J. D. G., Schroeder J. I. (2003) – NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis – EMBO J. 22: 2623–2633 – https://doi.org/10.1093/emboj/cdg277 – https://onlinelibrary.wiley.com/doi/10.1093/emboj/cdg277 – (On our blog : https://plantstomata.wordpress.com/2018/12/05/the-atrbohd-and-atrbohf-nadph-oxidases-function-in-stomatal-aba-signal-transduction/ )
2001) – Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis – Plant Physiology 127: 473–485 – http://dx.doi.org/10.1104/pp.010428 – (On our blog : https://plantstomata.wordpress.com/2016/07/18/k-in-channels-contribute-to-k-uptake-during-light-induced-stomatal-opening/)
, , , , , , , , . (Kwon H. W., Choi M. Y. (2014) – Generalized hydromechanical model for stomatal responses to hydraulic perturbations – J Theor Biol 340: 119-130 – doi: 10.1016/j.jtbi.2013.09.016 – Epub 2013 Sep 20 – https://pubmed.ncbi.nlm.nih.gov/24060618/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/hydromechanical-model-for-stomatal-responses-to-hydraulic-perturbations/ )
Kwong Q. B., Wong Y. C., Lee P. L., Sahaini M. S., Kon Y. T., Kulaveerasingam H., Appleton D. R. (2021) – Automated stomata detection in oil palm with conv olutional neural network – Sci Rep 11: 15210 – https://doi.org/10.1038/s41598-021-94705-4 – https://www.nature.com/articles/s41598-021-94705-4 – (On our blog : https://plantstomata.wordpress.com/2021/08/05/stomatal-density-measurement-can-be-accelerated-and-it-will-accelerate-the-breeding-selection-for-drought-tolerance/ )
Laanemets K., Brandt B., Li J., Merilo E., Wang Y.-F., Keshwani M. M., Taylor S. S., Kollist H., Schroeder J. I. (2013) – Calcium-Dependent and -independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming[W] – Plant Physiol. 163: 504-513 – http://www.plantphysiol.org/content/163/2/504.full.pdf+html – (On our blog : https://plantstomata.wordpress.com/2016/12/10/stomatal-signaling-network-and-stomatal-opening-via-ca2-sensitivity-priming/)
Laanemets K., Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels – New Phytol. 197: 88–98 – , , , , , , , , , , , , (2013) –
Lacerda G. A.I,2, Costa e Silva J. de II, Abreu J. C. deI, Alves E.II; Paiva L. V.II (2008) – Morphoanatomical characteristics of the leaf epidermis of variant plants and somaclonal non-variants of banana trees (Musa sp. Colla cv. Prata-anã) cultivated in vitro (Características morfoanatômicas da epiderme foliar de plantas variantes e não variantes somaclonais de bananeiras (Musa sp. Colla cv. Prata-anã) cultivadas in vitro ) – Acta Bot. Bras. 22(1) – https://doi.org/10.1590/S0102-33062008000100011 – https://www.scielo.br/j/abb/a/7cFnwSC8MJktpNqJW3YHvss/?lang=pt – (On our blog : https://plantstomata.wordpress.com/2022/09/08/stomatal-density-polar-stomatal-diameter-and-wax-uniformity-act-as-morphological-markers/ )
Lacourse T., Delepine M., Hoffman E. H., Mathews R. W. (2012) – A 14,000 year vegetation history of a hypermaritime island on the outer Pacific coast of Canada based on fossil pollen, spores and conifer stomata – Cambridge Core 78(3): 572-582 – https://doi.org/10.1016/j.yqres.2012.08.008 – https://www.cambridge.org/core/journals/quaternary-research/article/14000-year-vegetation-history-of-a-hypermaritime-island-on-the-outer-pacific-coast-of-canada-based-on-fossil-pollen-spores-and-conifer-stomata/CA5E8F5EBB4F9E7F24096773FB55F326 – (On our blog :https://plantstomata.wordpress.com/2020/02/21/a-14000-year-vegetation-history-based-on-conifer-stomata/ )
Laffray D., Louguet O. (1990) – Stomatal responses and drought resistance – Bulletin de la Société Botanique de France. Actualités Botaniques 137(1): 47-60 – DOI: 10.1080/01811789.1990.10826986 – https://www.tandfonline.com/doi/abs/10.1080/01811789.1990.10826986 – (On our blog : https://plantstomata.wordpress.com/2021/04/24/stomatal-responses-and-drought-resistance/ )
Laga H., Shahinnia F., Fleury D. (2014) – Image-based plant stomata phenotyping – Conference proceedings, 13th International Conference on Control, Automation, Robotics and Vision (ICARCV 2014), 2014 / vol.OnlinePubl, 217–222 – (IEEE) – http://hdl.handle.net/2440/88732 – https://digital.library.adelaide.edu.au/dspace/handle/2440/88732 – (On our blog : https://plantstomata.wordpress.com/2017/11/17/large-scale-analysis-of-stomata-morphology-and-the-response-to-various-environmental-stresses/)
Laghari S. K., Zaidi M. A. (2015) – Impact of solid waste burning air pollution on some physio-anatomical characteristics of some plants – International Nuclear Information System (INIS) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/the-effect-of-solid-waste-burning-pollution-on-carbohydrate-stomata-and-chlorophyll-contents/ )
Lahav M., Abu-Abied M., Belausov E., Schwartz A., Sadot E. (2004) – Microtubules of guard cells are light sensitive. – Plant Cell Physiol 45: 573–582 – (On our blog : https://plantstomata.wordpress.com/2016/07/19/microtubule-organization-in-stomata-is-responsive-to-light-signals/)
Lahkar B. K., Bera T. K. (2017) – Hydraulic flow model of plant organs in response to physical and environmental factors – Simulation 93(10): – https://doi.org/10.1177/0037549717712606 – https://dl.acm.org/doi/abs/10.1177/0037549717712606 – (On our blog : https://plantstomata.wordpress.com/2020/03/24/stomata-and-the-hydraulic-flow-model-of-plant-organs-in-response-to-physical-and-environmental-factors/ )
Lahr E. C., Dunn R. R., Frank S. D. (2018) – Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States – PLoS ONE 13(5): e0197866 – https://doi.org/10.1371/journal.pone.0197866 – https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0197866&type=printable – (On our blog : https://plantstomata.wordpress.com/2018/11/26/photosynthesis-stomatal-conductance-and-water-use-efficiency-in-planted-cultivars-relative-to-wildtype-trees/ )
Lahr W., Raschke K. (1988) – Abscisic-acid contents and concentrations in protoplasts from guard cells and mesophyll cells of Vicia faba L. – Planta 173: 528–531 – DOI: 10.1007/BF00958966 – https://www.ncbi.nlm.nih.gov/pubmed/24226690 – (On our blog : https://plantstomata.wordpress.com/2018/05/08/the-aba-contents-of-isolated-stomatal-protoplasts/ )
Lai L. B., Nadeau J. A., Lucas J., Lee E-K., Nakagawa T., Zhao L., Geisler M., Sack F. D. (2005) – The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage – Plant Cell 17: 2754–2767 – DOI: 10.1105/tpc.105.034116 – (On our blog : https://plantstomata.wordpress.com/2016/03/28/two-related-transcription-factors-jointly-restrict-divisions-late-in-stomatal-cell-lineage/)
Laidlaw C. G. P., Knight R. C. (1916) – A description of a recording porometer and a note on stomatal behavior during wilting – Ann. Bot. 30: 47-56 – https://doi.org/10.1093/oxfordjournals.aob.a089588 – https://academic.oup.com/aob/article-abstract/os-30/1/47/217796?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/05/08/a-recording-porometer-and-stomatal-behavior-during-wilting/ )
Laisk A. (1983) – Calculation of leaf photosynthetic parameters considering the statistical distribution of stomatal apertures – J. Exp. Bot. 34: 1627-1635 – https://doi.org/10.1093/jxb/34.12.1627 – https://academic.oup.com/jxb/article-abstract/34/12/1627/599235?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/10/30/stomatal-conductance-is-a-quantity-statistically-distributed-over-a-large-range-in-the-geometry-of-one-leaf/ )
Laisk A., Oja V., Kull K. (1980) – Statistical distribution of stomatal apertures of Vicia faba and Hordeum vulgare and the Spannungsphase of stomatal opening – J. Exp. Bot. 31: 49–58 – https://doi.org/10.1093/jxb/31.1.49 –https://academic.oup.com/jxb/article-abstract/31/1/49/473200?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/11/statistical-distribution-of-stomatal-apertures/ )
Lake J. A. (2001) – The influence of CO2 and O2 on plant physiology and development with special reference to stomata – PhD thesis, University of Sheffield
Lake J. A., Quick W., Beerling D., Woodward F. I. (2001) – Signals from mature to new leaves – Nature 411: 154 – https://doi.org/10.1038/35075660 – https://www.nature.com/articles/35075660#citeas – (On our blog :
Lake J. A., Steven M., Smith K., Lomax B. H. (2012) – A new stomatal response: stress and recovery – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/preliminary-characterisation-of-a-new-stomatal-response-to-elevated-soil-co2/ )
Lake J. A., Walker H. J., Cameron D. D., Lomax B. H. (2017) – A novel root-to-shoot stomatal response to very high CO 2 levels in the soil: electrical, hydraulic and biochemical signalling – Physiol Plant +159(4): 433-444 – doi: 10.1111/ppl.12525 – Epub 2016 Nov 23 – https://pubmed.ncbi.nlm.nih.gov/27779760/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/a-novel-root-to-shoot-stomatal-response-to-very-high-co-2-levels-in-the-soil/ )
Lake J. A., Woodward F. I. (2008) – Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. – New Phytologist 179: 397-404 – http://www.ncbi.nlm.nih.gov/pubmed/19086289 – (On our blog : https://plantstomata.wordpress.com/2016/07/19/control-of-stomatal-density-by-transpiration-rate-and-leaf-aba-concentration-2/)
Lakusic B., Stevanovic B., Jancic R., Lakusic D. (2010) – Habitatrelated adaptations in morphology and anatomy of Teucrium (Lamiaceae) species from the Balkan Peninsula (Serbia and Montenegro) – Flora 205: 633–646 –
Lall N., Bhat R.B. (1996) – Impact of irradiance on the epidermis of Impatiens flanaganae Hemsl – South African Journal of Botany 62(4): 212-216 – DOI: 10.1016/S0254-6299(15)30637-2 – https://www.infona.pl/resource/bwmeta1.element.elsevier-704dacd0-04cb-3fc2-a39c-72b9ab391863 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/impact-of-irradiance-on-the-stomata-of-impatiens/)
Laloraya M. M., Srivastava H. N., Baksi N., Shah N., Pandya K. J., Singh Y. D. (1972) – Role of growth regulators, flavonoid pigments and peroxidase in stomata and trichome differentiation. In: V. PURI (ed.) Biology of Land Plants: 143-159. Meerut. –
Lamari N., Fait V. (2015) – Diallel analysis of stomatal traits in Triticum aestivum L. – Cytology and Genetics 49(5): 314-321 – DOI10.3103/S0095452715050059 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_3103-S0095452715050059 – (0n our blog : https://plantstomata.wordpress.com/2017/10/22/stomatal-traits-in-triticum-aestivum/)
Lamari N. P., Fait V. I. (2015) – Genetic analysis of differences in stomatal guard cell lengths of bread wheat – Science Rise 5, no. 1 (10): 20–27 –
Lamari N., Galaeva M., Fait V., Pogrebnyuk E. (2018) – Association of SSR-markers with bread wheat stomatal guard cell lengths variation – Tsitol Genet. 52(2): 13-21 – http://cytgen.com/en/2018/13-21N2V52.htm – – (On our blog : https://plantstomata.wordpress.com/2018/10/06/association-of-ssr-markers-with-bread-wheat-stomatal-guard-cell-lengths-variation/ )
Lamari N., Galaeva M., Fait V., Pogrebnyuk E. (2018) – SSR Marker Association with Variation of Stomatal Guard Cell Length in Bread Wheat – Cytol. Genet. (2018) 52: 95 – https://doi.org/10.3103/S0095452718020056 – https://link.springer.com/article/10.3103/S0095452718020056#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/06/ssr-marker-association-with-variation-of-stomatal-guard-cell-length/ )
Lamaud E. Loubet B., Irvine M., Stella P., Personne E., Cellier P. (2009) – Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes, using eddy-covariance flux measurements and modelling – Agric. For. Meteorol. 149(9): 1385–1396 – https://doi.org/10.1016/j.agrformet.2009.03.017Get – https://www.sciencedirect.com/science/article/abs/pii/S0168192309000781?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/01/25/the-necessity-to-determine-accurately-the-amount-of-o3-actually-absorbed-by-the-plants-via-their-stomatal-activity/ )
Lammertsma E. I. (2011) – Rising carbon dioxide is causing plants to have fewer pores, releasing less water to the atmosphere – https://www.sciencedaily.com/releases/2011/03/110303111624.htm – (On our blog : https://plantstomata.wordpress.com/2017/10/26/rising-co2-less-stomata/)
Lammertsma E. I., de Boer H. J., Dekker S. C., Dilcher D. L., Lotter A. F., Wagner-Cremer F. (2011) – Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation – Proceedings of the National Academy of Sciences, USA 108: 4035–4040 – DOI: 10.1073/pnas.1100371108 – https://www.pnas.org/content/108/10/4035 – (On our blog : https://plantstomata.wordpress.com/2016/02/16/co2-and-reduced-maximum-stomatal-conductance/)
Lamour J., Davidson K. J., Ely K. S., Le Moguédec G., Leakey A. D. B., Li Q., Serbin S. P., Rogers A. (2022) – An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets – Global Change Biology 3537-3556 – https://doi.org/10.1111/gcb.16103 – https://onlinelibrary.wiley.com/doi/10.1111/gcb.16103 – (On our blog : https://plantstomata.wordpress.com/2022/04/23/the-relationship-between-photosynthesis-and-stomatal-conductance-leading-to-more-stable-estimation-of-conductance-parameters/ )
Lampard G. R., Bergmann D. C. (2007) – A shout-out to stomatal development: How the bHLH proteins SPEECHLESS, MUTE and FAMA regulate cell division and cell fate – Plant Sign. Behav. 2: 290–292 –
Lampard G. R., Lukowitz W., Ellis B. E., Bergmann D. C. (2009) – Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations – Plant Cell 21: 3506-3517 – doi: 10.1105/tpc.109.070110 – (On our blog : https://plantstomata.wordpress.com/2015/11/10/mapk-signaling-in-arabidopsis-stomata/).
Lampard G. R., MacAlister C. A., Bergmann D. C. (2008) – Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS – Science 322: 1113–1116 – doi: 10.1126/science.1162263 – (On our blog : https://plantstomata.wordpress.com/2016/07/21/mapk-mediated-regulation-of-the-bhlh-speechless-and-stomatal-initiation/)
Lampard G. R., Wengier D. L., Bergmann D. C. (2014) – Manipulation of mitogen-activated protein kinase kinase signaling in the Arabidopsis stomatal lineage reveals motifs that contribute to protein localization and signaling specificity – Plant Cell 26(8): 3358-3371 – Epub 2014 Aug 29. – http://www.pubfacts.com/detail/25172143/Manipulation-of-mitogen-activated-protein-kinase-kinase-signaling-in-the-Arabidopsis-stomatal-lineag – (On our blog : https://plantstomata.wordpress.com/2016/09/13/four-stomatal-mkks-and-stomatal-lineage/)
Lancaster J. E., Mann J. D. (1977) – Extrastomatal control of transpiration in leaves of yellow lupin (Lupinus luteus var. Weiko _III) after drought or abscisic acid treatment – J. Exp. Bot. 28(107): 1373-1379 – https://doi.org/10.1093/jxb/28.6.1373 – https://academic.oup.com/jxb/article-abstract/28/6/1373/470651?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/09/25/drought-stress-and-aba-treatment-cause-an-extrastomatal-resistance-to-transpiration/ )
Lancaster J. E., Mann J. D., Porter N. G. (1977) – Ineffectiveness of abscisic acid in stomatal closure of yellow lupin, Lupinus luteus var. Weiko III – J Exp Bot 28: 184–191 – https://doi.org/10.1093/jxb/28.1.184 – https://academic.oup.com/jxb/article-abstract/28/1/184/501987 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/aba-is-unlikely-to-play-a-role-in-controlling-short-term-stomatal-response-of-lupins/ )
Landré P. (1969) – Quelques aspects infrastructuraux des stomates des cotylédons de la Moutarde (Sinapis alba L.) – C. R. Hebd. Séances Acad. Sci. 269: 900-992 –
Landré P. (1969) – Premières observations sut l’évolution infrastructurale des cellules stomatiques de la Moutarde (Sinapis alba L.) depuis leur mise en place jusqu’à l’ouverture de l’ostiole – C. R. Hebd. Séances Acad. Sci. 269: 943-946 –
Landré P. (1970) – Activité golfienne en liaison avec celle du plasmolemme dans les cellules stomatiques de la Moutarde (Sinapis alba L.) lors de la formation de l’ostiolole – C. R. Hebd. Séances Acad. Sci. 271: 904-907 –
Landré P. (1972) – Origine et developpment des épidermes cotyledonaires et foliaires de Ia moutarde (Sinapis alba L.): Differenciation ultrastructurale des stomates – Ann. Sci. Nat. Bot. Biol. Veg. 12: 247-322 –
Landsberg J. J., Butler D. R. (1980) – Stomatal response to humidity: implications for transpiration – Plant Cell and Env 3: 29–33 – https://doi.org/10.1111/1365-3040.ep11580512 –https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11580512 – (On our blog : https://plantstomata.wordpress.com/2019/03/18/stomatal-response-to-humidity-implications-for-transpiration/ )
Landsberg J. J., Sands P. (2011) – Physiological Ecology of Forest Production – In: Terrestrial Ecology 4: 13-48 – Chapter 2 – Weather and Energy Balance – b. Stomatal Conductance – https://doi.org/10.1016/B978-0-12-374460-9.00002-0– https://www.sciencedirect.com/science/article/pii/B9780123744609000020 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/74793/ )
Landsberg J. L., Waring R., Ryan M. (2017) – Water relations in tree physiology: where to from here? – Tree Physiol. 37(1): 18-32 – doi: 10.1093/treephys/tpw102 – https://www.ncbi.nlm.nih.gov/pubmed/28173481 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/the-relative-sensitivity-of-stomatal-conductance-and-whole-plant-hydraulic-conductance-plays-a-major-role-in-determining-plant-responses-to-drought/ )
Lang A. R. G., Klepper B., Cumming M. J. (1969) – Leaf water balance during oscillation of stomatal aperture – Plant Physiology 44: 826–830 – https://doi.org/10.1104/pp.44.6.826 – http://www.plantphysiol.org/content/44/6/826 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/leaf-water-balance-during-oscillation-of-stomatal-aperture/ )
Lange O. L., Lösch R., Schulze E.-D., Kappen L. (1971) – Responses of stomata to changes in humidity – Planta 100: 76–86 – (On our blog : https://plantstomata.wordpress.com/2016/02/16/stomatal-behavior-and-humidity/)
Lange O. L., Medina E. (1979) – Stomata of the CAM Plant Tillandsia recurvata Respond Directly to Humidity – Oecologia(Berl.) 40: 357-363 – Stomata_of_the_CAM_plant_Tillandsia_recu.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/22/stomata-of-a-cam-plant-respond-directly-to-humidity/ )
Lange O. L., Meyer A. (1979) – Mittäglicher Stomataschluss bei Aprikose (Prunus armeniaca) und Wein (Vitis vinifera) im Freiland trotz guter Bodenwasser-Versorgung – Flora, Jena 168: 511-528 –
Lange O. L., Tenhunen J. D., Beyschlag W. (1985) – Effects of humidity during diurnal courses on the CO2– and light-saturated rate of net CO2 uptake in the sclerophyllous leaves of Arbutus unedo – Oecologia (Berlin) 67: 301–304 – PMID: 28311330 – DOI: 10.1007/BF00384305 – https://pubmed.ncbi.nlm.nih.gov/28311330/ – (On our blog : https://plantstomata.wordpress.com/2021/02/27/88416/ )
Lange O. L., Tenhunen J. D., Braun M. (1982) – Midday stomatal closure in mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. I. Comparison of the behaviour of various European mediterranean species – Flora 172: 563–579 –
Langenbrunner B., Pritchard M., Kooperman G. J., Randerson J. T. (2018) – Why does Amazon precipitation decrease when tropical forests respond to increasing CO2? – EarthArXiv, 30 Aug. 2018 – https://doi.org/10.31223/osf.io/9fesz – https://eartharxiv.org/9fesz – (On our blog : https://plantstomata.wordpress.com/2019/03/25/why-does-amazon-precipitation-decrease-when-tropical-forests-respond-to-increasing-co2/ )
2004) – The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development – Plant Journal 37: 828–838 – (On our blog : https://plantstomata.wordpress.com/2016/03/03/guard-cell-k-content-and-k-channel-activity-in-poplar-stomata/)
, , , , , , , (Laporte M. M., Shen B., Tarczynski M. C. (2002) – Engineering for drought avoidance: expression of maize NADP‐malic enzyme in tobacco results in altered stomatal function – Journal of Experimental Botany 53(369): 699–705 – https://doi.org/10.1093/jexbot/53.369.699 – https://academic.oup.com/jxb/article/53/369/699/614561 – (On our blog : https://plantstomata.wordpress.com/2019/10/18/a-role-for-malic-enzyme-in-the-mechanism-of-stomatal-closure-as-well-as-a-potential-mechanism-for-genetically-altering-plant-water-use/ )
Larcher L., Hara-Nishimura I., Sternberg L. ( 2014) – Effects of stomatal density and leaf water content on the 18O enrichment of leaf water – New Phytologist 206(1): 141-151 – https://doi.org/10.1111/nph.13154 – New Phytologist – (On our blog : https://plantstomata.wordpress.com/2023/03/14/113893/ )
Larchevêque M., Maurel M., Desrochers A., Larocque G. R. (2011) – How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species? – Tree Physiol. 31(3): 240-249 – doi: 10.1093/treephys/tpr011 – Epub 2011 Mar 28 – https://www.ncbi.nlm.nih.gov/pubmed/21444373 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomata-and-drought-tolerance-2/ )
Large M. F., Nessia H. R., Cameron E. K., Blanchon D. J. (2017) – Changes in Stomatal Density over Time (1769–2015) in the New Zealand Endemic Tree Corynocarpus laevigatus J. R. Forst. & G. Forst. (Corynocarpaceae) – Pacific Science 71(3): 319-328 – https://doi.org/10.2984/71.3.6 – https://bioone.org/journals/pacific-science/volume-71/issue-3/71.3.6/Changes-in-Stomatal-Density-over-Time-17692015-in-the-New/10.2984/71.3.6.short – (On our blog : https://plantstomata.wordpress.com/2020/11/04/historical-eighteenth-and-nineteenth-century-herbarium-specimens-were-found-to-have-a-significantly-higher-stomatal-density-than-that-seen-in-twentieth-and-twenty-first-century-material/ )
Larkin J. C., Brown M., Schiefelbein J. W. (2003) – How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis – Annu. Rev. Plant Biol. 54, 403–430 – (On our blog : https://plantstomata.wordpress.com/2016/03/28/8904/)
Larkin J. C., Marks M. D., Nadeau J. A., Sack F. D. (1997) – Epidermal cell fate and patterning in leaves – Plant Cell 9: 1109-1120 – https://botany.ubc.ca/sites/botany.ubc.ca/files/larkin_et_al_1997_pl_cell.pdf – (On our blog : https://plantstomata.wordpress.com/2016/10/26/26123/)
Laroche J., Robert D., Lecoq C., Guervin C. (1976) – Contribution à l’étude du transit du silicum chez l’Equisetum arvense L. I. Les stomates: étude ontogénétique et ultrastructurale – Revue Générale de Botanique 83: 331–365 –
Larsen C. M. (1961) – Développement des stomates de peupliers au cours d’une année sèche – Physiol. plant. 14: 877-889 –
Larson E. R., Van Zelm E., Roux C., Marion-Poll A., Blatt M. R. (2017) – Clathrin Heavy Chain Subunits Coordinate Endo- and Exocytic Traffic and Affect Stomatal Movement – Plant Physiol. 175(2) – https://doi.org/10.1104/pp.17.00970 – http://www.plantphysiol.org/content/175/2/708?rss=1 – (On our blog : https://plantstomata.wordpress.com/2017/09/27/clathrin-and-syp121-functions-are-important-and-have-an-impact-on-stomatal-function/)
Larue H., Zhang S. (2019) – SCREAM in the making of stomata – Nature Plants 5: 648–649 – https://www.nature.com/articles/s41477-019-0460-6 – (On our blog : https://plantstomata.wordpress.com/2019/07/08/scream-functions-as-a-scaffold-to-bring-speechless-in-proximity-with-mpk3-mpk6-thereby-allowing-its-down-regulation-to-inhibit-stomatal-cell-fate/ )
Lascève G., Couchat P., Vavasseur A., Bossy J. P. (1987) – Changes in K+, Cl− and P contents in stomata of Zea mays leaves exposed to different light and CO2 levels – Physiologia Plantarum 69(4 ): 709-715 – https://doi.org/10.1111/j.1399-3054.1987.tb01989.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1987.tb01989.x – (On our blog : https://plantstomata.wordpress.com/2021/06/23/changes-in-k-cl%e2%88%92-and-p-contents-in-stomata/ )
Lascève G., Gautier H., Jappe J., Vavasseur A. (1993) – Modulation of the blue light response of stomata of Commelina communis by CO2 – Physiol Plant 88: 453–459 – https://doi.org/10.1111/j.1399-3054.1993.tb01359.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-3054.1993.tb01359.x – (On our blog : https://plantstomata.wordpress.com/2018/10/30/modulation-of-the-blue-light-response-of-stomata-by-co2/)
Lascève G., Leymarie J., Vavasseur A. (1997) – Alterations in light-induced stomatal opening in a starch-deficient mutant of Arabidopsis thaliana L. deficient in chloroplast phosphoglucomutase activity – Plant Cell Environ. 20: 350–358 – https://doi.org/10.1046/j.1365-3040.1997.d01-71.x –https://www.academia.edu/19038439/Alterations_in_light-induced_stomatal_opening_in_a_starch-deficient_mutant_of_Arabidopsis_thaliana_L._deficient_in_chloroplast_phosphoglucomutase_activity – (On our blog : https://plantstomata.wordpress.com/2019/03/19/starch-metabolism-is-required-for-full-stomatal-response-to-blue-light-but-is-not-involved-in-the-stomatal-response-to-red-light//
Lascève G., Vavasseur A., Couchat P., Pellegrini L., Pellegrini M. (1987) – Ultrastructure des mitochondries des stomates de mais; cas d’ouverture photoactive – Can. J. Bot. 65: 1861-1869 – https://doi.org/10.1139/b87-255 –https://www.nrcresearchpress.com/doi/abs/10.1139/b87-255 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/ultrastructure-des-mitochondries-des-stomates-french/ )
Lassoie J. P., (1982) – Physiological Activity in Douglas-Fir – file:///C:/Users/wille/Downloads/Chapter_6-Physiological_activity_in_Douglas-fir%20(7).pdf – https://www.semanticscholar.org/paper/Physiological-activity-in-Douglas-fir-Lassoie/5b2d0c3e3275bca30126439039a061b3bb58b660 – (On our blog : https://plantstomata.wordpress.com/2021/10/30/an-integrated-view-of-whole-tree-physiological-processes-in-douglas-fir/ )
Lassoie J. P., Fetcher N., Salo D. J. (1977) – Stomatal infiltration pressures versus diffusion porometer measurements of needle resistance in Douglas-fir and lodgepole pine foliage – Canadian Journal of Forest Research –https://doi.org/10.1139/x77-028 – https://cdnsciencepub.com/doi/10.1139/x77-028 – (On our blog : https://plantstomata.wordpress.com/2021/09/19/93452/ )
Lattier J. D., Chen H., Contreras R. N. (2019) – Variation in Genome Size, Ploidy, Stomata, and DNA Signals in Althea – J. AMER. SOC. HORT. SCI. 144(2): 130–140 –https://doi.org/10.21273/JASHS04618-18 – https://horticulture.oregonstate.edu/sites/agscid7/files/horticulture/department-of-horticulture/23279788-variation-in-genome-size-ploidy-stomata-and-rdna-signals-in-althea.pdf – (On our blog : https://plantstomata.wordpress.com/2019/12/09/variation-in-genome-size-ploidy-stomata-and-rdna-signals-in-althea/ )
Lau O. S. (2017) – Stomata – Published online: March 2017 – National University of Singapore, Singapore – http://www.els.net/WileyCDA/ElsArticle/refId-a0002075.html – (On our blog : https://plantstomata.wordpress.com/2017/10/31/stomata/)
Lau O. S., Bergmann D. C. (2012) – Stomatal development: a plant’s perspective on cell polarity, cell fate transitions and intercellular communication. Development 139: 3683–3692 – doi: 10.1242/dev.080523 – (On our blog : https://plantstomata.wordpress.com/2016/07/21/stomata-a-conceptual-and-technical-framework-3/
Lau O. S., Davies K. A., Chang J., Adrian J., Rowe M. H., Ballenger C. E., Bergmann D. C. (2014) – Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells – Science 345(6204): 1605-1609 – DOI: 10.1126/science.1256888 – PMID: 25190717 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390554/ – (On our blog : https://plantstomata.wordpress.com/2018/05/08/spch-directs-stomatal-lineage-cell-behaviors-and-controls-key-regulators-of-cell-fate-and-asymmetric-cell-divisions/ )
Lau O. S., Song Z., Zhou Z., Davies K. A., Chang J., Yang X., Wang S., Lucyshyn D., Tay I. H. Z., Wigge P. A., Bergmann D. C. (2018) – Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development – Curr Biol. 28(8): 1273-1280.e3 – doi: 10.1016/j.cub.2018.02.054 – Epub 2018 Apr 5. – PMID: 29628371 – https://www.ncbi.nlm.nih.gov/pubmed/?term=PMID%3A+29628371 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/a-molecular-link-connecting-high-temperature-signaling-and-stomatal-development/ )
Launiainen S., Katul G. G., Kolari P., Vesala T., Hari P. (2011) – Empirical and optimal stomatal controls on leaf and ecosystem level CO2 and H2O exchange rates – Agricultural and Forest Meteorology 151: 1672-1689 – https://doi.org/10.1016/j.agrformet.2011.07.001 – https://researchportal.helsinki.fi/en/publications/empirical-and-optimal-stomatal-controls-on-leaf-and-ecosystem-lev – (On our blog : https://plantstomata.wordpress.com/2022/03/01/linkage-between-the-leaf-level-stomatal-conductance-gs-response-to-environmental-stimuli-and-canopy-level-mass-exchange-processes/ )
Laur J., Hacke U.G. (2013) – Transpirational demand affects aquaporin expression in poplar roots – Journal of Experimental Botany 64(8): – DOI: 10.1093/jxb/ert096 – https://www.researchgate.net/publication/236228367_Transpirational_demand_affects_aquaporin_expression_in_poplar_roots – (On our blog : https://plantstomata.wordpress.com/2018/12/02/stomatal-conductance-and-modulation-of-water-uptake-in-a-dynamic-manner/ )
Laurin É. , Nunes M.C.N. , Émond J.-P., Brecht J. K. (2006) – Residual effect of low-pressure stress during simulated air transport on Beit Alpha-type cucumbers: Stomata behavior – Postharvest Biology and Technology 41(2): 121-127 – DOI: 10.1016/j.postharvbio.2005.09.012 – https://www.infona.pl/resource/bwmeta1.element.elsevier-865ba4b2-f898-33fc-807d-3924301b6aa1 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-behavior-during-simulated-air-transport/)
Lavergne A., Sandoval D., Hare V. J., Graven H., Prentice I. C. (2020) – Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data – Global Change Biology 26: 7158– 7172 – https://doi.org/10.1111/gcb.15364 – https://prenticeclimategroup.wordpress.com/2020/12/02/stomata-and-soil-water-stress/ – (On our blog : https://plantstomata.wordpress.com/2023/02/14/impacts-of-soil-water-stress-on-the-acclimated-stomatal-limitation-of-photosynthesis/ )
Lavergne A., Voelker S., Gsank A., Graven H., de Boer H. J., Daux V., Robertson I., Dorado-Linan I., Martinez-Sancho E., Battipaglia G., Bloomfield K. J., Still C. J., Meinzer F. C., Dawson T. E., Camarero J. J., Clisby R., Fang Y., Menzel A., Keen R. M., Roden J. S., Prentice I. C. (2019) – Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle – New Phytologist 225(6) – https://doi.org/10.1111/nph.16314 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16314 – (On our blog : https://plantstomata.wordpress.com/2020/05/04/the-stomatal-limitation-of-photosynthesis/ )
Lavilla M., Seral A., Murciano A., Molino S., Fuente P. de la, Gabriel y Galán J. M. (2017) – Stomatal traits in Iberian populations of Osmunda regalis (Osmundaceae, Polypodiopsida) and its relationship with bioclimatic variables – Acta Botanica Malacitana 42(1): 5-13 – https://doi.org/10.24310/abm.v42i1.3029 – https://revistas.uma.es/index.php/abm/article/view/3029 – (On our blog : https://plantstomata.wordpress.com/2022/02/17/102118/ )
Lavoie-Lamoureux A., Sacco D., Risse P. A., Lovisolo C. (2017) – Factors influencing stomatal conductance in response to water availability in grapevine: a meta-analysis – Physiologia Plantarum 159: 468–482 – DOI: 10.1111/ppl.12530 – https://pubmed.ncbi.nlm.nih.gov/27859326/ – (On our blog : https://plantstomata.wordpress.com/2022/05/10/a-continuum-exists-in-the-range-of-stomatal-sensitivities-to-water-stress-in-vitis-vinifera-rather-than-an-isohydric-anisohydric-dichotomy/)
Law S. R. (2021) – Those in glass houses – Physiologia Plantarum (In the spotlight) – https://doi.org/10.1111/ppl.13354 – https://onlinelibrary.wiley.com/doi/full/10.1111/ppl.13354 – (On our blog : https://plantstomata.wordpress.com/2022/03/29/silica-deposited-in-gurad-cells-increased-their-sensitivity-to-aba/ )
Lawlor D. W. (2002) – Limitation to Photosynthesis in Water‐stressed Leaves: Stomata vs. Metabolism and the Role of ATP – Annals of Botany 89(7): 871–885 – https://doi.org/10.1093/aob/mcf110 – https://academic.oup.com/aob/article/89/7/871/151155/Limitation-to-Photosynthesis-in-Water-stressed – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomata-vs-metabolism-and-the-role-of-atp/)
Lawlor D. W., Lake J. V. (1976) – Evaporation rate, leaf water potential and stomatal conductance in Lolium, Trifolium and Lysimachia in drying soil – J. Appl. Ecol. 13: 639–646 – DOI: 10.2307/2401809 – https://www.jstor.org/stable/pdf/2401809.pdf?seq=1#page_scan_tab_contents (On our blog : https://plantstomata.wordpress.com/2018/11/25/evaporation-rate-leaf-water-potential-and-stomatal-conductance-in-drying-soil/ )
Lawrence S. R., Gaitens M., Guan Q., Dufresne C., Chen S. (2020) – S-Nitroso-Proteome Revealed in Stomatal Guard Cell Response to Flg22 – Int. J. Mol. Sci. 21(5): 1688 – https://doi.org/10.3390/ijms21051688 – https://www.mdpi.com/1422-0067/21/5/1688 – (On our blog : https://plantstomata.wordpress.com/2020/04/13/the-molecular-mechanisms-and-regulatory-roles-of-sno-in-stomata-immunity-against-bacterial-pathogens/ )
Lawson S. S., Pijut P. M., Michler C.H. (2014) – The cloning and characterization of a poplar stomatal density gene – Genes and Genomics 36: 427–441 – https://doi.org/10.1007/s13258-014-0177-x – https://link.springer.com/article/10.1007/s13258-014-0177-x – (On our blog : https://plantstomata.wordpress.com/2018/05/08/a-poplar-stomatal-density-gene/ )
Lawson S. S., Pijut P. M., Michler C.H. (2014) – Comparison of Arabidopsis Stomatal Density Mutants Indicates Variation in Water Stress Responses and Potential Epistatic Effects – J. Plant Biol. (2014) 57:162-173 –http://www.fs.fed.us/nrs/pubs/jrnl/2014/nrs_2014_lawson_002.pdf – (On our blog : https://plantstomata.wordpress.com/2015/03/27/stomata-and-biomass/)
Lawson S. S., Pijut P. M., Michler C. H. (2014) – Comparison of Arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects – J. Plant Biol. 57: 162–173 – DOI: 10.1007/s12374-014-0017-1 – https://www.fs.usda.gov/treesearch/pubs/46282 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/comparison-of-stomatal-density-mutants-indicates-variation-in-water-stress-responses/ )
Lawson T. (2009) – Guard cell photosynthesis and stomatal function – New Phytol. 181: 13-34 – doi: 10.1111/j.1469-8137.2008.02685.x – (On our blog : https://plantstomata.wordpress.com/2016/03/18/7709/)
Lawson T. (2019) – Stomatal-based systems analysis of water use efficiency – UKri – https://gtr.ukri.org/project/BA273D8A-FB5A-45AC-A59F-804214C14D7B – (On our blog : https://plantstomata.wordpress.com/2019/05/04/stomatal-based-systems-analysis-of-wue/ )
Lawson T., Blatt M. R. (2014) – Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency – Plant Physiol. 164(4): 1556-1570 – doi: 10.1104/pp.114.237107 – Epub 2014 Feb 27 – https://plantstomata.wordpress.com/2016/07/21/the-rapidity-of-stomatal-responses/)
Lawson T., Blatt R. M. (2014) – Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency – Plant Physiol.164: 1556–1570 – https://doi.org/10.1104/pp.114.237107 – http://www.plantphysiol.org/content/164/4/1556 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/stomatal-size-speed-and-responsiveness-impact-on-photosynthesis-and-water-use-efficiency/ )
Lawson T., Craigon J., Black C. R., Colls J. J., Landon G., Weyers J. D. (2002) – Impact of elevated CO2 and O3 on gas exchange parameters and epidermal characteristics in potato (Solanum tuberosum L.) – J. Exp. Bot. 53(369): 737–746 – https://doi.org/10.1093/jexbot/53.369.737 – https://academic.oup.com/jxb/article/53/369/737/614573 – (On our blog : https://plantstomata.wordpress.com/2018/05/08/impact-of-elevated-co2-and-o3-on-stomata/ )
Lawson T., Flexas J. (2020) – Fuelling life: recent advances in photosynthesis research – The Plant Journal 101(4): – https://doi.org/10.1111/tpj.14698 – https://onlinelibrary.wiley.com/doi/10.1111/tpj.14698 – (On our blog : https://plantstomata.wordpress.com/2020/05/11/stomata-and-recent-advances-in-photosynthesis-research/ )
Lawson T., James W., Weyers J. (1998) – A surrogate measure of stomatal aperture – Journal of Experimental Botany 49(325): 1397–1403 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/measuring-stomatal-aperture/)
Lawson T., Lefebvre S., Baker N. R., Morison J. I. L., Raines C. A. (2008) – Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2 – Journal of Experimental Botany 59: 3609–3619 – (On our blog: https://plantstomata.wordpress.com/2016/07/21/photosynthesis-and-stomatal-responses-to-light-and-co2/)
Lawson T., Matthews J. (2020) – Guard Cell Metabolism and Stomatal Function – Annual Review of Plant Biology 71: 273-302 – https://doi.org/10.1146/annurev-arplant-050718-100251 – https://www.annualreviews.org/doi/abs/10.1146/annurev-arplant-050718-100251 (On our blog : https://plantstomata.wordpress.com/2020/05/12/guard-cell-metabolism-and-stomatal-function/ )
Lawson T., McElwain J. C. (2016) – Evolutionary trade-offs in stomatal spacing – New Phytologist 210: 1149-1151 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13972/full – (On our blog : https://plantstomata.wordpress.com/2016/05/10/stomatal-spacing/)
–Lawson T., Morison J. I. L. (2010) – Guard Cell Photosynthesis – Plant Physiol. & Developm., 6th ed., Essay 10.1 – http://6e.plantphys.net/essay10.01.html – (On our blog : https://plantstomata.wordpress.com/2015/10/24/guard-cell-photosynthesis-and-fluorescence/)
Lawson T., Oxborough K., Morison J. I. L., Baker N. R. (2002) – Responses of Photosynthetic Electron Transport in Stomatal Guard Cells and Mesophyll Cells in Intact Leaves to Light, CO2, and Humidity – Plant Physiology 128(1): 52-62 – DOI: https://doi.org/10.1104/pp.010317 – http://www.plantphysiol.org/content/128/1/52 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/photosynthetic-electron-transport-in-stomatal-guard-cell-chloroplasts-responds-to-internal-not-ambient-co2-concentration/ )
Lawson T., Oxborough K., Morison J. I., Baker N. R. (2003) – The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar – J. Exp. Bot. 54: 1743–1752 – doi: 10.1093/jxb/erg186 – https://www.ncbi.nlm.nih.gov/pubmed/12773521 – (On our blog : https://plantstomata.wordpress.com/2018/05/08/photosynthetic-efficiency-in-stomata-is-determined-by-the-same-factors-that-determine-it-in-the-mesophyll/ )
Lawson T., Oxborough K., Morison J. I., Baker N. R. (200x) – Evaluating guard cell photosynthesis in intact green leaves using chlorophyll fluorescence imaging – http://www.publish.csiro.au/sa/pdf/SA0403560 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/evaluating-photosynthesis-in-stomata-in-intact-green-leaves/)
Lawson T., Simkin A. J., Kelly G., Granot D. (2014) – Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour – New Phytol. 203: 1064–1081 – doi: 10.1111/nph.12945 – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.12945 – (On our blog : https://plantstomata.wordpress.com/2020/01/09/stomatal-guard-cell-metabolism-impacts-on-stomatal-behaviour/ )
Lawson T., Terashima I., Fujita T.,,Wang Y. (2018) – “Coordination between photosynthesis and stomatal behavior,” in The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes) 44, eds W. Adams III and I. Terashima (Cham: Springer) – 141–161 – doi: 10.1007/978-3-319-93594-2_6 – https://link.springer.com/chapter/10.1007%2F978-3-319-93594-2_6 – (On our blog : https://plantstomata.wordpress.com/2022/01/03/the-mechanisms-and-signal-transduction-pathways-that-facilitate-the-well-observed-correlation-between-mesophyll-photosynthetic-rates-and-stomatal-conductance/ )
Lawson T., Vialet-Chabrand S. (2018) – Speedy stomata, photosynthesis and plant water use efficiency – New Phytol. Online Version of Record – https://doi.org/10.1111/nph.15330 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15330?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/12/the-rapidity-of-stomatal-responses-2/ )
Lawson T., von Caemmerer S., Baroli I. (2011) – Photosynthesis and stomatal behaviour – Progress in Botany 72: 265-304 – https://doi.org/10.1007/978-3-642-13145-5_11 – https://link.springer.com/chapter/10.1007/978-3-642-13145-5_11 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/photosynthesis-and-stomatal-behaviour/ )
Lawson T., Weyers J. D. B., A’Brook R. (1998) – The nature of heterogeneity in the stomatal behaviour of Phaseolus vulgaris L. primary leaves – Journal of Experimental Botany 49(325): 1387–1395 – The_nature_of_heterogeneity_in_the_stoma.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/the-nature-of-heterogeneity-in-the-stomatal-behaviour/)
Laxalt A. M., Garcia Mata C., Lamattina L. (2016) – The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure – Frontiers Plant Sci. 7: 476 – doi: 10.3389/fpls.2016.00476 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00476/full – (On our blog : https://plantstomata.wordpress.com/2016/09/03/dual-role-of-no-in-stomata/)
Laza M. R. C., Kondo M., Ideta O., Barlaan E., Imbe T. (2010) – Quantitative trait loci for stomatal density and size in lowland rice – Euphytica 172: 149–158 – DOI: 10.1007/s10681-009-0011-8 – https://link.springer.com/article/10.1007/s10681-009-0011-8#citeas – Quantitative_trait_loci_for_stomatal_den.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/quantitative-trait-loci-for-stomatal-density-and-size-in-lowland-rice/)
Le J., Liu X.-G., Yang K.-Y., Chen X.-L., Zou J.-J., Wang H.-Z., Wang M., Vanneste S., Morita M., Tasaka M., Ding Z.-J., Friml J., Beeckman T., Sack F. (2014) – Auxin transport and activity regulate stomatal patterning and development – Nature Communications 5: – doi: 10.1038/ncomms4090 – http://www.nature.com/articles/ncomms4090 – (On our blog : https://plantstomata.wordpress.com/2016/12/16/auxin-stomatal-patterning-and-development/)
Le J., Zou J., Yang K., Wang M. (2014) – Signaling to stomatal initiation and cell division – Front. Plant Sci. 5: Art. 297 – https://doi.org/10.3389/fpls.2014.00297 – fpls-05-00297.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/13/signaling-involved-in-stomatal-initiation-and-in-divisions-in-the-cell-lineage/ )
Lea H. Z., Dunn G. M., Koch D. W. (1977) – Stomatal Diffusion Resistance in Three Ploidy Levels of Smooth Bromegrass – Crop Science 17(1): 91-93 – https://doi.org/10.2135/cropsci1977.0011183X001700010026x – https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1977.0011183X001700010026x – (On our blog : https://plantstomata.wordpress.com/2021/10/08/diurnal-variations-in-stomatal-resistance-and-the-relationship-of-stomatal-resistance-to-stomatal-characters/ )
Leakey A. D. B. (2019) – PE1200: Phenomics of Stomata and Water Use Efficiency in C4 Species – Plant & Animal Genome Conference XXVII, San Diego – https://pag.confex.com/pag/xxvii/meetingapp.cgi/Paper/37365 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/phenomics-of-stomata/ )
Leakey A., Bernacchi C., Ort D., Long S. (2006) – Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions – Plant Cell Environ. 29: 1794–1800 – https://doi.org/10.1111/j.1365-3040.2006.01556.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2006.01556.x – (On our blog : https://plantstomata.wordpress.com/2018/05/11/elevated-co2-and-stomatal-conductance/ )
Lebaudy A., Pascaud F., Véry A. A., Alcon C., Dreyer I., Thibaud J. B., Lacombe B. (2010) – Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells – J Biol Chem 285: 6265–6274 – DOI: 10.1074/jbc.M109.068445 – http://www.jbc.org/content/285/9/6265/F1.expansion.html – https://www.ncbi.nlm.nih.gov/pubmed/20040603 – (On our blog : https://plantstomata.wordpress.com/2018/05/11/arabidopsis-guard-cell-inward-shaker-channels-are-mainly-heteromers-of-kat1-and-kat2-subunits/ )
Lebaudy A., Vavasseur A., Hosy E., Dreyer I., Leonhardt N., Thibaud J.-B., Véry A.-A., Simonneau T., Sentenac H. (2008) – Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels – Proc. Natl Acad. Sci. USA 105:5271–5276 – doi: 10.1073/pnas.0709732105 – (On our blog : https://plantstomata.wordpress.com/2016/07/22/gckin-activity-plays-pleiotropic-roles-in-stomata/)
Lebourgeois F., Lévy G., Aussenac G., Clerc B., Willm F. (1998) – Influence of soil drying on leaf water potential, photosynthesis, stomatal conductance and growth in two black pine varieties – Ann. For. Sci. 55: 287-299 – DOI: 10.1051/forest:19980302 – https://www.afs-journal.org/articles/forest/abs/1998/03/AFS_0003-4312_1998_55_3_ART0002/AFS_0003-4312_1998_55_3_ART0002.html – (On our blog : https://plantstomata.wordpress.com/2021/04/02/the-influence-of-long-term-soil-water-deficit-on-growth-and-physiological-processes-stomatal-conductance/ )
LeBrasseur N. (2006) – Stomata fight infection – J Cell Biol 174(7): 909b – https://doi.org/10.1083/jcb.1747rr1 – https://rupress.org/jcb/article/174/7/909b/44546/Stomata-fight-infection – (On our blog : https://plantstomata.wordpress.com/2020/12/29/stomata-fight-infection/ )
Lechowski Z. (1997) – Stomatal response to exogenous cytokinin treatment of the hemiparasite Melampyrum arvense L. before and after attachment to the host – Biol. Plant. 39: 13- 21 – https://doi.org/10.1023/A:1000392502943 – https://link.springer.com/article/10.1023%2FA%3A1000392502943#citeas – (On our blog : https://plantstomata.wordpress.com/2018/05/11/stomatal-response-to-exogenous-cytokinin-treatment/ )
1998) – Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose – Proc. Natl Acad. Sci. USA 95: 15837–15842 – doi: 10.1073/pnas.95.26.15837 – (On our blog : https://plantstomata.wordpress.com/2016/07/22/cadpr-a-key-player-in-aba-signal-transduction-pathways-in-plants/)
, , , (Leckie C. P., McAinsh, Montgommery L., Priestley A. J., Staxen I., Webb A. A. R., Hetherington A. M. (1998) – Second messengers in guard cells – J. Exp. Bot. 49: 339–349 – https://doi.org/10.1093/jxb/49.Special_Issue.339 –https://academic.oup.com/jxb/article/49/Special_Issue/339/507979 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/second-messengers-in-stomatal-guard-cells/ )
Ledent J. F., Jouret M. F. (1978) – Relationship between stomatal frequencies, yield components and morphological characters in collections of winter wheat cultivars – Biol Plant 20: 287 – https://doi.org/10.1007/BF02922688 – https://link.springer.com/article/10.1007/BF02922688 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-frequencies-yield-components-and-morphological-characters-of-wheat/ )
Lee D. M., Assmann S. M. (1992) – Stomatal responses to light in the facultative Crassulacean acid metabolism species, Portulacaria afra – Physiol. Plant. 85: 35–42 – https://doi.org/10.1111/j.1399-3054.1992.tb05260.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1992.tb05260.x – (On our blog : https://plantstomata.wordpress.com/2018/10/30/portulacaria-afra-individuals-performing-c3-metabolism-possess-typical-stomatal-responses-to-light/ )
Lee E., Liu X., Eglit Y., Sack F. (2013) – FOUR LIPS and MYB88 conditionally restrict the G1/S transition during stomatal formation – J. Exp. Bot. 64(16): 5207-5219 – doi: 10.1093/jxb/ert313 – http://jxb.oxfordjournals.org/content/64/16/5207.abstract?ijkey=22e89154124e32cc948637e8891ecf4c6450bd72&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/09/27/four-lips-flp-and-myb88-genes-and-nonstomatal-epidermal-cells/)
Lee E., Lucas J. R., Goodrich J., Sack F. D. (2014) – Arabidopsis Guard Cell Integrity Involves the Epigenetic Stabilization of the FLP and FAMA Transcription Factor Genes – DOI: 10.1111/tpj.12516 – https://www.researchgate.net/publication/261030727_Arabidopsis_Guard_Cell_Integrity_Involves_the_Epigenetic_Stabilization_of_the_FLP_and_FAMA_Transcription_Factor_Genes – (On our blog : https://plantstomata.wordpress.com/2015/06/21/stomata-guard-cell-integrity/)
Lee E., Lucas J. R., Sack F. D. (2014) – Deep functional redundancy between FAMA and FOUR LIPS in stomatal development – Plant Journ. 78(4): 555-565 – doi: 10.1111/tpj.12489 – Epub 2014 Apr 23 – http://www.ncbi.nlm.nih.gov/pubmed/24571519 – (On our blog : https://plantstomata.wordpress.com/2016/07/23/interactions-between-flp-and-fama-with-the-retinoblastoma-related-rbr-protein-in-stomatal-functions/)
Lee E. H., Beedlow P. A., Brooks J. R., Tingey D. T., Wickham C., Rugh W. (2021) – Physiological responses of Douglas-fir to climate and forest disturbances as detected by cellulosic carbon and oxygen isotope ratios – Tree Physiology, tpab122 – https://doi.org/10.1093/treephys/tpab122, https://academic.oup.com/treephys/advance-article/doi/10.1093/treephys/tpab122/6370950 – (On our blog : https://plantstomata.wordpress.com/2021/10/30/94924/ )
Lee H. C. (2002) – Sensing, Signaling and Cell Adaptation – Cell and Molecular Response to Stress – https://www.sciencedirect.com/topics/immunology-and microbiology/plant-stoma – (On our blog : https://plantstomata.wordpress.com/2021/03/02/3-cadpr-and-plant-response-to-environmental-stress/ )
Lee H. J., Tucker E. B., Crain R. C., Lee Y. (1993) – Stomatal Opening Is Induced in Epidermal Peels of Commelina communis L. by GTP Analogs or Pertussis Toxin – Plant Physiol. 102(1): 95-100 – doi: 10.1104/pp.102.1.95 – https://pubmed.ncbi.nlm.nih.gov/12231800/ – (On our blog : https://plantstomata.wordpress.com/2021/10/02/93996/ )
Lee H. K., Khaine I., Kwak M.-J., Jang J., Lee T., Lee J. K., Kim L. R., Kim W. I., Oh K. S., Woo S.-Y. (2017) – The relationship between SO2 exposure and plant physiology: A mini review – Horticulture, Environment and Biotechnology 58(6): 523-529 – DOI: 10.1007/s13580-017-0053-0 – https://www.researchgate.net/publication/321800325_The_relationship_between_SO2_exposure_and_plant_physiology_A_mini_review – (On our blog : https://plantstomata.wordpress.com/2021/09/27/stomata-so2-exposure-and-plant-physiology/ )
Lee J. H., Jung J. H., Park C. M. (2017) – Light inhibits COP1-Mediated degradation of ICE transcription factors to induce stomatal development in Arabidopsis – The Plant Cell 29: 2817–2830 – https://doi.org/10.1105/tpc.17.00371 – https://pubmed.ncbi.nlm.nih.gov/29070509/ – (On our blog : https://plantstomata.wordpress.com/2021/07/09/light-is-directly-linked-with-the-ice-directed-signaling-module-via-the-cop1-mediated-protein-surveillance-system-in-the-modulation-of-stomatal-development/ )
Lee J. S. (1998) – The mechanism of stomatal closing by salicylic acid in Commelina communis L. – Plant Biol. (1998) 41: 97 – https://doi.org/10.1007/BF03030395 – https://link.springer.com/article/10.1007/BF03030395#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-closing-by-sa/ )
Lee J. S. (2000) – The Effects of Two Abscisic Acid Analogues, WL19224 and WL19377, on Stomatal Closure – Journal of Plant Biology 43(1): 56-59 –doi:10.1007/BF03031037 – https://link.springer.com/article/10.1007/BF03031037 – (On our blog : https://plantstomata.wordpress.com/2021/05/09/the-effect-on-stomatal-closure-by-aba-and-its-analogues-wl19224-and-wl19377/ )
Lee J. S. (2005) – Three Possible Mechanisms for Stomatal Opening in Response to Light – The Korean Journal of Ecology 28(2): 105-112 – https://doi.org/10.5141/jefb.2005.28.2.105 – http://koreascience.or.kr/article/JAKO200509905763269.page – (On our blog : https://plantstomata.wordpress.com/2021/08/08/three-possible-mechanisms-for-the-light-response-of-stomata/ )
Lee J. S. (2006) – The Relationship between Stomatal Opening and Photosynthetic Activity of the Mesophyll in Commelina communis L. – Korean Journal of Environmental Science 15(12): 1109-1117 –
Lee J. S. (2010) – Stomatal Opening Mechanism of CAM Plants – J. Plant Biol. (2010) 53: 19-23 – https://doi.org/10.1007/s12374-010-9097-8 – https://link.springer.com/article/10.1007/s12374-010-9097-8 – (On our blog : https://plantstomata.wordpress.com/2017/09/26/stomata-of-cam-plants/)
Lee J. S. (2013) – Do really close stomata by soil drying ABA produced in the roots and transported in transpiration stream? – American J Plant Science 4: 169-173 – https://doi.org/10.4236/ajps.2013.41022 – https://www.scirp.org/journal/paperinformation.aspx?paperid=27662 – (On our blog : https://plantstomata.wordpress.com/2021/05/09/stomatal-response-to-the-abrupt-water-stress-is-very-rapid/ )
Lee J. S. (2014) – The Electrophysiology Application on Guard Cells to See the Influence of Carbon Dioxide – Journal of Environmental Science International (한국환경과학회지) 23(5): 763-770 – https://doi.org/10.5322/JESI.2014.5.763 – https://www.koreascience.or.kr/article/JAKO201416760765129.pa1ff8ge – (On our blog : https://plantstomata.wordpress.com/2021/05/08/co2-flowing-could-stimulate-proton-efflux-which-is-a-necessary-precursor-of-stomatal-opening/ )
Lee J. S. (2020) – What kinds of osmotic materials induce stomatal opening – https://d197for5662m48.cloudfront.net/documents/publicationstatus/47940/preprint_pdf/d0644cd3c9095dee41a82050fae97f49.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/07/although-various-solutes-including-k-are-required-for-stomata-to-open-sucrose-is-believed-to-be-the-most-important-substance-that-can-increase-the-vacuoles-osmotic-pressure/ )
Lee J. S., Bowling D. J. F. (1992) – Effect of the mesophyll on stomatal opening in Commelina communis – Journal of Experimental Botany 43: 951–957 – https://doi.org/10.1093/jxb/43.7.951 – https://academic.oup.com/jxb/article-abstract/43/7/951/531126?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/10/27/the-mesophyll-plays-an-important-role-in-stomatal-opening-in-the-light/ )
Lee J. S., Bowling D. J. F. (1992) – Effect of the mesophyll on stomatal opening in Commelina communis – J. Exp. Bot. 43: 951–957 – doi: 10.1093/jxb/43.7.951 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Effect-of-the-Mesophyll-on-Stomatal-Opening-in-Commelina-communis.pdf – (On our blog : https://plantstomata.wordpress.com/2016/02/16/the-effect-of-a-number-of-factors-on-the-opening-of-stomata/)
Lee J. S., Bowling D. J. F. (1993) – Influence of the Mesophyll on the Change of Electrical Potential Difference of Guard Cells Induced by Red Light and CO2 in Commelina communis L. and Tradescantia virginiana L. – Korean Journal of Plant Biology 36(4): 383-389 –
Lee J. S., Bowling D. J. F. (1993) – The effect of a mesophyll factor on the swelling of guard cell protoplasts of Commelina communis – Journal of Plant Physiology 142: 203–207 – https://doi.org/10.1016/S0176-1617(11)80964-8 –https://www.sciencedirect.com/science/article/pii/S0176161711809648?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/08/the-effect-of-a-mesophyll-factor-on-the-swelling-of-stomatal-guard-cell-protoplasts/ )
Lee J. S., Bowling D. J. F. (1995) – Influence of the mesophyll on stomatal opening – Aust. J Plant Physiol. 22: 357-363 – https://doi.org/10.1071/PP9950357 – https://www.publish.csiro.au/fp/PP9950357 – (On our blog : https://plantstomata.wordpress.com/2021/05/09/the-participation-of-the-mesophyll-in-stomatal-control/ )
Lee J. S., Hnilova M., Maes M., Lin Y.-C. L., Putarjunan A., Han S.-K., Avila J.,Torii K. U. (2015) – Competitive binding of antagonistic peptides fine-tunes stomatal patterning – Nature 522: 439–443 – doi:10.1038/nature14561 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/antagonistic-peptides-and-stomatal-patterning/)
Lee J. S., Hwang H., Kim S. K., Yoon I. S., Choi W. G. (2016) – Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure – Plant Physiology 171(4): 2467-2476 –
Lee J. -S., Kim B.-W. (1997) – Stomatal response by ozone – Korean J. Ecol. 20(2): 83-94 – http://koreascience.or.kr/article/JAKO199711919962498.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/04/stomatal-closing-by-ozone/ )
Lee J. S., Kuroha T., Hnilova M., Khatayevich D., Kanaoka M. M., McAbee J. M., Sarikaya M., Tamerler C., Torii K. U. (2012) – Direct interaction of ligand-receptor pairs specifying stomatal patterning – Genes Dev. 26: 126-136 – doi: 10.1101/gad.179895.111 – (On our blog : https://plantstomata.wordpress.com/2016/02/16/ligand-receptor-pairs-specifying-stomatal-patterning/)
Lee J. S., Webb A. A. R. (1997) – The effect ethylene on stomatal closing in Commelina communis L.
Lee L. R., Bergmann D. C. (2019) – The plant stomatal lineage at a glance – Journal of Cell Science 132: jcs228551 – doi: 10.1242/jcs.228551 – https://jcs.biologists.org/content/132/8/jcs228551.abstract – (On our blog : https://plantstomata.wordpress.com/2019/08/13/the-stomatal-lineage-is-dynamic-and-flexible-altering-stomatal-production-in-response-to-environmental-change/ )
Lee L. R., Wengier D. L., Bergmann D. C. (2019) – Cell-type–specific transcriptome and histone modification dynamics during cellular reprogramming in the Arabidopsis stomatal lineage – PNAS 116(43): 21914-21924 – https://doi.org/10.1073/pnas.1911400116 – https://www.pnas.org/content/116/43/21914 – (On our blog : https://plantstomata.wordpress.com/2020/08/27/transcriptome-and-histone-modification-dynamics-in-the-arabidopsis-stomatal-lineage/ )
Lee M., Choi Y., Burla B., Kim Y.-Y., Jeon B., Maeshima M., Yoo J.-Y., Martinoia M., Lee Y. (2008) – The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2 – Nature Cell Biol. 10: 1217–1223 – (On our blog : https://plantstomata.wordpress.com/2016/07/23/atabcb14-modulates-stomatal-movement/)
Lee R. (1967) – The hydrologic importance of transpiration control by stomata – Water Res. AGU100 3(3): 737-752 – https://doi.org/10.1029/WR003i003p00737 – https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/WR003i003p00737 – (On our blog : https://plantstomata.wordpress.com/2019/11/27/the-hydrologic-importance-of-transpiration-control-by-stomata/ )
Lee R., Gates D. M. (1964) – Diffusion resistance in leaves as related to their stomatal anatomy and microstructure – Am. J. Botany 31: 963-975 – https://doi.org/10.1002/j.1537-2197.1964.tb06725.x – https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1964.tb06725.x – (On our blog : https://plantstomata.wordpress.com/2022/07/06/diffusion-resistance-in-leaves-as-related-to-their-stomatal-anatomy/ )
Lee S., Choi H., Suh S., Doo I. S., Oh K. Y., Choi E. J., et al. (1999) – Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis – Plant Physiol. 121: 147–152 – doi: 10.1104/pp.121.1.147 – http://www.plantphysiol.org/content/121/1/147 – (On our blog : https://plantstomata.wordpress.com/2018/05/11/guard-cells-infected-by-pathogens-may-close-their-stomata-via-a-pathway-involving-h2o2-production/ )
Lee S., Ishiga Y., Clermont K., Mysore K. S. (2013) – Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens – Peer J. 1, e34 – doi: 10.7717/peerj.34 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628748/ – (On our blog : https://plantstomata.wordpress.com/2018/05/11/stomatal-closure-induced-by-a-nonhost-pathogen-was-disrupted-by-cor/ )
Lee S., Rojas C. M., Oh S., Kang M., Choudhury S. R., Lee H.-K., Allen R. D., Pandey S., Mysore K. S. (2018) – Nucleolar GTP-Binding Protein 1-2 (NOG1-2) Interacts with Jasmonate-ZIMDomain Protein 9 (JAZ9) to Regulate Stomatal Aperture during Plant Immunity – Int. J. Mol. Sci. 19: 1922 – doi:10.3390/ijms19071922 – file:///C:/Users/wille/Downloads/ijms-19-01922.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/02/the-function-of-a-small-gtpase-nog1-2-in-guard-cell-signaling-and-early-plant-defense-in-response-to-bacterial-pathogen/ )
Lee S., Senthil-Kumar M., Kang M., Rojas C. M., Tang Y., Oh S., Choudhury S. R., Lee H.-K., Ishiga Y., Allen R. D., Pandey S., Mysore K. S. (2017) – The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity – Scientific Reports 7: Nr.: 9260 – doi:10.1038/s41598-017-08932-9 – https://www.nature.com/articles/s41598-017-08932-9 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/the-new-functional-role-of-small-gtpase-nog1-in-guard-cell-signaling-for-stomatal-response/)
Lee S. C., Lan W., Buchanan B. B., Luan S. (2009) – A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells – Proc Natl Acad Sci USA 106: 21419–21424 – doi: 10.1073/pnas.0910601106 – (On our blog : https://plantstomata.wordpress.com/2016/07/24/aba-signaling-is-mediated-by-a-physical-interaction-chain-to-regulate-stomatal-movements/)
Lee S. C., Lim C. W., Lan W., He K., Luan S. (2013) – ABA Signaling in guard cells entails a dynamic protein–protein interaction relay from the PYL-RCAR Family receptors to ion channels- Mol. Plant 6: 528–538 – doi: 10.1093/mp/sss078 – (On our blog : https://plantstomata.wordpress.com/2016/07/25/aba-and-a-dynamic-protein-protein-interaction-relay-from-the-pyl-rcar-family-receptors-to-ion-channels/)
Plant, Cell & Environment 35(1): 53 –
, ABA signal transduction at the crossroad of biotic and abiotic stress responses –Lee S. H., Tewari R. K., Hahn E. J., Paek K. Y. (2007) – Photon flux density and light quality induce changes in growth, stomatal development, photosyntesis plantlets – Plant Cell Tiss. Org. Cult. 90: 141-151 – doi:10.1007/s11240-006-9191-2 – http://link.springer.com/article/10.1007/s11240-006-9191-2 – (On our blog : https://plantstomata.wordpress.com/2016/12/19/quality-and-quantity-of-light-affect-stomatal-development/)
Lee T. T. (1965) – Sugar content and stomatal width as related to ozone injury in tobacco leaves – Canadian Journal of Botany 43(6): 677-685 – https://doi.org/10.1139/b65-075 – https://www.nrcresearchpress.com/doi/abs/10.1139/b65-075 – (On our blog : https://plantstomata.wordpress.com/2020/05/23/high-levels-of-sucrose-and-reducing-sugars-were-associated-with-closure-of-stomata/ )
Lee Y., Assmann S. M. (1990) – Diacylglycerol induces both ion pumping in patch clamped guard cell protoplasts and stomatal opening – Plant Physiology 93(1 Suppl.): 17 – https://eurekamag.com/research/030/899/030899253.php –
Lee Y., Assmann S. M. (1991) – Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata – Proc Natl Acad Sci USA. 88(6): 2127–2131 – PMID: 11607161 PMCID: PMC51182 – https://www.ncbi.nlm.nih.gov/pubmed/11607161 – (On our blog : https://plantstomata.wordpress.com/2018/05/12/diacylglycerols-and-opening-of-intact-stomata/ )
Lee Y., Choi H., Hong J. (2019) – The stomatal response to reduced air humidity requires guard cell-autonomous ABA synthesis – Current Biology 29(7): 1136-1142 –
Lee Y., Choi Y. B., Suh S., Lee J., Assmann S. M., Joe C. O., Kelleher J. F., Crain R. C. (1996) – Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba – Plant Physiol. 110: 987–996 – http://dx.doi.org/10.1104/pp.110.3.987 – (On our blog : https://plantstomata.wordpress.com/2016/07/26/phosphoinositide-signaling-and-coupling-aba-to-guard-cell-shrinking-and-stomatal-closure/)
Lee Y., Kim Y. J., Kim M.-H., Kwak J. M. (2016) – MAPK Cascades in Guard Cell Signal Transduction – Front. Plant Sci. 7:80 – http://dx.doi.org/10.3389/fpls.2016.00080 – (On our blog : https://plantstomata.wordpress.com/2016/02/29/mapk-mediated-guard-cell-signaling-in-stomata/)
Lee Y., Kim Y.-W., Jeon B. W., Park K.-Y., Suh S. J., Seo J., Kwak J. M., Martinoia E., Hwang I., Lee Y. (2007) – Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening – Plant J. 52: 803–816 – PMID:17883374 – DOI:10.1111/j.1365-313X.2007.03277.x – (On our blog : https://plantstomata.wordpress.com/2016/07/26/full-stomatal-opening-and-ptdins45p2/)
Lee Y., Lee H. J., Crain R. C., Lee A., Korn S. J. (1994) – Polyunsaturated fatty acids modulates stomatal aperture and two distinct K+ channel currents in guard cells – Cell. Signal. 6: 181–186 – doi: 10.1016/0898-6568(94)90075-2 – https://www.ncbi.nlm.nih.gov/pubmed/8086281 – (On our blog : https://plantstomata.wordpress.com/2018/05/12/fatty-acids-regulate-stomatal-aperture-by-modulation-of-two-different-k-channels/ )
Lefoulon C., Boxall S. F., Hartwell J., Blatt M. R. (2020) – Crassulacean acid metabolism guard cell anion channel activity follows transcript abundance and is suppressed by apoplastic malate – New Phytol. 227(6): 1847-1857 – doi: 10.1111/nph.16640 – Epub 2020 Jun 16 – PMID: 32367511 – https://pubmed.ncbi.nlm.nih.gov/32367511/ – (On our blog : https://plantstomata.wordpress.com/2022/01/03/the-diurnal-cycle-of-anion-channel-gene-transcription-rather-than-the-physiological-signal-of-mal-release-is-a-key-factor-in-the-inverted-cam-stomatal-cycle/ )
Lehmann P., Or D. (2015) – Effects of stomata clustering on leaf gas exchange. – New Phytol. 207: 1015–1025 – doi:10.1111/nph.13442 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.13442 – (On our blog : https://plantstomata.wordpress.com/2018/05/12/effects-of-stomata-clustering-on-leaf-gas-exchange/ )
Lei Z. Y., Han J. M., Yi, X. P., Zhang W. F., Zhang Y. L. (2018) – Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress – Photosynthetica 56: 1326-1335 – https://doi.org/10.1007/s11099-018-0847-z – https://link.springer.com/article/10.1007/s11099-018-0847-z – (On our blog : https://plantstomata.wordpress.com/2018/09/24/coordinated-changes-in-vein-and-stomatal-density-improve-the-wue-of-cotton-under-drought-stress/ )
Leick E. (1927) – Untersuchungen über den Einfluß des Lichtes auf die öffnungsweite unterseitiger und oberseitiger Stomata desselben Blattes – Jahrbücher für Wissenschaftliche Botanik 67: 771–848 –
Leick E. (1955) – Periodische Neuanlage von Blattstomata – Flora 142: 45–64 –
Leidi E. O., Lopez J. M., Lopez M., Gutierrez J. C. (1993) – Searching for tolerance to water stress in cotton genotypes: photosynthesis, stomatal
conductance and transpiration – Photosynthetica 28: 383-390 –
Leila (2015) – How do stomata help conserve water? – Socratic, Biology Topics – https://socratic.org/questions/how-do-stomata-help-conserve-water – (On our blog : https://plantstomata.wordpress.com/2019/01/14/74774/ )
Leinonen I., Grant O. M., Tagliavia C. P. P., Chaves M. M., Jones H. G. (2006) – Estimating stomatal conductance with thermal imagery – Plant, Cell and Environment 29: 1508–1518 – doi: 10.1111/j.1365-3040.2006.01528.x – Estimating_stomatal_conductance_with_the.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/estimating-stomatal-conductance-with-thermal-imagery/ )
Leitgeb H. (1888) – Beiträge zur Physiologie der Spaltöffnungsapparate – Mitt. Bot. Inst. Graz, Jena 1: 123-
Lekhak H. D., Sen D. N. (1982) – Stomatal responses towards neutral red uptake and particulate movement in some arid zone plants – Biologia Plantarum (Praha) 24(2): 101-108 – (On our blog : https://plantstomata.wordpress.com/2017/03/28/37084/)
Lemichez E., Wu Y., Sanchez J. P., Mettouchi A., Mathur J., Chua N. H. (2001) – Inactivation of AtRac1 by abscisic acid is essential for stomatal closure – Genes Dev.15: 1808–1816 – doi:10.1101/gad.900401 – (On our blog : https://plantstomata.wordpress.com/2016/07/27/atrac1-is-a-central-element-for-plant-adaptation-to-drought-by-stomatal-closure/)
Lemtiri-Chlieh F. (1996) – Effects of internal K+ and ABA on the voltage- and time-dependence of the outward K+-rectifier in Vicia guard cells – J Membr Biol 1563: 105–116 – https://doi.org/10.1007/s002329900114 – https://link.springer.com/article/10.1007%2Fs002329900114 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/k-aba-and-stomata/ )
1994) – Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch clamp study – J. Membr. Biol. 137: 99–107 – DOI: 10.1007/BF00233479 – (On our blog : https://plantstomata.wordpress.com/2016/07/27/ca2-k-and-aba-in-stomatal-closure/)
(Lemtiri-Chlieh F., MacRobbie E. A. C., Brearley C. A. (2000) – Inositol hexakisphosphate is a physiological signal regulating the K+ -inward rectifying conductance in guard cells – Proc. nat. Acad. Sci. USA 97: 8687-8692 – DOI: 10.1073/pnas.140217497 – https://www.ncbi.nlm.nih.gov/pubmed/10890897?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/05/27/insp6-may-play-a-major-role-in-the-physiological-response-of-stomatal-guard-cells-to-aba/ )
Lemtiri-Chlieh F., MacRobbie E. A. C., Webb A. A. R., Manison N. F., Brownlee C., Skepper J. N.,Chen J., Prestwich G. D., Brearley C. A. (2003) – Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells – Proc. Natl. Acad. Sci. U.S.A. 100: 10091 – doi: 10.1073/pnas.1133289100 – (On our blog : https://plantstomata.wordpress.com/2016/07/27/insp6-as-an-endomembrane-acting-calcium-release-signal-in-stomata/)
Lena J. V., Scott A. M., Michael K., Jan M. R., Tim B., Rainer H., Roelfsema R. M. G. (2018) – Guard cells in fern stomata are connected by plasmodesmata, but control cytosolic Ca2+ levels autonomously – New Phytologist 219: 2 –
Leng Q., Huang L., Hua B., Lou C. (1998) – Grey relation function between local electrical potential and stomatal behavior during light exposure in plants – Chinese Science Bulletin 43(19): 1642-1646 – https://doi.org/10.1007/BF02883410 – https://link.springer.com/article/10.1007/BF02883410 – (On our blog : https://plantstomata.wordpress.com/2019/03/30/lep-could-represent-the-dominant-factor-in-executing-the-stomatal-movement-under-the-light-exposure/ )
Leon J. (2021) – Deceleration of cell cycle underpins a switch from proliferative-to-terminal division in plant stomatal lineage (bioRxiv) – Plantae – https://plantae.org/deceleration-of-cell-cycle-underpins-a-switch-from-proliferative-to-terminal-division-in-plant-stomatal-lineage-biorxiv/ – (On our blog : https://plantstomata.wordpress.com/2021/07/22/particular-combinations-of-cell-cycle-regulators-deployed-at-highly-specific-developmental-stages-carry-out-crucial-roles-in-plant-stomatal-lineage/ )
Leonhardt N., Bazin I., Richaud P., Marin E., Vavasseur A., Forestier C. (2001) -Antibodies to the CFTR modulate the turgor pressure of guard cell protoplasts via slow anion channels – FEBS Lett. 494(1-2): 15-18 – doi: 10.1016/s0014-5793(01)02289-x – PMID: 11297726 – https://pubmed.ncbi.nlm.nih.gov/11297726/ – (On our blog : https://plantstomata.wordpress.com/2022/03/12/the-stomatal-guard-cell-slow-anion-channel-is-or-is-closely-controlled-by-a-polypeptide/ )
Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant – Plant Cell 16: 596–615 – http://dx.doi.org/10.1105/tpc.019000 – (On our blog : https://plantstomata.wordpress.com/2016/07/27/microarray-expression-analyses-of-guard-cells-in-arabidopsis-stomata/ )
(2004) –
Leonhardt N., Vavasseur A., Forestier C., (1999) – ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells – Plant Cell 11: 1141-1151 – https://doi.org/10.1105/tpc.11.6.1141 – http://www.plantcell.org/content/11/6/1141 – (On our blog : https://plantstomata.wordpress.com/2018/12/06/the-slow-anion-channel-is-an-abc-protein-or-is-tightly-controlled-by-such-a-protein-that-interacts-with-the-aba-signal-transduction-pathway-in-stomata/ )
Leroy F., Moens M. (2022) – Opening and closing of stomata – Science Photo Library – https://www.sciencephoto.com/media/601481/view/opening-and-closing-stoma-animation – (On our blog : https://plantstomata.wordpress.com/2022/05/16/opening-and-closing-of-stomata-2/ )
Lersten N. R., Curtis J. D. (1985) – Distribution and Anatomy of Hydathodes in Asteraceae – Bot. Gaz. 146(1): 106-114 –
Lersten N. R., Curtis J. D. (1991) – Laminar hydathodes in Urticaceae: survey of tribes and anatomical observations on Pilea pumila and Urtica dioica – Plant Syst. Evol. 176(3-4): 179-203 –
Lertngim N., Ruangsiri M., Klinsawang S., Raksatikan P., Thunnom B., Siangliw M., Toojinda T., Siangliw J. L. (2023) – Photosynthetic Plasticity and Stomata Adjustment in Chromosome Segment Substitution Lines of Rice Cultivar KDML105 under Drought Stress – Plants 12: 94 – https://doi.org/10.3390/plants12010094 – file:///C:/Users/wille/Downloads/plants-12-00094.pdf – (On our blog : https://plantstomata.wordpress.com/2023/01/11/under-drought-stress-top-performing-kdml105-css-lines-with-high-net-photosynthesis-had-shorter-plant-height-and-improved-iwueas-influenced-by-an-increase-in-stomatal-density-on-the-upper-leaf-side-a/ )
Leshem Y., Golani Y., Kaye Y., Levine A. (2010) – Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure – J. Exp. Bot. 61: 2615–2622 – https://doi.org/10.1093/jxb/erq099 – https://academic.oup.com/jxb/article/61/10/2615/432042 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/vamp71-proteins-play-an-important-role-in-the-regulation-of-stomatal-closure-by-aba-treatment/ )
Leshem Y., Levine A. (2013) – Zooming into sub-organellar localization of reactive oxygen species in guard cell chloroplasts during abscisic acid and methyl jasmonate treatments – Plant Signal Behav. 8(10): – doi: 10.4161/psb.25689 – PMID: 23887496 – PMCID: PMC4091116 – https://pubmed.ncbi.nlm.nih.gov/23887496/ – (On our blog : https://plantstomata.wordpress.com/2023/04/01/ros-production-during-abscisic-acid-aba-and-methyl-jasmonate-mj-stimuli-in-arabidopsis-gc-chloroplasts-were-more-than-tripled/ )
Lestari E. G. (2006) – The relation between stomata index and drought resistant at rice somaclones of Gajahmungkur, Towuti, and IR 64 (Hubungan antara Kerapatan Stomata dengan Ketahanan Kekeringan pada Somaklon Padi Gajahmungkur, Towuti, dan IR 64) – Biodiversitas 7(1): 44-48 – ISSN; 1412-033X – DOI : 10.13057/biodiv/d070112 – https://biodiversitas.mipa.uns.ac.id/D/D0701/D070112.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/17/stomata-density-can-be-applied-as-an-indicator-on-the-stress-resistant-level-of-rice/ )
Leterrier M., Barroso J. B., Valderrama R., Begara-Morales J. C., Sánchez-Calvo B., Chaki M., Luque F., Viñegla B., Palma J. M., Corpas F. J. (2016) – Peroxisomal NADP-isocitrate dehydrogenase is required for Arabidopsis stomatal movement – Protoplasma 253: 403–415 – https://doi.org/10.1007/s00709-015-0819-0 – https://link.springer.com/article/10.1007%2Fs00709-015-0819-0 – (On our blog : https://plantstomata.wordpress.com/2022/01/29/the-peroxisomal-nadp-icdh-is-involved-in-stomatal-movements/ )
Le Thiec D., Rose C., Garrec J. P., Laffray D., Louguet P., Galaup S., Loosveldt P. (1994) – Alterations of element contents in guard cells of Norway spruce (Picea abies) subjected to ozone fumigation and (or) water stress: x-ray microanalysis study – Canadian Journal of Botany 72: 86–92 – https://doi.org/10.1139/b94-012 –https://www.nrcresearchpress.com/doi/abs/10.1139/b94-012 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/alterations-of-element-contents-in-stomatal-guard-cells-subjected-to-ozone-fumigation-and-or-water-stress/ )
Leung J., Bazihizina N., Mancuso S., Valon C., (2016) – Revisiting the Plant’s Dilemma – Molecular Plant 9: 7–9 – https://doi.org/10.1016/j.molp.2015.07.007 – https://www.cell.com/molecular-plant/fulltext/S1674-2052(15)00301-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1674205215003019%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2021/09/22/93596/ )
1990) – Modeling stomatal behavior and photosynthesis of Eucalyptus grandis – Australian Journal of Plant Physiology 17: 159–175 – https://doi.org/10.1071/PP9900159 – http://www.publish.csiro.au/FP/PP9900159 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/a-combined-model-of-stomatal-conductance-co2-assimilation-and-intercellular-co2-mol-fraction/ )
(A critical appraisal of a combined stomatal-photosynthesis model for C3 plants.- Plant Cell Environ. 18: 339–355 – (On our blog : https://plantstomata.wordpress.com/2016/07/27/combined-stomatal-photosynthesis-model-for-c3-plants/)
(1995) –Leva A. C. (1977) – The effect of nutrient status on the number of stomata on olive leaves – Rivista della Ortoflorofrutticoltura Italiana 61(6): 405-408 – https://eurekamag.com/research/000/535/000535129.php – (On our blog : https://plantstomata.wordpress.com/2022/02/18/the-effect-of-nutrient-status-on-the-number-of-stomata/ )
Dietrich P., Roelfsema M. R., Hedrich R. (2005) – Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. – Proc. Natl Acad. Sci. USA 102: 4203–4208 – doi: 10.1073/pnas.0500146102 –– (On our blog : https://plantstomata.wordpress.com/2016/07/27/aba-activates-guard-cell-anion-channels-in-stomata/)
,Levchenko V., Guinot D. R., Klein M., Roelfsema M. R. G., Hedrich R., Dietrich P. (2008) – Stringent control of cytoplasmic Ca2+ in guard cells of intact plants compared to their counterparts in epidermal strips or guard cell protoplasts. – Protoplasma 233: 61–72 – doi: 10.1007/s00709-008-0307-x – (On our blog : https://plantstomata.wordpress.com/2016/07/28/cytoplasmic-ca2-concentrations-in-stomata/)
Levchenko V., Konrad K. R., Dietrich P., Roelfsema M. R., Hedrich R. (2005) – Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals – Proceedings of the National Academy of Sciences of the United States of America 102: 4203–4208 – DOI 10.1073/pnas.0500146102 – https://www.ncbi.nlm.nih.gov/pubmed/15753314 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/cytosolic-aba-activates-stomatal-anion-channels-without-preceding-ca2-signals/ )
Leverenz J., Deans J. D., Ford E. D., Jarvis P. G., Milne R., Whitehead D. (1982) – Systematic spatial variation of stomata1 conductance in a Sitka spruce plantation – J. Appl. Ecol. 19: 835-851 – DOI: 10.2307/2403286 – https://www.jstor.org/stable/2403286?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/10/30/systematic-spatial-variation-of-stomata1-conductance/ )
Levin A. D., Williams L. E., Matthews M. A. (2019) – A continuum of stomatal responses to water deficits among 17 wine grape cultivars (Vitis vinifera) – Functional Plant Biology 47(1): 11-25 https://doi.org/10.1071/FP19073 – https://www.publish.csiro.au/fp/fp19073 – (On our blog : https://plantstomata.wordpress.com/2023/03/31/vitis-vinifera-cultivars-possess-both-iso-and-anisohydric-stomatal-behaviours-that-depend-on-the-intensity-of-water-deficits/ )
Levine L., Richards J., Wheeler R. (2009) – Super‐elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max) – J Plant Physiol. 166: 903– 913 – https://doi.org/10.1016/j.jplph.2008.11.006 – https://www.sciencedirect.com/science/article/pii/S0176161708003428?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/21/super%e2%80%90elevated-co2-interferes-with-stomatal-response-to-aba-and-night-closure/ )
Levitt J. (1967) – The mechanism of stomatal action – Planta 74 : 101-118 – doi: 10.1007/BF00388323 – https://www.ncbi.nlm.nih.gov/pubmed/24549885 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/the-mechanism-of-stomatal-action/ )
Levitt J. (1968) – Stomatal opening: role of potassium uptake – Science 163: 494 – https://pdfs.semanticscholar.org/13e0/40b0e7731e3920821da077024ea7bb1c2e85.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/07/role-of-k-uptake-in-stomatal-opening/ )
Levitt J. (1974) – The mechanism of stomatal action – Once More – Protoplasma 82: 1-17 – DOI:10.1007/BF01276868 – https://www.semanticscholar.org/paper/The-mechanism-of-stomatal-movement%E2%80%94Once-more-Levitt/afd23e1ee5c156746effff6f45d073577ceb0e0c – (On our blog : https://plantstomata.wordpress.com/2017/03/02/types-of-stomatal-movement/)
Levitt J. (1976) – Physiological Basis of Stomatal Response – in O. L. Lange et al. (eds.) : Water and Plant Life pp 160-168 – Part of the Ecological Studies book series (ECOLSTUD, volume 19) – https://link.springer.com/chapter/10.1007%2F978-3-642-66429-8_10 – (On our blog : plantstomata.wordpress.com/2017/09/18/stomata-fulfill-three-major-functions-in-the-physiology-of-the-plant/)
Levitt L. K., Stein D. B., Rubinstein B. (1987) – Promotion of stomatal opening by indole acetic acid and ethrel in epidermal strips of Vicia faba L. – Plant Physiol. 85: 318–323 – PMID: 16665694 – PMCID: PMC1054252 – doi: 10.1104/pp.85.2.318 – https://www.ncbi.nlm.nih.gov/pubmed/16665694 – (On our blog : https://plantstomata.wordpress.com/2018/10/31/promotion-of-stomatal-opening-by-iaa-and-ethrel/ )
Lewis F. J. (1945) – Physical Conditions of the Surface of the Mesophyll Cell Walls of the Leaf – Nature 156: 407–409 https://doi.org/10.1038/156407a0 – https://www.nature.com/articles/156407a0#citeas – (On our blog : https://plantstomata.wordpress.com/2022/01/01/stomata-and-the-mesophyll-cell-walls-of-the-leaf/ )
Lewis J. D., Lucash M., Olszyk D. M., Tingley D. T. (2002) – Stomatal responses of Douglas-fir seedlings to elevated carbon dioxide and temperature during the third and fourth years of exposure – Plant Cell Env. 25: 1411-1421 – https://core.ac.uk/download/pdf/37767856.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/18/stomatal-responses-to-elevated-co2-and-temperature/ )
1999) – A tobacco syntaxin with a role in hormonal control of guard cell ion channels – Science 283: 537–540 – DOI: 10.1126/science.283.5401.537 – (On our blog :https://plantstomata.wordpress.com/2016/07/28/a-tobacco-syntaxin-in-stomata/)
, , , . (Leymarie J., Lasceve G., Vavasseur A. (1998) – Interaction of stomatal responses to ABA and CO2 on Arabidopsis thaliana – Aust. J. Plant Physiol. 25:785–791 – doi:10.1071/PP98031 – (On our blog : https://plantstomata.wordpress.com/2016/07/28/stomatal-responses-to-aba-and-co2/)
Leymarie J., Lasceve G., Vavasseur A. (1999) – Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana – Plant, Cell and Environment 22: 301-308 – https://doi.org/10.1046/j.1365-3040.1999.00403.x – https://s3.amazonaws.com/academia.edu.documents/40396561/Elevated_CO2_enhances_stomatal_responses20151126-26910-11vuk8x.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543001890&Signature=yPqgDHpnGqJ3HabZ9EGlYaF3xas%3D&response-content-disposition=inline%3B%20filename%3DElevated_CO2_enhances_stomatal_responses.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/23/elevated-co2-enhances-stomatal-responses-to-osmotic-stress-and-aba/ )
Leymarie J.,Vavasseur A., Lasceve G. (1998) – CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana – Plant Physiology and Biochemistry 36(7): 539-543 – doi:10.1016/S0981-9428(98)80180-0 – http://www.sciencedirect.com/science/article/pii/S0981942898801800 – (On our blog : https://plantstomata.wordpress.com/2016/07/28/stomatal-responses-to-co2/)
L’Hirondelle S. J., Simpson D. G., Binder W. D. (2007) – Chlorophyll fluorescence, root growth potential, and stomatal conductance as estimates of field performance potential in conifer seedlings – New Forests 34: 235-251 – https://doi.org/10.1007/s11056-007-9051 – https://link.springer.com/article/10.1007%2Fs11056-007-9051-x?LI=true – (On our blog : https://plantstomata.wordpress.com/2019/06/05/stomatal-conductance-as-estimate-of-field-performance-potential-in-conifer-seedlings/ )
Lhomme J.-P. (2001) – Stomatal control of transpiration: Examination of the Jarvis‐type representation of canopy resistance in relation to humidity – Water Resources Research 37: 689-699 – DOI:10.1029/2000WR900324 – https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000WR900324 – (On our blog : https://plantstomata.wordpress.com/2021/08/20/stomatal-control-of-transpiration-3/ )
Lhomme J.‐P., Elguero E., Chehbouni A., Boulet G. (1998) – Stomatal control of transpiration: examination of Monteith’s formulation of canopy resistance – Water Resources Research 34: 2301– 2308 – https://doi.org/10.1029/98WR01339 – https://agupubs.onlinelibrary.wiley.com/doi/10.1029/98WR01339 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/stomatal-control-of-transpiration-and-canopy-resistance/ )
Li B., Liu G., Deng Y., Xie M., Feng Z., Sun M., Zhao Y., Liang L., Ding N., Jia W. (2010) – Excretion and folding of plasmalemma function to accommodate alterations in guard cell volume during stomatal closure in Vicia faba L. – J Exp Bot 61: 3749-3758 – doi: 10.1093/jxb/erq197 – Epub 2010 Jul 5 – https://www.ncbi.nlm.nih.gov/pubmed/20603284 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/excretion-and-folding-of-the-plasmalemma-and-stomatal-movement/ )
Li C., Tan D. X., Liang D., Chang C., Jia D., Ma F. (2015) -Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress – J. Exp. Bot. 66: 669– 680 – DOI: 10.1093/jxb/eru476 – https://pubmed.ncbi.nlm.nih.gov/25481689/ – (On our blog : https://plantstomata.wordpress.com/2020/11/04/inducing-melatonin-production-is-an-important-mechanism-by-which-plants-can-counteract-the-influence-of-aba/ )
Li C., Wang P., van der Ent A., Cheng M., Jiang H., Lund Read T., Lombi E., Tang C., de Jonge M.D., Menzies N.W., Kopittke P.M. (2018) – Absorption of foliar-applied Zn in sunflower (Helianthus annuus ): importance of the cuticle, stomata and trichomes – Annals of Botany 123: 57-68 –
Li C., Wei Z., Liang D., Zhou S., Li Y., Liu C., Ma F. (2013) – Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis – Plant Physiol Biochem 70: 164-173 – doi: 10.1016/j.plaphy.2013.05.005 – Epub 2013 May 18 – https://pubmed.ncbi.nlm.nih.gov/23774378/ – (On our blog : https://plantstomata.wordpress.com/2020/11/04/enhanced-salt-resistance-in-apple-plants-overexpressing-a-malus-vacuolar-na-h-antiporter-gene-is-associated-with-differences-in-stomatal-behavior/ )
Li C., Zhang X., Liu X., Luukkanen O., Berninger F. (2006) – Leaf Morphological and Physiological Responses of Quercus aquifolioides along an Altitudinal Gradient – Silva Fennica 40(1): 5–13 – http://www.metla.fi/silvafennica/full/sf40/sf401005.pdf – (On our blog : https://plantstomata.wordpress.com/2015/03/31/leaf-morphological-and-physiological-responses-to-altitudinal-gradients-in-quercus-dicots/).
Li C. L., Wang M., Ma X. Y., Zhang W. (2014) – NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis – Mol Plant 7: 1508–1521 – http://dx.doi.org/10.1093/mp/ssu061 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/a-putative-role-for-nrga1-in-guard-cell-aba-signaling-in-response-to-drought/)
Li C.-L., Wang M., Wu X.-M., Chen D.-H., Lv H.-J., Shen J.-L., Qiao Z., Zhang W. (2016) – THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis – Plant Physiology 170(2): 1090-1104 – http://dx.doi.org/10.1104/pp.15.01649 – http://www.plantphysiol.org/content/170/2/1090.full – (On our blog : https://plantstomata.wordpress.com/2016/04/04/the-role-of-thi1-a-thiamine-thiazole-synthase-in-stomata/)
Li F., Liu L., Zhang H., Wang Q.-T., Guo Li-L., Hao L.-H., Zhang X.-X., Cao X., Liang W.-J., Zheng Y.-P. (2018) – Effects of CO2 Concentrations on Stomatal Traits and Gas Exchange in Leaves of Soybean – Acta Agronomica Sinica 44(08): – ISSN:0496-3490 – http://jtp.cnki.net/bilingual/detail/html/XBZW201808013 – (On our blog : https://plantstomata.wordpress.com/2020/03/22/83905/ )
Li F. C., Wang J., Wu M. M., Fan C. M., Li X., He J. M. (2017) – Mitogen-Activated Protein Kinase Phosphatases Affect UV-B-Induced Stomatal Closure via Controlling NO in Guard Cells – Plant Physiol. 173(1): 760-770 – doi: 10.1104/pp.16.01656 – Epub 2016 Nov 11 – http://www.plantphysiol.org/content/173/1/760 – (On our blog : https://plantstomata.wordpress.com/2019/10/04/mpk6-but-not-mpk3-positively-regulates-uv-b-induced-stomatal-closure-via-acting-downstream-of-h2o2-and-upstream-of-no/ )
Li G., Lin L., Dong Y., An D., Li Y., Luo W., Yin X., Li W., Shao J., Zhou Y., Dai J., Chen W., Zhao C. (2012) – Testing two models for the estimation of leaf stomatal conductance in four greenhouse crops cucumber, chrysanthemum, tulip and lilium –
Agricultural and Forest Meteorology 165: 92-103 – ISSN 0168-1923 –https://doi.org/10.1016/j.agrformet.2012.06.004 – https://www.sciencedirect.com/science/article/pii/S0168192312002031 – (On our blog : https://plantstomata.wordpress.com/2023/01/06/the-jarvis-model-and-a-new-version-of-the-bwb-leuning-model-bwb-leuning-yin-model-for-estimating-stomatal-conductance/ )
Environmental and Experimental Botany 113: 11-17 –doi:10.1016/j.envexpbot.2015.01.002 – http://www.sciencedirect.com/science/article/pii/S0098847215000118 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/co2-and-h2o2-signalling-promote-more-complete-stomatal-closure-under-the-influence-of-aba/)
, , , Reduced photosynthetic dark reaction triggered by ABA application increases intercellular CO2 concentration, generates H2O2 and promotes closure of stomata in ginger leaves –Li J., Assmann S. M. (1996) – An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean – Plant Cell 8:2359–2368 – http://dx.doi.org/10.1105/tpc.8.12.2359 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/aapk-and-ca2-independent-aba-signaling-pathways-in-stomata/)
Li J., Besseau S., Törönen P., Sipari N., Kollist H., Holm L., Palva E. T. (2013) – Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis – New Phytol 200: 457–472 – doi: 10.1111/nph.12378 – Epub 2013 Jul 1. – https://www.ncbi.nlm.nih.gov/pubmed/23815736 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/wrky70-and-wrky54-co-operate-as-negative-regulators-of-stomatal-closure/ )
Li J., Fan M., Hua W., Tian Y., Chen L., Sun Y., Bai M. (2020) – Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation – Plant Cell 32: 984–999 –
Li J., Han L., Su Y., Guo H., Zhang H. (2019) – Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure – Plant Physiology and Biochemistry 143: 340-350 –
ISSN 0981-9428 – https://doi.org/10.1016/j.plaphy.2019.09.012 –
https://www.sciencedirect.com/science/article/pii/S0981942819303560 – (On our blog : https://plantstomata.wordpress.com/2022/04/12/amslac1-as-an-anion-channel-and-regulated-by-amcpk6-is-functionally-conserved-for-aba-and-drought-induced-stomata-closure/ )
Li J., Lee Y. R., Assmann S. M. (1998) – Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel – Plant Physiol 116: 785–795 – https://doi.org/10.1104/pp.116.2.785 – http://www.plantphysiol.org/content/116/2/785 – (On our blog : https://plantstomata.wordpress.com/2018/05/15/cdpk-may-be-an-important-component-of-ca2-signaling-in-stomata/ )
Li J., Li C., Smith S. M. (2017) – Hormone Metabolism and Signaling in Plants – Academic Press Elsevier ISBN 978-0-12-811562-6 – (On our blog : https://plantstomata.wordpress.com/2021/02/08/88078/ )
Li J., Li X. M. (2014) – Response of stomatal conductance of two tree species to vapor pressure deficit in three climate zones – J. Arid Land 6(6): 771-781 – (On our blog : https://plantstomata.wordpress.com/2016/02/16/stomatal-conductance-and-vapor-pressure-deficit/).
Li J., Li Y., Yin Z., Jiang J., Zhang M., Guo X., Ye Z., Zhao Y., Xiong H., Zhang Z., Shao Y., Jiang C., Zhang H., An G., Paek N.-C., Ali J., Li Z. (2017) – OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice – Plant Biotechnol. J. 15(2): 183–196 – doi: 10.1111/pbi.12601 – https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.12601 – (On our blog : https://plantstomata.wordpress.com/2019/12/26/osasr5-plays-multiple-roles-in-response-to-drought-stress-by-regulating-aba-biosynthesis-and-promoting-stomatal-closure/ )
Li J., Wang X. Q., Watson M. B., Assmann S. M.(2000) – Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase – Science 287: 300–303 – DOI: 10.1126/science.287.5451.300 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/16803/)
Li J.-G., Fan M., Hua W., Tian Y., Chen L.-G., Sun Y., Bai M.-Y. (2020) – Brassinosteroid and Hydrogen Peroxide Interdependently Induce Stomatal Opening by Promoting Guard Cell Starch Degradation – Plant Cell – https://doi.org/10.1105/tpc.19.00587 – http://www.plantcell.org/content/32/4/984 (On our blog : https://plantstomata.wordpress.com/2020/05/03/critical-roles-of-br-and-h2o2-in-regulating-guard-cell-starch-metabolism-and-stomatal-opening/ )
Li J., Zhang G.-Z., Li X., Wang Y., Wang F.-Z., Li X.-M. (2019) – Seasonal change in response of stomatal conductance to vapor pressure deficit and three phytohormones in three tree species – Plant Signaling & Behavior 14(12) – https://doi.org/10.1080/15592324.2019.1682341 – https://www.tandfonline.com/doi/full/10.1080/15592324.2019.1682341 – (On our blog : https://plantstomata.wordpress.com/2020/01/13/seasonal-change-in-response-of-stomatal-conductance-to-vapor-pressure-deficit-and-three-phytohormones/ )
Li J.-H., Liu Y.-Q., Lü P., Lin H.-F., Bai Y., Wang X.-C. et al. (2009) – A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extra cellular calmodulin induction of stomatal closure in Arabidopsis – Plant Physiol. 150: 114–124 – doi: 10.1104/pp.109. 137067 – http://www.plantphysiol.org/content/150/1/114 – (On our blog : https://plantstomata.wordpress.com/2018/05/15/a-signaling-pathway-leading-to-extcam-induced-stomatal-closure/ )
Li K., Huang J., Song W., Wang J., Lv S., Wang X. (2019) – Automatic segmentation and measurement methods of living stomata of plants based on the CV model – Plant Methods 15: 67 – https://doi.org/10.1186/s13007-019-0453-5 – https://link.springer.com/article/10.1186/s13007-019-0453-5#citeas – (On our blog : https://plantstomata.wordpress.com/2019/08/14/measurement-methods-of-living-stomata/ )
Li L.‐J., Ren F., Gao X.‐Q., Wei P.‐C., Wang X.‐C. (2013) – The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis – Plant, Cell & Environment 36: 484– 497 – https://doi.org/10.1111/j.1365-3040.2012.02592.x – https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2012.02592.x – (On our blog : https://wordpress.com/block-editor/post/plantstomata.wordpress.com/81325 )
Li M., Wang C., Song J., Chi Y., Wang X., Wu Y. (2008) – Evolutional trends of leaf stomatal and photosynthetic characteristics in wheat evolutions – Acta Ecologica Sinica 28(11): 5385-5391 – https://doi.org/10.1016/S1872-2032(09)60010-X – https://www.sciencedirect.com/science/article/abs/pii/S187220320960010X – (On our blog : https://plantstomata.wordpress.com/2020/04/15/as-ploidy-increased-the-stomatal-length-width-perimeter-and-area-were-found-to-increase/ )
Li N., Dong F., Liu T., Yang J., Shi Y., Wang S., Sun D. Jing R. (2022) – Quantitative trait loci mapping and candidate gene analysis of stoma-related traits in wheat (Triticum aestivum L.) glumes – Peer J. 10: e13262 – https://doi.org/10.7717/peerj.13262 – https://peerj.com/articles/13262/ – (On our blog : https://plantstomata.wordpress.com/2022/05/19/106685/ )
Li Q., Hou J., He N., Xu L., Zhang Z. (2021) – Changes in leaf stomatal traits of different aged temperate forest stands – J. For. Res. 32: 927–936 – https://doi.org/10.1007/s11676-020-01135-5 – https://link.springer.com/article/10.1007/s11676-020-01135-5#citeas – (On our blog : https://plantstomata.wordpress.com/2022/05/15/spatial-variation-in-stomatal-traits-across-forest-patches-does-not-need-to-be-incorporated-in-future-ecological-models/ )
Li Q., Serbin S. P., Lamour J., Davidson K., Ely K., Rogers A. (2022) – Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) – EGU Geoscientific Model Development – DOI: 10.5194/gmd-2021-414 – https://www.researchgate.net/publication/358104303_Implementation_and_evaluation_of_the_unified_stomatal_optimization_approach_in_the_Functionally_Assembled_Terrestrial_Ecosystem_Simulator_FATES – (On our blog : https://plantstomata.wordpress.com/2022/05/14/the-25-parameterization-of-stomatal-conductance-models-and-current-model-response-to-drought-are-the-critical-areas-for-improving-model-simulation-of-co2-and-water-fluxes-in-tropical-forests/ )
Li Q., Wang Y.-J., Liu C.-K., Pei Z.-M., Shi W.-L. (2017) – The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana – Published Online: 2017-10-31 – https://doi.org/10.1515/biolog-2017-0126 – https://www.degruyter.com/view/j/biolog.2017.72.issue-10/biolog-2017-0126/biolog-2017-0126.xml?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Biologia_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/aba-nitric-oxide-hydrogen-peroxide-and-calcium-in-stomatal-closing/ )
Li Q., Yu L.-j., Deng Y., Li W., Li M.-t., Cao J.-h. (2007) – Leaf epidermal characters of Lonicera japonica and Lonicera confuse and their ecology adaptation – J. For. Res. 18: 103-108 – https://link.springer.com/article/10.1007%2Fs11676-007-0020-1 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/stomata-in-lonicera-dicots-2/)
Li Q., Zhou L., Chen Y., Xiao N., Zhang D., Zhang M., Wang W., Zhang C., Zhang A., Li H., Chen J., Gao Y. (2022) – Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid – Plant Cell. 34(11): 4293-4312 – doi: 10.1093/plcell/koac244 – PMID: 35929789 – PMCID: PMC9614506 – https://pubmed.ncbi.nlm.nih.gov/35929789/ – (On our blog : https://plantstomata.wordpress.com/2023/02/05/pifs-play-a-role-in-red-light-mediated-stomatal-opening/ )
Li R. T., Zhang Y. N., Tian D. L. (2004) – Studies on Stomata of Citrus Plant Leaves – J. Fru. Sci. 21(5): 419–424 –
Li S., Assmann S. M., Albert R. (2006) – Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling – PLoS Biol.4:e312 – doi: 10.1371/journal.pbio.0040312 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/a-dynamic-model-of-guard-cell-abscisic-acid-signaling/)
Li S., Harley P. C., Niinemets Ü. (2017) – Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris – Plant, Cell & Environment – doi: 10.1111/pce.13003 – http://onlinelibrary.wiley.com/doi/10.1111/pce.13003/abstract – (On our blog : https://plantstomata.wordpress.com/2017/06/19/key-role-of-stomatal-conductance-in-controlling-ozone-uptake-leaf-injury-and-volatile-release/)
Li S., Li L., Fan W., Ma S., Zhang C., Kim J. C., Wang K., Russinova E., Zhu Y., Zhou Y. (2022) – LeafNet: a tool for segmenting and quantifying stomata and pavement cells – The Plant Cell 34(4): 1171–1188 – https://doi.org/10.1093/plcell/koac021 – https://academic.oup.com/plcell/article-abstract/34/4/1171/6515637?redirectedFrom=fulltext&login=false – (On our blog : https://plantstomata.wordpress.com/2022/04/22/leafnet-a-tool-that-automatically-localizes-stomata-segments-pavement-cells-and-reports-multiple-morphological-parameters-for-a-variety-of-leaf-epidermal-images/ )
Li S., Li X., Wei Z., Liu F. (2020) – ABA-mediated modulation of elevated CO2 on stomatal response to drought – Current Opinion in Plant Biology – Available online 11 January 2020 – https://doi.org/10.1016/j.pbi.2019.12.002 – https://www.sciencedirect.com/science/article/pii/S1369526619301177 – (On our blog : https://plantstomata.wordpress.com/2020/01/24/aba-mediated-modulation-of-elevated-co2-on-stomatal-response-to-drought/ )
Li S., Liu J., Liu H., Qiu R., Gao Y., Duan A. (2021) – Role of Hydraulic Signal and ABA in Decrease of Leaf Stomatal and Mesophyll Conductance in Soil Drought-Stressed Tomato – Front Plant Sci. 12: 653186 – doi: 10.3389/fpls.2021.653186 – Erratum in: Front Plant Sci. 12: 710792 – PMID: 33995449 – PMCID: PMC8118518 – https://pubmed.ncbi.nlm.nih.gov/33995449/ – (On our blog : https://plantstomata.wordpress.com/2021/11/26/leaf-stomatal-conductance-gs-shows-a-higher-sensitivity-to-drought-than-mesophyll-conductance-gm/ )
Li S.-I, Tan T.-t., Fan Y.-f., Raza M. A., Wang Z.-l., Wang B.-b., Zhang J.-w., Tan X.-m., Chen P., Shafiq I., Yang W.-y., Yang F. (2022) – Responses of leaf stomatal and mesophyll conductance to abiotic stress factors – Journal of Integrative Agriculture 21(10): 2787-2804 – ISSN 2095-3119 – https://doi.org/10.1016/j.jia.2022.07.036 –https://www.sciencedirect.com/science/article/pii/S2095311922000454 – (On our blog : https://plantstomata.wordpress.com/2022/12/06/the-rapid-and-long-term-responses-of-stomatal-conductance-to-abiotic-stress-factors/ )
Li S., Zhang J., Liu L., Wang Z., Li Y., Guo L., Li Y., Zhang X., Ren S., Zhao B., Zhang N., Guo Y.-D. (2020) – SlTLFP8 reduces water loss to improve water-use efficiency by modulating cell size and stomatal density via endoreduplication – Plant, Cell & Environmente 43(11): 2666-2679 – https://doi.org/10.1111/pce.13867 – https://onlinelibrary.wiley.com/doi/10.1111/pce.13867 – (On our blog : https://plantstomata.wordpress.com/2022/04/14/sltlfp8-a-member-of-tlp-family-regulates-water-deficient-resistance-by-modulating-water-loss-via-affecting-stomatal-density/ )
Li T., Kromdijk J., Heuvelink E., van Noort F. R., Kaiser E., Marcelis L. F. M. (2016) – Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity – Front. Plant Sci., 04 February 2016 | http://dx.doi.org/10.3389/fpls.2016.00056 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00056/full – (On our blog : https://plantstomata.wordpress.com/2016/03/28/response-of-stomatal-conductance-to-dynamic-light-intensity/)
Li W.-L., Berlyn G. P., Ashton P. M. S. (1996) – Polyploids and their structural and PHYSIOLOGICAL CHARACTERISTICS RELATIVE TO WATER DEFICIT IN BETULA PAPYRIFERA (Betulaceae) – American Journal of Botany 83(1): – https://bsapubs.onlinelibrary.wiley.com/action/doSearch?AllField=Stomata&SeriesKey=15372197&startPage=2&pageSize=20 -(On our blog : https://plantstomata.wordpress.com/2022/07/05/polyploids-are-more-tolerant-of-water-deficit-than-their-diploid-relatives-have-fewer-stomata-per-unit-area-and-smaller-stomatal-indices-than-the-diploids/ )
Li X., Li J. H., He S., Pang Z., Lin S., Li H. (2020) – Investigation of Stomata in Cut ‘Master’ Carnations: Organographic Distribution, Morphology, and Contribution to Water Loss – HortScience 55(7): 1144-1147 – https://doi.org/10.21273/HORTSCI14945-20 – https://journals.ashs.org/hortsci/view/journals/hortsci/55/7/article-p1144.xml – (On our blog : https://plantstomata.wordpress.com/2020/11/15/the-differential-contributions-of-stomata-in-leaves-stems-and-floral-organs-to-water-loss-2/ )
Li X., Li J. H., Wang W., Chen N.Z., Ma T. S., Xi Y. N., Zhang X. L., Lin H. F., Bai Y., Huang S. J., Chen Y. L. (2014) – ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis – Plant Cell Environ 37: 1548- 1560 – https://doi.org/10.1111/pce.12259 –https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12259 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/a-possible-causal-relation-between-the-production-of-h2o2-and-actin-dynamics-in-aba%e2%80%90mediated-stomatal-guard-cell-signalling/ )
Li X., Ma X., He J. (2013) – Stomatal Bioassay in Arabidopsis Leaves – Bio-protocol 3(19): e921 – DOI: 10.21769/BioProtoc.921 – https://bio-protocol.org/e921 – (On our blog : https://plantstomata.wordpress.com/2020/11/12/how-to-measure-stomatal-apertures-under-multiple-treatments/ )
Li X., Palta J. A., Liu F. (2022) – Editorial: Modulation of Stomatal Response by Elevated CO2 in Plants Under Drought and Heat Stress – Frontiers in Plant Science 13: 843999 – https://doi.org/10.3389/fpls.2022.843999 – https://www.frontiersin.org/articles/10.3389/fpls.2022.843999/full – (On our blog : https://plantstomata.wordpress.com/2022/04/25/modulation-of-stomatal-response-by-elevated-co2/ )
Li X., Smith R., Choat B., Tissue D. T. (2020) – Drought resistance of cotton (Gossypium hirsutum) is promoted by early stomatal closure and leaf shedding – Funcional Plant Biology 47(2): 91-98 – https://www.publish.csiro.au/fp – (On our blog: https://plantstomata.wordpress.com/2020/01/24/irrigation-should-be-applied-shortly-following-stomatal-closure-to-ensure-canopy-photosynthesis-during-and-after-water-deficit/ )
Li X., Wilkinson S., Shen J., Forde B. G., Davies W. J. (2017) – Stomatal and growth responses to hydraulic and chemical changes induced by progressive soil drying – J Exp Bot 68(21-22): 5883-5894 – doi: 10.1093/jxb/erx381 – https://pubmed.ncbi.nlm.nih.gov/29126265/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/stomatal-and-growth-responses-to-hydraulic-and-chemical-changes/ )
Li X., Wu T., Cheng Y., Tan N.-D., Jiang F., Liu S.-Z., Chu G.-W., Meng Z., Liu J.-X. (2020) – Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming – Chin J Plant Ecol. 44(12): 1203-1214 – DOI: 10.17521/cjpe.2020.0318 – https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0318 – (On our blog : https://plantstomata.wordpress.com/2022/04/18/leaf-stomatal-traits-anatomical-structure-and-photosynthetic-characteristics-were-measured-to-represent-the-abilities-of-stomatal-regulation-leaf-tissue-regulation-and-nutrient-maintenance-respecti/ )
Li Y., Chen L., Mu J., Zuo J. (2017) – Lesion mimic mutants in rice – J Integr Plant Biol. 59(11): 805-815 –
Li Y., Ding Y., Qu L., Li X., Lai Q., Zhao P., Gao Y., Xiang C., Cang C., Liu X., Sun L. (2022) – Structure of the Arabidopsis guard cell anion channel SLAC1 suggests activation mechanism by phosphorylation – Nat Commun 13: 2511 – https://doi.org/10.1038/s41467-022-30253-3 – https://www.nature.com/articles/s41467-022-30253-3#citeas – (On our blog : https://plantstomata.wordpress.com/2022/05/20/understanding-of-the-regulation-of-slac1-activity-and-stomatal-aperture-in-plants/ )
Li Y., Gao Z., Lu J., Wei X., Qi M., Yin Z., Li T. (2022) – SlSnRK2.3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato – Plant Sci. 321: 111305 – doi: 10.1016/j.plantsci.2022.111305 – Epub 2022 May 6 – PMID: 35696906 – https://pubmed.ncbi.nlm.nih.gov/35696906/ – (On our blog : https://plantstomata.wordpress.com/2023/03/22/the-consistent-mechanism-of-slsnrk2-3-and-slsui1-in-stomatal-movement-indicating-that-slsui1-interacted-with-slsnrk2-3-through-aba-dependent-signaling-pathway-in-high-temperature-stress/ )
Li Y., Li H., Li Y., Zhang S. (2017) – Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat – The Crop Journal 5: 231–239 – https://doi.org/10.1016/j.cj.2017.01.001 – https://www.sciencedirect.com/science/article/pii/S2214514117300016?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/12/04/drought-resistance-is-regulated-by-stomatal-characteristics-through-a-decrease-in-transpiration-rate-in-order-to-improve-integral-wue-and-photosynthetic-performance-and-through-sustaining-a-higher-ea/ )
Li Y., Liu Y., Gao Z., Wang F., Xu T., Qi M., Liu Y., Li T. (2023) – MicroRNA162 regulates stomatal conductance in response to low night temperature stress via abscisic acid signaling pathway in tomato – Front Plant Sci. 14: 1045112 – doi: 10.3389/fpls.2023.1045112 -eCollection 2023.PMID: 36938045 – PMCID: PMC10019595 – https://pubmed.ncbi.nlm.nih.gov/36938045/ – (On our blog : https://plantstomata.wordpress.com/2023/03/22/mir162-deficiency-exhibited-high-photosynthetic-capacity-and-regulated-stomatal-opening-suggesting-negative-regulation-of-mir162-in-the-aba-dependent-signaling-pathway-in-response-to-lnt-stress/ )
Li Y., Wang Y., Wang B., Wang Y., Yu W. (2019) – The Response of Plant Photosynthesis and Stomatal Conductance to Fine Particulate Matter (PM2.5) based on Leaf Factors Analyzing – J. Plant Biol. 62: 120-128 – https://doi.org/10.1007/s12374-018-0254-9 – https://link.springer.com/article/10.1007/s12374-018-0254-9#citeas – (On our blog : https://plantstomata.wordpress.com/2019/12/07/response-of-plant-photosynthesis-and-stomatal-conductance-to-fine-particulate-matter-pm2-5/ )
Li Y., Xu S., Gao J., Pan S., Wang G. (2016) – Glucose– and mannose-induced stomatal closure is mediated by ROS production, Ca and water channels in Vicia faba – Physiol. Plant. 156(3): 252-261 – doi: 10.1111/ppl.12353 – Epub 2015 Jun 25 – https://www.ncbi.nlm.nih.gov/pubmed/26046775 – (On our blog : https://plantstomata.wordpress.com/2018/05/15/ros-production-is-involved-in-glucose-and-mannose-induced-stomatal-closure/ )
Li Y., Xu S., Gao J., Pan S., Wang G. (2016) – Bacillus subtilis-regulation of stomatal movement and instantaneous water use efficiency in Vicia faba – Plant Growth Regulation 78(1): 43-55 – http://link.springer.com/article/10.1007%2Fs10725-015-0073-7 – (On our blog : https://plantstomata.wordpress.com/2016/04/04/microbes-and-stomatal-movement/)
Li Y., Xu S., Wang Z., He L., Xu K. Wang G. (2018) – Glucose triggers stomatal closure mediated by basal signaling through HXK1 and PYR/RCAR receptors in Arabidopsis – Journ. Exp. Bot. 69(7): 1471-1484 – https://doi.org/10.1093/jxb/ery024 – https://academic.oup.com/jxb/article/69/7/1471/4850518 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/glucose-triggered-stomatal-closure-may-be-dependent-on-basal-signaling-through-pyr-rcar-receptors-and-hexokinase1-hxk1/ )
Li Y., Zhang X., Zhang Y., Ren H. (2022) – Controlling the Gate: The Functions of the Cytoskeleton in Stomatal Movement – Front Plant Sci. 13: 849729 – doi: 10.3389/fpls.2022.849729 – PMID: 35283892 – PMCID: PMC8905143 – https://pubmed.ncbi.nlm.nih.gov/35283892/ – (On our blog : https://plantstomata.wordpress.com/2023/03/06/the-potential-mechanisms-of-stomatal-movement-in-relation-to-the-cytoskeleton/ )
Li Y.-M., Fei T., Zhang H.-X., Xie Z.-S., Li B. (2023) – Observation of the development of leaf vein and stomata and identification candidate transcription factors related to vein/stoma development in grapevine leaf (Vitis vinifera L.) – Scientia Horticulturae 307: 11518 – ISSN 0304-4238 – https://doi.org/10.1016/j.scienta.2022.111518 –https://www.sciencedirect.com/science/article/pii/S0304423822006367 – (On our blog : https://plantstomata.wordpress.com/2023/01/12/the-development-of-leaf-vein-and-stomata-and-identification-candidate-transcription-factors/ )
Li Y.-M., Liu J. Z., Shi Y., Zhang F. (2011) – Effects of Aluminum Stress on the Stomatal Characteristics and Photosynthesis of Scutellaria baicalensis Georgi Seedlings – Journal of Anhui Agricultural Sciences 2011-10 http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY201110051.htm – (On our blog : https://plantstomata.wordpress.com/2016/02/16/effects-of-aluminum-stress-on-the-stomatal-characteristics/)
Li Y. P., Li H. B., Li Y. Y., Zhang S. Q. (2017) – Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat – The Crop Journal 5: 231-239 –
Li Y.-Z., Zhao Z.-Q., Song D.-D., Yuan Y.-X., Sun H.-J., Zhao J.-F., Chen Y.-L., Zhang C.-G. (2021) – SnRK2.6 interacts with phytochrome B and plays a negative role in red light-induced stomatal opening – Taylor-Francis Online – https://doi.org/10.1080/15592324.2021.1913307 – https://www.tandfonline.com/doi/full/10.1080/15592324.2021.1913307?src=recsys – (On our blog : https://plantstomata.wordpress.com/2021/07/28/the-negative-role-of-snrk2-6-in-red-light-induced-stomatal-opening/)
Li Z., Liu D. (2012) – ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis – FEBS Lett 586(9): 1253-1258 – https://doi.org/10.1016/j.febslet.2012.03.040 – https://www.sciencedirect.com/science/article/pii/S0014579312002402 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/the-role-of-ropgef1-and-ropgef4-in-aba-mediated-stomatal-closure/ )
Li Z., Kang J., Sui N., Liu, D. (2012) – ROP11 GTPase is a negative regulator of multiple ABA responses in Arabidopsis. – J Integr Plant Biol 54(3): 169-179 – doi: 10.1111/j.1744-7909.2012.01100.x – https://www.ncbi.nlm.nih.gov/pubmed/22233300 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/rop11-is-a-negative-regulator-of-multiple-aba-responses/ )
Li Z. H., Liu J. P., Gu H. L., et al. (2016) – Review on the effects of drought stress on plant stomatal characteristics – Subtropical Plant Science 45(2): 195-200 – doi: 10.3969/j.issn.1009-7791.2016.02.021 –
李中华, 刘进平, 谷海磊, 等.干旱胁迫对植物气孔特性影响研究进展[J].亚热带植物科学, 2016, 45(2):195-200doi: 10.3969/j.issn.1009-7791.2016.02.021 –
Liakopoulos G., Stavrianakou S., Karabourniotis G. (2001) – Analysis of Epicuticular Phenolics of Prunus persica and Olea europaea Leaves: Evidence for the Chemical Origin of the UV-induced Blue Fluorescence of Stomata – Annals of Botany 8( 5): 641-648 – DOI10.1006/anbo.2001.1387 – https://www.infona.pl/resource/bwmeta1.element.elsevier-23c1fc29-32ce-39f3-a1c4-100340a2e8a2 – (On our blog : https://plantstomata.wordpress.com/2017/10/11/the-chemical-origin-of-the-uv-induced-blue-fluorescence-of-stomata/)
Liang G. H., Dayton A. D., Chu C. C., Casady A. J. (1975) – Heritability of stomatal density and distribution on leaves of grain sorghum – Crop Science 15: 567-570 –
Liang J., Zhang J. (1999) – The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering – Plant Growth Regul. 29: 77-86 – https://link.springer.com/article/10.1023/A:1006207900619 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/stomatal-conductance-caused-by-water-deficit-is-related-to-the-increase-in-xylem-aba/ )
Liang J., Zhang J., Wong M. H. (1996) – Stomatal conductance in relation to xylem sap abscisic acid concentrations in two tropical trees, Acacia confusa and Litsea glutinosa – Plant Cell Environ. 19: 93-100 – https://doi.org/10.1111/j.1365-3040.1996.tb00230.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1996.tb00230.x – (On our blog : https://plantstomata.wordpress.com/2018/05/20/xylem-aba-may-act-as-a-stress-signal-in-the-control-of-stomatal-conductance/ )
Liang J., Zhang J., Wong M. H. (1997) – Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? – Photosynth. Res. 51: 149-159 – doi:10.1023/A:1005797410190 – http://link.springer.com/article/10.1023/A:1005797410190 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/stomatal-closure-aba-photosynthesis-and-soil-drying/)
Liang K. M. , Lin Z. F. , Ren H. , Liu N. , Zhang Q. M. , Wang J. , Wang Z. F. , Guan L. L. (2010) – Characteristics of sun- and shade-adapted populations of an endangered plant Primulina tabacum Hance – Photosynthetica 48(4): 494-506 – DOI: 10.1007/s11099-010-0066-8 – https://www.infona.pl/resource/bwmeta1.element.springer-c6c9025f-1427-3c2e-b4f7-be821acadc26 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/stomata-in-sun-and-shade-adapted-populations-of-primulina-tabacum-gesneriaceae/)
Liang S., Lu K., Wu Z., Jiang S.-C., Yu Y.-T., Bi C., Xin Q., Wang X.-F., Zhang D.-P. (2015) – A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid – J. Exp. Bot. 66(20): 6355-6369 – doi: 10.1093/jxb/erv341 – http://jxb.oxfordjournals.org/content/66/20/6355.full – (On our blog : https://plantstomata.wordpress.com/2015/09/30/a-link-between-abarchlh-and-snrk2-6ost1-in-guard-cell-signalling-in-response-to-aba/)
Liang Y.-K., Dubos C., Dodd I. C., Holroyd G. H., Hetherington A. M., Campbell M. M. (2005) – AtMYB61, an R2R3-MYB Transcription Factor Controlling Stomatal Aperture in Arabidopsis thaliana – Current Biology 15(13): 1201-1206 – DOI: 10.1016/j.cub.2005.06.041 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fa396381-caec-31cf-8b44-00de1da5f223 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/atmyb61-encodes-the-first-transcription-factor-implicated-in-the-closure-of-stomata/)
Liang Y.-K., Xie X., Lindsay S. E., Wang Y. B., Masle J., Williamson L., Leyser O., Hetherington A. M. (xxxx) – Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana – The Plant Journal 64(4): 679 – 686 – DOI: 10.1111/j.1365-313X.2010.04362.x – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-64-i-4-tpj4362 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/genes-involved-in-cell-wall-biosynthesis-will-have-an-impact-on-water-use-efficiency-reduced-stomatal-pore-widths/)
Liao J.-X., Chang J., Wang G.-X. (2005) – Stomatal density and gas exchange in six wheat cultivars – Cereal Research Communications 33: 719-726 – https://doi.org/10.1556/CRC.33.2005.2-3.140 – https://akademiai.com/doi/abs/10.1556/CRC.33.2005.2-3.140 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/stomatal-density-and-gas-exchange/ )
Liao Q., Ding R., Du T., Kang S., Tong L., Li S. (2022) – Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress – Agricultural Water Management, Elsevier 0268(C) – DOI: 10.1016/j.agwat.2022.107651 – https://ideas.repec.org/a/eee/agiwat/v268y2022ics0378377422001986.html – (On our blog : https://plantstomata.wordpress.com/2022/08/24/controlling-of-transpiration-by-stomata-was-intensified-by-nitrogen-stress-in-drought-conditions/ )
Lieck E. (1928) – Untersuchungen über den Einfluss des Lichtes auf die Öffnungsweite unterseitiger und oberseitiger Stomata desselben Blattes – Jhrb. Wiss. Bot. 67: 771-848 –
Lieras E. (1977) – Differences in stomatal number per unit area within the same species under different micro-environmental conditions: A working hypothesis – ACTA AMAZONICA 7(4): 473-476 – https://www.scielo.br/j/aa/a/ZDdLzTWcP4d4Fct6ybkzXRK/?format=pdf&lang=en – (On our blog : https://plantstomata.wordpress.com/2021/11/09/the-more-xerophytic-the-conditions-the-higher-the-number-of-stomata-per-unit-area-to-permit-more-efficient-gas-interchange/ )
Lim C. W., Baek W., Jung J., Kim J. H., Lee S. C. (2015) – Function of ABA in stomatal defense against biotic and drought stresses – Int. J. Mol. Sci. 16: 15251–15270 – doi: 10.3390/ijms160715251 – http://www.mdpi.com/1422-0067/16/7/15251 – (On our blog : https://plantstomata.wordpress.com/2016/04/02/function-of-aba-in-stomatal-defense-against-biotic-and-abiotic-stresses/)
Lim S., Kim J. (2021) – Light Quality Affects Water Use of Sweet Basil by Changing Its Stomatal Development – Agronomy 11(2): 303 – https://doi.org/10.3390/agronomy11020303 – https://www.mdpi.com/2073-4395/11/2/303/htm – (On our blog : https://plantstomata.wordpress.com/2021/12/29/different-light-qualities-affected-the-water-use-of-plants-by-regulating-stomatal-conductance-including-changes-in-stomatal-density/ )
Lim S.-L., Flütsch S., Liu J., Distefano L., Santelia D., Lim B. L. (2022) – Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening – Nat Commun 13: 652 (2022). https://doi.org/10.1038/s41467-022-28263-2 – https://www.nature.com/articles/s41467-022-28263-2#citeas – (On our blog : https://plantstomata.wordpress.com/2022/02/20/gcs-obtain-atp-and-carbohydrates-via-different-routes-from-mcs-likely-to-compensate-for-the-lower-chlorophyll-contents-and-limit/ )
Lima P., Lopes C. A., CafeFilho A. C. (2010) – Stomatal patterns of Capsicum genotypes resistant or susceptible to Oidlopsis haplophylli – Summa Phytopathologia 36: 25–29 –
Lima V. F., dos Anjos L., Medeiros D. B., Candido-Sobrinho S. A., Souza L. P., Gago J., Fernie A. R., Daloso D. M. (2019) – The sucrose‐to‐malate ratio correlates with the faster CO2 and light stomatal responses of angiosperms compared to ferns – New Phytologist – https://doi.org/10.1111/nph.15927 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15927?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/19/metabolism%e2%80%90mediated-mechanisms-regulating-stomatal-movements/ )
Lima V. F., Medeiros D. B., Dos Anjos L., Gago J., Fernie A. R., Daloso D. M. (2018) – Toward multifaceted roles of sucrose in the regulation of stomatal movement – Plant Signaling & Behavior 13(8) : – https://doi.org/10.1080/15592324.2018.1494468 – https://www.tandfonline.com/doi/full/10.1080/15592324.2018.1494468 – (On our blog : https://plantstomata.wordpress.com/2020/03/30/the-role-of-sucrose-in-the-regulation-of-stomatal-movement/ )
Lima W. de P., Jarvis P., Rhizopoulou S. (2003) – Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress – Sci. agric. (Piracicaba, Braz.) 60(2) – https://doi.org/10.1590/S0103-90162003000200005 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162003000200005 – (On our blog : https://plantstomata.wordpress.com/2020/02/21/stomatal-responses-to-elevated-co2-concentration-and-drought-stress/ )
Limin A. E., Fowler D. B. (1994) – Relationship between guard cell length and cold hardiness in wheat – Can. J. Plant. Sci. 74(1): 59–62 – https://doi.org/10.4141/cjps94-011 – http://www.nrcresearchpress.com/doi/10.4141/cjps94-011 – (On our blog : https://plantstomata.wordpress.com/2018/10/07/guard-cell-length-in-stomata-and-cold-hardiness/
Limin Y., Mei H., Guangsheng Z., Jiandong L. (2007) -The changes in
water-use efficiency and stoma density of Leymus chinensis along
Northeast China Transect – Acta Ecologica Sinica 27: 16–23 – https://doi.org/10.1016/S1872-2032(07)60006-7 – https://www.sciencedirect.com/science/article/abs/pii/S1872203207600067?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2023/02/04/the-responses-of-the-stoma-density-and-the-water-use-efficiency-to-environmental-changes-were-very-complicated/ )
Limochi K., Eskandari H. (2013) – Effect of planting date on the performance of flag leaf stomata and grain yield of rice cultivars – Int. J. Agron. Plant Prod. 4: 769–773 –
Limousin J. M., Misson L., Lavoir A. V., Martin N. K., Rambal S. (2010) – Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? – Plant Cell Environ. 33(5): 863-875 – doi: 10.1111/j.1365-3040.2009.02112.x – Epub 2010 Dec 30 – https://www.ncbi.nlm.nih.gov/pubmed/20051039 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-conductance-photosynthetic-limitations-and-long-term-increased-drought-severity/ )
Lin C., Chen S. (2018) – New functions of an old kinase MPK4 in guard cells – Plant Signaling & Behavior 13(5) – https://doi.org/10.1080/15592324.2018.1477908 – https://www.tandfonline.com/doi/abs/10.1080/15592324.2018.1477908 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/mpk4-functions-and-focus-on-its-signaling-roles-in-stomatal-guard-cells/)
Lin C., Huang Y., Li X., Sun X.n, Zhang W., Huang J., Ying X., Liu M. (2020) – Fabrication of superhydrophobic surfaces inspired by “stomata effect” of plant leaves via swelling-vesiculating-cracking method – 当前位置: X-MOL 学术 › Chem. Eng. J. › 论文详情 – Chemical Engineering Journal ( IF 13.273 ) -DOI: 10.1016/j.cej.2020.125935 – https://www.x-mol.com/paper/1273710117330120704 – (On our blog :
Lin G., Zhang L., Han Z., Yang X., Liu W., Li E., Chang J., Qi Y., Shpak E. D., Chai J. (2017) – A receptor-like protein acts as a specificity switch for the regulation of stomatal development – Genes & Development –
Lin J., Jach M. E., Ceulemans R. (2001) – Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2 – New Phytol. 150: 665–674 – doi: 10.1046/j.1469-8137.2001.00124.x – – https://www.jstor.org/stable/1353671?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/20/a-prolonged-exposure-to-elevated-co2-has-an-effect-on-needle-structure-anatomical-and-stomatal-characteristics/ )
Lin P.-A., Chen Y., Chaverra-Rodriguez D., Heu C. C., Zainuddin N. B., Sidhu J. S., Peiffer M., Tan C. W., Helms A., Kim D., Ali J., Rasgon J. L., Lynch J., Anderson C. T., Felton G. W. (2021) – Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release – New Phytologist 230(2): 793-803 – https://doi.org/10.1111/nph.17214 – https://pennstate.pure.elsevier.com/en/publications/silencing-the-alarm-an-insect-salivary-enzyme-closes-plant-stomat – (On our blog : https://plantstomata.wordpress.com/2022/04/27/an-insect-herbivore-inhibits-plant-airborne-defenses-during-feeding-by-exploiting-the-association-between-stomatal-dynamics-and-hipv-emission/ )
Lin P.-A., Chen Y., Ponce G., Acevedo F. E., Lynch J. P., Anderson C. T., Ali J. G., Felton G. W. (2021) – Stomata-mediated interactions between plants, herbivores, and the environment – Trends in Plant Science 2021 – https://doi.org/10.1016/j.tplants.2021.08.017 – https://www.sciencedirect.com/science/article/pii/S1360138521002491 – (On our blog : https://plantstomata.wordpress.com/2021/09/30/herbivory-induced-stomatal-changes-play-important-roles-in-mediating-interactions-among-plants-herbivores-pathogens-and-the-environment/ )
Lin P.-A., Chen Y., Chaverra-Rodriguez D., Heu C. C., Bin Zainuddin N., Singh Sidhu J. S., Peiffer M., Tan C.-W., Helms A., Kim D., Ali J., Rasgon J. L., Lynch J., Anderson C. T., Felton G. W. (2021) – Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release – New Phytologist 230(2): 793-803 – https://doi.org/10.1111/nph.17214 – https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17214 – (On our blog : https://plantstomata.wordpress.com/2023/03/09/a-potential-adaptive-strategy-where-an-insect-herbivore-inhibits-plant-airborne-defenses-during-feeding-by-exploiting-the-association-between-stomatal-dynamics-and-hipv-emission/ )
Lin T. S., Crane J. C., Ryugo K., Polito V. S., Dejong T. M. (1984) – Comparative study of leaf morphology, photosynthesis, and leaf conductance in selected Pistacia species – J. Amer. Soc. Hort. Sci. 109 (3): 325-330 –
Lin X., Li H., He S., Pang Z., Lin S., Li H. (2020) – Investigation of Stomata in Cut ‘Master’ Carnations: Organographic Distribution, Morphology, and Contribution to Water Loss – Hort. Science 55(7): 1144-1147 – https://doi.org/10.21273/HORTSCI14945-20 – https://journals.ashs.org/hortsci/view/journals/hortsci/55/7/article-p1144.xml – (On our blog : https://plantstomata.wordpress.com/2020/09/08/the-differential-contributions-of-stomata-in-leaves-stems-and-floral-organs-to-water-loss/ )
Lin Y., Kuang L., Tang S., Mou Z., Phillips O. L., Lambers H., Liu Z., Sardans J., Peñuelas J., Lai Y., Lin M., Chen D., Kuang Y. (2021) – Leaf traits from stomata to morphology are associated with
climatic and edaphic variables for dominant tropical forest
evergreen oaks – J. Plant Ecology – doi:10.1093/jpe/rtab060 – https://eprints.whiterose.ac.uk/174366/7/rtab060.pdf – (On our blog : https://plantstomata.wordpress.com/2023/03/10/variations-in-stomatal-anatomical-and-morphologicaltraits-were-mainly-correlated-to-the-mean-annual-temperature-mean-annual-sum-precipitation-and-soil-ph/ )
Lin Y.-S., Medlyn B. E., Duursma R. A., Prentice I. C., Wang H., Baig S., Eamus D., Resco de Dios V., Mitchell P., Ellsworth D. S., Op de Beeck M., Wallin G., Uddling J., Tarvainen L., Linderson M.-L., Cernusak L. A., Nippert J. B., Ocheltree T. O., Tissue D. T., Martin-StPaul N. K., Rogers A., Warren J. M., De Angelis P., Hikosaka K., Han Q. et al. (2015) – Optimal stomatal behaviour around the world – Nature Climate Change 5: 459–464 – doi:10.1038/nclimate2550 – (On our blog : https://plantstomata.wordpress.com/2016/09/03/climate-and-optimal-stomatal-behaviour/)
Lin Z. F., Li S. S., Lin G. Z.(1986) – The distribution of stomata and photosynthetic pathway in leaves – Acta bot. sin. 28: 387-95. (Eng.) – http://www.jipb.net/Abstract_old.aspx?id=129 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/the-stomata-frequency-and-distribution-in-c3-c4-and-cam-plants/)
Lind C., Dreyer I. (2016) – The molecular mechanisms of the plant gasotransmitter hydrogen sulfide – Advances in Botanical Research 77: 37-87 –
Lind C., Dreyer I., López-Sanjurjo E. J., von Meyer K., Ishizaki K., Kohchi T., Lang D., Zhao Y., Kreuzer I., Al-Rasheid K. A. S., Ronne H., Reski R., Zhu J.-K., Geiger D., Hedrich R. (2015) – Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure – Curr. Biol. 25: 928–935 – DOI: 10.1016/j.cub.2015.01.067 – https://www.infona.pl/resource/bwmeta1.element.elsevier-f0f4f256-7303-32a9-9cc9-38f5b366f0ba – (On our blog : https://plantstomata.wordpress.com/2017/10/16/the-emergence-of-stomata-in-the-last-common-ancestor-of-mosses-and-vascular-plants-coincided-with-the-origin-of-slac1-type-channels/)
Linder B., Raschke K. (1992) – A slow anion channel in guard-cells, activating at large hyperpolarization, may be principal for stomatal closing – FEBS Lett. 313: 27–30 – https://doi.org/10.1016/0014-5793(92)81176-M – https://febs.onlinelibrary.wiley.com/doi/abs/10.1016/0014-5793%2892%2981176-M – (On our blog : https://plantstomata.wordpress.com/2022/05/20/the-slow-anion-channel-may-be-essential-for-the-depolarization-of-the-plasmalemma-that-is-required-for-salt-efflux-during-stomatal-closing/ )
Ling P., George-Jaeggli B., Borrell A., Jordan D., Koller F., Al-Salman Y., Ghannoum O., Cano F. (2021) – Coordination of stomata and vein patterns with leaf width underpins water use efficiency in a C4 crop – Authorea May 04, 2021 – DOI: 10.22541/au.162009415.55042548/v1 – Plant, Cell & Environment Doi: 10.1111/pce.14225 – https://www.authorea.com/users/411707/articles/520644-coordination-of-stomata-and-vein-patterns-with-leaf-width-underpins-water-use-efficiency-in-a-c4-crop – (On our blog : https://plantstomata.wordpress.com/2022/04/27/the-important-role-that-leaf-width-plays-in-shaping-iwue-through-modification-of-vein-and-stomatal-traits-and-by-regulating-stomatal-aperture/ )
Linder B. (1994) – Ein langsam aktivierender Anionenkanal in der Plasmamembran von Schließzellprotoplasten – Dissertation, Universität Göttingen, Cuvillier Verlag, Göttingen
1992) – A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing – FEBS Lett. 313: 27–30 – – (On our blog : https://plantstomata.wordpress.com/2016/07/29/a-slow-anion-channel-in-guard-cells-and-stomatal-closing/)
(Linder S. (2008) – Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees –
Ling V., Assmann S. M. (1991) – Calmodulin and calmodulin binding proteins of guard cell epidermal cell and mesophyll cell protoplasts from Vicia faba – Plant Physiology 100(2): 970–978 – doi: 10.1104/pp.100.2.970 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1075652/ – (On olur blog : https://plantstomata.wordpress.com/2021/09/21/calmodulin-and-calmodulin-binding-proteins-of-stomatal-guard-cells-protoplasts/ )
Linsbauer K. (1916) – Beiträge zur Kenntnis der Spaltöffnungsbewegungen – Flora N.S. 9: 100-143 – https://doi.org/10.1016/S0367-1615(17)31738-X – https://www.sciencedirect.com/science/article/pii/S036716151731738X – (On our blog : https://plantstomata.wordpress.com/2020/03/01/beitrage-zur-kenntnis-der-spaltoffnungsbewegungen/ )
Linsbauer K. (1927) – Weitere Beobachtungen an Spaltöffnungen – Planta 3:
Zeitschrift für Pflanzenernährung und Bodenkunde 161(5): 533 – – http://onlinelibrary.wiley.com/enhanced/doi/10.1002/jpln.1998.3581610506 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/apoplastic-calcium-in-relation-to-intracellular-signalling-in-stomata/)
, , , The regulation of apoplastic calcium in relation to intracellular signalling in stomatal guard cells –Lisjak M. (2012) – H2S and NO signaling interactions in thale cress (Arabidopsis thaliana L.) and pepper (Capsicum annuum L.) leaves – Poljoprivreda 18(1): – https://www.researchgate.net/publication/293039996_H2S_and_NO_signaling_interactions_in_thale_cress_Arabidopsis_thaliana_L_and_pepper_Capsicum_annuum_L_leaves – (On our blog : https://plantstomata.wordpress.com/2022/03/09/h2s-and-no-signaling-interactions-and-stomatal-traits/ )
Lisjak M., Srivastava N., Teklic T., Civale L., Lewandowski K., Wilson I., et al. (2010) – A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation – Plant Physiol. Biochem. 48: 931–935 – doi: 10.1016/j.plaphy.2010.09.016 – https://www.sciencedirect.com/science/article/pii/S0981942810001956 – (On our blog : https://plantstomata.wordpress.com/2018/05/22/h2s-generated-from-nash-or-gyy4137-causes-stomatal-opening/ )
Lisjak M., Teklic T., Wilson I. D., Wood M., Whiteman M., Hancock J. T. (2011) – Hydrogen sulfide effects on stomatal apertures – Plant Signal. Behav. 6: 1444–1446 – doi: 10.4161/psb.6.10.17104 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256366/ – (On our blog : https://plantstomata.wordpress.com/2018/05/22/effects-of-h2s-on-stomatal-aperture-is-not-confined-to-model-species/ )
Litvak E., Pataki D., McCarthy H. (2011) – Water relations of coast redwood planted in the semi-aridclimate of southern California – Plant, Cell and Environment 34: 1384–1400 – doi: 10.1111/j.1365-3040.2011.02339.x – https://www.academia.edu/14570276/Water_relations_of_coast_redwood_planted_in_the_semi_arid_climate_of_southern_California?email_work_card=thumbnail – (On our blog : https://plantstomata.wordpress.com/2021/12/14/%ef%bf%bcthe-%ef%bf%bcrelatively-%ef%bf%bcstrong-%ef%bf%bcstomatal-control-%ef%bf%bcthat-%ef%bf%bcis-%ef%bf%bcadaptive-%ef%bf%bcin-%ef%bf%bcthe-%ef%bf%bcna/ )
Litvak E., Pataki D., McCarthy H. (2012) – Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation – Tree Physiology – doi:10.1093/treephys/tps015 – https://www.academia.edu/14570277/Transpiration_sensitivity_of_urban_trees_in_a_semi_arid_climate_is_constrained_by_xylem_vulnerability_to_cavitation?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/09/stomatal-responses-to-atmospheric-vapor-pressure-deficit-in-irrigated-trees/ )
Litz R. E., Kimmins W. C. (1968) – Plasmodesmata between guard and accessory cells – Can. J. Bot. 46: 1603-1604 – https://doi.org/10.1139/b68-222 – http://www.nrcresearchpress.com/doi/abs/10.1139/b68-222 – (On our blog : https://plantstomata.wordpress.com/2018/05/22/plasmodesmata-between-guard-cells-and-accessory-cells-in-stomata/ )
Liu C., He N., Zhang J., Li Y., Wang Q., Sack L., Yu G. (2018) – Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency – Functional Ecology – DOI: 10.1111/1365-2435.12973 – https://sites.lifesci.ucla.edu/eeb-sacklab/wp-content/uploads/sites/71/2018/03/Liu_et_al-2018-Functional_Ecology.pdf – (On our blog : https://plantstomata.wordpress.com/2021/02/20/variation-of-stomatal-traits-from-cold-temperate-to-tropical-forests/ )
Liu C., Hölttä T., Tian X., Berninger F., Mäkelä A. (2020) – Weaker Light Response, Lower Stomatal Conductance and Structural Changes in Old Boreal Conifers Implied by a Bayesian Hierarchical Model – Front Plant Sci. 11: 579319 – doi: 10.3389/fpls.2020.579319 – eCollection 2020 – https://pubmed.ncbi.nlm.nih.gov/33240299/ – (On our blog : https://plantstomata.wordpress.com/2021/09/01/the-optimal-state-of-stomatal-behaviour-and-a-bayesian-hierarchical-model/ )
Liu C., Li Y., Xu L., Chen Z., He N. (2019) – Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests – Sci Rep. 9: 5803 – doi: 10.1038/s41598-019-42335-2 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456615/ – (On our blog : https://plantstomata.wordpress.com/2019/07/20/leaf-morphological-stomatal-and-anatomical-traits-in-temperate-and-subtropical-forests/ )
Liu C., Li Y., Xu L., Li M., Wang J., Yan P., He N. (2021) – Stomatal Arrangement Pattern: A New Direction to Explore Plant Adaptation and Evolution – Frontiers in Plant Science 12: 655255 – DOI: 10.3389/fpls.2021.655255 – https://www.researchgate.net/publication/351231518_Stomatal_Arrangement_Pattern_A_New_Direction_to_Explore_Plant_Adaptation_and_Evolution – (On our blog : https://plantstomata.wordpress.com/2021/05/07/three-indices-to-address-the-shortcoming-of-stomatal-density/ )
Liu C., Muir C. D., Li Y., Xu L., Li M., Zhang J., de Boer H. J., Sack L., Han X.-G., Yu G., He N. (2021) – Scaling between stomatal size and density in forest plants – bioRxiv – doi: https://doi.org/10.1101/2021.04.25.441252 – https://www.biorxiv.org/content/10.1101/2021.04.25.441252v1 – (On our blog : https://plantstomata.wordpress.com/2021/05/07/understanding-of-optimal-stomatal-conductance-photosynthesis-and-plant-water-use-efficiency/ )
Liu C., Sack L., Li Y., He N. (2021) – Stomatal trait distributions (Contrasting adaptation and optimization of stomatal traits across communities at continental-scale) – bioRxiv preprint – https://doi.org/10.1101/2021.11.30.470674 – https://www.biorxiv.org/content/10.1101/2021.11.30.470674v1.full.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/20/102427/ ) // Journal of Experimental Botany 73(18): 6405-6416 – https://doi.org/10.1093/jxb/erac266 – https://academic.oup.com/jxb/article-abstract/73/18/6405/6610975 –
Liu F., Andersen M. N., Jacobsen S. E., Jensen C. R. (2005) – Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying – Environmental and Experimental Botany 54: 33–40 – https://doi.org/10.1016/j.envexpbot.2004.05.002 – https://www.sciencedirect.com/science/article/abs/pii/S0098847204000772?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/06/01/stomatal-control-and-water-use-efficiency/ )
Liu F., Jensen C. R., Andersen M. N. (2003) – Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress – Functional Plant Biology 30: 65-73 – https://doi.org/10.1071/FP02170 – http://www.publish.csiro.au/fp/FP02170 – (On our blog : https://plantstomata.wordpress.com/2019/02/04/hydraulic-and-chemical-signals-in-the-control-of-leaf-expansion-and-stomatal-conductance/ )
Liu F., Jensen C. R., Shahanzari A., Andersen M. N., Jacobsen S. E. (2005) – ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying – Plant Science 168: 831–836 – http://dx.doi.org/10.1016/j.plantsci.2004.10.016 – http://www.sciencedirect.com/science/article/pii/S0168945204004674 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/aba-regulated-stomatal-control-during-progressive-soil-drying/)
Liu F., Shahanzari A., Jacobsen S. E., Jensen C. R., Janowiak F., Walligorski P., Andersen M. N. (2008) – Effects of Deficit Irrigation and Partial Root-Zone Drying on Soil and Plant Water Status, Stomatal Conductance, Plant Growth and Water Use Efficiency in Tomato during Early Fruiting Stage – Acta horticulturae 792: 413-420 – DOI 10.17660/ActaHortic.2008.792.48 – https://www.researchgate.net/publication/260172503_Effects_of_Deficit_Irrigation_and_Partial_Root-Zone_Drying_on_Soil_and_Plant_Water_Status_Stomatal_Conductance_Plant_Growth_and_Water_Use_Efficiency_in_Tomato_during_Early_Fruiting_Stage – (On our blog : plantstomata.wordpress.com/2017/12/13/effects-of-deficit-irrigation-and-partial-root-zone-drying-on-stomatal-conductance/)
Liu F., Jensen C. R., Neumann Andersen M. (2003) – Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress – Functional Plant Biology 30(1): 65-73 – https://doi.org/10.1071/FP02170 – https://www.publish.csiro.au/fp/FP02170 – (On our blog : https://plantstomata.wordpress.com/2020/06/01/hydraulic-and-chemical-signals-in-the-control-of-leaf-expansion-and-stomatal-conductance-2/ )
Liu F., Stützel H. (2002) – Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying – J. Amer. Soc. Hort. Sci. 127: 878-883 – http://journal.ashspublications.org/content/127/5/878.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/05/22/stomatal-conductance-in-response-to-soil-drying/ )
Liu F. L., Jensen C. R., Andersen M. N. (2003) – Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress – Functional Plant Biology 30: 65–73 – https://doi.org/10.1071/FP02170 – http://www.publish.csiro.au/FP/FP02170 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/hydraulic-and-chemical-signals-in-the-control-of-stomatal-conductance-in-soybean-exposed-to-drought-stress/ )
Liu G. L., Britz S. J., Wergin W. P. (2000) – Blue light inhibits stomatal development in soybean isolines containing kaempferol-3-O-2G-glycosyl–gentiobioside (K9), a unique flavanoid glycoside – Plant, Cell Environ. 23: 883-891 – https://doi.org/10.1046/j.1365-3040.2000.00608.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2000.00608.x – (On our blog : https://plantstomata.wordpress.com/2019/06/05/blue-light-inhibits-stomatal-development/ )
Liu H. (2023) – Plant biology: Putting a break on stomatal opening – Current Biology 33(6): 236-237 – https://doi.org/10.1016/j.cub.2023.01.054 – https://www.cell.com/current-biology/fulltext/S0960-9822(23)00088-X?dgcid=raven_jbs_etoc_email – (On pour blog : https://plantstomata.wordpress.com/2023/03/27/light-induced-stomatal-opening-is-negatively-regulated-by-three-closely-related-plastidial-phospholipases-and-their-downstream-oxylipin-product/ )
Liu H., Shen J., Yuan C., Lu D., Acharya B. R., Wang M., Chen D., Zhang W. (2021) – The Cyclophilin ROC3 Regulates ABA-Induced Stomatal Closure and the Drought Stress Response of Arabidopsis thaliana – Front. Plant Sci., 25 May 2021 – https://doi.org/10.3389/fpls.2021.668792 – https://www.frontiersin.org/articles/10.3389/fpls.2021.668792/full – (On our blog : https://plantstomata.wordpress.com/2022/03/20/roc3-positively-regulates-aba-induced-stomatal-closure/ )
Liu H., Song S., Zhang H., Li Y., Niu L., Zhang J., Wang W. (2022) -Signaling Transduction of ABA, ROS, and Ca2+ in Plant Stomatal Closure in Response to Drought – Int J Mol Sci. 23(23):14824 – doi: 10.3390/ijms232314824 – PMID: 36499153 – PMCID: PMC9736234 – https://pubmed.ncbi.nlm.nih.gov/36499153/ – (On our blog : https://plantstomata.wordpress.com/2023/01/10/new-insights-into-the-signaling-regulation-of-stomatal-closure-in-response-to-water-deficit-stress-and-new-clues-on-the-improvement-of-drought-resistance-in-crops/ )
Liu H., Xue S. (2021) – Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response – Plant Communications 2(3): 100179 – https://doi.org/10.1016/j.xplc.2021.100179 – https://www.sciencedirect.com/science/article/pii/S2590346221000572 – (On our blog : https://plantstomata.wordpress.com/2021/07/09/the-regulatory-role-of-h2s-in-stomatal-movement-including-the-dynamic-regulation-of-phytohormones-ion-homeostasis-and-cell-structural-components/ )
Liu J., Elmore J. M., Fuglsang A. T., Palmgren M. G., Staskawicz B. J., Coaker G. (2009) – RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack – PLoS Biol. 7: 1000139 – doi: 10.1371/journal.pbio.1000139 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694982/ – (On our blog : https://plantstomata.wordpress.com/2018/05/22/rin4-functions-with-the-pm-h-atpases-to-regulate-stomatal-apertures/ )
Liu J., Hou L., Liu G., Liu X., Wang X. (2011) – Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana – Chin. Sci. Bull. 56: 3547–3553 – doi: 10.1007/s11434-011-4819-y – https://link.springer.com/content/pdf/10.1007/s11434-011-4819-y.pdf – (On our blog : https://plantstomata.wordpress.com/2018/05/23/h2s-and-no-are-involved-in-the-signal-transduction-pathway-of-ethylene-induced-stomatal-closure/ )
Liu J., Liu G.-H., Hou L.-X., Liu X. (2010) – Ethylene-induced nitric oxide production and stomatal closure in Arabidopsis thaliana depending on changes in cytosolic pH – Chin. Sci. Bull. 55: 2403–2409 – doi: 10.1007/s11434-010-4033-3 – https://link.springer.com/article/10.1007%2Fs11434-010-4033-3 – (On our blog : https://plantstomata.wordpress.com/2018/04/18/no-production-and-stomatal-closure-depending-on-changes-in-cytosolic-ph/ )
Liu J., Hou Z., Liu G., Hou L., Liu X. (2012) – Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L. – J. Integr. Agric. 11: 1644–1653 – doi: 10.1016/S2095-3119(12)60167-1 – https://www.sciencedirect.com/science/article/pii/S2095311912601671 – (On our blog : https://plantstomata.wordpress.com/2018/05/23/h2s-may-represent-a-novel-component-downstream-of-no-in-the-ethylene-induced-stomatal-movement/ )
Liu J., Xia Z., Wang M., Zhang X., Yang T., Wu J. (2013) – Overexpression of a maize E3 ubiquitin ligase gene enhances drought tolerance through regulating stomatal aperture and antioxidant system in transgenic tobacco – Plant Physiol. Biochem. 73: 114–120 –
Plant Physiology 170(1): – https://doi.org/10.1104/pp.15.00879 – http://www.plantphysiol.org/content/170/1/429 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/ring-finger-ubiquitin-e3-ligase-oshtas-enhances-heat-tolerance-through-modulation-of-hydrogen-peroxide-induced-stomatal-closure/)
, , , , , , , The RING Finger Ubiquitin E3 Ligase OsHTAS Enhances Heat Tolerance by Promoting H2O2-Induced Stomatal Closure in Rice –Liu J., Zhang F., Zhou J., Chen F., Wang B., Xie X. (2012) – Phytochrome b control of total leaf area and stomatal density affects drought tolerance in rice – Plant Mol. Biol. 78: 289–300 – doi: 10.1007/s11103-011-9860-3 – https://pubmed.ncbi.nlm.nih.gov/22138855/ – (On our blog : https://plantstomata.wordpress.com/2021/11/19/reduced-stomatal-density-resulted-in-reduced-transpiration-per-unit-leaf-area-in-the-phyb-mutants/ )
Liu K., Fu H., Bei Q., Luan S. (2000) – Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements – Plant Physiol 124: 1315–1326 – https://doi.org/10.1104/pp.124.3.1315 – http://www.plantphysiol.org/content/124/3/1315.short – (On our blog : https://plantstomata.wordpress.com/2017/10/03/polyamine-regulation-of-stomatal-movements/)
1998) – Voltage-dependent K+ channels as targets of osmosensing in guard cells – Plant Cell 10: 1957–1970 – http://dx.doi.org/10.1105/tpc.10.11.1957 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/k-channels-as-targets-of-osmosensing-in-stomata/)
, . (Liu K., Wang Y., Magney T., Frankenberg C. (2022) – B52F-0881 – Non-steady-state Stomatal Conductance Modeling and Its Implications: From Leaf to Ecosystem – AGU Fall Meeting – https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1188547 – (On our blog : https://plantstomata.wordpress.com/2023/01/31/non-steady-state-modeling-can-reproduce-the-stomata-behavior-more-accurately-as-well-as-more-efficiently-depending-on-the-time-step-of-the-simulation/ )
Liu L., Jose S. B., Campoli C., Bayer M. M., Sánchez-Diaz M. A., McAllister T., Zhou Y., Eskan M., Milne L., Schreiber M., Batstone T., Bull I. D., Ramsay L., Wettstein-Knowles P. v., Waugh R., Alistair M. Hetherington A. M., McKim S. M (2022) – Conserved signalling components coordinate epidermal patterning and cuticle deposition in barley – Nat Commun 13: 6050 – https://doi.org/10.1038/s41467-022-33300-1 – https://www.nature.com/articles/s41467-022-33300-1 – (On our blog; https://plantstomata.wordpress.com/2022/10/26/genes-controling-stomatal-patterning-in-elevated-co2-conditions/ )
Liu L., McDonald A. J. S., Stadenberg I., Davies W. J. (2001) – Abscisic acid in leaves and roots of willow: significance for stomatal conductance – Tree Physiol. 21: 759-764 – PMID:11470662 – https://www.ncbi.nlm.nih.gov/pubmed/11470662 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/significance-of-aba-for-stomatal-conductance/)
Liu L., McDonald A. J. S., Stadenberg I., Davies W. J. (2001) – Stomatal and leaf growth responses to partial drying of root tips in willow – Tree Physiol 21(11): 765-770 – doi: 10.1093/treephys/21.11.765 – https://pubmed.ncbi.nlm.nih.gov/11470663/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/stomatal-and-leaf-growth-responses-to-partial-drying-of-root-tips/ )
Liu L., Kon H., Matsuoka N. Kobayashi T. (2005) – Coordination between stomatal conductance and leaf-specific hydraulic conductance in maize (Zea mays L. ) – J. Agric. Meteorol. 61(3): 143-152 – https://www.jstage.jst.go.jp/article/agrmet/61/3/61_3_143/_pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71487 )
Liu L.-M., Qi H., Luo X.-L., Zhang X. – Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): a review – Review Ying Yong Sheng Tai Xue Bao. 2008;19(9): 2067-2073 – https://pubmed.ncbi.nlm.nih.gov/19102325/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/vapor-water-loss-through-plant-stomata-and-liquid-water-supply-in-spac-article-in-chinese/
Liu P., Sun F., Gao R., Dong H. (2012) – RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity – Plant Mol. Biol. 79: 609–622 – doi: 10.1007/s11103-012-9936-8 – https://www.ncbi.nlm.nih.gov/pubmed/22661072 – (On our blog : https://plantstomata.wordpress.com/2018/05/23/rap2-6l-overexpression-delays-waterlogging-induced-premature-senescence-by-increasing-stomatal-closure/ )
Liu S., Jia F., Jiao Z., Wang J., Xia X., Yin W. (2019) – Ectopic expression of secretory peptide PdEPF3 in Arabidopsis confers drought tolerance with reduced stomatal density – Acta Soc Bot Pol. 88(2): 3627 – https://doi.org/10.5586/asbp.3627 – https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.3627/7715 – (On our blog : https://plantstomata.wordpress.com/2022/01/19/reduced-stomatal-density-of-transgenic-plants-and-pdepf3-can-be-used-in-transgenic-breeding-to-enhance-plant-drought-tolerance/ )
Liu S., Li H., Lv X., Ahammed G. J., Xia X., Zhou J., Shi K,, Asami T., Yu J., Zhou Y. (2016) – Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity – Scientific Reports 6, Article number: 20212 – doi:10.1038/srep20212 – http://www.nature.com/articles/srep20212 – (On our blog : https://plantstomata.wordpress.com/2016/03/24/drought-tolerance-aba-and-stomata/
Liu S.-p., Liu J., Cao J., Bai C., Shi R. (2006) – Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress – Journal of Anhui Agricultural Science 34: 1315–1318 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY200607018.htm – (On our blog : https://plantstomata.wordpress.com/2018/10/31/stomatal-distribution-in-jujube-under-drought-stress/ )
Liu S., Yang M., Zhao H., Li H., Suo B., Wang Y. (2015) – Exogenous abscisic acid inhibits the water-loss of postharvest romaine lettuce during storage by inducing stomatal closure – Food Sci. Technol, Campinas 35(4): 729-733 – http://dx.doi.org/10.1590/1678-457X.0002 – https://www.scielo.br/pdf/cta/v35n4/0101-2061-cta-35-4-729.pdf – (On our blog : https://plantstomata.wordpress.com/2020/11/12/aba-can-obviously-reduce-the-transpiration-rate-of-lettuce-leaves-by-promoting-the-stomatal-closure-of-postharvest-lettuce/ )
Liu T., Ohashi-Ito K., Bergmann D. C. (2009) – Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses – Development 136: 2265–2276 – doi: 10.1242/dev.032938 – http://dev.biologists.org/content/136/13/2265.long?trendmd-shared=0 – (On our blog : https://plantstomata.wordpress.com/2016/07/13/stomatal-bhlh-genes/)
Liu T., Ohashi-Ito K., Bergmann D. C. (2009) – Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses – Development 44(10): 1888-1898 – Development 136(13): 2265-2276 – https://doi.org/10.1242/dev.032938 – https://journals.biologists.com/dev/article/136/13/2265/65192/Orthologs-of-Arabidopsis-thaliana-stomatal-bHLH – (On our blog : https://plantstomata.wordpress.com/2023/03/30/fama-function-is-conserved-between-monocots-and-dicots-despite-their-different-stomatal-morphologies-whereas-the-roles-of-mute-and-two-spch-paralogs-are-somewhat-divergent/ )
Liu T. D., Zhang X. W., Xu Y. (2019) – Influence of red light on the expression of genes on stomatal formation in maize seedlings – Canadian Journal of Plant Science • 7 November 2019 • https://doi.org/10.1139/cjps-2019-0140 – https://cdnsciencepub.com/doi/10.1139/cjps-2019-0140 – (On our blog : https://plantstomata.wordpress.com/2022/05/02/influence-of-red-light-on-the-expression-of-genes-on-stomatal-formation/ )
Liu W. T., Pool R., Wenkert W., Kriedemann P. E. (1978) – Changes in Photosynthesis, Stomatal Resistance and Abscisic Acid of Vitis labruscana Through Drought and Irrigation Cycles – Am. J. Enol. Viticult. 29: 239–246 – http://www.ajevonline.org/content/29/4/239 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/24083/)
Liu X., Afrin T., Pajerowska-Muhtar K. M. (2019) – Arabidopsis GCN2 kinase contributes to ABA homeostasis and stomatal immunity – Communications Biology 2, Article number: 302 – https://www.nature.com/articles/s42003-019-0544-x – (On our blog : https://plantstomata.wordpress.com/2019/08/13/a-conserved-role-of-gcn2-in-various-forms-of-immune-responses-and-stomatal-immunity/ )
Liu X., Liu H., Gleason S. M., Goldstein G., Zhu S., He P., Hou H., Li R., Ye Q. (2019) – Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species – Tree Physiol 39(10): 1665-1674 – doi: 10.1093/treephys/tpz076 – https://pubmed.ncbi.nlm.nih.gov/31314105/ – (On our blog : https://plantstomata.wordpress.com/2021/03/29/water-transport-efficiencies-of-stem-and-leaf-xylem-are-important-determinants-of-stomatal-conductance/ )
Liu X., Fan Y., Mak M., Babla M., Holford P., Wang F., Chen G. Scott G., Wang G., Shabala S., Zhou M., Chen Z.-H. (2017) – QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley – BMC Genomics 18: 9 – DOI: 10.1186/s12864-016-3380-0 – https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-016-3380-0.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/24/the-lack-of-major-qtls-for-gas-exchange-and-stomatal-traits-under-control-and-saline-conditions-indicates-a-complex-relationship-between-salinity-and-leaf-gas-exchange-under-the-control-of-multiple-ge/ )
10.1186/s12864-016-3380-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1186-S12864-016-3380-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/qtls-for-stomatal-traits-related-to-salinity-tolerance/)
, , , Holford P., Wang F., Chen G., Scott G., Wang G., Shabala S., Zhou M., Chen Z.-H. (2017) – QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley – BMC Genomics 18(1): 1-13 – DOI:Frontiers in Plant Science 5 – http://dx.doi.org/10.3389/fpls.2014.00634 – http://dx.doi.org/10.3389/fpls.2014.00634 – http://journal.frontiersin.org/article/10.3389/fpls.2014.00634/abstract – (On our blog : https://plantstomata.wordpress.com/2016/07/29/16910/)
, , , , , , , , , Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley –Liu X., Suarez D. L. (2021) – Lima Bean Growth, Leaf Stomatal and Nonstomatal Limitations to Photosynthesis, and 13C Discrimination in Response to Saline Irrigation – 146(2): – Journal of the American Society for Horticultural Science – https://doi.org/10.21273/JASHS04996-20 – https://journals.ashs.org/jashs/view/journals/jashs/146/2/article-p132.xml – (On our blog : https://plantstomata.wordpress.com/2022/02/08/leaf-stomatal-and-nonstomatal-limitations-to-photosynthesis/ )
Liu X., Zhang S., (2010) – How to help woody plants to overcome drought stress?-a control study of four tree species in Northwest China – EGU General Assembly 2010, held 2-7 May, 2010 in Vienna, Austria, p.11835 – https://ui.adsabs.harvard.edu/abs/2010EGUGA..1211835L/abstract – (On our blog : https://plantstomata.wordpress.com/2022/09/10/the-application-of-nitrogenous-fertilizer-regulated-physiological-parameters-by-reducing-stomata-conductance-to-improve-water-use-efficiency/ )
Liu X., Zhang S.-Q., Lou C.-H. (2003a) – Involvement of nitric oxide in the signal transduction of salicylic acid regulating stomatal movement – Chin Sci Bull. 48: 449-452 –
Liu X. , Zhang S.-Q. , Lou C.-H. (2003b) – Cross talk between hydrogen peroxideand nitricoxide inregulation of stomatal movement – Prog Nat Sci, 13: 355-358 (in Chinese) –
Liu X.-s., Liang C.-c., Hou S.-g., Wang X., Chen D.-h., Shen J.-l., Zhang W., Wang M. (2020) – The LRR-RLK Protein HSL3 Regulates Stomatal Closure and the Drought Stress Response by Modulating Hydrogen Peroxide Homeostasis – Front. Plant Sci. – https://doi.org/10.3389/fpls.2020.548034 – https://www.frontiersin.org/articles/10.3389/fpls.2020.548034/full – (On our blog : https://plantstomata.wordpress.com/2021/03/19/hsl3-was-concluded-to-participate-in-the-regulation-of-the-response-to-moisture-deficit-through-aba-induced-stomatal-closure/ )
Liu X. Y., Gao Q., Han M., Jin J. H. (2016) – Estimates of late middle Eocene pCO2 based on stomatal density of modern and fossil Nageia leaves – Clim. Past 12: 241–253 – doi:10.5194/cp-12-241-2016 – https://www.clim-past.net/12/241/2016/cp-12-241-2016.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-density-for-estimates-of-late-middle-eocene-pco2/ )
Liu X. Y., Guo S. R., Xu Z. G., Jiao X. L., Tezuka T. (2011) – Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes – HortScience 46(2): 217-221 – https://doi.org/10.21273/HORTSCI.46.2.217 – https://journals.ashs.org/hortsci/view/journals/hortsci/46/2/article-p217.xml – (On our blog : https://plantstomata.wordpress.com/2020/09/08/morphology-of-stomata-by-different-light-irradiations-of-light-emitting-diodes/ )
Liu Y., Maierhofer T., Rybak K., Sklenar J., Breakspear A., Johnston M. G., Fliegmann J., Huang S., Roelfsema M. R. G., Felix G., Faulkner C., Menke F. L. H., Geiger D., Hedrich R. , Robatzek S. (2019) – Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure – eLife 2019;8:e44474 – DOI: 10.7554/eLife.44474 – https://elifesciences.org/articles/44474?utm_source=miragenews&utm_medium=miragenews&utm_campaign=news – (On our blog : https://plantstomata.wordpress.com/2019/10/08/slah3-is-a-regulatory-target-of-chitin-receptor-associated-kinase-pbl27-in-microbial-stomatal-closure/ )
Liu Y., Mauve C., Lamothe‐Sibold M., Guérard F., Glab N., Hodges M., Jossier M. (2019) – Photorespiratory serine hydroxymethyltransferase 1 activity impacts abiotic stress tolerance and stomatal closure – Plant, Cell & Environment – https://doi.org/10.1111/pce.13595 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13595?af=R – (On our blog : https://plantstomata.wordpress.com/2019/07/08/shmt1-activity-impacts-abiotic-stress-tolerance-and-stomatal-closure/ )
Liu Y., Qin L., Han L., Xiang Y., Zhao D. (2015) – Overexpression of maize SDD1 (ZmSDD1) improves drought resistance in Zea mays L. by reducing stomatal density – Plant Cell Tiss. Organ Cult. 122: 147–159 – DOI: 10.1007/s11240-015-0757-8 – https://link.springer.com/article/10.1007/s11240-015-0757-8#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/31/overexpression-of-zmsdd1-improves-drought-resistance-by-reducing-stomatal-density/ )
Liu Y.-B., Li X.-R., Li M.-M., Liu D., Zhang W.-L. (2016) – Leaf (or assimilation branch) epidermal micromorphology of desert plant in arid and semiarid areas of China – Chinese Journal of Plant Ecology 40(11): 1189-1207- ISSN:1005-264X – http://jtp.cnki.net/bilingual/detail/html/ZWSB201611008 – (On our blog : https://plantstomata.wordpress.com/2020/04/15/the-main-epidermal-appendages-of-desert-plants-and-epidermal-structures-stomata-could-cooperate-with-each-other-to-improve-the-resistance-of-desert-plants-to-drought/ )
Liu Y. K., Liu Y. B., Zhang M. Y., Li D. Q. (2010) – Stomatal development and movement: the roles of MAPK signaling – Plant Signal. Behav. 5: 1176–1180 – doi: 10.4161/psb.5.10.12757 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/the-roles-of-mapk-signaling-in-stomatal-development-and-movement/)
Liu Y.-L., Yue S.-S., Wang, J. (2005) – Effect of Red Light on the Stomatal Opening and Physiological Characteristics of Vicia faba L. – http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBNY200505014.htm – (On our blog : https://plantstomata.wordpress.com/2016/02/16/effect-of-red-light-on-the-stomatal-opening/)
Liu Y.-L., Xu S. S., Gao J, Pan S., Wang G. X. (2016) – Glucose- and mannose-induced stomatal closure is mediated by ROS production, Ca2+ and water channel in Vicia faba – Physiologia Plantarum 156: 252–261 – https://doi.org/10.1111/ppl.12353 – https://onlinelibrary.wiley.com/doi/abs/10.1111/ppl.12353 – (On our blog : https://plantstomata.wordpress.com/2018/05/28/glucose-and-mannose-induced-stomatal-closure/ )
Liu Y. Y., Song J., Wang M., Li N., Niu C. Y., Hao G. Y. (2015) – Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species – Tree Physiol. 35(12): 1333-1342 – doi: 10.1093/treephys/tpv061 – Epub 2015 Jul 23 – PMID: 26209618 – https://pubmed.ncbi.nlm.nih.gov/26209618/ – (On our blog : https://plantstomata.wordpress.com/2022/12/02/a-strong-coordination-between-hydraulic-and-stomatal-regulation/ )
Liu Z., Hou S., Rodrigues O., Wang P., Luo D., Munemasa S. Lei J., Liu J., Ortiz-Morea F. A., Wang X., Nomura K., Yin C., Wang H., Zhang W., Zhu-Salzman K., He S. Y., He P., Shan L. (2022) – Phytocytokine signalling reopens stomata in plant immunity and water loss – Nature 605(7909): 332-339 – https://doi.org/10.1038/s41586-022-04684-3 – https://www.nature.com/articles/s41586-022-04684-3#citeas – (On our blog : https://plantstomata.wordpress.com/2022/05/11/the-screw-nut-system-has-an-important-role-in-preventing-uncontrolled-stomatal-closure-caused-by-abiotic-and-biotic-stresses-to-optimize-plant-fitness/ )
Liu Z., Wang W., Zhang C.-G., Zhao J.-F., Chen Y.-L. (2017) – GUS Staining of Guard Cells to Identify Localised Guard Cell Gene Expression – Bio-protocol 7(14): e2446 – DOI: 10.21769/BioProtoc.2446 – https://bio-protocol.org/e2446 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/gus-staining-of-guard-cells-stomata/ )
Liu Z., Zhou Y., Guo J., Li J., Tian Z., Zhu Z., Wang J., Wu R., Zhang B., Hu Y., Sun Y., Shangguan Y., Li W., Li T., Hu Y., Guo C., Rochaix J.-D., Miao Y., Sun X. (2020) – Global Dynamic Molecular Profiles of Stomatal Lineage Cell Development by Single-Cell RNA Sequencing – Biorxiv preprint – https://doi.org/10.1101/2020.02.13.947549 – https://www.biorxiv.org/content/10.1101/2020.02.13.947549v1.full.pdf – (On our blog : https://plantstomata.wordpress.com/2020/04/17/new-regulatory-mechanisms-during-development-of-stomatal-cell-lineage/ )
Liu-Gitz L., Britz S. J., Wergin W. P. (2000) – Blue light inhibits stomatal development in soybean isolines containing kaempferol-3-O-2G-glycosyl-gentiobioside (K9), a unique flavonoid glycoside – Plant, Cell and Environment 23: 883-891 – https://doi.org/10.1046/j.1365-3040.2000.00608.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2000.00608.x – (On our blog : https://plantstomata.wordpress.com/2018/10/31/one-or-more-blue-light-receptors-are-involved-in-the-control-of-stomatal-development/ )
Livanos P., Galatis B., Apostolakos P. (2015) – Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes – https://www.researchgate.net/publication/280868535_Deliberate_ROS_production_and_auxin_synergistically_trigger_the_asymmetrical_division_generating_the_subsidiary_cells_in_Zea_mays_stomatal_complexes – (On our blog : https://plantstomata.wordpress.com/2016/05/05/ros-are-critical-partners-of-auxin-during-development-of-zea-mays-stomatal-complexes/ )
· August 2015 –Livanos P., Giannoutsou E., Apostolakos P., Galatis B. (2015) – Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays – Plant Signal Behav. 10(3):e984531 – doi: 10.4161/15592324.2014.984531 – PMID: 25831267 – https://www.ncbi.nlm.nih.gov/pubmed/25831267 – (On our blog : https://plantstomata.wordpress.com/2018/10/31/auxin-as-an-inducer-of-asymmetrical-division-generating-the-subsidiary-cells-in-stomatal-complexes/ )
Livingston B. E. (1909) – Stomata and transpiration in Tradescantia zebrina – Science 29: 269 –
Livingston B. E., Estabrook A. H. (1912) – Observations on the degree of stomatal movement in certain plants – Bull. Torr. Bot. Club 39: 15 –
Livingston N. J., Black T. A. (1987) – Stomatal characteristics and transpiration of three species of conifer seedlings planted on a high elevation south‐facing clear‐cut – Canadian Journal of Forest Research 17: 1273– 1282 – https://doi.org/10.1139/x87-197 – https://cdnsciencepub.com/doi/10.1139/x87-197 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/stomatal-characteristics-and-transpiration/ )
Lleras E. (1977) – Differences in stomatal number per unit area within the same species under different micro-environmental conditions: A working hypothesis – Acta Amaz. 7(4): 473-476 – ISSN 0044-5967 – http://dx.doi.org/10.1590/1809-43921977074473 – http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0044-59671977000400473&lng=pt&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-numbers-under-different-micro-environmental-conditions/ )
Llgin M., Caglar S. (2009) – Comparison of leaf stomatal features in some local and foreign apricot (Prunus armeniaca L.) genotypes – African Journal of Biotechnology 8(6): 1074-1077 – ISSN 1684–5315 – file:///C:/Users/wille/Downloads/60027-Article%20Text-110016-1-10-20100927%20(4).pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/21/differences-in-stomatal-conductance-among-genotypes/ )
Llorente B. E., Alasia M. A., Larraburu E. E. (2016) – Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant – N Biotechnol 33(1): 32-40 – doi: 10.1016/j.nbt.2015.07.006 – Epub 2015 Aug 5 – https://pubmed.ncbi.nlm.nih.gov/26255131/ – (On our blog : https://plantstomata.wordpress.com/2022/03/07/stomata-in-an-innovative-in-vitro-approach-using-beneficial-plant-microorganism-interaction-as-an-ecologically-compatible-strategy-in-plant-biotechnology/ )
Lloyd F. E. (1908) – The physiology of stomata – Publ. Carnegie Inst. Washington 82: 1–142 – https://archive.org/details/physiologyofstom00lloyuoft – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/24073)
Lloyd F. E. (1912) – The relation of transpiration and stomatal movement to water content of leaves in Fouquiera splendens – Plant World 15: 1-14 – https://www.jstor.org/stable/43476907?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/28/transpiration-stomatal-movement-and-water-content-of-leaves/ )
Lloyd F. E. (1913) – Leaf water and stomatal movement in Gossypium and a method of direct visual observation of stomata in situ – Bull. Torrey Bot. Club 40: 1-26 – https://archive.org/stream/jstor-2479849/2479849_djvu.txt – (On our blog : https://plantstomata.wordpress.com/2018/05/24/leaf-water-and-stomatal-movement-visual-observation-of-stomata-in-situ/ )
1991) – Modeling stomatal responses to environment in Macadamia integrifolia – Australian Journal of Plant Physiology 18: 649–660 – DOI: 10.1071/PP9910649 – http://www.publish.csiro.au/fp/PP9910649 – (On our blog : https://plantstomata.wordpress.com/2018/05/24/modeling-stomatal-responses-to-environment/ )
(Lloyd J., Syvertsen J.P., Kriedemann P.E., Farquhar G.D. (1992) – Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species – Plant Cell & Environment 15: 873–899 – DOI: 10.1111/j.1365-3040.1992.tb01021.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01021.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/02/co2-diffusion-from-stomata-to-the-sites-of-carboxylation/)
Lo E., Torii K. (2020) – Breathing SPACE for stomatal patterning – Development 147(17): e1702 – https://journals.biologists.com/dev/article/147/17/e1702/225860/Breathing-SPACE-for-stomatal-patterning – (On our blog : https://plantstomata.wordpress.com/2022/05/28/providing-new-insights-into-the-mechanisms-of-stomatal-signalling-the-space-pipeline-promises-to-be-applicable-to-many-developmental-patterning-problems/ )
Locascio A., Marqués M. C., García-Martínez G., Corratgé-Faillie C., Andrés-Colás N., Rubio L., Fernández J. A., Véry A.-A., Mulet J. M., Yenush L. (2019) – BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement – Plant Physiology 181(3): 1277–1294 – https://doi.org/10.1104/pp.19.00224 – https://academic.oup.com/plphys/article/181/3/1277/6028195 – (On our blog : https://plantstomata.wordpress.com/2022/01/23/lines-lacking-or-overexpressing-the-bag4-gene-show-altered-kat1-plasma-membrane-accumulation-and-alterations-in-stomatal-movement/ )
Lockheart M. J., Poole I., Van Bergen P. F., Evershed R. P. (1998) – Leaf carbon isotope compositions and stomatal characters: Important considerations for paleoclimate reconstructions – Organic Geochemistry 29: 1003–1008 – doi: 10.1016/S0146-6380(98)00168-5 – https://www.sciencedirect.com/science/article/abs/pii/S0146638098001685 – (On our blog : https://plantstomata.wordpress.com/2022/02/17/observations-probably-related-to-stomatal-conductance-have-significant-implications-for-studies-using-fossil-leaves-to-reveal-palaeoclimate-signals/ )
Locosselli G. M., Ceccantini G. (2013) – Plasticity of stomatal distribution pattern and stem tracheid dimensions in Podocarpus lambertii: an ecological study – Ann. Bot. 110: 1057–1066 – doi: 10.1093/aob/mcs179 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448432/ – (On our blog : https://plantstomata.wordpress.com/2018/03/12/stomatal-distribution-pattern-and-the-placement-of-conducting-tissue-in-the-mesophyll/ )
Lodge R. J., Dijkstra P., Drake B. G., Morison J. I. L. (2001) – Stomatal acclimation to increased CO2 concentration in a Florida scrub oak species Quercus myrtifolia Willd. – Plant Cell Environ. 24: 77-88 – https://doi.org/10.1046/j.1365-3040.2001.00659.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2001.00659.x – (On our blog : https://plantstomata.wordpress.com/2018/10/31/stomatal-acclimation-to-increased-co2-concentration/ )
Loewenstein N. J., Pallardy S. G. (1998) – Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms – Tree Physiol. 18: 431–439 – PMID: 12651354 – https://www.ncbi.nlm.nih.gov/pubmed/12651354 – (On our blog : https://plantstomata.wordpress.com/2018/10/31/drought-tolerance-xylem-sap-aba-and-stomatal-conductance-during-soil-drying/ )
Loftfield J. V. G. (1921) – The behavior of stomata – Carnegie Inst. Wash. Publ. 314 : 104 – https://archive.org/stream/behaviorofstomat00loftuoft/behaviorofstomat00loftuoft_djvu.txt – (On our blog : https://plantstomata.wordpress.com/2017/09/16/behavior-of-stomata-2/)
Lohse G., Hedrich R. (1992) – Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells – Modulation by extracellular factors and seasonal changes – Planta 188: 206–214 –
Lohse G., Hedrich R. (1992) – Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells – Modulation by extracellular factors and seasonal changes – Planta 188: 206–214 – doi: 10.1007/Bf00216815 – https://www.jstor.org/stable/23381682?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/24/effect-of-auxins-on-the-modulation-of-stomatal-opening-mediated-through-the-activity-of-the-plasma-membrane-h-atpase/ )
Lohse G., Hedrich R. (1995) – Anions modify the response of guard cell anion channels to auxin – Planta 197: 546-552 – doi: 10.1007/BF00196677 – http://link.springer.com/article/10.1007/BF00196677 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/the-anion-channel-in-stomata-and-auxin/ )
Lomax B. H., Woodward F. I., Leitch I. J., Knight C. A., Lake J. A. (2009) – Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions – New Phytol 181: 311–314 – doi: 10.1111/j.1469-8137.2008.02700.x – https://www.ncbi.nlm.nih.gov/pubmed/19054335 – (On our blog : https://plantstomata.wordpress.com/2018/05/31/genome-size-as-a-predictor-of-guard-cell-length-in-stomata-independent-of-environmental-conditions/ )
Lombardozzi D. (2015) – How does ozone damage plants? – UCAR Center for Science education Sept. 3, 2015 – https://scied.ucar.edu/blog/how-does-ozone-damage-plants – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomata-and-ozone/ )
Lombardozzi D., Sparks J. P., Bonan G., Levis S. (2012) – Ozone exposure causes a decoupling of conductance and photosynthesis: Implications for the Ball‐Berry stomatal conductance model – Oecologia 169: 651–659 – doi:10.1007/s00442‐011‐2242‐3 – https://link.springer.com/article/10.1007/s00442-011-2242-3 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/a-significant-improvement-in-the-modeled-ability-to-predict-both-photosynthesis-and-stomatal-conductance-responses-to-o3/ )
Long F. L. (1929) – Stomata Which Show Functional Movement for a Century – Science 69(1782): 218-219 – DOI: 10.1126/science.69.1782.218 – https://www.science.org/doi/abs/10.1126/science.69.1782.218 – (On our blog : https://plantstomata.wordpress.com/2022/02/07/stomata-in-a-massive-cactus/ )
Lopez-Anido C. B., Vatén A., Smoot N. K., Sharma N., Guo V., Gong Y., Anleu Gil M. X., Weimer A. K., Bergmann D. C. (2021) – Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf – Dev Cell. 56(7): 1043-1055 – doi: 10.1016/j.devcel.2021.03.014 – https://pubmed.ncbi.nlm.nih.gov/33823130/ – (On our blog : https://plantstomata.wordpress.com/2021/07/06/in-the-stomatal-lineage-single-cell-resolution-resolved-underlying-cell-heterogeneity-within-early-stages/ )
Lopez-Berbal A., Garcia-Tejera O., Testi L., Orgaz F., Villalobos F. J. (2018) – Stomatal oscillations in olive trees: analysis and methodological implications – Tree Physiology 38(4): 531-542 – https://doi.org/10.1093/treephys/tpx127 –https://academic.oup.com/treephys/article/38/4/531/4508792 – (On our blog : https://plantstomata.wordpress.com/2019/04/07/stomatal-oscillations-analysis-and-methodological-implications/ )
López-Cordova A., Ramírez-Medina H., Silva-Martinez G. A., González-Cruz L., Bernardino-Nicanor A., Huanca-Mamani W., Montero-Tavera V., Tovar-Aguilar A., Ramírez-Pimentel J. G., Durán-Figueroa N. V., Acosta-García G. (2021) – LEA13 and LEA30 Are Involved in Tolerance to Water Stress and Stomata Density in Arabidopsis thaliana – Plants (Basel) 10(8): 1694 – doi: 10.3390/plants10081694 – PMID: 34451739 – PMCID: PMC8400336 – https://pubmed.ncbi.nlm.nih.gov/34451739/ – (On our blog : https://plantstomata.wordpress.com/2022/09/10/lea-proteins-are-involved-in-drought-tolerance-and-participate-in-stomatal-density/ )
Lopushinsky W. (1969) – Stomatal closure in conifer seedlings in response to leaf moisture stress – Bot. Gaz. 130: 258-263 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/stomatal-closure-in-response-to-leaf-moisture-stress/)
Loranger J., Shipley B. (2010) – Interspecific covariation between stomatal density and other functional leaf traits in a local flora – Botany 88(1): 30-38 – https://doi.org/10.1139/B09-103 – http://www.nrcresearchpress.com/doi/abs/10.1139/B09-103 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/how-stomatal-density-relates-to-other-leaf-traits-in-a-broad-interspecific-context/ )
Loranty M. M., Mackay D. S., Ewers B. E., Traver E., Kruger E. L. (2010) – Contribution of competition for light to within-species variability in stomatal conductance – Water Resour. Res. 46: W05516 – doi:10.1029/2009WR008125 – Contribution_of_competition_for_light_to.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/a-dynamic-stomatal-response-resulting-in-a-more-conservative-strategy-for-managing-hydrologic-resources/ )
Lorenzo N., Mantuano D. G., Mantovani A. (2010) – Comparative leaf ecophysiology and anatomy of seedlings, young and adult individuals of the epiphytic aroid Anthurium scandens (Aubl.) Engl. – Environmental and Experimental Botany
68(3): 314-322 – ISSN 0098-8472 – https://doi.org/10.1016/j.envexpbot.2009.11.011 –
https://www.sciencedirect.com/science/article/pii/S0098847209002524 – (On our blog : https://plantstomata.wordpress.com/2022/06/13/stomatal-conductance-is-highly-dependent-on-water-availability-at-the-root-level-for-both-ontogenetic-phases/ )
Lösch R. (1976) – Die Reaktion der Stomata isolierter Epidermen auf Luftfeuchtigkeit, Temperatur, CO2-Gehalt der Luft und Wasserspannung (Untersuchungen an Polypodium vulgare) – Diss. Würzburg 1976.
Lösch R. (1977) – Responses of Stomata to Environmental Factors – Experiments with Isolated Epidermal Strips of Polypodium vulgare. I. Temperature and Humidity – Oecologia (Berlin) 29: 85-97 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/31549)
Lösch R. (1977) – Responses of Stomata to Environmental Factors – Experiments with Isolated Epidermal Strips of Polypodium vulgare. II. Leaf Bulk Water Potential, Air Humidity, and Temperature – Oecologia (Berlin) 39: 229-238 – (On our blog : https://plantstomata.wordpress.com/2017/01/17/stomata-respond-to-water-potential-air-humidity-and-temperature/)
Lösch R. (1978) – Changes in stomatal potassium content induced by changes in air humidity and temperature – Ber. dtsch. bot. Ges. 91: 645-656 – (On our blog : https://plantstomata.wordpress.com/2017/03/14/stomatal-responses-to-changes-in-environmental-parameters/)
Lösch R. (1978) – Veränderungen im stomatären Kalium-Gehalt bei Änderungen von Luftfeuchte und Umgebungstemperatur – Ber. dtsch. bot. Ges. 91: 645-656 – (On our blog : https://plantstomata.wordpress.com/2017/03/14/stomatal-responses-to-changes-in-environmental-parameters/)
Lösch R. (1979) – Stomatal responses to changes in air humidity. In: Structure, Function, and Ecology of Stomata (ed. D. N. Sen). Jodhpur 1979
Lösch R. (1979) – Responses of stomata to environmental factors – experiments with isolated strips of Polypodium vulgare – II. Leaf bulk water potential, air humidity and temperature – Oecologia 39: 229-238 –
Lösch R., Bressel C. (1979) – Guard Cell Potassium Relations in Leptosporangiate Ferns Showing Diverse Types of Stomata – Flora 168: 109-120 – (On our blog : https://plantstomata.wordpress.com/2017/03/07/35533/)
Lösch R., Schenk B. (1978) – Humidity responses of stomata and the potassium content of guard cells – J. Exp. Bot. 29: 781-787 – https://www.jstor.org/stable/23689461?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/31/humidity-responses-and-the-potassium-content-of-stomata/ )
Lösch R., Tenhunen J. D. (1981) – Stomatal responses to humidity – phenomenon and mechanism. In: Jarvis PG, Mansfield TA (eds) Stomatal Physiology. Cambridge University Press, Cambridge
Lösch R., Tenhunen J. D., Pereira J. S., Lange O. L. (1982) – Diurnal courses of stomatal resistance and transpiration of wild and cultivated Mediterranean perennials at the end of the summer dry season in Portugal – Flora 172 : 138 – 160 –
Loucks M., Ownby J. D. (1978) – Effect of pH and metabolic inhibitors on stomatal opening in Crassula argentea – Bot. Gaz. 139: 381–384 – https://www.jstor.org/stable/2473656?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/04/04/effect-of-ph-and-metabolic-inhibitors-on-stomatal-opening/ )
Loucos K. E., Simonin K. A., Barbour M. M. (2016) – Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species – Plant, Cell & Environment –
Louguet P., Coudret A., Couot-Gastelier J., Lasceve G. (1990) – Structure and Ultrastructure of Stomata – Biochemie und Physiologie der Pflanzen 186(5–6): 273-287 – https://doi.org/10.1016/S0015-3796(11)80218-0 – http://www.sciencedirect.com/science/article/pii/S0015379611802180 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/ultrastructural-and-cytochemical-changes-associated-with-stomatal-movements/) – https://wordpress.com/post/plantstomata.wordpress.com/65117 )
Louguet P., Coudret A., Couot-Gastelier J., Lasceve G. (1990) – Structure and Ultrastructure of Stomata – Biochemie und Physiologie der Pflanzen 186(5–6): 273-287 – https://doi.org/10.1016/S0015-3796(11)80218-0 – https://www.sciencedirect.com/science/article/pii/S0015379611802180 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/ultrastructure-of-stomata-and-stomatal-movements/)
Loustau D., El Hadj Moussa F. (1989) – Variability of stomatal conductance in the crown of a maritime pine (Pinus pinaster Ait.) – Ann. Sci. For. 46 suppl.: 426s-428s – Variability_of_stomatal_conductance_in_t.pdf – (on our blog : https://plantstomata.wordpress.com/2019/02/21/variability-of-stomatal-conductance-in-the-crown-of-a-pine/
Lovelli S., Rivelli A. R., Nardiello I., Perniola M., Tarantino E. (2000) – Growth, Leaf ion concentration, stomatal behaviour and photosynthesis of bean (Phaseolus vulgaris L.) irrigated with saline water – ISHS Acta Horticulturae 537: III International Symposium on Irrigation of Horticultural Crops – DOI: 10.17660/ActaHortic.2000.537.80 – http://www.actahort.org/members/showpdf?booknrarnr=537_80 – (On our blog : https://plantstomata.wordpress.com/2017/10/06/stomatal-behaviour-of-phaseolus-vulgaris-irrigated-with-saline-water/)
Loveys B. R., Kriedemann P. E. (1973) – Rapid changes in abscisic acid-like inhibitors following alterations in vine leaf water potential – Physiol Plant 28: 476–479 – https://doi.org/10.1111/j.1399-3054.1973.tb08592.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1973.tb08592.x – (On our blog : https://plantstomata.wordpress.com/2019/08/24/leaf-water-potential-and-abscisic-acid-like-inhibitors/ )
Loveys B. R., Kriedemann P. E. (1974) – Internal Control of Stomatal Physiology and Photosynthesis. I. Stomatal Regulation and Associated Changes in Endogenous Levels of Abscisic and Phaseic Acids – Australian Journal of Plant Physiology 1(3): 407-415 – doi:10.1071/PP9740407 – http://www.publish.csiro.au/?paper=PP9740407 – (On our blog : https://plantstomata.wordpress.com/2016/07/30/stomatal-regulation-and-associated-changes-in-endogenous-levels-of-abscisic-and-phaseic-acids/)
Loveys B. R., Kriedemann P. E., Türükfalvy E. (1973) – Is Abscisic
Acid Involved in Stomatal Response to Carbon Dioxide? – Pl.. Sci. Lett.
1: 335-338 –
Loveys B. R., Leopold A. C., Kriedemann P. E. (1973) – Abscisic Acid Metabolism and Stomatal Physiology in Betula lutea Following Alteration in Photoperiod – Ann Bot. 38: 85–92 – https://doi.org/10.1093/oxfordjournals.aob.a084805 – https://academic.oup.com/aob/article-abstract/38/1/85/235964 – (On our blog : https://plantstomata.wordpress.com/2019/08/24/abscisic-acid-metabolism-and-stomatal-physiology-following-alteration-in-photoperiod/ )
Lozano-Duran R., Bourdais G., He S. Y., Robatzek S. (2014) – The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity – New Phytol. 202, 259–269 – doi: 10.1111/nph.12651 – https://www.ncbi.nlm.nih.gov/pubmed/24372399 – (On our blog : https://plantstomata.wordpress.com/2018/05/31/hopm1-suppresses-pamp-triggered-oxidative-burst-and-stomatal-immunity/ )
Lü D., Zhang X., Jiang J., An G. Y., Zhang L. R., Song C. P. (2005) – NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. – Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 31(1): 62-70 – In Chinese – PMID: 15692180 – https://pubmed.ncbi.nlm.nih.gov/15692180/ – (On our blog : https://plantstomata.wordpress.com/2022/12/29/h2o2-could-probably-act-as-upstream-component-of-no-signaling-and-no-negatively-regulate-h2o2-generation-during-aba-induced-stomatal-closure-in-guard-cells/ )
Lu H. a. o.(2019) – Research decodes plant defense system, with an eye on improving farming and medicine – Phys. Org. – https://phys.org/news/2019-06-decodes-defense-eye-farming-medicine.html – (On our blog : https://plantstomata.wordpress.com/2019/06/27/79295/ )
Lu H., Wirstan L. (2017) – Studying circadian rhythms in plants and their pathogens might lead to precision medicine for people – Phys.Org. – https://phys.org/news/2017-11-circadian-rhythms-pathogens-precision-medicine.html – (On our blog : https://plantstomata.wordpress.com/2019/06/27/stomata-rhythmically-open-in-the-day-and-close-at-night-a-process-regulated-by-the-circadian-clock-in-anticipation-of-light-and-humidity-changes/ )
Lu J., He J., Zhou X., Zhong J., Li J., Liang Y.-K., (2019) – Homologous genes of epidermal patterning factor regulate stomatal development in rice – Journ. Plant Physiol. 234-235: 18-27 – https://doi.org/10.1016/j.jplph.2019.01.010 –https://www.sciencedirect.com/science/article/pii/S0176161719300094?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/05/homologs-of-epf-epfl-regulate-stomatal-development-in-a-generally-highly-conserved-way/ )
Lu P., Biron P., Breda N., Granier A. (1995) – Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: Water potential, stomatal conductance and transpiration – Annals of Forest Science 52: 117–129 – DOI: 10.1051/forest:19950203 – https://www.afs-journal.org/articles/forest/abs/1995/02/AFS_0003-4312_1995_52_2_ART0003/AFS_0003-4312_1995_52_2_ART0003.html – (On our blog : https://plantstomata.wordpress.com/2018/11/01/water-potential-stomatal-conductance-and-transpiration/ )
Lu P., Outlaw W. H., Smith B. G., Freed G. A . (1997) – A new mechanism for the regulation of stomatal aperture size in intact leaves – accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba – Plant Physiology 114: 109–118 – https://doi.org/10.1104/pp.114.1.109 – http://www.plantphysiol.org/content/plantphysiol/114/1/109.full.pdf (On our blog : https://plantstomata.wordpress.com/2018/11/01/a-new-mechanism-for-the-regulation-of-stomatal-aperture-size-in-intact-leaves/ )
Lu P., Zhang S. Q., Outlaw W. H. Jr, Riddle K. A. (1995) – Sucrose: a solute that accumulates in the guard-cell apoplast and guard-cell symplast of open stomata – FEBS Lett 362:180–184 – ISSN :0014-5793 – https://www.infona.pl/resource/bwmeta1.element.elsevier-d0005f26-0535-38e1-bf66-f74076bdc072 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/sucrose-a-solute-that-accumulates-in-the-guard-cell-apoplast/)
Lu W., Deng M.,Guo F., Wang M., Zeng Z., Han N., Yang Y., Zhu M., Bian H. (2016) – Suppression of OsVPE3 Enhances Salt Tolerance by Attenuating Vacuole Rupture during Programmed Cell Death and Affects Stomata Development in Rice – Rice 9(1): 1-13 – DOI: 10.1186/s12284-016-0138-x – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1186-S12284-016-0138-X – (On our blog : https://plantstomata.wordpress.com/2017/10/11/osvpe3-plays-a-crucial-role-in-vacuole-mediated-pcd-and-in-stomatal-development-in-rice/)
陆雯芸, 房克, 边红武, 朱睦元. 气孔发育及其调控因素的研究进展. 植物生理学报, 2016, 52(6): 782-788 / Lu W. Y., Fang K., Bian H. W., Zhu M. Y. (2016) -Advances in stomatal development and its regulation factors – Plant Physiology Journal 52(6): 782-788 (in Chinese) –
Lu Y., Duursma R. A., Farrior C. E., Medlyn B. E., Feng X. (2019) – Optimal stomatal drought response shaped by competition for water and hydraulic risk can explain plant trait covariation – New Phytologist Early view – Online version – https://doi.org/10.1111/nph.16207 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16207 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/a-comprehensive-theoretical-basis-for-understanding-stomatal-behaviour/ )
Lu Y., Duursma R. A., Medlyn B. E. (2016) – Optimal stomatal behaviour under stochastic rainfall – Journal of Theoretical Biology 394: 160-171 – https://doi.org/10.1016/j.jtbi.2016.01.003 –https://www.sciencedirect.com/science/article/pii/S0022519316000047?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/03/26/optimal-stomatal-behaviour-under-stochastic-rainfall/ )
Lu Y. Equiza M. A., Deng X., Tyree M. T. (2010) – Recovery of Populus tremuloides seedlings following severe drought causing total leaf mortality and extreme stem embolism – Physiol Plant. 140(3): 246-257 – doi: 10.1111/j.1399-3054.2010.01397.x – Epub 2010 Jul 27 – https://www.ncbi.nlm.nih.gov/pubmed/20618763 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-conductance-and-recovery-of-seedlings-following-severe-drought/ )
Lu Y., Hu Y., Snyder R. L., Kent E. R. (2019) – Tea leaf’s microstructure and ultrastructure response to low temperature in indicating critical damage temperature – Information Processing in Agriculture 6(2): 247-254 – https://doi.org/10.1016/j.inpa.2018.09.004 – https://www.sciencedirect.com/science/article/pii/S2214317318300775 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/stomata-of-tea-leaves-have-an-obvious-low-temperature-stress/ )
Lu Y.-J., Stützel T., Kang Y.-X., Wang L.-B., Yu H.-Y., Zhang X. (2015) – Discovery and Evolutionary Significance of Homalanthus populifolius Seed Coat Stomata – Bulletin of Botanical Research 35(5): 660-664 – doi: 10.7525/j.issn.1673-5102.2015.05.004 – http://bbr.nefu.edu.cn/EN/abstract/abstract1400.shtml – (On our blog : https://plantstomata.wordpress.com/2022/02/20/stomata-on-the-seed-coat-a-rare-character-of-angiosperms-is-reported-on-homalanthus-populifolius-euphorbiaceae-for-the-first-time/ )
Lu Z., Chen J., Percy R. G., Sharifi M. R., Rundel R. P., Zeiger E. (1996) – Genetic variation in carbon isotope discrimination and its relation to stomatal conductance in pima cotton (Gossypium barbadense L.) – Aust. J. PlantPhysiol. 23: 127–132 –
Lu Z., Chen J., Percy R. G., Zeiger E. (1997) – Photosynthetic rate, stomatal conductance and leaf area in two cotton species (Gossypium barbadense and Gossypium hirsutum) and their relation with heat resistance and yield – Australian Journal of Plant Physiology 24(5): 693-700 – DOI: 10.1071/pp97056 – https://eurekamag.com/research/003/229/003229942.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/photosynthetic-rate-stomatal-conductance-and-leaf-area/ )
Lu Z., Chen J., Radin J. W., Percy R. G., Turcotte E. L., Zeiger E. (1992) – Roles of stomatal conductance and leaf size in the regulation of leaf temperature in pima cotton Gossypium barbadense l – Plant Physiology 99(1 Suppl.): 11 – https://eurekamag.com/research/033/275/033275983.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/stomatal-conductance-and-leaf-size-in-the-regulation-of-leaf-temperature/ )
Lu Z., Percy R. G., Qualset C. O., Zeiger E. (1998) – Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures – Journal of Experimental Botany 49: 453–460 – https://doi.org/10.1093/jxb/49.Special_Issue.453 – https://academic.oup.com/jxb/article/49/Special_Issue/453/508008 – (On our blog : https://plantstomata.wordpress.com/2020/06/23/stomatal-conductance-could-be-a-valuable-selection-criterion-for-higher-yields-2/ )
Lu Z., Quiñones M. A., Zeiger E. (1993) – Abaxial and adaxial stomata from Pima cotton (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality – Plant Cell. Environ. 16: 851-885 – https://doi.org/10.1111/j.1365-3040.1993.tb00507.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1993.tb00507.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/adaxial-and-abaxial-stomata-have-a-differential-sensitivity-to-light-quality/ )
Lu Z., Quiñones M. A., Zeiger E. (2000) – Temperature dependence of guard cell respiration and stomatal conductance co-segregate in an F2 population of Pima cotton – Funct Plant Biol. 27: 457-462 – https://doi.org/10.1071/PP98128 – http://www.publish.csiro.au/FP/PP98128 – (On our blog : https://plantstomata.wordpress.com/2018/11/01/guard-cell-respiration-and-stomatal-conductance-co-segregate/ )
Lu Z., Radin J. W., Turcotte E. L., Percy R., Zeiger E. (1994) – High yields in advanced lines of pima cotton are associated with stomatal conductance, reduced leaf area and lower leaf temperature – Physiol Plant 92: 266–272 – https://doi.org/10.1111/j.1399-3054.1994.tb05336.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1994.tb05336.x – (On our blog : https://plantstomata.wordpress.com/2020/03/10/high-yields-in-advanced-lines-of-pima-cotton-are-associated-with-stomatal-conductance/ )
Lu Z. M., Radin J. W., Turcotte E. L.,Percy R., Zeiger E. (1994) – High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf-area and lower leaf temperature – Physiologia Plantarum 92(2): 266–272 – https://doi.org/10.1111/j.1399-3054.1994.tb05336.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1994.tb05336.x – (On our blog : https://plantstomata.wordpress.com/2020/05/14/high-yields-in-advanced-lines-of-pima-cotton-are-associated-with-higher-stomatal-conductance/ )
Lu Z., Zeiger E. (1991) – Differential sensitivity of abaxial and adaxial stomata of pima cotton Gossypium barbadense L. to light quality – Plant Physiology 96(1 Suppl.): 40 – https://eurekamag.com/research/030/937/030937861.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/differential-sensitivity-of-abaxial-and-adaxial-stomata-to-light-quality/ )
Luan S. (2002) – Signalling drought in guard cells. – Plant Cell and Environment 25: 229-237 – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00758.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/01/a-complex-signalling-web-that-monitors-water-status-in-the-environment-and-initiates-responses-in-stomatal-movements/)
Luan S., Li W., Rusnak F., Assmann S. M., Schreiber S. L. (1993) – Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells – Proc Natl Acad Sci USA 90: 2202–2206 – https://doi.org/10.1073/pnas.90.6.2202 – http://www.pnas.org/content/90/6/2202 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/cyclophilin-cyclosporin-a-and-fk506-binding-protein-fk506-complexes-block-ca2-induced-inactivation-of-k-channels/ )
Lucas J. R., Nadeau J. A., Sack F. D. (2006) – Microtubule arrays and Arabidopsis stomatal development – J Exp Bot 57: 71-79 – doi: 10.1093/jxb/erj017 – http://jxb.oxfordjournals.org/content/57/1/71.abstract – (On our blog : https://plantstomata.wordpress.com/2016/07/30/16976/) – (https://wordpress.com/post/plantstomata.wordpress.com/16976 )
Ludlow M. M. (1980) – Adaptive significance of stomatal responses to water stress. In: Adaptation of Plants to Water and High Temperature Stress (eds NC Turner and PJ Kramer) – 105–122 – John Wiley & Sons, New York
Ludlow M. M., Fisher M. J., Wilson J. R. (1985) – Stomatal adjustment to water deficits in three tropical grasses and a tropical legume grown in controlled conditions and in the field – Austral.J. Plant Physiol. 12: 131–149 – https://doi.org/10.1071/PP9850131 – http://www.publish.csiro.au/FP/PP9850131 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/stomatal-adjustment-to-water-deficits/ )
Ludlow M. M , Ibaraki K. (1979) – Stomatal control of water loss in siratro (Macroptilium atropurpureum (DC) Urb.), a tropical pasture legume – Ann. Bot. 43: 639-647 –
Luedders P., Kaminski V. (1991) – Influence of sodium chloride on stomata and hair density of fig leaves at various relative humidities – Mitteilungen Klosterneuburg 41(2): 76-78 – https://eurekamag.com/research/007/459/007459325.php – (On our blog : https://plantstomata.wordpress.com/2022/01/09/neither-salt-concentration-nor-relative-humidity-showed-any-influence-on-the-stomata-density/ )
Lugassi N., Kelly G., Fidel L., Yaniv Y., Attia Z., Levi A., Alchanatis V., Moschelion M., Raveh E., Carmi N., Granot D. (2015) – Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration – Front. Plant Sci. 6:1114 – doi: 10.3389/fpls.2015.01114 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/hxk-coordinates-photosynthesis-and-transpiration-and-stimulates-stomatal-closure/ )
Lugg D. G., Sinclair T. R. (1979) – Variation in stomatal density with leaf position in field-grown soybeans – Crop Sci. 19: 407–409 – https://doi.org/10.2135/cropsci1979.0011183X001900030034x – https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1979.0011183X001900030034x – (On our blog : https://plantstomata.wordpress.com/2020/04/22/a-large-variation-in-stomatal-density-makes-it-difficult-to-compare-single-measurements-for-different-cultivars/ )
Lundgren M. R., Mathers A., Baillie A. L., Dunn J., Wilson M. J., Hunt L., Pajor R., Fradera-Soler M., Rolfe S., Osborne C. P., Sturrock C. J., Gray J. E., Mooney S. J., Fleming A. J. (2019) – Mesophyll porosity is modulated by the presence of functional stomata – Nature Communications 10, Article number: 2825, https://www.nature.com/articles/s41467-019-10826-5 – (On our blog : https://plantstomata.wordpress.com/2019/07/03/the-coordination-of-stomata-and-mesophyll-airspace-pattern-underpins-water-use-efficiency-in-crops/ )
Luo D.-D., Wang C. K., Jin Y. (2019) – [Stomatal regulation of plants in response to drought stress] (Article in Chinese) [ 罗丹丹, 王传宽, 金鹰 (2019). 植物应对干旱胁迫的气孔调节. 应用生态学报, 30,4333-4343] – Ying Yong Sheng Tai Xue Bao. 30(12): 4333-4343 – doi: 10.13287/j.1001-9332.201912.004 – PMID: 31840480 – https://pubmed.ncbi.nlm.nih.gov/31840480/ – (On our blog : https://plantstomata.wordpress.com/2021/04/24/stomatal-regulation-in-response-to-drought-stress/ )
Luo J., Tang S., Wen J., Chen L., Liu Y., Wang Y., Huang J., Zhang J., Ma L., Jin S., Wu J., Zhang H., Wu J., Liu J., Wang G., Hu Q., Sun C., Zhang X., Fang J., Wang X., Han B., Chen S., Chen L., Chen R., Deng X. W., Chen Z. (2017) – A mitochondrial complex I defect impairs cold-regulated nuclear gene expression – Plant Cell. 29(3): 521-536 –
Luo L., Zhou W. Q., Liu P., Li C.-X., Hou S.-W. (2012) – The development of stomata and other epidermal cells on the rice leaves – Biol Plant 56: 521-527 – https://doi.org/10.1007/s10535-012-0045-y – https://link.springer.com/article/10.1007/s10535-012-0045-y – (On our blog : https://plantstomata.wordpress.com/2018/01/27/development-of-stomata-on-rice-leaves/ )
Luo X., Cui N., Zhu Y., Cao L., Zhai H., Cai H., Ji W., Wang X., Zhu D., Li Y., Bai X. (2012) – Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size – Journal of Plant Physiology 169(12): 1192-1202 – DOI :10.1016/j.jplph.2012.03.019 – https://www.infona.pl/resource/bwmeta1.element.elsevier-e1cf8b96-d239-3cf0-93b7-f7a9ce25518a – (On our blog : https://plantstomata.wordpress.com/2017/10/11/gszfp1-over-expression-lines-exhibited-small-stomata-impairment-of-aba-induced-stomata-closure/ )
Luo Y. (1991) – Changes of Ci/Ca in association with non‐stomatal limitation to photosynthesis in water stressed Abutilon theophrasti – Photosynthetica 25: 273–279 –
Luo Y., Ho C.-L., Helliker B. T., Katifori E. (2021) – Leaf Water Storage and Robustness to Intermittent Drought: A Spatially Explicit Capacitive Model for Leaf Hydraulics – Front. Plant Sci. 14 October 2021- https://doi.org/10.3389/fpls.2021.725995 – https://www.frontiersin.org/articles/10.3389/fpls.2021.725995/full – (On our blog : https://plantstomata.wordpress.com/2021/12/26/besides-the-stomatal-closure-the-leaf-capacitance-of-water-storage-which-can-also-vary-locally-is-thought-to-be-crucial-for-the-maintenance-of-leaf-water-status/ )
Luomala E. M., Laitinen K., Sutinen S., Kellomaki S., Vapaavuori E. (2005) – Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2and temperature – Plant Cell Environ. 28: 733–749 – – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01319.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/02/co2-temperature-and-stomatal-density/)
Lurie S. (1977) – Stomatal development in etiolated Vicia faba. Relationship between structure and function – Aust. J. Plant Physiol. 4: 61-68 – https://doi.org/10.1071/PP9770061– http://www.publish.csiro.au/FP/PP9770061 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/stomata-of-older-plants-achieve-physiological-competence-in-a-shorter-time/ )
Lurie S. (1977) – Stomatal Opening and Photosynthesis in Greening Leaves of Vicia faba L. – Australian Journal of Plant Physiology 4(1): 69-74 – https://doi.org/10.1071/PP9770069 – https://www.publish.csiro.au/fp/pp9770069 – (On our blog : https://plantstomata.wordpress.com/2021/09/19/stomatal-opening-and-photosynthesis/ )
Lurie S. (1977) – Photochemical properties of guard cell chloroplasts – Plant Sci. Lett. I0: 219-223 – https://doi.org/10.1016/0304-4211(77)90132-8 – https://www.sciencedirect.com/science/article/pii/0304421177901328 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/photochemical-properties-of-stomatal-chloroplasts/ )
Lurie S. (1978) – The effect of wavelength of light on stomatal opening – Planta 140:245–249 – doi: 10.1007/BF00390255 – https://www.ncbi.nlm.nih.gov/pubmed/24414561 – (On our blog : https://plantstomata.wordpress.com/2018/09/17/more-than-one-light-activated-metabolic-pathway-can-supply-the-energy-needed-to-effect-stomatal-opening/ )
Lushnikov A. A., Vesala T., Kulmala M., Hari P. (1994) – A semi-phenomenologicai model for stomatal gas transport – Journal of Theoretical Biology 171: 291 311 – https://doi.org/10.1006/jtbi.1994.1232 – https://www.sciencedirect.com/science/article/abs/pii/S002251938471232X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/04/22/a-model-for-stomatal-gas-transport/ )
Lv S., Zhang Y., Li C., Liu Z., Yang N., Pan L., Wu J., Wang J., Yang J., Lv Y., Zhang Y., Jiang W., She X., Wang G. (2017) – Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner – New Phytol. (Online Version) –
Lynn B. H., Carlson T. N. (1990) – A stomatal resistance model illustrating plant vs. external control of transpiration – Agric. For. Meteor. 52: 5–43 – DOI:10.1016/0168-1923(90)90099-R – https://www.semanticscholar.org/paper/A-stomatal-resistance-model-illustrating-plant-vs.-Lynn-Carlson/ae4121f8d5882e813a42818fbad4e94359b209f0 – (On our blog : https://plantstomata.wordpress.com/2021/08/20/a-stomatal-resistance-model-that-is-specifically-designed-for-use-within-atmospheric-boundary-layer-models/ )
Lyseng R. (2016) – Drought: the slow death – The Western Producer May 5, 2016 – https://www.producer.com/2016/05/drought-the-slow-death/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/drought-and-closing-of-stomata/ )