PHYSIO-BIBLIOGRAPHY J-L

Jackson M.B., Hall K.C. (1987) – Early stomatal closure in water-logged pea plants is mediated by abscisic acid in the absence of foliar water deficits – Plant Cell Environ. 10: 121–130 – https://doi.org/10.1111/1365-3040.ep11602085https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11602085 – (On our blog : https://plantstomata.wordpress.com/2018/04/05/early-stomatal-closure-in-waterlogged-pea-plants-is-mediated-by-aba-in-the-absence-of-foliar-water-deficits/ )

Jackson M. B., Saker L. R., Crisp C. M., Else M. A., Janowiak F. (2003) – Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure -Plant and Soil 253(1): 103–113 – https://link.springer.com/article/10.1023%2FA%3A1024588532535?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/10/05/stomatal-closure-and-ionic-and-ph-signalling-from-roots-to-shoots/)

Jacob T., Ritchie S., Assmann S. M., Gilroy S. (1999) – Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. – Proc. Natl. Acad. Sci. USA 96: 12192–12197 –  [PMC free article] [PubMed], bstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/01/aba-signal-transduction-in-stomata-is-mediated-by-pld-activity/)

Jacobs C. M. J., van den Hurk B. M. M., de Bruin H. A. R. (1996) – Stomatal behavior and photosynthetic rate of unstressed grapevines in semi-arid conditions – Agric Forest Meteorology 80: 111–134 – https://doi.org/10.1016/0168-1923(95)02295-3https://www.sciencedirect.com/science/article/pii/0168192395022953 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/stomatal-behavior-of-unstressed-grapevines-in-semi-arid-conditions/ )

Jacobsen S.-E.., Liu F., Jensen C. R. (2009) – Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). – Scientia Horticulturae 122(2): 281-287 – DOI: 10.1016/j.scienta.2009.05.019 – http://static-curis.ku.dk/portal/files/15292895/Jacobsen_SE.pdf – (No abstract available) – On our blog : https://plantstomata.wordpress.com/2017/09/19/abas-role-for-regulation-of-stomata-under-drought-in-quinoa/)

Jafri A., Ahmad R. (1995) – Effect of soil salinity on leaf development, stomatal size and its distribution in cotton (Gossypium hirsutum L.). – Pakistan Journal of Botany 27: 297-303 – (Article not found)

Jahan M. S., Ogawa K., Nakamura Y., Shimoishi Y., Mori I. C., Murata Y. (2008) – Deficient glutathione in guard cells facilitates abscisic acid-induced stomatal closure but does not affect light-induced stomatal opening – Biosci. Biotechnol. Biochem. 72: 2795–2798 – doi: 10.1271/bbb.80407 – https://www.ncbi.nlm.nih.gov/pubmed/18838781 – (On our blog : https://plantstomata.wordpress.com/2018/12/18/the-role-of-glutathione-gsh-in-stomatal-movements/

Jaiwal P. K., Bhamble S. (1983) – Influence of Morphactin on Leaf Morphology and Stomatal Apparatus of Vigna radiata (L.) Wilczek – Giornale Botanico Italiano 117(1-2):39-46 – https://doi.org/10.1080/11263508309428078 – https://www.researchgate.net/publication/249034444_Influence_of_Morphactin_on_Leaf_Morphology_and_Stomatal_Apparatus_of_Vigna_radiata_L_Wilczek – (On our blog : https://plantstomata.wordpress.com/2016/07/26/the-effect-of-morphactin-on-stomata/)

Jakobson L.Vaahtera L.Tõldsepp K.Nuhkat M.Wang C.Wang Y.-S.Hõrak H.Valk E.Pechter P.Sindarovska Y.Tang J.Xiao C.Xu Y.Talas U. G.Remm M.Kangasjärvi S.Roelfsema M. R. G.Hu H.Kangasjärvi J.Loog M.Schroeder J. I.Kollist H.Brosché M. (2016) – Natural Variation in Arabidopsis Cvi-0 Accession Uncovers Regulation of Guard Cell CO2 Signaling by MPK12 – This article is a preprint – doi: https://doi.org/10.1101/073015 – https://www.biorxiv.org/content/early/2016/09/01/073015 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-new-function-for-plant-mpks-as-protein-kinase-inhibitors-guard-cell-co2-signaling/)

Jalakas P., Huang Y.-C., Yeh Y.-H., Zimmerli L., Merilo E., Kollist H., Brosché M. (2017) – The role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis stomatal responses is beyond ABA signaling. – Plant Physiol 174(2): 665–671 – DOI: https://doi.org/10.1104/pp.17.00220 – http://www.plantphysiol.org/content/174/2/665 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/a-function-for-era1-in-stomatal-opening/)

Jalakas P., Merilo E., Kollist H., Brosche M. (2018) – ABA‐mediated regulation of stomatal density is OST1‐independent – Plant Direct 2(9): e00082 – https://doi.org/10.1002/pld3.82 – https://onlinelibrary.wiley.com/doi/full/10.1002/pld3.82 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/aba%e2%80%90mediated-regulation-of-stomatal-density-is-ost1%e2%80%90independent/

Jalakas P., Merilo E., Kollist H., Brosche M. (2018) – Complexity of ABA signaling for stomatal development and aperture regulation – BioRxiv May 31, 2018 – doi: https://doi.org/10.1101/335810 – https://www.biorxiv.org/content/early/2018/05/31/335810 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/two-signaling-pathways-to-regulate-stomatal-conductance/ )

Jalakas P., Yarmolinsky D., Hannes Kollist H., Brosche M. (2017) – Isolation of Guard-cell Enriched Tissue for RNA Extraction – Bio-Protocol 7(15) – DOI:   https://bio-protocol.org/e2447 – 10.21769/BioProtoc.2447 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/isolation-of-guard-cell-enriched-tissue-for-rna-extraction/ )

Jammes F., Leonhardt N., Tran D., Bousserouel H., Véry A.-A., Renou J.-P.,Vavasseur A., Kwak J. M., Sentenac H., Bouteau F., Leung J. (2014) – Acetylated 1,3-diaminopropane antagonizes abscisic acid-mediated stomatal closing in Arabidopsis. – Plant J. 79: 322–333. – 10.1111/tpj.12564 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/24891222 – (On our blog : https://plantstomata.wordpress.com/2018/04/08/acetyl-dap-could-refrain-stomates-from-complete-closure-to-sustain-co2-diffusion/

Jammes F., Song C., Shin D., Munemasa S., Takeda K., Gu D., Choa D., Lee S., Giordo R.,  Sritubtim S., Leonhardt N., Ellis B. E., Murata Y., Kwak J. M. (2009) – MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. – Proc. Natl. Acad. Sci. U.S.A. 106, 20520–20525. doi: 10.1073/pnas.0907205106 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/01/mpk9-and-mpk12-function-downstream-of-ros-to-regulate-guard-cell-aba-signaling-positively/)

Jammes F., Yang X., Xiao S., Kwak J. M. (2011) – Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. – Plant Signal. Behav. 6, 1875–1877. doi: 10.4161/psb.6.11.17933 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/01/regulation-of-stomatal-apertures-by-mpk9-and-mpk12-contributes-to-the-first-line-of-defense-against-pathogens/)

Jang C.‐J., Nakajima N., Kondo N. (1996) – Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. – Plant Cell Physiology 37: 697–701 – https://doi.org/10.1093/oxfordjournals.pcp.a029001 – https://academic.oup.com/pcp/article-pdf/37/5/697/5147219/37-5-697.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/18/disruption-of-microtubules-seems-to-be-a-specific-effect-of-aba-in-stomata/

Jannat R., Uraji M., Morofuji M., Islam M. M., Bloom R. E., Nakamura Y., McClung C. R., Schroeder J. I., Mori I. C., Murata Y. (2011) – Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells – J. Plant Physiol. 168: 1919–1926 – doi: 10.1016/j.jplph.2011.05.006 – https://pdfs.semanticscholar.org/e6f7/143785beda04e311bf426915b4527414b827.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/08/aba-inducible-cytosolic-h2o2-elevation-functions-in-aba-induced-stomatal-closure/ )

Janu V., Raghuvanshi R. K. (2011) – Microscopic studies on epidermal cells and stomatal behavior of some globular cacti (Mammillaria spp.) – Insight Botany 1(1): 1–4  -DOI: 10.5567/BOTANY-IK.2011.1.4 –  CrossrefGoogle Scholar – http://insightknowledge.org/fulltext/?doi=BOTANY-IK.2011.1.4 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/stomatal-behavior-of-some-globular-cacti/ )

Janowska B., Mansfeld N., Andrzejak R. (2014) – Effect of BA and GA3 on the Morphological Features of Stomata in the Leaf Epidermis of the Zantedeschia albomaculata cv. ‘Albomaculata’ – Not Bot Horti Agrobo, 2014, 42(1): 104-108.(http://www.notulaebotanicae.ro/index.php/nbha/article/download/9318/7687) – (On our blog : https://plantstomata.wordpress.com/2015/03/26/stomata-in-zantedeschia-monocots/).

Jara-Rojas F., Ortega-Farias S., Valdés-Gomez H., Poblete C., del Pozo A. (2009) – Model Validation for Estimating the Leaf Stomatal Conductance in cv. Cabernet Sauvignon Grapevines – Chilean Journal of Agricultural Research 69(1): 88-96 – Model_Validation_for_Estimating_the_Leaf.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/model-validation-for-estimating-the-leaf-stomatal-conductance/ )

Jarman P. D. (1974) – The diffusion of carbon dioxide and water vapour through stomata – Journal of Experimental Botany 25: 927-936 – https://doi.org/10.1093/jxb/25.5.927 – https://academic.oup.com/jxb/article-abstract/25/5/927/431879?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/08/diffusion-of-co2-and-water-vapour-through-stomata/ )

Jarvis A. J.Davies W. J. (1998) – The coupled response of stomatal conductance to photosynthesis and transpiration. – Journal of Experimental Botany 49: 399406 – DOI 10.1093/jexbot/49.suppl_1.399 – https://www.jstor.org/stable/23695973?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/19/stomata-respond-to-a-signal-in-proportion-to-the-degree-to-which-the-photosynthetic-capacity-is-realized/ )

Jarvis A. J., Young P. C., Taylor C. J., Davies W. J. (1999) – An analysis of the dynamic response of stomatal conductance to a reduction in humidity over leaves of Cedrella odorata – Plant, Cell and Environment  22: 913–924 – DOI: 10.1046/j.1365-3040.1999.00446.x – https://www.researchgate.net/publication/229545618_An_analysis_of_the_dynamic_response_of_stomatal_conductance_to_a_reduction_in_humidity_over_leaves_of_Cedrella_odorata – (On our blog : https://plantstomata.wordpress.com/2019/04/29/the-dynamic-response-of-stomatal-conductance-to-a-reduction-in-humidity/ )

Jarvis P. G. (1976) – The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. – Philosophical Transactions of the Royal Society London, Series B 273, 593610 – DOI: 10.1098/rstb.1976.0035 –  CrossRefCAS | – http://rstb.royalsocietypublishing.org/content/273/927/593 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/variations-in-leaf-water-potential-and-stomatal-conductance-found-in-canopies/ )

Jarvis P. G. (1980) – Stomatal response to water stress in conifers. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperatures stress. John Wiley and Sons, pp 105- 122

Jarvis P. G. (1980) – Stomatal conductance, gaseous exchange and transpiration – In Plants and their Atmospheric Environment (edited bv Grace J.. Ford E. D. and Jarvis P. G. pp. 175-204. Blackwells, Oxford.

Jarvis R. G., Mansfield T. A. (1980) – Reduced stomatal responses to light, carbon dioxide and abscisic acid in the presence of sodium ions. –  Plant, Cell and Environment 3: 279283 – https://doi.org/10.1111/1365-3040.ep11581831 – CAS | – https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11581831 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/control-of-stomatal-movements-by-light-co2-and-aba-at-the-level-of-cation-uptake-or-extrusion/ )

Jarvis P. G., Mansfield T. A. (1981) – Stomatal Physiology. – Edn. Cambridge University Press, London. p 89-130. – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/physiology-of-stomata/)

Jarvis P.G.McNaughton K.G. (1986) – Stomatal control of transpiration: Scaling up from leaf to region – Adv. Ecol. Res. 15149 – https://doi.org/10.1016/S0065-2504(08)60119-1 CrossRefGoogle Scholar  – https://www.sciencedirect.com/science/article/pii/S0065250408601191 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/transpiration-depends-on-stomatal-conductance/ )

Jarvis P. G., Morison J. I. L. (1981) – The control of transpiration and photosynthesis by the stomata. In Stomatal Physiology (eds P.G. Jarvis & T.A. Mansfield),  247–279. – Cambridge University Press, New York.

Jarvis P. G., Rose C. W., Begg J. E. (1967) – An experimental and theoretical comparison of viscous and diffuse resistance to gas flow through amphistomatous leaves – Agr. Meteorol. 4: 103-117 (Article not found)

Jarvis A. J., Young P. C., Taylor C. J., Davies W. J. (1999) –An analysis of the dynamic response of stomatal conductance to a reduction in humidity over leaves of Cedrella oderata –Plant, Cell & Environm. 22: 913–924 – https://doi.org/10.1046/j.1365-3040.1999.00446.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1999.00446.x – (On our blog : https://plantstomata.wordpress.com/2018/12/18/the-dynamic-response-of-stomatal-conductance-to-a-reduction-in-humidity-over-leaves/ )

Jeffree C. E., Johnson R. P. C., Jarvis P. G. (1971) – Epicuticular wax in the stomatal antechamber of sitka spruce and its effect on the diffusion of water vapour and carbon dioxide – Planta 98: 1-10 – doi: 10.1007/BF00387018 – https://www.ncbi.nlm.nih.gov/pubmed/24493303 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/wax-filled-stomatal-antechambers-are-excellent-antitranspirants-2/ )

Jelbert G. (2018) – Stomatal data vs ice core measurements to measure CO2 levels – https://skepticalscience.com/plant-stomata-co2-levels.htm – (On our blog : https://plantstomata.wordpress.com/2018/03/29/stomatal-data-vs-ice-core-measurements-to-measure-co2-levels/

Jeon B. W., Acharya B. R., Assmann S. M. (2019) – The Arabidopsis heterotrimeric G protein β subunit, AGB1, is required for guard cell calcium sensing and calcium‐induced calcium release – Plant Journ. – https://doi.org/10.1111/tpj.14318 –https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14318?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/19/g-protein-signaling-via-agb1-agg1-agg2-is-essential-for-cao%e2%80%90regulation-of-stomatal-apertures/ )

Jeon B. W., Hwang J. U., Hwang Y., Song W. Y., Fu Y., Gu Y., Bao F., Cho D., Kwak J. M., Yang Z., Lee Y. (2008) – The Arabidopsis small G protein ROP2 is activated by light in guard cells and inhibits light-induced stomatal opening. – Plant Cell 20(1): 75-87 – doi:  10.1105/tpc.107.054544 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254924/ – (On our blog : https://plantstomata.wordpress.com/2018/04/17/rop2-is-activated-by-light-in-guard-cells-and-inhibits-light-induced-stomatal-opening/ )

Jewaria P. K., Hara T., Tanaka H., Kondo T., Betsuyaku S., Sawa S., Sakagami Y., Aimoto S., Kakimoto T. (2008) – Differential effects of the peptides stomagen, EPF1, and EPF2 on activation of the MAP kinase MPK6 and the SPCH protein level – Plant Cell Physiol. 49(6): 934-943 – doi: 10.1093/pcp/pct076. – https://www.ncbi.nlm.nih.gov/pubmed/23686240 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/effects-of-epf1-and-epf2-on-activation-of-the-map-kinase-mpk6-and-the-spch-protein-level-in-stomata/ )

Jewer P. C., Incoll L. D. (1980) – Promotion of stomatal opening in the grass Anthephora pubescens Nees by a range of natural and synthetic cytokinins. – Planta150: 218–221. – doi: 10.1007/Bf00390829 – https://www.ncbi.nlm.nih.gov/pubmed/24306685 – (On our blog : https://plantstomata.wordpress.com/2018/04/17/natural-and-synthetic-cytokinins-for-stomatal-opening/ )

Jewer P. C., Incoll L. D., Howarth G. L. (1981) – Stomatal responses in isolated epidermis of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perr – Planta 153: 238–245 –  doi: 10.1007/BF00383893 – https://www.ncbi.nlm.nih.gov/pubmed/24276827 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-responses-in-isolated-epidermis-of-the-crassulacean-acid-metabolism-plant/ )

Jezek M., Blatt M. R. (2017) – The membrane transport system of the guard cell and its integration for stomatal dynamics. – Plant Physiol 174: 487–519 – DOI: https://doi.org/10.1104/pp.16.01949 – http://www.plantphysiol.org/content/174/2/487 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/the-membrane-transport-system-of-stomata/)

Jezek M., Hills A., Blatt M. R., Lew V. L. (2019) – A constraint‐relaxation‐recovery mechanism for stomatal dynamics – Plant, Cell & Environment – https://doi.org/10.1111/pce.13568 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13568?af=R – (On our blog : https://plantstomata.wordpress.com/2019/04/29/a-constraint%e2%80%90relaxation%e2%80%90recovery-mechanism-for-stomatal-dynamics/ )

Jia W., Davies W. J. (2006) – Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. – Plant Physiol. 143, 68–77. – doi: 10.1104/pp.106.089110 – http://www.plantphysiol.org/content/143/1/68 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/effect-of-nitrate-addition-on-sap-ph-and-closure-of-stomata-via-an-aba-based-mechanism/ )

Jia W, Zhang J (1999) – Stomatal closure is induced rather by prevailing xylem abscisic acid than by accumulated amount of xylem‐derived abscisic acid – Physiologia Plantarum 106: 268–275 -https://doi.org/10.1034/j.1399-3054.1999.106303.x – https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.1999.106303.x – (On our blog : https://plantstomata.wordpress.com/2018/12/18/stomata-mainly-respond-to-the-prevailing-aba-concentration-in-the-xylem-stream/ )

Jia W., Zhang J. (2008) – Stomatal movements and long-distance signalling in plants – Plant Signal Behav. 3: 772–777 – Google Scholar CrossRef – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634372/ – (On our blog : https://plantstomata.wordpress.com/2018/04/17/natural-and-synthetic-cytokinins-for-stomatal-opening/ )

Jiang C.-J., Nakajima N., Kondo N. (1996) – Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. – Plant Cell Physiol. 37: 697-701 – https://doi.org/10.1093/oxfordjournals.pcp.a029001 https://academic.oup.com/pcp/article/37/5/697/1818552 – (On our blog : https://plantstomata.wordpress.com/2018/04/18/aba-and-microtubules-in-stomata/ )

Jiang K., Sorefan K., Deeks M. J., Bevan M. W., Hussey P. J., Hetherington A. M. (2012) –  The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. – Plant Cell 24, 2031–2040 – doi: 10.1105/tpc.112.096263 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantcell.org/content/24/5/2031 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/regulation-of-actin-reassembly-through-arp2-3-complex-activity-is-crucial-for-stomatal-regulation/ )

Jibrill S. M., Jakada B. H. (2015) – Leaf Epidermal Structures and Stomata Ontogeny in Some Members of the Family Cucurbitaceae – International Journal of Plant & Soil Science 9(2): 1-9, 2016; Article no.IJPSS.20615 – DOI: 10.9734/IJPSS/2016/20615 – Jakada922015IJPSS20615.pdf – (On our blog : https://plantstomata.wordpress.com/2016/06/08/stomata-in-cucurbitaceae-3/)

Jin X., Wang R., Albert R., Chen S., Assmann S. M. (2012) – Metabolomics of Arabidopsis guard cells – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/metabolomics-of-stomata/ )

Jin X., Wang R. S., Zhu M., Jeon B. W., Albert R., Chen S., et al. (2013) – Abscisic acid–responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. – Plant Cell 25, 4789–4811. – 10.1105/tpc.113.119800 – [PMC free article] [PubMed][Cross Ref] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903988/ – (On our blog : https://plantstomata.wordpress.com/2018/04/10/aba-functions-upstream-to-regulate-other-hormones-in-stomata/

Jin Z., Pei Y. (2016) – Hydrogen sulfide: the shutter button of stomata in plants – Science China Life Sciences 59(11): 1187-1188 – DOI10.1007/s11427-016-0265-3 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11427-016-0265-3 – (On our blog : https://plantstomata.wordpress.com/2017/10/11/h2s-the-shutter-button-of-stomata/)

Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H., Pei Y. (2013) – Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis –  Plant Physiol. Biochem. 62: 41–46 – https://doi.org/10.1016/j.plaphy.2012.10.017 –https://www.sciencedirect.com/science/article/abs/pii/S0981942812002872?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/01/16/h2s-may-be-an-important-link-in-stomatal-regulation-by-aba-via-ion-channels/ )

Jinno N. (1985) – Possible Role of Subsidiary Cells on the Stomatal Movement in Commelina benghalensis subsp. – 長崎大学教育学部自然科学研究報告. 36: 7-15 – http://hdl.handle.net/10069/32518 –http://naosite.lb.nagasaki-u.ac.jp/dspace/handle/10069/32518 – (On our blog : https://plantstomata.wordpress.com/2019/05/05/subsidiary-cells-have-an-important-role-on-the-stomatal-closure/ )

Joachimiak A., Grabowska-Joachimiak A. (2000) Stomatal cell length and ploidy level in four taxa belonging to the Phleum sect. Phleum. – Acta Biologica Cracoviensia Series Botanica 42: 103107  ISSN : 0001-5296 – https://www.cabdirect.org/cabdirect/abstract/20013041569 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/stomatal-cell-length-can-be-a-rapid-and-useful-indirect-ploidy-level-indicator/

John Innes Centre (2017) – Changing of the guard: Research sheds light on how plants breathe – Science Daily 2017-09 – https://www.sciencedaily.com/releases/2017/09/170921101743.htm – (On our blog : https://plantstomata.wordpress.com/2017/09/22/the-first-full-3d-model-of-a-guard-cell/)

Johnson C. (2001) – The getting of plant wisdom – ABC Science 2001 (http://www.abc.net.au/science/articles/2001/05/10/293607.htm) – (On our blog : https://plantstomata.wordpress.com/2015/03/14/stomata-in-different-levels-of-carbon-dioxide-and-light/ )

Johnson D. A., Caldwell M. M. (1976) – Water potential components, stomatal function, and liquid phase water transport resistance of four arctic and alpine species in relation to moisture stress. – Physiol. Plant. 36: 271-278 – https://doi.org/10.1111/j.1399-3054.1976.tb04427.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1976.tb04427.x – (On our blog : https://plantstomata.wordpress.com/2019/03/16/water-potential-components-stomatal-function-and-liquid-phase-water-transport-resistance-in-relation-to-moisture-stress/ )

Johnson D. M., McCulloh K. A., Meinzer F. C., Woodruff D. R., Eissenstat D. M. (2011) – Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. – Tree Physiol. 2011 Jun;31(6):659-68. doi: 10.1093/treephys/tpr050. Epub 2011 Jun 30. – PMID: 21724585 – https://www.fs.usda.gov/treesearch/pubs/39940 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stem-and-leaf-vulnerability-to-hydraulic-dysfunction-and-measuring-in-situ-daily-patterns-of-stomatal-conductance-in-the-field/)

Johnson D. M., Woodruff D. R., McCulloh K. A., Meinzer F. C. (2009)
– Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. – Tree Physiology 29: 879–887 – doi 10,1093treephys.ipp031 / – CrossRef  CAS – https://naldc.nal.usda.gov/download/31639/PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/10/leaf-hydraulics-water-potential-and-stomatal-conductance-in-temperate-and-tropical-trees/ )

Johnson J. D., Ferrell W. K. (1983) – Stomatal response to vapour pressure deficit and the effect of plant water stress – Plant Cell Environ. 6: 451–456 – https://doi.org/10.1111/1365-3040.ep11588103 –https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11588103 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/stomatal-response-to-vapour-pressure-deficit/ )

Johnson R. (2007) – Control of Leaf Stomatal Opening – Colby J. Res. Meth. 9: 14-17 – https://www.colby.edu/academics_cs/courses/BI214/upload/lab5-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/20/techniques-for-analysis-of-stomatal-aperture/)

Johnson R. (2007) – Control of Leaf Stomatal Opening – Colby J. Res. Meth. 2007. 9:14-17 – https://www.colby.edu/academics_cs/courses/BI214/upload/lab5-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/07/control-of-leaf-stomatal-opening/ )

Johnsson M., Issaias S., Brogardh T., Johnsson A. (1976) – Rapid, blue-light-induced transpiration response restricted to plants with grass-like stomata. – Physiol Plant 36:  229–232 – https://doi.org/10.1111/j.1399-3054.1976.tb04418.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1976.tb04418.x – (On our blog : https://plantstomata.wordpress.com/2018/04/18/grass%e2%80%90like-graminaceous-stomata-and-blue-light-induced-transpiration-response/ )

Jones H. G. (1977) – Transpiration in barley lines with differing stomatal frequencies – J Exp Bot 28162168 – https://doi.org/10.1093/jxb/28.1.162 – CrossRefGoogle Scholar – https://academic.oup.com/jxb/article-abstract/28/1/162/501971?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/20/the-size-of-stomata-and-differences-in-stomatal-frequency/ )

Jones H. G. (1981) The use of stochastic modelling to study the influence of stomatal behaviour on yield–climate relationships. In: Rose DA, Charles‐Edwards DA, eds. Mathematics and plant physiology . London: Academic Press, 231–244 

Jones H. G. (1985) – Partitioning stomatal and non-stomatal limitations to photosynthesis. – Plant, Cell and Environment 8, 95104. – DOI: 10.1111/j.1365-3040.1985.tb01227.x – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/07/04/stomatal-and-non-stomatal-limitations-to-photosynthesis/ )

Jones H. G. (1987) – Breeding for stomatal characters.-  In: Stomatal Function Eds. E. Zeiger, G.D. Farquhar y I.R. Cowan. Stanford University Press, Stanford. pp. 431 -43.

Jones H.G. (1998) – Stomatal control of photosynthesis and transpiration. – J. Exp. Bot. 49: 387-398. (http://jxb.oxfordjournals.org/content/49/Special_Issue/387.short) – (On our blog :  https://plantstomata.wordpress.com/2016/02/15/the-control-exerted-by-stomata-over-transpiration-and-photosynthesis/ ).

Jones H. G. (1999) – Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22: 1043–1055. – DOI: 10.1046/j.1365-3040.1999.00468.x – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/07/04/thermography-and-stomatal-conductance/ )

Jones H. G. (1999) – Use of infrared thermometry for estimation of stomatal conductance in irrigation scheduling – Agricultural and Forest Meteorology 95: 139–149 – https://doi.org/10.1016/S0168-1923(99)00030-1 –https://www.sciencedirect.com/science/article/pii/S0168192399000301 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/infrared-thermometry-for-estimation-of-stomatal-conductance/ )

Jones H. G.Stoll M.Santos T.de Sousa C.Chaves M. M.Grant O. M. (2002) – Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. – Journal of Experimental Botany 5322492260 – PMID: 12379792 – Abstract/FREE Full Text, Google Scholar CrossRef PubMed – https://www.ncbi.nlm.nih.gov/pubmed/12379792 – (On our blog : https://plantstomata.wordpress.com/2018/04/11/infrared-thermography-for-monitoring-stomatal-closure/

Jones H. G., Sutherland R.A. (1991) – Stomatal control of xylem embolism – Plant Cell Environ. 14(6): 607-612 – doi:10.1111/j.1365-3040.1991.tb01532.x – Google Scholar CrossRef  – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1991.tb01532.x – (On our blog : https://plantstomata.wordpress.com/2018/04/19/stomatal-control-of-xylem-embolism/ )

Jones L., Milne J. L., Ashford D., McCann M. C., McQueen-Mason S. J. (2005) – A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species. – Planta 221: 255–264 – DOI: 10.1007/s00425-004-1432-1 – https://www.ncbi.nlm.nih.gov/pubmed/15578215 – (On our blog : https://plantstomata.wordpress.com/2018/04/10/pectins-and-phenolic-esters-have-a-conserved-functional-role-in-stomatal-guard-cell-walls/ )

Jones L., Milne J. L., Ashford D., McQueen-Mason S. J. (2003) – Cell wall arabinan is essential for guard cell function. – Proceedings of the National Academy of Sciences of the United States of America 100, 11783-11788 – doi: 10.1073/pnas.1832434100 – http://www.pnas.org/content/100/20/11783.full – (On our blog : https://plantstomata.wordpress.com/2017/11/13/arabinan-chains-play-a-key-role-in-determining-guard-cell-wall-flexibility-for-stomatal-movement/)

Jones L. A. (2011) – Anatomical adaptations of four Crassula species to water availability – Bioscience Horizons 4(1, 1): 13–22, https://doi.org/10.1093/biohorizons/hzr002 – https://academic.oup.com/biohorizons/article/4/1/13/238409 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/stomatal-adaptations-to-water-availability/ )

Jones M. R., Leith I. D., Raven J. A., Fowler D., Sutton M. A., Nemitz E., Cape J. N.,  Sheppard L. J., Smith R. I. (2007) – Concentration-dependent NH3 deposition processes for moorland plant species with and without stomata – Atmospheric Environment 41(39): 8980-8994 – DOI10.1016/j.atmosenv.2007.08.015 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5c59d159-9a8b-3414-833c-9e9a06771f12 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/concentration-dependent-nh3-deposition-processes-with-and-without-stomata/)

Jones R. J.
, Mansfield T. A. (
1970) Suppression of stomatal opening in leaves treated with abscisic acid. Journal of Experimental Botany 21: 714719. – doi: 10.1093/jxb/21.3.714 – CrossRef |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/04/aba-and-stomatal-behaviour/)

Jorba J., Tapia L., Sant D. (1985) – Photosynthesis, leaf water potential, and stomatal conductance in Olea europaea under wet and drought conditions – Acta Hortic. 171: 237-246 – 10.17660/ActaHortic.1985.171.21 – https://www.actahort.org/books/171/171_21.htm – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-conductance-in-olive-trees-under-wet-and-drought-conditions/ )

Jordan F. L., Yoklic M., Morino K., Brown P., Seaman R., Glenn E. P., (2009) – Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district – Agricultural and Forest Meteorology 149(5): 899-912 – https://doi.org/10.1016/j.agrformet.2008.11.010 – http://www.sciencedirect.com/science/article/pii/S0168192308003201 – (On our blog : https://plantstomata.wordpress.com/2017/10/02/consumptive-water-use-and-stomatal-conductance/)

Jordan G. J., Carins-Murphy M., Brodribb T. (2014) – Acclimation to humidity modifies the link between leaf size and the density of veins and stomata – (http://www.brodribblab.org.au/publication/acclimation-to-humidity-modifies-the-link-between-leaf-size-and-the-density-of-veins-and-stomata/) – (On our blog : https://plantstomata.wordpress.com/2015/01/30/stomata-during-leaf-acclimation/).

Jordan G. J., Carins-Murphy M., Brodribb T. (2016) – Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade – Ann. Bot. – http://www.brodribblab.org.au/publication/cell-expansion-not-cell-differentiation-predominantly-co-ordinates-veins-and-stomata-within-and-among-herbs-and-woody-angiosperms-grown-under-sun-and-shade/ – (On our blog : https://plantstomata.wordpress.com/2017/09/30/57420/)

Jordan G. J., Carpenter R. J., Koutoulis A., Price A., Brodribb T. J. (2015) – Environmental adaptation in stomatal size independent of the effects of genome size. – New Phytol. 2015 Jan;205(2):608-17. doi: 10.1111/nph.13076. Epub 2014 Sep 30. – PMID: 25266914 – Free PMC Article – (On our blog : https://plantstomata.wordpress.com/2016/02/19/6196/).

Jordan G.J., Carpenter R. J., Brodribb T. J. (2014) – Using fossil leaves as evidence for open vegetation – Palaeogeography, Palaeoclimatology, Palaeoecology 395: 168-175 – DOI10.1016/j.palaeo.2013.12.035 – https://www.infona.pl/resource/bwmeta1.element.elsevier-440650e4-46ff-39f0-acb4-c501b3707339 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/amphistomatic-fossil-leaves-of-dicotyledonous-angiosperms-provide-a-strong-proxy-for-open-vegetation/)

Jordan G. J. Weston P. H.Carpenter R. J. Dillon R. A., Brodribb T. J. (2008) – The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae – Am. J. Bot. (2008) vol. 95 no. 5 521-530. (http://www.amjbot.org/content/95/5/521.full) – (On our blog : https://plantstomata.wordpress.com/2015/03/29/sunken-covered-and-encrypted-stomata/).

Jordan W. R., Brown K. W., Thomas J. C. (1975) – Leaf age as a determinant in stomatal control of water loss from cotton during water stress. – Plant Physiology 56: 595599 – DOI: https://doi.org/10.1104/pp.56.5.595 – http://www.plantphysiol.org/content/56/5/595 – (On our blog : https://plantstomata.wordpress.com/2018/04/19/leaf-age-as-a-determinant-in-stomatal-control-of-water-loss/ )

Jordan-Meille L., Martineau E., Bornot Y., Lavres J., Abreu-Junior C. H., Domec J.-C. (2018) – How Does Water-Stressed Corn Respond toPotassium Nutrition? A Shoot-Root Scale ApproachStudy under Controlled Conditions – Agriculture 8: 180 – doi:10.3390/agriculture8110180 – https://www.academia.edu/37951082/How_Does_Water-Stressed_Corn_Respond_to_Potassium_Nutrition_A_Shoot-Root_Scale_Approach_Study_under_Controlled_Conditions?email_work_card=title – (On our blog : https://plantstomata.wordpress.com/2018/12/11/water-stress-and-potassium-nutrition/

Joshi-Saha A., Valon C., Leung, J. A. (2011) – Brand New START: abscisic acid perception and transduction in the guard cell. – Sci. Signal. 4:re4. – doi: 10.1126/scisignal.2002164 – http://stke.sciencemag.org/content/4/201/re4.full – (On our blog : https://plantstomata.wordpress.com/2018/04/11/aba-perception-and-transduction-in-stomata/ )

Josifoski R. (2018) – Plant Stomata density is related to the plant adaptation in the environment – Griffith University 1041 SCG Biological Systems – Lab Report 2 – Plant_Stomata_density_is_related_to_the.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/22/plant-stomata-density-and-adaptation-in-the-environment/ )

Jossier M., Kroniewicz L., Dalmas F., Le Thiec D., Ephritikhine G., Thomine S., Barbier-Brygoo H., Vavasseur A., Filleur S., Leonhardt N. (2010) – The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. – Plant J. 64, 563576(2010). – doi: 10.1111/j.1365-313X.2010.04352.x. – PubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/07/04/atclcc-stomatal-movements-and-salt-tolerance/)

Joudoi T., Shichiri Y., Kamizono N., Akaike T., Sawa T., Yoshitake J., Yamada N., Iwai S. (2013) – Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis –Plant Cell 25, 558–571. doi: 10.1105/tpc.112.105049 –  Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/04/8-nitro-cgmp-acts-as-a-guard-cell-signaling-molecule-in-stomata/)

Jover-Gil S.Candela H.Robles P.Aguilera V.Barrero J. M.Micol J. L., Ponce M. R. (2012) – The MicroRNA Pathway Genes AGO1, HEN1and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis – Plant Cell Physiol (2012) 53 (7):1322-1333.doi: 10.1093/pcp/pcs077 – http://pcp.oxfordjournals.org/content/53/7/1322.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/24/the-microrna-pathway-genes-ago1-hen1and-hyl1-and-stomata/)

Juárez C. (2011) Caracterización química y estomática y\ crecimiento de tallos de Acanthocereus tetragonusA. subinermis e Hylocereus undatus – Tesis, Maestría en Ciencias (Master of Science thesis). Colegio de PostgraduadosEdo. de México. México. pp. 44 –  Google Scholar

Jung J.-Y., Kim Y.-W., Kwak J. M., Hwang J.-U., Young J., Schroeder J. I., Hwang I., Lee Y. (2002) – Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. – Plant Cell 14: 2399–2412 –  [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/07/05/pi3p-and-pi4p-play-an-important-role-in-the-modulation-of-stomatal-movements/)

Juárez-Lopez, F. J., Escudero A., Mediavilla S. (2008) – Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span – Tree Physiology 28: 367–374 – https://doi.org/10.1093/treephys/28.3.367 –https://academic.oup.com/treephys/article/28/3/367/1655251 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/ontogenetic-changes-in-stomatal-and-biochemical-limitations-to-photosynthesis/ )

Juhrbandt J., Leuschner C., Hölscher D. (2004) – The relationship between maximal stomatal conductance and leaf traits in eight Southeast Asian early successional tree species – Forest Ecol Management 202: 245–256 – https://doi.org/10.1016/j.foreco.2004.07.021https://www.sciencedirect.com/science/article/pii/S0378112704005389 – (On our blog : https://plantstomata.wordpress.com/2019/03/16/leaf-size-might-be-a-good-predictor-for-maximal-stomatal-conductance-2/ )

Jung J.‐Y., Kim Y.‐W., Kwak J.M., Hwang J.‐U., Young J., Schroeder J. I., Hwang I., Lee Y. ( 2002) – Phosphatidylinositol 3‐ and 4‐phosphate are required for normal stomatal movements – The Plant Cell 14: 2399– 2412 – DOI: https://doi.org/10.1105/tpc.004143http://www.plantcell.org/content/14/10/2399 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/pi3p-and-pi4p-play-an-important-role-in-the-modulation-of-stomatal-closing/ )

Jurczyk B., Janowiak F., Rapacz M.,  (    ) – Variation in waterlogging-triggered stomatal behavior contributes to changes in the cold acclimation process in prehardened Lolium perenne and Festuca pratensis – https://www.academia.edu/29446157/Variation_in_waterlogging-triggered_stomatal_behavior_contributes_to_changes_in_the_cold_acclimation_process_in_prehardened_Lolium_perenne_and_Festuca_pratensis – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64806)

Jurenic I. (2016) – Natural variation in stomatal responsiveness of Arabidopsis thaliana plants grown at high and moderate relative humidity (MSc thesis) – Wageningen University & Research – https://www.wur.nl/en/article/Natural-variation-in-stomatal-responsiveness-of-Arabidopsis-thaliana-plants-grown-at-high-and-moderate-relative-humidity..htm – (On our blog : https://plantstomata.wordpress.com/2018/01/24/humidity-and-stomatal-responsiveness/ )

Kagan M. L., Sachs T. (1991) – Development of immature stomata: evidence for epigenetic selection of a spacing pattern – Dev. Biol. 146: 100-105 – https://doi.org/10.1016/0012-1606(91)90450-H – CrossRefMedlineWeb of ScienceGoogle Scholar – https://www.sciencedirect.com/science/article/pii/001216069190450H – (On our blog :  https://plantstomata.wordpress.com/2018/01/27/development-of-immature-stomata/ )

Kagan M. L., Novoplansky N., Sachs T. (1991) – Variable cell lineages form the functional pea epidermis – Annals of Botany 69: 303–312 –  https://doi.org/10.1093/oxfordjournals.aob.a088346 –https://academic.oup.com/aob/article-abstract/69/4/303/172678?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/16/an-intracellular-program-which-generates-stomatal-patterns-during-rather-than-preceding-development/ )

Kaiser H. (1999) – Die stomatäre Reaktion von Sambucus nigra und Aegopodium podagraria in Abhängigkeit von Licht und Luftfeuchte – PhD Thesis Christian-Albrechts-Universität zu Kiel 129 pp. – https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00000359/d359.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/27/die-stomatare-reaktion-in-abhangigkeit-von-licht-und-luftfeuchte/ )

Kaiser H. (2009) – The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll – Plant, Cell and Environment 32: 1091–1098 – doi: 10.1111/j.1365-3040.2009.01990.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2009.01990.x – (On our blog : https://plantstomata.wordpress.com/2018/09/22/the-relation-between-stomatal-aperture-and-gas-exchange/ )

Kaiser H., Eckstein J., Beyschlag W., Kappen L. (1999) – Variabilität stomatärer Aperturen bei Auftreten fleckenhafter Chlorophyllfluoreszenz – Bielefelder Ökologische Beiträge 14: 246–252 – (Article not found)

Kaiser H., Kappen L. (1997) – In situ observations of stomatal movements in different light‐dark regimes: the influence of endogenous rhythmicity and long‐term adjustments – Journal of Experimental Botany 48: 1583–1589 – https://doi.org/10.1093/jxb/48.8.1583 –https://academic.oup.com/jxb/article/48/8/1583/501886 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/the-influence-of-endogenous-rhythmicity-and-long%e2%80%90term-adjustments-on-stomatal-movements/ )

Kaiser H., Kappen L. (2000) – In-situ-observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey – Journal of Experimental Botany 51: 1741–1749 – DOI: 10.1093/jexbot/51.351.1741 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/In-situ-observations-of-stomatal-movements-of-Glycyrrhiza-inflata-under-desert-conditions-of-Glycyrrhiza-inflata-under-desert-conditions.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/16/76380/ )

Kaiser H., Kappen L. (2001) – Stomatal oscillations at small apertures: indications for a fundamental imperfection of stomatal feedback-control inherent in the stomatal turgor mechanism – Journal of Experimental Botany 52: 1303–1313 – https://doi.org/10.1093/jexbot/52.359.1303 –https://academic.oup.com/jxb/article/52/359/1303/510917 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/stomatal-oscillations-at-small-apertures/ )

Kaiser H. & Legner N. (2007) – Localization of mechanisms involved in hydropassive and hydroactive stomatal responses of Sambucus nigra to dry air – Plant Physiology 143: 1068–1077 – DOI: 10.1104/pp.106.089334 -https://www.ncbi.nlm.nih.gov/pubmed/17158586 – (On our blog : https://plantstomata.wordpress.com/2019/03/17/mechanisms-involved-in-hydropassive-and-hydroactive-stomatal-responses-to-dry-air/ )

Kaiser H., Paoletti E. (2014) – Dynamic stomatal changes. In: Tausz M, Grulke N (eds) Trees in a changing environment: ecophysiology, adaptation, and future survival . Springer, Dordrecht, Netherlands, pp 61–82.

Kala J., De Kauwe M. G., Pitman A. J., Medlyn B. E., Wang Y.-P., Lorenz R., Perkins-Kirkpatrick S. E. (2016) – Impact of the representation of stomatal conductance on model projections of heatwave intensity – Scientific Reports 6, Article number: 23418 – doi: 10.1038/srep23418 – https://www.nature.com/articles/srep23418 – (On our blog : https://plantstomata.wordpress.com/2019/03/26/impact-of-the-representation-of-stomatal-conductance-on-model-projections-of-heatwave-intensity/ )

Kalliola M., Jakobson L., Davidsson P., Pennanen V., Waszczak C., Yarmolinsky D., Zamora O., Tapio Palva E., Kariola T., Kollist H., Brosché M. (2019) – The role of strigolactones in regulation of stomatal conductance and plant-pathogen interactions in Arabidopsis thaliana – biorxiv – doi: https://doi.org/10.1101/573873https://www.biorxiv.org/content/10.1101/573873v2 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/the-role-of-strigolactones-in-regulation-of-stomatal-conductance/ )

Kamakura M., Kosugi Y., Muramatsu K., Muraoka H. (2011) – Simulations and observations of patchy stomatal behavior in leaves of Quercus crispula, a cool-temperate deciduous broad-leaved tree species – Journal of Plant Research 2011 – DOI:10.1007/s10265-011-0460-8 -https://www.semanticscholar.org/paper/Simulations-and-observations-of-patchy-stomatal-in-Kamakura-Kosugi/eb149e19ceb030c8489d52f5b24df359f5f1972a – (On our blog : https://plantstomata.wordpress.com/2019/03/15/patchy-stomatal-behavior-in-leaves/ )

Kamakura M., Kosugi Y., Takanashi S., Matsumoto K., Okumura M., Philip E. (2011) – Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees – Tree Physiology – DOI:10.1093/treephys/tpq102 –https://www.semanticscholar.org/paper/Patchy-stomatal-behavior-during-midday-depression-Kamakura-Kosugi/a534b058ab8042d8c5fad92a719fb4b13b08c668 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/patchy-stomatal-behavior-during-midday-depression-of-leaf-co%e2%82%82-exchange/ )

Kaminski K. P., Koerup K., Nielsen K. L., Liu F.,Topjerg H. B., Kirk H. G., Andersen M. N. (2014) – Gas-exchange, water use efficiency and yield responses of elite potato (Solanum tuberosum L.) cultivars to changes in atmospheric carbon dioxide concentration, temperature and relative humidity – Agricultural and Forest Meteorology 187: 36-45 – https://www.sciencedirect.com/science/article/pii/S0168192313003043 – (On our blog : https://plantstomata.wordpress.com/2018/08/29/stomatal-function-gas-exchange-water-use-efficiency-and-yield-responses-to-changes-in-atmospheric-co2-concentration-temperature-and-relative-humidity/ )

Kammer P. M., Steiner J. S., Schöb C. (2015) – Arabis alpina and Arabidopsis thaliana have different stomatal development strategies in response to high altitude pressure conditions – Alpine Botany, 125(2):101-112. – http://doi.org/10.5167/uzh-112101 – http://www.zora.uzh.ch/112101/– (On our blog : https://plantstomata.wordpress.com/2016/08/04/17522/)

Kamululdeen J., Yunusa I., Bruhl  J., Prychid C., Zerihun A. (2016) – Plasticity in stomatal density and morphology in okra and tomatoes in response to soil and water salinity, pp. 45-53. – http://doi.org/10.17660/ActaHortic.2016.1112.7 – (On our blog : https://plantstomata.wordpress.com/2016/08/09/17789/)

Kana T. M., Miller J. H. (1977) – Effect of colored light on stomatal opening rates of Vicia faba L. – Plant Physiol. 59: 181 183 – PMCID: PMC542360 – PMID: 16659812 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC542360/ – (On our blog : https://plantstomata.wordpress.com/2019/03/17/only-a-single-pigment-system-is-responsible-for-initiating-the-light-induced-opening-response-in-stomata/ )

Kanaoka M. M., Pillitteri L. J., Fujii H., Yoshida Y., Bogenschutz N. L., Takabayashi J., Zhu J-K., Torii K. U. (2008) – SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation – Plant Cell 20: 1775–1785 – 10.1105/tpc.108.060848. – PubMed CentralView ArticlePubMed – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/05/screamice1-and-scream2-and-stomatal-differentiation/)

Kanemasu E. T., Tanner C. B. (1969) – Stomatal diffusion resistance of snap beans. I. Influence of leaf-water potential – Plant Physiol. 44: 1547-1552 – DOI: https://doi.org/10.1104/pp.44.11.1547 – http://www.plantphysiol.org/content/44/11/1547 – (On lour blog : https://plantstomata.wordpress.com/2018/04/20/the-leaf-water-potential-and-stomatal-diffusion-resistance/ )

Kanemasu E. T., Thurtell G. W., Tanner C. B. (1969) – Design, calibration and field use of a stomatal diffusion porometer – Plant Physiol. 44: 881-885 – DOI: https://doi.org/10.1104/pp.44.6.881 http://www.plantphysiol.org/content/44/6/881 -(On our blog : https://plantstomata.wordpress.com/2018/04/19/a-stomatal-diffusion-porometer/ )

Kanemasu E. T., Tanner C. B. (1969) – Stomatal diffusion resistance of snap beans. II. Effect of light – Plant Physiol. 44: 1542-1546 – DOI 10.1104/pp.44.11.1542 – http://www.plantphysiol.org/content/44/11/1542 – (On our blog : https://plantstomata.wordpress.com/2018/04/20/the-effect-of-light-on-the-stomatal-resistance/ )

Kang C.-Y., Lian H.-L., Wang F.-F., Huang J.-R., Yang H.-Q. (2009) – Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis – Plant Cell 21: 26242641 – DOI: 10.1105/tpc.109.069765 –  Abstract/FREE Full TextGoogle Scholar – bstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/05/cryptochromes-phytochromes-cop1-and-stomatal-development/)

Kang X., Xu G., Lee B., Chen C., Zhang H., Kuang R., Ni M. (2018) – HRB2 and BBX21 interaction modulates Arabidopsis ABI5 locus and stomatal aperture – Plant, Cell & Environment – Online Version of Record  – https://doi.org/10.1111/pce.13336 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/pce.13336 – (On our blog : https://plantstomata.wordpress.com/2018/05/28/two-light-signalling-proteins-repress-aba-signalling-to-sustain-gas-exchange-during-periodic-drought/ )

Kang Y., Outlaw W. H. Jr., Andersen P. C., Fiore G. B. (2007) –  Guard-cell apoplastic sucrose concentration – a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. – Plant Cell Environ. 30, 551–558 – doi: 10.1111/j.1365-3040.2007.01635.x – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/17407533 – (On our blog : https://plantstomata.wordpress.com/2018/04/11/apoplastic-sucrose-concentration-and-stomatal-aperture-size/ )

Kang Y., Outlaw Jr. W. H., Fiore G .B., Riddle K .A. (2007) – Guard cell apoplastic photosynthate accumulation corresponds to a phloem-loading mechanism – J. Exp. Bot. 58: 4061-4070 – https://doi.org/10.1093/jxb/erm262 – https://academic.oup.com/jxb/article/58/15-16/4061/447689 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/differences-in-phloem-loading-mechanisms-predict-differences-in-the-in-planta-regulatory-environment-of-stomatal-guard-cells/

Kangasiärvi J. (2012) – Apoplastic ROS and stomatal signaling – processes and components involved – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/apoplastic-ros-and-stomatal-signaling/ )

Kappen L.Andresen G.Losch R. (1987) – In situ observations of stomatal movements. – Journal of Experimental Botany 38: 126141 – https://doi.org/10.1093/jxb/48.8.1583 – CrossRef |- https://www.jstor.org/stable/23691652?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/20/in-situ-observations-of-stomatal-movements/ )

Kappen L., Haeger S. (1991) – Stomatal responses of Tradescantia albiflora to changing air humidity in light and in darkness – J Exp Bot 42: 979–986 – https://doi.org/10.1093/jxb/42.8.979 – https://academic.oup.com/jxb/article-abstract/42/8/979/706528?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/17/stomatal-responses-to-changing-air-humidity-in-light-and-in-darkness/ )

Karabourniotis G., Tzobanoglou D., Nikolopoulos D., Liakopoulos G. (2001) – Epicuticular phenolics over guard cells: exploitation for in situ stomatal counting by fluorescence microscopy and combined image analysis. – Ann. Bot. 87: 631–639 – https://doi.org/10.1006/anbo.2001.1386 –  [Cross Ref] – https://www.sciencedirect.com/science/article/pii/S0305736401913861 – (On our blog : https://plantstomata.wordpress.com/2018/04/21/in-situ-stomatal-counting-by-fluorescence-microscopy-and-combined-image-analysis/

Kareltschikoff S. (1866) – Ueber die Verteilung der Spaltöffnungen auf den Blättern – Bull. Soc. imp. naturalistes de Moscou. –

Kardel F., Wuyts K., Babanezhad M., Vitharana U. W. A.,Wuytack T., Potters G., Samson R. (2010) – Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. – Environmental pollutionISSN 0269-7491158:3(2010), p. 788-794 – https://doi.org/10.1016/j.envpol.2009.10.006 – https://www.sciencedirect.com/science/article/pii/S0269749109004862 – (On our blog : https://plantstomata.wordpress.com/2018/04/11/stomatal-density-and-stomatal-pore-surface-potentially-good-bio-indicators-for-urban-habitat-quality/

Karlsson P. E. (1986) – Blue light regulation of stomata in wheat seedlings. I. Influence of red background illumination at initial conductance level – Physiologia Plantarum 66: 202-220 – https://doi.org/10.1111/j.1399-3054.1986.tb02409.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb02409.x – (On our blog : https://plantstomata.wordpress.com/2018/09/14/red-background-illumination-increased-the-sensitivity-of-the-stomatal-conductance-response-to-low-intensity-blue-light/ )

Karlsson P. E. (1986) – Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism – https://doi.org/10.1111/j.1399-3054.1986.tb02410.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb02410.x – (On our blog : https://plantstomata.wordpress.com/2018/12/03/the-blue-light-response-of-wheat-stomata-did-not-exhibit-action-dichroism/

Karlsson P. E. (1988) – Phytochrome is not involved in the red-light-enhancement of the stomatal blue-light-response in wheat seedlings. Physiol Plant 74: 544-548 – https://doi.org/10.1111/j.1399-3054.1988.tb02016.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1988.tb02016.x – (On our blog : https://plantstomata.wordpress.com/2018/12/03/red%e2%80%90light%e2%80%90enhancement-of-the-stomatal-blue%e2%80%90light%e2%80%90response-in-wheat-seedlings-does-not-involve-a-change-in-the-photostationary-state-of-phytochrome/ )

Karlsson P. E., Assmann S. M. (1990) – Rapid and specific modulation of stomatal conductance by blue-light in ivy (Hedera helix): an approach to assess the stomatal limitation of carbon assimilation. – Plant Physiol 94: 440–447 [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/02/15/the-blue-light-response-of-stomata/

Karlsson P. E., Bogomolni R. A., Zeiger E. (1992) – High performance liquid chromatography of pigments from guard cell protoplasts and mesophyll tissue of Vicia faba L. – Photochemistry and Photobiology 55: 605-610 – https://doi.org/10.1111/j.1751-1097.1992.tb04283.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1992.tb04283.x – (On our blog : https://plantstomata.wordpress.com/2019/04/29/chromatography-of-pigments-from-guard-cell-protoplasts/ )

Karlsson P. E., Schwartz A. (1988) – Characterisation of the effects of metabolic inhibitors, ATPase inhibitors and a potassium-channel blocker on stomatal opening and closing in isolated epidermis of Commelina communis L. – Plant, Cell Environm. 11: 165-172 – https://doi.org/10.1111/j.1365-3040.1988.tb01133.x-https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1988.tb01133.x – (On our blog : https://plantstomata.wordpress.com/2019/05/06/the-effects-of-metabolic-inhibitors-atpase-inhibitors-and-a-potassium-channel-blocker-on-stomatal-opening-and-closing/ )

Karvé A. (1959/1961) – Die Wirkung verschiedener Lichtqualitäten auf die Öffnungsbewegung der Stomata – Z. Bot. 49: 47-72 (Book: not found)

Kastori R., Petrović M. (1972) – The effect of some biogenic elements on the stomatal apparatus in maize plants – Matica srpska Novi Sad 42: 124-135 – (Article not found)

Katul G., Manzoni S., Palmroth S., Oren R. (2010) – A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. – Ann Bot 105: 431–442 – doi:  10.1093/aob/mcp292 – CrossRef PubMed PubMedCentral Google Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826246/ – (On our blog : https://plantstomata.wordpress.com/2018/04/20/a-stomatal-optimization-theory/

Katul G .G., Palmroth S., Oren R. (2009) – Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. – Plant, Cell & Environment 32: 968979 – https://doi.org/10.1111/j.1365-3040.2009.01977.x – Wiley Online LibraryCAS | – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.01977.x – (On our blog : https://plantstomata.wordpress.com/2018/04/23/leaf-stomatal-responses-to-vapour-pressure-deficit-under-current-and-co2-enriched-atmosphere/ )

Kaufman P. B., Cacsell S. J. (1963) – Striking features in the development of internodal epidermis in the oat plant (Avena sativa) – Michigan Bot. 2: 115-121. (Article not found)

Kaufman P. B.Petering L. B.Yocum C. S.Baic D. (1970) – Ultrastructural studies on stomata development in internodes of Avena sativa. – Amer. J. Bot. 57, 3349. – Google Scholar – http://www.jstor.org/stable/pdf/2440378.pdf?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/13/ultrastructural-studies-on-stomata-development-in-oat-internodes/ )

Kaufman P. B.Petering L. B., Soni S. L. (1971) – Ultrastructural studies on cellular differentiation in internodal epidermis of Avena sativa – Phytomorphology 20 (3): 281-309 – (On our blog : https://plantstomata.wordpress.com/2017/03/20/ultrastructural-studies-on-stomata-in-avena-monocots/)

Kaufmann K. (1927) – Anatomie und Physiologie der Spaltöffnungsapparate mit verholtzten Schliesszellmembranen – Planta 3: 27-59

Kaufmann M. R.  (1976) – Stomatal response of Engelmann spruce to humidity, light, and water stress. – Plant Physiol 57: 898-901 – DOI: https://doi.org/10.1104/pp.57.6.898 – http://www.plantphysiol.org/content/57/6/898 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/stomatal-response-to-humidity-light-and-water-stress/ )

Kaufmann M. R. (1979) – Stomatal control and development of water deficit in Engelmann spruce seedlings during drought. – Can J Forest Res 9 : 297-304 – https://doi.org/10.1139/x79-051 – http://www.nrcresearchpress.com/doi/10.1139/x79-051 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/stomatal-control-and-development-of-water-deficit-during-drought/ )

Kaufmann M. R.  (1982a) – Leaf conductance as a function of photosynthetic photon flux density and absolute humidity difference from leaf to air. – Plant Physiol. 69: 1018-1022 – DOI: https://doi.org/10.1104/pp.69.5.1018 – http://www.plantphysiol.org/content/69/5/1018 – (On our blog : https://plantstomata.wordpress.com/2018/04/30/ppfd-and-dah-are-primary-factors-controlling-stomatal-function/ )

Kaufmann M. R. (1982 b) – Evaluation of season, temperature, and water stress effects on stomata using a leaf conductance model – Plant Physiol.  69: 1023-1026 – DOI: https://doi.org/10.1104/pp.69.5.1023 – http://www.plantphysiol.org/content/69/5/1023 – (On our blog : https://plantstomata.wordpress.com/2018/04/23/season-temperature-and-water-stress-effects-on-stomata/ )

Kaufmann M. R., Eckard A. N. (1977) – A portable instrument for rapidly measuring conductance and transpiration of conifers and other species. – Forest Sci 23 : 227-237 – https://doi.org/10.1093/forestscience/23.2.227 – https://academic.oup.com/forestscience/article-abstract/23/2/227/4675809?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/04/20/an-improved-porometer/ )

Kaufmann M. R., Levy Y. (1976) – Stomatal response of Citrus jambhiri to water stress and humidity – Physiol. Plant. 38: 105-108 –  https://doi.org/10.1111/j.1399-3054.1976.tb04867.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1976.tb04867.x – (On our blog : https://plantstomata.wordpress.com/2018/04/20/stomatal-response-to-water-stress-and-humidity/ )

Kaufman P. B., Dayanandan P. (1975) – Stomatal movements associated with potassium fluxes – Amer. J. Bot. 62(3): 221- 231 – DOI: 10.1002/j.1537-2197.1975.tb12347.x – https://www.researchgate.net/publication/322860579_STOMATAL_MOVEMENTS_ASSOCIATED_WITH_POTASSIUM_FLUXES – (On our blog : https://plantstomata.wordpress.com/2018/11/12/potassium-fluxes-associated-with-stomatal-movements/ )

Kaufman P. B., Petering L. B., Yocum C. S., Baic D. (1970) –  Ultrastructural studies on stomatal development in internodes of Avena sativa – American Journal of Botany 57: 33–49 – https://doi.org/10.1002/j.1537-2197.1970.tb09789.x –https://app.dimensions.ai/details/publication/pub.1100715290 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/ultrastructural-studies-on-stomatal-development-in-internodes/ )

Kazama H., Mineyuki Y. (1997) – Alteration of division polarity and preprophase band orientation in stomatogenesis by light – Journal of Plant Research 110: 489–493 – https://doi.org/10.1007/BF02506810https://link.springer.com/article/10.1007/BF02506810 – (On our blog : https://plantstomata.wordpress.com/2019/05/06/alteration-of-division-polarity-and-preprophase-band-orientation-in-stomatogenesis-by-light/ )

Kazama H., Sugimoto K., Suzuki R. (1995) – Nuclear migration mechanism of the stomatal subsidiary mother cell of hypocotyl epidermis of Cucumis sativus L. – Journal of Cell Biochemistry 21A: 241 – (Article not found)

Kearns E. V., Assmann S. M. (1993) – Update on guard‐cells: The guard cell-environment connection – Plant Physiol. 102: 711–715 – DOI: 10.1104/pp.102.3.711 – http://www.plantphysiol.org/content/102/3/711 –  (On our blog : https://plantstomata.wordpress.com/2019/03/17/the-stomatal-guard-cell-environment-connection/ )

Kebeish R., Niessen M., Oksaksin M., Blume C., Peterhaensel C. (2012) – Constitutive and dark-induced expression of Solanum tuberosum phosphoenolpyruvate carboxylase enhances stomatal opening and photosynthetic performance of Arabidopsis thaliana – Biotechnology and Bioengineering 109(2): 536-544 – DOI: 10.1002/bit.23344 – PubMed – https://www.researchgate.net/publication/51682200_Constitutive_and_darkinduced_expression_of_Solanum_tuberosum_phosphoenolpyruvate_carboxylase_enhances_stomatal_opening_and_photosynthetic_performance_of_Arabidopsis_thaliana – (On our blog : https://plantstomata.wordpress.com/2016/04/02/phosphoenolpyruvate-carboxylase-enhances-stomatal-opening/)

Keel S. G., Pepin S., Leuzinger S., Korner C. (2007) – Stomatal conductance in mature deciduous forest trees exposed to elevated CO2 – Trees 21: 151-159 – (http://link.springer.com/article/10.1007%2Fs00468-006-0106-y) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/co2-effects-on-stomata-of-mature-deciduous-forest-trees/).

Keerthisinghe S,   Nadeau J. A., Lucas J. R., Nakagawa T., Sack F. D. (2015) – The Arabidopsis leucine-rich repeat receptor-like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis. -The Plant Journal 8(5): 684 – 694 – DOI: 10.1111/tpj.12757 – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-81-i-5-tpj12757 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/mustaches-enforces-stomatal-bilateral-symmetry/)

Kelle A. (1934) – Zur Physiologie der Nebenzellen des Spaltöffnungsapparates. – Diss. Münster

Keller B. U., Hedrich R., Raschke K. (1989) – Voltage-dependent anion channels in the plasma membrane of guard cells. – Nature  341: 450–453. – CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/05/anion-channels-in-the-plasma-membrane-of-stomata/)

Keller T., Häsler R. (1984) – The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir – Oecologia (Berl) 64: 284–286 – https://doi.org/10.1007/BF00376884https://link.springer.com/article/10.1007/BF00376884#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/29/influence-of-a-fall-fumigation-with-ozone-on-the-stomatal-behavior/ )

Keller T., Häsler R. (1987) – Some effects of long-term ozone fumigations on Norway spruce. I. Gas exchange and stomatal response – Trees 1: 129–133 – https://doi.org/10.1007/BF00203581https://link.springer.com/article/10.1007/BF00203581 – (On our blog : https://plantstomata.wordpress.com/2019/04/29/long-term-ozone-fumigations-and-stomatal-response/ )

Kelliher F. M., Kirkham M. B., Tauer C. G. (1980) – Stomatal resistance, transpiration, and growth of drought-stressed eastern cottonwood – Can. J. For. Res. 10: 447-451 –  DOI: 10.1139/x80-073 – https://www.researchgate.net/publication/237867649_Stomatal_resistance_transpiration_and_growth_of_drought-stressed_eastern_cottonwood – (On our blog : https://plantstomata.wordpress.com/2019/04/29/stomatal-resistance-transpiration-and-growth-of-drought-stressed-eastern-cottonwood/ )

Kellomäki S., Wang K.-Y. (1997) – Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine. – Plant Cell Environ. 20: 995–1006 – doi: 10.1111/j.1365-3040.1997.tb00676.x – https://doi.org/10.1016/S0269-7491(97)00084-5CrossRef Full Text | Google Scholar https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1997.tb00676.x – (On our blog : https://plantstomata.wordpress.com/2018/04/30/elevated-o3-and-co2-concentrations-and-stomatal-conductance/ )

Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z.Belausov E., Granot D. (2013) – Hexokinase mediates stomatal closure. – Plant Journal 75: 977988 (2013)  – doi: 10.1111/tpj.12258 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-75-i-6-tpj12258 – (On our blog: https://plantstomata.wordpress.com/2017/10/22/surplus-sucrose-is-carried-toward-the-stomata-by-the-transpiration-stream-and-stimulates-stomatal-closure-via-hxk/)

Kelly W. B., Esser J. E., Schroeder J. I. (1995) – Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant J. 8:479–489. – CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/05/cytosolic-calciumg-protein-modulators-and-stomata/)

Kennard J. L., Cleary A. L. (1997) – Pre-mitotic nuclear migration in subsidiary mother cells of Tradescantia occurs in G1 on the cell cycle and requires F-actin – Cell Motility and Cytoskeleton 36: 55–67 – https://doi.org/10.1002/(SICI)1097-0169(1997)36:1<55::AID-CM5>3.0.CO;2-G –https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0169%281997%2936%3A1%3C55%3A%3AAID-CM5%3E3.0.CO%3B2-G – (On our blog : https://plantstomata.wordpress.com/2019/04/29/pre-mitotic-nuclear-migration-in-subsidiary-mother-cells-of-stomata/ )

Kenzo T., Yoneda R., Sano M., Araki M., Shimizu A., Tanaka-Oda A., Chann S. (2012) – Variations in Leaf Photosynthetic and Morphological Traits with Tree Height in Various Tree Species in a Cambodian Tropical Dry Evergreen Forest – Japan Agricultural Research Quarterly: JARQ; ISSN:0021-3551; Vol.46; No.2: 167-180. (https://www.jstage.jst.go.jp/article/jarq/46/2/46_2_167/_pdf) – (On our blog : https://plantstomata.wordpress.com/2015/04/16/stomata-and-tree-height/).

Kerl H. W. (1929) – Beitrag zur Kenntnis der Spaltöffnungsbewegung – Planta 9: 407-463 –

Kerstiens G. (1996) – Diffusion of water vapour and gases across cuticles and through stomatal pores presumed closed. – In: Kerstiens, G. (ed.): Plant Cuticles – An Integrated Functional Approach. Pp. 121-134. BIOS Scientific Publishers, Oxford 1996

Kerstiens G. (1997) – In vivo manipulation of cuticular water permeance and its effect on stomatal response to air humidity – New Phytologist 137: 473–480 – https://doi.org/10.1046/j.1469-8137.1997.00847.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.1997.00847.x – (On our blog : https://plantstomata.wordpress.com/2019/04/29/cuticular-water-permeance-and-its-effect-on-stomatal-response-to-air-humidity/ )

Kerstiens G., Tych W., Robinson M. F., Mansfield T. A. (2002) Sodium-related partial stomatal closure and salt tolerance of Aster tripolium – New Phytologist, 153(3): 509-515 – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00330.x/full – (On our blog : https://plantstomata.wordpress.com/2016/07/05/na-stomata-and-salt-tolerance/)

Ketellapper H. J. (1959) – The mechanism of stomatal movement – Amer. Jour. Bot.  46(3): 225-231 – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stomatal-movement-mechanism/)

Ketellapper H. J. (1963) – Stomatal physiology – Annual Rev. Pl. Physiol. 14: 249-270 – https://doi.org/10.1146/annurev.pp.14.060163.001341 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.14.060163.001341?journalCode=arplant.1 – (On our blog : https://plantstomata.wordpress.com/2018/04/30/stomatal-physiology-2/  )

Kambhampati R. (2012) – Structure of stomata of leaves and their working mechanism – India Study Channel – http://www.indiastudychannel.com/resources/151733-Structure-Of-Stomata-Of-Leaves-And-Their-Working-Mechanism.aspx – (On our blog : https://plantstomata.wordpress.com/2017/12/21/stomata-and-their-working-mechanism/)

Khalil A. M., Grace J. (1993) – Does xylem sap ABA control the stomatal behaviour of water stressed Sycamore (Acer pseudoplatanus L.) seedlings? –Journal of Experimental Botany 44: 1127-1134 – https://doi.org/10.1093/jxb/44.7.1127 –https://academic.oup.com/jxb/article-abstract/44/7/1127/480326?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/04/does-xylem-sap-aba-control-the-stomatal-behaviour/ )

Khan F., Yousaf Z., Ahmed H. S., Arif A., Rehman H. A., Younas A., Rashid M., Tariq Z., Raiz N. (2014) – Stomatal Patterning: An Important Taxonomic Tool for Systematical Studies of Tree Species of Angiosperm – Annual Research & Review in Biology 4(24): 4034-4053 – http://www.journalrepository.org/media/journals/ARRB_32/2014/Jul/Khan4242014ARRB10073_1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/08/stomatal-patterning-as-an-important-taxonomic-tool/)

Khan M., Rozhon W., Bigeard J., Pflieger D., Husar S., Pitzschke A., Teige M., Jonak C., Hirt H., Poppenberger B. (2013) – Brassinosteroid-regulated GSK3/Shaggy-like Kinases phosphorylate mitogen-activated protein (MAP) Kinase Kinases, which control stomata development in Arabidopsis thaliana. – Journal of Biological Chemistry 288: 75197527 – doi:10.1074/jbc.M112.384453 – http://www.jbc.org/content/288/11/7519.full – (On our blog : https://plantstomata.wordpress.com/2018/04/23/bin2-phosphorylates-mkk4-which-inhibits-its-activity-against-mpk6-in-a-mapk-module-that-controls-stomata-patterning/

Khazaei H., Monneveux P., Hongbo S., Mohammady S. (2010) – Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet. Resour. Crop Evol., 57: 307-314. (http://link.springer.com/article/10.1007%2Fs10722-009-9471-x) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/water-use-efficiency-and-stomatal-characteristics/ ).

Khazaei H., O’Sullivan, Silanpää M. J., Stoddard F. L. (2014) – Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.) – DOI: 10.1007/s00122-014-2383-y – https://www.researchgate.net/publication/265342275_Use_of_synteny_to_identify_candidate_genes_underlying_QTL_controlling_stomatal_traits_in_faba_bean_Vicia_faba_L – (On our blog : https://plantstomata.wordpress.com/2016/11/16/synteny-and-identification-of-candidate-genes-underlying-qtl-controlling-stomatal-traits/ )

Khazaei H., Street K., Santanen A., Bari A., Stoddard F. L. (2013) – Do faba bean (Vicia faba L.) accessions from environments with contrasting seasonal moisture availabilities differ in stomatal characteristics and related traits? – Genet. Resour. Crop Evol. (2013) 60: 2343. – doi:10.1007/s10722-013-0002-46363 – http://link.springer.com/article/10.1007%2Fs10722-013-0002-4 – (On our blog : https://plantstomata.wordpress.com/2016/11/16/stomatal-characteristics-and-the-environment/ )

Khokon M. A. R., Hossain M. A., Munemasa S., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2010) – Yeast elicitor-induced stomatal closure and peroxidase- mediated ROS production in Arabidopsis – Plant Cell Physiol. 51: 1915–1921 – doi: 10.1093/pcp/pcq145 – https://www.ncbi.nlm.nih.gov/pubmed/20876608 – (On our blog : https://plantstomata.wordpress.com/2018/04/23/yel-induces-stomatal-closure-accompanied-by-ros-production-mediated-by-peroxidases-and-no-production/ )

Khokon M., Jahan M. S., Rahman T., Hossain M. A., Muroyama D., Minami I., Munemasa S, Mori I. C., Nakamura Y, Murata Y.(2011) – Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. – Plant Cell Environ. 34: 1900–1906. – 10.1111/j.1365-3040.2011.02385.x – [PubMed] [Cross Ref] – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2011.02385.x – (On our blog : https://plantstomata.wordpress.com/2018/04/24/aitc-induces-stomatal-closure/ )

Khokon M. A. R., Okuma E., Hossain M. A., Munemasa S., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2011) – Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. – Plant Cell Environ. 34, 434–443. doi: 10.1111/j.1365-3040.2010.02253.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog :  https://plantstomata.wordpress.com/2016/07/06/salicylic-acid-induced-stomatal-closure/)

Khokon M. A. R., Salam M. A., Jammes F., Ye W., Hossain M. A., Uraji M., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2015) – Two guard cell MAPKs, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana – Plant Biology (Stuttg) 17, 946–952. doi: 10.1111/plb.12321 PubMed Abstract | CrossRef Full Text | Google Scholar –  (https://plantstomata.wordpress.com/page/11/). – (On our blog : https://plantstomata.wordpress.com/2015/02/19/stomatal-closure-in-arabidopsis-thaliana/ ).

Khokon M. A. R.,  Salam M. A., Jammes F., Ye W., Hossain M. A., Okuma E., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2017) – MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana – Bioscience Biotechnology and Biochemistry 81(7):1-7 – DOI: 10.1080/09168451.2017.1308244 – https://www.researchgate.net/publication/315826548_MPK9_and_MPK12_function_in_SA-induced_stomatal_closure_in_Arabidopsis_thaliana – (On our blog : https://plantstomata.wordpress.com/2018/08/14/mpk9-and-mpk12-are-positive-regulators-of-sa-signaling-in-stomata/ )

Khokon M. A. R., Uraji M., Munemasa S., Okuma E., Nakamura Y., Mori I. C., et al. (2010) – Chitosan-induced stomatal closure accompanied by peroxidase- mediated reactive oxygen species production in Arabidopsis. – Biosci. Biotechnol. Biochem. 74, 2313–2315. – doi: 10.1271/bbb.100340 – https://www.ncbi.nlm.nih.gov/pubmed/21071853 – (On our blog : https://plantstomata.wordpress.com/2018/05/02/chitosan-induces-ros-production-mediated-by-peroxidase-resulting-in-stomatal-closure/ )

Kilic S. (2009) –  Anatomical and Pollen Characters in the Silene L. (Caryophyllaceae) from Turkey. Botany Research Journal 2: 34-44 – http://medwelljournals.com/abstract/?doi=brj.2009.34.44  – (On our blog : https://plantstomata.wordpress.com/2018/03/27/stomata-in-the-silene-caryophyllaceae/ )

Kim D. J., Lee J. S. (2007) – Current theories for mechanism of stomatal opening: Influence of blue light: Mesophyll cells and sucrose – J. Plant Biol. 50: 523-556. (http://link.springer.com/article/10.1007%2FBF03030704) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/mechanism-of-stomatal-opening/ ).

Kim H., Lee S. J. (xxxx) – Stomata‐Inspired Membrane Produced Through Photopolymerization Patterning – Advanced Functional Materials 25(28): 4496 – 4505 – DOI10.1002/adfm.201501445 – https://www.infona.pl/resource/bwmeta1.element.wiley-adfm-v-25-i-28-adfm201501445 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/a-stomata%e2%80%90inspired-membrane/)

Kim J., Verma S. (1991) – Modelling canopy stomatal conductance in a temperate grassland ecosystem – Agric Forest Meteorol. 55: 149–166 – doi: 10.1016/0168-1923(91)90028-O – https://www.sciencedirect.com/science/article/pii/016819239190028O – (On our blog : https://plantstomata.wordpress.com/2019/05/06/modelling-canopy-stomatal-conductance/ )

Kim J. S., Jeong W. G., Sung M. W. (1987) – Effects of abscisic acid on the epidermal structure and ontogeny of stomata in Orostachys malacophyllus leaves -Korean Journal of Botany 30(1): 21-30 –
https://eurekamag.com/research/005/287/005287395.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/effects-of-aba-on-the-epidermal-structure-and-stomata/ )

Kim M., Hepler P. K., Eun S. O., Ha K. S., Lee Y. (1995) – Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. – Plant Physiol. 109: 1077–1084 –  [PMC free article] [PubMed] – (On our blog https://plantstomata.wordpress.com/2016/07/06/microfilaments-participate-in-stomatal-aperture-regulation/ )

Kim S.-H., Lieth J. H. (2003) – A Coupled Model of Photosynthesis, Stomatal Conductance and Transpiration for a Rose Leaf (Rosa hybrida L.)  – Annals of Botany 91(4): 771-781 – https://doi.org/10.1093/aob/mcg080 –https://academic.oup.com/aob/article/91/7/771/177691 – (On our blog : https://plantstomata.wordpress.com/2019/03/22/a-coupled-model-of-photosynthesis-stomatal-conductance-and-transpiration/ )

Kim S. J., Hahn E. J., Heo J. W., Paek K. Y. (2004) – Effects of LEDs on net photosynthetic rate, growth and leaf stomata of Chrysantemum plantlets in vitro – Sci. Hort,  101: 143- 151 – https://doi.org/10.1016/j.scienta.2003.10.003 – (On our blog : https://plantstomata.wordpress.com/2018/04/24/effects-of-leds-on-stomata/ )

Kim T. H., Böhmer M., Hu H. H., Nishimura N., Schroeder J. I. (2010) – Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. – Annu. Rev. Plant Biol. 61: 561-591 -doi: 10.1146/annurev-arplant-042809-112226 – PubMed Abstract | CrossRef Full Text | Google Scholar – (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/16/abscisic-acid-co2-and-ca2-signaling-in-stomata/).

Kim T. W., Michniewicz M., Bergmann D. C., Wang Z. Y. (2012) – Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. – Nature 482: 419-422 – 10.1038/nature10794. – PubMed Abstract | Publisher Full Text – (On our blog : https://plantstomata.wordpress.com/2015/10/27/regulation-of-stomatal-development-by-brassinosteroid/).

Kim T. W., Youn J. H.Park T. K.Kim E. J.Park C. H.Wang Z. Y.Kim S. K.Kim T. W. (2018) – OST1 activation by the brassinosteroid-regulated kinase CDG1-LIKE1 in stomatal closure – Plant Cell 30: 1848-1863 – DOI: https://doi.org/10.1105/tpc.18.00239 – http://www.plantcell.org/content/30/8/1848 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/a-cell-type-specific-br-signaling-branch-through-which-br-acts-synergistically-with-aba-in-regulating-stomatal-closure/ )

Kimmerer T. W., Kozlowski T. T. (1981) – Stomatal Conductance and Sulfur Uptake of Five Clones of Populus tremuloides Exposed to Sulfur Dioxide – Plant Physiology – DOI: https://doi.org/10.1104/pp.67.5.990http://www.plantphysiol.org/content/67/5/990.short – (On our blog : https://plantstomata.wordpress.com/2019/03/22/stomatal-conductance-is-important-in-determining-relative-susceptibility-of-the-poplar-clones-to-pollution-stress/ )

Kingori G. G., Nyamori A. J., Khasungu I. D. (2016) – Improving Seed Potato Leaf Area Index, Stomatal Conductance and Chlorophyll Accumulation Efficiency through Irrigation Water, Nitrogen and Phosphorus Nutrient Management – Journ. Agric. Studies 4(1): – DOI: https://doi.org/10.5296/jas.v4i1.8908 –http://www.macrothink.org/journal/index.php/jas/article/view/8908 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/improving-stomatal-conductance-efficiency-through-irrigation-water-nitrogen-and-phosphorus-nutrient-management/ )

Kinoshita T. (2018) – Video Showing Rose Leaves Sprayed with Various Stomata Closing Compounds Over Time (VIDEO) – Plant & Cell Physiologyhttps://www.eurekalert.org/multimedia/pub/167365.php – (On our blog : https://plantstomata.wordpress.com/2018/04/09/various-stomata-closing-compounds/ )

Kinoshita T., Doi M., Suetsugu N., Kagawa T., Wada M., Shimazaki K. (2001) – phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414: 656–660. –  doi:10.1038/414656a – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/06/phot1-and-phot2-act-redundantly-as-blue-light-receptors-mediating-stomatal-opening/)

Kinoshita T., Emi T., Tominaga M., Sakamoto K., Shigenaga A., Doi M., Shimazaki K.-i. (2003) – Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. – Plant Physiol. 133, 1453–1463. – doi: 10.1104/pp.103.029629 – EMBO J 18: 5548–5558. – DOI: 10.1093/emboj/18.20.5548 – PubMedArticleCAS – (On our blog : https://plantstomata.wordpress.com/2016/07/06/bl-activates-the-plasma-membrane-h-atpase-via-phosphorylation-of-the-c-terminus-by-a-serinethreonine-protein-kinase/)

Kinoshita T., Nishimura M., Shimazaki K.-I. (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. – Plant Cell, 7, 13331342. – DOI: 10.1105/tpc.7.8.1333 – CrossRef |PubMed | – (On our blog : https://plantstomata.wordpress.com/2016/07/06/ca2-regulates-the-activity-of-plasma-membrane-h-atpases-in-stomata/)

Kinoshita T., Ono N., Hayashi Y., Morimoto S., Nakamura S., Soda M., Kato Y., Ohnishi M., Nakano T., Inoue S.-i., Shimazaki K.-i. (2011) – FLOWERING LOCUS T Regulates Stomatal Opening – Current Biology 21(14): 1232-1238 – DOI10.1016/j.cub.2011.06.025 – https://www.infona.pl/resource/bwmeta1.element.elsevier-8b4022b4-fdb4-3ca8-96be-fd68e7850c2e – (On our blog : https://plantstomata.wordpress.com/2017/10/25/flowering-locus-t-ft-is-expressed-in-guard-cells-and-regulates-stomatal-opening/)

Kinoshita T., Shimazaki K. (1999) – Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. –  – CASPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/07/06/binding-of-a-14-3-3-protein-to-phototropins-in-stomatal-guard-cells/)

Kinoshita T., Shimazaki K. I. (2001) – Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin – Plant Cell Physiol. 42: 424–432 – doi: 10.1093/pcp/pce055 – https://www.ncbi.nlm.nih.gov/pubmed/11333314 – (On our blog : https://plantstomata.wordpress.com/2018/04/24/fusicoccin-and-the-phosphorylation-level-in-stomatal-plasma-membrane-h-atpase/ )

Kinoshita T., Shimazaki K. (2002) – Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light – Plant Cell Physiol. 43: 1359–1365 – https://doi.org/10.1093/pcp/pcf167 –https://academic.oup.com/pcp/article/43/11/1359/1934953 – (On our blog : https://plantstomata.wordpress.com/2019/05/02/requirement-of-14-3-3-protein-binding-in-activation-of-the-stomatal-guard-cell-plasma-membrane-h-atpase-by-blue-light/ )

Kirkham M. B. (2005) – Stomatal and Measurement of Stomatal Resistance – Principles of soil and plant water relations 2005: 379-401 – https://doi.org/10.1016/B978-012409751-3/50022-0https://www.sciencedirect.com/science/article/pii/B9780124097513500220 – (On our blog : https://plantstomata.wordpress.com/2019/02/13/measurement-of-stomatal-resistance/ )

Kirkham M. B. (2014) – Stomata and measurement of stomatal resistance – In : Principles of Soil and Plant Water Relations (Second Edition), – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/guard-cell – (On our blog : https://plantstomata.wordpress.com/2019/04/14/stomata-and-stomatal-resistance/ )

Kirkham M. B. (2014) – Chapter 24 – Stomatal anatomy and stomatal resistance in: Principles of soil and plant water relations (2nd. ed.) – Academic Press 2014: 431-445 — https://doi.org/10.1016/B978-0-12-420022-7.00024-0 –   https://www.sciencedirect.com/science/article/pii/B9780124200227000240 (On our blog : https://plantstomata.wordpress.com/2017/09/26/soil-and-plant-water-relations/)

Kirschbaum M. U .F., Gross L. J., Pearcy R. W. (1988) – Observed and modelled stomatal responses to dynamic light environments in the shade plant AIocasia macrorrhiza – Plant, Cell & Environment 11: 111121 – DOI 10.1111/1365-3040.ep11604898 – https://www.researchgate.net/publication/227936493_Observed_and_modelled_stomatal_responses_to_dynamic_light_environments_in_the_shade_plant_AIocasia_macrorrhiza – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomatal-responses-to-dynamic-light-environments/ )

Kirschbaum M. U. F., Kuppers M., Schneider H., Giersch C., Noe S. (1998) – Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates. – Planta 204: 1626. – CrossRefCAS | – https://link.springer.com/article/10.1007%2Fs004250050225 – (On our blog : https://plantstomata.wordpress.com/2018/05/02/a-model-of-photosynthesis-showing-responses-of-net-assimilation-rate-and-stomatal-conductance-to-constant-light-levels-and-different-co2-concentrations/ )

Kirschbaum M. U. F., Pearcy R. W. (1988) – Gas exchange analysis of the relative importance of stomatal and biochemical factors in photosynthetic induction in Alocasia macrorrhiza – Plant Physiol. 86: 782–785 – PMCID: PMC1054570 – PMID: 16665988 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1054570/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/the-relative-importance-of-stomatal-and-biochemical-factors-in-photosynthetic-induction/ )

Kiselevsky D. B., Kuznetsova Y. E., Vasil’ev L. A., Lobysheva N. V., Zinovkin R. A., Nesov A. V., Shestak A. A., Samuilov V. D. (2010) – Effect of Ca2+ on programmed death of guard and epidermal cells of pea leaves – Biochemistry 75(5): 614–622 – https://doi.org/10.1134/S0006297910050111https://link.springer.com/article/10.1134%2FS0006297910050111#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/14/effect-of-ca2-on-programmed-death-of-stomatal-guard-cells/ )

Kisselew N. N. (1925) – Veränderung der Durchlässigkeit des Protoplasmas der Schliesszellen im Zusammenhange mit stomatären Bewegungen – Beih. Bot. Centralbl. 41 (I): 287-306 –

Kisselew N. N. (1928) – Der Temperatureinfluss auf die Stärkehydrolyse in Mesophyll- und Schliesszellen – Planta 6(1): 135-161 –

Kitano M., Eguchi H. (1989) – Dynamic analysis of stomatal responses by an improved method of leaf heat balance – Environmental and Experimental Botany -29(2): 175-185 – https://doi.org/10.1016/0098-8472(89)90050-6 –https://www.sciencedirect.com/science/article/abs/pii/0098847289900506 – (On our blog : https://plantstomata.wordpress.com/2019/04/03/the-improved-heat-balance-method-was-applicable-for-analysis-of-dynamic-stomatal-responses-to-the-environment/ )

Kleiber H., Mohr H. (1963) – Der Einfluss sichtbaber Strahlung auf die Stomata-Bildung in der Epidermis der Kotyledonen von Sinapis alba. L. – Z. Bot.52: 78–85 – (Article not found)

Klein A., Itai C. (1989)  Is proline involved in stomata regulation of Commelina communis plants recovering from salinity stress? – Physiologia Plantarum 75 (3): 399 – 404 – https://doi.org/10.1111/j.1399-3054.1989.tb04645.x – CrossRef – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-3054.1989.tb04645.x – (On our blog : https://plantstomata.wordpress.com/2018/04/24/proline-and-the-stomata-regulation-of-plants-recovering-from-salinity-stress/ )

Klein M., Cheng G., Chung M., Tallman G. (1996) – Effects of turgor potentials of epidermal cells neighbouring guard cells on stomatal opening in detached leaf epidermis and intact leaflets of Vicia Faba L (faba bean) – Plant, Cell & Environm. 19: 1399–1407 – https://doi.org/10.1111/j.1365-3040.1996.tb00018.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb00018.x – (On our blog : https://plantstomata.wordpress.com/2019/05/02/effects-of-turgor-potentials-of-epidermal-cells-neighbouring-guard-cells-on-stomatal-opening/ )

Klein M., Geisler M., Suh S. J., Kolukisaoglu H. U., Azevedo L., Plaza S., Curtis M. D., Richter A., Weder B., Schulz B., Martinoia E. (2004) – Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility – Plant J. 39: 219–236 – DOI: 10.1111/j.1365-313X.2004.02125.x – https://www.ncbi.nlm.nih.gov/pubmed/15225287 – (On our blog : https://plantstomata.wordpress.com/2018/04/24/involvement-of-atmrp4-in-the-complex-regulation-of-stomatal-aperture/ )

Klein M., Perfus-Barbeoch L., Frelet-Barrand A., Gaedeke N., Reinhardt D., Mueller-Roeber B., Martinoia E., Forestier C. (2003) – The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. – Plant J. 33: 119– 129 – https://doi.org/10.1046/j.1365-313X.2003.016012.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.2003.016012.x – (On our blog : https://plantstomata.wordpress.com/2018/05/02/multidrug-resistance%e2%80%90associated-proteins-mrps-are-important-components-of-stomatal-functioning/ )

Klein T. (2014) – The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours – Functional Ecology 28(6): 1313–1320 – DOI: 10.1111/1365-2435.12289 – http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12289/abstract – (On our blog : https://plantstomata.wordpress.com/2016/07/06/stomatal-sensitivity-to-leaf-water-potential-strongly-relates-to-xylem-characteristics-3/)

Klein T., Shpringer I., Fikler B., Elbaz G., Cohen S., Yakir D. (2013) – Relationships between stomatal regulation, water‐ use, and water‐use efficiency of two coexisting key Mediterranean tree species – Forest Ecol Manag 302: 34–42 – https://doi.org/10.1016/j.foreco.2013.03.044https://www.sciencedirect.com/science/article/pii/S0378112713001916 – (On our blog : https://plantstomata.wordpress.com/2019/05/02/stomatal-regulation-water%e2%80%90use-and-water%e2%80%90use-efficiency/ )

Klemm G. (1956) – Untersuchungen über den Transpirations-widerstand der Mesophyllmembranen und seine Bedeutung als Regulator für die stomatäre Transpiration – Planta 47: 547-587.

Klermund C.Ranftl Q. L.Diener J.Bastakis E.Richter R., Schwechheimer C.  (2016) LLM-domain B-GATA transcription factors promote stomata development downstream from light signaling in Arabidopsis thaliana hypocotyls – The Plant Cell March 2016 vol. 28 no. 3 646-660

Kleszcz I., Sliwinska E., Popielarska-Konieczna M. (2015) – Stomata and ploidy level differentiation of plants obtained from Actinidia deliciosa var. deliciosa endosperm culture – BioTechnologia. Journal of Biotechnology, Computational Biology and Bionanotechnology 96: 1 – ISSN :0860-7796 – https://www.infona.pl/resource/bwmeta1.element.agro-1d0ad11f-cae3-411a-9215-c87fabc0d715 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/stomata-and-ploidy-level-differentiation/)

Klooster B., Palmer-Young E. (2004) – Water stress marginally increase stomatal density in E. canadensis, but not in A. geradii. Tillers, 5: 35-40 – (Abstract not found)

Klusener B., Young J. J., Murata Y., Allen G. J., Mori I. C., Hugouvieux V., Schroeder J. I. (2002) –  Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. – Plant Physiol. 130, 2152–2163. doi: 10.1104/pp.012187 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/06/fungal-elicitors-activate-a-shared-branch-with-aba-in-the-stress-signal-transduction-pathway-in-stomata/ )

Knapp A. K., Cocke M., Hamerlynck E. P., Owensby C. E. (1994) – Effect of elevated CO2 on stomatal density and distribution in a C4 grass and a C3 Forb under field conditions. – Ann. Bot. 74(6): 595-599 – https://doi.org/10.1006/anbo.1994.1159 https://www.sciencedirect.com/science/article/pii/S0305736484711590 – (On our blog : https://plantstomata.wordpress.com/2018/04/27/effect-of-elevated-co2-on-stomatal-density-and-distribution/ )

Knapp A. K., Fahnestock J. T., Owensby C. E. (1994) – Elevated atmospheric CO2 alters stomatal responses to variable sunlight in a C4 grass – Plant, Cell & Environment 17: 189–195 – https://doi.org/10.1111/j.1365-3040.1994.tb00282.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1994.tb00282.x – (On our blog : https://plantstomata.wordpress.com/2019/05/07/elevated-atmospheric-co2-alters-stomatal-responses/ )

Knapp A. K., Hamerlynck E. P., Ham J. M., Owensby C. E. (1996) – Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form – Vegetatio 125: 31-41 – Responses_in_stomatal_conductance_to_ele.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/responses-in-stomatal-conductance-to-elevated-co2/ )

Knapp A. K., Smith W. K. (1988) – Effect of water stress on stomatal and photosynthetic responses in Subalpine plants to cloud patterns – America Journal of Botany 75, 851–858 – https://doi.org/10.1002/j.1537-2197.1988.tb13508.xhttps://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1988.tb13508.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/effect-of-water-stress-on-stomatal-responses-to-cloud-patterns/ )

Knapp A. K., Smith W. K. (1990a) – Contrasting stomatal responses to variable sunlight in two subalpine herbs. – Am. J. Bot. 77: 226–231 – doi: 10.2307/2444644 – https://www.jstor.org/stable/2444644?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/28/contrasting-stomatal-responses-to-variable-sunlight/ )

Knapp A. K., Smith W. K. (1990b) – Stomatal and photosynthetic responses to variable sunlight. – Physiol. Plant. 78, 160–165. doi: 10.1111/j.1399-3054.1990.tb08731.x – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/06/variable-sunlight-and-stomatal-movements/)

Knecht G. N., O’Leary J. W. (1972) – The effect of light intensity on stomate number and density of Phaseolus vulgaris L. leaves – Bot. Gaz. 133: 132-134 – DOI 10.1086/336626 – https://www.jstor.org/stable/2473811?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/28/light-intensity-and-stomate-number-and-density/ )

Knight R. C. (1916) – On the use of the porometer in stomatal investigation – Ann. Bot. 30: 57-

Knight R. C. (1917) – The interrelations of stomatal aperture, leaf water content, and transpiration rate – Ann. Bot. 31: 221-240 – https://doi.org/10.1093/oxfordjournals.aob.a089642 – https://www.jstor.org/stable/pdf/43236213.pdf?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/20/interrelations-of-stomatal-aperture-leaf-water-content-and-transpiration-rate/ )

Kuijper J. (1915) – Contributions to the Physiology of Stomata in Saccharum officinarum – Arch. Sinkesindus. Nederland. Indie. 23: 1673-1700 – Exp. Sta. Rec. 35. 330 –

Koers S., Guzel-Deger A., Marten I., Roelfsema M. R. G. (2011) Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels – The Plant Journal, 2011, 68, 4, 670 – DOI: 10.1111/j.1365-313X.2011.04719.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04719.x/full – (On our blog : https://plantstomata.wordpress.com/2016/07/06/mamps-of-mildew-hyphae-penetrating-the-cuticle-provoke-activation-of-s-type-anion-channels-in-stomata/)

Kohl F. G. (1895) – Über Assimilationsenergie und Spaltöffnungsmechanik – Botanisches Centralblatt. 64: 109 –

Kohl F. G. (1895) – Zur Mechanik der Spaltöffnungsbewegungen – Bot. Beiblatt zur Leopoldina 2.

Kohl F. G. (1897) – Die Protoplasmaverbindungen der Spaltöffnungsschließzellen und der Moosblätter. – Bot. Centbl 72, 257–265 – Google Scholar – 

Köhler B., Blatt M. R. (2002) – Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. – Plant J. 32,185194. – DOI: 10.1046/j.1365-313X.2002.01414.x – Wiley Online LibraryPubMed – (On our blog : https://plantstomata.wordpress.com/2016/07/06/protein-phosphorylation-ca2-channel-aba-and-stomata/)

Köhler B., Hills A., Blatt M. R. (2003) – Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. – Plant Physiol 131: 385–388 – DOI: https://doi.org/10.1104/pp.016014 – http://www.plantphysiol.org/content/131/2/385 – (On our blog : https://plantstomata.wordpress.com/2018/04/28/qualitative-and-quantitative-differences-between-h2o2-and-aba-actions-in-stomata/ )

Koike T., Watanabe T., Toda H., Haibara K. (1998) – Morphological diversity of stomata of representative broadleaved trees in a temperate region: detection with the Sump method. – For Resour Environ 36: 57–65 (Article not found)

Kokilavani V., Rajendiran, K. (2015) – Variations in foliar morphology and anatomy of Vigna unguiculata (L.) Walp. CV CO-3 after supplementary ultraviolet-B exposure – I.J.A.B.R, 5(1): 23-28 – http://scienceandnature.org/IJABR_Vol5(1)2015/IJABR_V5(1)15-5.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/30/stomata-after-supplementary-ultraviolet-b-exposure/ )

Kolbe A. R.Brutnell T. P.Cousins A. B.Studer A. J. (2018) – Carbonic Anhydrase Mutants in Zea mays Have Altered Stomatal Responses to Environmental Signals – Plant Physiol. 2018 – DOI: https://doi.org/10.1104/pp.18.00176 – http://www.plantphysiol.org/content/177/3/980 – (On our blog : https://plantstomata.wordpress.com/2018/07/16/ca-mediated-signaling-in-the-control-of-stomatal-movement-but-not-stomatal-development/ )

Kolla V. A., Raghavendra A. S. (2007) – Nitric oxide is a signaling intermediate during bicarbonate-induced stomatal closure in Pisum sativum. – Physiologia Plantarum130: 91–98 – https://doi.org/10.1111/j.1399-3054.2007.00887.x – CrossRefCAS, – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.2007.00887.x – (On our blog : https://plantstomata.wordpress.com/2018/04/30/no-and-bicarbonate-induced-stomatal-closure/ )

Kolla V. A., Vavasseur A., Raghavendra A. S. (2007) – Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis.Planta 225, 1421–1429. doi: 10.1007/s00425-006-0450-6 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/06/h2o2-is-an-essential-secondary-messenger-during-bicarbonate-induced-stomatal-closure/)

Kollist H., Jossier M., Laanemets K., Sébastien Thomine S. (2011) Anion channels in plant cells – FEBS Journal, 2011, 278, 22, 4277-4292 – DOI: 10.1111/j.1742-4658.2011.08370.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2011.08370.x/full – (On our blog : https://plantstomata.wordpress.com/2016/07/06/anion-channel-genes-in-stomata/)

Kollist H., Moldau H., Mortensen L., Rasmussen S. K.,Jørgensen L. B. (2000) – Ozone Flux to Plasmalemma in Barley and Wheat is controlled by Stomata rather than by direct Reaction of Ozone with Cell Wall Ascorbate – Journal of Plant Physiology 156(5-6): 645-651 – DOI10.1016/S0176-1617(00)80226-6 – https://www.infona.pl/resource/bwmeta1.element.elsevier-7a8fdc42-2209-357d-8d42-1cd632dfbf41 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/ozone-flux-to-plasmalemma-is-controlled-by-stomata/)

Kollist T., Moldau H., Rasulov B., Oja V., Rämma H., Hüve K., Jaspers P., Kangasjärvi J., Kollist H. (2007) – A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant – Physiol Plant. 129: 796–803 – https://doi.org/10.1111/j.1399-3054.2006.00851.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2006.00851.x – (On our blog : https://plantstomata.wordpress.com/2019/03/18/specifying-complex-molecular-and-genetic-interactions-in-rapid-responses-in-stomatal-guard-cells-in-vivo/ )

Kollist H., Nuhkat M., Roelfsema M. R. G. (2014) – Closing gaps: linking elements that control stomatal movement. New Phytol. 203, 44–62. – doi: 10.1111/nph.12832 – PubMed Abstract |Wiley Online Library , CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/06/21/control-of-stomatal-movement/).

Kondo N., Maruta I. (1987) – Abscisic acid-induced stomatal closure in Vicia faba epidermal strips. Excretion of solutes from guard cells and increase in elastic modulus of guard cell wall – Plant Cell Physiology 28: 355–364 – https://doi.org/10.1093/oxfordjournals.pcp.a077303 –https://academic.oup.com/pcp/article-abstract/28/2/355/1854700?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/18/aba-may-cause-an-increase-in-the-elastic-modulus-of-the-cell-walls-of-stomatal-guard-cells/ )

Kondo N., Maruta I., Sugahara K. (1980) – Effects of sulfite and pH on abscisic acid-dependent transpiration and on stomatal opening. – Plant Cell Environ. 21: 817-828 – https://doi.org/10.1093/oxfordjournals.pcp.a076056 – https://academic.oup.com/pcp/article-abstract/21/5/817/1869178?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/04/30/effects-of-sulfite-and-ph-on-stomatal-opening/

Kondo T., Kajita R., Miyazaki A., Hokoyama M., Nakamura-Miura T., Mizuno S., Masuda Y., Irie K., Tanaka Y., Takada S., Kakimoto T., Sakagami Y. (2010) – Stomatal density is controlled by a mesophyll-derived signaling molecule. – Plant Cell Physiol. 51: 1–8 – doi: 10.1093/pcp/pcp180. Epub 2009 Dec 9. – https://www.ncbi.nlm.nih.gov/pubmed/20007289 – (On our blog : https://plantstomata.wordpress.com/2018/05/03/stomagen-is-a-mesophyll-to-epidermis-signaling-molecule-that-positively-regulates-stomatal-density/ )

Kong D., Hu H.-C., Okuma E., Lee Y., Lee H. S., Munemasa S., Cho D., Ju C., Pedoeim L., Rodriguez B., Wang J., Im W., Murata Y., Pei Z.-M., Kwak J. (2016) – L-Met Activates Arabidopsis GLR Ca2+ Channels Upstream of ROS Production and Regulates Stomatal Movement – Cell Reports 17(10): 2553-2561 – DOI:https://doi.org/10.1016/j.celrep.2016.11.015 – https://www.cell.com/cell-reports/fulltext/S2211-1247(16)31556-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS221112471631556X%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/02/15/l-met-regulates-stomatal-movement/ )

Kong D., Karve R., Willet A., Chen M. K., Oden J., Shpak E. D. (2012) – Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1 –  Plant Physiology 159: 156-168 – DOI: https://doi.org/10.1104/pp.112.194563 – http://www.plantphysiol.org/content/159/1/156 – (On our blog : https://plantstomata.wordpress.com/2018/05/03/kobito1-and-stomatal-patterning/ )

Kong W., Yoo M.-J., Noble J. D., Kelley T. M., Li J., Kirst M., Assmann S. M., Chen S. (2019) – Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C3 to CAM transition – biorxiv – http://dx.doi.org/10.1101/607333https://www.biorxiv.org/content/biorxiv/early/2019/04/12/607333.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/03/c3-to-cam-transition-of-ice-plant-stomatal-guard-cells/ )

Konings A. G., Williams A. P., Gentine P., (2017) – Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation – Nature Geoscience 10(4): 284-288 – [DOI: 10.1038/ngeo2903] – http://www.military-technologies.net/2017/12/07/how-grasslands-regulate-their-productivity-in-response-to-droughts/ – (On our blog : https://plantstomata.wordpress.com/2017/12/09/coordination-between-stomatal-closure-strategies-and-the-loss-of-xylem-conductance-under-drought/)

Kono A.Umeda-Hara C.Adachi S., Nagata N.Konomi M.Nakagawa T.Uchimiya H.Umeda M. (2007) – The Arabidopsis D-Type Cyclin CYCD4 Controls Cell Division in the Stomatal Lineage of the Hypocotyl Epidermis – The Plant Cell April 2007 vol. 19 no. 4 1265-1277 – doi: http://dx.doi.org/10.1105/tpc.106.046763 – http://www.plantcell.org/content/19/4/1265.full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/cyclin-cycd4-controls-cell-division-in-the-stomatal-lineage/)

Konrad K. R. , Hedrich R. (2008) – The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells. – Plant Journal 55: 161-173 – doi: 10.1111/j.1365-313X.2008.03498.x – https://www.ncbi.nlm.nih.gov/pubmed/18363788 – (On our blog : https://plantstomata.wordpress.com/2018/05/05/voltage-sensitive-dyes-provide-an-excellent-tool-for-the-study-of-changes-in-the-membrane-potential-in-vacuole-as-well-as-guard-cell-populations/ )

Konrad W., Roth-Nebelsick, A., Grein, M. (2008) Modelling of stomatal density response to atmospheric CO2. – Journal of Theoretical Biology 253: 63858 – https://doi.org/10.1016/j.jtbi.2008.03.032 – https://www.sciencedirect.com/science/article/pii/S0022519308001677 – (On lour blog : https://plantstomata.wordpress.com/2018/05/05/stomatal-density-response-to-atmospheric-co2/

Kopka J., Provart N. J., Müller-Röber B. (1997) Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. – Plant Journal 11: 871882. – DOI: 10.1046/j.1365-313X.1997.11040871.x – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/07/stomatal-gene-expression-under-drought-stress-conditions/ )

Korn R. W. (1972) – Arrangement of stomata on the leaves of Pelargonium zonale and Sedum stahlii. – Ann. Bot. 36325–333 – DOI 10.1093/oxfordjournals.aob.a084592 – Abstract/FREE Full Text – https://academic.oup.com/aob/article-abstract/36/2/325/190820?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/05/05/arrangement-of-stomata-in-pelargonium-zonale-and-sedum/

Korn R. W. (1993) – Evidence in dicots for stomatal patterning by inhibition. – International Journal of Plant Sciences 154367–377 – https://doi.org/10.1086/297118 – CrossRefGoogle Scholar – http://www.journals.uchicago.edu/doi/abs/10.1086/297118 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/stomatal-patterning-by-inhibition/ )

Korn R. W. (2009) – A new hypothesis for stomatal placement in Arabidopsis. – J. Theor. Biol. 260: 172–174 –  DOI 10.1016/j.jtbi.2009.05.012 – PubMed – https://www.ncbi.nlm.nih.gov/pubmed/19481098 – (No abstract available)

Korn R. W., Fredrick G. W. (1973) – Development of D-type stomata in the leaves of Ilex crenata var. convexa – Ann. Bot. Lond. 37: 647-656 – DOI: 10.1093/oxfordjournals.aob.a084731 – https://academic.oup.com/aob/article-abstract/37/3/647/151284?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/08/28/development-of-d-type-stomata/ )

Körner C. (1981) – Stomatal behaviour and water potential in apricot (Prunus armeniaca) with symptoms of wilt disease (Chondrostereum) – Angewandte Botanik 55: 469–476 – ISSN : 0066-1759 (Article not found)

Körner C. (1988) – Does global increase of CO2 alter stomatal density? – Flora 181: 253-257 – https://doi.org/10.1016/S0367-2530(17)33116-X – https://www.sciencedirect.com/science/article/pii/S036725301733116X – (On our blog : https://plantstomata.wordpress.com/2018/05/05/global-increase-of-co2-and-stomatal-density/ )

Körner C. (2017) – When meta-analysis fails: A case about stomata – Global Change Biology 23(7): 2533–2534 – http://onlinelibrary.wiley.com/doi/10.1111/gcb.13700/abstract – (No abstract available)

Körner C., Cochrane P. (1985) – Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. – Oecologia 74: 443–455 – doi: 10.1007/BF00378313 – https://www.ncbi.nlm.nih.gov/pubmed/28310877 – (On our blog : https://plantstomata.wordpress.com/2018/05/05/stomatal-responses-and-water-relations-along-an-elevational-gradient/ )

Koshuchowa S.Zoglauer K.Göring H (1990) – Structure of Guard Cells and Function of Stomata of Plants cultured in vitro – Biochemie und Physiologie der Pflanzen 186( 5–6): 289-299 – https://doi.org/10.1016/S0015-3796(11)80220-9 – http://www.sciencedirect.com/science/article/pii/S0015379611802209 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/structure-and-function-of-stomata-cultured-in-vitro/)

Kostina E., Wulff A., Julkunen-Tiitto R. (2001) – Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field – Trees 15: 483-491 –  https://doi.org/10.1007/s00468-001-0129-3 – https://link.springer.com/article/10.1007/s00468-001-0129-3#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-responses-under-elevated-uv-b-radiation-in-the-field/)

Kosugi Y., Kobashi S., Shibata S. (xxxx) – Modeling Stomatal Conductance on Leaves of Several Temperate Evergreen Broad-leaved Trees – J. Jap. Soc. Reveget. Tech. 20(3): 158-167 – Modeling_Stomatal_Conductance_on_Leaves.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/modeling-stomatal-conductance/ )

Kottapalii J., David-Schwartz R., Khamalai B., Brandsma D., Lugassi N., Egbaria A., Kelly G., Granot D. (2018) – Sucrose-induced stomatal closure is conserved across evolution – PLOS One 13(10): e0205359 – https://doi.org/10.1371/journal.pone.0205359 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205359 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/sucrose-induced-stomatal-closure/

Kottmeier C., Schnabl H. (1986) – The Km-value of phosphoenolpyruvate carboxylase as an indicator of swelling state of guard cell protoplasts – Plant Sci. 43: 213–217 – https://doi.org/10.1016/0168-9452(86)90020-8 –https://www.sciencedirect.com/science/article/pii/0168945286900208 – (On our blog : https://plantstomata.wordpress.com/2019/03/18/the-role-of-k-in-stimulating-the-affinity-of-pepcase-for-its-substrate-pep-and-its-possible-importance-in-stomatal-movement/ )

Koul M., Bhatnagar A. K. (2017) – Changes in the Leaf epidermal Features of Cyamopsis tetragonoloba (L.) Taub. in Response to Lead in Soil – Phytomorphology 67(1&2): 19-25 – https://www.researchgate.net/publication/331220737_Changes_in_the_Leaf_epidermal_Features_of_Cyamopsis_tetragonoloba_L_Taub_in_Response_to_Lead_in_Soil – (On our blog : https://plantstomata.wordpress.com/2019/04/10/pb-in-the-soil-is-transferred-from-the-roots-right-up-to-the-minor-veins-of-plant-leaves-where-stomata-and-epidermal-features-are-compromised/ )

Kouwenberg L. L. R., Kürschner W. M., McElwain J. C. (2007) – Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. – Rev. Mineral. Geochem., 66: 215-241 – DOI: https://doi.org/10.2138/rmg.2007.66.9 –&nbsp;https://pubs.geoscienceworld.org/msa/rimg/article-abstract/66/1/215/140806/stomatal-frequency-change-over-altitudinal?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/05/05/paleoaltimetry-and-stomatal-frequency/ )

Kouwenberg L. L. R. , McElwain J. C. , Kürschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H. (2003) – Stomata frequency adjustment of four conifer species to historical changes in atmospheric CO2 – Am. J. Bot. 90. 610-619.- doi: 10.3732/ajb.90.4.610 – http://www.amjbot.org/content/90/4/610.full – (On our blog : https://plantstomata.wordpress.com/2016/12/30/historical-changes-in-atmospheric-co2-and-stomata-frequency-adjustment/) – No. of stomata per mm of needle length. Tsuga, Picea, Larix.

Kouwenberg L. L. R., Wagner R., Kürschner W. M., Visscher H. (2005) – Atmospheric CO2 fluctuations during the last millenium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles – Geology 33: 33-36 – https://doi.org/10.1130/G20941.1https://pubs.geoscienceworld.org/gsa/geology/article-abstract/33/1/33/129251/atmospheric-co2-fluctuations-during-the-last?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/18/co2-fluctuations-during-the-last-millenium-reconstructed-by-stomatal-frequency-analysis/ )

Kramer P. J. (1988) – Changing concepts regarding plant water relations – Plant, Cell & Environment 11: 565-568 – https://doi.org/10.1111/j.1365-3040.1988.tb01796.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1988.tb01796.x – (On our blog : https://plantstomata.wordpress.com/2019/03/18/changing-concepts-regarding-plant-water-relations-stomatal-conductance/ )

Kramer P. J., Boyer J. S. (1995) – Stomata and gas exchange. In: Kramer P. J., Boyer J. S., Editors Water relations of plants and soils. London: Academic Press. p 257–282 –

Krassilov V. A. (1978) – Electron microscopy of stomatal
guard cells – Paleontologicheskii Zhurnal 3:128–130. (in Russian). [Красилов В.А. 1978. Электронная микроскопия
замыкающих клеток устьиц // Палеонтологический
журнал. № 3. С. 128–130.] –

Krassilov V. A., Berner A., Barinova S. (2013) –  Morphology as Clue to Developmental Regulation: Stomata – Plant 1(3): 30-44 – doi: 10.11648/j.plant.20130103.11 – http://www.sciencepublishinggroup.com/journal/paperinfo.aspx?journalid=211&doi=10.11648/j.plant.20130103.11 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/correlation-of-stomatal-development-with-the-whole-plant-growth-habit-ecology-and-evolution/)

Kriedemann P. E., Loveys B. R., Fuller G. L., Leopold A. C. (1972) – Abscisic acid and stomatal regulation. – Plant Physiol. 49: 842–847 – PMCID: PMC366062 – PMID: 16658058- [Google Scholar] [CrossRef] [PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366062/ – (On our blog : https://plantstomata.wordpress.com/2018/05/06/stomatal-control-is-a-regulatory-function-of-aba/ )

Kröber W. (2015) – Stomatal control, xylem hydraulics, and leaf morphology in the 40 BEF-CHINA tree species: trait interrelationships, functional diversity and tree growth prediction – PhD Thesis Martin-Luther-Universität Halle-Wittenberg 150 pp. – https://d-nb.info/1069532479/34 – (On our blog : https://plantstomata.wordpress.com/2018/03/27/67588/ )

Kröber W., Bruelheide H. (2014) – Transpiration and stomatal control: a cross-species study of leaf traits in 39 evergreen and deciduous broadleaved subtropical tree species – Trees 28: 901–914 – DOI 10.1007/s00468-014-1004-3 – https://d-nb.info/1069532479/34 – (On our blog : https://plantstomata.wordpress.com/2018/10/29/traits-of-the-leaf-economics-spectrum-to-be-linked-to-mean-stomatal-conductance-but-not-to-stomatal-regulation/ )

Kröber W., Plath I., Heklau H., Bruelheide H. (2015) – Relating Stomatal Conductance to Leaf Functional Traits. –  J. Vis. Exp. (104), e52738 – doi:10.3791/52738 – https://www.jove.com/video/52738/relating-stomatal-conductance-to-leaf-functional-traits – (On our blog : https://plantstomata.wordpress.com/2018/01/22/to-derive-parameters-of-stomatal-regulation-from-stomatal-conductance-measurements/ )

Kropfitsch (1951) – Apfelgas-Wirkung auf Stomatazahl – Protoplasma 40: 256-265 –

Kropfitsch (1951) – UV-Bestrahlung und Stomatazahl – Protoplasma 40: 266-274 –

Kropfitsch (1951) – Spaltöffnungszahl und Heteroauxin – Protoplasma 40: 461-474 –

Kropp H., Ogle K. (2015) – Seasonal stomatal behavior of a common desert shrub and the influence of plant neighbors – Oecologia – 177: 345–355 – DOI: 10.1007/s00442-014-3187-0 – https://www.ncbi.nlm.nih.gov/pubmed/25526845 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/seasonal-stomatal-behavior-of-a-common-desert-shrub-and-the-influence-of-plant-neighbors/ )

Kroupitski Y., Golberg D., Belausov E., Pinto R., Swartzberg D., Granot D., Sela S. (2009) – Internalization of Salmonella in leaves is induced by light and involves chemotaxis and penetration through open stomata. – Appl Environ Microbiol. 2009 AEM.01084-09 – doi:10.1128/AEM.01084-0 –  [PMC free article] [PubMed] – https://www.academia.edu/12699107/Internalization_of_Salmonella_enterica_in_Leaves_Is_Induced_by_Light_and_Involves_Chemotaxis_and_Penetration_through_Open_Stomata – (On our blog : https://plantstomata.wordpress.com/2018/05/07/salmonella-penetration-through-stomata/

Krüger G. H. J., Jordaan A., Tiedt L. R., Strasser R. J., Kilbourn Louw M., Bemer J. M. (2017) – Opportunistic survival strategy of Welwitschia mirabilis: recent anatomical and ecophysiological studies elucidating stomatal behaviour and photosynthetic potential – Botany 95(12): 1109-1123 – https://doi.org/10.1139/cjb-2017-0095http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2017-0095 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/leaf-surface-and-stomatal-structure-play-a-crucial-role-in-moisture-conservation-and-moderating-leaf-temperature-for-desert-survival/ )

Kruse J., Adams M., Winkler B., Ghirardo A., Alfarraj S., Kreuzwieser J., Hedrich R., Schnitzler J.-P., Rennenberg H. (2019) – Optimization of photosynthesis and stomatal conductance in the date palm Phoenix dactylifera during acclimation to heat and drought – New Phytologist https://doi.org/10.1111/nph.15923https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15923?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/17/optimization-of-photosynthesis-and-stomatal-conductance-during-acclimation-to-heat-and-drought/ )

Kruse T., Tallman G., Zeiger E. (1989) – Isolation of Guard Cell Protoplasts from Mechanically Prepared Epidermis of Vicia faba Leaves –  Plant Physiol. 90(4): 1382–1386PMID: 16666940 PMCID: PMC1061900 – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/16666940 – (On our blog : https://plantstomata.wordpress.com/2018/05/07/isolation-of-stomatal-protoplasts/

Kubínová L. (1994) – Recent stereological methods for measuring leaf anatomical characteristics: estimation of the number and sizes of stomata and mesophyll cells – Journal of Experimental Botany 45: 119–127 – https://doi.org/10.1093/jxb/45.1.119 –https://academic.oup.com/jxb/article-abstract/45/1/119/476309?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/11/estimation-of-the-number-and-sizes-of-stomata/ )

Kubiske M. E., Abrams M. D. (1993) – Stomatal and nonstomatal limitations of photosynthesis in 19 temperate tree species on contrasting sites during wet and dry years – Plant Cell Environ. 16: 1123–1129 – https://doi.org/10.1111/j.1365-3040.1996.tb02070.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb02070.x – (On our blog : https://plantstomata.wordpress.com/2018/10/30/stomatal-and-nonstomatal-limitations-of-photosynthesis/ )

Kubitscheck U., Homann U., Thiel G. (2000) Osmotically evoked shrinking of guard-cell protoplasts causes vesicular retrieval of plasma membrane into the cytoplasm.- Planta 210: 423431. – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/07/endocytosis-of-small-vesicles-into-the-cytoplasm-is-the-obligatory-process-in-stomata/)

Kubota T. (    ) – Stanford scientists reveal how grass developed a better way to breathe – http://news.stanford.edu/2017/03/16/grass-developed-better-way-breathe/ – (On our blog : https://plantstomata.wordpress.com/2017/09/23/how-grass-developed-a-better-way-to-breathe-stomata/)

Kubota-Stanford T. (2018) – How plants build the perfect ventilation system – – https://www.futurity.org/plants-leaves-stomata-1860022/ – (On our blog : https://plantstomata.wordpress.com/2019/01/14/how-leaves-build-the-right-number-of-stomata-to-help-plants-optimize-productivity/ )

Kuchitsu K., Ward J. M., Allen G., Schelle I., Schroeder J. (2002) Loading acetoxymethyl ester fluorescent dyes into the cytoplasm of Arabidopsis and Commelina guard cells. – New Phytologist 153: 527533. – DOI: 10.1046/j.0028-646X.2001.00346.x – Wiley Online Library |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/07/15580/)

Kudoyarova G. R., Veselov D. S., Faizov R. G., Veselova S. V., Ivanov E. A., Farkhutdinov R. G. (2007) – Stomata response to changes in temperature and humidity in wheat cultivars grown under contrasting climatic conditions. – Russ. J. Plant Physiol. 54(1): 46-49 (CrossRef). – (On our blog : https://plantstomata.wordpress.com/2016/02/16/stomata-response-to-changes-in-temperature-and-humidity/)

Kuiper P. J. C. (1961) – The effect of environmental factors on the transpiration of leaves, with special reference to stomatal light response – Mededel. Landbouwhogeschool Wageningen, Nederland 58: 1-16. (61(7): 1-49) – https://www.researchgate.net/publication/319290628_The_effects_of_environmental_factors_on_the_transpiration_of_leaves_with_special_reference_to_stomatal_light_response – (On our blog : https://plantstomata.wordpress.com/2018/05/06/stomatal-light-response/ )

Kuiper P. J. C. (1964) – Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. – Pl. Physiol., Lancaster , 39, 952. – CrossRefPubMedCAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/16/stomatal-movement-and-wavelength/)

Kulshreshtha K., Rai A., Mohanty C. S., Roy R. K., Sharma S. C. (2009) – Particulate Pollution Mitigating Ability of Some Plant Species – Int. J. Environ. Res., 3(1):137-142, Winter 2009 – ISSN: 1735-6865 – http://www.bioline.org.br/pdf?er09016 – (On our blog : https://plantstomata.wordpress.com/2016/12/21/stomata-and-the-ability-of-individual-plant-species-to-intercept-and-mitigate-particulate-pollutants/)

Kumar A. S., Lakshmanan V., Caplan J. L., Powell D., Czymmek K. J., Levia D. F., Bais H. P. (xxxx) – Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata – The Plant Journal 72(4): 694 – 706 – DOI10.1111/j.1365-313X.2012.05116.x – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-72-i-4-tpj5116 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/stomata-and-the-plant-innate-immune-system-against-foliar-bacterial-infections/)

Kumar M. M. (1992) – Evaluation of some indirect ploidy indicators in Coffea L. – Cafe cacao The vol, xxxvi – (From submission form) – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-plastid-number-and-frequency-manifested-regular-and-distinct-differences-in-relation-to-ploidy-level/ )

Kumar M. M. (2011) – Variability in stomatal features and leaf venation pattern in Indian coffee (Coffea arabica L.) cultivars and their functional significance – Botanica Serbica 35(2): 111-119 – (From submission form) – (On our blog : https://plantstomata.wordpress.com/2018/10/13/functional-significance-of-stomatal-features-and-leaf-vein-architecture/ )

Kumar N. M., Tomar M., Bhatnagar A. K. (2000) – Influence of cadmium on growth and development of Vicia faba Linn. – Ind. J. Exp. Biol. 38: 819-823 – http://nopr.niscair.res.in/bitstream/123456789/24232/1/IJEB%2038(8)%20819-823.pdf– (On our blog : https://plantstomata.wordpress.com/2016/12/20/abnormalities-of-stomata-caused-by-soil-pollution/)

Kumar S. (xxxx) – Theories of Stomatal Movement – http://www.biologydiscussion.com/transpiration/stomatal-movement/theories-of-stomatal-movement-4-theories-with-diagram/14896 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-movement-2/ )

Kümmler A. (1922) – Über die Funktion der Spaltöffnungen weissbunter Blätter – Jahrb. Wiss. Bot. 61: 610-669.

Kundu S. K., Tigerstedt P. M. A. (1998) – Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica). – Tree Physiol. 19: 47-52 – PMID: 12651331 – https://www.ncbi.nlm.nih.gov/pubmed/12651331 – (On our blog : https://plantstomata.wordpress.com/2018/05/06/phytomass-production-of-neem-seedlings-was-associated-with-stomatal-characteristics-during-the-early-stages-of-growth/ )

Küppers M. (1978) – Die Regulation der Spaltöffnungen von Corylus avellana L. in Abhängigkeit von Blattwasserzustand und Luftfeuchte – Dipl.-Arb. Bayreuth u. Frankfurt.

Küppers M. (1984) – Carbon relations and competition between woody species in a central European hedgerow II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway – Oecologia 64: 344–354 – PMID: 28311449 DOI: 10.1007/BF00379131 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/28311449CrossRef – (On our blog : https://plantstomata.wordpress.com/2018/05/06/responses-of-stomata-to-humidity-light-intensity-and-leaf-water-status/ )

Küppers M., Heiland I., Schneider H., Neugebauer P. J., 2 (1999) – Light-flecks cause non-uniform stomatal opening – studies with special emphasis on Fagus sylvatica L. – Trees 14: 130-144 – https://doi.org/10.1007/PL00009759 –&nbsp;https://link.springer.com/article/10.1007%2FPL00009759?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/10/03/light-flecks-cause-non-uniform-stomatal-opening/)

Kuroda E.,  Kumura A. (1990) – Difference in single leaf photosynthesis between old and new rice varieties. I. Single-leaf photosynthesis and its dependence on stomatal conductance – Japanese Journal of Crop Science 59: 283-292 (in Japanese with English abstract) –  https://doi.org/10.1626/jcs.59.283 –https://www.jstage.jst.go.jp/article/jcs1927/59/2/59_2_283/_article/-char/ja/ – (On our blog : https://plantstomata.wordpress.com/2019/02/06/single-leaf-photosynthesis-and-its-dependence-on-stomatal-conductance/ )

Kuromori T., Seo M., Shinozaki K. (2018) – ABA Transport and Plant Water Stress Responses (in press) – Trends in Plant Science – DOI: https://doi.org/10.1016/j.tplants.2018.04.001 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30085-2 – (On our blog : https://plantstomata.wordpress.com/2018/05/07/aba-transport-stomata-and-water-stress-responses/ )

Kürschner W. M. (1996) – Leaf stomata as biosensors of palaeoatmospheric CO2 levels. –PhD thesis,Laboratory of Palaeobotany and Palynology, Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 5: 1–153.

Kürschner W. M., Van der Burgh J., Visscher H., Dilcher D. L. (1996) – Oak leaves as biosensors of Late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology 27: 299–312 – https://doi.org/10.1016/0377-8398(95)00067-4 – https://www.sciencedirect.com/science/article/pii/0377839895000674 – (On our blog : https://plantstomata.wordpress.com/2018/05/07/analysis-of-stomatal-parameters-on-fossil-leaves-has-the-potential-of-determining-changes-in-paleoatmospheric-co2/ )

Kürschner W. M.Wagner-Cremer F.Visscher E. H.Visscher H. (1997) – Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. – Geologische Rundschau 86512517https://doi.org/10.1007/s005310050158https://link.springer.com/article/10.1007/s005310050158 – (On our blog : https://plantstomata.wordpress.com/2019/03/18/the-response-of-leaf-stomatal-frequency-to-a-future-co2-enriched-atmosphere/ )

Kusumi K., Hirotsuka S., Kumamaru T., Iba K. (2012) – Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein – J. Exp. Bot. 63: 5635–5644 – doi: 10.1093/jxb/ers216 – (On our blog : https://plantstomata.wordpress.com/2016/07/16/stomatal-conductance-is-a-major-determinant-of-photosynthetic-rate/ )

Kusvuran S., Dasgan  H. Y., Küçükkömürcü S. and Abak K. (2010) – Relationship between drought tolerance and stomata density in melon – The 4th International Cucurbitaceae Symposium, 20th-24th September 2009, Changsha, Hunan, China  – Acta Hort. 871: 291-300 – DOI:  10.17660/ActaHortic.2010.871.39 –https://www.actahort.org/books/871/871_39.htm – (On our blog : https://plantstomata.wordpress.com/2019/05/07/relationship-between-drought-tolerance-and-stomata-density/ )

Kuster V., Castro S. A., Vale F. H. (2016) – Morphological and physiological responses of three plant species occurring in distinct altitudes in the Neotropical savannah – Braz. J. Bot. 39(4): 1039-1049 – doi: 10.1007/s40415-016-0294-7 – https://www.deepdyve.com/lp/springer-journals/morphological-and-physiological-responses-of-three-plant-species-LCFe4tWzpa – (On our blog : https://plantstomata.wordpress.com/2017/11/16/stomatal-conductance-and-distinct-altitudes/)

Kutter C.Schöb H.Stadler M.Meins Jr. F., Si-Ammour A. (2007) – MicroRNA-Mediated Regulation of Stomatal Development in Arabidopsis – The Plant Cell 2007, Vol. 18 (8) 2417-2429 – doi: http://dx.doi.org/10.1105/tpc.107. -50377 – Abstract/FREE Full Text0 – http://www.plantcell.org/content/19/8/2417.full – (On our blog : https://plantstomata.wordpress.com/2016/03/24/the-mir824agl16-pathway-functions-in-the-satellite-meristemoid-lineage-of-stomatal-development/)

Kwak J. M., Kim S. A, Hong S. W., Nam H. G. (1997) Evaluation of 515 expressed sequence tags obtained from guard cells of Brassica campestris. – Planta 202–17 – DOI: 10.1007/s004250050097 – CrossRefMedlineWeb of Science – https://www.ncbi.nlm.nih.gov/pubmed/9177047 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/515-expressed-sequence-tags-ests-obtained-from-stomata/ )

Kwak J. M., Mäser P., Schroeder J. I. (2008) – The clickable guard cell, version II: interactive model of guard cell signal transduction mechanisms and pathways. In The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. American Society of Plant Biologists, Rockville, e0114. – Google Scholar – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243356/ – (On our blog : https://plantstomata.wordpress.com/2017/09/20/electronically-linked-model-of-guard-cell-signal-transduction-pathways/)

Kwak J. M., Moon J. H., Murata Y., Kuchitsu K., Leonhardt N., DeLong A.,Schroeder J. I. (2002) – Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. – Plant Cell 14, 2849–2861. doi: 10.1105/tpc.003335 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/18/rcn1-aba-and-stomata/).

Kwak J. M., Mori I. C., Pei Z. M., Leonhardt N., Torres M. A., Dangl J. L., Bloom R., Bodde S., Jones J. D. G., Schroeder J. I. (2003) – NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis. – EMBO J. 22, 2623–2633. – https://doi.org/10.1093/emboj/cdg277 – https://onlinelibrary.wiley.com/doi/10.1093/emboj/cdg277 – (On our blog : https://plantstomata.wordpress.com/2018/12/05/the-atrbohd-and-atrbohf-nadph-oxidases-function-in-stomatal-aba-signal-transduction/

Kwak J. M., Murata Y., Baizabal-Aguirre V. M., Merrill J., Wang M., Kemper A., Hawke S. D.Tallman G., Schroeder J. I. (2001) Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis. – Plant Physiology 127: 473485. – doi: http://dx.doi.org/10.1104/pp.010428 – CrossRef |PubMed |CASAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/18/k-in-channels-contribute-to-k-uptake-during-light-induced-stomatal-opening/)

Laanemets K., Brandt B., Li J., Merilo E., Wang Y.-F., Keshwani M. M., Taylor S. S., Kollist H., Schroeder J. I. (2013) – Calcium-Dependent and -independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming[W] – Plant Physiol. Vol. 163, 2013, 504-513  – http://www.plantphysiol.org/content/163/2/504.full.pdf+html – (On our blog : https://plantstomata.wordpress.com/2016/12/10/stomatal-signaling-network-and-stomatal-opening-via-ca2-sensitivity-priming/)

Laanemets K., Wang Y.-F.Lindgren O., Wu J., Nishimura N., Lee S., Caddell D., Merilo E., Brosche M., Kilk K., Soomets U., Kangasjärvi J., Schroeder J. I., Kollist H. (2013) – Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels. – New Phytol. 197: 88–98 – DOI: 10.1111/nph.12008 –  [PMC free article][PubMed] – http://onlinelibrary.wiley.com/doi/10.1111/nph.12008/full – (On our blog : https://plantstomata.wordpress.com/2016/07/18/slac1-anion-channel-mutations-slow-stomatal-opening/)

Laga H., Shahinnia F., Fleury D. (2014) – Image-based plant stomata phenotyping – Conference proceedings, 13th International Conference on Control, Automation, Robotics and Vision (ICARCV 2014), 2014 / vol.OnlinePubl, 217–222 – (IEEE) – http://hdl.handle.net/2440/88732 –  https://digital.library.adelaide.edu.au/dspace/handle/2440/88732 – (On our blog : https://plantstomata.wordpress.com/2017/11/17/large-scale-analysis-of-stomata-morphology-and-the-response-to-various-environmental-stresses/)

Lahav M., Abu-Abied M., Belausov E., Schwartz A., Sadot E. (2004) – Microtubules of guard cells are light sensitive. – Plant Cell Physiol 45:573–582 – CrossRef PubMed – (On our blog : https://plantstomata.wordpress.com/2016/07/19/microtubule-organization-in-stomata-is-responsive-to-light-signals/)

Lahr E. C., Dunn R. R., Frank S. D. (2018) – Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States – PLoS ONE 13(5): e0197866 – https://doi.org/10.1371/journal.pone.0197866 – https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0197866&type=printable – (On our blog : https://plantstomata.wordpress.com/2018/11/26/photosynthesis-stomatal-conductance-and-water-use-efficiency-in-planted-cultivars-relative-to-wildtype-trees/

Lahr W., Raschke K. (1988) – Abscisic-acid contents and concentrations in protoplasts from guard cells and mesophyll cells of Vicia faba L. – Planta  173: 528–531 – DOI: 10.1007/BF00958966 – [Google Scholar] [CrossRef] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/24226690 – (On our blog : https://plantstomata.wordpress.com/2018/05/08/the-aba-contents-of-isolated-stomatal-protoplasts/ )

Lai L. B., Nadeau J. A., Lucas J., Lee E-K., Nakagawa T., Zhao L., Geisler M., Sack F. D. (2005) – The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage – Plant Cell 17:2754–2767 – DOI: 10.1105/tpc.105.034116 –Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/03/28/two-related-transcription-factors-jointly-restrict-divisions-late-in-stomatal-cell-lineage/)

Laidlaw C. G. P., Knight R. C. (1916) – A description of a recording porometer and a note on stomatal behavior during wilting – Ann. Bot. 30: 47-56 – https://doi.org/10.1093/oxfordjournals.aob.a089588 – https://academic.oup.com/aob/article-abstract/os-30/1/47/217796?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/05/08/a-recording-porometer-and-stomatal-behavior-during-wilting/ )

Laisk A. (1983) – Calculation of leaf photosynthetic parameters considering the statistical distribution of stomatal apertures – J. Exp. Bot. 34: 1627-1635 – https://doi.org/10.1093/jxb/34.12.1627 – https://academic.oup.com/jxb/article-abstract/34/12/1627/599235?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/10/30/stomatal-conductance-is-a-quantity-statistically-distributed-over-a-large-range-in-the-geometry-of-one-leaf/ )

Laisk A., Oja V., Kull K. (1980) – Statistical distribution of stomatal apertures of Vicia faba and Hordeum vulgare and the Spannungsphase of stomatal opening – J. Exp. Bot. 31: 49–58 – https://doi.org/10.1093/jxb/31.1.49 –https://academic.oup.com/jxb/article-abstract/31/1/49/473200?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/11/statistical-distribution-of-stomatal-apertures/ )

Lake J. A., Steven M., Smith K., Lomax B. H. (2012) – A new stomatal response: stress and recovery – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/preliminary-characterisation-of-a-new-stomatal-response-to-elevated-soil-co2/ )

Lake J. A., Woodward F. I. (2008) – Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. – New Phytologist 179: 397-404 – [Google Scholar]http://www.ncbi.nlm.nih.gov/pubmed/19086289 – (On our blog : https://plantstomata.wordpress.com/2016/07/19/control-of-stomatal-density-by-transpiration-rate-and-leaf-aba-concentration-2/)

Lall N., Bhat R.B. (1996) – Impact of irradiance on the epidermis of Impatiens flanaganae Hemsl –  South African Journal of Botany 62(4): 212-216 – DOI10.1016/S0254-6299(15)30637-2 – https://www.infona.pl/resource/bwmeta1.element.elsevier-704dacd0-04cb-3fc2-a39c-72b9ab391863 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/impact-of-irradiance-on-the-stomata-of-impatiens/)

Laloraya M. M., Srivastava H. N., Baksi N., Shah N., Pandya K. J., Singh Y. D. (1972) – Role of growth regulators, flavonoid pigments and peroxidase in stomata and trichome differentiation.  In: V. PURI (ed.) Biology of Land Plants: 143-159. Meerut. – (Article not found)

Lamari N., Fait V. (2015) – Diallel analysis of stomatal traits in Triticum aestivum L. – Cytology and Genetics 49(5): 314-321 – DOI10.3103/S0095452715050059 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_3103-S0095452715050059 – (0n our blog : https://plantstomata.wordpress.com/2017/10/22/stomatal-traits-in-triticum-aestivum/)

Lamari N. P., Fait V. I. (2015) – Genetic analysis of differences in stomatal guard cell lengths of bread wheat – Science Rise 5, no. 1 (10): 20–27 – (Article not found)

Lamari N., Galaeva M., Fait V., Pogrebnyuk E. (2018) – Association of SSR-markers with bread wheat stomatal guard cell lengths variation – Tsitol Genet. 52(2): 13-21 – http://cytgen.com/en/2018/13-21N2V52.htm –  – (On our blog : https://plantstomata.wordpress.com/2018/10/06/association-of-ssr-markers-with-bread-wheat-stomatal-guard-cell-lengths-variation/ )

Lamari N., Galaeva M., Fait V., Pogrebnyuk E. (2018) – SSR Marker Association with Variation of Stomatal Guard Cell Length in Bread Wheat – Cytol. Genet. (2018) 52: 95. https://doi.org/10.3103/S0095452718020056 – https://link.springer.com/article/10.3103/S0095452718020056#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/06/ssr-marker-association-with-variation-of-stomatal-guard-cell-length/ )

Lammertsma E. I. (2011) – Rising carbon dioxide is causing plants to have fewer pores, releasing less water to the atmosphere – https://www.sciencedaily.com/releases/2011/03/110303111624.htm – (On our blog : https://plantstomata.wordpress.com/2017/10/26/rising-co2-less-stomata/)

Lammertsma E. I., de Boer H. J., Dekker S. C., Dilcher D. L., Lotter A. F., Wagner-Cremer F. (2011) – Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. – Proceedings of the National Academy of Sciences, USA 108, 4035–4040.| CrossRef | CAS PubMed Article – (On our blog : https://plantstomata.wordpress.com/2016/02/16/co2-and-reduced-maximum-stomatal-conductance/)

Lampard G. R., Lukowitz W., Ellis B. E., Bergmann D. C. (2009) – Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations. – Plant Cell 2009, 21:3506-3517. -10.1105/tpc.109.070110. (PubMed Abstract | Publisher Full Text |PubMed Central Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/11/10/mapk-signaling-in-arabidopsis-stomata/).

Lampard G. R., MacAlister C. A., Bergmann D. C. (2008)Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. – Science 322:1113–1116. – 10.1126/science.1162263.- Abstract/FREE Full Text– View ArticlePubMed – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/21/mapk-mediated-regulation-of-the-bhlh-speechless-and-stomatal-initiation/)

Lampard G. R., Wengier D. L., Bergmann D. C. (2014) – Manipulation of mitogen-activated protein kinase kinase signaling in the Arabidopsis stomatal lineage reveals motifs that contribute to protein localization and signaling specificity. – Plant Cell 2014 Aug 29;26(8):3358-71. Epub 2014 Aug 29. – http://www.pubfacts.com/detail/25172143/Manipulation-of-mitogen-activated-protein-kinase-kinase-signaling-in-the-Arabidopsis-stomatal-lineag – (On our blog : https://plantstomata.wordpress.com/2016/09/13/four-stomatal-mkks-and-stomatal-lineage/)

Landré P. (1969) – Quelques aspects infrastructuraux des stomates des cotylédons de la  Moutarde (Sinapis alba L.) – C. R. Hebd. Séances Acad. Sci. 269: 900-992 –

Landré P. (1969) – Premières observations sut l’évolution infrastructurale des cellules stomatiques de la Moutarde (Sinapis alba L.) depuis leur mise en place jusqu’à l’ouverture de l’ostiole – C. R. Hebd. Séances Acad. Sci. 269: 943-946 –

Landré P. (1970) – Activité golfienne en liaison avec celle du plasmolemme dans les cellules stomatiques de la Moutarde (Sinapis alba L.) lors dela formation de l’ostiolole – C. R. Hebd. Séances Acad. Sci. 271 : 904-907 –

Landsberg J. J., Butler D. R. (1980) – Stomatal response to humidity: implications for transpiration – Plant Cell and Env 3: 29–33 – https://doi.org/10.1111/1365-3040.ep11580512 –https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11580512 – (On our blog : https://plantstomata.wordpress.com/2019/03/18/stomatal-response-to-humidity-implications-for-transpiration/ )

Landsberg J. J., Sands P. (2011) – Physiological Ecology of Forest Production – In: Terrestrial Ecology 4: 13-48 – Chapter 2 – Weather and Energy Balance – b. Stomatal Conductance – https://doi.org/10.1016/B978-0-12-374460-9.00002-0https://www.sciencedirect.com/science/article/pii/B9780123744609000020 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/74793/ )

Lang A. R. G., Klepper B., Cumming M. J. (1969) – Leaf water balance during oscillation of stomatal aperture – Plant Physiology 44: 826–830 – DOI: https://doi.org/10.1104/pp.44.6.826http://www.plantphysiol.org/content/44/6/826 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/leaf-water-balance-during-oscillation-of-stomatal-aperture/ )

Lange O. L., Lösch R., Schulze E.-D., Kappen L. (1971) – Responses of stomata to changes in humidity. – Planta 100: 76–86 [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/02/16/stomatal-behavior-and-humidity/)

Lange O. L., Medina E. (1979) – Stomata of the CAM Plant Tillandsia recurvata Respond Directly to Humidity – Oecologia(Berl.) 40: 357-363 – Stomata_of_the_CAM_plant_Tillandsia_recu.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/22/stomata-of-a-cam-plant-respond-directly-to-humidity/ )

Langenbrunner B., Pritchard M., Kooperman G. J., Randerson J. T. (2018) – Why does Amazon precipitation decrease when tropical forests respond to increasing CO2? – EarthArXiv, 30 Aug. 2018 – https://doi.org/10.31223/osf.io/9feszhttps://eartharxiv.org/9fesz – (On our blog : https://plantstomata.wordpress.com/2019/03/25/why-does-amazon-precipitation-decrease-when-tropical-forests-respond-to-increasing-co2/ )

Langer K., Levchenko V., Fromm J., Geiger D., Steinmeyer R., Lautner S., Ache P., Hedrich R. (2004) The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development. – Plant Journal 37: 828838. – (On our blog : https://plantstomata.wordpress.com/2016/03/03/guard-cell-k-content-and-k-channel-activity-in-poplar-stomata/).

Larkin J. C., Brown M., Schiefelbein J. W. (2003) – How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. – Annu. Rev. Plant Biol. 54, 403–430. – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/03/28/8904/)

Larkin J. C., Marks M. D., Nadeau J. A., Sack F. D. (1997) – Epidermal cell fate and patterning in leaves. – Plant Cell 9: 1109-1120. – https://botany.ubc.ca/sites/botany.ubc.ca/files/larkin_et_al_1997_pl_cell.pdf – (On our blog : https://plantstomata.wordpress.com/2016/10/26/26123/)

Laroche J., Robert D., Lecoq C., Guervin C. (1976) – Contribution à l’étude du transit du silicum chez l’Equisetum arvense L. I. Les stomates: étude ontogénétique et ultrastructurale – Revue Générale de Botanique 83: 331–365 –

Larsen C. M. (1961) – Développement des stomates de peupliers au cours d’une année sèche – Physiol. plant. 14: 877-889 –

Larson E. R., Van Zelm E., Roux C., Marion-Poll A., Blatt M. R. (2017) – Clathrin Heavy Chain Subunits Coordinate Endo- and Exocytic Traffic and Affect Stomatal Movement – Plant Physiol. 175(2) – DOI: https://doi.org/10.1104/pp.17.00970 – http://www.plantphysiol.org/content/175/2/708?rss=1 – (On our blog : https://plantstomata.wordpress.com/2017/09/27/clathrin-and-syp121-functions-are-important-and-have-an-impact-on-stomatal-function/)

Lascève G., Gautier H., Jappe J., Vavasseur A. (1993) – Modulation of the blue light response of stomata of Commelina communis by CO2 – Physiol Plant 88: 453–459 – https://doi.org/10.1111/j.1399-3054.1993.tb01359.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-3054.1993.tb01359.x – (On our blog : https://plantstomata.wordpress.com/2018/10/30/modulation-of-the-blue-light-response-of-stomata-by-co2/)

Lascève G., Leymarie J., Vavasseur A. (1997) – Alterations in light-induced stomatal opening  in a starch-deficient mutant of Arabidopsis thaliana L. deficient in chloroplast phosphoglucomutase activity – Plant Cell Environ. 20: 350–358 – https://doi.org/10.1046/j.1365-3040.1997.d01-71.x –https://www.academia.edu/19038439/Alterations_in_light-induced_stomatal_opening_in_a_starch-deficient_mutant_of_Arabidopsis_thaliana_L._deficient_in_chloroplast_phosphoglucomutase_activity – (On our blog : https://plantstomata.wordpress.com/2019/03/19/starch-metabolism-is-required-for-full-stomatal-response-to-blue-light-but-is-not-involved-in-the-stomatal-response-to-red-light//

Lascève G., Vavasseur A., Couchat P., Pellegrini L., Pellegrini M. (1987) – Ultrastructure des mitochondries des stomates de mais; cas d’ouverture photoactive – Can. J. Bot. 65: 1861-1869 – https://doi.org/10.1139/b87-255 –https://www.nrcresearchpress.com/doi/abs/10.1139/b87-255 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/ultrastructure-des-mitochondries-des-stomates-french/ )

Lau O. S. (2017) – Stomata – Published online: March 2017 – National University of Singapore, Singapore – http://www.els.net/WileyCDA/ElsArticle/refId-a0002075.html – (On our blog : https://plantstomata.wordpress.com/2017/10/31/stomata/)

Lau O. S.Bergmann D. C. (2012) – Stomatal development: a plant’s perspective on cell polarity, cell fate transitions and intercellular communication. Development 139: 36833692 – doi: 10.1242/dev.080523 – Abstract/FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/21/stomata-a-conceptual-and-technical-framework-3/

Lau O. S., Davies K. A., Chang J., Adrian J.,  Rowe M. H., Ballenger C. E., Bergmann D. C. (2014) – Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells – Science 345(6204): 1605-1609 – DOI: 10.1126/science.1256888 – PMID: 25190717 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390554/ – (On our blog : https://plantstomata.wordpress.com/2018/05/08/spch-directs-stomatal-lineage-cell-behaviors-and-controls-key-regulators-of-cell-fate-and-asymmetric-cell-divisions/

Lau O. S., Song Z., Zhou Z., Davies K. A., Chang J., Yang X., Wang S., Lucyshyn D., Tay I. H. Z., Wigge P. A., Bergmann D. C. (2018) – Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development – Curr Biol. 28(8): 1273-1280.e3. – doi: 10.1016/j.cub.2018.02.054. – Epub 2018 Apr 5. – PMID: 29628371 – https://www.ncbi.nlm.nih.gov/pubmed/?term=PMID%3A+29628371 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/a-molecular-link-connecting-high-temperature-signaling-and-stomatal-development/ )

Laur J., Hacke U.G. (2013) – Transpirational demand affects aquaporin expression in poplar roots – Journal of Experimental Botany 64(8) – DOI: 10.1093/jxb/ert096 – https://www.researchgate.net/publication/236228367_Transpirational_demand_affects_aquaporin_expression_in_poplar_roots – (On our blog : https://plantstomata.wordpress.com/2018/12/02/stomatal-conductance-and-modulation-of-water-uptake-in-a-dynamic-manner/

Laurin É. , Nunes M.C.N. , Émond J.-P., Brecht J. K. (2006) – Residual effect of low-pressure stress during simulated air transport on Beit Alpha-type cucumbers: Stomata behavior – Postharvest Biology and Technology 41(2): 121-127 – DOI10.1016/j.postharvbio.2005.09.012 – https://www.infona.pl/resource/bwmeta1.element.elsevier-865ba4b2-f898-33fc-807d-3924301b6aa1 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-behavior-during-simulated-air-transport/)

Lawlor D. W. (2002) – Limitation to Photosynthesis in Water‐stressed Leaves: Stomata vs. Metabolism and the Role of ATP – Annals of Botany 89(7): 871–885 – https://doi.org/10.1093/aob/mcf110 – https://academic.oup.com/aob/article/89/7/871/151155/Limitation-to-Photosynthesis-in-Water-stressed – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomata-vs-metabolism-and-the-role-of-atp/)

Lawlor D. W., Lake J. V. (1976) –  Evaporation rate, leaf water potential and stomatal conductance in Lolium, Trifolium and Lysimachia in drying soil – J. Appl. Ecol. 13: 639–646 – DOI: 10.2307/2401809 – https://www.jstor.org/stable/pdf/2401809.pdf?seq=1#page_scan_tab_contents (On our blog : https://plantstomata.wordpress.com/2018/11/25/evaporation-rate-leaf-water-potential-and-stomatal-conductance-in-drying-soil/

Lawson S. S., Pijut P. M., Michler C.H. (2014) – The cloning and characterization of a poplar stomatal density gene. – Genes and Genomics 36: 427–441 – https://doi.org/10.1007/s13258-014-0177-x – https://link.springer.com/article/10.1007/s13258-014-0177-x – (On our blog : https://plantstomata.wordpress.com/2018/05/08/a-poplar-stomatal-density-gene/ )

Lawson S. S., Pijut P. M., Michler C.H. (2014) – Comparison of Arabidopsis Stomatal Density Mutants Indicates Variation in Water Stress Responses and Potential Epistatic Effects – J. Plant Biol. (2014) 57:162-173.(http://www.fs.fed.us/nrs/pubs/jrnl/2014/nrs_2014_lawson_002.pdf) – (On our blog : https://plantstomata.wordpress.com/2015/03/27/stomata-and-biomass/)

Lawson S. S., Pijut P. M., Michler C. H. (2014) – Comparison of Arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects – J. Plant Biol. 57: 162–173 – DOI: . 10.1007/s12374-014-0017-1 – [Cross Ref] – https://www.fs.usda.gov/treesearch/pubs/46282 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/comparison-of-stomatal-density-mutants-indicates-variation-in-water-stress-responses/

Lawson T., Oxborough K., Morison J. I. L., Baker N. R. (2002) – Responses of Photosynthetic Electron Transport in Stomatal Guard Cells and Mesophyll Cells in Intact Leaves to Light, CO2, and Humidity – Plant Physiology 128(1): 52-62 – DOI: https://doi.org/10.1104/pp.010317http://www.plantphysiol.org/content/128/1/52 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/photosynthetic-electron-transport-in-stomatal-guard-cell-chloroplasts-responds-to-internal-not-ambient-co2-concentration/ )

Lawson T. (2009) – Guard cell photosynthesis and stomatal function. – New Phytol. 181: 13-34 –  doi: 10.1111/j.1469-8137.2008.02685.x. – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/18/7709/)

Lawson T. (2019) – Stomatal-based systems analysis of water use efficiency – UKri – https://gtr.ukri.org/project/BA273D8A-FB5A-45AC-A59F-804214C14D7B – (On our blog : https://plantstomata.wordpress.com/2019/05/04/stomatal-based-systems-analysis-of-wue/ )

Lawson T., Blatt M. R. (2014) – Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. – Plant Physiol. 164(4): 1556-1570. doi: 10.1104/pp.114.237107. Epub 2014 Feb 27.- CASPubMedArticle – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/21/the-rapidity-of-stomatal-responses/)

Lawson T., Blatt R. M. (2014) – Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency – Plant Physiol.164: 1556–1570 – DOI: https://doi.org/10.1104/pp.114.237107 – http://www.plantphysiol.org/content/164/4/1556 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/stomatal-size-speed-and-responsiveness-impact-on-photosynthesis-and-water-use-efficiency/ )

Lawson T., Craigon J., Black C. R., Colls J. J., Landon G., Weyers J. D. (2002) –  Impact of elevated CO2 and O3 on gas exchange parameters and epidermal characteristics in potato (Solanum tuberosum L.) –  J. Exp. Bot. 53(369): 737–746 – https://doi.org/10.1093/jexbot/53.369.737 – https://academic.oup.com/jxb/article/53/369/737/614573 – (On our blog : https://plantstomata.wordpress.com/2018/05/08/impact-of-elevated-co2-and-o3-on-stomata/ )

Lawson T., James W., Weyers J. (1998) – A surrogate measure of stomatal aperture – Journal of Experimental Botany, Vol. 49(325): 1397–1403 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/measuring-stomatal-aperture/)

Lawson T., Lefebvre S., Baker N. R., Morison J. I. L., Raines C. A. (2008) – Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO– Journal of Experimental Botany 59, 36093619. – Abstract/FREE Full Text – (On our blog: https://plantstomata.wordpress.com/2016/07/21/photosynthesis-and-stomatal-responses-to-light-and-co2/)

Lawson T., McElwain J. C. (2016) – Evolutionary trade-offs in stomatal spacing – New Phytologist 210: 1149–1151 – DOI: 10.1111/nph.13972 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13972/full – (On our blog : https://plantstomata.wordpress.com/2016/05/10/stomatal-spacing/)

Lawson T., Morison J. I. L. (2010) – Guard Cell Photosynthesis – Plant Physiol. & Developm., 6th ed., Essay 10.1 – http://6e.plantphys.net/essay10.01.html – (On our blog : https://plantstomata.wordpress.com/2015/10/24/guard-cell-photosynthesis-and-fluorescence/)

Lawson T., Oxborough K., Morison J. I., Baker N. R. (2002) – Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity – Plant Physiology 128: 5262 –  DOI: https://doi.org/10.1104/pp.010317 – CrossRef | PubMed | – http://www.plantphysiol.org/content/128/1/52.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/photosynthetic-electron-transport-in-stomatal-chloroplasts-responds-to-internal-not-ambient-co2-concentration/ )

Lawson T., Oxborough K., Morison J. I., Baker N. R. (2003) – The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. – J. Exp. Bot. 54, 1743–1752 – doi: 10.1093/jxb/erg186 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/12773521 – (On our blog : https://plantstomata.wordpress.com/2018/05/08/photosynthetic-efficiency-in-stomata-is-determined-by-the-same-factors-that-determine-it-in-the-mesophyll/ )

Lawson T., Oxborough K., Morison J. I., Baker N. R. (200x) – Evaluating guard cell photosynthesis in intact green leaves using chlorophyll fluorescence imaging – http://www.publish.csiro.au/sa/pdf/SA0403560 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/evaluating-photosynthesis-in-stomata-in-intact-green-leaves/)

Lawson T., Simkin A. J., Kelly G., Granot D. (2014) – Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. – New Phytol. 203, 1064–1081 – doi: 10.1111/nph.12945 – PubMed Abstract | CrossRef Full Text | Google Scholar

Lawson T., Vialet-Chabrand S. (2018) – Speedy stomata, photosynthesis and plant water use efficiency – New Phytol. Online Version of Record – https://doi.org/10.1111/nph.15330 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15330?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/12/the-rapidity-of-stomatal-responses-2/ )

Lawson T., von Caemmerer S., Baroli I. (2011) – Photosynthesis and stomatal behaviour – Progress in Botany 72: 265-304 – https://doi.org/10.1007/978-3-642-13145-5_11https://link.springer.com/chapter/10.1007/978-3-642-13145-5_11 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/photosynthesis-and-stomatal-behaviour/ )

Lawson T., Weyers J. D. B., A’Brook R. (1998) – The nature of heterogeneity in the stomatal behaviour of Phaseolus vulgaris L. primary leaves – Journal of Experimental Botany  49, No. 325: 1387–1395 – The_nature_of_heterogeneity_in_the_stoma.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/the-nature-of-heterogeneity-in-the-stomatal-behaviour/)

Laxalt A. M., Garcia Mata C., Lamattina L. (2016) – The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure – Frontiers Plant Sci. 7:476. – doi: 10.3389/fpls.2016.00476 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00476/full – (On our blog : https://plantstomata.wordpress.com/2016/09/03/dual-role-of-no-in-stomata/)

Laza Ma. R. C., Kondo M., Ideta O., Barlaan E., Imbe T. (2010) – Quantitative trait loci for stomatal density and size in lowland rice – Euphytica (2010) 172:149–158 DOI 10.1007/s10681-009-0011-8 – Quantitative_trait_loci_for_stomatal_den.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/quantitative-trait-loci-for-stomatal-density-and-size-in-lowland-rice/)

Le J., Liu X.-G., Yang K.-Y., Chen X.-L., Zou J.-J., Wang H.-Z., Wang M., Vanneste S., Morita M., Tasaka M., Ding Z.-J., Friml J., Beeckman T., Sack F. (2014) – Auxin transport and activity regulate stomatal patterning and development – Nature Communications 5, – doi:10.1038/ncomms4090 – http://www.nature.com/articles/ncomms4090 – (On our blog : https://plantstomata.wordpress.com/2016/12/16/auxin-stomatal-patterning-and-development/)

Le J., Zou J., Yang K., Wang M. (2014) – Signaling to stomatal initiation and cell division – Front. Plant Sci. 5: Art. 297 – https://doi.org/10.3389/fpls.2014.00297 –  fpls-05-00297.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/13/signaling-involved-in-stomatal-initiation-and-in-divisions-in-the-cell-lineage/ )

Leakey A. D. B. (2019) – PE1200: Phenomics of Stomata and Water Use Efficiency in C4 Species – Plant & Animal Genome Conference XXVII, San Diego – https://pag.confex.com/pag/xxvii/meetingapp.cgi/Paper/37365 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/phenomics-of-stomata/ )

Leakey A., Bernacchi C., Ort D., Long S. (2006) – Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions – Plant Cell Environ. 29: 1794–1800 – https://doi.org/10.1111/j.1365-3040.2006.01556.x – Wiley Online LibraryPubMedCAS | – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2006.01556.x – (On our blog : https://plantstomata.wordpress.com/2018/05/11/elevated-co2-and-stomatal-conductance/ )

Lebaudy A.Pascaud F.Véry A. A., Alcon C.Dreyer I.Thibaud J. B.Lacombe B. (2010) – Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. – J Biol Chem 285: 62656274 – DOI: 10.1074/jbc.M109.068445 – http://www.jbc.org/content/285/9/6265/F1.expansion.html –  https://www.ncbi.nlm.nih.gov/pubmed/20040603 – (On our blog : https://plantstomata.wordpress.com/2018/05/11/arabidopsis-guard-cell-inward-shaker-channels-are-mainly-heteromers-of-kat1-and-kat2-subunits/ )

Lebaudy A., Vavasseur A., Hosy E., Dreyer I., Leonhardt N., Thibaud J.-B., Véry A.-A., Simonneau T., Sentenac H. (2008) – Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. – Proc. Natl Acad. Sci. USA 105:5271–5276. – doi: 10.1073/pnas.0709732105 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/22/gckin-activity-plays-pleiotropic-roles-in-stomata/)

Lechowski Z. (1997) – Stomatal response to exogenous cytokinin treatment of the hemiparasite Melampyrum arvense L. before and after attachment to the host. – Biol. Plant. 39: 13- 21 – https://doi.org/10.1023/A:1000392502943 – https://link.springer.com/article/10.1023%2FA%3A1000392502943#citeas – (On our blog : https://plantstomata.wordpress.com/2018/05/11/stomatal-response-to-exogenous-cytokinin-treatment/ )

Leckie C. P., McAinsh M. R., Allen G. J., Sanders D., Hetherington A.M. (1998) –  Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. – Proc. Natl Acad. Sci. USA,95, 1583715842. – doi: 10.1073/pnas.95.26.15837 – CrossRef |PubMed | – (On our blog : https://plantstomata.wordpress.com/2016/07/22/cadpr-a-key-player-in-aba-signal-transduction-pathways-in-plants/)

Leckie C. P., McAinsh, Montgommery L., Priestley A. J., Staxen I., Webb A. A. R., Hetherington A. M. (1998) – Second messengers in guard cells – J. Exp. Bot. 49: 339–349 – https://doi.org/10.1093/jxb/49.Special_Issue.339 –https://academic.oup.com/jxb/article/49/Special_Issue/339/507979 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/second-messengers-in-stomatal-guard-cells/ )

Ledent J. F., Jouret M. F. (1978) – Relationship between stomatal frequencies, yield components and morphological characters in collections of winter wheat cultivars – Biol Plant (1978) 20: 287 – https://doi.org/10.1007/BF02922688 https://link.springer.com/article/10.1007/BF02922688 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-frequencies-yield-components-and-morphological-characters-of-wheat/ )

Lee D. M., Assmann S. M. (1992) – Stomatal responses to light in the facultative Crassulacean acid metabolism species, Portulacaria afra – Physiol. Plant. 85: 35–42 – https://doi.org/10.1111/j.1399-3054.1992.tb05260.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1992.tb05260.x – (On our blog : https://plantstomata.wordpress.com/2018/10/30/portulacaria-afra-individuals-performing-c3-metabolism-possess-typical-stomatal-responses-to-light/ )

Lee E., Liu X., Eglit Y., Sack F. (2013)  – FOUR LIPS and MYB88 conditionally restrict the G1/S transition during stomatal formation – J. Exp. Bot. (2013) 64 (16):5207-5219.- doi: 10.1093/jxb/ert313 – http://jxb.oxfordjournals.org/content/64/16/5207.abstract?ijkey=22e89154124e32cc948637e8891ecf4c6450bd72&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/09/27/four-lips-flp-and-myb88-genes-and-nonstomatal-epidermal-cells/)

Lee E., Lucas J. R., Goodrich J., Sack F. D. (2014) – Arabidopsis Guard Cell Integrity Involves the Epigenetic Stabilization of the FLP and FAMA Transcription Factor Genes – THE PLANT JOURNAL 78(4) ·  · DOI: 10.1111/tpj.12516 – https://www.researchgate.net/publication/261030727_Arabidopsis_Guard_Cell_Integrity_Involves_the_Epigenetic_Stabilization_of_the_FLP_and_FAMA_Transcription_Factor_Genes – (On our blog : https://plantstomata.wordpress.com/2015/06/21/stomata-guard-cell-integrity/)

Lee E., Lucas J. R., Sack F. D. (2014)  – Deep functional redundancy between FAMA and FOUR LIPS in stomatal development. – Plant Journ. 2014 May;78(4):555-65. doi: 10.1111/tpj.12489. Epub 2014 Apr 23. – http://www.ncbi.nlm.nih.gov/pubmed/24571519 – (On our blog : https://plantstomata.wordpress.com/2016/07/23/interactions-between-flp-and-fama-with-the-retinoblastoma-related-rbr-protein-in-stomatal-functions/)

Lee J.-H., Jung J.-H.Park C.-M. (2017) – Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis – The Plant Cell 

Lee J. S. (1998) – The mechanism of stomatal closing by salicylic acid in Commelina communis L. – Plant Biol. (1998) 41: 97. – https://doi.org/10.1007/BF03030395 – https://link.springer.com/article/10.1007/BF03030395#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-closing-by-sa/ )

Lee J. S. (2010) – Stomatal Opening Mechanism of CAM Plants –  J. Plant Biol. (2010) 53: 19-23 –  https://doi.org/10.1007/s12374-010-9097-8 – https://link.springer.com/article/10.1007/s12374-010-9097-8 – (On our blog : https://plantstomata.wordpress.com/2017/09/26/stomata-of-cam-plants/)

Lee J. S., Bowling D. J. F. (1992) – Effect of the mesophyll on stomatal opening in Commelina communis – Journal of Experimental Botany 43: 951–957 – https://doi.org/10.1093/jxb/43.7.951 – https://academic.oup.com/jxb/article-abstract/43/7/951/531126?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/10/27/the-mesophyll-plays-an-important-role-in-stomatal-opening-in-the-light/ )

Lee J. S. Bowling D. J. F. (1992) – Effect of the mesophyll on stomatal opening in Commelina communis. – J. Exp. Bot. 43, 951–957. – doi: 10.1093/jxb/43.7.951 – CrossRef Full Text | Google Scholar – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Effect-of-the-Mesophyll-on-Stomatal-Opening-in-Commelina-communis.pdf  – (On our blog : https://plantstomata.wordpress.com/2016/02/16/the-effect-of-a-number-of-factors-on-the-opening-of-stomata/).

Lee J. S. Bowling D. J. F. (1993) – The effect of a mesophyll factor on the swelling of guard cell protoplasts of Commelina communis – Journal of Plant Physiology 142: 203–207 – https://doi.org/10.1016/S0176-1617(11)80964-8 –https://www.sciencedirect.com/science/article/pii/S0176161711809648?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/08/the-effect-of-a-mesophyll-factor-on-the-swelling-of-stomatal-guard-cell-protoplasts/ )

Lee J. S., Bowling D. J. F. (1993) – Influence of the mesophyll on the change of electrical potential difference of guard cells induced by red light and CO2 in Commelina communis L. and Trandescantia virginiana L. – Korean J. Bot. 36: 383–389 – Google Scholar – (Article not found)

Lee J. S., Hnilova M., Maes M.Lin Y.-C. L.Putarjunan A.Han S.-K.Avila J.,Torii K. U. (2015) – Competitive binding of antagonistic peptides fine-tunes stomatal patterning – Nature522,439–443(25 June 2015)doi:10.1038/nature14561 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/antagonistic-peptides-and-stomatal-patterning/)

Lee J. S., Kuroha T., Hnilova M., Khatayevich D., Kanaoka M. M., McAbee J. M., Sarikaya M., Tamerler C., Torii K. U. (2012) – Direct interaction of ligand-receptor pairs specifying stomatal patterning. – Genes Dev 2012, 26:126-136. -10.1101/gad.179895.111- (PubMed Abstract | Publisher Full Text |PubMed Central Full Text) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/ligand-receptor-pairs-specifying-stomatal-patterning/).

Lee M., Choi Y., Burla B., Kim Y.-Y., Jeon B., Maeshima M., Yoo J.-Y., Martinoia M., Lee Y. (2008) – The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. – Nature Cell Biol 10:1217–1223 – CrossRef PubMedMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/23/atabcb14-modulates-stomatal-movement/)

Lee S., Choi H., Suh S., Doo I. S., Oh K. Y., Choi E. J., et al. (1999) – Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. – Plant Physiol. 121: 147–152. – doi: 10.1104/pp.121.1.147 – http://www.plantphysiol.org/content/121/1/147 – (On our blog : https://plantstomata.wordpress.com/2018/05/11/guard-cells-infected-by-pathogens-may-close-their-stomata-via-a-pathway-involving-h2o2-production/ )

Lee S., Ishiga Y., Clermont K., Mysore K. S. (2013) – Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. – Peer J. 1, e34 – doi:  10.7717/peerj.34 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628748/ – (On our blog : https://plantstomata.wordpress.com/2018/05/11/stomatal-closure-induced-by-a-nonhost-pathogen-was-disrupted-by-cor/ )

Lee S., Senthil-Kumar M., Kang M., Rojas C. M., Tang Y., Oh S., Choudhury S. R., Lee H.-K., Ishiga Y., Allen R. D., Pandey S., Mysore K. S. (2017) – The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity – Scientific Reports 7, Nr.: 9260 – doi:10.1038/s41598-017-08932-9 – https://www.nature.com/articles/s41598-017-08932-9 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/the-new-functional-role-of-small-gtpase-nog1-in-guard-cell-signaling-for-stomatal-response/)

Lee S., Choi H., Suh S., Doo I. S., Oh K. Y., Choi E. J. et al. (1999) – Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 121, 147–152. doi: 10.1104/pp.121.1.147 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/24/the-effect-of-oligogalacturonic-acid-and-chitosan-on-stomatal-movements/)

Lee S. C.Lan W.Buchanan B. B.Luan S. (2009) – A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. – Proc Natl Acad Sci USA 106: 2141921424 – doi: 10.1073/pnas.0910601106 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/24/aba-signaling-is-mediated-by-a-physical-interaction-chain-to-regulate-stomatal-movements/)

Lee S. C., Lim C. W., Lan W., He K., Luan S. (2013) – ABA Signaling in guard cells entails a dynamic protein–protein interaction relay from the PYL-RCAR Family receptors to ion channels.- Mol. Plant 6, 528–538. doi: 10.1093/mp/sss078 – PubMed Abstract | CrossRef Full Text | Google ScholarMedline – (On our blog : https://plantstomata.wordpress.com/2016/07/25/aba-and-a-dynamic-protein-protein-interaction-relay-from-the-pyl-rcar-family-receptors-to-ion-channels/)

Lee S. C., Luan S. (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses – Plant, Cell & Environment, 2012, 35, 1, 53 – DOI: 10.1111/j.1365-3040.2011.02426.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2011.02426.x/full – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/25/aba-signal-transduction-and-activation-of-ion-channels-in-guard-cells-and-stomatal-closure/ )

Lee S. H., Tewari R. K., Hahn E. J., Paek K. Y. (2007) – Photon flux density and light quality induce changes in growth, stomatal development, photosyntesis plantlets. – Plant cell tiss Org. Cult, (2007) 90: 141-151.- doi:10.1007/s11240-006-9191-2 – http://link.springer.com/article/10.1007/s11240-006-9191-2 – (On our blog : https://plantstomata.wordpress.com/2016/12/19/quality-and-quantity-of-light-affect-stomatal-development/)

Lee Y., Assmann S. M. (1991) – Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata – Proc Natl Acad Sci USA. 88(6): 2127–2131 – PMID: 11607161 PMCID: PMC51182–  [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/11607161 – (On our blog : https://plantstomata.wordpress.com/2018/05/12/diacylglycerols-and-opening-of-intact-stomata/

Lee Y., Choi Y. B., Suh S., Lee J., Assmann S. M., Joe C. O., Kelleher J. F., Crain R. C. (1996)Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. – Plant Physiol. 110: 987–996 -doi: http://dx.doi.org/10.1104/pp.110.3.987 [PMC free article] [PubMed], Abstract – (On our blog : https://plantstomata.wordpress.com/2016/07/26/phosphoinositide-signaling-and-coupling-aba-to-guard-cell-shrinking-and-stomatal-closure/)

Lee Y., Kim Y. J., Kim M.-H., Kwak J. M. (2016) – MAPK Cascades in Guard Cell Signal Transduction – Front. Plant Sci. 7:80. – http://dx.doi.org/10.3389/fpls.2016.00080 – (On our blog  : https://plantstomata.wordpress.com/2016/02/29/mapk-mediated-guard-cell-signaling-in-stomata/)

Lee Y., Kim Y.-W., Jeon B. W., Park K.-Y., Suh S. J., Seo J., Kwak J. M., Martinoia E., Hwang I., Lee Y. (2007) – Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. – Plant J. 52: 803–816 -PMID:17883374 – DOI:10.1111/j.1365-313X.2007.03277.x – [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/07/26/full-stomatal-opening-and-ptdins45p2/)

Lee Y., Lee H. J., Crain R. C., Lee A., Korn S. J. (1994) – Polyunsaturated fatty acids modulates stomatal aperture and two distinct K+ channel currents in guard cells. – Cell. Signal. 6: 181–186 – 10.1016/0898-6568(94)90075-2 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/8086281 – (On our blog : https://plantstomata.wordpress.com/2018/05/12/fatty-acids-regulate-stomatal-aperture-by-modulation-of-two-different-k-channels/

Lehmann P., Or D. (2015) – Effects of stomata clustering on leaf gas exchange. – New Phytol. 207: 1015–1025. (doi:10.1111/nph.13442) – CrossRefPubMedGoogle Scholar – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.13442 – (On our blog : https://plantstomata.wordpress.com/2018/05/12/effects-of-stomata-clustering-on-leaf-gas-exchange/ )

Lei Z. Y., Han J. M., Yi, X. P., Zhang W. F., Zhang Y. L. (2018) – Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress – Photosynthetica  56: 1326-1335 –  https://doi.org/10.1007/s11099-018-0847-z – https://link.springer.com/article/10.1007/s11099-018-0847-z – (On our blog : https://plantstomata.wordpress.com/2018/09/24/coordinated-changes-in-vein-and-stomatal-density-improve-the-wue-of-cotton-under-drought-stress/ )

Leick E. (1927) – Untersuchungen über den Einfluß des Lichtes auf die öffnungsweite unterseitiger und oberseitiger Stomata desselben Blattes – Jahrbücher für Wissenschaftliche Botanik 67: 771848 –

Leick E. (1955) Periodische Neuanlage von Blattstomata – Flora 14245–64. – Google Scholar

Leila (2015) – How do stomata help conserve water? – Socratic, Biology Topics – https://socratic.org/questions/how-do-stomata-help-conserve-water – (On our blog : https://plantstomata.wordpress.com/2019/01/14/74774/ )

Leinonen I., Grant O. M., Tagliavia C. P. P., Chaves M. M., Jones H. G. (2006) – Estimating stomatal conductance with thermal imagery – Plant, Cell and Environment 29: 1508–1518 – doi: 10.1111/j.1365-3040.2006.01528.x – Estimating_stomatal_conductance_with_the.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/estimating-stomatal-conductance-with-thermal-imagery/ )

Leitgeb H. (1888) – Beiträge zur Physiologie der Spaltöffnungsapparate – Graz Bet. Inst. Mitt. 1: 123-

Lekhak H. D., Sen D. N. (1982) – Stomatal responses towards neutral red uptake and particulate movement in some arid zone plants – Biologia Plantarum (Praha) 24(2): 101-108. – (On our blog : https://plantstomata.wordpress.com/2017/03/28/37084/)

Lemichez E., Wu Y., Sanchez J.  P., Mettouchi A., Mathur J., Chua N. H. (2001) – Inactivation of AtRac1 by abscisic acid is essential for stomatal closure – Genes Dev.15: 1808–1816 – doi:10.1101/gad.900401 – CrossRefAbstract/FREE Full TextMedline – (On our blog : https://plantstomata.wordpress.com/2016/07/27/atrac1-is-a-central-element-for-plant-adaptation-to-drought-by-stomatal-closure/)

Lemtiri-Chlieh F. (1996) – Effects of internal K+ and ABA on the voltage- and time-dependence of the outward K+-rectifier in Vicia guard cells. – J Membr Biol 1563: 105–116 – https://doi.org/10.1007/s002329900114 – CrossRefGoogle Scholar – https://link.springer.com/article/10.1007%2Fs002329900114 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/k-aba-and-stomata/

Lemtiri-Chlieh F., MacRobbie E. A. C. (1994) –  Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch clamp study. – J. Membr. Biol., 137, 99107. – DOI: 10.1007/BF00233479 – CrossRef |PubMed | – (On our blog : https://plantstomata.wordpress.com/2016/07/27/ca2-k-and-aba-in-stomatal-closure/)

Lemtiri-Chlieh F., MacRobbie E. A. C., Brearley C. A. (2000) – Inositol hexakisphosphate is a physiological signal regulating the K+ -inward rectifying conductance in guard cells. – Proc. nat. Acad. Sci. USA 97: 8687-8692, 2000. – (Article not found)

Lemtiri-Chlieh F., MacRobbie E. A. C., Webb A. A. R., Manison N. F., Brownlee C., Skepper J. N.,Chen J., Prestwich G. D., Brearley C. A. (2003) – Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. – Proc. Natl. Acad. Sci. U.S.A. 100, 10091. doi: 10.1073/pnas.1133289100 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/27/insp6-as-an-endomembrane-acting-calcium-release-signal-in-stomata/)

Leng Q., Huang L., Hua B., Lou C. (1998) – Grey relation function between local electrical potential and stomatal behavior during light exposure in plants – Chinese Science Bulletin 43(19): 1642-1646 – https://doi.org/10.1007/BF02883410https://link.springer.com/article/10.1007/BF02883410 – (On our blog : https://plantstomata.wordpress.com/2019/03/30/lep-could-represent-the-dominant-factor-in-executing-the-stomatal-movement-under-the-light-exposure/ )

Leonhardt N., Kwak J. M., Robert N., Waner D., Leonhardt G., Schroeder J. I (2004)  – Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. – Plant Cell 16,596615 (2004). – doi: http://dx.doi.org/10.1105/tpc.019000 – CASISIPubMedArticlePubMed Abstract | CrossRef Full Text | Google ScholarAbstract/FREE Full Text – !On our blog : https://plantstomata.wordpress.com/2016/07/27/microarray-expression-analyses-of-guard-cells-in-arabidopsis-stomata/

Leonhardt N., Marin E. M.Vavasseur A., Forestier C. (1997) – Evidence for the existence of a sulfonylurea-receptor-like protein in plants: Modulation of stomatal movements and guard cell potassium channels by sulfonylureas and potassium channel openers (guard cellyATP-sensitive potassium channelsyoutward potassium channelsyATP-binding cassetteystomata) – Proc. Natl. Acad. Sci. USA 94,1415614161 –  – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/modulation-of-stomatal-movements-and-guard-cell-potassium-channels-by-sulfonylureas-and-potassium-channel-openers/

Leonhardt N., Vavasseur A., Forestier C., (1999) – ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells – Plant Cell 11: 1141-1151 – https://doi.org/10.1105/tpc.11.6.1141 – http://www.plantcell.org/content/11/6/1141 – (On our blog : https://plantstomata.wordpress.com/2018/12/06/the-slow-anion-channel-is-an-abc-protein-or-is-tightly-controlled-by-such-a-protein-that-interacts-with-the-aba-signal-transduction-pathway-in-stomata/ )

Le Thiec D., Rose C., Garrec J. P., Laffray D., Louguet P., Galaup S., Loosveldt P. (1994) – Alterations of element contents in guard cells of Norway spruce (Picea abies) subjected to ozone fumigation and (or) water stress: x-ray microanalysis study – Canadian Journal of Botany 72: 86–92 – https://doi.org/10.1139/b94-012 –https://www.nrcresearchpress.com/doi/abs/10.1139/b94-012 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/alterations-of-element-contents-in-stomatal-guard-cells-subjected-to-ozone-fumigation-and-or-water-stress/ )

Leuning R. (1990) – Modeling stomatal behavior and photosynthesis of Eucalyptus grandis – Australian Journal of Plant Physiology 17: 159175 – https://doi.org/10.1071/PP9900159 – CrossRef – http://www.publish.csiro.au/FP/PP9900159 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/a-combined-model-of-stomatal-conductance-co2-assimilation-and-intercellular-co2-mol-fraction/ )

Leuning R. (1995) – A critical appraisal of a combined stomatal-photosynthesis model for C3 plants.- Plant Cell Environ. 18: 339355  – DOI: 10.1111/j.1365-3040.1995.tb00370.x – ArticleWiley Online LibraryCAS |- (On our blog : https://plantstomata.wordpress.com/2016/07/27/combined-stomatal-photosynthesis-model-for-c3-plants/)

Levchenko V., Konrad K. R.Dietrich P.Roelfsema M. R.Hedrich R. (2005) – Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. – Proc. Natl Acad. Sci. USA, 102,42034208. – doi: 10.1073/pnas.0500146102 – CrossRefPubMedCASAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/27/aba-activates-guard-cell-anion-channels-in-stomata/)

Levchenko V., Guinot D. R., Klein M., Roelfsema M. R. G., Hedrich R., Dietrich P. (2008) – Stringent control of cytoplasmic Ca2+ in guard cells of intact plants compared to their counterparts in epidermal strips or guard cell protoplasts. – Protoplasma 233: 61–72 – doi: 10.1007/s00709-008-0307-x. – [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/07/28/cytoplasmic-ca2-concentrations-in-stomata/)

Levchenko V., Konrad K. R., Dietrich P., Roelfsema M. R., Hedrich R. (2005) – Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proceedings of the National Academy of Sciences of the United States of America 102: 4203–4208 – DOI 10.1073/pnas.0500146102 -| CrossRef | CAS | – https://www.ncbi.nlm.nih.gov/pubmed/15753314 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/cytosolic-aba-activates-stomatal-anion-channels-without-preceding-ca2-signals/ )

Leverenz J., Deans J. D., Ford E. D., Jarvis P. G., Milne R., Whitehead D. (1982) –  Systematic spatial variation of stomata1 conductance in a Sitka spruce plantation – J. Appl. Ecol. 19: 835-851 – DOI: 10.2307/2403286 – https://www.jstor.org/stable/2403286?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/10/30/systematic-spatial-variation-of-stomata1-conductance/ )

Levitt J. (1967) – The mechanism of stomatal action – Planta 74 : 101-118 –  doi: 10.1007/BF00388323 – https://www.ncbi.nlm.nih.gov/pubmed/24549885 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/the-mechanism-of-stomatal-action/ )

Levitt J. (1968) – Stomatal opening: role of potassium uptake – Science 163: 494 – https://pdfs.semanticscholar.org/13e0/40b0e7731e3920821da077024ea7bb1c2e85.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/07/role-of-k-uptake-in-stomatal-opening/ )

Levitt J. (1974) – The mechanism of stomatal action – Once More – Protoplasma 82: 1-17 (On our blog : https://plantstomata.wordpress.com/2017/03/02/types-of-stomatal-movement/)

Levitt J. (1976) – Physiological Basis of Stomatal Response – in O. L. Lange et al. (eds.) : Water and Plant Life pp 160-168 – Part of the Ecological Studies book series (ECOLSTUD, volume 19) – https://link.springer.com/chapter/10.1007%2F978-3-642-66429-8_10 – (On our blog : plantstomata.wordpress.com/2017/09/18/stomata-fulfill-three-major-functions-in-the-physiology-of-the-plant/)

Levitt L. K., Stein D. B., Rubinstein B. (1987) – Promotion of stomatal opening by indole acetic acid and ethrel in epidermal strips of Vicia faba L. – Plant Physiol. 85: 318–323 – PMID: 16665694 PMCID: PMC1054252 – 10.1104/pp.85.2.318 – [PMC free article] [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/16665694 – (On our blog : https://plantstomata.wordpress.com/2018/10/31/promotion-of-stomatal-opening-by-iaa-and-ethrel/

Leyman B., Geelen D., Quintero F. J., Blatt M. R. (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. – Science 283: 537540. – DOI: 10.1126/science.283.5401.537 – CrossRef |PubMed |CAS | – (On our blog :https://plantstomata.wordpress.com/2016/07/28/a-tobacco-syntaxin-in-stomata/)

Leymarie J., Lasceve G., Vavasseur A. (1998) – Interaction of stomatal responses to ABA and CO2 on Arabidopsis thaliana. – Aust. J. Plant Physiol. 25:785–791. – doi:10.1071/PP98031  – CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/28/stomatal-responses-to-aba-and-co2/)

Leymarie J., Lasceve G., Vavasseur A. (1999) – Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana – Plant, Cell and Environment 22: 301-308 – https://doi.org/10.1046/j.1365-3040.1999.00403.x – https://s3.amazonaws.com/academia.edu.documents/40396561/Elevated_CO2_enhances_stomatal_responses20151126-26910-11vuk8x.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543001890&Signature=yPqgDHpnGqJ3HabZ9EGlYaF3xas%3D&response-content-disposition=inline%3B%20filename%3DElevated_CO2_enhances_stomatal_responses.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/23/elevated-co2-enhances-stomatal-responses-to-osmotic-stress-and-aba/ )

Leymarie J.,Vavasseur A., Lasceve G.  (1998) – CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana – Plant Physiology and Biochemistry, Volume 36, Issue 7, July 1998, Pages 539-543 – doi:10.1016/S0981-9428(98)80180-0 – http://www.sciencedirect.com/science/article/pii/S0981942898801800 – (On our blog : https://plantstomata.wordpress.com/2016/07/28/stomatal-responses-to-co2/)

Li B., Liu G., Deng Y., Xie M., Feng Z., Sun M., Zhao Y., Liang L., Ding N., Jia W. (2010) – Excretion and folding of plasmalemma function to accommodate alterations in guard cell volume during stomatal closure in Vicia faba L. – J Exp Bot 61: 3749-3758 – doi: 10.1093/jxb/erq197. Epub 2010 Jul 5 – https://www.ncbi.nlm.nih.gov/pubmed/20603284 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/excretion-and-folding-of-the-plasmalemma-and-stomatal-movement/ )

Li C., Zhang X., Liu X., Luukkanen O., Berninger F. (2006) – Leaf Morphological and Physiological Responses of Quercus aquifolioides along an Altitudinal Gradient – Silva Fennica 40(1): 5–13. (http://www.metla.fi/silvafennica/full/sf40/sf401005.pdf) – (On our blog : https://plantstomata.wordpress.com/2015/03/31/leaf-morphological-and-physiological-responses-to-altitudinal-gradients-in-quercus-dicots/).

Li C. L.Wang M., Ma X. Y.Zhang W. (2014) – NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis. – Mol Plant 7: 15081521 – DOI: http://dx.doi.org/10.1093/mp/ssu061 – CrossRefMedline – (On our blog : https://plantstomata.wordpress.com/2016/07/29/a-putative-role-for-nrga1-in-guard-cell-aba-signaling-in-response-to-drought/)

Li C.-L., Wang M.Wu X.-M.Chen D.-H.Lv H.-J.Shen J.-L.Qiao Z., Zhang W. (2016) – THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis – Plant Physiology February 2016 vol. 170 no. 2 1090-1104 – doi: http://dx.doi.org/10.1104/pp.15.01649 – http://www.plantphysiol.org/content/170/2/1090.full – (On our blog : https://plantstomata.wordpress.com/2016/04/04/the-role-of-thi1-a-thiamine-thiazole-synthase-in-stomata/)

Li H., Wang Y., Xiao J., Kun Xu K. (2015) Reduced photosynthetic dark reaction triggered by ABA application increases intercellular CO2 concentration, generates H2O2 and promotes closure of stomata in ginger leaves – Environmental and Experimental Botany, 2015, 113, 11-17 –doi:10.1016/j.envexpbot.2015.01.002 – http://www.sciencedirect.com/science/article/pii/S0098847215000118  – (On our blog : https://plantstomata.wordpress.com/2016/07/29/co2-and-h2o2-signalling-promote-more-complete-stomatal-closure-under-the-influence-of-aba/)

Li J., Assmann S. M. (1996) – An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. – Plant Cell8,2359–2368. – doi: http://dx.doi.org/10.1105/tpc.8.12.2359 – CrossRefAbstract/FREE Full TextMedline – (On our blog : https://plantstomata.wordpress.com/2016/07/29/aapk-and-ca2-independent-aba-signaling-pathways-in-stomata/)

Li J., Besseau S., Törönen P., Sipari N., Kollist H., Holm L., Palva E. T. (2013) – Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. – New Phytol 200: 457–472 – doi: 10.1111/nph.12378. Epub 2013 Jul 1. – CrossRef PubMed PubMedCentral Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/23815736 – (On our blog : https://plantstomata.wordpress.com/2018/05/14/wrky70-and-wrky54-co-operate-as-negative-regulators-of-stomatal-closure/

Li J.Lee Y. R.Assmann S. M. (1998) – Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. – Plant Physiol 116: 785795 -DOI: https://doi.org/10.1104/pp.116.2.785 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/116/2/785 – (On our blog : https://plantstomata.wordpress.com/2018/05/15/cdpk-may-be-an-important-component-of-ca2-signaling-in-stomata/

Li J., Li X. M. (2014) – Response of stomatal conductance of two tree species to vapor pressure deficit in three climate zones. – J. Arid Land 6(6): 771-781 (CrossRef). – (On our blog : https://plantstomata.wordpress.com/2016/02/16/stomatal-conductance-and-vapor-pressure-deficit/).

Li J., Wang X. Q., Watson M. B., Assmann S. M.(2000) – Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. – Science 287: 300–303 – DOI: 10.1126/science.287.5451.300 – CrossRefAbstract/FREE Full TextMedline – (On our blog : https://plantstomata.wordpress.com/2016/07/29/16803/)

Li J.-H., Liu Y.-Q., Lü P., Lin H.-F., Bai Y., Wang X.-C. et al. (2009) – A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extra cellular calmodulin induction of stomatal closure in Arabidopsis. – Plant Physiol. 150: 114–124 – doi: 10.1104/pp.109. 137067 – http://www.plantphysiol.org/content/150/1/114 – (On our blog : https://plantstomata.wordpress.com/2018/05/15/a-signaling-pathway-leading-to-extcam-induced-stomatal-closure/ )

Li Q., Wang Y.-J., Liu C.-K., Pei Z.-M., Shi W.-L. (2017) – The crosstalk between ABA, nitric oxide, hydrogen peroxide, and calcium in stomatal closing of Arabidopsis thaliana – Published Online: 2017-10-31 – DOI:https://doi.org/10.1515/biolog-2017-0126 – https://www.degruyter.com/view/j/biolog.2017.72.issue-10/biolog-2017-0126/biolog-2017-0126.xml?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Biologia_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/aba-nitric-oxide-hydrogen-peroxide-and-calcium-in-stomatal-closing/ )

Li Q., Yu L.-j., Deng Y., Li W., Li M.-t., Cao J.-h. (2007) – Leaf epidermal characters of Lonicera japonica and Lonicera confuse and their ecology adaptation. – J. For. Res., 18: 103-108 – https://link.springer.com/article/10.1007%2Fs11676-007-0020-1 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/stomata-in-lonicera-dicots-2/)

Li S., Assmann S. M., Albert R. (2006) –  Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. – PLoS Biol.4:e312. doi: 10.1371/journal.pbio.0040312 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/29/a-dynamic-model-of-guard-cell-abscisic-acid-signaling/)

Li S., Harley P. C., Niinemets Ü. (2017) – Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris – Plant, Cell & Environment – doi: 10.1111/pce.13003. – http://onlinelibrary.wiley.com/doi/10.1111/pce.13003/abstract – (On our blog : https://plantstomata.wordpress.com/2017/06/19/key-role-of-stomatal-conductance-in-controlling-ozone-uptake-leaf-injury-and-volatile-release/)

Li T., Kromdijk J., Heuvelink E., van Noort F. R., Kaiser E., Marcelis L. F. M. (2016) – Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity – Front. Plant Sci., 04 February 2016 | http://dx.doi.org/10.3389/fpls.2016.00056 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00056/full – (On our blog : https://plantstomata.wordpress.com/2016/03/28/response-of-stomatal-conductance-to-dynamic-light-intensity/)

Li X., Li J. H., Wang W., Chen N.Z., Ma T. S., Xi Y. N., Zhang X. L., Lin H. F., Bai Y., Huang S. J., Chen Y. L. (2014) – ARP2/3 complex-mediated actin dynamics is required for hydrogen peroxide-induced stomatal closure in Arabidopsis – Plant Cell Environ 37: 1548- 1560 – https://doi.org/10.1111/pce.12259 –https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12259 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/a-possible-causal-relation-between-the-production-of-h2o2-and-actin-dynamics-in-aba%e2%80%90mediated-stomatal-guard-cell-signalling/ )

Li Y., Xu S., Gao J., Pan S., Wang G. (2016) – Glucose– and mannose-induced stomatal closure is mediated by ROS production, Ca and water channels in Vicia faba. – Physiol. Plant.156(3): 252-261 – doi: 10.1111/ppl.12353. Epub 2015 Jun 25 – https://www.ncbi.nlm.nih.gov/pubmed/26046775 – (On our blog : https://plantstomata.wordpress.com/2018/05/15/ros-production-is-involved-in-glucose-and-mannose-induced-stomatal-closure/ )

Li Y., Xu S., Gao J., Pan S., Wang G. (2016) – Bacillus subtilis-regulation of stomatal movement and instantaneous water use efficiency in Vicia faba – Plant Growth Regulation January 2016, Volume 78, Issue 1, pp 43-55 – http://link.springer.com/article/10.1007%2Fs10725-015-0073-7 – (On our blog : https://plantstomata.wordpress.com/2016/04/04/microbes-and-stomatal-movement/)

Li Y.-M., Liu J. Z., Shi Y., Zhang F. (2011) Effects of Aluminum Stress on the Stomatal Characteristics and Photosynthesis of Scutellaria baicalensis Georgi Seedlings – Journal of Anhui Agricultural Sciences, 2011-10. (http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY201110051.htm) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/effects-of-aluminum-stress-on-the-stomatal-characteristics/).

Li Y., Xu S., Wang Z., He L., Xu K. Wang G. (2018) – Glucose triggers stomatal closure mediated by basal signaling through HXK1 and PYR/RCAR receptors in Arabidopsis – Journ. Exp. Bot. 69(7): 1471-1484 – https://doi.org/10.1093/jxb/ery024 –https://academic.oup.com/jxb/article/69/7/1471/4850518 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/glucose-triggered-stomatal-closure-may-be-dependent-on-basal-signaling-through-pyr-rcar-receptors-and-hexokinase1-hxk1/ )

Li Z., Liu D. (2012) – ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis. – FEBS Lett 586(9): 1253-1258 – https://doi.org/10.1016/j.febslet.2012.03.040 – https://www.sciencedirect.com/science/article/pii/S0014579312002402 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/the-role-of-ropgef1-and-ropgef4-in-aba-mediated-stomatal-closure/ )

Li Z., Kang J., Sui N., Liu, D. (2012) – ROP11 GTPase is a negative regulator of multiple ABA responses in Arabidopsis. – J Integr Plant Biol 54(3): 169-179 – doi: 10.1111/j.1744-7909.2012.01100.x – https://www.ncbi.nlm.nih.gov/pubmed/22233300 – (On our blog : https://plantstomata.wordpress.com/2018/05/19/rop11-is-a-negative-regulator-of-multiple-aba-responses/ )

Liakopoulos G., Stavrianakou S., Karabourniotis G. (2001) – Analysis of Epicuticular Phenolics of Prunus persica and Olea europaea Leaves: Evidence for the Chemical Origin of the UV-induced Blue Fluorescence of Stomata – Annals of Botany 8( 5): 641-648 – DOI10.1006/anbo.2001.1387 – https://www.infona.pl/resource/bwmeta1.element.elsevier-23c1fc29-32ce-39f3-a1c4-100340a2e8a2 – (On our blog : https://plantstomata.wordpress.com/2017/10/11/the-chemical-origin-of-the-uv-induced-blue-fluorescence-of-stomata/)

Liang J., Zhang J. (1999) – The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering. – Plant Growth Regul. 29: 77-86 – https://link.springer.com/article/10.1023/A:1006207900619 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/stomatal-conductance-caused-by-water-deficit-is-related-to-the-increase-in-xylem-aba/ )

Liang J., Zhang J., Wong M. H. (1996) – Stomatal conductance in relation to xylem sap abscisic acid concentrations in two tropical trees, Acacia confusa and Litsea glutinosa. – Plant Cell Environ. 19: 93-100 – https://doi.org/10.1111/j.1365-3040.1996.tb00230.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1996.tb00230.x – (On our blog : https://plantstomata.wordpress.com/2018/05/20/xylem-aba-may-act-as-a-stress-signal-in-the-control-of-stomatal-conductance/ )

Liang J., Zhang J., Wong M. H. (1997) – Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? – Photosynth. Res. 51: 149-159, 1997. – doi:10.1023/A:1005797410190 – http://link.springer.com/article/10.1023/A:1005797410190 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/stomatal-closure-aba-photosynthesis-and-soil-drying/)

Liang K. M. , Lin Z. F. , Ren H. , Liu N. , Zhang Q. M. , Wang J. , Wang Z. F. , Guan L. L. (2010) – Characteristics of sun- and shade-adapted populations of an endangered plant Primulina tabacum Hance – Photosynthetica 48(4): 494-506 – DOI10.1007/s11099-010-0066-8 – https://www.infona.pl/resource/bwmeta1.element.springer-c6c9025f-1427-3c2e-b4f7-be821acadc26 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/stomata-in-sun-and-shade-adapted-populations-of-primulina-tabacum-gesneriaceae/)

Liang S.Lu K.Wu Z.Jiang S.-C.Yu Y.-T.Bi C.Xin Q.Wang X.-F.Zhang D.-P. (2015) – A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response to abscisic acid – J. Exp. Bot. (2015) 66 (20):6355-6369.- doi: 10.1093/jxb/erv341 – http://jxb.oxfordjournals.org/content/66/20/6355.full – (On our blog : https://plantstomata.wordpress.com/2015/09/30/a-link-between-abarchlh-and-snrk2-6ost1-in-guard-cell-signalling-in-response-to-aba/)

Liang Y.-K., Dubos C., Dodd I. C., Holroyd G. H., Hetherington A. M., Campbell M. M. (2005) – AtMYB61, an R2R3-MYB Transcription Factor Controlling Stomatal Aperture in Arabidopsis thaliana – Current Biology 15(13): 1201-1206 – DOI10.1016/j.cub.2005.06.041 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fa396381-caec-31cf-8b44-00de1da5f223 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/atmyb61-encodes-the-first-transcription-factor-implicated-in-the-closure-of-stomata/)

Liang Y.-K., Xie X., Lindsay S. E., Wang Y. B., Masle J., Williamson L., Leyser O., Hetherington A. M. (xxxx) – Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana – The Plant Journal 64(4): 679 – 686 – DOI10.1111/j.1365-313X.2010.04362.x – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-64-i-4-tpj4362 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/genes-involved-in-cell-wall-biosynthesis-will-have-an-impact-on-water-use-efficiency-reduced-stomatal-pore-widths/)

Liao J.-X., Chang J., Wang G.-X. (2005) – Stomatal density and gas exchange in six wheat cultivars – Cereal Research Communications 33: 719-726 – https://doi.org/10.1556/CRC.33.2005.2-3.140 – https://akademiai.com/doi/abs/10.1556/CRC.33.2005.2-3.140 – (On our blog : https://plantstomata.wordpress.com/2018/05/20/stomatal-density-and-gas-exchange/ )

Lieck E. (1928) – Untersuchungen über den Einfluss des Lichtes auf die Öffnungsweite unterseitiger und oberseitiger Stomata desselben Blattes – Jhrb. Wiss. Bot. 67: 771-848 –

Lim C. W., Baek W., Jung J., Kim J. H., Lee S. C. (2015) – Function of ABA in stomatal defense against biotic and drought stresses. – Int. J. Mol. Sci. 16, 15251–15270. doi: 10.3390/ijms160715251 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.mdpi.com/1422-0067/16/7/15251 – (On our blog : https://plantstomata.wordpress.com/2016/04/02/function-of-aba-in-stomatal-defense-against-biotic-and-abiotic-stresses/)

Lima P., Lopes C. A., CafeFilho A. C. (2010) – Stomatal patterns of Capsicum genotypes resistant or susceptible to Oidlopsis haplophylli. – Summa Phytopathologia 36: 25–29. – (Article not found).

Lima V. F., dos Anjos L., Medeiros D. B., Candido-Sobrinho S. A., Souza L. P., Gago J., Fernie A. R., Daloso D. M. (2019) – The sucrose‐to‐malate ratio correlates with the faster CO2 and light stomatal responses of angiosperms compared to ferns – New Phytologist https://doi.org/10.1111/nph.15927https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15927?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/19/metabolism%e2%80%90mediated-mechanisms-regulating-stomatal-movements/ )

Limin A. E., Fowler D. B. (1994) – Relationship between guard cell length and cold hardiness in wheat – Can. J. Plant. Sci. 74(1): 59–62 – https://doi.org/10.4141/cjps94-011 – http://www.nrcresearchpress.com/doi/10.4141/cjps94-011 – (On our blog : https://plantstomata.wordpress.com/2018/10/07/guard-cell-length-in-stomata-and-cold-hardiness/ )

Limin Y., Mei H., Guangsheng Z., Jiandong L. (2007) – The changes in water-use efficiency and stoma density of Leymus chinensis along northeast China transect. – Acta Ecologica Sinica 27, 16–23.| CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/02/16/water-use-efficiency-and-stoma-density/).

Lin C., Chen S. (2018) – New functions of an old kinase MPK4 in guard cells – Plant Signaling & Behavior 13(5) – https://doi.org/10.1080/15592324.2018.1477908 – https://www.tandfonline.com/doi/abs/10.1080/15592324.2018.1477908 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/mpk4-functions-and-focus-on-its-signaling-roles-in-stomatal-guard-cells/)

Lin G., Zhang L.Han Z.Yang X.Liu W.Li E.Chang J.Qi Y.Shpak E. D., Chai J. (2017) – A receptor-like protein acts as a specificity switch for the regulation of stomatal development – Genes & Development, 

Lin J., Jach M. E., Ceulemans R. (2001) – Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. – New Phytol. 150: 665–674 – doi: 10.1046/j.1469-8137.2001.00124.x – CrossRef Full Text | Google Scholar – https://www.jstor.org/stable/1353671?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/20/a-prolonged-exposure-to-elevated-co2-has-an-effect-on-needle-structure-anatomical-and-stomatal-characteristics/ )

Lin Y.-S.Medlyn B. E., Duursma R. A.Prentice I. C.Wang H.Baig S.Eamus D.Resco de Dios V.Mitchell P.Ellsworth D. S.Op de Beeck M.Wallin G., Uddling J.Tarvainen L.Linderson M.-L.Cernusak L. A.Nippert J. B.Ocheltree T. O.Tissue D. T.Martin-StPaul N. K.Rogers A.Warren J. M.De Angelis P.Hikosaka K.Han Q. et al. (2015)Optimal stomatal behaviour around the world – Nature Climate Change 5: 459–464 – doi:10.1038/nclimate2550 – (On our blog : https://plantstomata.wordpress.com/2016/09/03/climate-and-optimal-stomatal-behaviour/)

Lin Z. F., Li S. S., Lin G. Z.(1986) – The distribution of stomata and photosynthetic pathway in leaves. – Acta bot. sin. 28: 387-95. (Eng.) – http://www.jipb.net/Abstract_old.aspx?id=129 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/the-stomata-frequency-and-distribution-in-c3-c4-and-cam-plants/) 

Lind C., Dreyer I., López-Sanjurjo E. J., von Meyer K., Ishizaki K., Kohchi T., Lang D., Zhao Y., Kreuzer I., Al-Rasheid K. A. S., Ronne H., Reski R., Zhu J.-K., Geiger D., Hedrich R. (2015) – Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. – Curr. Biol. 25, 928–935 – DOI10.1016/j.cub.2015.01.067 – https://www.infona.pl/resource/bwmeta1.element.elsevier-f0f4f256-7303-32a9-9cc9-38f5b366f0ba – (On our blog : https://plantstomata.wordpress.com/2017/10/16/the-emergence-of-stomata-in-the-last-common-ancestor-of-mosses-and-vascular-plants-coincided-with-the-origin-of-slac1-type-channels/)

Linder B. (1994) – Ein langsam aktivierender Anionenkanal in der Plasmamembran von Schließzellprotoplasten. – Dissertation, Universität Göttingen, Cuvillier Verlag, Göttingen

Linder B., Raschke K. (1992) – A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing.- FEBS Lett. 313, 2730. –DOI: 10.1016/0014-5793(92)81176-M – CrossRefPubMedCASCrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/29/a-slow-anion-channel-in-guard-cells-and-stomatal-closing/)

Linsbauer K. (1917) – Beiträge zur Kenntnis der Spaltöffnungsbewegungen – Flora N.S. 9: 100-143.

Linsbauer K. (1927) – Weitere Beobachtungen an Spaltöffnungen – Planta 3:

Lionel D., De Silva R., Hetherington A. M., Mansfield T. A. (1998) –  The regulation of apoplastic calcium in relation to intracellular signalling in stomatal guard cells – Zeitschrift für Pflanzenernährung und Bodenkunde, 1998, 161, 5, 533 – DOI: 10.1002/jpln.1998.3581610506 – Wiley Online Library – http://onlinelibrary.wiley.com/enhanced/doi/10.1002/jpln.1998.3581610506 – (On our blog : https://plantstomata.wordpress.com/2016/07/29/apoplastic-calcium-in-relation-to-intracellular-signalling-in-stomata/)

Lisjak M., Srivastava N., Teklic T., Civale L., Lewandowski K., Wilson I., et al. (2010) – A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. – Plant Physiol. Biochem. 48, 931–935. – doi: 10.1016/j.plaphy.2010.09.016 – https://www.sciencedirect.com/science/article/pii/S0981942810001956 – (On our blog : https://plantstomata.wordpress.com/2018/05/22/h2s-generated-from-nash-or-gyy4137-causes-stomatal-opening/ )

Lisjak M., Teklic T., Wilson I. D., Wood M., Whiteman M., Hancock J. T. (2011) – Hydrogen sulfide effects on stomatal apertures. – Plant Signal. Behav. 6: 1444–1446 – doi: 10.4161/psb.6.10.17104 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256366/ – (On our blog : https://plantstomata.wordpress.com/2018/05/22/effects-of-h2s-on-stomatal-aperture-is-not-confined-to-model-species/ )

Litz R. E., Kimmins W. C. (1968) – Plasmodesmata between guard and accessory cells – Can. J. Bot. 46: 1603-1604. – https://doi.org/10.1139/b68-222 – Google Scholar – http://www.nrcresearchpress.com/doi/abs/10.1139/b68-222 – (On our blog : https://plantstomata.wordpress.com/2018/05/22/plasmodesmata-between-guard-cells-and-accessory-cells-in-stomata/ )

Liu F., Jensen C. R., Andersen M. N. (2003) – Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress – Functional Plant Biology  30: 65-73 – https://doi.org/10.1071/FP02170http://www.publish.csiro.au/fp/FP02170 – (On our blog : https://plantstomata.wordpress.com/2019/02/04/hydraulic-and-chemical-signals-in-the-control-of-leaf-expansion-and-stomatal-conductance/ )

Liu F.Jensen C. R.Shahanzari A.Andersen M. N.Jacobsen S. E. (2005) – ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. – Plant Science 2005;168:831836. – http://dx.doi.org/10.1016/j.plantsci.2004.10.016 http://www.sciencedirect.com/science/article/pii/S0168945204004674 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/aba-regulated-stomatal-control-during-progressive-soil-drying/)

Liu F.Shahanzari A.,  Jacobsen S. E., Jensen C. R.,  Janowiak F., Walligorski P., Andersen M. N. (2008) – Effects of Deficit Irrigation and Partial Root-Zone Drying on Soil and Plant Water Status, Stomatal Conductance, Plant Growth and Water Use Efficiency in Tomato during Early Fruiting Stage – Acta horticulturae 792: 413-420 – DOI 10.17660/ActaHortic.2008.792.48 – https://www.researchgate.net/publication/260172503_Effects_of_Deficit_Irrigation_and_Partial_Root-Zone_Drying_on_Soil_and_Plant_Water_Status_Stomatal_Conductance_Plant_Growth_and_Water_Use_Efficiency_in_Tomato_during_Early_Fruiting_Stage – (On our blog : plantstomata.wordpress.com/2017/12/13/effects-of-deficit-irrigation-and-partial-root-zone-drying-on-stomatal-conductance/)

Liu F., Stützel H. (2002) – Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth (Amaranthus sp.) in response to soil drying – J. Amer. Soc. Hort. Sci. 127: 878-883 – http://journal.ashspublications.org/content/127/5/878.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/05/22/stomatal-conductance-in-response-to-soil-drying/ )

Liu F. L., Jensen C. R., Andersen M. N. (2003) – Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress – Functional Plant Biology 30: 65–73 – https://doi.org/10.1071/FP02170http://www.publish.csiro.au/FP/FP02170 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/hydraulic-and-chemical-signals-in-the-control-of-stomatal-conductance-in-soybean-exposed-to-drought-stress/ )

Liu J., Elmore J. M., Fuglsang A. T., Palmgren M. G., Staskawicz B. J., Coaker G. (2009) – RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. – PLoS Biol. 2009;7:1000139. – doi: 10.1371/journal.pbio.1000139 – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694982/ – (On our blog : https://plantstomata.wordpress.com/2018/05/22/rin4-functions-with-the-pm-h-atpases-to-regulate-stomatal-apertures/

Liu J., Liu G.-H., Hou L.-X., Liu X. (2010) – Ethylene-induced nitric oxide production and stomatal closure in Arabidopsis thaliana depending on changes in cytosolic pH. – Chin. Sci. Bull. 55: 2403–2409. – doi: 10.1007/s11434-010-4033-3 – https://link.springer.com/article/10.1007%2Fs11434-010-4033-3 – (On our blog : https://plantstomata.wordpress.com/2018/04/18/no-production-and-stomatal-closure-depending-on-changes-in-cytosolic-ph/ )

Liu J., Hou L., Liu G., Liu X., Wang X. (2011) – Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana – Chin. Sci. Bull. 56: 3547–3553 – doi: 10.1007/s11434-011-4819-y – https://link.springer.com/content/pdf/10.1007/s11434-011-4819-y.pdf – (On our blog : https://plantstomata.wordpress.com/2018/05/23/h2s-and-no-are-involved-in-the-signal-transduction-pathway-of-ethylene-induced-stomatal-closure/ )

Liu J., Hou Z., Liu G., Hou L., Liu X. (2012) – Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L. – J. Integr. Agric. 11, 1644–1653. – doi: 10.1016/S2095-3119(12)60167-1 – https://www.sciencedirect.com/science/article/pii/S2095311912601671 – (On our blog : https://plantstomata.wordpress.com/2018/05/23/h2s-may-represent-a-novel-component-downstream-of-no-in-the-ethylene-induced-stomatal-movement/ )

Liu J.Zhang C.Wei C.Liu X.Wang M.Yu F.Xie Q.Tu J. (2016) – The RING Finger Ubiquitin E3 Ligase OsHTAS Enhances Heat Tolerance by Promoting H2O2-Induced Stomatal Closure in Rice – Plant Physiology 

Liu K.Fu H.Bei Q.Luan S. (2000) – Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. – Plant Physiol 124: 13151326 – DOI: https://doi.org/10.1104/pp.124.3.1315 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/124/3/1315.short – (On our blog : https://plantstomata.wordpress.com/2017/10/03/polyamine-regulation-of-stomatal-movements/)

Liu K., Luan S. (1998) Voltage-dependent K+ channels as targets of osmosensing in guard cells – Plant Cell 10: 19571970 – doi: http://dx.doi.org/10.1105/tpc.10.11.1957 – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/29/k-channels-as-targets-of-osmosensing-in-stomata/)

Liu L., McDonald A. J. S., Stadenberg I., Davies W. J. (2001) – Abscisic acid in leaves and roots of willow: significance for stomatal conductance. – Tree Physiol. 21: 759-764, 2001. – PMID:11470662 – https://www.ncbi.nlm.nih.gov/pubmed/11470662 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/significance-of-aba-for-stomatal-conductance/)

Liu L., Kon H., Matsuoka N. Kobayashi T. (2005) – Coordination between stomatal conductance and leaf-specific hydraulic conductance in maize (Zea mays L. ) – J. Agric. Meteorol. 61(3): 143-152 – https://www.jstage.jst.go.jp/article/agrmet/61/3/61_3_143/_pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71487 )

Liu P., Sun F., Gao R., Dong H. (2012) – RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity – Plant Mol. Biol. 79: 609–622 – doi: 10.1007/s11103-012-9936-8 – https://www.ncbi.nlm.nih.gov/pubmed/22661072 – (On our blog : https://plantstomata.wordpress.com/2018/05/23/rap2-6l-overexpression-delays-waterlogging-induced-premature-senescence-by-increasing-stomatal-closure/ )

Liu S., Li H., Lv X., Ahammed G. J., Xia X., Zhou J., Shi K,, Asami T., Yu J., Zhou Y. (2016) – Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity – Scientific Reports 6, Article number: 20212 (2016) – doi:10.1038/srep20212 – http://www.nature.com/articles/srep20212 – (On our blog : https://plantstomata.wordpress.com/2016/03/24/drought-tolerance-aba-and-stomata/

Liu S.-p., Liu J., Cao J., Bai C., Shi R. (2006) – Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress – Journal of Anhui Agricultural Science 34: 1315–1318 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY200607018.htm – (On our blog : https://plantstomata.wordpress.com/2018/10/31/stomatal-distribution-in-jujube-under-drought-stress/ )

Liu T., Ohashi-Ito K., Bergmann D. C. (2009) – Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. – Development 136:2265–2276. – 10.1242/dev.032938. – View ArticlePubMed – Abstract/FREE Full Text – http://dev.biologists.org/content/136/13/2265.long?trendmd-shared=0 – (On our blog : https://plantstomata.wordpress.com/2016/07/13/stomatal-bhlh-genes/)

Liu W. T., Pool R., Wenkert W., Kriedemann P. E. (1978) – Changes in Photosynthesis, Stomatal Resistance and Abscisic Acid of Vitis labruscana Through Drought and Irrigation Cycles- Am. J. Enol. Viticult. 29: 239–246  – http://www.ajevonline.org/content/29/4/239 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/24083/)

Liu X., Mak M., Babla M., Holford P., Wang F., Chen G., Scott G., Wang G., Shabala S., Zhou M., Chen Z.-H. (2017) – QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley – BMC Genomics 18(1): 1-13 – DOI10.1186/s12864-016-3380-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1186-S12864-016-3380-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/qtls-for-stomatal-traits-related-to-salinity-tolerance/)

Liu X., Mak M., Babla M., Wang F., Chen G., Veljanoski F., Wang G., Shabala S., Zhou M., Chen Z.-H. (2014) Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley – Frontiers in Plant Science, 2014, 5  – http://dx.doi.org/10.3389/fpls.2014.00634 – http://dx.doi.org/10.3389/fpls.2014.00634 – http://journal.frontiersin.org/article/10.3389/fpls.2014.00634/abstract – (On our blog : https://plantstomata.wordpress.com/2016/07/29/16910/)

Liu X. Y., Gao Q., Han M., Jin J. H. (2016) – Estimates of late middle Eocene pCO2 based on stomatal density of modern and fossil Nageia leaves – Clim. Past 12: 241–253 – doi:10.5194/cp-12-241-2016 – https://www.clim-past.net/12/241/2016/cp-12-241-2016.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-density-for-estimates-of-late-middle-eocene-pco2/ )

Liu Y., Qin L., Han L., Xiang Y., Zhao D. (2015) – Overexpression of maize SDD1 (ZmSDD1) improves drought resistance in Zea mays L. by reducing stomatal density – Plant Cell Tiss. Organ Cult. 122: 147–159 – DOI: 10.1007/s11240-015-0757-8  – [Cross Ref] – https://link.springer.com/article/10.1007/s11240-015-0757-8#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/31/overexpression-of-zmsdd1-improves-drought-resistance-by-reducing-stomatal-density/

Liu Y. K., Liu Y. B., Zhang M. Y., Li D. Q. (2010) – Stomatal development and movement: the roles of MAPK signaling. – Plant Signal. Behav. 5, 1176–1180. doi: 10.4161/psb.5.10.12757 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/29/the-roles-of-mapk-signaling-in-stomatal-development-and-movement/)

Liu Y.-L., Yue S.-S., Wang, J. (2005) – Effect of Red Light on the Stomatal Opening and Physiological Characteristics of Vicia faba L. – (http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBNY200505014.htm) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/effect-of-red-light-on-the-stomatal-opening/).

Liu Y.-L., Xu S. S., Gao J, Pan S., Wang G. X. (2016) – Glucose- and mannose-induced stomatal closure is mediated by ROS production, Ca2+ and water channel in Vicia faba. – Physiologia Plantarum 156: 252–261 – https://doi.org/10.1111/ppl.12353 – CrossRefCAS, – https://onlinelibrary.wiley.com/doi/abs/10.1111/ppl.12353 – (On our blog : https://plantstomata.wordpress.com/2018/05/28/glucose-and-mannose-induced-stomatal-closure/ )

Liu Z., Wang W., Zhang C.-G., Zhao J.-F., Chen Y.-L. (2017) – GUS Staining of Guard Cells to Identify Localised Guard Cell Gene Expression – Bio-protocol 7(14): e2446. DOI: 10.21769/BioProtoc.2446 – https://bio-protocol.org/e2446 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/gus-staining-of-guard-cells-stomata/ )

Liu-Gitz L., Britz S. J., Wergin W. P. (2000) – Blue light inhibits stomatal development in soybean isolines containing kaempferol-3-O-2G-glycosyl-gentiobioside (K9), a unique flavonoid glycoside – Plant, Cell and Environment 23:  883-891 – https://doi.org/10.1046/j.1365-3040.2000.00608.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2000.00608.x – (On our blog : https://plantstomata.wordpress.com/2018/10/31/one-or-more-blue-light-receptors-are-involved-in-the-control-of-stomatal-development/ )

Livanos P., Galatis B., Apostolakos P. (2015) – Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes – Protoplasma · August 2015 – https://www.researchgate.net/publication/280868535_Deliberate_ROS_production_and_auxin_synergistically_trigger_the_asymmetrical_division_generating_the_subsidiary_cells_in_Zea_mays_stomatal_complexes – (On our blog : https://plantstomata.wordpress.com/2016/05/05/ros-are-critical-partners-of-auxin-during-development-of-zea-mays-stomatal-complexes/ )

Livanos P., Giannoutsou E., Apostolakos P., Galatis B. (2015) – Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays – Plant Signal Behav. 10(3):e984531 – doi: 10.4161/15592324.2014.984531 – PMID: 25831267 – https://www.ncbi.nlm.nih.gov/pubmed/25831267 – (On our blog : https://plantstomata.wordpress.com/2018/10/31/auxin-as-an-inducer-of-asymmetrical-division-generating-the-subsidiary-cells-in-stomatal-complexes/ )

Livingston B. E. (1909) – Stomata and transpiration in Tradescantia zebrina – Science 29: 269- (Article not found)

Livingston B. E., Estabrook A. H. (1912) – Observations on the degree of stomatal movement in certain plants – Bull. Torr. Bot. Club 39: 15- (Article not found)

Lleras E. (1977) – Differences in stomatal number per unit area within the same species under different micro-environmental conditions: A working hypothesis – Acta Amaz. 7(4): 473-476 – ISSN 0044-5967 –  http://dx.doi.org/10.1590/1809-43921977074473 – http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0044-59671977000400473&lng=pt&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-numbers-under-different-micro-environmental-conditions/ )

Lloyd F. E. (1908) – The physiology of stomata. – Publ. Carnegie Inst. Washington 82, 1–142 (1908). – https://archive.org/details/physiologyofstom00lloyuoft – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/24073)

Lloyd F. E. (1912) – The relation of transpiration and stomatal movement to water content of leaves in Fouquiera splendens – Plant World 15: 1-14 – https://www.jstor.org/stable/43476907?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/28/transpiration-stomatal-movement-and-water-content-of-leaves/ )

Lloyd F. E. (1913) – Leaf water and stomatal movement in Gossypium and a method of direct visual observation of stomata in situ – Bull. Torrey Bot. Club 40: 1-26 – https://archive.org/stream/jstor-2479849/2479849_djvu.txt – (On our blog : https://plantstomata.wordpress.com/2018/05/24/leaf-water-and-stomatal-movement-visual-observation-of-stomata-in-situ/ )

Lloyd J. (1991) – Modeling stomatal responses to environment in Macadamia integrifolia – Australian Journal of Plant Physiology 18: 649660 – DOI – 10.1071/PP9910649 – CrossRef – http://www.publish.csiro.au/fp/PP9910649 – (On our blog : https://plantstomata.wordpress.com/2018/05/24/modeling-stomatal-responses-to-environment/ )

Lloyd J., Syvertsen J.P., Kriedemann P.E., Farquhar G.D. (1992) – Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. – Plant Cell & Environment 15: 873–899. – DOI: 10.1111/j.1365-3040.1992.tb01021.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01021.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/02/co2-diffusion-from-stomata-to-the-sites-of-carboxylation/)

Locosselli G. M., Ceccantini G. (2013) – Plasticity of stomatal distribution pattern and stem tracheid dimensions in Podocarpus lambertii: an ecological study. – Ann. Bot. 110, 1057–1066. – doi: 10.1093/aob/mcs179 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448432/ – (On our blog : https://plantstomata.wordpress.com/2018/03/12/stomatal-distribution-pattern-and-the-placement-of-conducting-tissue-in-the-mesophyll/ )

Lodge R. J., Dijkstra P., Drake B. G., Morison J. I. L. (2001) – Stomatal acclimation to increased CO2 concentration in a Florida scrub oak species Quercus myrtifolia Willd.  – Plant Cell Environ. 24: 77-88 – https://doi.org/10.1046/j.1365-3040.2001.00659.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2001.00659.x – (On our blog : https://plantstomata.wordpress.com/2018/10/31/stomatal-acclimation-to-increased-co2-concentration/ )

Loewenstein N. J., Pallardy S. G. (1998) – Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms – Tree Physiol. 18: 431–439 – PMID: 12651354 – https://www.ncbi.nlm.nih.gov/pubmed/12651354 – (On our blog : https://plantstomata.wordpress.com/2018/10/31/drought-tolerance-xylem-sap-aba-and-stomatal-conductance-during-soil-drying/ )

Loftfield J. V. G. (1921) – The behavior of stomata – Carnegie Inst. Wash. Publ. 314 : 104 – https://archive.org/stream/behaviorofstomat00loftuoft/behaviorofstomat00loftuoft_djvu.txt – (On our blog : https://plantstomata.wordpress.com/2017/09/16/behavior-of-stomata-2/)

Lohse G., Hedrich R. (1992) – Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells. Modulation by extracellular factors and seasonal changes. – Planta 188: 206–214 – Google Scholar – https://www.jstor.org/stable/23381682?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/24/effect-of-auxins-on-the-modulation-of-stomatal-opening-mediated-through-the-activity-of-the-plasma-membrane-h-atpase/

Lohse G., Hedrich R. (1995) – Anions modify the response of guard cell anion channels to auxin. – Planta 197: 546-552, 1995. – doi:10.1007/BF00196677 – http://link.springer.com/article/10.1007/BF00196677 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/the-anion-channel-in-stomata-and-auxin/ )

Lomax B. H., Woodward F. I., Leitch I. J., Knight C. A., Lake J. A. (2009) – Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions. – New Phytol 181: 311–314 – doi: 10.1111/j.1469-8137.2008.02700.x – https://www.ncbi.nlm.nih.gov/pubmed/19054335 – (On our blog : https://plantstomata.wordpress.com/2018/05/31/genome-size-as-a-predictor-of-guard-cell-length-in-stomata-independent-of-environmental-conditions/ )

Lombardozzi D. (2015) – How does ozone damage plants? – UCAR Center for Science education Sept. 3, 2015 – https://scied.ucar.edu/blog/how-does-ozone-damage-plants – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomata-and-ozone/ )

Lopez-Berbal A., Garcia-Tejera O., Testi L., Orgaz F., Villalobos F. J. (2018) – Stomatal oscillations in olive trees: analysis and methodological implications – Tree Physiology 38(4): 531-542 – https://doi.org/10.1093/treephys/tpx127 –https://academic.oup.com/treephys/article/38/4/531/4508792 – (On our blog : https://plantstomata.wordpress.com/2019/04/07/stomatal-oscillations-analysis-and-methodological-implications/ )

Lopushinsky W. (1969) – Stomatal closure in conifer seedlings in response to leaf moisture stress. – Bot. Gaz. 130: 258-263 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/stomatal-closure-in-response-to-leaf-moisture-stress/)

Loranger J., Shipley B. (2010) – Interspecific covariation between stomatal density and other functional leaf traits in a local flora – Botany 88(1): 30-38 – https://doi.org/10.1139/B09-103 – http://www.nrcresearchpress.com/doi/abs/10.1139/B09-103 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/how-stomatal-density-relates-to-other-leaf-traits-in-a-broad-interspecific-context/ )

Loranty M. M., Mackay D. S., Ewers B. E., Traver E., Kruger E. L. (2010) – Contribution of competition for light to within-species variability in stomatal conductance – Water Resour. Res. 46: W05516 – ,doi:10.1029/2009WR008125 – Contribution_of_competition_for_light_to.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/a-dynamic-stomatal-response-resulting-in-a-more-conservative-strategy-for-managing-hydrologic-resources/ )

Lösch R. (1976) – Die Reaktion der Stomata isolierter Epidermen auf Luftfeuchtigkeit, Temperatur, CO2-Gehalt der Luft und Wasserspannung (Untersuchungen an Polypodium vulgare). – Diss. Würzburg 1976.

Lösch R. (1977) – Responses of Stomata to Environmental Factors – Experiments with Isolated Epidermal Strips of Polypodium vulgare. I. Temperature and Humidity – Oecologia (Berl) 29: 85-97. – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/31549)

Lösch R. (1977) – Responses of Stomata to Environmental Factors – Experiments with Isolated Epidermal Strips of Polypodium vulgare. II. Leaf Bulk Water Potential, Air Humidity, and Temperature – Oecologia (Berl.) 39: 229-238. – (On our blog : https://plantstomata.wordpress.com/2017/01/17/stomata-respond-to-water-potential-air-humidity-and-temperature/)

Lösch R. (1978) – Changes in stomatal potassium content induced by changes in air humidity and temperature – Ber. dtsch. bot. Ges. 91 (1978): 645-656. – (On our blog : https://plantstomata.wordpress.com/2017/03/14/stomatal-responses-to-changes-in-environmental-parameters/)

Lösch R. (1978) – Veränderungen im stomatären Kalium-Gehalt bei Änderungen von Luftfeuchte und Umgebungstemperatur. – Ber. dtsch. bot. Ges. 91 (1978): 645-656. – (On our blog : https://plantstomata.wordpress.com/2017/03/14/stomatal-responses-to-changes-in-environmental-parameters/)

Lösch R. (1979) – Stomatal responses to changes in air humidity. In: Structure, Function, and Ecology of Stomata (ed. D. N. Sen). Jodhpur 1979.

Lösch R., Bressel C. (1979) – Guard Cell Potassium Relations in Leptosporangiate Ferns Showing Diverse Types of Stomata – Flora 168: 109-120 – (On our blog : https://plantstomata.wordpress.com/2017/03/07/35533/)

Lösch R., Schenk B. (1978) – Humidity responses of stomata and the potassium content of guard cells – J. Exp. Bot. 29: 781-787 – https://www.jstor.org/stable/23689461?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/05/31/humidity-responses-and-the-potassium-content-of-stomata/ )

Lösch R., Tenhunen J. D. (1981) – Stomatal responses to humidity – phenomenon and mechanism. In: Jarvis PG, Mansfield TA (eds) Stomatal Physiology. Cambridge University Press, Cambridge

Loucks M., Ownby J. D. (1978) – Effect of pH and metabolic inhibitors on stomatal opening in Crassula argentea – Bot. Gaz. 139: 381–384 – https://www.jstor.org/stable/2473656?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/04/04/effect-of-ph-and-metabolic-inhibitors-on-stomatal-opening/ )

Loucos K. E., Simonin K. A., Barbour M. M. (2016) – Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species – Plant, Cell & Environment, Accepted, unedited articles published online and citable – DOI: 10.1111/pce.12865 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12865/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/09/the-relation-between-leaf-hydraulic-conductance-and-mesophyll-conductance/)

Louguet P., Coudret A., Couot-Gastelier J., Lasceve G. (1990) – Structure and Ultrastructure of Stomata – Biochemie und Physiologie der Pflanzen 186(5–6): 273-287 – https://doi.org/10.1016/S0015-3796(11)80218-0 – http://www.sciencedirect.com/science/article/pii/S0015379611802180 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/ultrastructural-and-cytochemical-changes-associated-with-stomatal-movements/) – https://wordpress.com/post/plantstomata.wordpress.com/65117

Louguet P., Coudret A., Couot-Gastelier J., Lasceve G. (1990) – Structure and Ultrastructure of Stomata – Biochemie und Physiologie der Pflanzen 186(5–6): 273-287 – https://doi.org/10.1016/S0015-3796(11)80218-0 – https://www.sciencedirect.com/science/article/pii/S0015379611802180 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/ultrastructure-of-stomata-and-stomatal-movements/)

Loustau D., El Hadj Moussa F. (1989) – Variability of stomatal conductance in the crown of a maritime pine (Pinus pinaster Ait.) – Ann. Sci. For. 46 suppl.: 426s-428s – Variability_of_stomatal_conductance_in_t.pdf – (on our blog : https://plantstomata.wordpress.com/2019/02/21/variability-of-stomatal-conductance-in-the-crown-of-a-pine/

Lovelli S., Rivelli A. R., Nardiello I., Perniola M., Tarantino E. (2000) – Growth, Leaf ion concentration, stomatal behaviour and photosynthesis of bean (Phaseolus vulgaris L.) irrigated with saline water – ISHS Acta Horticulturae 537: III International Symposium on Irrigation of Horticultural Crops – DOI: 10.17660/ActaHortic.2000.537.80 – http://www.actahort.org/members/showpdf?booknrarnr=537_80 – (On our blog : https://plantstomata.wordpress.com/2017/10/06/stomatal-behaviour-of-phaseolus-vulgaris-irrigated-with-saline-water/)

Loveys B. R., Kriedemann P. E. (1974) – Internal Control of Stomatal Physiology and Photosynthesis. I. Stomatal Regulation and Associated Changes in Endogenous Levels of Abscisic and Phaseic Acids – Australian Journal of Plant Physiology 1(3) 407-415  -doi:10.1071/PP9740407  – http://www.publish.csiro.au/?paper=PP9740407 – (On our blog : https://plantstomata.wordpress.com/2016/07/30/stomatal-regulation-and-associated-changes-in-endogenous-levels-of-abscisic-and-phaseic-acids/)

Lozano-Duran R., Bourdais G., He S. Y., Robatzek S. (2014) – The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity – New Phytol. 202, 259–269. – doi: 10.1111/nph.12651 – https://www.ncbi.nlm.nih.gov/pubmed/24372399 – (On our blog : https://plantstomata.wordpress.com/2018/05/31/hopm1-suppresses-pamp-triggered-oxidative-burst-and-stomatal-immunity/ )

Lu J., He J., Zhou X., Zhong J., Li J., Liang Y.-K., (2019) – Homologous genes of epidermal patterning factor regulate stomatal development in rice – Journ. Plant Physiol. 234-235: 18-27 – https://doi.org/10.1016/j.jplph.2019.01.010 –https://www.sciencedirect.com/science/article/pii/S0176161719300094?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/04/05/homologs-of-epf-epfl-regulate-stomatal-development-in-a-generally-highly-conserved-way/ )

Lu P., Biron P., Breda N., Granier A. (1995) – Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: Water potential, stomatal conductance and transpiration – Annals of Forest Science 52: 117–129 – DOI: 10.1051/forest:19950203 – https://www.afs-journal.org/articles/forest/abs/1995/02/AFS_0003-4312_1995_52_2_ART0003/AFS_0003-4312_1995_52_2_ART0003.html – (On our blog : https://plantstomata.wordpress.com/2018/11/01/water-potential-stomatal-conductance-and-transpiration/ )

Lu P., Outlaw W. H., Smith B. G., Freed G. A . (1997) – A new mechanism for the regulation of stomatal aperture size in intact leaves – accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba. – Plant Physiology 114: 109–118 – DOI: https://doi.org/10.1104/pp.114.1.109 – CrossRef , CAS, – http://www.plantphysiol.org/content/plantphysiol/114/1/109.full.pdf  (On our blog : https://plantstomata.wordpress.com/2018/11/01/a-new-mechanism-for-the-regulation-of-stomatal-aperture-size-in-intact-leaves/ )

Lu P., Zhang S. Q., Outlaw W. H. Jr, Riddle K. A. (1995) – Sucrose: a solute that accumulates in the guard-cell apoplast and guard-cell symplast of open stomata. – FEBS Lett 362:180–184 – ISSN :0014-5793 – CrossRef PubMed Google Scholar – https://www.infona.pl/resource/bwmeta1.element.elsevier-d0005f26-0535-38e1-bf66-f74076bdc072 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/sucrose-a-solute-that-accumulates-in-the-guard-cell-apoplast/)

Lu W., Deng M.,Guo F., Wang M., Zeng Z., Han N., Yang Y., Zhu M., Bian H. (2016) – Suppression of OsVPE3 Enhances Salt Tolerance by Attenuating Vacuole Rupture during Programmed Cell Death and Affects Stomata Development in Rice – Rice 9(1): 1-13 – DOI10.1186/s12284-016-0138-x – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1186-S12284-016-0138-X – (On our blog : https://plantstomata.wordpress.com/2017/10/11/osvpe3-plays-a-crucial-role-in-vacuole-mediated-pcd-and-in-stomatal-development-in-rice/)

Lu Y., Duursma R. A., Medlyn B. E. (2016) – Optimal stomatal behaviour under stochastic rainfall –Journal of Theoretical Biology 394: 160-171 – https://doi.org/10.1016/j.jtbi.2016.01.003 –https://www.sciencedirect.com/science/article/pii/S0022519316000047?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/03/26/optimal-stomatal-behaviour-under-stochastic-rainfall/ )

Lu Z., Percy R. G., Qualset C. O., Zeiger E. (1998) – Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures –J. Exp. Bot. 49, 453–460 – 10.1093/jxb/49.Special_Issue.453 – [Cross Ref] – https://www.jstor.org/stable/23695978?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/01/stomatal-conductance-could-be-a-valuable-selection-criterion-for-higher-yields/

Lu Z., Quiñones M. A., Zeiger E. (1993) – Abaxial and adaxial stomata from pimacotta (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality. – Plant Cell. Environ. 16: 851-885. (No abstract found – Who can send us one ?)

Lu Z., Quiñones M. A., Zeiger E. (2000) – Temperature dependence of guard cell respiration and stomatal conductance co-segregate in an F2 population of Pima cotton – Funct Plant Biol. 27: 457-462 – https://doi.org/10.1071/PP98128 – [Crossref] – http://www.publish.csiro.au/FP/PP98128 –  (On our blog : https://plantstomata.wordpress.com/2018/11/01/guard-cell-respiration-and-stomatal-conductance-co-segregate/ )

Luan S. (2002) – Signalling drought in guard cells. – Plant Cell and Environment 25: 229-237. – DOI: 10.1046/j.1365-3040.2002.00758.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00758.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/01/a-complex-signalling-web-that-monitors-water-status-in-the-environment-and-initiates-responses-in-stomatal-movements/)

Luan S.Li W.Rusnak F.Assmann S. M.Schreiber S. L. (1993) – Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells –  Proc Natl Acad Sci USA 90: 22022206 – https://doi.org/10.1073/pnas.90.6.2202 – Abstract/FREE Full Text – http://www.pnas.org/content/90/6/2202 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/cyclophilin-cyclosporin-a-and-fk506-binding-protein-fk506-complexes-block-ca2-induced-inactivation-of-k-channels/

Lucas J. R., Nadeau J. A., Sack F. D. (2006) – Microtubule arrays and Arabidopsis stomatal development. – J Exp Bot 57, 71-79. – doi: 10.1093/jxb/erj017  – http://jxb.oxfordjournals.org/content/57/1/71.abstract – (On our blog : https://plantstomata.wordpress.com/2016/07/30/16976/) – (https://wordpress.com/post/plantstomata.wordpress.com/16976 )

Ludlow M. M. (1980) – Adaptive significance of stomatal responses to water stress. In: Adaptation of Plants to Water and High Temperature Stress (eds NC Turner and PJ Kramer), 105–122. John Wiley & Sons, New York

Ludlow M. M., Fisher M. J., Wilson J. R. (1985) – Stomatal adjustment to water deficits in three tropical grasses and a tropical legume grown in controlled conditions and in the field – Austral.J. Plant Physiol. 12: 131–149 – https://doi.org/10.1071/PP9850131http://www.publish.csiro.au/FP/PP9850131 – (On our blog : https://plantstomata.wordpress.com/2019/03/19/stomatal-adjustment-to-water-deficits/ )

Lugassi N., Kelly G., Fidel L., Yaniv Y., Attia Z., Levi A., Alchanatis V., Moschelion M., Raveh E., Carmi N., Granot D. (2015) – Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration. – Front. Plant Sci. 6:1114. – doi: 10.3389/fpls.2015.01114 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/hxk-coordinates-photosynthesis-and-transpiration-and-stimulates-stomatal-closure/ )

Luo L., Zhou W. Q., Liu P., Li C.-X., Hou S.-W. (2012) – The development of stomata and other epidermal cells on the rice leaves – Biol Plant 56: 521-527 –  https://doi.org/10.1007/s10535-012-0045-y https://link.springer.com/article/10.1007/s10535-012-0045-y – (On our blog : https://plantstomata.wordpress.com/2018/01/27/development-of-stomata-on-rice-leaves/ )

Luo X., Cui N., Zhu Y., Cao L., Zhai H., Cai H., Ji W., Wang X., Zhu D., Li Y., Bai X. (2012) – Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size – Journal of Plant Physiology 169(12): 1192-1202 – DOI10.1016/j.jplph.2012.03.019 – https://www.infona.pl/resource/bwmeta1.element.elsevier-e1cf8b96-d239-3cf0-93b7-f7a9ce25518a – (On our blog : https://plantstomata.wordpress.com/2017/10/11/gszfp1-over-expression-lines-exhibited-small-stomata-impairment-of-aba-induced-stomata-closure/ )

Luo Y. (1991) – Changes of Ci/Ca in association with non‐stomatal limitation to photosynthesis in water stressed Abutilon theophrasti – Photosynthetica 25: 273–279 – (Article not found)

Luomala E. M., Laitinen K., Sutinen S., Kellomaki S., Vapaavuori E. (2005) – Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2and temperature – Plant Cell Environ. 28: 733–749 . – DOI: 10.1111/j.1365-3040.2005.01319.x – CAS Article – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01319.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/02/co2-temperature-and-stomatal-density/)

Lurie S. (1977) – Stomatal development in etiolated Vicia faba.  Relationship between structure and function – Aust. J. Plant Physiol. 4: 61-68 – https://doi.org/10.1071/PP9770061-&nbsp;http://www.publish.csiro.au/FP/PP9770061 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/stomata-of-older-plants-achieve-physiological-competence-in-a-shorter-time/ )

Lurie S. (1977) – Photochemical properties of guard cell chloroplasts – Plant Sci. Lett. I0: 219-223 – https://doi.org/10.1016/0304-4211(77)90132-8 – https://www.sciencedirect.com/science/article/pii/0304421177901328 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/photochemical-properties-of-stomatal-chloroplasts/

Lurie S. (1978) – The effect of wavelength of light on stomatal opening – Planta 140:245249 – doi: 10.1007/BF00390255 – https://www.ncbi.nlm.nih.gov/pubmed/24414561 – (On our blog : https://plantstomata.wordpress.com/2018/09/17/more-than-one-light-activated-metabolic-pathway-can-supply-the-energy-needed-to-effect-stomatal-opening/

Lushnikov A. A., Vesala T., Kulmala M., Hari P. (1994) – A semi-phenomenologicai model for stomatal gas transport – Journal of Theoretical Biology 171: 291 311 – (Article not found)

Lv S., Zhang Y., Li C., Liu Z., Yang N., Pan L., Wu J., Wang J., Yang J., Lv Y., Zhang Y., Jiang W., She X., Wang G. (2017) – Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner – New Phytol. (Online Version) – DOI: 10.1111/nph.14813 – (On our blog : https://plantstomata.wordpress.com/2017/09/22/sls-play-a-prominent-role-together-with-h2o2no-production-and-slac1-activation-in-inducing-stomatal-closure-in-an-aba-independent-mechanism/)

Lyseng R. (2016) – Drought: the slow death – The Western Producer May 5, 2016 – https://www.producer.com/2016/05/drought-the-slow-death/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/drought-and-closing-of-stomata/ )

Advertisements