PHYSIO-BIBLIOGRAPHY D-F

Dai Q. S., Peng A.Q., Chavez, Vergara B. S. (1995) – Effects of UVB radiation on stomatal density and opening in rice (Oryza sativa L.). – Ann. Bot., 76: 65-70 – (On our blog https://plantstomata.wordpress.com/2016/05/16/uvb-radiation-and-stomatal-density-and-opening/)

Dai Z., Edwards G. E., Ku M. S. B. (1992) – Control of photosynthesis and stomatal conductance in Ricinus communis L. (Castor Bean) by leaf to air vapor pressure deficit – Plant Physiol. 99; 1426–1434 – doi: 10.1104/pp.99.4.1426 – http://www.plantphysiol.org/content/99/4/1426 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/control-of-stomatal-conductance-by-leaf-to-air-vapor-pressure-deficit/ )

Dale J. E. (1961) – Investigations into the stomatal physiology of upland cotton – Ann. Bot. 25: 39-52 – DOI 10.1093/oxfordjournals.aob.a083731 – https://www.jstor.org/stable/42907568?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/stomatal-physiology-of-upland-cotton/ )

Dale J. E. (1961) – Investigations into the stomatal physiology of upland cotton: 2. Calibration of the Infiltration Method against Leaf and Stomatal Resistances – Ann. Bot. 25: 39-52 – https://www.jstor.org/stable/42907576?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/use-of-the-infiltration-method-for-deriving-estimates-of-stomatal-resistance/ )

Daley M. J., Phillips N. G. (2006) – Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest -Tree Physiol. 26(4): 411-419 – PMID: 16414920 – PubMed – https://www.ncbi.nlm.nih.gov/pubmed/16414920 – (On our blog : https://plantstomata.wordpress.com/2018/03/20/nighttime-transpiration-and-stomatal-conductance/ )

Daloso D. M., Antunes W. C., Pinheiro D. P., Waquim J. P., Araujo W. L., Loureiro M. E., Fernie A. R., Williams T. C. (2015) – Tobacco guard cells fix CO2 by both Rubisco and PEPcase while sucrose acts as a substrate during light-induced stomatal opening. – Plant Cell Environ. 38, 2353–2371. – doi: 10.1111/pce.12555 – https://www.ncbi.nlm.nih.gov/pubmed/25871738 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/rubisco-pepcase-sucrose-and-stomatal-behavior/ )

Daloso D. M., Dos Anjos L., Fernie A. R. (2016) – Roles of sucrose in guard cell regulation – New Phytologist 211: 809-818 – doi:10.1111/nph.13950 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13950/abstract – (On our blog : https://plantstomata.wordpress.com/2016/04/07/sucrose-and-guard-cell-metabolism-and-stomatal-regulation/)

Daloso D. M., Medeiros D. B., dos Anjos L., Yoshida T., Araújo W. L., Fernie A. R. (2017) – Metabolism within the specialized guard cells of plants. – New Phytol. doi:10.1111/nph.14823 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14823/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/06/metabolism-within-the-specialized-guard-cells-of-plants/ )

Daloso D. M., Williams T. C., Antunes W. C., Pinheiro D. P., Muller C., Loureiro M. E., Fernie A. R. (2015) – Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic – New Phytol. 209(4): 1470–1483 – doi: 10.1111/nph.13704 [Epub ahead of print] – http://onlinelibrary.wiley.com/doi/10.1111/nph.13704/full – (On our blog : https://plantstomata.wordpress.com/2018/02/27/the-role-of-sucrose-in-stomatal-function-is-primarily-energetic/ )

DaMatta F. M., Godoy A. G., Menezes-Silva P. E., Martins S. C., Sanglard L. M., Morais L. E., Torre-Neto A., Ghini R. (2016) – Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. – J. Exp. Bot. 67, 341–352 – doi: 10.1093/jxb/erv463 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/26503540 – (On our blog : https://plantstomata.wordpress.com/2018/02/27/disentangling-stomatal-mesophyll-and-biochemical-limitations/ )

Damour G., Simonneau T., Cochard H., Urban L. (2010) – An overview of models of stomatal conductance at the leaf level. – Plant Cell Environ. 33:1419–1438. – MedlineWeb of ScienceGoogle Scholar – (On our blog https://plantstomata.wordpress.com/2016/05/16/models-of-stomatal-conductance/ )

Dang Q.-L., Margolis H. A., Collatz G. J. (1998) – Parameterization and testing of a coupled photosynthesis-stomatal conductance model for boreal trees – Tree Physiology 18: 141–153 – PMID: 12651384 – https://www.lakeheadu.ca/sites/default/files/profile-data/qdang/Dang%20et%20al.%201998.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/10/a-coupled-photosynthesis-stomatal-conductance-model-was-parameterized/ )  

Danve C., Castroverde M. (2018) – CDL1-OST1 Interaction as a Focal Point of Brassinosteroid-Abscisic Acid Hormone Signaling Crosstalk – The Plant Cell DOI: https://doi.org/10.1105/tpc.18.00603 – http://www.plantcell.org/content/30/8/1668?rss=1 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/interaction-between-the-br-associated-cdg1-like1-cdl1-and-aba-associated-open-stomata1-ost1/ )

Danyanandan P., Kauffman P. B. (1975) – Stomatal movements associated with potassium fluxes – Am. J. Bot. 62: 221-231 – doi:10.1002/j.1537-2197.1975.tb12347.x – http://onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1975.tb12347.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/potassium-fluxes-and-stomatal-movements/ )

Danzer J., Mellott E., Bui A. Q., Le B. H., Martin P., Hashimoto M., Perez-Lesher J., Chen M., Pelletier J. M., Somers D. A., Goldberg R. B., Harada J. J. (2015) – Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development – Plant Physiology 168(3): – DOI: https://doi.org/10.1104/pp.15.00432 – http://www.plantphysiol.org/content/168/3/1025 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/variation-in-the-timing-of-bhlh-transcription-factor-gene-expression-can-explain-the-diversity-of-stomatal-forms/)

Darwin F. (1897) – Observations on stomata by a new method. -Proc Cambridge Phil Soc 9: 303-308 –

Darwin F. (1898) – Observations on stomata – Phil. Transactions Roy. Soc. London B 190: 531-561 – https://archive.org/stream/philtrans04647888/04647888_djvu.txt  – (On our blog : https://plantstomata.wordpress.com/2016/10/24/observations-on-stomata-francis-darwin-1898/)

Darwin F. (1916) – On the relation between transpiration and stomatal aperture – Phil. Trans. Roy. Soc. London B 207 : 413-437 -DOI: 10.1098/rstb.1916.0009 – http://rstb.royalsocietypublishing.org/content/207/335-347/413 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/transpiration-and-stomatal-aperture/ )

Darwin F., Pertz D. F. M. (1911) – On a new method of estimating the aperture of stomata – Proc. Roy. Soc. London B 84: 136-149 – http://rspb.royalsocietypublishing.org/content/84/569/136 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/estimating-the-aperture-of-stomata/ )

Das V. S. R., Raghavendra A. S. (1974) – Control of stomatal opening by pyruvate metabolism in light – Indian J Exp Biol 12: 425-428 – (Article not found)

Daszkowska-Golec A., Szarejko I. (2013) –  Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. – Frontiers in Plant Science 4. -doi: 10.3389/fpls.2013.00138. – https://www.frontiersin.org/articles/10.3389/fpls.2013.00138/full – (On our blog : https://plantstomata.wordpress.com/2017/11/07/stomata-movements-and-phytohormones-in-drought-stress/)

Davenport D. C. (1966) – Effect of phenylmercuric acetate on transpiration and growth  of small plots of grass – Nature 212: 801-802 (No abstract available).

Davenport D. C., Fischer M. A., Hagan  R. M. (1971) – Retarded stomatal closure by phenylmercuric acetate – Physiol. Plant. 24: 330-336 – doi:10.1111/j.1399-3054.1971.tb03499.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1971.tb03499.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/pma-is-retarding-all-stomatal-movements-that-are-osmotically-induced/ )

David L., Harmon A. C., Chen S. (2019) – Plant immune responses – from guard cells and local responses to systemic defense against bacterial pathogens – Plant Signaling & Behavior 14(5) https://doi.org/10.1080/15592324.2019.1588667https://www.tandfonline.com/doi/abs/10.1080/15592324.2019.1588667 – (On our blog : https://plantstomata.wordpress.com/2019/05/03/the-role-of-stomatal-guard-cells-in-local-and-systemic-immune-responses/ )

Davies K. A., Bergmann D. C. (2014) – Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential. – Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15585-90. – doi: 10.1073/pnas.1411766111  – PMID: 25304637 – http://www.pnas.org/content/111/43/15585.full – (On our blog : https://plantstomata.wordpress.com/2018/02/27/functional-specialization-of-stomatal-bhlhs-through-modification-of-dna-binding-and-phosphoregulation-potential/ )

Davies W. J. (1976) – Stomatal Responses to Water Stress and Light in Plants Grown in Controlled Environments and in the Field – Crop Science 17(5): 735-740 – doi:10.2135/cropsci1977.0011183X001700050015x – https://dl.sciencesocieties.org/publications/citation-manager/prev/zt/cs/17/5/CS0170050735 – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomatal-responses-to-water-stress-and-light/ )

Davies W. J. (1978) – Some effects of abscisic acid and water stress on stomata of Vicia faba L. – J. Exp. Bot. 29: 175-182 – https://doi.org/10.1093/jxb/29.1.175 – https://academic.oup.com/jxb/article-abstract/29/1/175/494514/Some-Effects-of-Abscisic-Acid-and-Water-Stress-on?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/18/effects-of-aba-and-water-stress-on-stomata/)

Davies W. J., Gill K., Halliday G. (1978) – The Influence of Wind on the Behaviour of Stomata of Photosynthetic Stems of Cytisus scoparius (L.) Link – Annals of Botany 42(181): 1149-1154 – https://www.jstor.org/stable/42764099?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/13/influence-of-wind-on-the-behaviour-of-stomata/ )

Davies W. J., Kozlowski T. T. (1974) – Stomatal responses of five woody angiosperms to light intensity and humidity – Canad. Journ. Bot. 52(7): 1525-1534 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-responses-of-trees-to-light-intensity-and-humidity/)

Davies W. J., Kozlowski T. T. (1975) – Stomatal responses to changes in light intensity as influenced by plant water stress – For. Sci. 21: 129–133 –  https://doi.org/10.1093/forestscience/21.2.129– https://academic.oup.com/forestscience/article-abstract/21/2/129/4675575?redirectedFrom=fulltext – (On our blog :  )https://plantstomata.wordpress.com/2018/12/02/stomatal-responses-to-changes-in-light-intensity-as-influenced-by-plant-water-stress/

Davies W. J., Kozlowski T. T. (1977) – Variations among woody plants in stomatal conductance and photosynthesis during and after drought – Plant Soil 46: 435–444 – https://doi.org/10.1007/BF00010099 – https://link.springer.com/article/10.1007%2FBF00010099#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/02/survival-of-plants-in-relation-to-stomatal-control-of-transpiration-and-metabolic-responses-to-water-stress/ )https://plantstomata.wordpress.com/2018/12/02/survival-of-plants-in-relation-to-stomatal-control-of-transpiration-and-metabolic-responses-to-water-stress/

Davies W. J., Kozlowski T. T., Pereira J. S. (1974) – Effect of wind on transpiration and stomatal aperture of woody plants.  Int. Plant Physiol. Symp. Mech. Plant Growth, Massey Univ., Palmerston North, New Zealand – (Abstract not available).

Davies W. J., Wilkinson S., Loveys B. (2002) – Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture.New Phytologist 153: 449–460. – Wiley Online Library |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/stomatal-control-by-chemical-signalling/)

Davies W. J. Wilson J. A., Sharp R. E., Osonubi O. (1980) – Control of stomatal behaviour in water stressed plants. In: Stomatal Physiology (eds.) P.G. Jarvis, and T.A. Mansfield). C.U.P., London  (1980) – Google Scholar – (Abstract not available).

Davis A. R., Gunning B. E. S. (1991) – The modified stomata of the floral nectary of Vicia faba L. – 1. Development, anatomy and ultrastructure – https://doi.org/10.1007/BF01322777 – https://link.springer.com/article/10.1007/BF01322777#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/27/development-anatomy-and-ultrastructure-of-modified-stomata/ )

Davis A. R., Gunning B. E. S. (1991) – The modified stomata of the floral nectary of Vicia faba L. – 2. Stomatal number and distribution as selection criteria for breeding for high nectar sugar production – Acta Hortic. 288, 329-334
DOI: 10.17660/ActaHortic.1991.288.53 – https://www.ishs.org/ishs-article/288_53 – (On our blog : https://plantstomata.wordpress.com/2018/02/27/stomatal-number-and-distribution-as-selection-criteria-for-breeding-for-high-nectar-sugar-production/ )

Davis A. R., Gunning B. E. S. (1993) – The modified stomata of the floral nectary of Vicia faba L. – Bot. Acta. 106: 241–253 – DOI: 10.1111/j.1438-8677.1993.tb00747.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1993.tb00747.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/modified-stomata-do-not-have-a-regulatory-role-in-nectar-secretion-by-flowers-of-vicia-faba/

Dayanandan P., Barnabas A. D., Jayakumar P. S., Christopher J. (1986) – Observations on peculiar air passages in the stems of Gloriosa superba L. and Iphigenia indica Kunth – Curr. Sci. 55(5): 235-238 – Gloriosa_-_included_stomata.pdf.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/peculiar-air-passages-and-included-stomata-in-the-stems-of-gloriosa/)

Dayanandan P., Kaufman P. B. (1975) – Stomatal movements associated with potassium fluxes. – Am J Bot 62: 221–231 – CrossRefGoogle Scholar – STOMATAL_MOVEMENTS_ASSOCIATED_WITH_POTAS.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64758)

Dayer S.,  Perez Peña J., Gindro K.,  Torregrosa L.,  Voinesco F.,  Martínez L.,  Prieto J. A.,  Zufferey V. (2017) – Changes in leaf stomatal conductance, petiole hydraulics and vessel morphology in grapevine (Vitis vinifera cv. Chasselas) under different light and irrigation regimes – Functional Plant Biologyhttps://doi.org/10.1071/FP16041 – http://www.publish.csiro.au/fp/FP16041 – (On our blog : https://plantstomata.wordpress.com/2017/05/02/not-only-plant-water-status-but-also-the-light-environment-at-the-leaf-level-affect-leaf-and-petiole-hydraulics/)

De Angeli A., Zhang J., Meyer S., Martinoia E. (2013) – AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. – Nat Commun 4:1804 –  CrossRef PubMed PubMedCentral – http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2815.html – (On our blog : https://plantstomata.wordpress.com/2016/03/27/atalmt9-is-controlling-stomata-aperture/)

Deans R. M., Brodribb T. J., Busch F. A., Farquhar G. D. (2018) – Plant water‐use strategy mediates stomatal effects on the light induction of photosynthesis – New Phytologist 222(1): 382-395 – https://doi.org/10.1111/nph.15572https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15572?af=R – (On our blog : https://plantstomata.wordpress.com/2018/11/09/plant-water%e2%80%90use-strategy-mediates-stomatal-effects-on-the-light-induction-of-photosynthesis/ )

Deans R. M., Brodribb T. J., McAdam S. A. M. (2017) – An integrated hydraulic-hormonal model of conifer stomata predicts water stress dynamics – Plant Physiol. (2017) – DOI: 10.1104/pp.17.00150 – (On our blog : https://plantstomata.wordpress.com/2017/03/27/a-hydraulic-hormonal-model-for-conifer-stomata/)

DeBoer B. (2018) – A Look at the Plant Stomata and Relative Humidity – Maximum Yield August 10, 2018 – https://www.maximumyield.com/are-you-growing-puny-plants/2/1175 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/relative-humidity-and-the-role-it-plays-on-stomatal-opening-and-closing/ )

de Boer H. J. (2016) – Plant acclimation and adaptation to CO2: lessons from optimality theory and implications for leaf gas exchange – www.lsce.ipsl.fr/Phocea/Vie_des_labos/Seminaires/index.php?id=87 – Bat 701, P 17C, LSCE Orme des Merisiers – (On our blog : https://plantstomata.wordpress.com/2017/11/16/changes-in-stomatal-number-and-size-by-acclimation-and-adaptation-to-co2/)

de Boer H. J., Lammertsma E. I., Wagner-Cremer F., Dilcher D. L., Wassen M. J., Dekker S. C. (2011) –  Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2 – Proceedings of the National Academy of Sciences PNAS 108(10): 4041-4046 – https://doi.org/10.1073/pnas.1100555108 –https://www.pnas.org/content/108/10/4041 – (On our blog : https://plantstomata.wordpress.com/2019/04/16/plant-adaptation-reduction-of-diffusive-stomatal-conductance-to-rising-co2-is-altering-the-freshwater-cycle-and-climate-and-will-continue-to-do-so-throughout-this-century/ )

de Boer H. J., Lammertsma E. I., Wagner-Cremer F., Wassen M. J., Lotter A. F., Dilcher D. L., Dekker S. C. (2012) – Optimisation of maximal stomatal conductance in subtropical vegetation under rising CO2 – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/maximal-stomatal-conductance-gsmax-in-subtropical-vegetation-under-rising-co2/ )

de Boer H. J., Price C. A., Wagner-Cremer F., Dekker S. C., Franks P. J., Veneklaas E. J. (2016) – Optimal allocation of leaf epidermal area for gas exchange – New Phytologist –New Phytologist (Impact Factor: 7.67). 03/2016; DOI: 10.1111/nph.13929 – (On our blog : https://plantstomata.wordpress.com/2016/03/16/allocation-of-leaf-epidermal-space-to-stomata/).

de Dios V. R., Chowdhury F. I., Granda E., Yao Y., Tissue D. T. (2019) – Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants – New Phytologist https://doi.org/10.1111/nph.15881 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15881?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/05/the-potential-functions-of-nocturnal-stomatal-conductance/ )

de Dios V. R., Turnbull M. H., Barbour M. M., Ontedhu J., Ghannoum O., Tissue D. T. (2013) – Soil phosphorus and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis – Tree Physiology 33: 1206–1215 – doi: 10.1093/treephys/tpt091 – https://www.ncbi.nlm.nih.gov/pubmed/24271087 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/effect-of-soil-phosphorus-and-endogenous-rhythms-on-nocturnal-stomatal-conductance/ )

Defraeye T., Derome D., Verboven P., Carmeliet J., Nicolai B. (2014) – Cross-scale modelling of transpiration from stomata via the leaf boundary layer – Annals of Botany 114 (4), 711-723. – http://dx.doi.org/10.1093/aob/mct313 – https://lirias.kuleuven.be/bitstream/123456789/439813/2/Defraeye+et+al._2014_Cross-scale+modelling+of+transpiration+from+stomata+via+the+leaf+boundary+layer.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/08/transpiration-from-stomata-via-the-leaf-boundary-layer/)

Deger A. G., Scherzer S., Nuhkat M., Kedzierska J., Kollist H., Brosche M., Unyayar S., Boudsocq M., Hedrich R., Roelfsema M. R. G. (2015) – Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure – New Phytologist 208(1): 162-173 – DOI: 10.1111/nph.13435 – https://helda.helsinki.fi/handle/10138/209596 – (On our blog : https://plantstomata.wordpress.com/2017/11/08/slac1-type-anion-channels-and-flagellin-induced-stomatal-closure/)

Dehnel G. S. (1960) – Response of stomata to wounding. – Bot. Gazette 122: 124-130 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42754)

De Kauwe M. G., Kala J., Lin Y.-S., Pitman A. J., Medlyn B. E., Duursma R. A., Abramowitz G., Wang Y.-P., Miralles D. G. (2015) – A test of an optimal stomatal conductance scheme within the CABLE land surface model – Geoscientific Model Development 8: 431–452 – https://doi.org/10.5194/gmd-8-431-2015 – https://www.geosci-model-dev.net/8/431/2015/gmd-8-431-2015.html – (On our blog :  https://plantstomata.wordpress.com/2018/12/10/optimisation-theory-can-yield-a-simple-and-tractable-approach-to-predicting-stomatal-conductance-in-lsms/

de la Torre Llrorente D. (2007) – Comparison of Several Models for Calculating Ozone Stomatal Fluxes on a Mediterranean Wheat Cultivar (Triticum durum Desf. cv. Camacho) – The Scientific World Journal 7: 1634-1648 – DOI: 10.1100/tsw.2007.243 – https://www.researchgate.net/publication/5863292_Comparison_of_Several_Models_for_Calculating_Ozone_Stomatal_Fluxes_on_a_Mediterranean_Wheat_Cultivar_Triticum_durum_Desf_cv_Camacho – (On our blog : https://plantstomata.wordpress.com/2019/04/26/several-models-for-calculating-ozone-stomatal-fluxes/ )

Delf E. M. (1911) – Transpiration and behaviour of stomata in halophytes – Ann. Bot., London, 25 (98): 485–505 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42680)

Delgado D., Alonso-Blanco C., Fenoll C., Mena M. (2011) – Natural Variation in Stomatal Abundance of Arabidopsis thaliana Includes Cryptic Diversity for Different Developmental Processes – Annals of Botany 107: 1247–1258 –  http://dx.doi.org/10.1093/aob/mcr060 – (On our blog : https://plantstomata.wordpress.com/2016/05/17/variation-in-stomatal-abundance-and-diversity-for-different-developmental-processes/ )

Delgado D., Ballesteros I., Mena M., Fenoll C. (2012a) – Roles of CONSTITUTIVE
PHOTOMORPHOGENIC 10 in Arabidopsis stomata development. – Plant Signaling & Behavior 7: 990–993 – DOI 10.4161/psb.20995 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474701/ – (On our blog : https://plantstomata.wordpress.com/2018/02/28/roles-of-cop-10-in-stomatal-development/ )

Delgado D., Ballesteros I., Torres-Contreras J., Mena M., Fenoll C. (2012b) – Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in
Arabidopsis stomatal lineage development. – Planta 236: 447–461 – doi: 10.1007/s00425-012-1617-y – Epub 2012 Mar 11. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/22407427 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/speci%ef%ac%81c-roles-for-cop10-in-stomatal-lineage-development/

Del Pozo A., Pérez P., Morcuende R., Alonso A., Martinez-Carrasco R. (xxxx) – Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply, in a Mediterranean environment – https://core.ac.uk/download/pdf/36030068.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/acclimatory-responses-of-stomatal-conductance-and-photosynthesis-to-elevated-co2-and-temperature/

Delucia E. H. (1986) – Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings – Tree Physiol., 2: 143–154 – PMID: 14975849 – https://www.ncbi.nlm.nih.gov/pubmed/14975849?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/effect-of-low-root-temperature-on-stomatal-conductance/ )

Delwiche M. J., Cooke J. R. (1977) – An analytical model of the hydraulic aspects of stomatal dynamics – Journal of Theoretical Biology 69(1):  113-141 – https://doi.org/10.1016/0022-5193(77)90391-5 – CrossRef |PubMed |CAS | – https://www.sciencedirect.com/science/article/pii/0022519377903915 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/analytical-model-of-the-hydraulic-aspects-of-stomatal-dynamics/ )

de Marcos A., Houbaert A., Triviño M., Delgado D., Martín-Trillo M., Russinova E., Fenoll C., Mena M. (2017) – A mutation in the bHLH domain of the SPCH transcription factor uncovers a BR-dependent mechanism for stomatal development. – Plant Physiol 174: 823–842 – DOI: 10.1104/pp.17.00615 – http://www.plantphysiol.org/content/174/2/823 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/br-dependent-mechanism-for-stomatal-development/)

de Marcos A., Triviño M., Fenoll C., Mena M. (2016) – Too many faces for TOO MANY MOUTHS? – New Phytol. 210: 779–785 – DOI:  10.1111/nph.13827 –  [PubMed] [Cross Ref] – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13827 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/too-many-faces-for-too-many-mouths/

de Marcos A., Triviño M., Pérez-Bueno M. L., Ballesteros I., Barón M., Mena M., Fenoll C. (2015) – Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata – Frontiers in Plant Science – http://journal.frontiersin.org/article/10.3389/fpls.2015.00456 – (On our blog : https://plantstomata.wordpress.com/2016/01/17/stomataless-plants-in-arabidopsis/)

De Michelle D. W., Sharpe P. J. H. (1971) – A model of stomatal action: Its agronomic and ecological significance. – Pap. No. 71-589 – Winter meeting, – Am. Soc. Agric. Eng., Chicago, III, Dec. – (No abstract available).

De Michelle D. W., Sharpe P. J. H. (1973) – An analysis of the mechanics of guard cell motion. – J. Theor. Biol. 41: 77–96 – [PubMed].- (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42694).

De Michelle D. W., Sharpe P. J. H. (1974) – A parametric analysis of the anatomy and physiology of the stomata – Agric. Meterology 14: 229-241 – (On our blog : https://plantstomata.wordpress.com/2017/07/04/anatomy-and-physiology-of-the-stomata/)

Deng M., Li Q., Shuting Y., Liu Y.-c., Xu J. (2013) – Comparative morphology of leaf epidermis in the genus Lithocarpus and its implication in leaf epidermal feature evolution in Fagaceae – Plant Systematics and Evolution 299(3) – https://www.researchgate.net/publication/257447723_Comparative_morphology_of_leaf_epidermis_in_the_genus_Lithocarpus_and_its_implication_in_leaf_epidermal_feature_evolution_in_Fagaceae – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomata-in-lithocarpus-fagaceae/ )

Derevyanchuk M., Kretynin S., Iakovenko O., Litvinovskaya R., Zhabinskii V., Martinec J., Blume Y., Khripach V., Kravets V. (2017) – Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress – Steroids 117: 16-24 – DOI10.1016/j.steroids.2016.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-03ba2aa2-b3c3-3855-9965-3775c75928fd – (On our blog : https://plantstomata.wordpress.com/2017/10/22/brassinosteroids-cause-closure-of-stomata/)

Desai M. C. (1937) – Effect of certain nutrient deficiencies on stomatal behavior – Plant Physiology 12: 253-289 – (0n our blog : https://plantstomata.wordpress.com/2017/06/24/nutrient-deficiencies-and-stomata/)

Desclos-Theveniau M., Arnaud D., Huang T. Y., Lin G. J., Chen W. Y., Lin Y. C., et al. (2012) – The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. – PLoS Pathog. 8:e1002513. – doi: 10.1371/journal.ppat.1002513 – http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002513 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/mechanisms-to-reverse-bacteria-mediated-stomatal-closure/ )

Desikan R., Cheung M.K., Bright J., Henson D., Hancock J. T., Neill S. J. (2004) – ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. – J. Exp. Bot. 55, 205–212. – 10.1093/jxb/erh033 –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/14673026 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/the-exact-interaction-between-the-various-signalling-components-in-response-to-h2o2-and-no-in-stomata-remains-to-be-established/ )

Desikan R., Cheung M.K., Clarke A., Golding S., Sagi M., Fluhr R., Rock C., Hancock J., Neill S. (2004) -Hydrogen peroxide is a common signal for darkness- and ABA-induced stomatal closure in Pisum sativum. – Funct. Plant Biol. 31: 913–920. – CrossRef  – http://www.publish.csiro.au/?paper=FP04035 – (On our blog : https://plantstomata.wordpress.com/2015/10/11/hydrogen-peroxide-and-stomatal-closure-2/ )

Desikan R., Griffiths R., Hancock J., Neill S. (2002) – A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. – Proc. Natl. Acad. Sci. U.S.A. 99, 16314–16318. doi: 10.1073/pnas.252461999 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/17/nr-mediated-no-synthesis-is-required-for-aba-induced-stomatal-closure/)

Desikan R., Horák J., Chaban C., Mira-Rodado V., Witthöft J., Elgass K., Grefen C., Cheung M. K., Meixner A. J., Hooley R., Neill S. J., Hancock J. T., Harter K. (2008) – The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. – PLoS ONE 3:e2491. – doi: 10.1371/journal.pone.0002491  – http://eprints.uwe.ac.uk/8292 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002491 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/ahk5-acts-to-integrate-multiple-signals-via-h2o2-homeostasis/ )

Desikan R., Last K., Harrett-Williams R., Tagliavia C., Harter K., Hooley R., Hancock J. T., Neill S. J. (2006) – Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis – The Plant Journal 47: 907–916 – DOI: 10.1111/j.1365-313X.2006.02842.x – CrossRef | CAS| – http://www.publish.csiro.au/fp/FP17180 – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.02842.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/02/ethylene-induced-stomatal-closure/ )

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985) – Synergism between calcium ions and abscisic acid in preventing stomatal opening. – New Phytol. 100: 473–482 – DOI 10.1111/j.1469-8137.1985.tb02795.x – http://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1985.tb02795.x/asset/j.1469-8137.1985.tb02795.x.pdf?v=1&t=je8ayguh&s=14bf149a4328bef2bd6c02b45cc6603631b6fad1 – (On our blog : https://plantstomata.wordpress.com/2018/03/01/ca2-and-aba-in-preventing-stomatal-opening/ )

De Silva D. L. R., Cox R. C., Hetherington A. M., Mansfield T. A. (1986) – The role of abscisic acid and calcium in determining the behaviour of adaxial and abaxial stomata. New Phytologist 104, 41–51. – Wiley Online LibraryCASCrossRef – (On our blog : https://plantstomata.wordpress.com/2016/05/17/aba-ca-and-stomata/ )

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985b) – Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid –  New Phytologist 101,555–563. – CrossRefCAS | – (On our blog https://plantstomata.wordpress.com/2016/05/17/calcium-calmodulin-and-stomata/ )

De Silva D. L. R., Honour S. J., Mansfield T. A. (1996) – Estimations of apoplastic concentrations of K+ and Ca2+ in the vicinity of stomatal guard cells. – New Phytologist 134: 463–469. – Wiley Online Library |CAS – (On our blog : https://plantstomata.wordpress.com/2016/03/14/stomata-and-apoplastic-concentrations-of-k-and-ca2/).

De Silva D. L. R., Mansfield T. A. (1994) –  The stomatal physiology of calcicoles in relation to calcium delivered in the xylem sap. – Proceedings of the Royal Society of London Series B 257: 81–85. – CrossRef – (On our blog : https://plantstomata.wordpress.com/?s=stomatal+physiology+of+calcicoles )

De Silva D. L. R., Mansfield T. A., McAinsh M. R. (2001) –  Changes in stomatal behaviour in the calcicole Leontodon hispidus due to the disruption by ozone of the regulation of apoplastic Ca2+ by trichomes – Planta 214(1):158-62 – PMID: 11762166 –  https://www.ncbi.nlm.nih.gov/pubmed/11762166- (On our blog : https://plantstomata.wordpress.com/2018/12/02/changes-in-stomatal-behaviour-due-to-the-disruption-by-ozone-of-the-regulation-of-apoplastic-ca2-by-trichomes/ )

Des Marais D. L., Auchincloss L. C., Sukamtoh E., Mckay J. K., Logan T., Richards J. H., Juenger T. E. (2014) – Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proc. Natl. Acad. Sci. U.S.A. 111, 2836–2841. doi: 10.1073/pnas.1321429111 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/01/mpk12-affects-wue-and-reveals-link-between-stomata-size-and-aba/ )

de Villiers A. J., von Teichman I., van Rooyen M. W., Theron G. K. (1996) – Salinity-induced changes in anatomy, stomatal counts and photosynthetic rate of Atriplex semibaccata R. Br. – South African Journal of Botany  62(5): 270-276  – https://doi.org/10.1016/S0254-6299(15)30656-6 – http://www.sciencedirect.com/science/article/pii/S0254629915306566 – (On our blog : https://plantstomata.wordpress.com/2017/10/02/salinity-induced-changes-in-stomatal-numbers/)

Devireddy A. R., Zandalinas S. I., Gómez-Cadenas A., Blumwald E., Mittler R. (2018) – Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress – Sci. Signal. 11, Issue 518, eaam9514 – DOI: 10.1126/scisignal.aam9514 – http://stke.sciencemag.org/content/11/518/eaam9514 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/the-overall-stomatal-response-rapid-leaf-to-leaf-communication-during-light-stress/ )

Dewar R. C. (1995) – Interpretation of an empirical model for stomatal conductance in terms of guard cell function – Plant, Cell & Environment 18: 365–372 – DOI 10.1111/j.1365-3040.1995.tb00372.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00372.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/01/an-empirical-model-for-stomatal-conductance-in-terms-of-guard-cell-function/ )

Dewar R. C. (2002) – The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. – Plant, Cell & Environment 25, 1383–1398 – DOI: 10.1046/j.1365-3040.2002.00909.x –  Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00909.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/02/a-new-model-of-stomatal-conductance-combining-the-ball-berry-leuning-bbl-and-tardieu-davies-td-models/ )

Dewar R. C., Mauranen A., Mäkelä A., Hölttä T., Medlyn B., Vesala T. (2017) – New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis – New Phytologist, Online Version of Record published before inclusion in an issue – doi:10.1111/nph.14848 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14848/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/31/the-covariation-of-stomatal-mesophyll-and-hydraulic-conductances/)

Dhir B., Mahmooduzzafar, Siddiqi T.O., Iqbal M. (2001) – Stomatal and photosynthetic responses of Cichorium intybus leaves to sulfur dioxide treatment at different stages of plant development. – J. Plant Biol., 44: 97-102. (http://link.springer.com/article/10.1007%2FBF03030282) – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/3600).

Diekmann W., Hedrich R., Raschke K., Robinson D. G. (1993) – Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells. – J. Exp. Bot. 44: 1569–1577 – https://doi.org/10.1093/jxb/44.10.1569 – https://academic.oup.com/jxb/article-abstract/44/10/1569/459454?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/01/osmocytosis-and-vacuolar-fragmentation-in-stomata/

Dietrich L., Hoch G., Kahmen A., Körner C. (2018) – Losing half the conductive area hardly impacts the water status of mature trees – Scientific Reports 8, Article number 15006 – https://www.nature.com/articles/s41598-018-33465-0 – (On our blog : https://plantstomata.wordpress.com/2019/04/01/the-water-status-of-transpiring-tree-crowns-depends-on-a-hydraulic-continuum-from-the-soil-matrix-around-roots-to-the-sub-stomatal-cavity/ )

Dietrich P., Hedrich R. (1994) – Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel. – Planta 195: 301–304 – https://doi.org/10.1007/BF00199690 – Google Scholar – https://link.springer.com/article/10.1007/BF00199690#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/01/different-gating-modes-of-gcac1-the-guard-cell-anion-channel/)

Dietrich P., Dreyer I., Wiesner P., Hedrich R. (1998) – Cation sensitivity and kinetics of guard cell potassium channels differ among species – Planta 205: 277-287 – https://doi.org/10.1007/s004250050322 – https://link.springer.com/article/10.1007%2Fs004250050322 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/diversification-of-guard-cell-channels-contributes-to-species-specific-variations-in-the-control-of-stomatal-aperture/ )

Dietrich P., Sanders D., Hedrich R. (2001) – The role of ion channels in light‐dependent stomatal opening – Journal of Experimental Botany 52(363): 1959–1967 – https://doi.org/10.1093/jexbot/52.363.1959 – https://academic.oup.com/jxb/article/52/363/1959/488441 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/recent-progress-in-molecular-aspects-of-ion-channel-regulation-in-stomata/ )

Di Matteo G., Riccardi M., Righi F., Fusaro E. (2012) – Inter- and intraspecific variations in bud phenology, foliar morphology, seasonal stomatal conductance and carbon isotopic composition in Cedrus libani and C. atlantica – Trees 26(4) · August 2012 – DOI: 10.1007/s00468-012-0692-9 – https://www.researchgate.net/publication/257431522_Inter-_and_intraspecific_variations_in_bud_phenology_foliar_morphology_seasonal_stomatal_conductance_and_carbon_isotopic_composition_in_Cedrus_libani_and_C_atlantica – (On our blog : https://plantstomata.wordpress.com/2016/07/26/seasonal-stomatal-conductance-in-cedrus/)

Ding R., Kang S., Du T., Hao X., Zhang Y. (2014) – Scaling Up Stomatal Conductance from Leaf to Canopy Using a Dual-Leaf Model for Estimating Crop Evapotranspiration – PLoS ONE 9(4): e95584 – https://doi.org/10.1371/journal.pone.0095584https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095584 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/scaling-up-stomatal-conductance-from-leaf-to-canopy/ )

Ding S., Zhang B., Qin F. (2015) – Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation – The Plant Cell October 27, 2015 tpc.15.00321 – doi: http://dx.doi.org/10.1105/tpc.15.00321 – http://www.plantcell.org/content/early/2015/10/27/tpc.15.00321.abstract#aff-1 – (On our blog : https://plantstomata.wordpress.com/2016/03/31/rzfp34chyr1-a-ubiquitin-e3-ligase-regulates-stomatal-movement/)

Ding Z. J., Yan J. Y., Xu X. Y., Yu D. Q., Li G. X., Zhang S. Q., Zheng S. J. (2014) – Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis – Plant J. 79(1): 13-27 – doi: 10.1111/tpj.12538 – Epub 2014 Jun 5 – https://www.ncbi.nlm.nih.gov/pubmed/24773321 – https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.12538 – (On our blog : https://plantstomata.wordpress.com/2018/10/16/wrky46-plays-dual-roles-in-regulating-plant-responses-to-drought-and-salt-stress-and-light-dependent-stomatal-opening/ )

Dingkuhn M., Audebert A. Y., Jones M. P., Etienne K., Sow A. (1999) – Control of stomatal conductance and leaf rolling in Oryza sativa and O. glaberrima upland rice -Field Crops Research 61: 223–236 – http://dx.doi.org/10.1016/S0378-4290(98)00165-8 – http://agritrop.cirad.fr/247421/ – (On our blog : https://plantstomata.wordpress.com/2018/10/16/control-of-stomatal-conductance-and-leaf-rolling/ )

Distefano A. M., Garcia-Mata C., Lamattina L., Laxalt A. M. (2008) – Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. – Plant Cell Environ. 31, 187–194. doi: 10.1111/j.1365-3040.2007.01756.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our  blog : https://plantstomata.wordpress.com/2016/05/18/plc-and-pld-derived-pa-and-stomatal-closure/)

Distefano A. M., Garcia-Mata C., Lamattina L., Laxalt A. M. (2008) – Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. – Plant Cell Environ. 31: 187–194. – doi: 10.1111/j.1365- 3040.2007.01756.x – https://www.ncbi.nlm.nih.gov/m/pubmed/17996010/ – (On our blog : https://plantstomata.wordpress.com/2018/03/05/plc-and-pld-derived-pa-represents-a-downstream-component-of-no-signalling-cascade-during-stomatal-closure/ )

Distéfano A. M., Scuffi D., García-Mata C., Lamattina L., Laxalt A. M. (2012) – Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. – Planta 236: 1899–1907 – doi: 10.1007/s00425-012-1745-4 – https://link.springer.com/article/10.1007/s00425-012-1745-4 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/pld%ce%b4-is-downstream-of-no-and-h2o2-in-aba-induced-stomatal-closure/ )

Dittberner H., Korte A., Mettler-Altmann T., Weber A., Monroe G., de Meaux J. (2018) – Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana – BioRxiv – doi: https://doi.org/10.1101/253021 – https://www.biorxiv.org/content/early/2018/01/24/253021 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/morphological-and-physiological-variants-in-stomata-contribute-to-genetic-variance-in-water-use-efficiency/ )

Dittrich P., Raschke K. (1977) – Malate metabolism in isolated epidermis of Commelina communis L. in relation to stomatal functioning – Planta 134: 76–82 – doi: 10.1007/BF00390098 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/24419583 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/malate-metabolism-and-stomatal-functioning/ )

Dittrich P., Raschke K. (1977) – Uptake and metabolism of carbohydrates by epidermal tissue – Planta 134: 83-90 – https://doi.org/10.1007/BF00390099 – https://link.springer.com/article/10.1007%2FBF00390099 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/uptake-and-metabolism-of-carbohydrates-by-epidermal-tissue/ )

Dobrenz A. K., Wright L. N., Humphrey A. B., Massengale M. A., Kneebone W. R. (1969) – Stomata density and its relationship to water-use efficiency  of Blue Panicgrass (Panicum antidotale Retz.) – Crop Sci. 9: 354-357 – doi:10.2135/cropsci1969.0011183X000900030033x – https://dl.sciencesocieties.org/publications/cs/abstracts/9/3/CS0090030354 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/stomata-density-and-water-use-efficiency-wue/ )

Dodd A. N., Parkinson K., Webb A. A. (2004) – Independent circadian regulation of assimilation and stomatal conductance in the ztl‐1 mutant of Arabidopsis – New Phytol 162: 63–70 – https://doi.org/10.1111/j.1469-8137.2004.01005.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2004.01005.x – (On our blog : https://plantstomata.wordpress.com/2019/01/12/a-longer-circadian-period-for-both-stomatal-conductance-and-co2-fixation-in-the-ztl%E2%80%901-mutant-compared-to-wild-type/ )

Dodd A. N., Salathia N., Hall A., Kévei E., Tóth R., Nagy F., Hibberd J. M, Millar A. J., Webb A. A. (2005) – Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage – Science 309: 630–633 – DOI: 10.1126/science.1115581 – http://science.sciencemag.org/content/309/5734/630?ijkey=d934dccf6039f6233fc802b778dab069286fa5b4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/plants-gain-advantage-from-circadian-control/ )

Dodd I. C. (2003) – Hormonal interactions and stomatal responses. – J. Plant Growth Regul. 22, 32–46. doi: 10.1007/s00344-003-0023-x – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/18/hormonal-factors-and-stomatal-behavior/)

Dodd I. C. (2013) – Abscisic acid and stomatal closure: a hydraulic conductance conundrum? – New Phytol, 197: 6–8. doi:10.1111/nph.12052 – This article is corrected by: Errata: Corrigendum – Volume 198, Issue 4, 1290, Article first published online: 4 April 2013 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12052/abstract– (On our blog : https://plantstomata.wordpress.com/2016/05/18/12401/)

Dodge B. O. (1903) – Effect of the Orange-Rusts of Rubus on the development and distribution of stomata – Journ. Agric. Res. XXV(11): 495-501 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42740)

Doheny-Adams T. (2013) – Manipulating stomatal density affects plant growth, yield and drought tolerance – Thesis (Ph.D.) – uk.bl.ethos.577420 – University of Sheffield UK – http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577420 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/manipulating-stomatal-density/)

Doheny-Adams T., Hunt L., Franks P. J., Beerling D. J., Gray J. E. (2012) – Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. – Proceedings of the Royal Society B, 367: 547–555. – http://rstb.royalsocietypublishing.org/content/367/1588/547– (On our blog : https://plantstomata.wordpress.com/2016/05/18/manipulation-of-stomatal-density/)

Doi M., Kitagawa Y., Shimazaki K.-I. (2015) – Stomatal Blue Light Response Is Present in Early Vascular Plants – Plant Physiology October 2015 vol. 169 no. 2 1205-1213 – doi: http://dx.doi.org/10.1104/pp.15.00134 – http://www.plantphysiol.org/content/169/2/1205.abstract#fn-5 – (On our blog : https://plantstomata.wordpress.com/2016/03/22/stomatal-blue-light-response/)

Doi M., Shigenaga A., Emi T., Kinoshita T., Shimazaki K. (2004) – A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1 phot2 double mutant – J Exp Bot 55: 517–523 – DOI: 10.1093/jxb/erh044 – https://www.ncbi.nlm.nih.gov/pubmed/14739272?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/06/phot1-is-an-essential-component-for-all-blue-light-responses-in-planta-mediating-stomatal-opening/

Doi M., Shimazaki K.-I. (2008) – The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells – Plant Physiol 147: 922–930 – DOI: https://doi.org/10.1104/pp.108.118950 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/18/adiantum-stomata-lack-sensitivity-to-co2-in-the-dark/)

Doi M., Wada M., Shimazaki K.-I. (2006) – The fern Adiantum capillus-veneris lacks stomatal responses to blue light. – Plant Cell Physiol. 47:748–755. – Abstract/FREE Full Text – CASPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/05/18/adiantum-capillus-veneris-lacks-stomatal-responses-to-blue-light/ )

Dolman A. J., Gash J. H. C., Roberts J., Shuttleworth W. J. (1991) – Stomatal and surfaceconductance of tropical rainforest – Agricultural and Forest Meteorology 54(2–4): 303-318 – https://doi.org/10.1016/0168-1923(91)90011-E – https://www.sciencedirect.com/science/article/pii/016819239190011E – (On our blog : https://plantstomata.wordpress.com/2018/09/26/stomatal-and-surface-conductance-of-tropical-rainforest/ )

Dolman A. J., Van Den Burg G. J. (1988) – Stomatal behavior in an oak canopy – Agric For Meteorol 43: 99–108 – https://doi.org/10.1016/0168-1923(88)90085-8 – https://www.sciencedirect.com/science/article/pii/0168192388900858 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/stomatal-conductance-in-an-oak-canopy/ )

Domec J.-C., Noormets A., King J. S., Sun G. E., McNulty S. G., Gavazzi M. J., Boggs J. L., Treasure E. A. (2009) – Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. – Plant Cell Environ. 32(8): 980-991 (CrossRef, Medline, ISI). – (On our blog : https://plantstomata.wordpress.com/2015/09/22/stomatal-conductance-and-its-sensitivity-to-vapour-pressure-deficit/ ).

Domec J.-C.., Palmroth S., Ward E., Maier C. A., Therezien M., Oren R. (2009) – Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. – Plant, Cell Environ. 32: 1500-1512 – Acclimation_of_leaf_hydraulic_conductanc.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/acclimation-of-stomatal-conductance-to-long-term-growth-in-elevated-co2-and-n-fertilization/)

Domec J.-C., Scholz F. G., Bucci S. J., Meinzer F. C., Goldstein G. V., Villalobos-Vega R. (2006) – Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status – Plant Cell Environ. 29: 26–35 – DOI: 10.1111/j.1365-3040.2005.01397.x – Google Scholar CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01397.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/05/impact-of-root-xylem-embolism-on-stomatal-control-of-plant-water-status/ )

Domec J.-C., Warren J. M., Meinzer F. C., Brooks J. R., Coulombe R. (2004) – Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution – Oecologia September 2004, Volume 141,Issue 1, pp 7-16 – http://link.springer.com/article/10.1007%2Fs00442-004-1621-4 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/root-xylem-embolism-and-stomatal-closure/ )

Domes W., Bertsch A. (1969) – CO2-exchange in amphistomatic leaves. 2. A comparison between the diffuse CO2-exchange of both leaf surfaces of Zea mays and the viscous flow of volume in the porometer – Planta 86: 84-91 – doi: 10.1007/BF00385307 – https://www.ncbi.nlm.nih.gov/pubmed/24515745 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/the-correlation-between-the-diffusive-co2-exchange-of-the-lower-surface-and-the-porometer-flow-is-not-significant/ )

Do Nascimento Vieira L., de Freitas Fraga H. P., dos Anjos K. G., Puttkammer C. C., Scherer R. F., da Silva D. A., Guerra M. P. (2015) – Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets – Theor. Exp. Plant Physiol. 27: 91–98 – https://doi.org/10.1007/s40626-015-0035-5 (2015) – https://link.springer.com/article/10.1007%2Fs40626-015-0035-5 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-effect-of-two-led-lighting-treatments-compared-to-conventional-fluorescent-lamps-on-the-stomata-formation/ )

Dong J., Bergmann D. C. (2010) – Stomatal patterning and development. – Curr Top Dev Biol 2010, 91:267-297. (PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/09/22/components-in-signaling-pathways-required-for-cell-fate-and-pattern-of-stomata/).

Dong J., MacAlister C. A., Bergmann D. C. (2009) –  BASL controls asymmetric cell division in Arabidopsis – Cell. 2009, 137: 1320-1330 – 10.1016/j.cell.2009.04.018. – PubMed CentralView ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/2016/05/19/basl-and-stomata-2/

Donkin M., Martin E. S. (1980) –  Studies on the properties of carboxylating enzymes in the epidermis of Commelina communis – J Exp Bot 31: 357-363 – https://doi.org/10.1093/jxb/31.2.357 –https://academic.oup.com/jxb/article-abstract/31/2/357/488694?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/12/02/the-possible-role-of-pep-carboxylase-in-stomatal-metabolism/

Doohan M. E., Palevitz B. A. (1980) – Microtubules and coated vesicles in guard-cell protoplasts of Allium cepa L. – Planta 149: 389–401 – DOI | 10.1007/BF00571175 – https://scinapse.io/papers/2042757836 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/microtubules-and-coated-vesicles-in-guard-cell-protoplasts-of-stomata/

Dörffling K., Streich J., Kruse W., Muxfeldt B. (1977) – Abscisic acid and the after-effect of water stress on stomatal opening potential – Zeitschrift für Pflanzenphysiologie 81 (1): 43 – 56 – https://doi.org/10.1016/S0044-328X(77)80036-6 – CrossRef – https://www.sciencedirect.com/science/article/pii/S0044328X77800366 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/the-after-effect-of-wilting-on-stomatal-opening-is-caused-primarily-by-the-increased-level-of-aba/ )

Dornhoff G. M., Shibles R. (1976) – Leaf morphology and anatomy in relation to CO2 exchange rate of soybean leaves – Crop Sci. 16: 377-381 – doi:10.2135/cropsci1976.0011183X001600030015x – https://dl.sciencesocieties.org/publications/cs/abstracts/16/3/CS0160030377?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/05/characteristics-internal-to-the-cell-as-opposed-to-resistances-related-to-stomata-intercellular-space-or-cell-surfaces-are-regulating-co2-exchange-rate-cer/ )

Douhovnikoff V., Taylor S. H., Hazelton E. L. G. , Smith C., O’Brien J. (2016) – Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America – AoB PLANTS (2016) : plw006doi: 10.1093/aobpla/plw006 – http://aobpla.oxfordjournals.org/content/8/plw006 – (On our blog : https://plantstomata.wordpress.com/2016/02/19/maximal-stomatal-conductance-in-lineages-of-phragmites-australis/)

Dow G. J. (2014) – The physiological consequences of altering stomatal development in plants — lessons from Arabidopsis – Environmental Science and Engineering Seminar, May 7, 2014. (http://www.gps.caltech.edu/content/environmental-science-and-engineering-seminar-271) – (On our blog : https://plantstomata.wordpress.com/2015/10/11/altering-the-density-and-pattern-of-stomata/).

Dow G. J. (2017) – Current Research of Graham DOW – https://www.bu.edu/biology/people/profiles/graham-dow/ – (On our blog : https://plantstomata.wordpress.com/2017/09/19/graham-dows-research-on-stomata/)

Dow G. J. (2017) – Spatial and temporal relationships between stomatal development and function in a temperate forest canopy – Conference – https://www.eventscribe.com/2017/ASPB/ajaxcalls/PresentationInfo.asp?efp=RU9TU0FaVlEzNDcz&PresentationID=276732&rnd=0.916164 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/relationships-between-stomatal-development-and-function-in-a-temperate-forest-canopy/)

Dow G. J. (2017) – Plant Biology: Rethinking Structure–Function Relationships in Guard Cells – Curr. Biol. 27(19): 1069–1071 – http://dx.doi.org/10.1016/j.cub.2017.08.028 – http://www.cell.com/current-biology/fulltext/S0960-9822(17)31066-7?elsca1=etoc&elsca2=email&elsca3=0960-9822_20171009_27_19_&elsca4=Cell%20Press – (On our blog : https://plantstomata.wordpress.com/2017/10/10/structure-function-relationships-in-stomata/)

Dow G. J., Bergmann D. C. (2014) – Patterning and processes: how stomatal development defines physiological potential. – Current Opinion in Plant Biology 21: 67-74 – doi: 10.1016/j.pbi.2014.06.007 – PMID: 25058395 – https://www.sciencedirect.com/science/article/pii/S1369526614000946 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-development-defines-physiological-potential/ )

Dow G. J., Bergmann D. C., Berry J. A.  (2014) – An integrated model of stomatal development and leaf physiology. – New Phytologist. 201: 1218-1226 – DOI: 10.1111/nph.12608 – PMID: 24251982 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12608/abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/15/model-of-stomatal-development-and-leaf-physiology/ )

Dow G. J., Berry J. A., Bergmann D. C. (2013) – The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana – New Phytologist 201(4): 1205–1217 – doi: 10.1111/nph.14746. Epub 2017 Aug 21. PMID: 28833173
– http://onlinelibrary.wiley.com/doi/10.1111/nph.12586/full – (On our blog : https://plantstomata.wordpress.com/2016/11/08/developmental-mechanisms-that-enforce-stomatal-spacing/)

Dow G. J., Berry J. A., Bergmann D. C. (2017) – Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange. – New Phytol. 2017 Oct;216(1):69-75. – doi: 10.1111/nph.14746. – Epub 2017 Aug 21. – PMID: 28833173 http://onlinelibrary.wiley.com/doi/10.1111/nph.14746/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/stomata-specific-regulators-can-alter-mesophyll-properties/ )

Downton W. J. S., Grant W. J. R., Robinson S. P. (1985) – Photosynthetic and stomatal responses of spinach leaves to salt stress. – Plant Physiol 77: 85-88 – DOI: https://doi.org/10.1104/pp.78.1.85 – http://www.plantphysiol.org/content/78/1/85.short – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-responses-of-spinach-leaves-to-salt-stress/)

Downton W. J. S., Loveys B. R., Grant W. J. R. (1988) – Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. – New Phytologist 108: 263–266  -doi:10.1111/j.1469-8137.1988.tb04161.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1988.tb04161.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-closure-can-account-for-non-stomatal-inhibition-of-photosynthesis-by-aba/ )

Downton W. J. S., Loveys B. R., Grant W. J. R. (1988) – Non-uniform stomatal closure by water stress causes putative non-stomatal inhibition of photosynthesis. – New Phytol. 110: 503-509 – DOI: 10.1111/j.1469-8137.1988.tb00289.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1988.tb00289.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/06/non-uniform-stomatal-closure-can-account-for-non-stomatal-inhibition-of-photosynthesis-in-plants-experiencing-water-stress/

Downton W. J. S., Loveys B. R., Grant W. J. R. (1990) – Salinity effects on the stomatalbehaviour of grapevine – New Phytol 116(3): 499–503 – DOI: 10.1111/j.1469-8137.1990.tb00535.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1990.tb00535.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/02/salinity-effects-on-stomatal-behaviour/)

Drake B. G. (2001) – Global change and stomatal research – the 21st century agenda.- New Phytologist 152: 372–374. – DOI: 10.1046/j.0028-646X.2001.00293.x – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/05/19/12581/)

Drake J. E., Power S. A., Duursma R. A., Medlyn B. E., Aspinwall M. J., Choat B., Creek D., Eamus D., Maier C., Pfautsch S., Smith R. A., Tjoelker M. G., Tissue D. T. (2017) – Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations – Agricultural and Forest Meteorology 247: 454-466 – https://doi.org/10.1016/j.agrformet.2017.08.026 –https://www.sciencedirect.com/science/article/pii/S0168192317302824?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/03/25/empirical-models-implementing-stomatal-and-non-stomatal-limitations-based-on-%ce%b8-are-highly-predictive-simple-models/ )

Drake P. L., de Boer H. J., Schymanski S. J., Veneklaas E. J. (2018) – Two sides to every leaf: water and CO2 transport in hypostomatous and amphistomatous leaves – New Phytologist , article published online and citable – https://doi.org/10.1111/nph.15652 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15652?af=R – (On our blog : https://plantstomata.wordpress.com/2018/12/21/water-and-co2-transport-in-hypostomatous-and-amphistomatous-leaves/ )

Drake P. L., Froend R. H., Franks P. J.(2013) – Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. – Journal of Experimental Botany 64, 495–505.| CrossRef | CAS | PubMed | – (On our blog : https://plantstomata.wordpress.com/2015/09/23/leaves-with-higher-rates-of-gas-exchange-have-smaller-stomata-and-faster-dynamic-characteristics/).

Drawert H. (1952) – Der fluorescenzoptische Nachweis von Chloroplasten in den Schliesszellen von Allium cepa L. – Flora, Jena 139: 329-332 – https://ac.els-cdn.com/S036716151731340X/1-s2.0-S036716151731340X-main.pdf?_tid=5d0026a6-f1c9-465a-a8cd-43ca63243e2c&acdnat=1520328084_5692a4271da51f4cf6b83964c02e1663 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/chloroplasts-in-the-guard-cells-of-onion-in-german/ )

Drell D., Vogel J. (2017) – Grasses: The Secrets behind Their Stomatal Success – Joint Genome Institute March 29, 2017 – https://jgi.doe.gov/brachypodium-grasses-secrets-behind-stomatal-success/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-with-unique-subsidiary-cells/ )

Drennan P. M., Goldsworthy D., Buswell A. (2009) – Marginal and laminar hydathode-like structures in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. – Flora204(3): 210-219 – DOI10.1016/j.flora.2008.01.013 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0763b153-3675-3a95-bedc-56afc2d54e4e – (On our blog : https://plantstomata.wordpress.com/2017/10/07/hydathode-like-structures-in-the-leaves-of-myrothamnus-myrothamnaceae/)

Drew A. P., Bazzaz F. A. (1979) – Response of stomatal resistance and photosynthesis to night temperature in Populus deltoides. – Oecologia (Berlin) 41 : 89-98 – doi: 10.1007/BF00344839 – https://www.ncbi.nlm.nih.gov/pubmed/28310362 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-resistance-and-photosynthesis-in-relation-to-night-temperature/ )

Driscoll S., Prins A., Olmos E., Kunert K., Foyer C. (2006) – Specification of Adaxial and Abaxial Stomata, Structure and Photosynthesis to CO2 Enrichment Maize Leaves, – Journal of Experimental Botany, Vol. 57, No. 2, 2006, pp. 381-390.- http://dx.doi.org/10.1093/jxb/erj030 – https://academic.oup.com/jxb/article/57/2/381/489968 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/12595/)

Dry P. R., Loveys B. R. (1999) – Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried – Vitis 38: 151–156  – https://www.researchgate.net/publication/285728594_Grapevine_shoot_growth_and_stomatal_conductance_are_reduced_when_part_of_the_root_system_is_dried – (On our blog : https://plantstomata.wordpress.com/2018/09/13/stomatal-conductance-is-reduced-when-part-of-the-root-system-is-dried/ )

Du H., Chang Y., Huang F., Xiong L. (2014) – GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice – Journ. Integrative Plant Biology 57(11): – https://doi.org/10.1111/jipb.12313 –https://onlinelibrary.wiley.com/doi/full/10.1111/jipb.12313 – (on our blog : https://plantstomata.wordpress.com/2019/03/12/gid1-plays-distinct-roles-in-stomatal-response-and-submergence-tolerance-through-both-the-aba-and-ga-signaling-pathways-in-rice/ )

Du M., Zhai Q., Deng L., Li S., Li H., Yan L., Huang Z., Wang B., Jiang H., Huang T., Li C.-B., Wei J., Kang L., Li J., Li C. (2014) – Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. – Plant Cell 26, 3167–3184. – doi: 10.1105/tpc.114.128272 – http://www.plantcell.org/content/early/2014/07/08/tpc.114.128272 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/nac-proteins-differentially-regulate-pathogen-induced-stomatal-closure-and-reopening-through-distinct-mechanisms/ )

Du Q. S., Fan X. W., Wang C. H., Huang R. B. (2011) – A Possible CO2 Conducting and Concentrating Mechanism in Plant Stomata SLAC1 Channel – PLoS One. 2011 6(9):e24264. Epub 2011 Sep 13 – doi: 10.1371/journal.pone.0024264 – https://www.ncbi.nlm.nih.gov/pubmed/21931667 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71995 )

Du Z., Aghoram K., Outlaw W. H. Jr.(1997) – RESEARCH REPORT – In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid – Archives of Biochemistry and Biophysics 337(2): 345-350 – DOI10.1006/abbi.1996.9790 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1c712925-86b7-37fd-9bc8-0f1b76d6d726 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/regulatory-posttranslational-modification-of-a-guard-cell-protein-that-is-specifically-implicated-in-stomatal-movements/

Dubbe D. R., Farquhar G. D., Rasche K. (1978) – Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata – Plant Physiol. 62: 413-417 –  DOI: https://doi.org/10.1104/pp.62.3.413 – https://www.ncbi.nlm.nih.gov/pubmed/16660528 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/aba-co2-stomata-and-the-gains-of-the-feedback-loops/

Dubovskaya L. V., Bakakina Y. S., Kolesneva E. V., Sodel D. L., McAinsh M. R., Hetherington A. M., Volotovski ID. (2011) – cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. – New Phytol. 191, 57–69. – http://dx.doi.org/10.1111/j.1469-8137.2011.03661.x – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/m/pubmed/21371039/ – (On our blog : https://plantstomata.wordpress.com/2018/03/07/signalling-events-during-cgmp-dependent-aba-induced-stomatal-closure/

Duckett J. G., Pressel S. (2018) – The evolution of the stomatal apparatus: intercellular spaces and sporophyte water relations in bryophytes-two ignored dimensions – Philos Trans R Soc Lond B Biol Sci 373 (1739) – DOI: 10.1098/rstb.2016.0498 – https://www.ncbi.nlm.nih.gov/pubmed?term=Duckett%20JG%2C%20Pressel%20S%20%282018%29%20The%20evolution%20of%20the%20stomatal%20apparatus%3A%20intercellular%20spaces%20and%20sporophyte%20water%20relations%20in%20bryophytes-two%20ignored%20dimensions%2E%20Philos%20Trans%20R%20Soc%20Lond%20B%20Biol%20Sci&dopt=abstract – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-evolution-of-the-stomatal-apparatus-in-mosses/ )

Duckett J. G., Pressel S., P’ng K. M. Y., Renzaglia K. S. (2009) – Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum – New Phytologist 183: 1053– 1063 – https://doi.org/10.1111/j.1469-8137.2009.02905.x –https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.02905.x – (On our blog : https://plantstomata.wordpress.com/2019/05/04/the-capsule-dehiscence-mechanism-and-the-function-of-pseudostomata-in-sphagnum/ )

Dudley J. W. (1958) – Number of Chloroplasts in the Guard Cells of Inbred Lines of Tetraploid and Diploid Sugar Beets – Agronomy Journal 50(3): 169-170 – doi:10.2134/agronj1958.00021962005000030016x – https://dl.sciencesocieties.org/publications/aj/abstracts/50/3/AJ0500030169?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/15/diploids-and-tetraploids-could-be-rapidly-and-accurately-separated-by-counting-chloroplasts-in-the-stomatal-guard-cells/ )

Dufour L. (1885) – Influence de la lumière sur le nombre des stomates des feuilles – Bull. Soc. bot. France 32: 385-391 – DOI: 10.1080/00378941.1885.10828378 – https://www.tandfonline.com/doi/pdf/10.1080/00378941.1885.10828378 (No abstract found)

Dugger W. M., Taylor O. C., Cardiff E., Thompson C. R. (1962) – Stomatal action in plants as related to damage from photochemical oxidants – Plant Physiol. 37: 487-491 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC549820/?page=1 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/stomatal-opening-is-not-the-primary-controlling-factor-in-predisposing-plants-to-injury-from-ozone-and-pan/ )

Dumont J., Cohen D., Gerard J., Jolivet Y., Dizengremel P., Le Thiec D. (2014) – Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes – Plant, Cell & Environment 37(9): 2064-2076.  – DOI: 10.1111/pce.12293 – http://www.ccacoalition.org/en/resources/distinct-responses-ozone-abaxial-and-adaxial-stomata-three-euramerican-poplar-genotypeshttps://www.ncbi.nlm.nih.gov/pubmed/24506578 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/distinct-responses-to-ozone-of-stomata/)

Dumont J., Spicher F., Montpied P., Dizengremel P., Jolivet Y., Le Thiec D., (2013) -Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigragenotypes. – Environ Pollut. 173: 85-96. – doi: 10.1016/j.envpol.2012.09.026 – https://www.ncbi.nlm.nih.gov/pubmed/23202637 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/effects-of-ozone-on-stomatal-responses-to-environmental-parameters/)

Dunlap, J.M., Stettler, R.F. (2001) – Variation in Leaf Epidermal and Stomatal Traits of Populus trichocarpa from Two Transects across the Washington Cascades – Canadian Journal of Botany 79: 528-536 – https://doi.org/10.1139/b01-029 – http://www.nrcresearchpress.com/doi/abs/10.1139/b01-029 – (On our blog : https://plantstomata.wordpress.com/2018/03/17/stomatal-traits-of-populus-trichocarpa/ )

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. I. Preliminary stiudies on the effect of light and carbon dioxide.-  New Phytologist 97(2): 115 – (Article not found).

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. II. Characterization of the response to different concentrations of KCl and CO2 – New Phytologist 1984, 97, 2, 121-128 –  DOI: 10.1111/j.1469-8137.1984.tb04116.x – Wiley Online Library – (On our blog : https://plantstomata.wordpress.com/2016/05/25/bentazone-may-effect-stomatal-movement/ )

Dunleavy P. J., Ladley P. D. (1995) – Stomatal responses of Vicia faba L. to indole acetic acid and abscisic acid. – J. Exp. Bot. 46: 95-100 – https://doi.org/10.1093/jxb/46.1.95 – https://academic.oup.com/jxb/article-abstract/46/1/95/535985?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/17/stomatal-responses-to-iaa-and-aba/ )

Durand M., Brendel O., Buré C., Le Thiec D. (2019) – Altered stomatal dynamics induced by changes in irradiance and vapour‐pressure deficit under drought: impacts on the whole plant transpiration efficiency of poplar genotypes – New Phytol. Accepted, unedited articles published online and citable – 25 January 2019 – https://doi.org/10.1111/nph.15710 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15710?af=R – (On our blog : https://plantstomata.wordpress.com/2019/02/12/altered-stomatal-dynamics/ )

Düring H. (1987) – Stomatal responses to alterations of soil and air humidity in grapevines – Vitis 26: 9–18 –  ISSN 2367-4156- https://ojs.openagrNew Phytol. .de/index.php/VITIS/article/view/5902 – (On our blog : https://plantstomata.wordpress.com/2018/12/02/73724/ )

Düring H. (1992) – Low air humidity causes non-uniform stomatal closure in heterobaric leaves of Vitis species – Vitis 31: 1-7 – ISSN 2367-4156 – https://ojs.openagrar.de/index.php/VITIS/article/view/5262 –5262-Article Text-20210-1-10-20151008.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/23/the-decline-of-the-photosynthetic-rate-caused-by-dry-air-is-entirely-due-to-stomatal-limitation-of-co2-uptake/ )

Düring H. (2003) – Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.) – Vitis 42: 65–68 – 4393-Article Text-17172-1-10-20150421.pdf – https://www.researchgate.net/publication/296949569_Stomatal_and_mesophyll_conductances_control_CO2_transfer_to_chloroplasts_in_leaves_of_grapevine_Vitis_vinifera_L – (On our blog : https://plantstomata.wordpress.com/2019/04/23/both-stomatal-and-mesophyll-conductance-are-involved-in-the-adaptation-of-the-co2-supply-to-the-co2-demand-at-the-site-of-carboxylation-in-chloroplasts/ )

Düring H., Loveys B. R. (1996) – Stomatal patchiness of field-grown Sultana leaves: Diurnal changes and light effects – Vitis 35: 7-10 – ISSN 2367-4156 – https://www.vitis-vea.de/admin/volltext/e036649.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomatal-patchiness-of-field-grown-grape-leaves/ )

Dutton C., Hörak H., Hepworth C., Mitchell A., Ton J., Hunt L., Gray J. E. (2019) – Bacterial infection systemically suppresses stomatal density – Plant, Cell & Environment https://doi.org/10.1111/pce.13570 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13570?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/02/bacterial-infection-systemically-suppresses-stomatal-density/ )

Duursma R. A., Blackman C. J., Lopéz R., Martin-StPaul N. K., Cochard H., Medlyn B. E. (2018) – On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls – New Phytol. Online Version of Record before inclusion in an issue – https://doi.org/10.1111/nph.15395 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15395?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/26/the-leaf-minimum-conductance-and-closure-of-stomata/ )

Dzierzynska A. (2006) – The role of cytoskeleton in stomata functioning – Acta Physiologiae Plantarum 28(1): 59–79 – ISSN :0137-5881 – https://www.infona.pl/resource/bwmeta1.element.agro-article-ae3638cb-851d-498a-b174-a69ef3835e75 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/role-of-cytoskeleton-in-stomata-functioning/)

Dzikiti S., Steppe K., Lemeur R., Milford J. R. (2007) – Whole-tree level water balance and its implications on stomatal oscillations in orange trees [Citrus sinensis (L.) Osbeck] under natural climatic conditions – J. Exp. Bot. 58: 1893-1901 –https://doi.org/10.1093/jxb/erm023https://academic.oup.com/jxb/article/58/7/1893/515014 – (On our blog : https://plantstomata.wordpress.com/2019/04/07/whole-tree-level-water-balance-and-its-implications-on-stomatal-oscillations/ )

Eamus D. (1986) – Further evidence in support of an interactive model in stomatal control. – J. Exp. Bot. 37: 657-665 – https://doi.org/10.1093/jxb/37.5.657 – https://academic.oup.com/jxb/article-abstract/37/5/657/448803?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/07/an-interactive-model-in-stomatal-control/ )

Eamus D. (1987) – Stomatal behaviour and leaf water potential of chilled and water-stressed Solanum melongena, as influenced by growth history – Plant, Cell and Environment 10(8): 649–654 – DOI: 10.1111/j.1365-3040.1987.tb01847.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1987.tb01847.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/07/stomatal-behaviour-and-leaf-water-potential-of-chilled-and-water-stressed-plants/

Eamus D., Barnes J. D., Mortensen L., Ro-Poulsen H., Davison A. W. (1990) – Persistent stimulation of CO2 assimilation and stomata1 conductance by summer ozone fumigation in Norway spruce – Environmental Pollution 63: 365-379 – https://doi.org/10.1016/0269-7491(90)90141-X – https://www.sciencedirect.com/science/article/pii/026974919090141X – (On our blog : https://plantstomata.wordpress.com/2018/03/08/summer-ozone-fumigation-and-stimulation-of-co2-assimilation-and-stomatal-conductance/ )

Eamus D., Berryman C. A., Duff G. A. (1993) – Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO2 of Maranthes corymbosa, a tropical monsoon rain forest species – Australian Journal of Plant Physiology 20(6): 741-755 – DOI 10.1071/PP9930741 – http://www.publish.csiro.au/FP/PP9930741?CFID=35700333&CFTOKEN=c8fd4b214bc49e50-B1A57161-B1A9-F2E2-3D61C0C8994204E5 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-conductance-and-chlorophyll-responses-to-elevated-co2/ )

Eamus D., Murray M. (1991) – Photosynthetic and stomatal conductance responses of Norway Spruce and beech to ozone, acid mist and frost- a conceptual model – Env. Pollut. 72(1): 23- 45 –

Eamus D., Narayan A. D. (1989) – The influence of prior water stress and abscisic acid foliar spraying on stomatal responses to CO2, IAA, ABA, and calcium in leaves of Solanum melongena. – J. Exp. Bot. 40: 573-579 – DOI 10.1093/jxb/40.5.573 – https://academic.oup.com/jxb/article-abstract/40/5/573/603414?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/08/influence-of-a-water-stress-or-foliar-aba-spraying-pretreatment-on-stomatal-responses-to-water-loss-exogenous-aba-iaa-ca2-and-co2/ )

Eamus D., Taylor D. T., Macinnis-Ng C. M. O., Shanahan S., De Silva L. (2008) – Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. – Plant Cell Environ. 31(3): 269-277 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/24/mechanistic-model-of-stomatal-behaviour-and-stomatal-conductance/ ).

Easlon H. M., Carlisle E., McKay J., Bloom A. (2015) – Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis thaliana? – Plant Physiol. 167, 793–799 – doi: 10.1104/pp.114.245241 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/167/3/793 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/does-low-stomatal-conductance-increases-growth-nitrate-assimilation-and-nitrogen-utilization-at-elevated-co2-concentration/ )

Easlon H. M., Richards J. H. (2009) – Photosynthesis affects following night leaf conductance in Vicia faba. – Plant Cell Environ. 32:58–63. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/19/photosynthesis-and-night-time-stomatal-opening/)

Ebel R., Duan X., Still D., Auge R. (1997) – Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil – New Phytol. 135: 755–761 – DOI: 10.1046/j.1469-8137.1997.00674.x – http://onlinelibrary.wiley.com/store/10.1046/j.1469-8137.1997.00674.x/asset/j.1469-8137.1997.00674.x.pdf?v=1&t=jehedgzu&s=712b12f302f7a6a07419d480174e9f7a6bab630d– (On our blog : https://plantstomata.wordpress.com/2018/03/07/is-xylem-aba-concentration-altered-by-mycorrhizal-symbiosis-of-cowpea-plants-grown-in-drying-soil/

Ebrahim S., Usha K., Singh B. (2012) – Plant architectural traits and their role in defense mechanism against malformation in mango (Mangifera indica L.) – Scientia Horticulturae 139: 25-31 – DOI10.1016/j.scienta.2012.02.025 – https://www.infona.pl/resource/bwmeta1.element.elsevier-d300469e-594a-3b3d-9a26-febbf576e955 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-and-their-role-in-defense-mechanism-against-malformation-in-mango/)

Eckerson  S. H. (1908) – The number and size of the stomata – Botanical Gazette, 46(3): 221–224 – https://www.journals.uchicago.edu/doi/pdfplus/10.1086/329698 – (On our blog : https://plantstomata.wordpress.com/2019/04/23/number-and-size-of-stomata/ )

Eckert M., Kaldenhoff R. (2000) – Light‐induced stomatal movement of selected Arabidopsis thaliana mutants – Journal of Experimental Botany 51: 1435-1442 – https://doi.org/10.1093/jexbot/51.349.1435 – https://academic.oup.com/jxb/article/51/349/1435/509252 – (On our blog : https://plantstomata.wordpress.com/2018/09/14/light%e2%80%90induced-stomatal-movement/ )

Eckstein J. (1997) – Heterogene Kohlenstoffassimilation in Blättern höherer Pflanzen als Folge der Variabilität stomatärer Öffnungsweiten–Charakterisierung und Kausalanalyse des Phänomens ‘stomatal patchiness’ – Dissertatio. Bayerische Ludwig‐Maximilians‐Universität Würzburg.

Eckstein J., Beyschlag W., Mott K. A., Ryel R. J. (1996) – Changes in photon flux can induce stomatal patchiness – Plant, Cell & Environment 19(9): 1066-1074 – DOI: 10.1111/j.1365-3040.1996.tb00213.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00213.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/changes-in-photon-flux-can-induce-stomatal-patchiness/)

Eckstein J., Artsaenko O., Conrad U., Peisker M., Beyschlag W. (1998) – Abscisic acid is not necessarily required for the induction of patchy stomatal closure – J. Exp. Biol. 49: 611–616 –https://doi.org/10.1093/jxb/49.320.611 –https://academic.oup.com/jxb/article/49/320/611/514940 – (On our blog :  https://plantstomata.wordpress.com/2018/12/10/a-heterogeneous-sensitivity-of-stomata-to-aba-is-not-directly-involved-in-the-induction-of-patchy-stomatal-closure/ )

Eckstein J., Beyschlag W., Mott K. A., Ryel R. J. (1996) – Changes in photon flux can induce stomatal patchiness – Plant Cell Environ. 19: 1066–1074 – DOI: 10.1111/j.1365-3040.1996.tb00213.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00213.x/full – (On our blog :  https://plantstomata.wordpress.com/2017/08/28/changes-in-photon-flux-can-induce-stomatal-patchiness/ )

Edaphic Scientific (2019) – Continuous stomatal conductance measurements – https://www.edaphic.com.au/sap-flow-digest/continuous-stomatal-conductance-measurements/ – (On our blog : https://plantstomata.wordpress.com/2019/03/28/continuous-stomatal-conductance-measurements/ )

Edwards A., Bowling D. J. F. (1985) – Evidence for a CO2 Inhibited Proton Extrusion Pump in the Stomatal Cells of Tradescantia virginiana – J. Exp. Bot. (1985) 36 (1): 91-98.doi: 10.1093/jxb/36.1.91 – http://jxb.oxfordjournals.org/content/36/1/91.abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/20/effect-of-co2-on-the-electrical-potential-difference-of-stomata/)

Edwards D., Axe L. (1992) – Stomata and mechanics of stomatal functioning in some early land plants – Courier Forschungsinstitut Seckenberg 147: 59-73 – http://orca.cf.ac.uk/id/eprint/10835 – Presented at: International Symposium on Palaeobotany “Anatomical Investigations of Plant Fossils”: 3rd International Senckenberg Conference, Frankfurt am Main, Germany, 1990. Published in: Schaarschmidt, F. ed.International Symposium on Palaeobotany “Anatomical Investigations of Plant Fossils”: 3rd International Senckenberg Conference Frankfurt am Main 1990. – (No abstract available)

Edwards D., Kerp H., Hass H. (1998) – Stomata in early land plants: an anatomical and ecophysiological approach – J Exp Bot 49 (Suppl 1)255-278 – DOI: 10.1093/jexbot/49.suppl_1.255 – Web of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/19/stomata-in-rhynie-chert/ )

Edwards M. C., Bowling D. J. F. (1984) – An electrophysiological study of the stomatal complex of Tradescantia virginiana. – J. Exp. Bot. 35: 562–567 – https://doi.org/10.1093/jxb/35.4.562 – Google Scholar – https://www.jstor.org/stable/23690938?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/07/a-massive-increase-in-k-activity-on-stomatal-closure/ )

Edwards M. C., Bowling D. J. F. (1986) – The growth of rust germ tubes towards stomata in relation to pH gradients. – Physiological and Molecular Plant Pathology 29: 185–196. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/05/20/uredospore-germ-tubes-ph-gradients-and-locating-stomata/ )

Edwards M. C., Meidner H. (1978) -Stomatal responses to humidity and the water potentials of epidermal and mesophyll tissue. – J. Exp. Bot. 29: 771-780 – https://doi.org/10.1093/jxb/29.3.771 – https://academic.oup.com/jxb/article-abstract/29/3/771/435642?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/08/stomatal-responses-to-humidity-and-the-water-potentials-of-epidermal-and-mesophyll-tissue/ )

Edwards M. C., Meidner H. (1979) – Direct Measurements of Turgor Pressure Potentials : IV. Naturally occurring pressures in guard cells and their relation to solute and matric potentials in the epidermis – J. Exp. Bot. 30: 829-837 – https://doi.org/10.1093/jxb/30.4.829https://academic.oup.com/jxb/article-abstract/30/4/829/493808/Direct-Measurements-of-Turgor-Pressure?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/08/26/pressures-in-stomata-and-their-relation-to-solute-and-matric-potentials/)

Edwards M. C., Meidner H., Sheriff D. W. (1976) – Direct Measurements of Turgor Pressure Potentials of Guard Cells. II.The mechanical advantage of subsidiary cells, the Spannungsphase, and the optimum leaf water deficit – J. Exp. Bot. 27 (1): 163-171 – doi: 10.1093/jxb/27.1.163 –CrossRef – http://jxb.oxfordjournals.org/content/27/1/163 – (On our blog : https://plantstomata.wordpress.com/2016/11/06/turgor-pressure-potentials-of-guard-cells-ii/)

Edwards M. C., Smith G. N., Bowling D. J. F. (1988) – Guard cells extrude protons prior to stomatal opening: a study using fluorescence microscopy and pH micro-electrodes. – Journal of Experimental Botany 39: 1541–1547 – https://doi.org/10.1093/jxb/39.11.1541 – CrossRefGoogle Scholar – https://academic.oup.com/jxb/article-abstract/39/11/1541/595904 – (On our blog : https://plantstomata.wordpress.com/2018/03/08/guard-cells-extrude-protons-prior-to-stomatal-opening/

Eensalu E., Kupper P., Sellin A., Rahi M., Sober A., Kull O. (2008) – Do stomata operate at the same relative opening range along a canopy profile of Betula pendula? – Functional Plant Biology 35, 103–110.| CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-morphology-can-principally-be-important-for-photosynthesis-limitation-2/ ).

Effat M. B., Shafey H. M., Nassib A. M. (2014) – Introducing the Photosynthesis-Stomatal Conductance Coupled Model into Greenhouse Microclimate Studies – International Journal of Scientific and Engineering Research 5(10): 344-352 – ISSN 2229-5518 – IJSER2014.pdf – (On our blog: https://plantstomata.wordpress.com/2019/03/28/accuracy-of-the-photosynthesis-stomatal-conductance-coupled-model-in-predicting-the-photosynthesis-rate-and-in-turn-the-stomatal-conductance/ )

Egea G., Verhoef A., Vidale P. L. (2011) – Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. – Agricultural and Forest Meteorology 151, 1370–1384. – https://doi.org/10.1016/j.agrformet.2011.05.019 – CrossRef – https://www.sciencedirect.com/science/article/pii/S0168192311001778 – (On our blog : https://plantstomata.wordpress.com/2018/03/08/water-stress-in-coupled-photosynthesis-stomatal-conductance-models/ )

Ehrler W. L. (1971) – Periodic nocturnal stomatal opening of Citrus in a steady environment – Physiol. Plant. 25: 488-492 – DOI: 10.1111/j.1399-3054.1971.tb01478.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1971.tb01478.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/10/several-20-minute-periods-of-pronounced-nocturnal-stomatal-opening-in-a-steady-environment/

Ehonen S., Yarmolinsky D., Kollist H., Kangasjärvi J. (2018) – Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata – Antioxid Redox Signal. – doi: 10.1089/ars.2017.7455 – https://www.ncbi.nlm.nih.gov/pubmed/29237281 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/reactive-oxygen-species-photosynthesis-and-environment-in-the-regulation-of-stomata/ )

Eichert T., Peguero‐Pina J. J., Gil‐Pelegrin E., Heredia A., Fernandez V. (2010) – Effects of iron chlorosis and iron resupply on leaf xylem architecture, water elations, gas exchange and stomatal performance of field‐grown peach (Prunus persica) – Physiol Plant 138: 48–59 – http://dx.doi.org/10.1111/j.1399-3054.2009.01295.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2009.01295.x – (On our blog : https://plantstomata.wordpress.com/2018/11/28/effects-of-iron-chlorosis-and-iron-resupply-on-stomatal-performance/

Eisele J. F., Fäßler F., Bürgel P. F., Chaban C. (2016) – A Rapid and Simple Method for Microscopy-Based Stomata Analyses – PLoS ONE 11(10): e0164576. – https://doi.org/10.1371/journal.pone.0164576 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164576 – (On our blog : https://plantstomata.wordpress.com/2018/01/07/microscopy-based-stomata-analyses/ )

Eisenach C., Baetz U., Huck N. V., Zhang J., De Angeli A., Beckers G., Martinoia E. (2017) – Vacuolar Anion Channel in Stomatal Movement – Plant Cell https://doi.org/10.1105/tpc.17.00452 – https://plantae.org/almt4/ – (On our blog : https://plantstomata.wordpress.com/2017/11/16/a-dephosphorylated-active-channel-is-required-for-stomatal-closure/)

Eisenach C., Baetz U., Huck N. V., Zhang J., De Angeli A., Beckers G. J. M., Martinoia E. (2017) – ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis – Plant Cell 29: 2552-2569 – http://www.plantcell.org/content/29/10/2552- (On our blog : https://plantstomata.wordpress.com/2018/10/04/almt4-mediates-mal2%e2%88%92efflux-during-aba-induced-stomatal-closure-and-its-activity-depends-on-phosphorylation/ )

Eisenach C., Chen Z.-H., Grefen C., Blatt M. R. (2012) – The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth – The Plant Journal, 2012,69, 2, 241 – DOI: 10.1111/j.1365-313X.2011.04786.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04786.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/21/syp121-stomatal-closure-and-k-channel-activity/)

Eisenach C., De Angeli A. (2017) – Ion transport at the vacuole during stomatal movements. – Plant Physiol 174(2): 520–530 – DOI: https://doi.org/10.1104/pp.17.00130 – http://www.plantphysiol.org/content/174/2/520 – (On our blog https://plantstomata.wordpress.com/2017/11/11/ion-transport-at-the-vacuole-during-stomatal-movements/)

Eisinger W., Bogomolni R. A., Taiz L. (2003) – Interaction between a blue-green reversible photoreceptor and separate UV-B receptor in stomatal guard cells – Am. J. Bot. 90: 1560–1566 – doi: 10.3732/ajb.90.11.1560 – https://www.ncbi.nlm.nih.gov/pubmed/21653331 – (On our blog : https://plantstomata.wordpress.com/2018/09/15/a-model-for-a-photoreceptor-network-that-regulates-stomatal-opening/ )

Eisinger W., Ehrhardt D., Briggs W. (2012) – Microtubules are essential for guard-cell function in Vicia and Arabidopsis. – Molecular plant 5, 601-610 – https://doi.org/10.1093/mp/sss002 – http://www.sciencedirect.com/science/article/pii/S1674205214600095 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/an-active-role-of-microtubules-in-stomatal-function/)

Eisinger W. R., Kirik V., Lewis C., Ehrhardt D. W., Briggs W. R. (2012) – Quantitative changes in microtubule distribution correlate with guard cell function in Arabidopsis. – Molecular plant 5: 716-725. – doi: 10.1093/mp/sss033. Epub 2012 Apr 5. – https://www.ncbi.nlm.nih.gov/pubmed/22492121 – (On our blog : https://plantstomata.wordpress.com/2018/03/17/changes-in-microtubule-distribution-correlate-with-guard-cell-function-of-stomata/ )

Eisinger W., Swartz T. E., Bogomolni R. A., Taiz L. (2000) – The UV action spectrum for stomatal opening in broad bean – Plant Physiol. 122: 99–105 – DOI: https://doi.org/10.1104/pp.122.1.99 – http://www.plantphysiol.org/content/122/1/99 – (On our blog : https://plantstomata.wordpress.com/2018/09/17/uv-action-spectrum-for-stomatal-opening/ )

Ekanayake I. J., De Jong J. P. (1992) – Stomatal Response of some Cultivated and Wild Tuber-bearing Potatoes in Warm Tropics as Influenced by Water Deficits – Ann. Bot. 70, (1): 53-60 – https://academic.oup.com/aob/article-abstract/70/1/53/129100?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/27/water-deficits-and-stomatal-response/ )

Ekanayake I. J., Ortiz R., Vuylsteke D. R. (1998) – Leaf stomatal conductance and stomatal morphology of Musa germplasm – Euphytica 99: 221-229 –  https://doi.org/10.1023/A:1018311912407 https://link.springer.com/article/10.1023/A:1018311912407#citeas – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-traits-indicated-that-the-resistance-to-bs-disease-is-due-to-non-stomatal-mechanisms/)

Elagoz V., Hahn S. S., Manning W. J. (2006) –  Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity – Environmental Pollution 140: 395-405 – https://doi.org/10.1016/j.envpol.2005.08.024 – https://www.sciencedirect.com/science/article/pii/S0269749105004070 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/o3-has-the-potential-to-affect-stomatal-plasticity/ )

El-Hawary S. S., El-Tantawy M., Rabeh M. A., Badr W. K. (2013) – DNA fingerprinting and botanical study of Azadirachta indica A. Juss. (neem) family Meliaceae – https://doi.org/10.1016/j.bjbas.2013.09.001 -https://www.sciencedirect.com/science/article/pii/S2314853513000188 – (On our blog :  https://plantstomata.wordpress.com/2018/12/11/stomata-in-azadirachta-indica-meliaceae/ )https://plantstomata.wordpress.com/2018/12/11/stomata-in-azadirachta-indica-meliaceae/

Elias P. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14, Issue 1, 29–42- doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 -(Via Submission Form – Personal Communication) –  (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/)

Elias P. (1979) – Leaf diffusion resistance pattern in an oak-hornbeam forest – Biologia Plantarum 21(1) : 1-8 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-resistance-patterns/)

Elias P. (1979) – Stomatal oscillations in adult forest trees in natural-environment – Biol. Plant.  21: 71–74 – https://doi.org/10.1007/BF02888722https://link.springer.com/article/10.1007%2FBF02888722 – (On our blog : https://plantstomata.wordpress.com/2019/04/07/stomatal-oscillations-in-adult-forest-trees/ )

Elias P. (1979) – Stomatal activity within the crown of tall deciduous trees under forest conditions – Biologia Plantarum (Praha) 21(4): 266-274 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/variation-in-stomatal-activity-within-the-crown-of-tall-deciduous-trees/)

Elias P. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41, ISSN 0001-7124 – (Via Submission Form – Personal Communication) – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/)

Elias P. (1995) – Stomata density and size of apple tress growing in irrigated and non-irrigated conditions. – Biologia Bratislava 50: 115-118 – https://www.researchgate.net/publication/311588964_Stomata_density_and_size_of_apple_trees_growing_in_irrigated_and_non_irrigated_conditions – (On our blog : https://plantstomata.wordpress.com/2018/03/10/stomatal-density-affected-by-water-status-of-apple-trees-in-the-period-of-vegetative-growth/ )

Eliáš P., Huzulák J. (1975) – Hustota prieduchov v korune javora polného (Acer campestre L.). (The density of stomata in the crown of Acer campestre L.) – Acta Mus. Silesiae, Ser. Dendrol., Opava, 25: 129–135. – Google Scholar – (Article not found)

Eliáš P.,  Kozinka V. (1976) – Stomata in the leaves of Asperula odorata L. and Pulmonaria officinalis L. subsp.maculosa (Hayne) Gams.- Biológia, Bratislava, 31: 33–40. – Google Scholar – https://plantstomata.wordpress.com/2017/07/04/stomata-in-asperula-and-pulmonaria/ )

Eller C. B., Rowland L., Oliveira R. S., Bittencourt P. R. L., Barros F. V., da Costa A. C. L., Meir P., Friend A. D., Mencuccini M., Sitch S., Cox P. (2018) – Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics – Philosoph. Transact. Royal Soc. B, Biol. Sciences – https://doi.org/10.1098/rstb.2017.0315 –https://royalsocietypublishing.org/doi/full/10.1098/rstb.2017.0315 – (On our blog : https://plantstomata.wordpress.com/2019/04/03/forest-responses-to-drought-and-el-nino-with-a-stomatal-optimization-model/ )

Elliott-Kingston C., Haworth M., Yearsley J. M., Batke S. P., Lawson T., McElwain J. C. (2016) – Does size matter ?  Atmospheric CO2 may be a stronger driver of stomatal closing than stomatal size in taxa that diversified under low CO2 – Frontiers in Plant Sciences 7, Art. 1253 – https://books.google.be/books?id=P885DwAAQBAJ&pg=PA149&lpg=PA149&dq=plant+stomatal+morphology&source=bl&ots=q0_qjXjVvM&sig=G4vl38bJTpZ3RyyXdH1PE17DDzM&hl=en&sa=X&ved=0ahUKEwjp8827_sLXAhVEZFAKHb1jDIc4ChDoAQhlMA0#v=onepage&q=plant%20stomatal%20morphology&f=false – (On our blog : https://plantstomata.wordpress.com/2017/11/23/co2-and-stomatal-closing/)

Ellsworth D. S. (2000) – Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy – Tree Physiol. 20: 435–445 – https://doi.org/10.1093/treephys/20.7.435 – https://academic.oup.com/treephys/article/20/7/435/1690949 – (On our blog : https://plantstomata.wordpress.com/2018/10/19/seasonal-co2-assimilation-and-stomatal-limitations/ )

Else M. A., Coupland D., Dutton L., Jackson M. B. (2001) – Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap – Physiologia Plantarum 111: 46–54 – https://doi.org/10.1034/j.1399-3054.2001.1110107.x – https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1110107.x – (On our blog : https://plantstomata.wordpress.com/2018/09/15/decreased-root-hydraulic-conductivity-reduces-leaf-water-potential-and-initiates-stomatal-closure/ )

Else M. A., Janowiak F., Atkinson C. J., Jackson M. B. (2009) – Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants – Annals of Botany 103: 313–323 – doi:10.1093/aob/mcn208 – Root_signals_and_stomatal_closure_in_rel.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64808)

Else M. A., Tiekstra A. E., Croker S. J., Davies W. J., Jackson M. B. (1996) – Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. – Plant Physiology 112: 239–247. – PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2015/08/10/stomatal-closure-in-flooded-tomato-plants/)

El-Sharkawy M. A. (1984) – Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange – Crop Science 24: 497-502 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/effects-of-air-humidity-and-water-stress-on-stomatal-conductance/)

El-Sharkawy M. A. (1984) – Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species – Crop Science 24:503-507 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/differing-sensitivity-of-stomata-to-air-humidity/)

El-Sharkawy M. A. (1984) – Stomatal characteristics among cassava cultivars and their relation to gas exchange – Experimental Agriculture 20:67-76 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomata-in-cassava-cultivars-manihot-esculenta-euphorbiaceae/)

El-Sharkawy M. A. (1985) – Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species – Photosynthesis Research 7: 137-149 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomatal-response-to-air-humidity-and-its-relation-to-stomatal-density/)

El-Sharkawy M. A. (1986) – Differential response of stomata to air humidity in the parasitic mstletoe (Phthirusa pyrifolia) and its host, mandarine orange (Citrus reticulata) – Photosynthesis Research 9: 333-343 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/response-of-stomata-to-air-humidity-in-a-parasitic-mistletoe-and-its-host/)

El-Sharkawy M. A. (1988) – The humidity factor in stomatal control and its effect on crop productivity – Biological Control of Photosynthesis : Marcelle R., Clijsters H., Van Poucke M. (eds.) 187-198 – Martinus Nijhoff Publishers, Dordrecht, The Netherlands – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomatal-responses-to-changes-in-air-humidity/)

El-Sharkawy M. A. (1990) – Effect of humidity and wind on leaf conductance of field grown cassava – Rev. Bras. Fisiol.Vegetal 2(2): 17-22 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/effect-of-humidity-and-wind-on-stomata-of-cassava-manihot-esculenta-euphorbiaceae/)

El-Sharkawy M. A. (2006) – International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics – PHOTOSYNTHETICA 44 (4): 481-512, 2006 – El-Sharkawy 2498 nfAB-corrected (17).pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/19/stomatal-sensitivity-and-responses-to-environmental-stresses-in-the-tropics/)

El-Sharkawy M. A. (2016) – Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops – PHOTOSYNTHETICA 54 (2): 161-184 – DOI: 10.1007/s11099-016-0204-z -Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/16/photosynthetic-research-for-increasing-agricultural-productivity/)

El-Sharkawy M. A., Hesketh J. D. (1964) – Effect of stomatal differences among species on leaf photosynthesis – Crop Sci. 4: 619-621 – https://dl.sciencesocieties.org/publications/cs/abstracts/4/6/CS0040060619?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/10/effect-of-stomatal-differences-on-leaf-photosynthesis/ )

Elvira S., Alonso R., Gimeno B. S. (2007) – Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake – Environmental Pollution 146: 617-623 – https://doi.org/10.1016/j.envpol.2006.08.008 – https://www.sciencedirect.com/science/article/pii/S0269749106004878 – (On our blog : https://plantstomata.wordpress.com/2018/10/16/ozone-uptake-and-stomatal-conductance/ )

Emberson L. D., Ashmore M., Cambridge H., Simpson D., Tuovinen J.-P. (2000) – Modelling stomatal ozone flux across Europe – Environ. Pollut. 109: 403–413 – https://doi.org/10.1016/S0269-7491(00)00043-9 – https://eurekamag.com/pdf/003/003500975.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/17/modelling-stomatal-ozone-flux/ )

Emberson L.D., Simpson D., Tuovinen J.-P., Ashmore M.R., Cambridge H.M. (2000) – Towards a model of ozone deposition and stomatal uptake over Europe – EMEP/MSC-W 2000. Ed. Norwegian Meteorological Institute – Research Note No. 42 – ISSN 0332-9879 – note_6_2000_A4.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/25/a-model-of-ozone-deposition-and-stomatal-uptake/ )

Emberson L. D., Wieser G., Ashmore M. R. (2000) – Modelling of stomatal conductance and ozone flux of Norway spruce: Comparison with field data – Environmental Pollution 109: 393–402 – https://doi.org/10.1016/S0269-7491(00)00042-7 – https://www.sciencedirect.com/science/article/pii/S0269749100000427 – (On our blog : https://plantstomata.wordpress.com/2018/10/20/an-assessment-of-the-stomatal-component-of-the-model-described-by-emberson-et-al-2000/ )

Emi T., Kinoshita T., Sakamoto K., Mineyuki Y., Shimazaki K. (2005) – Isolation of a protein interacting with Vfphot1a in guard cells of Vicia faba – Plant Physiol. 138: 1615–1626 – DOI: https://doi.org/10.1104/pp.104.052639 – http://www.plantphysiol.org/content/138/3/1615 – (On our blog : https://plantstomata.wordpress.com/2018/09/15/vfpip-may-act-as-a-downstream-component-of-phototropin-vfphot1a-in-blue-light-signaling-in-stomata/ )

Emi T., Kinoshita T., Shimazaki K. (2001) – Specific binding of vf14-3-3a isoform to the plasma membrane H+-ATPase in response to blue light and fusicoccin in guard cells of broad bean. – Plant Physiol. 125: 1115–1125 – PMCID: PMC64910 – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC64910/  – (On our blog : https://plantstomata.wordpress.com/2018/03/17/vf14-3-3a-may-play-a-key-role-in-the-activation-of-h-atpase-in-stomata-2/

Encyclopaedia Britannica – https://www.britannica.com/science/stomate – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomate-plant-anatomy/ )

Engineer (2017) – Sensors printed on leaves could tell farmers when to water crops – ENGINEER Nov. 9, 2017 – https://www.theengineer.co.uk/sensors-leaves-crops-water/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/sensors-to-be-the-earliest-indicator-of-drought-for-agricultural-applications/ )

Engineer C. B., Ghassemian M., Anderson J. C., Peck S. C., Hu H., Schroeder J. I. (2014) – Corrigendum: Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development – Nature 513: 246–250 – DOI: 10.1038/nature13452 – CAS PubMed Article – (On our blog : https://plantstomata.wordpress.com/2016/05/22/co2-control-of-stomatal-development-2/)

Engineer C. B., Hashimoto-Sugimoto M., Negi J., Israelsson-Nordström M., Azoulay-Shemer T., Rappel W.-J., Iba K., Schroeder J. I. (2015) –  CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions – Trends in Plant Science, 2015 – Volume 21, Issue 1, p16–30, January 2016 -DOI: http://dx.doi.org/10.1016/j.tplants.2015.08.014 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(15)00229-0 – (On our blog : https://plantstomata.wordpress.com/2016/03/30/co2-and-stomatal-conductance/)

England J. R., Attiwill P. M. (2011) – Changes in stomatal frequency, stomatal conductance and cuticle thickness during leaf expansion in the broadleaved evergreen species, Eucalyptus regnans – Trees 25: 987–996 – https://doi.org/10.1007/s00468-011-0573-7https://link.springer.com/article/10.1007/s00468-011-0573-7h– (On our blog : https://plantstomata.wordpress.com/2018/09/17/changes-in-stomatal-frequency-and-stomatal-conductance-during-leaf-expansion/ )

Enne V. (2017) – How do stomata work in photosynthesis ? – Sciencing – http://sciencing.com/do-stomata-work-photosynthesis-5498075.html – (On our blog : https://plantstomata.wordpress.com/2017/09/18/how-do-stomata-work/)

Epron D., Dreyer E. (1990) – Stomatal and non-stomatal limitations of photosynthesis by leaf water deficit in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data – Annals of Forest Science / Annales des sciences forestières, INRA/EDP Sciences 47: 435-450 – DOI: 10.1051/forest:19900503 – https://hal.archives-ouvertes.fr/hal-00882717/document –https://www.afs-journal.org/articles/forest/abs/1990/05/AFS_0003-4312_1990_47_5_ART0003/AFS_0003-4312_1990_47_5_ART0003.html – (on our blog : https://plantstomata.wordpress.com/2019/04/26/stomatal-and-non-stomatal-limitations-of-photosynthesis-by-leaf-water-deficit/ )

Erban M. (1917) – Über die Verteilung der Spaltöffnungen in Beziehung zur Schlafstellung der Blätter -Plant Biology 34(10): 880-890 – DOI: 10.1111/j.1438-8677.1916.tb07103.x – (On our blog : https://plantstomata.wordpress.com/2017/06/28/distribution-of-stomata-in-german/)

ErdeiL., Szegletes Z., Barabás K. N., Pestenácz A., Fülöp K., Kalmár L., Kovács A., Tóth B., Dér A. (1998) – Environmental stress and the biological clock in plants: Changes of rhythmic behavior of carbohydrates, antioxidant enzymes and stomatal resistance by salinity – Journal of Plant Physiology 152(2–3): 265-271 – https://doi.org/10.1016/S0176-1617(98)80141-7 – http://www.sciencedirect.com/science/article/pii/S0176161798801417 – (On our blog : https://plantstomata.wordpress.com/2017/10/06/changes-of-rhythmic-behavior-of-stomatal-resistance-by-salinity/)

Esau K. (1941) – Inclusions in guard cells of tobacco affected with mosaic. – Hilgardia 13, 427–430 – DOI:10.3733/hilg.v13n08p427  – Google Scholar – http://hilgardia.ucanr.edu/Abstract/?a=hilg.v13n08p427 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/occurrence-of-inclusions-in-stomatal-guard-cells-of-virus-diseased-plants/

Escalona J. M., Flexas J., Medrano H. (1999) – Stomatal and non-stomatal limitations of photosynthesis under water stress in field grown grapevines – Australian Journal of Plant Physiology 26: 421-423 – https://doi.org/10.1071/PP99019 – http://www.publish.csiro.au/fp/PP99019 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-and-non-stomatal-limitations-of-photosynthesis-under-water-stress/ )

Escher P., Peuke A. D., Bannister P., Fink S., Hartung W., Jiang F., Rennenberg H. (2008) – Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana) – Plant Physiology and Biochemistry, 2008, 46, 1, 64 – http://www.sciencedirect.com/science/article/pii/S0981942807001593 – (On our blog : https://plantstomata.wordpress.com/2016/05/22/12847/)

Esmaeilpour A., Van Labeke M.-C., Samson R., Boeckx P., Van Damme P. (2016) – Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio (Pistacia vera L.) cultivars under drought stress condition – Scientia Horticulturae 211: 158-166 – DOI10.1016/j.scienta.2016.08.026 – https://www.infona.pl/resource/bwmeta1.element.elsevier-c7e88755-ec30-3683-bbb3-2d257d6c6f01/tab/summary – (On our blog : https://plantstomata.wordpress.com/2017/10/06/variation-in-stomata-features-and-its-relationship-to-water-use-efficiency-under-drought-stress-condition/)

Esser J. E., Liao Y. J., Schroeder J. I. (1997) – Characterization of ion channel modulator effects on ABA- and malate-induced stomatal movements: strong regulation by kinase and phosphatase inhibitors, and relative insensitivity to mastoparans. – J. Exp. Bot. 48: 539–550 – DOI: 10.1093/jxb/48.Special_Issue.539 – Google Scholar – https://www.jstor.org/stable/23695631?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/10/aba-induced-stomatal-closings-were-abolished-by-kinase-inhibitors-and-enhanced-by-the-protein-phosphatase-inhibitor-okadaic-acid/

Estiarte M., Penuelas J., Kimball B. A., Idso S. B., LaMorte R. L., Pinter Jr. P. J., Wall G. W., Garcia R. L. (1994) – Elevated CO2 effects on stomatal density of wheat and sour orange trees – J. Exp. Bot. 45: 1665–1668 – https://doi.org/10.1093/jxb/45.11.1665 -https://academic.oup.com/jxb/article-abstract/45/11/1665/554346?redirectedFrom=PDF (On our blog : https://plantstomata.wordpress.com/2018/12/10/plants-do-not-acclimate-to-increasing-co2-concentration-by-changing-stomatal-density-within-a-single-generation/

Eun S.-O., Bae S.-H., Lee Y. (2001) – Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abil-1 mutant Arabidopsis – Planta 212: 466–469 – DOI: 10.1007/s004250000489 – https://www.ncbi.nlm.nih.gov/pubmed/11289613 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/pp2c-participates-in-aba-induced-actin-changes-in-stomata/ )

Eun S. O., Lee Y. (1997) – Actin filaments of guard cells are reorganized in response to light and abscisic acid – Plant Physiol. 115: 1491-1498 –  DOI: https://doi.org/10.1104/pp.115.4.1491 – http://www.plantphysiol.org/content/115/4/1491 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/actin-filaments-of-stomata-light-and-aba/ )

Eun S.-O., Lee Y. (2000) – Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells – Planta 210: 1014–1017 – DOI: 10.1007/s004250050711 – https://www.ncbi.nlm.nih.gov/pubmed/10872236 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/prevention-of-actin-filament-formation-and-or-depolymerization-of-actin-filaments-may-accelerate-the-stomatal-opening-process-in-response-to-fusicoccin/ )

European Medical Alliance (2017) – Stomata close during water deficit in response to abscisic acid – http://www.europeanmedical.info/osmotic-stress/stomata-close-during-water-deficit-in-response-to-abscisic-acid.html – (On our blog : https://plantstomata.wordpress.com/2017/09/20/water-deficit-aba-and-stomata/)

Evans L. S., Gmur N. F., Da Costa F. (1977) – Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain – Amer. J. Bot. 64(7): 903-913 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomata-and-lesion-development-by-acid-rain/)

Evans N. H. (2003) – Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. – Plant Physiol. 131: 8–11 – DOI: https://doi.org/10.1104/pp.014266 – http://www.plantphysiol.org/content/131/1/8 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/the-ability-of-me-ja-to-alter-the-properties-of-potassium-conductances-in-the-guard-cell-plasma-membrane-of-stomata/ )

Evans N. H., Hetherington A. M. (2001) – Plant physiology: the ups and downs of guard cell signalling. – Curr Biol 11: R92–R94 – https://doi.org/10.1016/S0960-9822(01)00037-9 – CrossRefPubMedWeb of ScienceGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S0960982201000379 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/oscillations-in-the-cytosolic-free-calcium-concentration-of-guard-cells-are-necessary-for-stimulus-specific-stomatal-closure/ )

Ewers B. E., Gower S. T., Bond-Lamberty B., Wang C. K. (2005) – Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests – Plant, Cell and Environment 28, Issue 5, 660–678 – DOI: 10.1111/j.1365-3040.2005.01312.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01312.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stand-age-tree-species-canopy-transpiration-and-average-stomatal-conductance/)

Ewers B. E., Mackay D. S., Samanta S. (2007) – Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species – Tree Physiology 27: 11–24 – PMID: 17169902 – https://www.uwyo.edu/botany/_files/docs/plantecofizz/new-publications/24-ewers-et-al-2007.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/17/canopy-stomatal-conductance-control-of-leaf-water-potential/ )

Ewers B. E., Oren R. (2000) – Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements – Tree Physiol. 20: 579–589 – PMID: 12651422 – https://www.srs.fs.usda.gov/pubs/ja/ja_ewers002.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/19/the-calculation-of-stomatal-conductance-from-sap-flux-measurements/

Ewers B. E., Oren R., Johnsen K. H., Landsberg J. J. (2001) – Estimating maximum mean canopy stomatal conductance for use in models – Can. J. For. Res. 31: 198–207 – DOI: 10.1139/cjfr-31-2-198 – https://pdfs.semanticscholar.org/eff4/c91e7b1afffc8f2964cb59a1b84520cbeeaa.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/19/estimating-maximum-mean-canopy-stomatal-conductance-for-use-in-models/ )

Ewers B. E., Oren R., Kim H.-S., Bohrer G., Lai C.-T. (2007) – Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns – Plant, Cell and Environment, 30, Issue 4, April 2007, 483–496 – DOI: 10.1111/j.1365-3040.2007.01636.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01636.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/hydraulic-architecture-spatial-variation-in-light-and-stomatal-conductance-of-tree-branches/)

Ewers B. E., Oren R., Phillips N., Stromgren M., Linder S. (2001) – Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda. – Tree Physiology 21:841–850 – https://doi.org/10.1093/treephys/21.12-13.841 – CrossRef |PubMedCAS | – https://academic.oup.com/treephys/article/21/12-13/841/1626108 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/canopy-stomatal-conductance-responses-to-water-and-nutrient-availabilities/ )

Ewers B. E., Oren R., Sperry J. S. (2000) – Root hydraulic conductance: a reflection of water balance and a constraint on canopy stomatal conductance – Plant Cell Environ. 23:  1055–1066 – (Article not found)

Ewert M. S., Outlaw W. H. Jr, Zhang S., Aghoram K., Riddle K. A. (2000) – Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets. – Plant, Cell and Environment, 2000,23, 2, 195 – doi: 10.1046/j.1365-3040.2000.00539.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2000.00539.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/22/accumulation-of-mannitol-in-the-guard-cell-wall-of-stomata/)

Facette M. R., Park Y., Sultimantanapi D., Luo A., Cartwright H. N., Yang B.,  Bennett E. J., Sylvester A. W., Smith L. G. 2015) – The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize – Nature Plants, Art. 14024  -doi: 10.1038/nplants.2014.24. – https://www.nature.com/articles/nplants201424 – (On our blog : https://plantstomata.wordpress.com/2018/08/08/receptor-like-kinases-promote-mother-cell-polarity-and-subsequent-division-asymmetry-in-developing-maize-stomata/

Facette M. R., Smith L. G.(2012) – Division polarity in developing stomata. – Curr. Opin. Plant Biol. 15: 585–592 – http://dx.doi.org/10.1016/j.pbi.2012.09.013 –  [PubMed] – https://www.infona.pl/resource/bwmeta1.element.elsevier-a7d52571-17b3-36da-b4d0-f4e6c9d3a8fb – (On our blog : https://plantstomata.wordpress.com/2017/10/07/division-polarity-in-developing-stomata/)

Fairley-Grenot K., Assmann S. M. (1991) – Evidence for G-protein regulation of inward K+ channel current in guard-cells of fava-bean – Plant Cell 3: 1037–1044 – DOI: https://doi.org/10.1105/tpc.3.9.1037 – http://www.plantcell.org/content/3/9/1037?ijkey=c15d11e8f7e05d16c1837bc07c4d78f11f466ec8&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ion-channel-regulation-by-environmental-stimuli-may-be-mediated-by-g-proteins-in-stomata/ )

Fairley-Grenot K., Assmann S. (1992) – Whole-cell K+ current across the plasma membrane of guard cells from a grass: Zea mays – Planta 186: 282–293 –  10.1007/BF00196258 – https://www.ncbi.nlm.nih.gov/pubmed/24186668 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/whole-cell-k-current-across-the-plasma-membrane-of-stomata/ )

Falik O., Mordoch Y., Quansah L., Fait A., Novoplansky A. ( 2011) – Rumor Has It…: Relay Communication of Stress Cues in Plants – PLOS One November 2, 2011 – https://doi.org/10.1371/journal.pone.0023625 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023625 – (On our blog : https://plantstomata.wordpress.com/2018/02/16/the-mechanisms-and-adaptive-implications-of-the-observed-communication-of-stress-cues/ )

Fan L.-M., Zhang W., Chen J.-G., Taylor J. P., Alan M., Jones A. M., Assmann S. M. (2008) – Abscisic acid regulation of guard-cell K+ and anion channels in Gβ- and RGS-deficient Arabidopsis lines – Current Issue, vol. 105 no. 24, 8476–8481, doi: 10.1073/pnas.0800980105 – http://www.pnas.org/content/105/24/8476.full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/ion-channel-regulation-by-heterotrimeric-g-proteins-in-stomata/)

Fan L.-M., Zhao Z. X., Assmann S. M. (2004) – Guard cells: a dynamic signaling model. – Curr. Opin. Plant Biol. 7, 537–546 (2004). – ISIPubMedArticleCAS – (On our blog : https://plantstomata.wordpress.com/2016/05/23/aba-blue-light-and-stomatal-regulation/)

Fanourakis D., Carvalho S. M. P., Almeida D. P. F., Heuvelink E. (2011) – Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. – Physiol. Plant. 142(3): 274-286 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/29/stomatal-functioning-and-air-humidity/ ).

Fanourakis D., Giday H., Milla R., Pieruschka R., Kjaer K. H., Bolger M., Vasilevski A., Nunes-Nesi A., Fiorani F., Ottosen C.-O. (2015) – Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides – Ann. Bot.-London 115: 555–565 – https://doi.org/10.1093/aob/mcu247 – CrossRef, Google Scholar – https://link.springer.com/article/10.1007/s11099-018-0847-z – (On our blog : https://plantstomata.wordpress.com/2018/09/24/stomatal-densities-drive-the-partitioning-of-conductance-between-leaf-sides/

Fanourakis D., Matkaris N., Heuvelink E., Carvalho S. M. P.(2010) – Effect of relative air humidity on the stomatal functionality in fully developed leaves. – Acta Horticulturae  870: 83-88 – DOI 10.17660/ActaHortic.2010.870.8 – https://www.actahort.org/members/showpdf?booknrarnr=870_8 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/stomata-from-fully-developed-rose-leaves-conserve-their-behaviour-independently-of-the-post-development-humidity-level/ )

Faraday C. D., Thomson W. W., Platt-Aloia K. A. (1982) – Comparative ultrastructure of guard cells of C3 , C4 , and CAM plants – in P. Ting, M. Gibbs (Eds.), I. Crassulacean acid metabolism, American Society of Plant Physiologists, Rockville, MD.: 18-30 – (No abstract found)

Faralli M., Matthews J., Lawson T. (2019) – Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement – Current Opinion in Plant Biology 49: 1-7 – https://doi.org/10.1016/j.pbi.2019.01.003 –http://repository.essex.ac.uk/24163/ – (On our blog : https://plantstomata.wordpress.com/2019/03/21/overview-of-variation-in-stomatal-traits-and-the-impact-these-have-on-gs-behaviour/ )

Farber M., Attia Z., Weiss D. (2016) – Cytokinin activity increases stomatal density and transpiration rate in tomato – J. Exp. Bot. (2016) 67 (22):6351-6362.doi: 10.1093/jxb/erw398 – http://jxb.oxfordjournals.org/content/67/22/6351.short?rss=1 – (On our blog : https://plantstomata.wordpress.com/2016/11/18/increase-of-stomatal-density-with-cytokinin/)

Fard A. N. S., Matamoros M. P., van Meeteren U. (2014) – Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? – Physiologia Plantarum 152 (2014)4. – ISSN 0031-9317 – p. 688 – 699 – http://dx.doi.org/10.1111/ppl.12216 – http://library.wur.nl/WebQuery/wurpubs/480271 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/stomatal-malfunctioning-under-low-vpd-conditions/)

Fares S., Matteucci G., Scarascia Mugnozza G., Morani A., Calfapietra C., Salvatori E., Fusano L., Manes F., Loreto F. (2013) – Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest – Atmospheric Environment 67: 242–251 –  – https://doi.org/10.1016/j.atmosenv.2012.11.007 –https://www.sciencedirect.com/science/article/pii/S1352231012010527 – (On our blog : https://plantstomata.wordpress.com/2018/12/10/stomata-explained-almost-the-totality-of-ozone-fluxes-during-the-cold-days/ )https://plantstomata.wordpress.com/2018/12/10/stomata-explained-almost-the-totality-of-ozone-fluxes-during-the-cold-days/

Farmer S. (2016) – Open or Shut: How Trees Respond to Drought at the Leaf Level – USDA CompassLive – https://www.srs.fs.usda.gov/compass/2016/04/26/open-or-shut-how-trees-respond-to-drought-at-the-leaf-level/?doing_wp_cron=1516728235.2168309688568115234375 – (On our blog : https:// https://plantstomata.wordpress.com/2018/12/10/stomata-explained-almost-the-totality-of-ozone-fluxes-during-the-cold-days/.wordpress.com/2018/01/23/stomata-and-a-new-modeling-framework-linking-leaf-water-loss-and-carbon-gain/ )

Farquhar G. D. (1973) – A Study of the Response of Stomata to Perturbations of Environment. PhD Thesis. Australian National University, Canberra, Australia.

Farquhar G. D. (1977) – Stomatal function in relation to leaf metabolism and environment – Symp Soc Exp Biol 31: 471-505 – https://scholar.google.be/citations?view_op=view_citation&hl=en&user=YQKKTRYAAAAJ&citation_for_view=YQKKTRYAAAAJ:unp9ATQDT5gC  (no abstract)

Farquhar G. D. (1978) – Feedforward responses of stomata to humidity. – Australian Journal of Plant Physiology 5 : 787–800. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/05/23/responses-of-stomatal-conductance-to-changes-in-humidity/)

Farquhar G.D., Buckley T.N., Miller J.M. (2002) – Optimal stomatal control in relation to leaf area and nitrogen. – Silva Fennica 36(3): 625–737 – http://www.metsantutkimuslaitos.fi/silvafennica/full/sf36/sf363625.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/11/optimal-stomatal-control-in-relation-to-leaf-area-and-nitrogen/ )

Farquhar G. D., Cowan I. R. (1974) – Oscillations in stomatal conductance. The influence of environmental gain – Plant Physiology 54: 769–772 – DOI: https://doi.org/10.1104/pp.54.5.769 – CrossRef | PubMed |- http://www.plantphysiol.org/content/54/5/769 – (On our blog : https://plantstomata.wordpress.com/2018/03/12/the-influence-of-environmental-gain-and-the-oscillations-in-stomatal-conductance/ )

Farquhar G. D., Dubbe D. R., Rachke K. (1978) – Gain of the feedback loop involving carbon dioxide and stomata. – Plant Physiol. 62: 406–412 – PMID: 16660527 PMCID: PMC1092136 – DOI: https://doi.org/10.1104/pp.62.3.406 – CrossRefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/16660527 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/gain-of-the-feedback-loop-involving-co2-and-stomata/

Farquhar G. D., Hubick K. T., Terashima I., Condon A. C., Richards R.
A. (1987)
– Genetic variation in the relationship between photosynthetic CO2 loss and stomatal conductance to water loss. In “Progress in photosynthesis research”, VOI. IV (J. Biggins, ed.), pp. 209-212. Martinus Nijhoff Publishers, Dordrecht, Netherlands.

Farquhar G. D., Schulze E. D., Kuppers M. (1980) – Responses to humidity by stomata of Nicotiana glauca L. and Corylus avellana L. are consistent with the optimization of carbon dioxide uptake with respect to water loss – Australian Journal of Plant Physiology 7: 315-327 – DOI: 10.1071/PP9800315 – https://www.cabdirect.org/cabdirect/abstract/19801958115 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomata-vary-their-apertures-so-as-to-keep-delta-e-delta-a-constant-which-optimizes-carbon-gain-with-respect-to-water-loss/ )

Farquhar G. D., Sharkey T. D. (1982) – Stomatal conductance and photosynthesis – Annual Review of Plant Physiology 33: 317-345 – CrossRefCAS |Google Scholar – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.33.060182.001533?journalCode=arplant.1 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomatal-conductance-and-photosynthesis/ )

Farquhar G.D., Wong S.C. (1984) – An empirical model of stomatal conductance. – Australian Journal of Plant Physiology 11: 191–209 – https://doi.org/10.1071/PP9840191 – CrossRefCAS |- http://www.publish.csiro.au/FP/PP9840191 – (On our blog :  https://plantstomata.wordpress.com/2018/04/13/an-empirical-model-of-stomatal-conductance/ )

Farquharson K. L. (2012) – Polarization of Subsidiary Cell Division in Maize Stomatal Complexes – Plant Cell DOI: https://doi.org/10.1105/tpc.112.241112 – http://www.plantcell.org/content/24/11/4313 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/polarization-of-subsidiary-cell-division-in-stomata/ )

Fatemy F., Trinder P. K. E. , Wingfiel J. N., Evans K. (1985) – Effects of Globodera rostochiensis, water stress and exogenous abscisic acid on stomatal function and water use of Cara and Pentland Dell potato plants. – Revue Nematology. 8(3): 249- 255 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.3446&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/11/effects-of-nematod-infection-water-stress-and-exogenous-aba-on-stomatal-function/ )

Fatma L., Masood A., Per T. S., Khan N. A. (2016) – Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard – Front. Plant Sci. – https://doi.org/10.3389/fpls.2016.00521 –https://www.frontiersin.org/articles/10.3389/fpls.2016.00521/full – (On our blog : https://plantstomata.wordpress.com/2019/04/11/the-effect-of-no-on-stomatal-responses-and-photosynthetic-performance-of-plants-grown-under-salt-stress/ )

Felle H. H., Hanstein S. (2002) – The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors. – Journal of Experimental Botany 53: 73–78 – PMID: 11741043 – https://www.ncbi.nlm.nih.gov/pubmed/11741043 – (On our blog : https://plantstomata.wordpress.com/2018/03/11/the-apoplastic-ph-of-the-substomatal-cavity-and-its-regulation-responding-to-different-stress-factors/

Felle H. H., Hanstein S., Steinmeyer R., Hedrich R. (2000) – Dynamics of ionic activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness – The Plant Journal, 2000, 24, 3, 297-304 – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.2000.00878.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/23/ionic-activities-in-the-apoplast-of-the-sub-stomatal-cavity/)

Feng Z., Tang H., Uddling J., Pleijel H., Kobayashi K., Zhu J., Oue H., Guo W. (2012) – A stomatal ozone flux–response relationship to assess ozone-induced yield loss of winter wheat in subtropical China – Environmental Pollution – 164: 16–23 – https://doi.org/10.1016/j.envpol.2012.01.014 –https://www.sciencedirect.com/science/article/pii/S0269749112000310 – (On our blog : https://plantstomata.wordpress.com/2019/04/26/a-stomatal-ozone-flux-response-relationship-to-assess-ozone-induced-yield-loss/ )

Fernández J. E., Moreno F., Girón I. F., Blázquez O. M. (1997) – Stomatal control of water use in olive tree leaves – Plant Soil 190: 179–192 – https://doi.org/10.1023/A:1004293026973https://link.springer.com/article/10.1023%2FA%3A1004293026973 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-control-of-water-use-in-olive-tree-leaves/ )

Fernandez O. A., Mujica B. (1973) – Effects of some environmental factors on the differentiation of stomata in Spirodela intermedia. – Bot. Gaz, 1973; 134: 117-121. (http://agris.fao.org/agris-search/search.do?recordID=US201303266932) – (On our blog : https://plantstomata.wordpress.com/2016/05/12/environmental-factors-and-the-differentiation-of-stomata/ )

Ferri M. G., Lex A. (1948) – Stomatal behaviour as influenced by treatment with β-naphthoxyacetic acid. – Contr. Boyce Thompson Inst. Pl. Res., 15, 283-290 – ISSN: 0006-8543 – CAS – http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=wiley&version=1%2E0&coi=1%3aCAS%3a528%3aDyaH1MXhslyqsA%253D%253D&md5=b2639abb226314e3a3fab96292aa343e – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-%ce%b2-naphthoxyacetic-acid/ )

Ferri M. G., Rachid M. (1949) – Further information on stomatal behaviour as influenced by treatment with hormone-like substances – Anais Acad. bras. Cienc, 21, 155. (Article not found)

Ferris R., Long L., Bunn S. M., Robinson K. M., Bradshaw H. D., Rae A. M., Taylor G. (2002) – Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar – Tree Physiol., 22: 633-640 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.567.1731&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-development-putative-quantitative-trait-loci-in-relation-to-elevated-co2-concentration/ )

Ferris R., Taylor G. (1994) – Stomatal characteristics of four native herbs following exposure to elevated CO2. – Annals of Botany 73: 477–453 – https://doi.org/10.1006/anbo.1994.1055 – https://www.sciencedirect.com/science/article/pii/S0305736484710559 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-exposure-to-elevated-co2/ )

Ferry R. J. (2008) – Stomata, subsidiary cells and implications – http://miosjournal.org/journal/2008/03/StomataSubsidiary.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-in-orchids-3/)

Fetter K. C., Eberhardt S., Barclay R. S., Wing S., Keller S. R. (2019) – StomataCounter: a neural network for automatic stomata identification and counting – https://doi.org/10.1111/nph.15892 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15892?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/07/stomatacounter-automatic-stomata-identification-and-counting/ )

Field C. B. (1987) – Leaf-age effects of stomatal conductance. In: Zeiger GD, Farquhar GD, Cowan IR, editors. Stomatal function – Stanford: Stanford University Press – (Article not found)

Field C. B., Jackson R. B., Mooney H. A. (1995) – Stomatal responses to increased CO2: implications from the plant to the global scale – Plant Cell Environ. 18, 1214–1225 (1995) – DOI: 10.1111/j.1365-3040.1995.tb00630.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00630.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/06/stomatal-responses-to-increased-co2/)

Field K. J., Duckett J. G., Cameron D. D., Pressel S. (2015) – Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. – Annals of Botany, 115 (6). 915 – 922. – http://eprints.whiterose.ac.uk/86084/ – http://aob.oxfordjournals.org/content/115/6/915– (On our blog : https://plantstomata.wordpress.com/2016/04/10/stomata-in-non-vascular-land-plants-and-co2/)

Filho H. A., Bruno O. M. (2018) – Plants with purple abaxial leaves: A repository of metrics from stomata distribution – bioRxiv – doi: http://dx.doi.org/10.1101/294553 – https://www.biorxiv.org/content/biorxiv/early/2018/04/04/294553.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-repository-of-metrics-from-stomata-distribution/ )

Filho H. A., Machicao J., Bruno O. M. (2017) – Geometric plasticity at leaves from Ctenanthe oppenheimiana probed by measure of distances between stomata – In Journal of Physics: Conference Series, 936: 012094. IOP Publishing – DOI: 10.1088/1742-6596/936/1/012094 – http://iopscience.iop.org/article/10.1088/1742-6596/936/1/012094 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/plasticity-induced-by-environmental-adaptations-are-measurable-using-the-distance-between-neighbor-stomata/ )

Filmer A. (2018) – Sending a canopy-wide message in plants – News Blog: Plant Sciences, University of California, Davis April 2, 2018 – https://news.plantsciences.ucdavis.edu/2018/04/02/sending-a-canopy-wide-message-in-plants/ – (On our blog : https://plantstomata.wordpress.com/2018/10/09/sending-a-canopy-wide-message-in-plants/ )

Finkelstein R.R., Rock C.D. (2002) – Abscisic acid biosynthesis and response. In The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. American Society of Plant Biologists, Rockville, pp 1–52. – Google Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243367/ – (On our blog : https://plantstomata.wordpress.com/2018/03/13/aba-and-stomatal-regulation/ )

Finnigan J. J., Raupach M. R. (1987) – Modern theory of transfer in plant canopies in relation to stomata1 characteristics – In Sromaral Function (edited by Zeiger E., Farquhar G. and Cowan I.) – Stanford University Press, Stanford, CA – (Article not found)

Finsinger W., Dos Santos T., McKey D. (2013) – Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon – Geoscience 345: 350–359 – DOI 10.1016/j.crte.2013.06.003 – CrossrefGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S1631071313001120 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/68039/ )

Finsinger W., Wagner-Cremer F. (2009) – Stomatal-based inference models for reconstruction of atmospheric CO2 concentration: a method assessment using a calibration and validation approach – Holocene 19: 757–764 – http://www.geocraft.com/WVFossils/Reference_Docs/Last_200_years_stomatal_changes_Finsinger_etal_2009.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomatal-based-inference-models-for-reconstruction-of-atmospheric-co2-concentration/ )

Fiorin L. (xxxx) – Spatial coordination between veins and stomata – Links water supply with water loss in leaves – Università degli Studi di Padova – http://paduaresearch.cab.unipd.it/5809/1/fiorin_lucia_tesi.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/06/spatial-coordination-between-veins-and-stomata/)

Fiorin L., Brodribb T. J., Anfodillo T. (2016) – Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. – New Phytol. 2016 Jan;209(1):216-27. doi: 10.1111/nph.13577. Epub 2015 Jul 30. – PMID: 262242 – https://www.researchgate.net/publication/280585417_Transport_efficiency_through_uniformity_Organization_of_veins_and_stomata_in_angiosperm_leaves – (On our blog : https://plantstomata.wordpress.com/2016/02/19/6153/)

Fisher M. J., Charles-Edwards D. A., Ludlow M. M. (1981) – An analysis of the effects of repeated short-term soil water deficits on stomatal conductance to carbon dioxide and leaf photosynthesis by the legume, Macroptilium atropurpureum, cv. Siratro – Aust. J. Plant Physiol. 8: 347-357 – https://doi.org/10.1071/pp9810347 – http://www.publish.csiro.au/fp/PP9810347 – (On our blog : https://plantstomata.wordpress.com/2019/04/26/effects-of-repeated-short-term-soil-water-deficits-on-stomatal-conductance-to-co2-and-leaf-photosynthesis/ )

Fischer R. A. (1968) – Stomatal opening: role of potassium uptake by guard cells. – Science. N.Y., 160: 784-785 – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2015/09/29/active-accumulation-of-potassium-and-stomatal-opening/)

Fischer R. A. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. I. Responses to light and to CO2-free air. – Plant Physiol. 43: 1947–1952 [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2015/09/29/independent-responses-in-stomatal-aperture-to-light-and-to-co2-free-air/).

Fischer R. A. (1970) – After-effect of water stress on stomatal opening potential. II. Possible causes –  J. Exp. Bot. 21: 386–404 – https://doi.org/10.1093/jxb/21.2.386 – https://www.jstor.org/stable/23687209?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/13/after-effect-of-water-stress-on-stomatal-opening-potential-ii/ )

Fischer R. A. (1971) – Role of potassium in stomatal opening in the leaf of Vicia faba. – Plant Physiol. 47: 555–558 – DOI: https://doi.org/10.1104/pp.47.4.555 – http://www.plantphysiol.org/content/47/4/555 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/role-of-potassium-in-stomatal-opening/ )

Fischer R. A. (1972) – Aspects of potassium accumulation by stomata of Vicia faba. – Aust. J. Biol. Sci. 25:1107–1123 – http://www.publish.csiro.au/bi/pdf/bi9721107 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/aspects-of-k-accumulation-by-stomata/)

Fischer R. A., Hsiao T. C. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. II. Responses to KCl concentration and the role of potassium absorption – Plant Physiol. 43: 1953–1958 -DOI: https://doi.org/10.1104/pp.43.12.1947 – CrossRef | PubMed – http://www.plantphysiol.org/content/43/12/1947 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/stomatal-opening-in-isolated-epidermal-strips/ )

Fischer R. A., Hsiao T. C., Hagan R. M. (1970) – After effect of water stress on stomatal opening potential. I. Techniques and magnitudes – J. Exp. Bot. 21(2):    – DOI  10.1093/jxb/21.2.371 – https://www.researchgate.net/publication/31051272_After-effect_of_water_stress_on_stomatal_opening_potential_I_Techniques_and_magnitudes – (On our blog : https://plantstomata.wordpress.com/2018/03/13/after-effect-of-water-stress-on-stomatal-opening-potential-i/ )

Fischer R. A., Rees D., Sayre K. D., Lu Z. M., Condon A. G., Saavedra A. L. (1998) – Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies – Crop Sci 38: 1467- 1475 – doi:10.2135/cropsci1998.0011183X003800060011x – CrossRef Google Scholar – |https://dl.sciencesocieties.org/publications/cs/abstracts/38/6/CS0380061467 – (On our blog : https://plantstomata.wordpress.com/2018/01/15/wheat-yield-higher-stomatal-conductance-photosynthetic-rate-and-cooler-canopies/

Fitzsimons P. J., Weyers J. D. B. (1986) – Volume changes of Commelina communis guard cell protoplasts in response to K+, light and CO2 – Physiologia Plantarum 66(3): 463–468 – DOI: 10.1111/j.1399-3054.1986.tb05952.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb05952.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/14/guard-cell-protoplasts-swelling-in-response-to-k-light-and-co2/)

Fitzsimons P. J., Weyers J. D. B. (1986) – Potassium ion uptake by swelling Commelina communis guard cell protoplasts – Physiologia Plantarum 66(3): 469–475 – DOI: 10.1111/j.1399-3054.1986.tb05953.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb05953.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/14/k-ion-uptake-by-swelling-guard-cell-protoplasts-in-stomata-of-commelina/)

Fitzsimons P. J., Weyers J. D. B. (1987) – Responses of Commelina communis guard cell protoplasts to abscisic acid. – J. Exp. Bot. 38: 992-1001 – https://doi.org/10.1093/jxb/38.6.992 https://academic.oup.com/jxb/article-abstract/38/6/992/485888?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/14/responses-of-guard-cell-protoplasts-to-aba/)

Flanagan L. B., Jefferies R. L. (1988) – Stomatal limitation of photosynthesis and reduced growth of the halophyte, Plantago maritima L., at high salinity – Plant, Cell & Environment 11(4): 239–245 – DOI: 10.1111/j.1365-3040.1988.tb01142.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1988.tb01142.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/30/stomatal-limitation-of-photosynthesis-at-high-salinity/)

Flanagan L. B., Jeffries R. L. (1989) – Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity – Plant, Cell & Environment 12(5): 559–568 – DOI: 10.1111/j.1365-3040.1989.tb02129.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb02129.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/30/strong-nonuniform-stomatal-closure/)

Fleming A. (s.d.) – Cell wall mechanics and stomatal function – Leverhulme Trust Awards Made – https://www.leverhulme.ac.uk/awards-made/awards-focus/cell-wall-mechanics-and-stomatal-function – (On our blog : https://plantstomata.wordpress.com/2017/11/27/stomatal-function-and-cell-wall-mechanics/)

Flexas J., Bota J., Escalona J. M., Sampol B., Medrano H. (2002) – Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations – Funct. Plant Biol. 29: 461–471 – 10.1071/PP01119 – https://www.publish.csiro.au/FP/PP01119 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/effects-of-drought-on-photosynthesis-and-stomatal-and-mesophyll-limitations/ )

Flexas J., Medrano H. (2002) – Drought-inhibition of photosynthesis in C-3 plants: Stomatal and non-stomatal limitations revisited – Ann Bot. 89: 183–189 – 10.1093/aob/mcf027 – https://app.dimensions.ai/details/publication/pub.1022610702 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/stomatal-closure-is-the-earliest-response-to-drought-and-the-dominant-limitation-to-photosynthesis-at-mild-to-moderate-drought/ )

Florindo J. B., Landini G., Almeida Filho H., Martinez Bruno O. (2015) – Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia zebrina – J. Phys.: Conf. Ser. 633 012113 – doi:10.1088/1742-6596/633/1/012113 – http://iopscience.iop.org/article/10.1088/1742-6596/633/1/012113/pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/27/analysis-of-stomata-distribution-patterns/)

Flütsch S., Distefano L., Santelia D. (2018) – Quantification of Starch in Guard Cells of Arabidopsis thaliana – Bio-protocol 8(13) – DOI:10.21769/BioProtoc.2920https://bio-protocol.org/e2920 – (On our blog : https://plantstomata.wordpress.com/2019/04/14/quantification-of-starch-in-stomatal-guard-cells/ )

Fordham M. C., Harrison-Murray R. S., Knight L., Evered C. E. (2001) – Effects of leaf wetting and high humidity on stomatal function in leafy cuttings and intact plants of Corylus maxima. – Physiologia Plantarum 113: 233-240 – http://www.ingentaconnect.com/content/mksg/ppl/2001/00000113/00000002/art00011 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/effects-of-leaf-wetting-and-high-humidity-on-stomatal-function/)

Forestier C., Bouteau F., Leonhardt N., Vavasseur A. (1998) – Pharmacological properties of slow anion currents in intact guard cells of Arabidopsis. Application of the discontinuous single-electrode voltage-clamp to different species. – Pflugers Archiv Eur J Physiol 436: 920–927 – DOI 10.1007/s004240050724 – CrossRefGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/9799408 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/ion-channel-currents-in-intact-guard-cells-of-stomata-and-especially-of-slow-anion-channels/

Förster S., Schmidt L. K., Kopic E., Anschütz U., Huang S., Schlücking K., Köster P., Waadt R., Larrieu A., Batistic O., Rodriguez P. L., Grill E.,l J., Becker D. (2018) – Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K+ Channels by a Ca2+ Sensor-Kinase CBL1-CIPK5 Complex – Dev. Cell 48(1): 87-99 – DOI:https://doi.org/10.1016/j.devcel.2018.11.014 –https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30932-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1534580718309328%3Fshowall%3Dtrue#%20 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/wounding-induced-stomatal-closure-requires-jasmonate-mediated-activation-of-gork-k-channels/ )

Foschi M. L., Martínez L. E., Ponc M. T., Galmarini C. R., Bohanec B. (2013) – Effect of colchicine and amiprophos-methyl on the production of in vitro doubled haploid onion plants and correlation assessment between ploidy level and stomatal size – Rev. Fac. Cienc. Agrar., Univ. Nac. Cuyo vol.45 no.2 Mendoza dic. 2013. (http://www.scielo.org.ar/scielo.php?pid=S1853-86652013000200012&script=sci_arttext) – (On our blog : https://plantstomata.wordpress.com/2015/09/29/correlation-assessment-between-ploidy-level-and-stomatal-characteristics/).

Fotopoulos V., De Tullio M. C., Barnes J., Kanellis A. K. (2008) – Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling – J. Exp. Bot. 59: 729–737 – doi: 10.1093/jxb/erm359 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=18349048 – (On our blog : https://plantstomata.wordpress.com/2018/09/19/dha-acts-as-a-regulator-of-stomatal-dynamics/ )

Fowler D., Flechard C., Coyle M., Storeton-West R. (1999) – Ozone fluxes to vegetation in the field, separating stomatal from non-stomatal uptake – In: J. Fuhrer and B. Achermann (Eds.), Critical Levels for Ozone – Level II. Environmental Documentation No. 115. Swiss Agency for Environment, Forest and Landscape, Bern, Switzerland, pp. 279-287 – (Article not found)

Francia P., Simoni L., Cominelli E., Tonelli C., Galbiati M. (2008) – Gene trap-based identification of a guard cell promoter in Arabidopsis – Plant Signal Behav. 3(9): 684–686. – http://pubmedcentralcanada.ca/pmcc/articles/PMC2634557/ – (On our blog : https://plantstomata.wordpress.com/2017/11/12/the-cyp86a2-guard-cell-promoter-and-its-potential-for-gene-expression-in-stomata/)

Franco C. M. (1938) – Sôbre a fisiologia dos estômatos de cafeeiro Coffea arabica L. – Annais da Primeira Reuniao Sul-Americano de Botânica, Rio de Janeiro 3: 293-302 (Article not found).

Franco C. (1939) – Relation between chromosome number and stomata in Coffea. Botanical Gazette 100: 817-827 – https://www.jstor.org/stable/2471773?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-chromosome-number/ )

Franke W. (1964) – Role of guard cells in foliar absorption. – Nature. Lond., 202,1236. – CrossRef |ADS – (On our blog : https://plantstomata.wordpress.com/2016/05/23/stomatal-guard-cells-and-foliar-absorption/)

Franks P. J. (xxxx) – Research interests – http://sydney.edu.au/science/people/peter.franks.php – (On our blog : https://plantstomata.wordpress.com/2018/01/22/research-interests-of-peter-j-franks/ )

Franks P. J. (2003) – Use of the pressure probe in studies of stomatal function. – Journal of Experimental Botany 54, 1495-1504 – oai:researchonline.jcu.edu.au:13775 – http://trove.nla.gov.au/work/2873425?q&versionId=187635831+206889243 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/the-construction-and-use-of-the-pressure-probe-in-studies-relating-to-stomatal-function/)

Franks P. J. (2004) – Stomatal control and hydraulic conductance, with special reference to tall trees. – Tree Physiol 24 865–878 [PubMed]. – (On our blog : https://plantstomata.wordpress.com/2015/09/29/stomatal-control-in-tall-trees/).

Franks P. J. (2012) – Genome size as a constraint on productivity and water-use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/genome-size-plant-productivity-and-water-use-efficiency/ )

Franks P. J. (2013) – Passive and active stomatal control: either or both? – New Phytologist, 198(2): 325-327. – http://onlinelibrary.wiley.com/doi/10.1111/nph.12228/abstract – http://onlinelibrary.wiley.com/store/10.1111/nph.12228/asset/nph12228.pdf;jsessionid=86FBD0E3A3AE75FC27989E2A067593B0.f02t03?v=1&t=jcncmcfn&s=e5bbc00257355a1524ae53ee4b7ec0b37a466fd7 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/passive-and-active-stomatal-control/ )

Franks P. J., Beerling D. J. (2009) – Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time – PNAS 106: 10343–10347 –  https://doi.org/10.1073/pnas.0904209106 –http://www.pnas.org/content/106/25/10343.short – (On our blog : https://plantstomata.wordpress.com/2018/12/04/maximum-leaf-conductance-driven-by-co2-effects-on-stomatal-size-and-density-over-geologic-time/

Franks P. J., Beerling D. J., Berner R. A. (2009) – Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. – Proceedings of the National Academy of Sciences, USA (2009) 106(10): 343–34 -doi: 10.1073/pnas.0904209106 – CrossRef | CAS | PubMed Article – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-characteristics-over-geologic-time/).

Franks P. J., Berry J. A., Lombardozzi D. L., Bonan G. B. (2017) – Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling, and global models. – Plant Physiol 174: 583–602 – DOI: https://doi.org/10.1104/pp.17.00287 – http://www.plantphysiol.org/content/174/2/583 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/future-efforts-must-focus-on-more-accurate-parameterization-of-stomatal-conductance-models/)

Franks P. J., Britton-Harper Z. J. (2016) – No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? – New Phytologist 211(3): 819 – 827 – DOI10.1111/nph.14020 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-211-i-3-nph14020 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/a-universal-stomatal-control-mechanism-2/)

Franks P. J., Britton-Harper Z. J. (2016) – No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? – Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14020 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14020/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/07/a-universal-stomatal-control-mechanism-2/)

Franks, P., Brodribb, T.J. (2005) – Stomatal control and water transport in the xylem.In: Holbrook, N. Michelle, and Zwieniecki, Macief A., (eds.) Vascular Transport in Plants. Physiological Ecology, 1 . Elsevier, Oxford, UK, pp. 69-89 – https://researchonline.jcu.edu.au/14422/ – (On our blog https://wordpress.com/post/plantstomata.wordpress.com/5201).

Franks P. J., Buckley T. N., Shope J. C., Mott K. A. (2001) – Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. – Plant Physiol 125 1577–1584 [PMC free article][PubMed] – (On our blog : https://plantstomata.wordpress.com/2015/09/30/stomata-microscopic-study-of-guard-cell-volume/).

Franks P. J., Casson S. (2014) – Connecting stomatal development and physiology.- New Phytologist 201(4), 1079-1082 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12673/abstract – (On our blog : https://plantstomata.wordpress.com/2015/09/30/stomatal-development-and-physiology/)

Special Commentary by Franks & Casson ‘Connecting stomatal development and physiology’ highlighting Graham’s two papers  http://onlinelibrary.wiley.com/doi/10.1111/nph.12673/full

Franks P. J., Cowan I. R., Farquhar G. D. (1997) – The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. – Plant, Cell and Environment 20, 142–145.DOI: 10.1046/j.1365-3040.1997.d01-14.x – – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/05/23/feedforward-response-of-stomata-to-air-vapour-pressure-deficit/)

Franks P. J., Cowan I. R., Farquhar G. D. (1998) – A study of stomatal mechanics using the cell pressure probe. – Plant Cell Environ 21 94–100 – DOI: 10.1046/j.1365-3040.1998.00248.x – Google Scholar Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1998.00248.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomatal-mechanics-and-the-cell-pressure-probe/ )

Franks P. J., Cowan I. R., Tyerman S. D., Cleary A. L., Lloyd J., Farquhar G. D. (1995) – Guard cell pressure/aperture characteristics measured with the pressure probe. – Plant Cell Environ 18: 795–800 – doi:10.1111/j.1365-3040.1995.tb00583.x  – Wiley Online Library |http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00583.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/14/stomatal-behavior-and-the-pressure-probe/ )

Franks P. J., Doheny-Adams T. W., Britton-Harper Z. J., Gray J. E. (2015) – Increasing water-use efficiency directly through genetic manipulation of stomatal density – New Phytol.207: 188–195 – doi: 10.1111/nph.13347 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/03/09/stomatal-density-and-wue/).

Franks P. J., Drake P.L., Beerling D. J. (2009) – Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment, 2009; 32: 1737–1748. (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.002031.x/abstract) – AbstractFull Article (HTML)PDF(1027K)References – PubMed Article– (On our blog : https://plantstomata.wordpress.com/2015/09/30/3961/)

Franks P. J., Drake P. L., Froend R. H. (2007) – Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. – Plant, Cell and Environment 30: 19-30 – DOI 10.1111/j.1365-3040.2006.01600.x – Google Scholar CrossRef – https://www.ncbi.nlm.nih.gov/pubmed/17177873 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/stomatal-control-mechanism-incorporating-variable-plant-hydraulic-conductance/ )

Franks P. J., Farquhar G. D. (2001) – The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. – Plant Physiol 125: 935–942 [PMC free article][PubMed] – CrossRefPubMed, CAS –  (On our blog : https://plantstomata.wordpress.com/2015/10/11/the-effect-of-exogenous-aba-on-stomata/)

Franks  P. J., Farquhar G. D. (2007) –  The mechanical diversity of stomata and its significance in gas-exchange control – Plant Physiology 143: 78–87 – doi: 10.1104/pp.106.089367 – PubMed Abstract | CrossRef Full Text | Google Scholar – (http://www.plantphysiol.org/content/143/1/78) – (On our blog : https://plantstomata.wordpress.com/2015/08/03/mechanical-diversity-of-stomata/)

Franks P. J., Leitch I., Ruszala E., Hetherington A., Beerling D. (2012) – Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philosophical Transactions of the Royal Society B. Biological Sciences, 367(1588): 537-546. – http://rstb.royalsocietypublishing.org/content/367/1588/537 – (On our blog : https://plantstomata.wordpress.com/2016/05/24/adaptation-of-stomata-to-co2/ )

Fraser L. H., Greenall A., Carlyle C., Turkington R., Friedman C. R. (2009) – Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. – Ann Bot- Lon 103:769–775 – doi: 10.1093/aob/mcn252 – PubMedArticle – (On our blog : https://plantstomata.wordpress.com/2015/10/02/the-plasticity-of-stomatal-density-changes-in-water-supply-and-temperature/ )

Frechilla S., Talbott L. D., Bogomolni R. A., Zeiger E. (2000) – Reversal of blue light-stimulated stomatal opening by green light – Plant Cell Physiol 41: 171-176 –  – https://doi.org/10.1093/pcp/41.2.171 –https://academic.oup.com/pcp/article/41/2/171/1853516 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/reversal-of-blue-light-stimulated-stomatal-opening-by-green-light/

Frechilla S., Talbott L., Zeiger E. (1997) – The blue light response of guard cells acclimates to growth environment – Plant Physiology 114 (Suppl.): 98 – (Article not found)

Frechilla S., Talbott L. D., Zeiger E. (2002) – The CO2 response of Vicia guard cells acclimates to growth environment. – Journal of Experimental Botany 53(368): 545–550 – https://doi.org/10.1093/jexbot/53.368.545https://academic.oup.com/jxb/article/53/368/545/577362 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/co2-responses-of-stomata-acclimate-to-growth-environment/ )

Frechilla S., Zhu J., Talbott L. D., Zeiger E. (1999) – Stomata from npq1, a zeaxanthin‐less Arabidopsis mutant, lack a specific response to blue light – Plant and Cell Physiology 40: 949-954 – DOI | 10.1093/oxfordjournals.pcp.a029627 – https://scinapse.io/papers/2156072438 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/stomata-from-npq1-lack-a-specific-response-to-blue-light/

Frederick J. R. (1997) – Winter wheat photosynthesis, stomatal conductance, and leaf nitrogen concentration during reproductive development – Crop Science, Madison 37(6): 1819-1826 – doi:10.2135/cropsci1997.0011183X003700060026x – https://dl.sciencesocieties.org/publications/cs/abstracts/37/6/CS0370061819?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/26/winter-wheat-photosynthesis-stomatal-conductance-and-leaf-nitrogen-concentration/ )

Freeland R. O. (1948) – Photosynthesis in relation to stomatal frequency and distribution – Plant Physiology 23: 595-600 – DOI: https://doi.org/10.1104/pp.23.4.595 – http://www.plantphysiol.org/content/23/4/595 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/photosynthesis-stomatal-frequency-and-distribution/ )

Freudenberger H. (1940) – Die Reaktion der Schliesszellen auf Kohlensäure und Sauerstoff-Entzug – Protoplasma 35: Heft 1 – DOI 10.1007/BF02807306 – Thesis/dissertation – Berlin : Borntraeger, 1940.

Frey B., Scheidegger C., Gunthardt-Goerg M. S., Matyssek R. (1996) – The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital as image-analysis and X-ray microanalysis – New Phytologist 132: 135–143.| CrossRef | CAS | – (On our blog) : https://plantstomata.wordpress.com/2015/10/03/stomata-ozone-and-fertilizer/ )

Fricker M. D., Gilroy S., Read N. D., Trewavas A. J. (1991) – Visualisation and measurement of the calcium message in guard cells. – In: Molecular Biology of Plant Development. W. Schuch and G. Jenkins, editor. Cambridge University Press, Cambridge – Symp Soc Exp Biol. 45: 177-190 – https://www.ncbi.nlm.nih.gov/pubmed/1843407 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/the-calcium-message-in-stomata/ )

Fricker M. D., White N. (1990) – Volume measurements of guard cell vacuoles during stomatal movements using confocal microscopy. – Transactions of the Royal Microscopical Society 1: 345–358. (Article not found).

Fricker M. D., Willmer C. M. (1987) – Vanadate sensitive ATPase and phosphatase activity in guard cell protoplasts of Commelina – J. Exp. Bot. 38: 642–648 – https://doi.org/10.1093/jxb/38.4.642 – https://academic.oup.com/jxb/article-abstract/38/4/642/457629?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/09/18/atpase-and-phosphatase-activity-in-stomatal-protoplasts/ )

Fricker M. D., Willmer C. M. (1990) – Some properties of proton pumping ATPase at the plasma membrane and tonoplast of guard cells – Biochem. Physiol. Pflanzen 186: 301–308 – https://doi.org/10.1016/S0015-3796(11)80222-2 – https://ac.els-cdn.com/S0015379611802222/1-s2.0-S0015379611802222-main.pdf?_tid=3a9b974c-d577-411a-b8bf-4eed9d488ead&acdnat=1537294363_aab9f248c47abe7f470849568e671e06 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/proton-pumping-atpase-at-the-plasma-membrane-and-tonoplast-of-stomata/ )

Fricker M. D., Willmer C. M. (1990) – Nitrate-sensitive ATPase activity and proton pumping in guard cell protoplasts of Commelina – J. Exp. Bot. 41(2): 193-198 – https://doi.org/10.1093/jxb/41.2.193 – https://academic.oup.com/jxb/article-abstract/41/2/193/498816?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/09/25/nitrate-sensitive-atpase-activity-and-proton-pumping-in-stomatal-protoplasts/ )

Friedl S. (2015) –  Stomata of Plants: Function, Definition & Structure – Video & Lesson Transcript | Study.com. [online] Study.com. – http://study.com/academy/lesson/stomata-of-plants-function-definition-structure.html

Friend A. D. (1991) – Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning – Plant, Cell & Environment 14(6): 895-905 – https://doi.org/10.1111/j.1365-3040.1991.tb00958.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb00958.x – (On our blog : https://plantstomata.wordpress.com/2019/04/26/a-model-of-photosynthesis-and-leaf-microenvironment-to-predict-optimal-stomatal-conductance/ )

Frommhold I. (1971) – Ontogenetische und funktionelle Entwicklung der Stomata von Hafer (Avena sativa L.) – Biochem. Physiol. Pflanzen (BPP) 162: 410-416 – https://ac.els-cdn.com/S0015379617311654/1-s2.0-S0015379617311654-main.pdf?_tid=04595029-8657-423c-893f-5c5d509e5d8a&acdnat=1521046168_500ab3f8d4c0be3cd5451c5af634d376 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/ontogenetic-and-functional-development-of-stomata/ )

Fry K. E. (1965) – A study of transpiration and photosynthesis in relation to stomatal resisance and internal water potential in Douglas Fir. – Ph.D. thesis Univ. Washington.

Fry K. E., Walker R. B. (1967) – A pressure infiltration method for estimating stomatal opening in conifers – Ecology 48: 155-157- DOI: 10.2307/1933428 – https://www.jstor.org/stable/1933428?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/14/a-pressure-infiltration-method-for-estimating-stomatal-opening/ )

Fu Q. S. , Zhao B., Wang Y. J.. Ren S., Guo Y. D. (2010) – Stomatal development and associated photosynthetic performance of Capsicum in response to differential light availabilities – Photosynthetica 48: 189-198 –  https://doi.org/10.1007/s11099-010-0024-5 – https://link.springer.com/article/10.1007%2Fs11099-010-0024-5#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/14/stomatal-development-in-response-to-differential-light-availabilities/ )

Fu X., Meinzer F. C., Woodruff D. R., Liu Y.-Y., Smith D. D., McCulloh K. A., Howard A. R. (2019) – Coordination and trade‐offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry -Plant, Cell & Environment – https://doi.org/10.1111/pce.13543 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13543?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/01/leaf-and-stem-hydraulic-traits-and-stomatal-regulation-along-a-spectrum-of-isohydry-to-anisohydry/ )

Fuchs E. E., Livingston N. J. (1996) – Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesi (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings – Plant, Cell & Environment 19: 1091-1098 – https://doi.org/10.1111/j.1365-3040.1996.tb00216.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb00216.x – (On our blog : https://plantstomata.wordpress.com/2019/02/04/hydraulic-control-of-stomatal-conductance-3/ )

Fuentes S., Canamero R. C., Serna L. (2012) – Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl  –  Int. J. Dev. Biol. 56: 675–680 – DOI10.1387/ijdb.120029ls – [PubMed] – https://www.semanticscholar.org/paper/Relationship-between-brassinosteroids-and-genes-co-Fuentes-Ca%C3%B1amero/11707d77f3e5fdb6f7ad40bb71fef8d1d69c5739 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/differences-in-the-genetic-control-of-stomatal-development-between-cotyledons-or-leaves-and-hypocotyls/

Fuchs E. E., Livingston N. J. (1996) – Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii(Mirb) Franco] and alder [Alnus rubra (Bong)] seedlings. – Plant, Cell and Environment 19, 1091–1098. – DOI:10.1111/j.1365-3040.1996.tb00216.x – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/05/24/hydraulic-control-of-stomatal-conductance/ )

Fujino M. (1959) – Stomatal movement and active migration of potassium (in Japanese) – Kagaku 29: 660-661 – (Article not found)

Fujino M. (1967) – Role of adenosinetriphosphate and adenosinetriphosphatase in stomatal movement – Sci. Bull. Fac. Educ. Nagasaki Univ. 18: 1–47 – kyoikuS18_001.pdfnaosite.lb.nagasaki-u.ac.jp/dspace/bitstream/10069/33158/1/kyoikuS18_001.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/15/atp-and-atp-ase-in-stomatal-movements/ )

Fujino M., Jinno N. (1972) – The fine structure of the guard cell of Commelina communis L. – Sci. Bull., Fac. Educ. Nagasake Univ. (23), 101–111 – http://hdl.handle.net/10069/33029 – Google Scholar – kyoikuS23_101.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/14/the-ultrastructure-of-a-guard-cell-in-stomata/

Fujioka H., Samejima H., Suzuki H., Mizutani M., Okamoto M., Sugimoto Y. (2019) – Aberrant protein phosphatase 2C leads to abscisic acid insensitivity and high transpiration in parasitic Striga – Nature Plants – DOI: 10.1038/s41477-019-0362-7 –https://www.nature.com/articles/s41477-019-0362-7 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/shpp2c1-interrupts-aba-signalling-responsible-for-controlling-stomatal-closure/ )

Fujita T., Noguchi K., Ozaki H., Tefrashima I. (2019) – Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method – Functional Plant Biology – https://doi.org/10.1071/FP18250http://www.publish.csiro.au/fp/FP18250 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/mesophyll-signals-controlling-stomatal-responses/ )

Fujita T., Noguchi K., Terashima I. (2013) – Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. – New Phytologist, 2013, 199, 2, 395 – DOI: 10.1111/nph.12261 – Wiley Online Library – (On our blog : https://plantstomata.wordpress.com/2016/05/24/apoplastic-mesophyll-signals-and-stomatal-responses-to-co2/ )

Fujiwara M., Yasuzawa M., Kojo K. H., Abe T., Yoshida S., Nakano T., Itoh R. D. (2018) – The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis – PLOS One13(2): e0192380. – https://doi.org/10.1371/journal.pone.0192380 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192380 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/arabidopsis-arc5-and-arc6-mutations-differentially-affect-plastid-morphology-in-pavement-and-stomata/ )

Fukuda M., Hasezawa S., Asai N., Nakajima N., Kondo N. (1998) – Dynamic organization of microtubules in guard cells of Vicia faba L. with diurnal cycle – Plant Cell Physiology 39: 80–86 – https://www.ncbi.nlm.nih.gov/pubmed/9517004 – (On our blog : https://plantstomata.wordpress.com/2018/09/25/radially-organized-cortical-mts-of-guard-cells-may-control-diurnal-stomatal-movement/ )

Fukuda M., Hasezawa S., Nakajima N., Kondo N. (2000) – Changes in tubulin expression in guard cells of Vicia faba L. accompanied with dynamic organization of microtubules during the diurnal cycle – Plant Cell Physiology 41: 600–607 – https://www.ncbi.nlm.nih.gov/pubmed/10929943 – (On our blog :

Furukawa A., Park S.-Y., Fujinuma Y. (1990) – Hybrid poplar stomata unresponsive to changes in environmental conditions – Trees December 1990, Volume 4,Issue 4, pp 191-197 – http://link.springer.com/article/10.1007%2FBF00225315 – (On our blog https://plantstomata.wordpress.com/2016/05/24/factors-affecting-stomatal-conductance/ )

Advertisements