PHYSIO-BIBLIOGRAPHY D-F

Dabrowska J. (1971) – Correlation between the number of chloroplasts in stomata guard cells and the degree of polyploidy of 14 taxons of Achillea d – Herba Polonica 17(3): 200-208 – https://eurekamag.com/research/015/394/015394405.php

Dabrowska J. (1996) – The number of chloroplasts in stomata guard cells – a useful character for separating polyploids and diploids – Beitrage zur Zuchtungsforschung Bundesanstalt fur Zuchtungsforschung an Kulturpflanzen 2(1): 239-243 – https://eurekamag.com/research/002/990/002990799.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/natural-polyploids-had-more-chloroplasts-in-their-stomatal-guard-cells-than-diploids/ )

Dai Q. S., Peng A.Q., Chavez, Vergara B. S. (1995) – Effects of UVB radiation on stomatal density and opening in rice (Oryza sativa L.). – Ann. Bot. 76: 65-70 – (On our blog: https://plantstomata.wordpress.com/2016/05/16/uvb-radiation-and-stomatal-density-and-opening/)

Dai Y., Dickinson R. E., Wang Y.-P. (2004) – A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance – Journal of Climate 17(2): 2281–2299 – https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2https://journals.ametsoc.org/view/journals/clim/17/12/1520-0442_2004_017_2281_atmfct_2.0.co_2.xml – (On our blog : https://plantstomata.wordpress.com/2021/01/22/a-two-big-leaf-model-for-stomatal-conductance/ )

Dai Z., Edwards G. E., Ku M. S. B. (1992) – Control of photosynthesis and stomatal conductance in Ricinus communis L. (Castor Bean) by leaf to air vapor pressure deficit – Plant Physiol. 99: 1426–1434 – doi: 10.1104/pp.99.4.1426 – http://www.plantphysiol.org/content/99/4/1426 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/control-of-stomatal-conductance-by-leaf-to-air-vapor-pressure-deficit/ )

Dale J. E. (1961) – Investigations into the stomatal physiology of upland cotton. I. The effects of hour of day, solar radiation, temperature and leaf water content on stomatal behaviour – Ann. Bot. 25: 39-52 – DOI: 10.1093/oxfordjournals.aob.a083731 – https://www.jstor.org/stable/42907568?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/stomatal-physiology-of-upland-cotton/ )

Dale J. E. (1961) – Investigations into the stomatal physiology of upland cotton: 2. Calibration of the Infiltration Method against Leaf and Stomatal Resistances – Ann. Bot. 25: 39-52 – https://www.jstor.org/stable/42907576?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/use-of-the-infiltration-method-for-deriving-estimates-of-stomatal-resistance/ )

Dale M. L., Irwin J. A. G. (1991) – Stomata as an Infection Court for Phytophthora megasperma f. sp. medicaginis in Chickpea and a Histological Study of Infection – Phytopathology 81: 375-379 – DOI:10.1094/Phyto-81-375 https://www.apsnet.org/publications/phytopathology/backissues/Documents/1991Articles/Phyto81n04_375.PDF – (On our blog : https://plantstomata.wordpress.com/2021/04/15/stomata-located-at-or-below-the-soil-line-could-act-as-an-infection-court-for-zoospores-present-in-surface-water/ )

Daley M. J., Phillips N. (2006) – Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest – Tree Physiology 26(4): 411-419 – DOI: 10.1093/treephys/26.4.411https://www.researchgate.net/publication/7357276_Interspecific_variation_in_nighttime_transpiration_and_stomatal_conductance_in_a_mixed_New_England_deciduous_forest – (On our blog : https://plantstomata.wordpress.com/2021/12/15/interspecific-variation-in-nighttime-transpiration-and-stomatal-conductance/ )

Daley P. F., Raschke K., Ball J. T., Berry J. A. (1989) – Topography of Photosynthetic Activity of Leaves Obtained fromVideo Images of Chlorophyll Fluorescence – Plant Physiol. 90: 1233-1238 – https://www.academia.edu/37479199/Topography_of_Photosynthetic_Activity_of_Leaves_Obtained_from_Video_Images_of_Chlorophyll_Fluorescence – (On our blog : https://plantstomata.wordpress.com/2019/11/18/stomatal-closure-in-groups/ )

Daloso D. M., Anjos L., Fernie A. R. (2016) – Roles of sucrose in guard cell regulation – New Phytologist 211: 809-818 –

Daloso D. M. , Antunes W. C. , Pinheiro D. P. , Waquim J. P., Araújo W. L., Loureiro M. E., Fernie A. R., Williams T. C. (2015) – Tobacco guard cells fix CO2 by both Rubisco and PEPcase while sucrose acts as a substrate during light-induced stomatal opening – Plant Cell Env. 38: 2353–2371 – https://doi.org/10.1111/pce.12555https://onlinelibrary.wiley.com/doi/10.1111/pce.12555 – (On our blog: https://plantstomata.wordpress.com/2022/01/03/co2-fixation-occurs-in-stomatal-guard-cells-both-via-ribulose-15-biphosphate-carboxylase-oxygenase-rubisco-and-phosphoenolpyruvate-carboxylase-pepcase/ )

Daloso D. M., Dos Anjos L., Fernie A. R. (2016) – Roles of sucrose in guard cell regulation – New Phytologist 211: 809-818 – doi:10.1111/nph.13950 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13950/abstract – (On our blog : https://plantstomata.wordpress.com/2016/04/07/sucrose-and-guard-cell-metabolism-and-stomatal-regulation/)

Daloso D. M., Medeiros D. B., dos Anjos L., Yoshida T., Araújo W. L., Fernie A. R. (2017) – Metabolism within the specialized guard cells of plants – New Phytol. – doi:10.1111/nph.14823 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14823/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/06/metabolism-within-the-specialized-guard-cells-of-plants/ )

Daloso D. M., Williams T. C., Antunes W. C., Pinheiro D. P., Muller C., Loureiro M. E., Fernie A. R. (2015) – Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic – New Phytol. 209(4): 1470–1483 – doi: 10.1111/nph.13704 [Epub ahead of print] – http://onlinelibrary.wiley.com/doi/10.1111/nph.13704/full – (On our blog : https://plantstomata.wordpress.com/2018/02/27/the-role-of-sucrose-in-stomatal-function-is-primarily-energetic/ )

Daly R. G., Gastaldo R. A. (2010) – the effect of leaf orientation to sunlight on stomatal parameters of Quercus rubra around the Belgrade lakes, Central Maine – Palaios 25: 339–346 – DOI: 10.2110/palo.2009.p09-107rhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1076.2034&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/29/exposure-to-various-sunlight-regimes-on-opposite-sides-of-a-lake-does-not-play-a-role-in-the-stomatal-response-as-reflected-in-sd-and-si-of-plants-during-a-single-growing-season/ )

DaMatta F. M., Cunha R. L., Antunes W. C., Martins S. C. V., Araujo W. L., Fernie A. R., Moraes G. A. B. K. (2008) – In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function – New Phytologist 178: 348– 357 – https://doi.org/10.1111/j.1469-8137.2008.02367.xhttps://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2008.02367.x – (On our blog : https://plantstomata.wordpress.com/2022/04/04/an-impaired-stomatal-function-with-relatively-little-alteration-in-overall-leaf-metabolism/ )

DaMatta F. M., Godoy A. G., Menezes-Silva P. E., Martins S. C., Sanglard L. M., Morais L. E., Torre-Neto A., Ghini R. (2016) – Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. – J. Exp. Bot. 67: 341–352 – doi: 10.1093/jxb/erv463 – https://www.ncbi.nlm.nih.gov/pubmed/26503540 – (On our blog : https://plantstomata.wordpress.com/2018/02/27/disentangling-stomatal-mesophyll-and-biochemical-limitations/ )

D’Amelio E., Zeiger E. (1988) – Diversity in guard cell plastids of the Orchidaceae : a structural and functional study – Can. J. Bot. 66: 257–271 – https://doi.org/10.1139/b88-044https://cdnsciencepub.com/doi/10.1139/b88-044 – (On our blog : https://plantstomata.wordpress.com/2021/05/20/a-broad-structural-diversity-in-the-guard-cell-plastids-of-the-orchidaceae/ )

Damian N. A., Ramirez R. I., Pena V. C. B., Diaz V. G., Gonzalez H. V. A. (2009) – Gas exchange characteristics of guava (Psidium guajava L.) leaves (Características del intercambio de gases en hojas de guayabo (Psidium guajava L.) – Rev. Chapingo Ser.Hortic 15(2): – http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1027-152X2009000200003 – (On our blog : https://plantstomata.wordpress.com/2021/05/20/stomatal-conductance-and-gas-exchange-characteristics-of-guava/ )

Damiano N., Arena C.. Bonfante A., Caputo R., Erbaggio A., Cirillo C., De Micco V. (2022) – How Leaf Vein and Stomata Traits Are Related with Photosynthetic Efficiency in Falanghina Grapevine in Different Pedoclimatic Conditions – Plants 11: 1507 – https://doi.org/10.3390/plants11111507file:///C:/Users/wille/Downloads/plants-11-01507.pdf – (On our blog : https://plantstomata.wordpress.com/2022/07/29/site-specific-stomata-and-vein-traits-modulation-are-an-acclimation-strategy-that-may-influence-photosynthetic-performance/ )

Damodaran S. (2019) – Multiple transcriptional factors control stomata development in rice – Plant Science Research Weekly  – https://plantae.org/research/what-were-reading-this-week/multiple-transcriptional-factors-control-stomata-development-in-rice-new-phytol/ – (On our blog : https://plantstomata.wordpress.com/2019/08/16/80287/

Damour G., Simonneau T., Cochard H., Urban L. (2010) – An overview of models of stomatal conductance at the leaf level – Plant Cell Environ. 33: 1419–1438 – https://doi.org/10.1111/j.1365-3040.2010.02181.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2010.02181.x – (On our blog https://plantstomata.wordpress.com/2016/05/16/models-of-stomatal-conductance/ )

Dane K. (xxxx) – Explain the Mechanism of Stomatal Opening – https://www.owlgen.in/explain-the-mechanism-of-stomatal-opening/ – (On our blog : https://plantstomata.wordpress.com/2022/03/21/the-mechanism-of-stomatal-opening/ )

Daningsih E., Mardiyyanigsih A. N., Da Costa Y. O., Primawat R., S Karlina S. (2002) – Changes of stomatal distribution and leaf thickness in response to transpiration rate in six dicot plant species – IOP Conference Series: Earth and Environmental Science, 976, 2nd International Conference on Tropical Wetland Biodiversity and Conservation 23-24th October 2021, Banjarbaru City, IndonesiaCitation – E Daningsih et al 2022 IOP Conf. Ser.: Earth Environ. Sci. 976 012060

Danneberger K. (2000) – Stomata : The Plant’s Port of Entry – Turfgrass Trends 9(3): 1-3 – https://archive.lib.msu.edu/tic/tgtre/article/2000mar1a.pdf – (On our blo) – g : https://plantstomata.wordpress.com/2021/10/16/94427/ )

Danneberger K. (2016) – Understanding the complex workings of Stomata – Golfdom – https://www.golfdom.com/understanding-the-complex-workings-of-stomata/ – (On our blog : https://plantstomata.wordpress.com/2020/07/05/the-complex-workings-of-stomata/ )

Dang Q.-L., Margolis H. A., Collatz G. J. (1998) – Parameterization and testing of a coupled photosynthesis-stomatal conductance model for boreal trees – Tree Physiology 18: 141–153 – PMID: 12651384 – https://www.lakeheadu.ca/sites/default/files/profile-data/qdang/Dang%20et%20al.%201998.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/10/a-coupled-photosynthesis-stomatal-conductance-model-was-parameterized/ )  

Danve C., Castroverde M. (2018) – CDL1-OST1 Interaction as a Focal Point of Brassinosteroid-Abscisic Acid Hormone Signaling Crosstalk – The Plant Cell  – https://doi.org/10.1105/tpc.18.00603 – http://www.plantcell.org/content/30/8/1668?rss=1 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/interaction-between-the-br-associated-cdg1-like1-cdl1-and-aba-associated-open-stomata1-ost1/ )

Danyanandan P., Kauffman P. B. (1975) – Stomatal movements associated with potassium fluxes – Am. J. Bot. 62: 221-231 – doi:10.1002/j.1537-2197.1975.tb12347.x – http://onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1975.tb12347.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/potassium-fluxes-and-stomatal-movements/ )

Danzer J., Mellott E., Bui A. Q., Le B. H., Martin P., Hashimoto M., Perez-Lesher J., Chen M., Pelletier J. M., Somers D. A., Goldberg R. B., Harada J. J. (2015) – Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development – Plant Physiology 168(3): – https://doi.org/10.1104/pp.15.00432 – http://www.plantphysiol.org/content/168/3/1025 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/variation-in-the-timing-of-bhlh-transcription-factor-gene-expression-can-explain-the-diversity-of-stomatal-forms/)

Darley C. P., Skiera L. A., Northrop F. D., Sanders D., Davies J. M. (1998)
Tonoplast inorganic pyrophosphatase in Vicia faba guard cells – Planta 206: 272-
277 –

Darók J, Kocsis M, Borhidi A. (1999) – Quantitative characteristics of stomata and epidermal cells of leaves in the genus Exostea (Rubiaceae) – Acta Bot. Hung. 42: 97-104 – https://ecolres.hu/en/node/3239

Darrow R. A. (1935) – A study of the transpiration rates of several desert grasses and shrubs as related to environmental conditions and stomatal periodicity – Thesis University of Arizona – 228 pp.

Darwin F. (1897) – Observations on stomata by a new method. – Proc Cambridge Phil Soc 9: 303-308 –

Darwin F. (1898) – IX. Observations on stomata – Phil. Transactions Roy. Soc. London B 190: 531-561 – https://doi.org/10.1098/rstb.1898.0009 – https://archive.org/stream/philtrans04647888/04647888_djvu.txt  – (On our blog : https://plantstomata.wordpress.com/2016/10/24/observations-on-stomata-francis-darwin-1898/)

Darwin F. (1904) – On a self-recording method applied to the movements od stomata – Bot. Gaz. 37: 81-105 –

Darwin F., Pertz D. F. M. (1911) – On a new method of estimating the aperture of stomata – Proceedings of the Royal Society of London Series B 84: 136–154 – https://doi.org/10.1098/rspb.1911.0058https://royalsocietypublishing.org/doi/10.1098/rspb.1911.0058 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/estimating-the-aperture-of-stomata-2/ )

Darwin F. (1916) – On the relation between transpiration and stomatal aperture – Phil. Trans. Roy. Soc. London B 207 : 413-437 – DOI: 10.1098/rstb.1916.0009 – http://rstb.royalsocietypublishing.org/content/207/335-347/413 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/transpiration-and-stomatal-aperture/ )

Darwin F., Pertz D. F. M. (1911) – On a new method of estimating the aperture of stomata – Proc. Roy. Soc. London B 84: 136-149 – http://rspb.royalsocietypublishing.org/content/84/569/136 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/estimating-the-aperture-of-stomata/ )

Darwish D. S., Fahmy G. M. (1997) – Transpiration decline curves and stomatal characteristics of faba bean genotypes – Biologia plantarum 39(2): 243-249 – https://doi.org/10.1023/A:1000301205458https://link.springer.com/article/10.1023/A:1000301205458 – (On our blog : https://plantstomata.wordpress.com/2020/02/19/transpiration-decline-curves-and-stomatal-characteristics/ )

Das V. S. R., Raghavendra A. S. (1974) – Control of stomatal opening by pyruvate metabolism in light – Indian J Exp Biol 12: 425-428 –

Das V. S. R., Rao I. M., Raghavendra A. S. (1976 ) – Reversal of abscisic acid induced stomatal closure by benzyl adenine – New Phytol 76: 449–452 – https://doi.org/10.1111/j.1469-8137.1976.tb01480.xhttp://repository.ias.ac.in/40192/1/17-PUB.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/27/78803/ )

Das V. S. R., Rao I. M., Raghavendra A. S. (1977) – Mechanism of stomatal movement – Nature 266: 282 –  https://doi.org/10.1038/266282a0https://www.nature.com/articles/266282a0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/10/16/stomatal-movement-3/ )

Das V. S. R., Santakumari M. (1975) – Stomatal behaviour towards four classes of herbicides as a basis of selectivity to certain weeds and crop plants – Proceedings of the Indian Academy of Sciences – Section B 82(3)108–116 – https://doi.org/10.1007/BF03050523https://link.springer.com/article/10.1007/BF03050523#citeas – (On our blog : https://plantstomata.wordpress.com/2019/11/28/stomatal-behaviour-towards-four-classes-of-herbicides/ )

Das V. S. R., Santakumari M. (1977) – Stomatal characteristics of some dicotyledonous plants in relation to the C3 and C4 pathway of photosynthesis – Plant and Cell Physiology 18: 935-938 –

da Silva A. C., de Oliveira Silva F. M., Milagre J. C., Omena-Garcia R. P., Abreu M. C., Mafia R. G., Nunes-Nesi A., Alfenas A. C. (2018) – Eucalypt plants are physiologically and metabolically affected by infection with Ceratocystis fimbriata – Plant Physiol Biochem. 123: 170-179 – doi: 10.1016/j.plaphy.2017.12.002 – Epub 2017 Dec 6 – PMID: 29247937 – https://pubmed.ncbi.nlm.nih.gov/29247937/ – (On our blog : https://plantstomata.wordpress.com/2022/09/23/stomata-and-the-physiological-and-metabolic-changes-following-the-infectious-process-of-ceratocystis-fimbriata/n )

Daszkowska-Golec A., Szarejko I. (2013) –  Open or close the gate – stomata action under the control of phytohormones in drought stress conditions – Frontiers in Plant Science 4 – doi: 10.3389/fpls.2013.00138https://www.frontiersin.org/articles/10.3389/fpls.2013.00138/full – (On our blog : https://plantstomata.wordpress.com/2017/11/07/stomata-movements-and-phytohormones-in-drought-stress/)

Daubermann A. G., Lima V. F., Schwarzländer M., Erban A., Kopka J., … (2021) – Distinct metabolic flux modes through the tricarboxylic acid cycle in mesophyll and guard cells revealed by GC-MS-based 13C-positional isotopomer analysis – bioRxiv –

Daunay M. C., Schoch P. G., Malet P. (1986) – Stomatal frequencies of eggplants (Solanum melongena L.) and relationships with root development – Agronomie 6: 523-528 –

Davenport D. C. (1966) – Effect of phenylmercuric acetate on transpiration and growth  of small plots of grass – Nature 212: 801-802 –

Davenport D. C. (1975) – Stomatal resistance from Cuvette transpiration measurements – Bull. Wash. (State) Agric. Exp. Stn. 809: 12-15 –

Davenport D. C., Fischer M. A., Hagan  R. M. (1971) – Retarded stomatal closure by phenylmercuric acetate – Physiol. Plant. 24: 330-336 – doi:10.1111/j.1399 -3054.1971.tb03499.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1971.tb03499.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/pma-is-retarding-all-stomatal-movements-that-are-osmotically-induced/ )

Davenport J. (1946) – Citrus leaf stomata; structure, composition, and pore size in relation to penetration of liquids – ISSN0006-8071 , 1940-1205 – ISBN: 0412403501 (alk. paper) – In: Animal life at low temperature 108(4): 476-483 –

David L., Harmon A. C., Chen S. (2019) – Plant immune responses – from guard cells and local responses to systemic defense against bacterial pathogens – Plant Signaling & Behavior 14(5) https://doi.org/10.1080/15592324.2019.1588667https://www.tandfonline.com/doi/abs/10.1080/15592324.2019.1588667 – (On our blog : https://plantstomata.wordpress.com/2019/05/03/the-role-of-stomatal-guard-cells-in-local-and-systemic-immune-responses/ )

David L., Kang J., Nicklay J., Dufresne C., Chen S. (2021) – Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance – Front. Mol. Biosci., 17 December 2021 – https://doi.org/10.3389/fmolb.2021.746523https://www.frontiersin.org/articles/10.3389/fmolb.2021.746523/full – (On our blog : https://plantstomata.wordpress.com/2022/02/03/identification-of-stomatal-guard-cell-specific-sar-related-molecules-may-lead-to-new-avenues-of-genetic-modification-molecular-breeding-for-disease-resistant-plants/ )

Davies K. A., Bergmann D. C. (2014) – Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential – Proc Natl Acad Sci U S A. 111(43): 15585-15590 – doi: 10.1073/pnas.1411766111  – PMID: 25304637 – http://www.pnas.org/content/111/43/15585.full – (On our blog : https://plantstomata.wordpress.com/2018/02/27/functional-specialization-of-stomatal-bhlhs-through-modification-of-dna-binding-and-phosphoregulation-potential/ )

Davies K. L., Stpiczynska M., Gregg A. (2005) – Nectar-secreting floral stomata in Maxillaria anceps Ames & C. Schweinf. (Orchidaceae) – Annals of Botany 96(2): 217-227 – DOI10.1093/aob/mci182https://eurekamag.com/research/049/663/049663009.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/nectar-exuded-by-modified-stomata-in-an-orchid/ )

Davies W. J. (1976) – Stomatal Responses to Water Stress and Light in Plants Grown in Controlled Environments and in the Field – Crop Science 17(5): 735-740 – doi:10.2135/cropsci1977.0011183X001700050015x – https://dl.sciencesocieties.org/publications/citation-manager/prev/zt/cs/17/5/CS0170050735 – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomatal-responses-to-water-stress-and-light/ )

Davies W. J. (1978) – Some effects of abscisic acid and water stress on stomata of Vicia faba L. – J. Exp. Bot. 29: 175-182 – https://doi.org/10.1093/jxb/29.1.175 – https://academic.oup.com/jxb/article-abstract/29/1/175/494514/Some-Effects-of-Abscisic-Acid-and-Water-Stress-on?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/18/effects-of-aba-and-water-stress-on-stomata/)

Davies W. J., Gill K., Halliday G. (1978) – The Influence of Wind on the Behaviour of Stomata of Photosynthetic Stems of Cytisus scoparius (L.) Link – Annals of Botany 42(181): 1149-1154 – https://www.jstor.org/stable/42764099?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/13/influence-of-wind-on-the-behaviour-of-stomata/ )

Davies W. J., Kozlowski T. T. (1974) – Stomatal responses of five woody angiosperms to light intensity and humidity – Canad. Journ. Bot. 52(7): 1525-1534 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-responses-of-trees-to-light-intensity-and-humidity/)

Davies W. J., Kozlowski T. T. (1975) – Stomatal responses to changes in light intensity as influenced by plant water stress – For. Sci. 21: 129–133 –  https://doi.org/10.1093/forestscience/21.2.129 – https://academic.oup.com/forestscience/article-abstract/21/2/129/4675575?redirectedFrom=fulltext – (On our blog :  )https://plantstomata.wordpress.com/2018/12/02/stomatal-responses-to-changes-in-light-intensity-as-influenced-by-plant-water-stress/

Davies W. J., Kozlowski T. T. (1977) – Variations among woody plants in stomatal conductance and photosynthesis during and after drought – Plant Soil 46: 435–444 – https://doi.org/10.1007/BF00010099 – https://link.springer.com/article/10.1007%2FBF00010099#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/02/survival-of-plants-in-relation-to-stomatal-control-of-transpiration-and-metabolic-responses-to-water-stress/ )

Davies W. J., Kozlowski T. T., Pereira J. S. (1974) – Effect of wind on transpiration and stomatal aperture of woody plants –  Int. Plant Physiol. Symp. Mech. Plant Growth, Massey Univ., Palmerston North, New Zealand –

Davies W. J., Mansfield T. A. (1987) – Auxins and stoma – In: Stomatal Function, Zieger, E., Farquhar, G.D. and Cowan, I.R. (eds) – Stanford University Press, Stanford (CA), 293-307 –

Davies W. J., Wilkinson S., Loveys B. (2002) – Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture – New Phytologist 153: 449–460 – (On our blog : https://plantstomata.wordpress.com/2016/03/13/stomatal-control-by-chemical-signalling/)

Davies W. J. Wilson J. A., Sharp R. E., Osonubi O. (1980) – Control of stomatal behaviour in water stressed plants – In: Stomatal Physiology (eds.) P.G. Jarvis, and T.A. Mansfield). C.U.P., London  (1980), 165-184 – https://books.google.be/books?id=Y1GCxYwNapMC&pg=PA159&lpg=PA159&dq=stomata+1979&source=bl&ots=rrRF6HBrx0&sig=ACfU3U13Sca7jIwaHRVV-QkPPf8IwjiYoA&hl=en&sa=X&ved=2ahUKEwj-q-eN7OryAhUWNuwKHRs6DaU4KBDoAXoECCMQAw#v=onepage&q=stomata%201979&f=false – (On our blog : https://plantstomata.wordpress.com/2021/09/07/stomatal-behaviour-in-water-stressed-plants/ )

Davis A. R. (1997) – Influence of floral visitation on nectar-sugar composition and nectary surface changes in Eucalyptus – Apidologie 28: 27-42 – https://hal.archives-ouvertes.fr/hal-00891400/document – (On our blog : https://plantstomata.wordpress.com/2022/01/15/modified-stomata-in-eucalyptus/ )

Davis A. R., Gunning B. E. S. (1991) – The modified stomata of the floral nectary of Vicia faba L. – 1. Development, anatomy and ultrastructure – Protoplasma164: 134-152 – https://doi.org/10.1007/BF01322777 – https://link.springer.com/article/10.1007/BF01322777#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/27/development-anatomy-and-ultrastructure-of-modified-stomata/ )

Davis A. R., Gunning B. E. S. (1991) – The modified stomata of the floral nectary of Vicia faba L. – 2. Stomatal number and distribution as selection criteria for breeding for high nectar sugar production – Acta Hortic. 288: 329-334 –
DOI: 10.17660/ActaHortic.1991.288.53 – https://www.ishs.org/ishs-article/288_53 – (On our blog : https://plantstomata.wordpress.com/2018/02/27/stomatal-number-and-distribution-as-selection-criteria-for-breeding-for-high-nectar-sugar-production/ )

Davis A. R., Gunning B. E. S. (1993) – The modified stomata of the floral nectary of Vicia faba L.: 3. Physiological aspects, including comparisons with foliar stomata – Bot. Acta. 106: 241–253 – DOI: 10.1111/j.1438-8677.1993.tb00747.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1993.tb00747.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/modified-stomata-do-not-have-a-regulatory-role-in-nectar-secretion-by-flowers-of-vicia-faba/ )

Davis W. J. (1977) – Stomatal responses to water stress and light in plants grown in controlled environments and in the field – Crop Sci. 21: 244-248 –

Dawson T. E., Burgess S. S. O., Tu K. P., Oliveira R. S., Santiago L. S., Fischer J. B., Simonin K. A., Ambrose A. R. (2007) – Nighttime transpiration in woody plants from contrasting ecosystems – Tree Physiology 27: 561–575 – https://www.academia.edu/11545436/Nighttime_transpiration_in_woody_plants_from_contrasting_ecosystems?email_work_card=view-paper – (On or blog : https://plantstomata.wordpress.com/2021/12/15/97606/ )

Dayanandan P., Barnabas A. D., Jayakumar P. S., Christopher J. (1986) – Observations on peculiar air passages in the stems of Gloriosa superba L. and Iphigenia indica Kunth – Curr. Sci. 55(5): 235-238 – Gloriosa_-_included_stomata.pdf.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/peculiar-air-passages-and-included-stomata-in-the-stems-of-gloriosa/)

Dayanandan P., Kaufman P. B. (1975) – Stomatal movements associated with potassium fluxes – Am J Bot 62: 221–231 – STOMATAL_MOVEMENTS_ASSOCIATED_WITH_POTAS.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64758)

Dayer S.,  Perez Peña J., Gindro K.,  Torregrosa L.,  Voinesco F.,  Martínez L.,  Prieto J. A.,  Zufferey V. (2017) – Changes in leaf stomatal conductance, petiole hydraulics and vessel morphology in grapevine (Vitis vinifera cv. Chasselas) under different light and irrigation regimes – Functional Plant Biology – https://doi.org/10.1071/FP16041 – http://www.publish.csiro.au/fp/FP16041 – (On our blog : https://plantstomata.wordpress.com/2017/05/02/not-only-plant-water-status-but-also-the-light-environment-at-the-leaf-level-affect-leaf-and-petiole-hydraulics/)

Daymond A. J., Tricker P. J., Hadley P. (2011) – Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen – Biologia Plantarum 55(1): 99-104 – https://www.worldcocoafoundation.org/wp-content/uploads/files_mf/daymond2011.pdf – (On our blog : https://plantstomata.wordpress.com/2020/02/09/genotypic-variation-in-photosynthesis-in-cacao-is-correlated-with-stomatal-conductance/ )

Daszkowska-Golec A., Szarejko I. (2013) – Open or close the gate – Stomata action under the control of phytohormones in drought stress conditions – Front. Plant Sci. 4, 138 – doi: 10.3389/fpls.2013.00138https://www.frontiersin.org/articles/10.3389/fpls.2013.00138/full – (On our blog : https://plantstomata.wordpress.com/2020/03/07/stomata-action-under-the-control-of-phytohormones-in-drought-stress-conditions/ )

Day M. E. (2000) – Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens) – Tree Physiology 20: 57-63 –

de Almeida Filho H. (2018)Ctenante openheimmiana tricolor variety. Green stomata and cellular walls, purple pavement cells – Harvard Dataverse, V1 –  https://doi.org/10.7910/DVN/DNVSO1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DNVSO1 – (On our blog : https://plantstomata.wordpress.com/2020/09/08/green-stomata-in-ctenante/ )

Dean C. E. (1972) – Stomate density and size as related to ozone-induced weather fleck in tobacco – Crop Science 12: 547-548 –

De Angeli A., Zhang J., Meyer S., Martinoia E. (2013) – AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis – Nat Commun 4: 1804 –   http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2815.html – (On our blog : https://plantstomata.wordpress.com/2016/03/27/atalmt9-is-controlling-stomata-aperture/)

Deans R. M., Brodribb T. J., Busch F. A., Farquhar G. D. (2018) – Plant water‐use strategy mediates stomatal effects on the light induction of photosynthesis – New Phytologist 222(1): 382-395 – https://doi.org/10.1111/nph.15572https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15572?af=R – (On our blog : https://plantstomata.wordpress.com/2018/11/09/plant-water%e2%80%90use-strategy-mediates-stomatal-effects-on-the-light-induction-of-photosynthesis/ )

Deans R. M., Brodribb T. J., McAdam S. A. M. (2017) – An integrated hydraulic-hormonal model of conifer stomata predicts water stress dynamics – Plant Physiol. (2017) – DOI: 10.1104/pp.17.00150 – (On our blog : https://plantstomata.wordpress.com/2017/03/27/a-hydraulic-hormonal-model-for-conifer-stomata/)

Deans R. M., Farquhar G. D., Busch F. A. (2019) – Estimating stomatal and biochemical limitations during photosynthetic induction – Plant Cell and Environment 42: 3227–3240 – https://doi.org/10.1111/pce.13622https://onlinelibrary.wiley.com/doi/10.1111/pce.13622 – (On our blog : https://plantstomata.wordpress.com/2021/11/22/estimating-stomatal-and-biochemical-limitations/ )

De Boer B. (2018) – A Look at the Plant Stomata and Relative Humidity – Maximum Yield August 10, 2018 – https://www.maximumyield.com/are-you-growing-puny-plants/2/1175 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/relative-humidity-and-the-role-it-plays-on-stomatal-opening-and-closing/ )

de Boer H. J. (2016) – Plant acclimation and adaptation to CO2: lessons from optimality theory and implications for leaf gas exchange – www.lsce.ipsl.fr/Phocea/Vie_des_labos/Seminaires/index.php?id=87 – Bat 701, P 17C, LSCE Orme des Merisiers – (On our blog : https://plantstomata.wordpress.com/2017/11/16/changes-in-stomatal-number-and-size-by-acclimation-and-adaptation-to-co2/)

de Boer H. J., Lammertsma E. I., Wagner-Cremer F., Dilcher D. L., Wassen M. J., Dekker S. C. (2011) –  Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2 – Proceedings of the National Academy of Sciences PNAS 108(10): 4041-4046 – https://doi.org/10.1073/pnas.1100555108 –https://www.pnas.org/content/108/10/4041 – (On our blog : https://plantstomata.wordpress.com/2019/04/16/plant-adaptation-reduction-of-diffusive-stomatal-conductance-to-rising-co2-is-altering-the-freshwater-cycle-and-climate-and-will-continue-to-do-so-throughout-this-century/ )

de Boer H. J., Lammertsma E. I., Wagner-Cremer F., Wassen M. J., Lotter A. F., Dilcher D. L., Dekker S. C. (2012) – Optimisation of maximal stomatal conductance in subtropical vegetation under rising CO2 – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/maximal-stomatal-conductance-gsmax-in-subtropical-vegetation-under-rising-co2/ )

de Boer H. J., Price C. A., Wagner-Cremer F., Dekker S. C., Franks P. J., Veneklaas E. J. (2016) – Optimal allocation of leaf epidermal area for gas exchange – New Phytologist 210: 1219-1228 – (Impact Factor: 7.67). 03/2016 – DOI: 10.1111/nph.13929 – (On our blog : https://plantstomata.wordpress.com/2016/03/16/allocation-of-leaf-epidermal-space-to-stomata/).

de Dios V. R., Chowdhury F. I., Granda E., Yao Y., Tissue D. T. (2019) – Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants – New Phytologist – https://doi.org/10.1111/nph.15881 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15881?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/05/the-potential-functions-of-nocturnal-stomatal-conductance/ )

de Dios V. R., Turnbull M. H., Barbour M. M., Ontedhu J., Ghannoum O., Tissue D. T. (2013) – Soil phosphorus and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis – Tree Physiology 33: 1206–1215 – doi: 10.1093/treephys/tpt091 – https://www.ncbi.nlm.nih.gov/pubmed/24271087 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/effect-of-soil-phosphorus-and-endogenous-rhythms-on-nocturnal-stomatal-conductance/ )

Defraeye T., Derome D., Verboven P., Carmeliet J., Nicolai B. (2014) – Cross-scale modelling of transpiration from stomata via the leaf boundary layer – Annals of Botany 114(4): 711-723 – http://dx.doi.org/10.1093/aob/mct313 – https://lirias.kuleuven.be/bitstream/123456789/439813/2/Defraeye+et+al._2014_Cross-scale+modelling+of+transpiration+from+stomata+via+the+leaf+boundary+layer.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/08/transpiration-from-stomata-via-the-leaf-boundary-layer/)

Deger A. G., Scherzer S., Nuhkat M., Kedzierska J., Kollist H., Brosche M., Unyayar S., Boudsocq M., Hedrich R., Roelfsema M. R. G. (2015) – Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure – New Phytologist 208(1): 162-173 – DOI: 10.1111/nph.13435 – https://helda.helsinki.fi/handle/10138/209596 – (On our blog : https://plantstomata.wordpress.com/2017/11/08/slac1-type-anion-channels-and-flagellin-induced-stomatal-closure/)

Dehnel G. S. (1957) – Ontogenetic and experimental studies of stomata – PhD dussertation, Univ. of California, Berkeley –

Dehnel G. S. (1960) – Response of stomata to wounding – Bot. Gazette 122: 124-130 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42754)

De Klerk G. J. M., Wijnhoven F. (2005) – Water retention capacity of tissue cultured plants – NARCIS (Netherlands) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html – (On our blog : https://plantstomata.wordpress.com/2022/03/06/detached-leaves-of-in-vitro-produced-plants-show-continuous-water-loss-indicating-that-they-are-unable-to-close-the-stomata-properly/ )

De Kauwe M. G., Kala J., Lin Y.-S., Pitman A. J., Medlyn B. E., Duursma R. A., Abramowitz G., Wang Y.-P., Miralles D. G. (2015) – A test of an optimal stomatal conductance scheme within the CABLE land surface model – Geoscientific Model Development 8: 431–452 – https://doi.org/10.5194/gmd-8-431-2015 – https://www.geosci-model-dev.net/8/431/2015/gmd-8-431-2015.html – (On our blog :  https://plantstomata.wordpress.com/2018/12/10/optimisation-theory-can-yield-a-simple-and-tractable-approach-to-predicting-stomatal-conductance-in-lsms/

Delaria E. R., Place B. K., Liu A. X., Cohen R. C. (2020) – Laboratory measurements of stomatal NO2 deposition to native California trees and the role of forests in the NOx cycle – ACP 2020-240 – https://doi.org/10.5194/acp-2020-240https://acp.copernicus.org/preprints/acp-2020-240/acp-2020-240.pdf – (On our blog : https://plantstomata.wordpress.com/2021/02/07/stomatal-no2-deposition-to-native-california-trees/ )

de la Torre Llrorente D. (2007) – Comparison of Several Models for Calculating Ozone Stomatal Fluxes on a Mediterranean Wheat Cultivar (Triticum durum Desf. cv. Camacho) – The Scientific World Journal 7: 1634-1648 – DOI: 10.1100/tsw.2007.243https://www.researchgate.net/publication/5863292_Comparison_of_Several_Models_for_Calculating_Ozone_Stomatal_Fluxes_on_a_Mediterranean_Wheat_Cultivar_Triticum_durum_Desf_cv_Camacho – (On our blog : https://plantstomata.wordpress.com/2019/04/26/several-models-for-calculating-ozone-stomatal-fluxes/ )

De Leonardis A. M., Petrarulo M., De Vita P., Mastrangelo A. M. (2021) – Genetic and Molecular Aspects of Plant Response to Drought in Annual Crop Species – In “Advances in selected plant phsiology aspects” by Garrigues M., 397 pp., – https://www.academia.edu/37819632/ADVANCES_IN_SELECTED_PLANT_PHYSIOLOGY_ASPECTS?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/11/17/95593/ )

Delf E. M. (1911) – Transpiration and behaviour of stomata in halophytes – Ann. Bot., London 25(98): 485–505 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42680)

Delgado D., Alonso-Blanco C., Fenoll C., Mena M. (2011) – Natural Variation in Stomatal Abundance of Arabidopsis thaliana Includes Cryptic Diversity for Different Developmental Processes – Annals of Botany 107: 1247–1258 –  http://dx.doi.org/10.1093/aob/mcr060 – (On our blog : https://plantstomata.wordpress.com/2016/05/17/variation-in-stomatal-abundance-and-diversity-for-different-developmental-processes/ )

Delgado D., Ballesteros I., Mena M., Fenoll C. (2012a) – Roles of CONSTITUTIVE
PHOTOMORPHOGENIC 10 in Arabidopsis stomata development – Plant Signaling & Behavior 7: 990–993 – DOI : 10.4161/psb.20995 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474701/ – (On our blog : https://plantstomata.wordpress.com/2018/02/28/roles-of-cop-10-in-stomatal-development/ )

Delgado D., Ballesteros I., Torres-Contreras J., Mena M., Fenoll C. (2012b) – Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in
Arabidopsis stomatal lineage development – Planta 236: 447–461 – doi: 10.1007/s00425-012-1617-y – Epub 2012 Mar 11 – https://www.ncbi.nlm.nih.gov/pubmed/22407427 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/speci%ef%ac%81c-roles-for-cop10-in-stomatal-lineage-development/

Delgado D., Sanchez-Bermejo E., de Marcos A., Martin-Jimenez C., Fenoli C., Alonso-Blanco C., Mena M. (2019) – A Genetic Dissection of Natural Variation for Stomatal Abundance Traits in Arabidopsis – Front. Plant Sci. 11 November 2019 – https://doi.org/10.3389/fpls.2019.01392https://www.frontiersin.org/articles/10.3389/fpls.2019.01392/full – (On our blog : https://plantstomata.wordpress.com/2019/12/29/genetic-modulation-of-satellization-contributes-to-the-variation-for-stomatal-abundance-in-natural-populations/ )

Delorge I., Janiak M., Carpentier S., Van Dijck P. (2014) – Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants – Front. Plant Sci., Sec. Plant Physiology, https://doi.org/10.3389/fpls.2014.00147https://www.frontiersin.org/articles/10.3389/fpls.2014.00147/full – (On our blog : https://plantstomata.wordpress.com/2022/09/23/a-more-sensitive-reaction-of-the-stomatal-guard-cells-and-closing-of-the-stomata-under-drought-stress-conditions/ )

Del Pozo A., Pérez P., Morcuende R., Alonso A., Martinez-Carrasco R. (xxxx) – Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply, in a Mediterranean environment – https://core.ac.uk/download/pdf/36030068.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/acclimatory-responses-of-stomatal-conductance-and-photosynthesis-to-elevated-co2-and-temperature/

Delucia E. H. (1986) – Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings – Tree Physiol. 2: 143–154 – PMID: 14975849 – https://www.ncbi.nlm.nih.gov/pubmed/14975849?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/effect-of-low-root-temperature-on-stomatal-conductance/ )

Delucia E. H. (1987) – The effect of freezing nights on photosynthesis,
stornatal conductance, and internal CO, concentration in seedlings of Engelmann spruce (Picea engelrnannii Parry) – Plant Cell Environ. 10: 333-338 –

Delwiche M. J., Cooke J. R. (1977) – An analytical model of the hydraulic aspects of stomatal dynamics – Journal of Theoretical Biology 69(1):  113-141 – https://doi.org/10.1016/0022-5193(77)90391-5 –  – https://www.sciencedirect.com/science/article/pii/0022519377903915 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/analytical-model-of-the-hydraulic-aspects-of-stomatal-dynamics/ )

de Marcos A., Houbaert A., Triviño M., Delgado D., Martín-Trillo M., Russinova E., Fenoll C., Mena M. (2017) – A mutation in the bHLH domain of the SPCH transcription factor uncovers a BR-dependent mechanism for stomatal development – Plant Physiol 174: 823–842 – DOI: 10.1104/pp.17.00615 http://www.plantphysiol.org/content/174/2/823 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/br-dependent-mechanism-for-stomatal-development/)

de Marcos A., Triviño M., Fenoll C., Mena M. (2016) – Too many faces for TOO MANY MOUTHS? – New Phytol. 210: 779–785 – DOI: 10.1111/nph.13827 – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13827 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/too-many-faces-for-too-many-mouths/

de Marcos A., Triviño M., Pérez-Bueno M. L., Ballesteros I., Barón M., Mena M., Fenoll C. (2015) – Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata – Frontiers in Plant Science – http://journal.frontiersin.org/article/10.3389/fpls.2015.00456 – (On our blog : https://plantstomata.wordpress.com/2016/01/17/stomataless-plants-in-arabidopsis/)

De Michelle D. W., Sharpe P. J. H. (1971) – A model of stomatal action: Its agronomic and ecological significance – Pap. No. 71-589 – Winter meeting – Am. Soc. Agric. Eng., Chicago, III, Dec. –

DeMichele D. W., Sharpe P. J. H. (1973) – An analysis of the mechanics of guard cell motion – Journal of Theoretical Biology 41(1): 77-78 – https://doi.org/10.1016/0022-5193(73)90190-2https://www.sciencedirect.com/science/article/abs/pii/0022519373901902?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/09/20/93497/ )

De Michele D. W., Sharpe P. J. H. (1974) – A parametric analysis of the anatomy and physiology of the stomata – Agric. Meterology 14: 229-241 – (On our blog : https://plantstomata.wordpress.com/2017/07/04/anatomy-and-physiology-of-the-stomata/)

Denden M., Lemeur R. (2000) – Modelling stomatal resistance relative to stomata morphological and anatomical features, sunlight and water potential – Science et changements planétaires / Sécheresse  11(1): 29-36 – https://www.jle.com/en/revues/sec/e-docs/modelisation_de_la_resistance_stomatique_en_fonction_des_caracteristiques_morphologiques_et_anatomiques_des_stomates_du_rayonnement_et_du_potentiel_hydrique_230030/article.phtml – (On our blog : https://plantstomata.wordpress.com/2021/12/17/a-model-of-stomatal-resistance-that-combines-biotic-and-abiotic-factors/ )

Deng G., Zhou L., Wang Y., Zhang G., Chen X. (2020) – Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis – Planta 251: 42 – https://doi.org/10.1007/s00425-019-03334-9 – https://link.springer.com/article/10.1007%2Fs00425-019-03334-9#citeas – (On our blog: https://plantstomata.wordpress.com/2020/01/15/h2s-acts-downstream-of-ja-signaling-to-regulate-stomatal-development/ )

Deng M., Li Q., Shuting Y., Liu Y.-c., Xu J. (2013) – Comparative morphology of leaf epidermis in the genus Lithocarpus and its implication in leaf epidermal feature evolution in Fagaceae – Plant Systematics and Evolution 299(3) – https://www.researchgate.net/publication/257447723_Comparative_morphology_of_leaf_epidermis_in_the_genus_Lithocarpus_and_its_implication_in_leaf_epidermal_feature_evolution_in_Fagaceae – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomata-in-lithocarpus-fagaceae/ )

Deng Y. N., Kashtoh H., Wang Q., Zhen G. X., Li Q. Y., Tang L. H., Gao H. L., Zhang C. R., Qin L., Su M., Li F., Huang X. H., Wang Y. C., Xie Q., Clarke O. B., Hendrickson W. A., Chen Y. H. (2021) – Structure and activity of SLAC1 channels for stomatal signaling in leaves – Proc Natl Acad Sci U S A. 118(18): e2015151118 – doi: 10.1073/pnas.2015151118 – PMID: 33926963 – PMCID: PMC8106318 – https://pubmed.ncbi.nlm.nih.gov/33926963/ – (On our blog : https://plantstomata.wordpress.com/2021/07/06/slac1-phosphorylation-fine-tunes-an-equilibrium-between-basal-and-activated-slac1-trimers-thereby-controlling-the-degree-of-stomatal-opening/ )

de Oliveira E. C., Miglioranza E., Meschede D. K., de Andrade F. A., Paccola Mesquita S. F., Tardeli de Jesus Andrade C. G. (2015) – Stomatal density and distribution in different cassava genotypes – Afric. J. Agric. Res. 10(30): 3008-3015 – https://doi.org/10.5897/AJAR2015.9861https://academicjournals.org/journal/AJAR/article-full-text/FB5ACB954472 – (On our blog : https://plantstomata.wordpress.com/2021/04/13/functionality-was-inversely-proportional-to-stomatal-density-with-a-negative-correlation-between-stomatal-density-and-the-polar-diameter-of-stomata/ )

De Ollas C., Arbona V., Gomez-Cadenas A., Dodd I. C. (2018) – Attenuated accumulation of jasmonates modifies stomatal responses to water deficit – J Exp Bot 69(8): 2103-2116 – doi: 10.1093/jxb/ery045https://pubmed.ncbi.nlm.nih.gov/29432619/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/jasmonates-and-stomatal-responses-to-water-deficit/ )

de Paula Lima W., Jarvis P., Rhizopoulou S. (2003) – Stomatal responses of Eucalyptus species to elevated CO2-concentration and drought stress – Scientia Agricola 60(2): 231-238 – https://www.scielo.br/j/sa/a/5vPsDTCs36rQTLXgwmXSYmp/?lang=en&format=pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/28/93818/ )

Depolo B. U., Gontijo A. B.P. L., Araujo A. A., Falqueto A. R., Pascoalini S. S., Lopes D. M. d. S., Schmildt E. R., Leite S., Tognella M. M. P. (2022) – The role of iron on the growth and development of the seedlings of Rhizophora mangle L. – AJ Scientific Research and Essays 17(3): 35-45 – https://doi.org/10.5897/SRE2022.6748 https://academicjournals.org/journal/SRE/article-abstract/AEF529C69437 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/108151 )

Derevyanchuk M., Kretynin S., Iakovenko O., Litvinovskaya R., Zhabinskii V., Martinec J., Blume Y., Khripach V., Kravets V. (2017) – Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress – Steroids 117: 16-24 – DOI: 10.1016/j.steroids.2016.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-03ba2aa2-b3c3-3855-9965-3775c75928fd – (On our blog : https://plantstomata.wordpress.com/2017/10/22/brassinosteroids-cause-closure-of-stomata/)

Des M., Vauzia, Gusti Y. S. (1940) – Stomata Characteristics of Ketapang Leaves (Terminalia catappa L.) Based on Environmental Differences – Journal of Physics: Conference SeriesVolume 1940The 4th International Conference on Mathematics, Science, Education and Technology (ICOMSET) in Conjunction with the 2nd International Conference on Biology, Science and Education (ICoBioSE) 2020 23-24 July 2020, Padang, Indonesiahttps://iopscience.iop.org/article/10.1088/1742-6596/1940/1/012051 – (On our blog : https://plantstomata.wordpress.com/2022/01/17/the-characteristics-of-the-stomata-in-areas-with-different-environmental-conditions/ )

Desai M. C. (1937) – Effect of certain nutrient deficiencies on stomatal behavior – Plant Physiology 12: 253-289 – https://doi.org/10.1104/pp.12.2.253https://academic.oup.com/plphys/article/12/2/253/6071666 – (0n our blog : https://plantstomata.wordpress.com/2017/06/24/nutrient-deficiencies-and-stomata/)

Desclos-Theveniau M., Arnaud D., Huang T. Y., Lin G. J., Chen W. Y., Lin Y. C., et al. (2012) – The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000 – PLoS Pathog. 8:e1002513 – doi:10.1371/journal.ppat.1002513 – http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002513 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/mechanisms-to-reverse-bacteria-mediated-stomatal-closure/ )

Desikan R. (2010) – Sniffing stomata ? – New Phytologist 188(4) – https://doi.org/10.1111/j.1469-8137.2010.03529.xhttps://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2010.03529.x – (On our blog : https://plantstomata.wordpress.com/2020/04/10/a-volatile-odorous-gas-can-be-sensed-by-stomata-to-reduce-transpirational-water-loss-during-drought-stress/

Desikan R., Cheung M.K., Bright J., Henson D., Hancock J. T., Neill S. J. (2004) – ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells – J. Exp. Bot. 55: 205–212 – doi: 10.1093/jxb/erh033 – https://www.ncbi.nlm.nih.gov/pubmed/14673026 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/the-exact-interaction-between-the-various-signalling-components-in-response-to-h2o2-and-no-in-stomata-remains-to-be-established/ )

Desikan R., Cheung M.K., Clarke A., Golding S., Sagi M., Fluhr R., Rock C., Hancock J., Neill S. (2004) – Hydrogen peroxide is a common signal for darkness- and ABA-induced stomatal closure in Pisum sativum – Funct. Plant Biol. 31: 913–920 – http://www.publish.csiro.au/?paper=FP04035 – (On our blog : https://plantstomata.wordpress.com/2015/10/11/hydrogen-peroxide-and-stomatal-closure-2/ )

Desikan R., Griffiths R., Hancock J., Neill S. (2002) – A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana – Proc. Natl. Acad. Sci. U.S.A. 99: 16314–16318 – doi: 10.1073/pnas.252461999 – (On our blog : https://plantstomata.wordpress.com/2016/05/17/nr-mediated-no-synthesis-is-required-for-aba-induced-stomatal-closure/)

Desikan R., Hancock J. T., Bright J., Harrison J., Weir I., Hooley R., Neill S. J. (2005) – A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells – Plant Physiol. 137(3): 831-834 – https://doi.org/10.1104/pp.104.056994 – [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065383/] – http://www.plantphysiol.org/content/137/3/831 – (On our blog : https://plantstomata.wordpress.com/2020/12/10/etr1-mediating-h2o2-signaling-in-stomatal-guard-cells/ )

Desikan R., Horák J., Chaban C., Mira-Rodado V., Witthöft J., Elgass K., Grefen C., Cheung M. K., Meixner A. J., Hooley R., Neill S. J., Hancock J. T., Harter K. (2008) – The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells – PLoS ONE 3:e2491 – doi: 10.1371/journal.pone.0002491  – http://eprints.uwe.ac.uk/8292 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002491 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/ahk5-acts-to-integrate-multiple-signals-via-h2o2-homeostasis/ )

Desikan R., Last K., Harrett-Williams R., Tagliavia C., Harter K., Hooley R., Hancock J. T., Neill S. J. (2006) – Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis – The Plant Journal 47: 907–916 – DOI: 10.1111/j.1365-313X.2006.02842.x – http://www.publish.csiro.au/fp/FP17180 – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.02842.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/02/ethylene-induced-stomatal-closure/ )

De Silva D. L. R., Cox R. C., Hetherington A. M., Mansfield T. A. (1985) – Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid –  New Phytologist 101: 555–563 – (On our blog https://plantstomata.wordpress.com/2016/05/17/calcium-calmodulin-and-stomata/ )

De Silva D. L. R., Cox R. C., Hetherington A. M., Mansfield T. A. (1986) – The role of abscisic acid and calcium in determining the behaviour of adaxial and abaxial stomata – New Phytologist 104: 41–51 – (On our blog : https://plantstomata.wordpress.com/2016/05/17/aba-ca-and-stomata/ )

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985) – Synergism between calcium ions and abscisic acid in preventing stomatal opening – New Phytol. 100: 473–482 – DOI: 10.1111/j.1469-8137.1985.tb02795.x – http://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1985.tb02795.x/asset/j.1469-8137.1985.tb02795.x.pdf?v=1&t=je8ayguh&s=14bf149a4328bef2bd6c02b45cc6603631b6fad1 – (On our blog : https://plantstomata.wordpress.com/2018/03/01/ca2-and-aba-in-preventing-stomatal-opening/ )

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1996) – Where does all the calcium go? Evidence of an important regulatory role for trichomes in two calcicoles – Plant, Cell and Environment 19(7): 880-886 – University of Bristol – https://research-information.bris.ac.uk/en/publications/where-does-all-the-calcium-go-evidence-of-an-important-regulatory – (On our blog : https://plantstomata.wordpress.com/2021/03/26/the-mechanism-for-protecting-stomata-from-excessive-exposure-to-free-calcium-is-thought-to-be-of-great-physiological-significance/ )

De Silva D. L. R., Honour S. J., Mansfield T. A. (1996) – Estimations of apoplastic concentrations of K+ and Ca2+ in the vicinity of stomatal guard cells – New Phytologist 134: 463–469 – (On our blog : https://plantstomata.wordpress.com/2016/03/14/stomata-and-apoplastic-concentrations-of-k-and-ca2/)

De Silva D. L. R., Mansfield T. A. (1994) –  The stomatal physiology of calcicoles in relation to calcium delivered in the xylem sap – Proceedings of the Royal Society of London Series B 257: 81–85 – (On our blog : https://plantstomata.wordpress.com/?s=stomatal+physiology+of+calcicoles )

De Silva D. L. R., Mansfield T. A., McAinsh M. R. (2001) – Changes in stomatal behaviour in the calcicole Leontodon hispidus due to the disruption by ozone of the regulation of apoplastic Ca2+ by trichomes – Planta 214(1):158-62 – PMID: 11762166 –  https://www.ncbi.nlm.nih.gov/pubmed/11762166– (On our blog : https://plantstomata.wordpress.com/2018/12/02/changes-in-stomatal-behaviour-due-to-the-disruption-by-ozone-of-the-regulation-of-apoplastic-ca2-by-trichomes/ )

Des Marais D. L., Auchincloss L. C., Sukamtoh E., Mckay J. K., Logan T., Richards J. H., Juenger T. E. (2014) – Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response – Proc. Natl. Acad. Sci. U.S.A. 111: 2836–2841 – doi: 10.1073/pnas.1321429111 – (On our blog : https://plantstomata.wordpress.com/2016/08/01/mpk12-affects-wue-and-reveals-link-between-stomata-size-and-aba/ )

De Souza A. P., Wang Y., Orr D. J., Carmo‐Silva E., Long S. P. (2019) – Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady‐state, but by stomatal conductance in fluctuating light – New Phytologist 2019 – https://doi.org/10.1111/nph.16142https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16142 – (On our blog : https://plantstomata.wordpress.com/2019/09/25/photosynthesis-across-african-cassava-germplasm-is-limited-by-stomatal-conductance-in-fluctuating-light/ )

de Souza C. R., Maroco J. P., Santos T. P., Rodrigues M. L., Lopes C., Pereira J. S., Chaves M. M. (2005) – Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars – Agriculture Ecosystems & Environment 106: 261–274 – https://doi.org/10.1016/j.agee.2004.10.014https://www.sciencedirect.com/science/article/abs/pii/S0167880904003044?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/12/03/differences-among-grapevine-varieties-may-be-related-to-differences-in-sensitivity-of-stomata-shoot-growth-and-or-the-interaction-between-rootstock-and-cultivar-to-soil-water-availability/ )

de Souza R. P., Ribeiro R. V., Machado E. C., de Oliveira R. F., Gomes da Silveira J. A. (2005) – Photosynthetic responses of young cashew plants to varying environmental conditions / Respostas da fotossíntese à variação das condições ambientais em plantas jovens de cajueiro – Pesq. agropec. bras. 40(8) :  – https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2005000800002 – (On our blog : https://plantstomata.wordpress.com/2021/04/16/89926/ )

Devi M. J., Reddy V. R.. (2018) – Transpiration Response of Cotton to Vapor Pressure Deficit and Its Relationship With Stomatal Traits – Front. Plant Sci. 9: 1572 – https://doi.org/10.3389/fpls.2018.01572https://www.frontiersin.org/articles/10.3389/fpls.2018.01572/full – (On our blog : https://plantstomata.wordpress.com/2021/07/15/the-genotypic-variation-for-the-trait-limited-tr-under-high-vpd-and-leaf-temperature-water-potential-photosynthesis-and-stomatal-conductance-responses/ )

de Villiers A. J., von Teichman I., van Rooyen M. W., Theron G. K. (1996) – Salinity-induced changes in anatomy, stomatal counts and photosynthetic rate of Atriplex semibaccata R. Br. – South African Journal of Botany  62(5): 270-276  – https://doi.org/10.1016/S0254-6299(15)30656-6 – http://www.sciencedirect.com/science/article/pii/S0254629915306566 – (On our blog : https://plantstomata.wordpress.com/2017/10/02/salinity-induced-changes-in-stomatal-numbers/)

Devireddy A. R., Arbogast J., Mittler R. (2019) – Coordinated and rapid whole‐plant systemic stomatal responses – New Phytologist early view – Online Version – https://doi.org/10.1111/nph.16143https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16143 – (On our blog : https://plantstomata.wordpress.com/2019/11/27/whole%e2%80%90plant-systemic-stomatal-responses/ )

Devireddy A. R., Zandalinas S. I., Gómez-Cadenas A., Blumwald E., Mittler R. (2018) – Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress – Sci. Signal. 11(518): eaam9514 – DOI: 10.1126/scisignal.aam9514 – http://stke.sciencemag.org/content/11/518/eaam9514 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/the-overall-stomatal-response-rapid-leaf-to-leaf-communication-during-light-stress/ )

Dewar R. C. (1995) – Interpretation of an empirical model for stomatal conductance in terms of guard cell function – Plant, Cell & Environment 18: 365–372 – DOI:10.1111/j.1365-3040.1995.tb00372.x µ– http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00372.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/01/an-empirical-model-for-stomatal-conductance-in-terms-of-guard-cell-function/ )

Dewar R. C. (2002) – The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function – Plant, Cell & Environment 25: 1383–1398 – DOI: 10.1046/j.1365-3040.2002.00909.x — http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00909.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/02/a-new-model-of-stomatal-conductance-combining-the-ball-berry-leuning-bbl-and-tardieu-davies-td-models/ )

Dewar R. C., Mauranen A., Mäkelä A., Hölttä T., Medlyn B., Vesala T. (2017) – New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis – New Phytologist, Online Version – doi:10.1111/nph.14848 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14848/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/31/the-covariation-of-stomatal-mesophyll-and-hydraulic-conductances/)

Dhir B., Mahmooduzzafar, Siddiqi T.O., Iqbal M. (2001) – Stomatal and photosynthetic responses of Cichorium intybus leaves to sulfur dioxide treatment at different stages of plant development – J. Plant Biol. 44: 97-102 – (http://link.springer.com/article/10.1007%2FBF03030282) – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/3600)

Dhooghe E., Dierck R., Van Huylenbroeck J. (2017) – Steering stomatal dynamics by chemicals during acclimatization of Spathiphyllum – Acta Hortic. 1155: 491-496 – https://doi.org/10.17660/ActaHortic.2017.1155.7https://www.ishs.org/ishs-article/1155_72 – (On our blog : https://plantstomata.wordpress.com/2020/09/09/to-regulate-stomatal-behavior-and-respiration-by-chemical-triggers-as-plant-growth-regulators-and-antitranspirants/ )

Diekmann W., Hedrich R., Raschke K., Robinson D. G. (1993) – Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells – J. Exp. Bot. 44: 1569–1577 – https://doi.org/10.1093/jxb/44.10.1569 – https://academic.oup.com/jxb/article-abstract/44/10/1569/459454?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/01/osmocytosis-and-vacuolar-fragmentation-in-stomata/

Dietrich L., Hoch G., Kahmen A., Körner C. (2018) – Losing half the conductive area hardly impacts the water status of mature trees – Scientific Reports 8, Article number 15006 – https://www.nature.com/articles/s41598-018-33465-0 – (On our blog : https://plantstomata.wordpress.com/2019/04/01/the-water-status-of-transpiring-tree-crowns-depends-on-a-hydraulic-continuum-from-the-soil-matrix-around-roots-to-the-sub-stomatal-cavity/ )

Dietrich P., Hedrich R. (1994) – Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel – Planta 195: 301–304 – https://doi.org/10.1007/BF00199690 – https://link.springer.com/article/10.1007/BF00199690#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/01/different-gating-modes-of-gcac1-the-guard-cell-anion-channel/)

Dietrich P., Dreyer I., Wiesner P., Hedrich R. (1998) – Cation sensitivity and kinetics of guard cell potassium channels differ among species – Planta 205: 277-287 – https://doi.org/10.1007/s004250050322 – https://link.springer.com/article/10.1007%2Fs004250050322 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/diversification-of-guard-cell-channels-contributes-to-species-specific-variations-in-the-control-of-stomatal-aperture/ )

Dietrich P., Sanders D., Hedrich R. (2001) – The role of ion channels in light‐dependent stomatal opening – Journal of Experimental Botany 52(363): 1959–1967 – https://doi.org/10.1093/jexbot/52.363.1959 – https://academic.oup.com/jxb/article/52/363/1959/488441 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/recent-progress-in-molecular-aspects-of-ion-channel-regulation-in-stomata/ )

Di Giorgio D., Camoni L., Mott K. A., Takemoto J. Y., Ballio A. (1996) – Syringopeptins, Pseudomonas syringae pv. syringae phytotoxins, resemble syringomycin in closing stomata – Plant Pathology 45(3): 564-571 – https://doi.org/10.1046/j.1365-3059.1996.d01-153.xhttps://bsppjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3059.1996.d01-153.x – (On our blog : https://plantstomata.wordpress.com/2021/03/25/the-effects-of-two-forms-of-sp-on-stomatal-movement-in-detached-leaves-promoting-stomatal-closure/ )

Dillen S. Y., Marron N., Koch B., Ceulemans R. (2008) – Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (Populus deltoides ‘S9-2’ x P. nigra ‘Ghoy’ and P. deltoides ‘S9-2’ x P. trichocarpa ‘V24’) – Annals of Botany 102: 399–407 – https://doi.org/10.1093/aob/mcn107https://academic.oup.com/aob/article/102/3/399/228802 – (On our blog : https://plantstomata.wordpress.com/2020/02/10/stomatal-traits-are-of-limited-value-as-criteria-for-selection-of-genotypes-with-good-growth-and-large-wue/ )

Di Matteo G., Riccardi M., Righi F., Fusaro E. (2012) – Inter- and intraspecific variations in bud phenology, foliar morphology, seasonal stomatal conductance and carbon isotopic composition in Cedrus libani and C. atlantica – Trees 26(4) · August 2012 – DOI: 10.1007/s00468-012-0692-9 – https://www.researchgate.net/publication/257431522_Inter-_and_intraspecific_variations_in_bud_phenology_foliar_morphology_seasonal_stomatal_conductance_and_carbon_isotopic_composition_in_Cedrus_libani_and_C_atlantica – (On our blog : https://plantstomata.wordpress.com/2016/07/26/seasonal-stomatal-conductance-in-cedrus/)

Ding H., Liu D., Liu X., Li Y., Kang J., LV J., Wang G. (2018) – Photosynthetic and stomatal traits of spike and flag leaf of winter wheat
(Triticum aestivum L.) under water deficit – PHOTOSYNTHETICA 56(2): 687-697 – DOI: 10.1007/s11099-017-0718-zhttps://ps.ueb.cas.cz/pdfs/phs/2018/02/24.pdf

Ding L., Chaumont F. (2020) – Are Aquaporins Expressed in Stomatal Complexes Promising Targets to Enhance Stomatal Dynamics? – Front. Plant Sci., 21 April 2020 | https://doi.org/10.3389/fpls.2020.00458https://www.frontiersin.org/articles/10.3389/fpls.2020.00458/full – (On our blog : https://plantstomata.wordpress.com/2020/07/06/the-roles-of-aquaporins-in-stomatal-movement/

Ding R., Kang S., Du T., Hao X., Zhang Y. (2014) – Scaling Up Stomatal Conductance from Leaf to Canopy Using a Dual-Leaf Model for Estimating Crop Evapotranspiration – PLoS ONE 9(4): e95584 – https://doi.org/10.1371/journal.pone.0095584https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095584 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/scaling-up-stomatal-conductance-from-leaf-to-canopy/ )

Ding S., Zhang B., Qin F. (2015) – Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation – The Plant Cell October 27, 2015 tpc.15.00321 – http://dx.doi.org/10.1105/tpc.15.00321 – http://www.plantcell.org/content/early/2015/10/27/tpc.15.00321.abstract#aff-1 – (On our blog : https://plantstomata.wordpress.com/2016/03/31/rzfp34chyr1-a-ubiquitin-e3-ligase-regulates-stomatal-movement/)

Ding Z. J., Yan J. Y., Xu X. Y., Yu D. Q., Li G. X., Zhang S. Q., Zheng S. J. (2014) – Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis – Plant J. 79(1): 13-27 – doi: 10.1111/tpj.12538 – Epub 2014 Jun 5 – https://www.ncbi.nlm.nih.gov/pubmed/24773321 – https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.12538 – (On our blog : https://plantstomata.wordpress.com/2018/10/16/wrky46-plays-dual-roles-in-regulating-plant-responses-to-drought-and-salt-stress-and-light-dependent-stomatal-opening/ )

Dingkuhn M., Audebert A. Y., Jones M. P., Etienne K., Sow A. (1999) – Control of stomatal conductance and leaf rolling in Oryza sativa and O. glaberrima upland rice -Field Crops Research 61: 223–236 – http://dx.doi.org/10.1016/S0378-4290(98)00165-8 – http://agritrop.cirad.fr/247421/ – (On our blog : https://plantstomata.wordpress.com/2018/10/16/control-of-stomatal-conductance-and-leaf-rolling/ )

Distefano A. M., Garcia-Mata C., Lamattina L., Laxalt A. M. (2008) – Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure – Plant Cell Environ. 31: 187–194 – doi: 10.1111/j.1365-3040.2007.01756.x – (On our  blog : https://plantstomata.wordpress.com/2016/05/18/plc-and-pld-derived-pa-and-stomatal-closure/)

Distefano A. M., Garcia-Mata C., Lamattina L., Laxalt A. M. (2008) – Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure – Plant Cell Environ. 31: 187–194 – doi: 10.1111/j.1365- 3040.2007.01756.x – https://www.ncbi.nlm.nih.gov/m/pubmed/17996010/ – (On our blog : https://plantstomata.wordpress.com/2018/03/05/plc-and-pld-derived-pa-represents-a-downstream-component-of-no-signalling-cascade-during-stomatal-closure/ )

Distéfano A. M., Scuffi D., García-Mata C., Lamattina L., Laxalt A. M. (2012) – Phospholipase Dδ is involved in nitric oxide-induced stomatal closure – Planta 236: 1899–1907 – doi: 10.1007/s00425-012-1745-4 – https://link.springer.com/article/10.1007/s00425-012-1745-4 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/pld%ce%b4-is-downstream-of-no-and-h2o2-in-aba-induced-stomatal-closure/ )

Dittberner H., Korte A., Mettler-Altmann T., Weber A., Monroe G., de Meaux J. (2018) – Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana – BioRxiv – doi: https://doi.org/10.1101/253021 – https://www.biorxiv.org/content/early/2018/01/24/253021 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/morphological-and-physiological-variants-in-stomata-contribute-to-genetic-variance-in-water-use-efficiency/ )

Dittrich M., Mueller H. M., Bauer H., Peirats-Llobet M., Rodriguez P. L., Geilfus C.-M., Carpentier S. C., Al Rasheid K. A. S., Kollist H., Merilo E., Herrmann J., Müller T., Ache P., Hetherington A. M., Hedrich R. (2019) – The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration – Nature Plants (2019) – https://www.nature.com/articles/s41477-019-0490-0 – (On our blog : https://plantstomata.wordpress.com/2019/08/28/aba-as-a-central-regulator-and-integrator-of-long-term-changes-in-stomatal-behaviour/ )

Dittrich P., Mayer M. (1978) – Inhibition of stomatal opening during uptake of carbohydrates by guard cells in isolated epidermal tissues – Planta 139: 167–170 – https://doi.org/10.1007/BF00387143https://link.springer.com/article/10.1007%2FBF00387143#citeas – (On our blog : https://plantstomata.wordpress.com/2019/06/27/79301/ )

Dittrich P., Raschke K. (1977) – Malate metabolism in isolated epidermis of Commelina communis L. in relation to stomatal functioning – Planta 134: 76–82 – doi: 10.1007/BF00390098 – https://www.ncbi.nlm.nih.gov/pubmed/24419583 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/malate-metabolism-and-stomatal-functioning/ )

Dittrich P., Raschke K. (1977) – Uptake and metabolism of carbohydrates by epidermal tissue – Planta 134: 83-90 – https://doi.org/10.1007/BF00390099 – https://link.springer.com/article/10.1007%2FBF00390099 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/uptake-and-metabolism-of-carbohydrates-by-epidermal-tissue/ )

Divyajyothi L. B., Sujatha B. (2019) – The influence of lead on growth and stomata structure of pigeon pea (Cajanus cajan (L.) millspaugh) and maize (Zea mays l.) – Int. J. Recent Scientific Research – http://dx.doi.org/10.24327/ijrsr.2019.1002.3177 https://www.recentscientific.com/influence-lead-growth-and-stomata-structure-pigeon-pea-cajanus-cajan-l-millspaugh-and-maize-zea-mays – (On our blog : https://plantstomata.wordpress.com/2020/05/09/changes-in-stomatal-structures-by-lead-exposure/ )

Dixon H., Bennet-Clark T. (1930) – The Stomatic Control of Transpiration – Nature 126: 601 – https://doi.org/10.1038/126601a0https://www.nature.com/articles/126601a0#citeas – (On our blog : https://plantstomata.wordpress.com/2022/02/06/the-magnitude-of-the-influence-exercised-by-the-stomata-in-the-regulation-of-the-water-losses-of-plants-appears-to-be-very-different-under-different-condition/ )

Dixon M. A., Grace J., Tyree M. T. (1984) – Concurrent measurements of stem density, leaf and stem water potential, stomatal conductance and cavitation on a sapling of Thuja occidentalis L. – Plant Cell Environ. 7: 615–618 –

Djekoun A., Planchon C. (1992) – Stomatal conductance, photosynthesis and acetylene reduction rate in soybean genotypes – Can. J. Plant Sci. 72: 383-390 – https://www.nrcresearchpress.com/doi/pdf/10.4141/cjps92-043 – (On our blog : https://plantstomata.wordpress.com/2020/07/03/84987/ )

Dobrenz A. K., Wright L. N., Humphrey A. B., Massengale M. A., Kneebone W. R. (1969) – Stomata density and its relationship to water-use efficiency  of Blue Panicgrass (Panicum antidotale Retz.) – Crop Sci. 9: 354-357 – doi:10.2135/cropsci1969.0011183X000900030033x – https://dl.sciencesocieties.org/publications/cs/abstracts/9/3/CS0090030354 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/stomata-density-and-water-use-efficiency-wue/ )

Dodd A. N., Parkinson K., Webb A. A. (2004) – Independent circadian regulation of assimilation and stomatal conductance in the ztl‐1 mutant of Arabidopsis – New Phytol 162: 63–70 – https://doi.org/10.1111/j.1469-8137.2004.01005.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2004.01005.x – (On our blog : https://plantstomata.wordpress.com/2019/01/12/a-longer-circadian-period-for-both-stomatal-conductance-and-co2-fixation-in-the-ztl%E2%80%901-mutant-compared-to-wild-type/ )

Dodd A. N., Salathia N., Hall A., Kévei E., Tóth R., Nagy F., Hibberd J. M, Millar A. J., Webb A. A. (2005) – Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage – Science 309: 630–633 – DOI: 10.1126/science.1115581 – http://science.sciencemag.org/content/309/5734/630?ijkey=d934dccf6039f6233fc802b778dab069286fa5b4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/01/12/plants-gain-advantage-from-circadian-control/ )

Dodd I. A. (2012) – Abscisic acid and stomatal closure: a hydraulic conductance conundrum? – New Phytol. 197: 6–8 – https://doi.org/10.1111/nph.12052https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.12052 – (On our blog : https://plantstomata.wordpress.com/2020/03/07/aba-and-stomatal-closure-a-hydraulic-conductance-conundrum/ )

Dodd I. C. (2003) – Hormonal interactions and stomatal responses – J. Plant Growth Regul. 22: 32–46 – doi: 10.1007/s00344-003-0023-x – (On our blog : https://plantstomata.wordpress.com/2016/05/18/hormonal-factors-and-stomatal-behavior/)

Dodd I. C. (2005) – Role of Plant Growth Regulators in Stomatal Limitation to Photosynthesis during Water Stress – DOI:10.1201/9781420027877.ch42

Dodd I. C. (2013) – Abscisic acid and stomatal closure: a hydraulic conductance conundrum? – New Phytol. 197: 6–8 – doi:10.1111/nph.12052 – This article is corrected by: Errata: Corrigendum – 198(4): 1290 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12052/abstract– (On our blog : https://plantstomata.wordpress.com/2016/05/18/12401/)

Dodd I. C., He J.,Turnbull C. G. N., Lee S. K., Critchley C. (2000) – The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. – Journal of Experimental Botany 51(343): 239–248 – https://doi.org/10.1093/jexbot/51.343.239https://academic.oup.com/jxb/article/51/343/239/481172 – (On our blog : https://plantstomata.wordpress.com/2019/10/18/supra-optimal-root-zone-temperatures-growth-and-stomatal-conductance/ )

Dodd I. C., Tan L. P., He J. (2003) – Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? – Journal of Experimental Botany 54: 1281-1288 – https://doi.org/10.1093/jxb/erg122https://academic.oup.com/jxb/article/54/385/1281/592753 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/do-increases-in-xylem-sap-ph-and-or-aba-concentration-mediate-stomatal-closure-following-nitrate-deprivation/ )

Dodd I. C., Theobald J. C., Richer S. K., Davies W. J. (2009) – Partial phenotypic reversion of ABA-deficient flacca tomato (Solanum lycopersicum) scions by a wild-type rootstock: normalizing shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate – Journal of Experimental Botany 60(14): 4029–4039 – https://doi.org/10.1093/jxb/erp236https://academic.oup.com/jxb/article/60/14/4029/654389 – (On our blog : https://plantstomata.wordpress.com/2019/11/04/the-role-of-root-synthesized-aba-in-regulating-growth-and-stomatal-behaviour-under-well-watered-conditions/ )

Dodge B. O. (1903) – Effect of the Orange-Rusts of Rubus on the development and distribution of stomata – Journ. Agric. Res. XXV(11): 495-501 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42740)

Dogra N., Dhatt K. K., Kaur N. (2017) – Palynological and Stomatal Characters Influenced by Gamma Rays in Gladiolus Cultivars – Int.J.Curr.Res.Aca.Rev. 5(9): 44-50 –
 https://doi.org/10.20546/ijcrar.2017.509.007http://ijcrar.com/abstractview.php?ID=394&vol=5-9-2017&SNo=7 – (On our blog : https://plantstomata.wordpress.com/2020/03/11/pollen-fertility-size-stomata-number-size-and-number-of-chloroplast-decreased-with-the-increasing-dose-of-irradiation/ )

Doheny-Adams T. (2013) – Manipulating stomatal density affects plant growth, yield and drought tolerance – Thesis (Ph.D.) uk.bl.ethos.577420 – University of Sheffield UK – http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577420 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/manipulating-stomatal-density/)

Doheny-Adams T., Hunt L., Franks P. J., Beerling D. J., Gray J. E. (2012) – Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient – Proceedings of the Royal Society B 367: 547–555 – http://rstb.royalsocietypublishing.org/content/367/1588/547– (On our blog : https://plantstomata.wordpress.com/2016/05/18/manipulation-of-stomatal-density/)

Doi M., Kitagawa Y., Shimazaki K.-I. (2015) – Stomatal Blue Light Response Is Present in Early Vascular Plants – Plant Physiology 169(2): 1205-1213 –  http://dx.doi.org/10.1104/pp.15.00134 – http://www.plantphysiol.org/content/169/2/1205.abstract#fn-5 – (On our blog : https://plantstomata.wordpress.com/2016/03/22/stomatal-blue-light-response/)

Doi M., Shigenaga A., Emi T., Kinoshita T., Shimazaki K. (2004) – A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1 phot2 double mutant – J Exp Bot 55: 517–523 – DOI: 10.1093/jxb/erh044 – https://www.ncbi.nlm.nih.gov/pubmed/14739272?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/06/phot1-is-an-essential-component-for-all-blue-light-responses-in-planta-mediating-stomatal-opening/

Doi M., Shimazaki K.-I. (2008) – The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells – Plant Physiol 147: 922–930 – DOI: https://doi.org/10.1104/pp.108.118950 – (On our blog : https://plantstomata.wordpress.com/2016/05/18/adiantum-stomata-lack-sensitivity-to-co2-in-the-dark/)

Doi M., Wada M., Shimazaki K.-I. (2006) – The fern Adiantum capillus-veneris lacks stomatal responses to blue light – Plant Cell Physiol. 47: 748–755 – (On our blog : https://plantstomata.wordpress.com/2016/05/18/adiantum-capillus-veneris-lacks-stomatal-responses-to-blue-light/ )

Doll Y., Koga H., Tsukaya H. (2021) – The diversity of stomatal development regulation in Callitriche is related to the intrageneric diversity in lifestyles – Proceedings of the National Academy of Sciences 118 (14): e2026351118 – https://doi.org/10.1073/pnas.2026351118https://www.pnas.org/content/118/14/e2026351118 – (On our blog : https://plantstomata.wordpress.com/2021/03/30/insight-that-should-aid-ecological-evolutionary-developmental-biology-investigations-of-stomata/ )

Doll Y., Koga H., Tsukaya H. (2021) – Callitriche as a potential model system for evolutionary studies on the dorsiventral distribution of stomata – Plant Signal Behav. 16(11): 1978201 – doi: 10.1080/15592324.2021.1978201 – Epub 2021 Sep 19 – PMID: 34538209 – PMCID: PMC8525970 – https://pubmed.ncbi.nlm.nih.gov/34538209/ – (On our blog : https://plantstomata.wordpress.com/2021/12/03/the-dorsiventral-distribution-of-stomata-a-new-direction-for-evolutionary-developmental-biology-studies-on-stomata/ )

Dolman A. J., Gash J. H. C., Roberts J., Shuttleworth W. J. (1991) – Stomatal and surface conductance of tropical rainforest – Agricultural and Forest Meteorology 54(2–4): 303-318 – https://doi.org/10.1016/0168-1923(91)90011-E – https://www.sciencedirect.com/science/article/pii/016819239190011E – (On our blog : https://plantstomata.wordpress.com/2018/09/26/stomatal-and-surface-conductance-of-tropical-rainforest/ )

Dolman A. J., Van Den Burg G. J. (1988) – Stomatal behavior in an oak canopy – Agric For Meteorol 43: 99–108 – https://doi.org/10.1016/0168-1923(88)90085-8 – https://www.sciencedirect.com/science/article/pii/0168192388900858 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/stomatal-conductance-in-an-oak-canopy/ )

Domec J.-C., Berghoff H., Way D, Moshelion M., Palmroth S., Kets K., Huang C.-W., Oren R. (2019) – Mechanisms for minimizing height-related stomatal conductance declines in tall vines – Plant Cell Environ 2019 – doi: 10.1111/pce.13593https://www.ncbi.nlm.nih.gov/pubmed/31124152 – (On our blog : https://plantstomata.wordpress.com/2019/08/08/stomatal-conductance-of-distal-leaves-can-be-similar-to-that-of-basal-leaves/ )

Domec J.-C., Johnson D. M (2012) – Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars? – Tree Physiology 32: 245–248 – https://www.fs.usda.gov/treesearch/pubs/42714 – (On our blog : https://plantstomata.wordpress.com/2021/12/11/stomata-and-isohydric-versus-anisohydric-behavior/ )

Domec J.-C., Noormets A., King J. S., Sun G. E., McNulty S. G., Gavazzi M. J., Boggs J. L., Treasure E. A. (2009) – Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation – Plant Cell Environ. 32(8): 980-991 – (On our blog : https://plantstomata.wordpress.com/2015/09/22/stomatal-conductance-and-its-sensitivity-to-vapour-pressure-deficit/ )

Domec J.-C., Palmroth S., Ward E., Maier C. A., Therezien M., Oren R. (2009) – Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization – Plant, Cell Environ. 32: 1500-1512 – Acclimation_of_leaf_hydraulic_conductanc.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/acclimation-of-stomatal-conductance-to-long-term-growth-in-elevated-co2-and-n-fertilization/)

Domec J.-C., Pruyn M.L. (2008) – Bole girdling affects metabolic properties and root, trunk and branchhydraulics of young ponderosa pine trees – Tree Physiology 28: 1493–1504 – https://www.academia.edu/32629478/Bole_girdling_affects_metabolic_properties_and_root_trunk_and_branch_hydraulics_of_young_ponderosa_pine_trees?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/10/at-the-onset-of-summer-there-was-a-sharp-decrease-in-stomatal-conductance-gs-in-girdled-trees-followed-by-a-full-recovery-after-the-first-major-rain-fall-in-september/ )

Domec J.-C., Schäfer K., Oren R., Kim H. S., McCarthy H. R. (2010) – Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulicperformance under future atmospheric CO2 concentration – Tree Physiology –  http://www.treephys.oxfordjournals.orghttps://www.academia.edu/32629477/Variable_conductivity_and_embolism_in_roots_and_branches_of_four_contrasting_tree_species_and_their_impacts_on_whole_plant_hydraulic_performance_under_future_atmospheric_CO2_concentration?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/03/maintenance-of-stomatal-conductance-and-stomatal-control/ )

Domec J.-C., Scholz F. G., Bucci S. J., Meinzer F. C., Goldstein G. V., Villalobos-Vega R. (2006) – Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status – Plant Cell Environ. 29: 26–35 – DOI: 10.1111/j.1365-3040.2005.01397.x – – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01397.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/05/impact-of-root-xylem-embolism-on-stomatal-control-of-plant-water-status/ )

Domec J.-C., Warren J. M., Meinzer F. C., Brooks J. R., Coulombe R. (2004) – Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution – Oecologia 141(1): 7-16 – http://link.springer.com/article/10.1007%2Fs00442-004-1621-4 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/root-xylem-embolism-and-stomatal-closure/ )

Domes W., Bertsch A. (1969) – CO2-exchange in amphistomatic leaves. 2. A comparison between the diffuse CO2-exchange of both leaf surfaces of Zea mays and the viscous flow of volume in the porometer – Planta 86: 84-91 – doi: 10.1007/BF00385307 – https://www.ncbi.nlm.nih.gov/pubmed/24515745 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/the-correlation-between-the-diffusive-co2-exchange-of-the-lower-surface-and-the-porometer-flow-is-not-significant/ )

Domingos M. (2012) – The Crucial Role of Stomata in Plant Transpiration and Photosynthesis – Hub Pages – https://discover.hubpages.com/education/The-Crucial-Role-of-Stomata-in-Plant-Transpiration-and-Photosynthesis – (On our blog : https://plantstomata.wordpress.com/2022/07/22/crucial-role-of-stomata-in-plant-transpiration-and-photosynthesis/ )

Domingues T. F. (2022) – Stomata secretive ways: A commentary on Lamour et al. – Global Change Biology – https://doi.org/10.1111/gcb.16184https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.16184 – (On our blog : https://plantstomata.wordpress.com/2022/04/23/stomata-secretive-ways/ )

Do Nascimento Vieira L., de Freitas Fraga H. P., dos Anjos K. G., Puttkammer C. C., Scherer R. F., da Silva D. A., Guerra M. P. (2015) – Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets – Theor. Exp. Plant Physiol. 27: 91–98 – https://doi.org/10.1007/s40626-015-0035-5 (2015) – https://link.springer.com/article/10.1007%2Fs40626-015-0035-5 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-effect-of-two-led-lighting-treatments-compared-to-conventional-fluorescent-lamps-on-the-stomata-formation/ )

Dong F.-C., Wang P.-T., Zhang L., Song C.-P. (2001) – The role of hydrogen peroxide in salicylic acid-induced stomatal closure in Vicia faba guard cells – Acta Phytophysiol Sin 27: 296-302 –

Dong H., Bai L., Zhang Y., Zhang G., Mao Y., Min L., Xiang F., Qian D., Zhu X., Song C.-P. (2018) – Modulation of Guard Cell Turgor and Drought Tolerance by a Peroxisomal Acetate–Malate Shunt – Molecular plant 1(10): 1278-1291 – https://doi.org/10.1016/j.molp.2018.07.008https://www.cell.com/molecular-plant/fulltext/S1674-2052(18)30242-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1674205218302429%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/10/03/a-peroxisomal-bzu1-acn1-mediated-acetate-malate-shunt-regulates-drought-resistance-by-controlling-the-turgor-pressure-of-guard-cells/ )

Dong J., Bergmann D. C. (2010) – Stomatal patterning and development – Curr Top Dev Biol 91: 267-297 – (On our blog : https://plantstomata.wordpress.com/2015/09/22/components-in-signaling-pathways-required-for-cell-fate-and-pattern-of-stomata/).

Dong J., MacAlister C. A., Bergmann D. C. (2009) – BASL controls asymmetric cell division in Arabidopsis – Cell. 137: 1320-1330 – 10.1016/j.cell.2009.04.018 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/basl-and-stomata-2/

Dong M.A., Bufford J.L., Oono Y., Church K., Dau M.Q., Michels K., Haughton M., Tallman G., (2007) – Heat suppresses activation of an auxin-responsive promoter in cultured guard cell protoplasts of tree tobacco – Plant Physiology 145(2): 367-377 – DOI: 10.1104/pp.107.104646https://eurekamag.com/research/015/994/015994231.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/94683/ )

Dong X., Ling N., Wang M., Shen Q., Guo S. (2012) – Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants – Plant Physiol Biochem. 60: 171-179 – doi: 10.1016/j.plaphy.2012.08.004 – Epub 2012 Aug 21 – PMID: 22964424 – https://pubmed.ncbi.nlm.nih.gov/22964424/ – (On our blog : https://plantstomata.wordpress.com/2022/09/17/reduced-stomatal-conductance-gs-and-transpiration-rate-e-in-infected-plants-resulted-in-lower-levels-of-water-loss-than-in-control-plants/ )

Dong X., Zhang X. (2000) – Special stomatal distribution in Sabina vulgaris in relation to its survival in a desert environment – Trees. 14: 369-375 – https://doi.org/10.1007/s004680000054 –  https://link.springer.com/article/10.1007%252Fs004680000054 – (On our blog : https://plantstomata.wordpress.com/2020/12/08/two-structural-features-should-play-an-important-role-in-the-potential-mechanism-of-water-conservation/ )

Donkin M., Martin E. S. (1980) –  Studies on the properties of carboxylating enzymes in the epidermis of Commelina communis – J Exp Bot 31: 357-363 – https://doi.org/10.1093/jxb/31.2.357 – https://academic.oup.com/jxb/article-abstract/31/2/357/488694?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/12/02/the-possible-role-of-pep-carboxylase-in-stomatal-metabolism/

Donkin M. E., Martin E.S. (1981) – Blue light absorption by guard cells of Commelina communis and Allium cepa – Zeitschrift für Pflanzenphysiologie 102: 145–152 – https://doi.org/10.1016/S0044-328X(81)80206-1https://www.sciencedirect.com/science/article/pii/S0044328X81802061 – (On our blog : https://plantstomata.wordpress.com/2019/11/09/blue-light-absorption-by-stomatal-guard-cells/ )

Donkin M. E., Wang T. L., Martin E.S. (1983) – An investigation into the stomatal behavior of a wilty mutant of Pisum sativum – J Exp Bot 34: 825–834 – https://doi.org/10.1093/jxb/34.7.825https://academic.oup.com/jxb/article-abstract/34/7/825/691524 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/no-difference-in-response-to-aba-of-stomata-on-detached-epidermis/ )

Donnelly D. J., Skelton F. E. (1987) – Hydathode structure of micropropagated plantlets and greenhouse-grown ‘Totem’ strawberry plants – J. Amer. Soc. Hort Sci. 112: 755-759 – https://www.researchgate.net/publication/283329020_Hydathode_structure_of_micropropagated_plantlets_and_greenhouse_grown_totem_strawberry_plants – (On our blog : https://plantstomata.wordpress.com/2019/11/09/hydathodes-and-stomata-in-strawberries/ )

Doohan M. E., Palevitz B. A. (1980) – Microtubules and coated vesicles in guard-cell protoplasts of Allium cepa L. – Planta 149: 389–401 – DOI: 10.1007/BF00571175 – https://scinapse.io/papers/2042757836 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/microtubules-and-coated-vesicles-in-guard-cell-protoplasts-of-stomata/

Dörffling K., Streich J., Kruse W., Muxfeldt B. (1977) – Abscisic acid and the after-effect of water stress on stomatal opening potential – Zeitschrift für Pflanzenphysiologie 81(1): 43 – 56 – https://doi.org/10.1016/S0044-328X(77)80036-6 – https://www.sciencedirect.com/science/article/pii/S0044328X77800366 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/the-after-effect-of-wilting-on-stomatal-opening-is-caused-primarily-by-the-increased-level-of-aba/ )

Dörffling K., Tietz D., Strick J., Ludwig M. (1980) – Studies on the role of abscisic acid in stomatal movements – In: F Skoog, ed, Plant Growth Substances 1979. Springer-Verlag, Heidelberg 274-285 – https://books.google.be/books?id=JPD0CAAAQBAJ&pg=PA274&lpg=PA274&dq=stomata+1979&source=bl&ots=KBU7CgVtrG&sig=ACfU3U0WaqIP2a8Bx6Rw4cUATv5QFdBy6A&hl=en&sa=X&ved=2ahUKEwiOq4b4hPTyAhWKGuwKHbIiB8k4MhDoAXoECAMQAw#v=onepage&q=stomata%201979&f=false – (On our blog : https://plantstomata.wordpress.com/2021/09/10/aba-and-stomatal-movements/ )

Dorman J. L., Sellers P. J. (1989) – A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB) – Journal of Applied Meteorology and Climatology 28(9): 833-855 – https://doi.org/10.1175/1520-0450(1989)028<0833:AGCOAR>2.0.CO;2https://journals.ametsoc.org/view/journals/apme/28/9/1520-0450_1989_028_0833_agcoar_2_0_co_2.xml – (On our blog : https://plantstomata.wordpress.com/2021/05/02/90569/ )

Dornhoff G. M., Shibles R. (1976) – Leaf morphology and anatomy in relation to CO2 exchange rate of soybean leaves – Crop Sci. 16: 377-381 – doi:10.2135/cropsci1976.0011183X001600030015x – https://dl.sciencesocieties.org/publications/cs/abstracts/16/3/CS0160030377?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/05/characteristics-internal-to-the-cell-as-opposed-to-resistances-related-to-stomata-intercellular-space-or-cell-surfaces-are-regulating-co2-exchange-rate-cer/ )

Dougherty R., Bradford J., Coyne P., Sims P. (1994) – Applying an empirical model of stomatal conductance to three C-4 grasses – Agric. For. Meteor. 67: 269–290 –

Douhovnikoff V., Taylor S. H., Hazelton E. L. G. , Smith C., O’Brien J. (2016) – Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America – AoB PLANTS (2016) : plw006 – doi: 10.1093/aobpla/plw006 – http://aobpla.oxfordjournals.org/content/8/plw006 – (On our blog : https://plantstomata.wordpress.com/2016/02/19/maximal-stomatal-conductance-in-lineages-of-phragmites-australis/)

Doutriaux-Boucher M., Webb M. J., Gregory J. M., Boucher O. (2009) – Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud – Geophysical Research Letters 36( 2): – https://doi.org/10.1029/2008GL036273https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008GL036273 – (On our blog : https://plantstomata.wordpress.com/2021/02/10/the-physiological-effect-of-co2-on-plant-stomatal-conductance-leading-to-adjustment-in-the-shortwave-cloud-radiative-effect-over-land-due-to-a-reduction-in-low-cloud-cover/ )

Dow G. J. (2014) – The physiological consequences of altering stomatal development in plants – lessons from Arabidopsis – Environmental Science and Engineering Seminar, May 7, 2014 – http://www.gps.caltech.edu/content/environmental-science-and-engineering-seminar-271 – (On our blog : https://plantstomata.wordpress.com/2015/10/11/altering-the-density-and-pattern-of-stomata/).

Dow G. J. (2017) – Current Research of Graham DOW – https://www.bu.edu/biology/people/profiles/graham-dow/ – (On our blog : https://plantstomata.wordpress.com/2017/09/19/graham-dows-research-on-stomata/)

Dow G. J. (2017) – Spatial and temporal relationships between stomatal development and function in a temperate forest canopy – Conference – https://www.eventscribe.com/2017/ASPB/ajaxcalls/PresentationInfo.asp?efp=RU9TU0FaVlEzNDcz&PresentationID=276732&rnd=0.916164 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/relationships-between-stomatal-development-and-function-in-a-temperate-forest-canopy/)

Dow G. J. (2017) – Plant Biology: Rethinking Structure–Function Relationships in Guard Cells – Curr. Biol. 27(19): 1069–1071 – http://dx.doi.org/10.1016/j.cub.2017.08.028 – http://www.cell.com/current-biology/fulltext/S0960-9822(17)31066-7?elsca1=etoc&amp;elsca2=email&amp;elsca3=0960-9822_20171009_27_19_&amp;elsca4=Cell%20Press – (On our blog : https://plantstomata.wordpress.com/2017/10/10/structure-function-relationships-in-stomata/)

Dow G. J., Bergmann D. C. (2014) – Patterning and processes: how stomatal development defines physiological potential. – Current Opinion in Plant Biology 21: 67-74 – doi: 10.1016/j.pbi.2014.06.007 – PMID: 25058395 – https://www.sciencedirect.com/science/article/pii/S1369526614000946 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-development-defines-physiological-potential/ )

Dow G. J., Bergmann D. C., Berry J. A.  (2014) – An integrated model of stomatal development and leaf physiology – New Phytologist. 201: 1218-1226 – DOI: 10.1111/nph.12608 – PMID: 24251982 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12608/abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/15/model-of-stomatal-development-and-leaf-physiology/ )

Dow G. J., Berry J. A., Bergmann D. C. (2013) – The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana – New Phytologist 201(4): 1205–1217 – doi: 10.1111/nph.14746 – Epub 2017 Aug 21 – PMID: 28833173
– http://onlinelibrary.wiley.com/doi/10.1111/nph.12586/full – (On our blog : https://plantstomata.wordpress.com/2016/11/08/developmental-mechanisms-that-enforce-stomatal-spacing/)

Dow G. J., Berry J. A., Bergmann D. C. (2017) – Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange – New Phytol. 216(1): 69-75 – doi: 10.1111/nph.14746 – Epub 2017 Aug 21 – PMID: 28833173 http://onlinelibrary.wiley.com/doi/10.1111/nph.14746/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/stomata-specific-regulators-can-alter-mesophyll-properties/ )

Downton W. J. S., Grant W. J. R., Robinson S. P. (1985) – Photosynthetic and stomatal responses of spinach leaves to salt stress – Plant Physiol 77: 85-88 –  https://doi.org/10.1104/pp.78.1.85 – http://www.plantphysiol.org/content/78/1/85.short – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-responses-of-spinach-leaves-to-salt-stress/)

Downton W. J. S., Loveys B. R., Grant W. J. R. (1988) – Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid – New Phytologist 108: 263–266 – doi:10.1111/j.1469-8137.1988.tb04161.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1988.tb04161.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-closure-can-account-for-non-stomatal-inhibition-of-photosynthesis-by-aba/ )

Downton W. J. S., Loveys B. R., Grant W. J. R. (1988) – Non-uniform stomatal closure by water stress causes putative non-stomatal inhibition of photosynthesis – New Phytol. 110: 503-509 – DOI: 10.1111/j.1469-8137.1988.tb00289.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1988.tb00289.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/06/non-uniform-stomatal-closure-can-account-for-non-stomatal-inhibition-of-photosynthesis-in-plants-experiencing-water-stress/

Downton W. J. S., Loveys B. R., Grant W. J. R. (1990) – Salinity effects on the stomatal behaviour of grapevine – New Phytol 116(3): 499–503 – DOI: 10.1111/j.1469-8137.1990.tb00535.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1990.tb00535.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/02/salinity-effects-on-stomatal-behaviour/)

Dr. Universe (2022) – Dr. Universe: ‘How do trees give us air to breathe?’ – WSU INSIDER April 22, 2022 – https://news.wsu.edu/news/2022/04/22/dr-universe-how-do-trees-give-us-air-to-breathe/ – (On our blog : https://plantstomata.wordpress.com/2022/04/25/tiny-microscopic-organs-on-their-leaves-called-stomata-to-move-gasses-in-and-out/ )

Drake B., Raschke K. (1974) – Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO(2) – Science.gov (United States) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/net-photosynthesis-and-stomatal-conductance-decreased-and-dark-respiration-increased-with-increasing-duration-of-prechilling/ )

Drake B. G. (2001) – Global change and stomatal research – the 21st century agenda.- New Phytologist 152: 372–374 – DOI: 10.1046/j.0028-646X.2001.00293.x – (On our blog : https://plantstomata.wordpress.com/2016/05/19/12581/)

Drake B. G., Gonzalez-Meler M. A., Long S. P. (1997) – MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2? – Annual Review of Plant Physiology and Plant Molecular Biology 48: 609-639 – https://doi.org/10.1146/annurev.arplant.48.1.609https://www.annualreviews.org/doi/abs/10.1146/annurev.arplant.48.1.609 – (On our blog : https://plantstomata.wordpress.com/2021/03/21/elevated-ca-reduces-stomatal-conductance-and-transpiration-and-improves-water-use-efficiency/ )

Drake J. E., Power S. A., Duursma R. A., Medlyn B. E., Aspinwall M. J., Choat B., Creek D., Eamus D., Maier C., Pfautsch S., Smith R. A., Tjoelker M. G., Tissue D. T. (2017) – Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations – Agricultural and Forest Meteorology 247: 454-466 – https://doi.org/10.1016/j.agrformet.2017.08.026 –https://www.sciencedirect.com/science/article/pii/S0168192317302824?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/03/25/empirical-models-implementing-stomatal-and-non-stomatal-limitations-based-on-%ce%b8-are-highly-predictive-simple-models/ )

Drake P. L., de Boer H. J., Schymanski S. J., Veneklaas E. J. (2018) – Two sides to every leaf: water and CO2 transport in hypostomatous and amphistomatous leaves – New Phytologist – https://doi.org/10.1111/nph.15652 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15652?af=R – (On our blog : https://plantstomata.wordpress.com/2018/12/21/water-and-co2-transport-in-hypostomatous-and-amphistomatous-leaves/ )

Drake P. L., Froend R. H., Franks P. J.(2013) – Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance – Journal of Experimental Botany 64: 495–505 – (On our blog : https://plantstomata.wordpress.com/2015/09/23/leaves-with-higher-rates-of-gas-exchange-have-smaller-stomata-and-faster-dynamic-characteristics/).

Drawert H. (1952) – Der fluorescenzoptische Nachweis von Chloroplasten in den Schliesszellen von Allium cepa L. – Flora, Jena 139: 329-332 – https://ac.els-cdn.com/S036716151731340X/1-s2.0-S036716151731340X-main.pdf?_tid=5d0026a6-f1c9-465a-a8cd-43ca63243e2c&acdnat=1520328084_5692a4271da51f4cf6b83964c02e1663 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/chloroplasts-in-the-guard-cells-of-onion-in-german/ )

Drayton B., Calabi P. (1992) – Long-term plant responses to environmental change: leaf stomata densities – Hands On! Spring 15(1) TERC. Cambridge, Mass. (see www.terc.edu/handson) –

Drell D., Vogel J. (2017) – Grasses: The Secrets behind Their Stomatal Success – Joint Genome Institute March 29, 2017 – https://jgi.doe.gov/brachypodium-grasses-secrets-behind-stomatal-success/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-with-unique-subsidiary-cells/ )

Drennan P. M., Goldsworthy D., Buswell A. (2009) – Marginal and laminar hydathode-like structures in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. – Flora 204(3): 210-219 – DOI: 10.1016/j.flora.2008.01.013 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0763b153-3675-3a95-bedc-56afc2d54e4e – (On our blog : https://plantstomata.wordpress.com/2017/10/07/hydathode-like-structures-in-the-leaves-of-myrothamnus-myrothamnaceae/)

Drew A. P. (1967) – Stomatal activity in semi-arid site Ponderosa pine – MsC Thesis University of Arizona – AZU_TD_BOX79_E9791_1967_374.pdfhttps://repository.arizona.edu/bitstream/handle/10150/318635/AZU_TD_BOX79_E9791_1967_374.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2021/11/19/stomatal-activity-in-semi-arid-site-ponderosa-pine/ )

Drew A. P., Bazzaz F. A. (1979) – Response of stomatal resistance and photosynthesis to night temperature in Populus deltoides – Oecologia (Berlin) 41: 89-98 – doi: 10.1007/BF00344839 – https://www.ncbi.nlm.nih.gov/pubmed/28310362 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-resistance-and-photosynthesis-in-relation-to-night-temperature/ )

Driesen E., Van den Eynde W., De Proft M., Saeys W. (2020) – Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review – Agronomy 10(12): 1975 – https://doi.org/10.3390/agronomy10121975https://www.mdpi.com/2073-4395/10/12/1975/htm – (On our blog : https://plantstomata.wordpress.com/2021/01/27/summary-of-the-recent-advances-in-research-on-the-interaction-between-environmental-factors-and-stomatal-development-and-opening/ )

Driscoll S., Prins A., Olmos E., Kunert K., Foyer C. (2006) – Specification of Adaxial and Abaxial Stomata, Structure and Photosynthesis to CO2 Enrichment Maize Leaves, – Journal of Experimental Botany 57(2): 381-390- http://dx.doi.org/10.1093/jxb/erj030 – https://academic.oup.com/jxb/article/57/2/381/489968 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/12595/)

Droz H. C., Felber F. (1992) – Biometric study of stomata and grains of pollen as indicators of the degree of polyploidy in Anthoxanthum alpinum Love and Love – Bulletin de la Societé Neuchateloise des Sciences Naturelles 115: 31-45 – https://eurekamag.com/research/008/232/008232333.php – (On our blog : https://plantstomata.wordpress.com/2022/01/08/the-size-of-stomata-and-pollen-grains-varied-within-individuals-and-within-populations/ )

Dry P. R., Loveys B. R. (1999) – Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried – Vitis 38: 151-156 – https://www.researchgate.net/publication/285728594_Grapevine_shoot_growth_and_stomatal_conductance_are_reduced_when_part_of_the_root_system_is_dried – (On our blog : https://plantstomata.wordpress.com/2018/09/13/stomatal-conductance-is-reduced-when-part-of-the-root-system-is-dried/ )

Du H., Chang Y., Huang F., Xiong L. (2014) – GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice – Journ. Integrative Plant Biology 57(11): – https://doi.org/10.1111/jipb.12313 –https://onlinelibrary.wiley.com/doi/full/10.1111/jipb.12313 – (on our blog : https://plantstomata.wordpress.com/2019/03/12/gid1-plays-distinct-roles-in-stomatal-response-and-submergence-tolerance-through-both-the-aba-and-ga-signaling-pathways-in-rice/ )

Du M., Zhai Q., Deng L., Li S., Li H., Yan L., Huang Z., Wang B., Jiang H., Huang T., Li C.-B., Wei J., Kang L., Li J., Li C. (2014) – Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack – Plant Cell 26, 3167–3184 – doi: 10.1105/tpc.114.128272 – http://www.plantcell.org/content/early/2014/07/08/tpc.114.128272 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/nac-proteins-differentially-regulate-pathogen-induced-stomatal-closure-and-reopening-through-distinct-mechanisms/ )

Du Q.-S., Fan X.-W., Wang C.-H., Huang R.-B. (2011) – A Possible CO2 Conducting and Concentrating Mechanism in Plant Stomata SLAC1 Channel – PLoS ONE 6(9): e24264 – doi:10.1371/journal.pone.0024264http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC3172217&blobtype=pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/09/slac1-may-be-a-pathway-providing-co2-for-photosynthesis-in-the-stomatal-guard-cells/ )

Du Z., Aghoram K., Outlaw W. H. Jr.(1997) – RESEARCH REPORT – In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid – Archives of Biochemistry and Biophysics 337(2): 345-350 – DOI: 10.1006/abbi.1996.9790 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1c712925-86b7-37fd-9bc8-0f1b76d6d726 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/regulatory-posttranslational-modification-of-a-guard-cell-protein-that-is-specifically-implicated-in-stomatal-movements/

Duan B., Ma Y., Jiang M., Yang F., Ni L., Lu W. (2015) – Improvement of photosynthesis in rice (Oryza sativa L.) as a result of an increase in stomatal aperture and density by exogenous hydrogen sulfide treatment – Plant Growth Regul. 75 (1): 33–44 – doi: 10.1007/s10725-014-9929-5https://link.springer.com/article/10.1007%2Fs10725-014-9929-5 – (On our blog : https://plantstomata.wordpress.com/2019/12/26/h2s-treatment-improved-photosynthesis-in-rice-by-increasing-its-stomatal-aperture-and-density/ )

Duan B. B., Zhao C. Z., Xu T., Zheng H. L., Feng W., Han L. (2016) – Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou – Chinese Journal of Plant Ecology, 40: 1289-1297 –

[ 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲 (2016). 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析. 植物生态学报, 40,1289-1297.]

Duan H., O’Grady A. P., Duursma R. A., Choat B., Huang G., Smith R. A., Jiang Y., David T. Tissue D. T., (2015) – Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature – Tree Physiology – doi:10.1093/treephys/tpv047 https://www.academia.edu/13790231/Drought_responses_of_two_gymnosperm_species_with_contrasting_stomatal_regulation_strategies_under_elevated_CO2_and_temperature – (On our blog : https://plantstomata.wordpress.com/2022/01/19/contrasting-stomatal-regulation-strategies-under-elevated-co2-and-temperature/ )

Duan Q., Lin Y., Jiang W., Huang D. (2014) – Stomatal Development and Associated Photosynthetic Characteristics of Watermelon (Citrullus lanatus) Plug Seedlings during Light Storage – HortScience 49(7): 881-885 – https://doi.org/10.21273/HORTSCI.49.7.881https://journals.ashs.org/hortsci/view/journals/hortsci/49/7/article-p881.xml – (On our blog : https://plantstomata.wordpress.com/2019/06/05/light-in-short-term-storage-contributed-to-maintaining-stomatal-development/ )

Duarte H. M., Jakovljevic I., Kaiser F., Ulrich Lüttge U. (2005) – Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier – Planta 220(6): 809-816 – doi: 10.1007/s00425-004-1398-z – Epub 2004 Nov 11 – https://pubmed.ncbi.nlm.nih.gov/15843962/ – (On our blog : https://plantstomata.wordpress.com/2022/03/08/the-role-of-closed-stomata-in-lateral-diffusion-of-co2/ )

Dubbe D. R., Farquhar G. D., Rasche K. (1978) – Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata – Plant Physiol. 62: 413-417 –  https://doi.org/10.1104/pp.62.3.413 – https://www.ncbi.nlm.nih.gov/pubmed/16660528 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/aba-co2-stomata-and-the-gains-of-the-feedback-loops/

Dubberstein D., Oliveira M. G., Aoyama E. M., Guilhen J. H., Ferreira A., Marques I., Ramalho J. C., Partelli F. L. (2021) – Diversity of Leaf Stomatal Traits among Coffea canephora Pierre ex A. Froehner Genotypes – Agronomy 11: 1126 –https://doi.org/10.3390/agronomy11061126 – file:///C:/Users/wille/Downloads/agronomy-11-01126%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/08/03/leaf-stomatal-traits-among-coffea-canephora-genotypes/ )

Dubovskaya L. V., Bakakina Y. S., Kolesneva E. V., Sodel D. L., McAinsh M. R., Hetherington A. M., Volotovski ID. (2011) – cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1 – New Phytol. 191: 57–69 – http://dx.doi.org/10.1111/j.1469-8137.2011.03661.x – https://www.ncbi.nlm.nih.gov/m/pubmed/21371039/ – (On our blog : https://plantstomata.wordpress.com/2018/03/07/signalling-events-during-cgmp-dependent-aba-induced-stomatal-closure/

Ducker J. A., Holmes C. D., Keenan T. F., Fares S., Goldstein A. H., Mammarella I., Munger J. W., Schnell J. (2018) – Synthetic ozone deposition and stomatal uptake at flux tower sites – Biogeosciences 15: 5395–5413 – https://doi.org/10.5194/bg-15-5395-2018 – Biogeosciences Discuss – https://doi.org/10.5194/bg-2018-172https://helda.helsinki.fi//bitstream/handle/10138/298982/bg_15_5395_2018.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2020/04/18/synthetic-ozone-deposition-and-stomatal-uptake-at-flux-tower-sites/ )

Duckett J. G., Pressel S. (2018) – The evolution of the stomatal apparatus: intercellular spaces and sporophyte water relations in bryophytes-two ignored dimensions – Philos Trans R Soc Lond B Biol Sci 373(1739): 20160498 – DOI: 10.1098/rstb.2016.0498 – https://www.ncbi.nlm.nih.gov/pubmed?term=Duckett%20JG%2C%20Pressel%20S%20%282018%29%20The%20evolution%20of%20the%20stomatal%20apparatus%3A%20intercellular%20spaces%20and%20sporophyte%20water%20relations%20in%20bryophytes-two%20ignored%20dimensions%2E%20Philos%20Trans%20R%20Soc%20Lond%20B%20Biol%20Sci&dopt=abstract – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-evolution-of-the-stomatal-apparatus-in-mosses/ )

Duckett J. G., Pressel S., P’ng K. M. Y., Renzaglia K. S. (2009) – Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum – New Phytologist 183: 1053– 1063 – https://doi.org/10.1111/j.1469-8137.2009.02905.x –https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.02905.x – (On our blog : https://plantstomata.wordpress.com/2019/05/04/the-capsule-dehiscence-mechanism-and-the-function-of-pseudostomata-in-sphagnum/ )

Dudley J. W. (1958) – Number of Chloroplasts in the Guard Cells of Inbred Lines of Tetraploid and Diploid Sugar Beets – Agronomy Journal 50(3): 169-170 – doi: 10.2134/agronj1958.00021962005000030016x – https://dl.sciencesocieties.org/publications/aj/abstracts/50/3/AJ0500030169?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/15/diploids-and-tetraploids-could-be-rapidly-and-accurately-separated-by-counting-chloroplasts-in-the-stomatal-guard-cells/ )

Dufour L. (1885) – Influence de la lumière sur le nombre des stomates des feuilles – Bull. Soc. bot. France 32: 385-391 – DOI: 10.1080/00378941.1885.10828378 – https://www.tandfonline.com/doi/pdf/10.1080/00378941.1885.10828378

Dugger W. M., Taylor O. C., Cardiff E., Thompson C. R. (1962) – Stomatal action in plants as related to damage from photochemical oxidants – Plant Physiol. 37: 487-491 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC549820/?page=1 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/stomatal-opening-is-not-the-primary-controlling-factor-in-predisposing-plants-to-injury-from-ozone-and-pan/ )

Duke C. (2021) – Why Do Plants Close Their Stomata at Night? – https://sciencing.com/advantage-photosynthesis-5268918.html – (On our blog : https://plantstomata.wordpress.com/2021/11/28/96373/ )

Dumont021) – J., Cohen D., Gerard J., Jolivet Y., Dizengremel P., Le Thiec D. (2014) – Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes – Plant, Cell & Environment 37(9): 2064-2076  – DOI: 10.1111/pce.12293 – http://www.ccacoalition.org/en/resources/distinct-responses-ozone-abaxial-and-adaxial-stomata-three-euramerican-poplar-genotypeshttps://www.ncbi.nlm.nih.gov/pubmed/24506578 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/distinct-responses-to-ozone-of-stomata/)

Dumont J., Spicher F., Montpied P., Dizengremel P., Jolivet Y., Le Thiec D., (2013) -Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigragenotypes – Environ Pollut. 173: 85-96 – doi: 10.1016/j.envpol.2012.09.026 – https://www.ncbi.nlm.nih.gov/pubmed/23202637 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/effects-of-ozone-on-stomatal-responses-to-environmental-parameters/)

Duniway J. M., Durbin R. D. (1971) – Some effects of Uromyces phaseoli on the transpiration rate and stomatal response of bean leaves – Phytopathology 61(1): 114-119 – DOI: 10.1094/Phyto-61-114https://www.cabi.org/ISC/abstract/19711103291 – (On our blog : https://plantstomata.wordpress.com/2021/10/30/effects-of-uromyces-phaseoli-on-stomatal-response/ )

Dunlap, J.M., Stettler, R.F. (2001) – Variation in Leaf Epidermal and Stomatal Traits of Populus trichocarpa from Two Transects across the Washington Cascades – Canadian Journal of Botany 79: 528-536 – https://doi.org/10.1139/b01-029 – http://www.nrcresearchpress.com/doi/abs/10.1139/b01-029 – (On our blog : https://plantstomata.wordpress.com/2018/03/17/stomatal-traits-of-populus-trichocarpa/ )

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. I. Preliminary stiudies on the effect of light and carbon dioxide-  New Phytologist 97(2): 115 –

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. II. Characterization of the response to different concentrations of KCl and CO2 – New Phytologist 97(2): 121-128 – DOI: 10.1111/j.1469-8137.1984.tb04116.x – (On our blog : https://plantstomata.wordpress.com/2016/05/25/bentazone-may-effect-stomatal-movement/ )

Dunleavy P. J., Ladley P. D. (1995) – Stomatal responses of Vicia faba L. to indole acetic acid and abscisic acid – J. Exp. Bot. 46: 95-100 – https://doi.org/10.1093/jxb/46.1.95 – https://academic.oup.com/jxb/article-abstract/46/1/95/535985?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/17/stomatal-responses-to-iaa-and-aba/ )

Dunn D. B., Sharma G. K., Campbell C. C. (1965) – Stomatal patterns of
dicotyledons and monocotyledons – Am. Midl. Nat. 74: 185–195 –

Dunn J., Hunt L., Afsharinafar M., Al Meselmani M., Mitchell A., Howells R., Wallington E., Fleming A. J., Gray J. E. (2019) – Reduced stomatal density in bread wheat leads to increased water-use efficiency – Journal of Experimental Botany, erz248 – 70(18): 4737–4748 – https://doi.org/10.1093/jxb/erz248https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz248/5512262 – (On our blog : https://plantstomata.wordpress.com/2019/08/19/the-potential-of-stomatal-density-as-a-tool-for-breeding-wheat-plants-that-are-better-able-to-withstand-water-restricted-environments/ )

Durand M., Brendel O., Buré C., Le Thiec D. (2019) – Altered stomatal dynamics induced by changes in irradiance and vapour‐pressure deficit under drought: impacts on the whole plant transpiration efficiency of poplar genotypes – New Phytol. Accepted – 25 January 2019 – https://doi.org/10.1111/nph.15710 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15710?af=R – (On our blog : https://plantstomata.wordpress.com/2019/02/12/altered-stomatal-dynamics/ )

Durand M., Brendel O., Buré C., Le Thiec D. (2020) – Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field-grown poplars – New Phytol. 227: 392–406 –  doi: 10.1111/nph.16525 – Epub 2020 Apr 11 – PMID: 32150759 – https://pubmed.ncbi.nlm.nih.gov/32150759/ – (On our blog : https://plantstomata.wordpress.com/2021/11/29/stomatal-dynamics-are-regulated-by-both-genotype-specific-and-environmental-factors/ )

Durand M., Cohen D., Aubry N., Buré C., Tomášková I., Hummel I., Brendel O., Le Thiec D. (2020) – Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance – Plant Cell Environ. 43: 87–102 – doi: 10.1111/pce.13644https://onlinelibrary.wiley.com/doi/full/10.1111/pce.13644 – (On our blog : https://plantstomata.wordpress.com/2020/07/06/genes-of-interest-in-guard-cells-are-connected-to-spatiotemporal-variations-in-stomatal-conductance/ )

Durgadevi R., Vijayalakshmi D. (2020) – Mulberry with increased stomatal frequency regulates gas exchange traits for improved drought tolerance – Plant Physiol. Rep. 2020: 1-9 – https://doi.org/10.1007/s40502-019-00495-3https://link.springer.com/article/10.1007/s40502-019-00495-3#citeas – (On our blog : https://plantstomata.wordpress.com/2020/02/10/increased-stomatal-frequency-regulates-gas-exchange-traits-for-improved-drought-tolerance/ )

Düring H. (1980) – Stomatafrequenz bei Blättern von Vitis-Arten und Sorten – Vitis 19: 91–98 –

Düring H. (1987) – Stomatal responses to alterations of soil and air humidity in grapevines – Vitis 26: 9–18 –  ISSN 2367-4156 – https://ojs.openagrNew Phytol. .de/index.php/VITIS/article/view/5902 – (On our blog : https://plantstomata.wordpress.com/2018/12/02/73724/ )

Düring H. (1988) –  CO2 assimilation and photorespiration of grapevine leaves: Responses to light and drought – Vitis 27: 199-208 –

Düring H. (1990) – Stomatal adaptation of grapevine leaves to water stress – Stomatal adaptation of grapevine leaves to water stress – Vitis 29 (Special Issue) – https://doi.org/10.5073/vitis.1990.29.special-issue.366-369https://ojs.openagrar.de/index.php/VITIS/article/view/5525 – (On our blog : https://plantstomata.wordpress.com/2021/05/26/under-water-stress-conditions-stomata-of-leaves-reduce-transpiration-and-fully-account-for-putative-non-stomatal-inhibition-of-co2-assimilation/ )

Düring H. (1992) – Low air humidity causes non-uniform stomatal closure in heterobaric leaves of Vitis species – Vitis 31: 1-7 – ISSN 2367-4156 – https://ojs.openagrar.de/index.php/VITIS/article/view/5262 –5262-Article Text-20210-1-10-20151008.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/23/the-decline-of-the-photosynthetic-rate-caused-by-dry-air-is-entirely-due-to-stomatal-limitation-of-co2-uptake/ )

Düring H. (1993) – Rapid stomatal and photosynthetic responses of Vitis berlandieri leaves after petiole excision in water – Vitis 32: 63-68 – file:///C:/Users/wille/Downloads/5181-Article%20Text-19913-1-10-20150902.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/23/rapid-stomatal-responses-after-petiole-excision-in-water/ )

Düring H. (2000) – Induction of stomatal oscillations in grape leaves: Determination by gas exchange measurement – Vitis 39(1): 45-46 – file:///C:/Users/wille/Downloads/4482.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/09/95133/ )

Düring H. (2003) – Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.) – Vitis 42: 65–68 – 4393 – Article Text-17172-1-10-20150421.pdf – https://www.researchgate.net/publication/296949569_Stomatal_and_mesophyll_conductances_control_CO2_transfer_to_chloroplasts_in_leaves_of_grapevine_Vitis_vinifera_L – (On our blog : https://plantstomata.wordpress.com/2019/04/23/both-stomatal-and-mesophyll-conductance-are-involved-in-the-adaptation-of-the-co2-supply-to-the-co2-demand-at-the-site-of-carboxylation-in-chloroplasts/ )

Düring H. (2015) – Stomatal and mesophyll conductances control CO2
transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.) – Vitis -Geilweilerhof – 42(2): 65-68 – https://www.researchgate.net/publication/286877366_Stomatal_and_mesophyll_conductances_control_CO2_transfer_to_chloroplasts_in_leaves_of_grapevine_Vitis_vinifera_L – (On our blog : https://plantstomata.wordpress.com/2022/04/16/both-stomatal-and-mesophyll-conductance-are-involved-in-the-adaptation-of-the-co2-supply-to-the-co2-demand-at-the-site-of-carboxylation-in-chloroplasts-2/ )

Düring H., Harst M. (1996) – Stomatal behaviour, photosynthesis and photorespiration of in vitro-grown grapevines : Effects of light and CO2 – Vitis 35(4): 163-167 – https://www.semanticscholar.org/paper/Stomatal-behaviour-%2C-photosynthesis-and-of-in-%3A-of-SILUA/9c982aad16dbbdac8c170a972c3436811fae1a9b – (On our blog : https://plantstomata.wordpress.com/2021/03/27/stomatal-behaviour-effects-of-light-and-co2/ )

Düring H., Klingenmeyer W. (1987) Stomatal control of water use efficiency in two Vitis vinifera cultivars – 3e Symp. Intern. Physiologie Vigne, Bordeaux, 24-27 juin 1986; 179·184 – . [Abstr.: Hort. Abstr. 57, 7666.] –

Düring H., Loveys B. R. (1996) – Stomatal patchiness of field-grown Sultana leaves: Diurnal changes and light effects – Vitis 35: 7-10 – ISSN 2367-4156 – https://www.vitis-vea.de/admin/volltext/e036649.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomatal-patchiness-of-field-grown-grape-leaves/ )

Düring H., Stoll M. (1996) – Stomatal patchiness of grapevine leaves. I. Estimation of non-uniform stomatal apertures by a new infiltration technique. Vitis 35: 65-68 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.888.5158&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/23/88925/ )

Düring H., Stoll M. (1996) – Stomatal patchiness of grapevine leaves. II. Uncoordinated and coordinated stomatal movements – Vitis 35 (2): 69-71 – file:///C:/Users/wille/Downloads/4910-Article%20Text-18970-1-10-20150812.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/23/uncoordinated-patchy-fluctuations-of-stomatal-apertures-enable-effective-adaptation-of-single-patches-to-changes-of-ambient-stress-factors/ )

Dusart N., Vaultier M. N., Olry J. C., Buré C., Gérard J., Jolivet Y., Le Thiec D. (2019) – Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit – Environ Pollut. 252(Pt B): 1687-1697 – doi: 10.1016/j.envpol.2019.06.110 – Epub 2019 Jun 29 – PMID: 31284211 – https://pubmed.ncbi.nlm.nih.gov/31284211/ – (On our blog : https://plantstomata.wordpress.com/2021/11/29/to-improve-the-prediction-of-stomatal-conductance-in-response-to-various-environmental-modifications/ )

Dutton C., Hörak H., Hepworth C., Mitchell A., Ton J., Hunt L., Gray J. E. (2019) – Bacterial infection systemically suppresses stomatal density – Plant, Cell & Environment – https://doi.org/10.1111/pce.13570 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13570?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/02/bacterial-infection-systemically-suppresses-stomatal-density/ )

Duursma R. A., Blackman C. J., Lopéz R., Martin-StPaul N. K., Cochard H., Medlyn B. E. (2018) – On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls – New Phytol. Online Version – https://doi.org/10.1111/nph.15395 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15395?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/26/the-leaf-minimum-conductance-and-closure-of-stomata/ )

Duursma R., Payton P. R., Bange M., Broughton K., Medlyn B., Tissue D. (2013) – Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2] in cotton (Gossypium hirsutum L.) – Agricultural and Forest Meteorology – 168: 168-176 – https://www.ars.usda.gov/research/publications/publication/?seqNo115=280644 – (On our blog : https://plantstomata.wordpress.com/2022/09/16/a-straightforward-framework-based-on-optimal-stomatal-theory-successfully-predicted-responses-of-ite-to-d-tair-and-ca/ )

Duzenli S., Ergenolu F. (1991) – Studies on the density of stomata of some Vitis vinifera L. varieties grafted on different rootstocks trained up various trellis systems – Tr. J. Agric. Forestry 15: 308-317 – lllrd Symp. Viticulture of Turkey, 31 May-3 June 1988, Bursa, Turkey –

Dwelle R. B., Kleinkopf G. E., Pavek J. J. (1981) – Stomatal conductance and gross photosynthesis of potato (Solanum tuberosum L) as influenced by irradiance, temperature and growth state – Potato Res. 24: 49–59 – doi: 10.1007/BF02362016https://link.springer.com/article/10.1007%2FBF02362016 – (On our blog : https://plantstomata.wordpress.com/2021/05/23/stomatal-conductance-as-influenced-by-irradiance-temperature-and-growth-state/ )

Dwelle R. B., Hurley J., Pavek J. J. (1982) – Photosynthesis and stomatal conductance of potato clones (Solanum tuberosum L.) 1: Comparative Differences in Diurnal Patterns, Response to Light Levels, and Assimilation through Upper and Lower Leaf Surfaces – Plant Physiol. 72: 172–176 – doi: 10.1104/pp.72.1.172https://academic.oup.com/plphys/article-abstract/72/1/172/6078508?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/05/23/stomata-and-differences-in-carbon-assimilation-rates-among-clones/ )

Dzierzynska A. (2006) – The role of cytoskeleton in stomata functioning – Acta Physiologiae Plantarum 28(1): 59–79 – ISSN :0137-5881 – https://www.infona.pl/resource/bwmeta1.element.agro-article-ae3638cb-851d-498a-b174-a69ef3835e75 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/role-of-cytoskeleton-in-stomata-functioning/)

Dzikiti S., Steppe K., Lemeur R., Milford J. R. (2007) – Whole-tree level water balance and its implications on stomatal oscillations in orange trees [Citrus sinensis (L.) Osbeck] under natural climatic conditions – J. Exp. Bot. 58: 1893-1901 –https://doi.org/10.1093/jxb/erm023https://academic.oup.com/jxb/article/58/7/1893/515014 – (On our blog : https://plantstomata.wordpress.com/2019/04/07/whole-tree-level-water-balance-and-its-implications-on-stomatal-oscillations/ )

Eamus D. (1986) – Further evidence in support of an interactive model in stomatal control. – J. Exp. Bot. 37: 657-665 – https://doi.org/10.1093/jxb/37.5.657 – https://academic.oup.com/jxb/article-abstract/37/5/657/448803?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/07/an-interactive-model-in-stomatal-control/ )

Eamus D. (1987) – Stomatal behaviour and leaf water potential of chilled and water-stressed Solanum melongena, as influenced by growth history – Plant, Cell and Environment 10(8): 649–654 – DOI: 10.1111/j.1365-3040.1987.tb01847.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1987.tb01847.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/07/stomatal-behaviour-and-leaf-water-potential-of-chilled-and-water-stressed-plants/

Eamus D., Barnes J. D., Mortensen L., Ro-Poulsen H., Davison A. W. (1990) – Persistent stimulation of CO2 assimilation and stomata1 conductance by summer ozone fumigation in Norway spruce – Environmental Pollution 63: 365-379 – https://doi.org/10.1016/0269-7491(90)90141-X – https://www.sciencedirect.com/science/article/pii/026974919090141X – (On our blog : https://plantstomata.wordpress.com/2018/03/08/summer-ozone-fumigation-and-stimulation-of-co2-assimilation-and-stomatal-conductance/ )

Eamus D., Berryman C. A., Duff G. A. (1993) – Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO2 of Maranthes corymbosa, a tropical monsoon rain forest species – Australian Journal of Plant Physiology 20(6): 741-755 – DOI 10.1071/PP9930741 – http://www.publish.csiro.au/FP/PP9930741?CFID=35700333&CFTOKEN=c8fd4b214bc49e50-B1A57161-B1A9-F2E2-3D61C0C8994204E5 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-conductance-and-chlorophyll-responses-to-elevated-co2/ )

Eamus D., Fenton R., Wilson J. M. (1982) – Stomatal behaviour and water relations of chilled Phaseolus vulgaris L. and Pisum sativum L. – J. Exp. Bot. 34(141): 434–441 – https://doi.org/10.1093/jxb/34.4.434https://academic.oup.com/jxb/article-abstract/34/4/434/496226 – (On our blog : https://plantstomata.wordpress.com/2020/02/25/stomatal-behaviour-and-water-relations-of-chilled-plants/ )

Eamus D., Murray M. (1991) – Photosynthetic and stomatal conductance responses of Norway Spruce and beech to ozone, acid mist and frost- a conceptual model – Env. Pollut. 72(1): 23- 45 – https://doi.org/10.1016/0269-7491(91)90153-Nhttps://www.sciencedirect.com/science/article/pii/026974919190153N – (On our blog : https://plantstomata.wordpress.com/2019/11/09/photosynthetic-and-stomatal-conductance-responses-to-ozone-acid-mist-and-frost/ )

Eamus D., Narayan A. D. (1989) – The influence of prior water stress and abscisic acid foliar spraying on stomatal responses to CO2, IAA, ABA, and calcium in leaves of Solanum melongena – J. Exp. Bot. 40: 573-579 – DOI: 10.1093/jxb/40.5.573 – https://academic.oup.com/jxb/article-abstract/40/5/573/603414?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/08/influence-of-a-water-stress-or-foliar-aba-spraying-pretreatment-on-stomatal-responses-to-water-loss-exogenous-aba-iaa-ca2-and-co2/ )

Eamus D., Shanahan S. (2002) – A rate equation model of stomatal responses to vapour pressure deficit and drought – BMC Ecol 2(8) – https://doi.org/10.1186/1472-6785-2-8https://bmcecol.biomedcentral.com/articles/10.1186/1472-6785-2-8 – (On our blog : https://plantstomata.wordpress.com/2020/02/27/stomatal-responses-to-vapour-pressure-deficit-and-drought/ )

Eamus D., Taylor D. T., Macinnis-Ng C. M. O., Shanahan S., De Silva L. (2008) – Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. – Plant Cell Environ. 31(3): 269-277 – (On our blog : https://plantstomata.wordpress.com/2015/09/24/mechanistic-model-of-stomatal-behaviour-and-stomatal-conductance/ )

Earley A. M., Temme A. A., Cotter C. R., Burke J. M. (2022) – Genomic regions associate with major axes of variation driven by gas exchange and leaf construction traits in cultivated sunflower (Helianthus annuus L.) – bioRxiv – https://doi.org/10.1101/2022.04.01.486477https://www.biorxiv.org/content/10.1101/2022.04.01.486477v2.full – (On our blog : https://plantstomata.wordpress.com/2022/05/27/leaf-stomatal-and-vein-traits-exhibited-numerous-significant-correlations-that-generally-followed-expectations-based-on-functional-relationships/ )

Easlon H. M., Carlisle E., McKay J., Bloom A. (2015) – Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis thaliana? – Plant Physiol. 167: 793–799 – doi: 10.1104/pp.114.245241 – http://www.plantphysiol.org/content/167/3/793 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/does-low-stomatal-conductance-increases-growth-nitrate-assimilation-and-nitrogen-utilization-at-elevated-co2-concentration/ )

Easlon H. M., Richards J. H. (2009) – Photosynthesis affects following night leaf conductance in Vicia faba – Plant Cell Environ. 32:58–63 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/photosynthesis-and-night-time-stomatal-opening/)

Ebel R., Duan X., Still D., Auge R. (1997) – Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil – New Phytol. 135: 755–761 – DOI: 10.1046/j.1469-8137.1997.00674.xhttp://onlinelibrary.wiley.com/store/10.1046/j.1469-8137.1997.00674.x/asset/j.1469-8137.1997.00674.x.pdf?v=1&t=jehedgzu&s=712b12f302f7a6a07419d480174e9f7a6bab630d– (On our blog : https://plantstomata.wordpress.com/2018/03/07/is-xylem-aba-concentration-altered-by-mycorrhizal-symbiosis-of-cowpea-plants-grown-in-drying-soil/

Ebrahim S., Usha K., Singh B. (2012) – Plant architectural traits and their role in defense mechanism against malformation in mango (Mangifera indica L.) – Scientia Horticulturae 139: 25-31 – DOI: 10.1016/j.scienta.2012.02.025 – https://www.infona.pl/resource/bwmeta1.element.elsevier-d300469e-594a-3b3d-9a26-febbf576e955 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-and-their-role-in-defense-mechanism-against-malformation-in-mango/)

Eburneo L., Ribeiro-Junior N. G., Karsburg I. V., Rossi A. A. B., Silva I. V. (2017) – Anatomy and micromorphometric analysis of leaf Catasetum x apolloi Benelli & Grade with addition of potassium silicate under different light sources – (Anatomia e análise micromorfométrica foliar de Catasetum x apolloi Benelli & Grade com adição de silicato de potássio em diferentes fontes de luz) – Braz. J. Biol. 77(01):  – https://doi.org/10.1590/1519-6984.12015https://www.scielo.br/j/bjb/a/tCDVyhSPBcCqKSp7rHnBDxv/?lang=en# – (On our blog : https://plantstomata.wordpress.com/2022/02/22/stomatal-traits-under-different-light-sources/ )

Eckerson  S. H. (1908) – The number and size of the stomata – Botanical Gazette 46(3): 221–224 – https://www.journals.uchicago.edu/doi/pdfplus/10.1086/329698 – (On our blog : https://plantstomata.wordpress.com/2019/04/23/number-and-size-of-stomata/ )

Eckert M., Kaldenhoff R. (2000) – Light‐induced stomatal movement of selected Arabidopsis thaliana mutants – Journal of Experimental Botany 51: 1435-1442 – https://doi.org/10.1093/jexbot/51.349.1435 – https://academic.oup.com/jxb/article/51/349/1435/509252 – (On our blog : https://plantstomata.wordpress.com/2018/09/14/light%e2%80%90induced-stomatal-movement/ )

Eckstein J. (1997) – Heterogene Kohlenstoffassimilation in Blättern höherer Pflanzen als Folge der Variabilität stomatärer Öffnungsweiten–Charakterisierung und Kausalanalyse des Phänomens ‘stomatal patchiness’ – Dissertatio – Bayerische Ludwig‐Maximilians‐Universität Würzburg. PhD Thesis.

Eckstein J., Artsaenko O., Conrad U., Peisker M., Beyschlag W. (1998) – Abscisic acid is not necessarily required for the induction of patchy stomatal closure – J. Exp. Biol. 49: 611–616 –https://doi.org/10.1093/jxb/49.320.611 –https://academic.oup.com/jxb/article/49/320/611/514940 – (On our blog :  https://plantstomata.wordpress.com/2018/12/10/a-heterogeneous-sensitivity-of-stomata-to-aba-is-not-directly-involved-in-the-induction-of-patchy-stomatal-closure/ )

Eckstein J., Beyschlag W., Mott K. A., Ryel R. J. (1996) – Changes in photon flux can induce stomatal patchiness – Plant, Cell & Environment 19(9): 1066-1074 – DOI: 10.1111/j.1365-3040.1996.tb00213.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00213.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/changes-in-photon-flux-can-induce-stomatal-patchiness/)

Eckstein J., Beyschlag W., Mott K. A., Ryel R. J. (1996) – Changes in photon flux can induce stomatal patchiness – Plant Cell Environ. 19: 1066–1074 – DOI: 10.1111/j.1365-3040.1996.tb00213.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00213.x/full – (On our blog :  https://plantstomata.wordpress.com/2017/08/28/changes-in-photon-flux-can-induce-stomatal-patchiness/ )

Edaphic Scientific (2019) – Continuous stomatal conductance measurements – https://www.edaphic.com.au/sap-flow-digest/continuous-stomatal-conductance-measurements/ – (On our blog : https://plantstomata.wordpress.com/2019/03/28/continuous-stomatal-conductance-measurements/ )

Eddings J. L., Brown A. L. (1967) – Absorption and Translocation of Foliar-Applied Iron – Plant Physiol. 42: 15-19 – (On our blog : https://plantstomata.wordpress.com/2021/12/14/stomata-were-found-to-play-a-major-role-in-foliar-absorption/ )

Edel K. H., Kudla J. (2016) – Integration of calcium and ABA signaling – Current Opinion in Plant Biology 33: 83-91https://doi.org/10.1016/j.pbi.2016.06.010https://www.sciencedirect.com/science/article/abs/pii/S1369526616300930 – (On our blog : https://plantstomata.wordpress.com/2020/09/06/integration-of-calcium-and-aba-signaling/ )

Edeoga H. O., Ugbo H. N. (1997) – Histochemical Localization of Calcium Oxalate Crystals in Leaf Epidermis of Some Commelina L. (Commelinaceae) and its Bearing on Taxonomy – Acta Phytotax.Geobot. 48(1): 23-30 – ISSN OOOI-6799 – http://jboli.c.u-tokyo.ac.jp/~jsps/pdf/48(1)/110003758787.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/10/the-localization-of-crystals-around-the-stomatal-guard-cells-suggests-that-the-calcium-oxalate-crystals-may-play-a-nutritional-and-mechanical-role/ )

Eduardo Z., Lawrence D., Talbott A., Silvia F., Alaka S., Jiaxin Z. (2002) – The guard cell chloroplast: A perspective for the twenty-first century – New Phytologist 153: 415-425 –

Edwards A., Bowling D. J. F. (1985) – Evidence for a CO2 Inhibited Proton Extrusion Pump in the Stomatal Cells of Tradescantia virginiana – J. Exp. Bot. 36 (1): 91-98 – doi: 10.1093/jxb/36.1.91 – http://jxb.oxfordjournals.org/content/36/1/91.abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/20/effect-of-co2-on-the-electrical-potential-difference-of-stomata/)

Edwards D., Axe L. (1992) – Stomata and mechanics of stomatal functioning in some early land plants – Courier Forschungsinstitut Seckenberg 147: 59-73 – http://orca.cf.ac.uk/id/eprint/10835 – Published in: Schaarschmidt, F. ed.International Symposium on Palaeobotany “Anatomical Investigations of Plant Fossils”: 3rd International Senckenberg Conference Frankfurt am Main 1990

Edwards D., Kerp H., Hass H. (1998) – Stomata in early land plants: an anatomical and ecophysiological approach – Journal Experimental Botany 49: 255-278 – https://doi.org/10.1093/jxb/49.Special_Issue.255https://academic.oup.com/jxb/article/49/Special_Issue/255/507965?login=false – (On our blog : https://plantstomata.wordpress.com/2022/08/18/anatomical-and-ecophysiological-approach-of-stomata-in-early-land-plants/ )

Edwards M. C., Bowling D. J. F. (1984) – An electrophysiological study of the stomatal complex of Tradescantia virginiana. – J. Exp. Bot. 35: 562–567 – https://doi.org/10.1093/jxb/35.4.562 – https://www.jstor.org/stable/23690938?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/07/a-massive-increase-in-k-activity-on-stomatal-closure/ )

Edwards M. C., Bowling D. J. F. (1986) – The growth of rust germ tubes towards stomata in relation to pH gradients – Physiological and Molecular Plant Pathology 29: 185–196 – (On our blog : https://plantstomata.wordpress.com/2016/05/20/uredospore-germ-tubes-ph-gradients-and-locating-stomata/ )

Edwards M. C., Meidner H. (1975) – Micromanipulation of stomatal guard cells – Nature 253: 114–115 – https://doi.org/10.1038/253114a0https://www.nature.com/articles/253114a0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/09/28/pressures-directly-within-subsidiary-cells-and-stomatal-guard-cells/ )

Edwards M. C., Meidner H. (1978) – Stomatal responses to humidity and the water potentials of epidermal and mesophyll tissue. – J. Exp. Bot. 29: 771-780 – https://doi.org/10.1093/jxb/29.3.771 – https://academic.oup.com/jxb/article-abstract/29/3/771/435642?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/08/stomatal-responses-to-humidity-and-the-water-potentials-of-epidermal-and-mesophyll-tissue/ )

Edwards M. C., Meidner H. (1979) – Direct Measurements of Turgor Pressure Potentials : IV. Naturally occurring pressures in guard cells and their relation to solute and matric potentials in the epidermis – J. Exp. Bot. 30: 829-837 – https://doi.org/10.1093/jxb/30.4.829https://academic.oup.com/jxb/article-abstract/30/4/829/493808/Direct-Measurements-of-Turgor-Pressure?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/08/26/pressures-in-stomata-and-their-relation-to-solute-and-matric-potentials/)

Edwards M. C., Meidner H., Sheriff D. W. (1976) – Direct Measurements of Turgor Pressure Potentials of Guard Cells. II.The mechanical advantage of subsidiary cells, the Spannungsphase, and the optimum leaf water deficit – J. Exp. Bot. 27 (1): 163-171 – doi: 10.1093/jxb/27.1.163 – http://jxb.oxfordjournals.org/content/27/1/163 – (On our blog : https://plantstomata.wordpress.com/2016/11/06/turgor-pressure-potentials-of-guard-cells-ii/)

Edwards M. C., Smith G. N., Bowling D. J. F. (1988) – Guard cells extrude protons prior to stomatal opening: a study using fluorescence microscopy and pH micro-electrodes – Journal of Experimental Botany 39: 1541–1547 – https://doi.org/10.1093/jxb/39.11.1541 – https://academic.oup.com/jxb/article-abstract/39/11/1541/595904 – (On our blog : https://plantstomata.wordpress.com/2018/03/08/guard-cells-extrude-protons-prior-to-stomatal-opening/

Eensalu E., Kupper P., Sellin A., Rahi M., Sober A., Kull O. (2008) – Do stomata operate at the same relative opening range along a canopy profile of Betula pendula? – Functional Plant Biology 35: 103–110 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-morphology-can-principally-be-important-for-photosynthesis-limitation-2/ ).

Effat M. B., Shafey H. M., Nassib A. M. (2014) – Introducing the Photosynthesis-Stomatal Conductance Coupled Model into Greenhouse Microclimate Studies – International Journal of Scientific and Engineering Research 5(10): 344-352 – ISSN 2229-5518 – IJSER2014.pdf – (On our blog: https://plantstomata.wordpress.com/2019/03/28/accuracy-of-the-photosynthesis-stomatal-conductance-coupled-model-in-predicting-the-photosynthesis-rate-and-in-turn-the-stomatal-conductance/ )

Egan L., Hofmann R., Nichols S., Hadipurnomo J., Hoyos-Villegas V. (2021) – Transpiration Rate of White Clover (Trifolium repens L.) Cultivars in Drying Soil – Front. Plant Sci., 17 March 2021 – https://doi.org/10.3389/fpls.2021.595030https://www.frontiersin.org/articles/10.3389/fpls.2021.595030/full – (On our blog : https://plantstomata.wordpress.com/2022/03/05/the-rate-of-stomatal-closure-in-response-to-soil-drying/ )

Egea G., Verhoef A., Vidale P. L. (2011) – Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models – Agricultural and Forest Meteorology 151: 1370–1384 – https://doi.org/10.1016/j.agrformet.2011.05.019 – https://www.sciencedirect.com/science/article/pii/S0168192311001778 – (On our blog : https://plantstomata.wordpress.com/2018/03/08/water-stress-in-coupled-photosynthesis-stomatal-conductance-models/ )

Ehonen S., Yarmolinsky D., Kollist H., Kangasjärvi J. (2018) – Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata – Antioxid Redox Signal – doi: 10.1089/ars.2017.7455 – https://www.ncbi.nlm.nih.gov/pubmed/29237281 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/reactive-oxygen-species-photosynthesis-and-environment-in-the-regulation-of-stomata/ )

Ehonen S., Hölttä T., Kangasjärvi J. (2020) – Systemic signaling in the regulation of stomatal conductance – American Society of Plant Biologists – Plant Physiology – DOI: 10.1104/pp.19.01543http://www.plantphysiol.org/content/plantphysiol/early/2020/01/29/pp.19.01543.full.pdf – (On our blog : https://plantstomata.wordpress.com/2020/01/30/systemic-signaling-in-the-regulation-of-stomatal-conductance/ )

Ehrler W. L. (1971) – Periodic nocturnal stomatal opening of Citrus in a steady environment – Physiol. Plant. 25: 488-492 – DOI: 10.1111/j.1399-3054.1971.tb01478.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1971.tb01478.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/10/several-20-minute-periods-of-pronounced-nocturnal-stomatal-opening-in-a-steady-environment/

Eichert T., Burkhardt J. (2001) – Quantification of stomatal uptake of ionic solutes using a new model system – Journal of Experimental Botany 52: 771-781 –

Eichert T., Goldbach H. E. (2008) – Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces–further evidence for a stomatal pathway – Physiol Plant 132(4):491-502 – doi: 10.1111/j.1399-3054.2007.01023.xhttps://pubmed.ncbi.nlm.nih.gov/18334002/ – (On our blog : https://plantstomata.wordpress.com/2021/01/22/foliar-uptake-routes-in-stomatous-and-astomatous-leaf-surfaces/ )

Eichert T., Goldbach H.E., Burkhardt J. (1998) – Evidence for the uptake of large anions through stomatal pores – Botanica Acta 111: 461-466 –

Eichert T., Kurtz A., Steiner U., Goldbach H. E. (2008) – Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles – Physiologia Plantarum 134(1): 151-160 – DOI: 10.1111/j.1399 3054.2008.01135.x10.1111/j.1399-3054.2008.01135.xhttps://www.researchgate.net/?ref=logo&_sg=xQ71cHJ1vts0kcn9Oi0gvyrSJtB4OcoZVHtZfYoCFqF-umW5iTZgsfRuNIvuNOA46FczHx_ONtveZMc – (On our blog : https://plantstomata.wordpress.com/2019/06/05/stomatal-foliar-uptake-pathway-for-aqueous-solutes-and-water-suspended-nanoparticles/ )

Eichert T., Peguero‐Pina J. J., Gil‐Pelegrin E., Heredia A., Fernandez V. (2010) – Effects of iron chlorosis and iron resupply on leaf xylem architecture, water elations, gas exchange and stomatal performance of field‐grown peach (Prunus persica) – Physiol Plant 138: 48–59 – http://dx.doi.org/10.1111/j.1399-3054.2009.01295.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2009.01295.x – (On our blog : https://plantstomata.wordpress.com/2018/11/28/effects-of-iron-chlorosis-and-iron-resupply-on-stomatal-performance/

Eide W., Birks H. H. (2006) – Stomatal frequency of Betula pubescens and Pinus sylvestris shows no proportional relationship with atmospheric CO2 concentration – Nordic Journal of Botany 24: 327–339 –

Einhellig F. A., Kuan L. (1971) – Effects of scopoletin and chlorogenic acid on stomatal aperture in tobacco and sunflower – Bull. Torrey bot. Club 98: 155-162 –

Eisele J. F., Fäßler F., Bürgel P. F., Chaban C. (2016) – A Rapid and Simple Method for Microscopy-Based Stomata Analyses – PLoS ONE 11(10): e0164576 – https://doi.org/10.1371/journal.pone.0164576 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164576 – (On our blog : https://plantstomata.wordpress.com/2018/01/07/microscopy-based-stomata-analyses/ )

Eisenach C. (2017) – An Ion Channel Active in Plant Drought Response – in Research, The Plant Cell, The Plant Cell: In a Nutshell /by Nancy Eckardt – Eisenach et al. discover A new ion channel of the plant vacuole helps plants react to drought – https://doi.org/10.1105/tpc.17.00452 – (On our blog : https://plantstomata.wordpress.com/2019/11/05/how-is-the-osmolyte-malate-transported-out-of-the-vacuole-when-aba-signals-that-the-stomata-should-close/ )

Eisenach C., Baetz U., Huck N. V., Zhang J., De Angeli A., Beckers G., Martinoia E. (2017) – Vacuolar Anion Channel in Stomatal Movement – Plant Cell https://doi.org/10.1105/tpc.17.00452 – https://plantae.org/almt4/ – (On our blog : https://plantstomata.wordpress.com/2017/11/16/a-dephosphorylated-active-channel-is-required-for-stomatal-closure/)

Eisenach C., Baetz U., Huck N. V., Zhang J., De Angeli A., Beckers G. J. M., Martinoia E. (2017) – ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis – Plant Cell 29: 2552-2569 – http://www.plantcell.org/content/29/10/2552– (On our blog : https://plantstomata.wordpress.com/2018/10/04/almt4-mediates-mal2%e2%88%92efflux-during-aba-induced-stomatal-closure-and-its-activity-depends-on-phosphorylation/ )

Eisenach C., Chen Z.-H., Grefen C., Blatt M. R. (2012) – The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth – The Plant Journal 69(2): 241 – DOI: 10.1111/j.1365-313X.2011.04786.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04786.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/21/syp121-stomatal-closure-and-k-channel-activity/)

Eisenach C., De Angeli A. (2017) – Ion transport at the vacuole during stomatal movements – Plant Physiol 174(2): 520–530 –  https://doi.org/10.1104/pp.17.00130 – http://www.plantphysiol.org/content/174/2/520 – (On our blog https://plantstomata.wordpress.com/2017/11/11/ion-transport-at-the-vacuole-during-stomatal-movements/)

Eisenach C., Chen Z. H., Grefen C., Blatt M. R. (2012) – The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth – Plant J. 69: 241–251 – doi: 10.1111/j.1365-313x.2011.04786.xhttps://www.frontiersin.org/articles/10.3389/fpls.2020.00458/full – (On our blog : https://plantstomata.wordpress.com/2020/07/06/syp121-connects-programmed-stomatal-closure-and-k-channel-activity-with-vegetative-growth/ )

Eisenhut M., Bräutigam A., Timm S., Florian A., Tohge T., Fernie A. R., Bauwe H., Weber A. P. M. (2017) – Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability – Molecular Plant 10(1): 47-61 – https://doi.org/10.1016/j.molp.2016.09.011https://pub.uni-bielefeld.de/record/2915123 – (On our blog : https://plantstomata.wordpress.com/2022/03/02/mutants-with-impaired-activity-of-photorespiratory-enzymes-were-highly-stressed-and-not-able-to-adjust-stomatal-conductance-to-reduced-external-co2-availability/ )

Eisinger W., Bogomolni R. A., Taiz L. (2003) – Interaction between a blue-green reversible photoreceptor and separate UV-B receptor in stomatal guard cells – Am. J. Bot. 90: 1560–1566 – doi: 10.3732/ajb.90.11.1560 – https://www.ncbi.nlm.nih.gov/pubmed/21653331 – (On our blog : https://plantstomata.wordpress.com/2018/09/15/a-model-for-a-photoreceptor-network-that-regulates-stomatal-opening/ )

Eisinger W., Ehrhardt D., Briggs W. (2012) – Microtubules are essential for guard-cell function in Vicia and Arabidopsis. – Molecular plant 5: 601-610 – https://doi.org/10.1093/mp/sss002 – http://www.sciencedirect.com/science/article/pii/S1674205214600095 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/an-active-role-of-microtubules-in-stomatal-function/)

Eisinger W. R., Kirik V., Lewis C., Ehrhardt D. W., Briggs W. R. (2012) – Quantitative changes in microtubule distribution correlate with guard cell function in Arabidopsis – Molecular plant 5: 716-725 – doi: 10.1093/mp/sss033 – Epub 2012 Apr 5 – https://www.ncbi.nlm.nih.gov/pubmed/22492121 – (On our blog : https://plantstomata.wordpress.com/2018/03/17/changes-in-microtubule-distribution-correlate-with-guard-cell-function-of-stomata/ )

Eisinger W., Swartz T. E., Bogomolni R. A., Taiz L. (2000) – The UV action spectrum for stomatal opening in broad bean – Plant Physiol. 122: 99–105 – https://doi.org/10.1104/pp.122.1.99 – http://www.plantphysiol.org/content/122/1/99 – (On our blog : https://plantstomata.wordpress.com/2018/09/17/uv-action-spectrum-for-stomatal-opening/ )

Ekanayake I. J., De Jong J. P. (1992) – Stomatal Response of some Cultivated and Wild Tuber-bearing Potatoes in Warm Tropics as Influenced by Water Deficits – Ann. Bot. 70(1): 53-60 – https://academic.oup.com/aob/article-abstract/70/1/53/129100?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/27/water-deficits-and-stomatal-response/ )

Ekanayake I. J., Ortiz R., Vuylsteke D. R. (1998) – Leaf stomatal conductance and stomatal morphology of Musa germplasm – Euphytica 99: 221-229 –  https://doi.org/10.1023/A:1018311912407 https://link.springer.com/article/10.1023/A:1018311912407#citeas – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-traits-indicated-that-the-resistance-to-bs-disease-is-due-to-non-stomatal-mechanisms/)

Ekeke C., Agbagwa I. O. (2015) – Epidermal Structures and Stomatal Ontogeny in Terminalia catappa L. (Combretaceae) – International Journal of Botany 11(1): 1-9 – DOI: 10.3923/ijb.2015.1.9 – http://scialert.net/abstract/?doi=ijb.2015.1.9 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/stomata-in-terminalia-2/ )

Elagöz V., Hahn S. S., Manning W. J. (2006) – Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity – Environmental Pollution 140: 395-405 – https://doi.org/10.1016/j.envpol.2005.08.024 – https://www.sciencedirect.com/science/article/pii/S0269749105004070 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/o3-has-the-potential-to-affect-stomatal-plasticity/ )

El-Deen T. M. N. (2020) – Improving Water Use Efficiency of Duranta erecta L. By Foliar Application with Some Anti-Transpirant Agents – Journal of Horticultural Science & Ornamental Plants 12(1): 47-61 –
DOI: 10.5829/idosi.jhsop.2020.47.61https://idosi.org/jhsop/12(1)20/6.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/24/the-combined-treatment-reduced-stomata-size-length-and-width-to-the-lowest-values/ )

El Din A. F. M. Z., Ibrahim M. F. M., Farag R., El-Gawad H. G. A., El-Banhawy A., Alaraidh I. A., Rashad Y. M., Lashin I., El-Yazied A. A., Elkelish A., Elbar O. H. A. (2020) – Influence of Polyethylene Glycol on Leaf Anatomy, Stomatal Behavior, Water Loss, and Some Physiological Traits of Date Palm Plantlets Grown In Vitro and Ex Vitro – MPDI Plants 9: 1440 – doi:10.3390/plants9111440www.mdpi.com/journal/plantshttps://www.researchgate.net/publication/344882920_Influence_of_Polyethylene_Glycol_on_Leaf_Anatomy_Stomatal_Behavior_Water_Loss_and_Some_Physiological_Traits_of_Date_Palm_Plantlets_Grown_In_Vitro_and_Ex_Vitro – (On our blog : https://plantstomata.wordpress.com/2022/04/02/influence-of-polyethylene-glycol-on-stomatal-behavior/ )

Elhaddad N., Hunt L., Sloan J., Gray J. E. (2014) – Light-Induced Stomatal Opening Is Affected by the Guard Cell Protein Kinase APK1b – PLoS ONE 9(5):e97161 – DOI: 10.1371/journal.pone.0097161https://www.researchgate.net/publication/262340822_Light-Induced_Stomatal_Opening_Is_Affected_by_the_Guard_Cell_Protein_Kinase_APK1b – (On our blog : https://plantstomata.wordpress.com/2020/03/05/apk1b-and-the-light-induced-stomatal-opening/ )

El-Hawary S. S., El-Tantawy M., Rabeh M. A., Badr W. K. (2013) – DNA fingerprinting and botanical study of Azadirachta indica A. Juss. (neem) family Meliaceae – https://doi.org/10.1016/j.bjbas.2013.09.001https://www.sciencedirect.com/science/article/pii/S2314853513000188 – (On our blog :  https://plantstomata.wordpress.com/2018/12/11/stomata-in-azadirachta-indica-meliaceae/ )

Eliáš P. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14(1): 29–42 – doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 -(Via Submission Form – Personal Communication) –  (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/)

Eliáš P. (1979) – Leaf diffusion resistance pattern in an oak-hornbeam forest – Biologia Plantarum 21(1): 1-8 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-resistance-patterns/)

Eliáš P. (1979) – Stomatal oscillations in adult forest trees in natural-environment – Biol. Plant.  21: 71–74 – https://doi.org/10.1007/BF02888722https://link.springer.com/article/10.1007%2FBF02888722 – (On our blog : https://plantstomata.wordpress.com/2019/04/07/stomatal-oscillations-in-adult-forest-trees/ )

Eliáš P. (1979) – Stomatal activity within the crown of tall deciduous trees under forest conditions – Biologia Plantarum (Praha) 21(4): 266-274 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/variation-in-stomatal-activity-within-the-crown-of-tall-deciduous-trees/)

Eliáš P. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41 – ISSN 0001-7124 – (Via Submission Form – Personal Communication) – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/)

Eliáš P. (1995) – Stomata density and size of apple tress growing in irrigated and non-irrigated conditions. – Biologia Bratislava 50: 115-118 – https://www.researchgate.net/publication/311588964_Stomata_density_and_size_of_apple_trees_growing_in_irrigated_and_non_irrigated_conditions – (On our blog : https://plantstomata.wordpress.com/2018/03/10/stomatal-density-affected-by-water-status-of-apple-trees-in-the-period-of-vegetative-growth/ )

Eliáš P., Huzulák J. (1975) – Hustota prieduchov v korune javora polného (Acer campestre L.). (The density of stomata in the crown of Acer campestre L.) – Acta Mus. Silesiae, Ser. Dendrol., Opava 25: 129–135 –

Eliáš P.,  Kozinka V. (1976) – Stomata in the leaves of Asperula odorata L. and Pulmonaria officinalis L. subsp.maculosa (Hayne) Gams.- Biológia, Bratislava 31: 33–40 – https://plantstomata.wordpress.com/2017/07/04/stomata-in-asperula-and-pulmonaria/ )

Elizabeth A., Alistair R. (2007) – The response of photosynthesis and stomatal conductance to rising (CO2): mechanisms and environmental interactions – Plant Cell Environ 30: 258-270 –

Elkins C. B. Jr., Williams G. G. (1962) – Still and time lapse photography of plantstomata – Crop Science 2: 164-166 –

Eller C. B., Rowland L., Oliveira R. S., Bittencourt P. R. L., Barros F. V., da Costa A. C. L., Meir P., Friend A. D., Mencuccini M., Sitch S., Cox P. (2018) – Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics – Philosoph. Transact. Royal Soc. B, Biol. Sciences – https://doi.org/10.1098/rstb.2017.0315 –https://royalsocietypublishing.org/doi/full/10.1098/rstb.2017.0315 – (On our blog : https://plantstomata.wordpress.com/2019/04/03/forest-responses-to-drought-and-el-nino-with-a-stomatal-optimization-model/ )

Elliott L. (2020) – A long-lasting connection? Links between genome size and stomata size in plants – Botany One June 6, 2020 – https://www.botany.one/2020/06/a-long-lasting-connection-links-between-genome-size-and-stomata-size-in-plants/ – (On our blog : https://plantstomata.wordpress.com/2021/02/10/genome-size-variation-may-be-driven-by-climate-variation-and-a-requirement-to-alter-stomatal-size-and-patterns/ )

Elliott-Kingston C., Haworth M., Yearsley J. M., Batke S. P., Lawson T., McElwain J. C. (2016) – Does size matter ?  Atmospheric CO2 may be a stronger driver of stomatal closing than stomatal size in taxa that diversified under low CO2 – Frontiers in Plant Sciences 7, Art. 1253 – https://books.google.be/books?id=P885DwAAQBAJ&pg=PA149&lpg=PA149&dq=plant+stomatal+morphology&source=bl&ots=q0_qjXjVvM&sig=G4vl38bJTpZ3RyyXdH1PE17DDzM&hl=en&sa=X&ved=0ahUKEwjp8827_sLXAhVEZFAKHb1jDIc4ChDoAQhlMA0#v=onepage&q=plant%20stomatal%20morphology&f=false – (On our blog : https://plantstomata.wordpress.com/2017/11/23/co2-and-stomatal-closing/)

El-Madany T. S., Niklash K., Klemm O. (2017) – Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland – Atmosphere 8: 175 – doi:10.3390/atmos8090175file:///C:/Users/wille/Downloads/atmosphere-08-00175.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/25/the-stomatal-uptake-was-smaller-than-non-stomatal-deposition-and-the-correction-of-stomatal-conductance-with-the-gross-primary-production-gpp-improved-the-estimation-of-day-and-nighttime-stomatal-d/ )

Elmi A. A., West C. P. (1995) – Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue – New Phytologist 131(1): 61-67 – https://doi.org/10.1111/j.1469-8137.1995.tb03055.xhttps://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1995.tb03055.x – (On our blog : https://plantstomata.wordpress.com/2019/09/26/endophyte-infection-effects-on-stomatal-conductance/ )

El-Rawy M. A., Hassan M. I. (2014) – Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.) – J. Crop Sci. Biotechnol. 17255–266 – https://doi.org/10.1007/s12892-014-0080-7https://link.springer.com/article/10.1007/s12892-014-0080-7#citeas – (On our blog : https://plantstomata.wordpress.com/2020/03/10/stomata-frequency-and-length-could-be-used-as-reliable-indices-for-selecting-high-yielding-genotypes-tolerant-to-drought-stress/ )

Ellsworth D. S. (2000) – Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy – Tree Physiol. 20: 435–445 – https://doi.org/10.1093/treephys/20.7.435 – https://academic.oup.com/treephys/article/20/7/435/1690949 – (On our blog : https://plantstomata.wordpress.com/2018/10/19/seasonal-co2-assimilation-and-stomatal-limitations/ )

Else M. A., Coupland D., Dutton L., Jackson M. B. (2001) – Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap – Physiologia Plantarum 111: 46–54 – https://doi.org/10.1034/j.1399-3054.2001.1110107.x – https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1110107.x – (On our blog : https://plantstomata.wordpress.com/2018/09/15/decreased-root-hydraulic-conductivity-reduces-leaf-water-potential-and-initiates-stomatal-closure/ )

Else M. A., Davies W. J., Malone M., Jackson M. B. (1995) – A Negative Hydraulic Message from Oxygen-Deficient Roots of Tomato Plants? (Influence of Soil Flooding on Leaf Water Potential, Leaf Expansion, and Synchrony between Stomatal Conductance and Root Hydraulic Conductivity) – Plant Physiol 109(3): 1017-1024 –  doi: 10.1104/pp.109.3.1017https://pubmed.ncbi.nlm.nih.gov/12228649/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/synchrony-between-stomatal-conductance-and-root-hydraulic-conductivity/ )

Else M. A., Janowiak F., Atkinson C. J., Jackson M. B. (2009) – Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants – Annals of Botany 103: 313–323 – doi:10.1093/aob/mcn208 – Root_signals_and_stomatal_closure_in_rel.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64808)

Else M. A., Tiekstra A. E., Croker S. J., Davies W. J., Jackson M. B. (1996) – Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap – Plant Physiology 112: 239–247 – (On our blog : https://plantstomata.wordpress.com/2015/08/10/stomatal-closure-in-flooded-tomato-plants/)

El-Sharkawy M. A. (1984) – Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange – Crop Science 24: 497-502 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/effects-of-air-humidity-and-water-stress-on-stomatal-conductance/)

El-Sharkawy M. A. (1984) – Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species – Crop Science 24:503-507 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/differing-sensitivity-of-stomata-to-air-humidity/)

El-Sharkawy M. A. (1984) – Stomatal characteristics among cassava cultivars and their relation to gas exchange – Experimental Agriculture 20: 67-76 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomata-in-cassava-cultivars-manihot-esculenta-euphorbiaceae/)

El-Sharkawy M. A. (1985) – Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species – Photosynthesis Research 7: 137-149 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomatal-response-to-air-humidity-and-its-relation-to-stomatal-density/)

El-Sharkawy M. A. (1986) – Differential response of stomata to air humidity in the parasitic mstletoe (Phthirusa pyrifolia) and its host, mandarine orange (Citrus reticulata) – Photosynthesis Research 9: 333-343 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/response-of-stomata-to-air-humidity-in-a-parasitic-mistletoe-and-its-host/)

El-Sharkawy M. A. (1988) – The humidity factor in stomatal control and its effect on crop productivity – Biological Control of Photosynthesis : Marcelle R., Clijsters H., Van Poucke M. (eds.) 187-198 – Martinus Nijhoff Publishers, Dordrecht, The Netherlands – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomatal-responses-to-changes-in-air-humidity/)

El-Sharkawy M. A. (1990) – Effect of humidity and wind on leaf conductance of field grown cassava – Rev. Bras. Fisiol.Vegetal 2(2): 17-22 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/effect-of-humidity-and-wind-on-stomata-of-cassava-manihot-esculenta-euphorbiaceae/)

El-Sharkawy M. A. (2006) – International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics – PHOTOSYNTHETICA 44 (4): 481-512, 2006 – El-Sharkawy 2498 nfAB-corrected (17).pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/19/stomatal-sensitivity-and-responses-to-environmental-stresses-in-the-tropics/)

El-Sharkawy M. A. (2016) – Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops – PHOTOSYNTHETICA 54 (2): 161-184 – DOI: 10.1007/s11099-016-0204-z -Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/16/photosynthetic-research-for-increasing-agricultural-productivity/)

El-Sharkawy M. A., Cock J. H. (1984) –  Stomatal sensitivity to air humidity: a hypothesis for its control through peristomatal evaporation – 1 Contribution from the Cassava Physiology Program of the Centro Internacional de Agricultura Tropical (CIAT, AA 6713, Cali, Colombia, South America) – https://www.researchgate.net/publication/280113387_Stomatal_Sensitivity_to_air_humidity_A_hypothesis_for_its_control_through_peristomatal_evaporation_1 – (On our blog : https://plantstomata.wordpress.com/2021/09/06/stomatal-sensitivity-to-air-humidity/ )

El Sharkawy M. A., Cock J. H. (1984) – Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange – Crop Sci. 24(3): 497-502 –

El-Sharkawy M. A., Cock J. H., Held A. A. (1984) –  Water Use Efficiency of Cassava. II. Differing sensitivity of stomata to air humidity in Cassava and other warm-climate species – Crop Science 24: 503–507 – https://doi.org/10.2135/cropsci1984.0011183X002400030018xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1984.0011183X002400030018x – (On our blog : https://plantstomata.wordpress.com/2020/02/27/differing-sensitivity-of-stomata-to-air-humidity-2/)

El-Sharkawy M. A., Cock J. H., Hernandez A. D. P. (1985) – Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species – Photosynth. Res. 7: 137–149 – doi: 10.1007/BF00037004https://pubmed.ncbi.nlm.nih.gov/24443083/ – (On our blog : https://plantstomata.wordpress.com/2021/08/17/the-relative-sensitivity-of-stomata-to-changes-in-vpd-was-closely-related-to-the-weighted-stomatal-density-or-crowding-index/ )

El-Sharkawy M. A., Hesketh J. D. (1964) – Effect of stomatal differences among species on leaf photosynthesis – Crop Sci. 4: 619-621 – https://dl.sciencesocieties.org/publications/cs/abstracts/4/6/CS0040060619?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/10/effect-of-stomatal-differences-on-leaf-photosynthesis/ )

El-Shetehy M., Moradi A., Maceroni M;, Reinhardt D., Petri-Fink A., Rothen-Rutishauser B., Mauch F., Schwab F. (2020) – Silica nanoparticles enhance disease resistance in Arabidopsis plants – Nature Nanotechnology –  https://doi.org/10.1038/s41565-020-00812-0 – https://www.nature.com/articles/s41565-020-00812-0#citeas – (On our blog : https://plantstomata.wordpress.com/2020/12/23/nanoparticle-uptake-and-action-occurred-exclusively-through-the-stomata/ )

Elvira S., Alonso R., Gimeno B. S. (2007) – Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake – Environmental Pollution 146: 617-623 – https://doi.org/10.1016/j.envpol.2006.08.008  https://www.sciencedirect.com/science/article/pii/S0269749106004878 – (On our blog : https://plantstomata.wordpress.com/2018/10/16/ozone-uptake-and-stomatal-conductance/ )

Ely F., Torres F., Gaviria J. (2005) – Relationships between leaf structure of three species of Miconia (Melastomataceae) and their habitat and altitudinal distribution in the Sierra Nevada National Park, Mérida, Venezuela – Acta Botanica Venezuelica 28(2): 275-299 – https://www.jstor.org/stable/41740685 – (On our blog : https://plantstomata.wordpress.com/2022/01/22/stomatal-characteristics-in-miconia-and-relationship-with-habitat-and-altitudinal-distribution/ )

Emberson L. D., Ashmore M., Cambridge H., Simpson D., Tuovinen J.-P. (2000) – Modelling stomatal ozone flux across Europe – Environ. Pollut. 109: 403–413 – https://doi.org/10.1016/S0269-7491(00)00043-9 – https://eurekamag.com/pdf/003/003500975.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/17/modelling-stomatal-ozone-flux/ )

Emberson L.D., Simpson D., Tuovinen J.-P., Ashmore M.R., Cambridge H.M. (2000) – Towards a model of ozone deposition and stomatal uptake over Europe – EMEP/MSC-W 2000. Ed. Norwegian Meteorological Institute – Research Note No. 42 – ISSN 0332-9879 – note_6_2000_A4.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/25/a-model-of-ozone-deposition-and-stomatal-uptake/ )

Emberson L. D., Wieser G., Ashmore M. R. (2000) – Modelling of stomatal conductance and ozone flux of Norway spruce: Comparison with field data – Environmental Pollution 109: 393–402 – https://doi.org/10.1016/S0269-7491(00)00042-7 – https://www.sciencedirect.com/science/article/pii/S0269749100000427 – (On our blog : https://plantstomata.wordpress.com/2018/10/20/an-assessment-of-the-stomatal-component-of-the-model-described-by-emberson-et-al-2000/ )

Emi T., Kinoshita T., Sakamoto K., Mineyuki Y., Shimazaki K. (2005) – Isolation of a protein interacting with Vfphot1a in guard cells of Vicia faba – Plant Physiol. 138: 1615–1626 – https://doi.org/10.1104/pp.104.052639 – http://www.plantphysiol.org/content/138/3/1615 – (On our blog : https://plantstomata.wordpress.com/2018/09/15/vfpip-may-act-as-a-downstream-component-of-phototropin-vfphot1a-in-blue-light-signaling-in-stomata/ )

Emi T., Kinoshita T., Shimazaki K. (2001) – Specific binding of vf14-3-3a isoform to the plasma membrane H+-ATPase in response to blue light and fusicoccin in guard cells of broad bean – Plant Physiol. 125: 1115–1125 – PMCID: PMC64910 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC64910/  – (On our blog : https://plantstomata.wordpress.com/2018/03/17/vf14-3-3a-may-play-a-key-role-in-the-activation-of-h-atpase-in-stomata-2/ )

Emmerichs T., Kerkweg A., Ouwersloot H., Fares S., Mammarella I., Taraborrelli D. (2021) – A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54 – Geosci. Model Dev. 14: 495–519 – https://doi.org/10.5194/gmd-14-495-2021https://gmd.copernicus.org/articles/14/495/2021/ – (On our blog : https://plantstomata.wordpress.com/2022/04/19/arevised-dry-deposition-in-emac-including-meteorological-adjustment-factors-for-stomatal-closure-and-an-explicit-cuticular-pathway/ )

EMMRC (University of Kashmir) – Mechanism of opening and closing of stomata.mp4 – https://www.youtube.com/watch?v=EmoBfKyc2VI

Encyclopaedia Britannica – https://www.britannica.com/science/stomate – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomate-plant-anatomy/ )

Encyclopedia of soils in the environment (2005)

Encyclopedia of Applied Plant Sciences (2nd edition – 2017)

Endo H., Torii K. U. (2019) – Stomatal Development and Perspectives toward Agricultural Improvement – Cold Spring Harbor Perspectives in Biology 11(3) – https://cshperspectives.cshlp.org/content/early/2019/04/12/cshperspect.a034660 – (On our blog : https://plantstomata.wordpress.com/2019/06/01/the-genetic-and-molecular-mechanisms-of-stomatal-development/ )

Engineer (2017) – Sensors printed on leaves could tell farmers when to water crops – ENGINEER Nov. 9, 2017 – https://www.theengineer.co.uk/sensors-leaves-crops-water/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/sensors-to-be-the-earliest-indicator-of-drought-for-agricultural-applications/ )

Engineer C. B., Ghassemian M., Anderson J. C., Peck S. C., Hu H., Schroeder J. I. (2014) – Corrigendum: Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development – Nature 513: 246–250 – DOI: 10.1038/nature13452 e – (On our blog : https://plantstomata.wordpress.com/2016/05/22/co2-control-of-stomatal-development-2/)

Engineer C. B., Hashimoto-Sugimoto M., Negi J., Israelsson-Nordström M., Azoulay-Shemer T., Rappel W.-J., Iba K., Schroeder J. I. (2015) –  CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions – Trends in Plant Science 21(1): 16–30 – http://dx.doi.org/10.1016/j.tplants.2015.08.014 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(15)00229-0 – (On our blog : https://plantstomata.wordpress.com/2016/03/30/co2-and-stomatal-conductance/)

England J. R., Attiwill P. M. (2011) – Changes in stomatal frequency, stomatal conductance and cuticle thickness during leaf expansion in the broadleaved evergreen species, Eucalyptus regnans – Trees 25: 987–996 – https://doi.org/10.1007/s00468-011-0573-7https://link.springer.com/article/10.1007/s00468-011-0573-7h– (On our blog : https://plantstomata.wordpress.com/2018/09/17/changes-in-stomatal-frequency-and-stomatal-conductance-during-leaf-expansion/ )

Enne V. (2017) – How do stomata work in photosynthesis ? – Sciencing – http://sciencing.com/do-stomata-work-photosynthesis-5498075.html – (On our blog : https://plantstomata.wordpress.com/2017/09/18/how-do-stomata-work/)

Ephrath J. E., Marani A., Bravdo B-Ami (1990) – Effects of moisture stress on stomatal resistance and photosynthetic rate in cotton (Gossypium hirsutum) 1. Controlled levels of stress – Field Crops Research 23(2): 117-131 – DOI: 10.1016/0378-4290(90)90107-mhttps://eurekamag.com/research/062/099/062099364.php – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/87437 )

Ephrath J. E., Marani A., Bravdo B-Ami (1993) – Photosynthetic rate, stomatal resistance and leaf water potential in cotton (Gossypium hirsutum L.) as affected by soil moisture and irradiance – Photosynthetica 29(1): 63-71 – https://eurekamag.com/research/002/457/002457023.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/water-stress-increased-stomatal-resistance-and-decreased-photosynthetic-rate/ )

Epron D., Dreyer E. (1990) – Stomatal and non-stomatal limitations of photosynthesis by leaf water deficit in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data – Annals of Forest Science / Annales des sciences forestières, INRA/EDP Sciences 47: 435-450 – DOI: 10.1051/forest:19900503https://hal.archives-ouvertes.fr/hal-00882717/document –https://www.afs-journal.org/articles/forest/abs/1990/05/AFS_0003-4312_1990_47_5_ART0003/AFS_0003-4312_1990_47_5_ART0003.html – (on our blog : https://plantstomata.wordpress.com/2019/04/26/stomatal-and-non-stomatal-limitations-of-photosynthesis-by-leaf-water-deficit/ )

Erban M. (1917) – Über die Verteilung der Spaltöffnungen in Beziehung zur Schlafstellung der Blätter – Plant Biology 34(10): 880-890 – DOI: 10.1111/j.1438-8677.1916.tb07103.x – (On our blog : https://plantstomata.wordpress.com/2017/06/28/distribution-of-stomata-in-german/)

ErdeiL., Szeglets Z., Barabás K. N., Pestenácz A., Fülöp K., Kalmár L., Kovács A., Tóth B., Dér A. (1998) – Environmental stress and the biological clock in plants: Changes of rhythmic behavior of carbohydrates, antioxidant enzymes and stomatal resistance by salinity – Journal of Plant Physiology 152(2–3): 265-271 – https://doi.org/10.1016/S0176-1617(98)80141-7 – http://www.sciencedirect.com/science/article/pii/S0176161798801417 – (On our blog : https://plantstomata.wordpress.com/2017/10/06/changes-of-rhythmic-behavior-of-stomatal-resistance-by-salinity/)

Eris A., Soylu A. (2015) – Stomatal density in various Turkish grape cultivars – Vitis 26: 382 – 382 – https://www.semanticscholar.org/paper/Stomatal-density-in-various-Turkish-grape-cultivars-Eri%C5%9F-Soylu/41239138e52a8fdea69e76b1b84200fe930c97b0 – (On our blog : https://plantstomata.wordpress.com/2021/09/05/characteristics-of-grape-cultivars-in-relation-to-their-drought-tolerance-and-stomatal-densities/ )

Erwin J., Hussein T., Baumier D. J. (2019) – Pepper Photosynthesis, Stomatal Conductance, Transpiration, and Water Use Efficiency Differ with Variety, Indigenous Habitat, and Species of Origin – HortScience 54(10): 1662-1666 – https://doi.org/10.21273/HORTSCI13871-19https://journals.ashs.org/hortsci/abstract/journals/hortsci/54/10/article-p1662.xml – (On our blog : https://plantstomata.wordpress.com/2019/12/09/pepper-photosynthesis-stomatal-conductance-transpiration-and-water-use-efficiency-differ-with-variety-indigenous-habitat-and-species-of-origin/ )

Esau K. (1941) – Inclusions in guard cells of tobacco affected with mosaic. – Hilgardia 13: 427–430 – DOI:10.3733/hilg.v13n08p427  – http://hilgardia.ucanr.edu/Abstract/?a=hilg.v13n08p427 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/occurrence-of-inclusions-in-stomatal-guard-cells-of-virus-diseased-plants/

Escalona J. M., Flexas J., Medrano H. (1999) – Stomatal and non-stomatal limitations of photosynthesis under water stress in field grown grapevines – Australian Journal of Plant Physiology 26: 421-423 – https://doi.org/10.1071/PP99019 – http://www.publish.csiro.au/fp/PP99019 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-and-non-stomatal-limitations-of-photosynthesis-under-water-stress/ )

Escher P., Peuke A. D., Bannister P., Fink S., Hartung W., Jiang F., Rennenberg H. (2008) – Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana) – Plant Physiology and Biochemistr 46(1): 64 – http://www.sciencedirect.com/science/article/pii/S0981942807001593 – (On our blog : https://plantstomata.wordpress.com/2016/05/22/12847/)

Esmaeilpour A., Van Labeke M.-C., Samson R., Boeckx P., Van Damme P. (2016) – Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio (Pistacia vera L.) cultivars under drought stress condition – Scientia Horticulturae 211: 158-166 – DOI:10.1016/j.scienta.2016.08.026 – https://www.infona.pl/resource/bwmeta1.element.elsevier-c7e88755-ec30-3683-bbb3-2d257d6c6f01/tab/summary – (On our blog : https://plantstomata.wordpress.com/2017/10/06/variation-in-stomata-features-and-its-relationship-to-water-use-efficiency-under-drought-stress-condition/)

Esser J. E., Liao Y. J., Schroeder J. I. (1997) – Characterization of ion channel modulator effects on ABA- and malate-induced stomatal movements: strong regulation by kinase and phosphatase inhibitors, and relative insensitivity to mastoparans. – J. Exp. Bot. 48: 539–550 – DOI: 10.1093/jxb/48.Special_Issue.539 – https://www.jstor.org/stable/23695631?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/10/aba-induced-stomatal-closings-were-abolished-by-kinase-inhibitors-and-enhanced-by-the-protein-phosphatase-inhibitor-okadaic-acid/

Essis D. P., Steyn J. M. (1995) – Photosynthetic rate and stomatal diffusive resistance of potatoes as influenced by water stress – South African Journal of Plant and Soil 12(4): 143-146 – https://eurekamag.com/research/002/671/002671170.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/both-photosynthesis-and-stomatal-diffusive-resistance-could-serve-as-good-indicators-of-water-stress/ )

Estiarte M., Penuelas J., Kimball B. A., Idso S. B., LaMorte R. L., Pinter Jr. P. J., Wall G. W., Garcia R. L. (1994) – Elevated CO2 effects on stomatal density of wheat and sour orange trees – J. Exp. Bot. 45: 1665–1668 – https://doi.org/10.1093/jxb/45.11.1665https://academic.oup.com/jxb/article-abstract/45/11/1665/554346?redirectedFrom=PDF (On our blog : https://plantstomata.wordpress.com/2018/12/10/plants-do-not-acclimate-to-increasing-co2-concentration-by-changing-stomatal-density-within-a-single-generation/

Eun S.-O., Bae S.-H., Lee Y. (2001) – Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abil-1 mutant Arabidopsis – Planta 212: 466–469 – DOI: 10.1007/s004250000489 – https://www.ncbi.nlm.nih.gov/pubmed/11289613 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/pp2c-participates-in-aba-induced-actin-changes-in-stomata/ )

Eun S. O., Lee Y. (1997) – Actin filaments of guard cells are reorganized in response to light and abscisic acid – Plant Physiol. 115: 1491-1498 –  https://doi.org/10.1104/pp.115.4.1491 – http://www.plantphysiol.org/content/115/4/1491 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/actin-filaments-of-stomata-light-and-aba/ )

Eun S.-O., Lee Y. (2000) – Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells – Planta 210: 1014–1017 – DOI: 10.1007/s004250050711 – https://www.ncbi.nlm.nih.gov/pubmed/10872236 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/prevention-of-actin-filament-formation-and-or-depolymerization-of-actin-filaments-may-accelerate-the-stomatal-opening-process-in-response-to-fusicoccin/ )

European Medical Alliance (2017) – Stomata close during water deficit in response to abscisic acid – http://www.europeanmedical.info/osmotic-stress/stomata-close-during-water-deficit-in-response-to-abscisic-acid.html – (On our blog : https://plantstomata.wordpress.com/2017/09/20/water-deficit-aba-and-stomata/)

European Seed (2018) – Closed Door: Plants With A Stoma For Drought – European Seed – https://european-seed.com/2018/03/closed-door-plants-stoma-drought/ – (On our blog : https://plantstomata.wordpress.com/2020/08/13/closed-door-plants-with-a-stoma-for-drought/ )

Evans L. S., Gmur N. F., Da Costa F. (1977) – Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain – Amer. J. Bot. 64(7): 903-913 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomata-and-lesion-development-by-acid-rain/)

Evans N. H. (2003) – Modulation of guard cell plasma membrane potassium currents by methyl jasmonate – Plant Physiol. 131: 8–11 – https://doi.org/10.1104/pp.014266 – http://www.plantphysiol.org/content/131/1/8 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/the-ability-of-me-ja-to-alter-the-properties-of-potassium-conductances-in-the-guard-cell-plasma-membrane-of-stomata/ )

Evans N. H., Hetherington A. M. (2001) – Plant physiology: the ups and downs of guard cell signalling. – Curr Biol 11: R92–R94 – https://doi.org/10.1016/S0960-9822(01)00037-9 – https://www.sciencedirect.com/science/article/pii/S0960982201000379 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/oscillations-in-the-cytosolic-free-calcium-concentration-of-guard-cells-are-necessary-for-stimulus-specific-stomatal-closure/ )

Evenson J. P., Rose C. W. (1976) – Seasonal variations in stomatal resistance in cotton – Agricultural Meteorology 17(5): 381-386 – https://doi.org/10.1016/0002-1571(76)90089-3https://www.sciencedirect.com/science/article/abs/pii/0002157176900893 – (On our blog : https://plantstomata.wordpress.com/2022/07/06/seasonal-variations-in-the-stomatal-resistance/ )

Ewers B. E. (2013) – Understanding stomatal conductance responses to long-term environmental changes: a Bayesian framework that combines patterns and processes – Tree Physiology 33: 119–122 – doi:10.1093/treephys/tpt008 – (On our blog : https://plantstomata.wordpress.com/2020/03/30/stomatal-conductance-responses-to-long-term-environmental-changes/ )

Ewers B. E., Gower S. T., Bond-Lamberty B., Wang C. K. (2005) – Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests – Plant, Cell and Environment 28(5): 660–678 – DOI: 10.1111/j.1365-3040.2005.01312.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01312.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stand-age-tree-species-canopy-transpiration-and-average-stomatal-conductance/)

Ewers B. E., Mackay D. S., Samanta S. (2007) – Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species – Tree Physiology 27: 11–24 – PMID: 17169902 – https://www.uwyo.edu/botany/_files/docs/plantecofizz/new-publications/24-ewers-et-al-2007.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/17/canopy-stomatal-conductance-control-of-leaf-water-potential/ )

Ewers B. E., Oren R. (2000) – Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements – Tree Physiol. 20: 579–589 – https://doi.org/10.1093/treephys/20.9.579 – PMID: 12651422 – https://academic.oup.com/treephys/article/20/9/579/1658475https://www.srs.fs.usda.gov/pubs/ja/ja_ewers002.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/19/the-calculation-of-stomatal-conductance-from-sap-flux-measurements/

Ewers B. E., Oren R., Johnsen K. H., Landsberg J. J. (2001) – Estimating maximum mean canopy stomatal conductance for use in models – Can. J. For. Res. 31: 198–207 – DOI: 10.1139/cjfr-31-2-198 – https://pdfs.semanticscholar.org/eff4/c91e7b1afffc8f2964cb59a1b84520cbeeaa.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/19/estimating-maximum-mean-canopy-stomatal-conductance-for-use-in-models/ )

Ewers B. E., Oren R., Kim H.-S., Bohrer G., Lai C.-T. (2007) – Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns – Plant, Cell and Environment 30(4): 483–496 – DOI: 10.1111/j.1365-3040.2007.01636.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01636.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/hydraulic-architecture-spatial-variation-in-light-and-stomatal-conductance-of-tree-branches/)

Ewers B. E., Oren R., Phillips N., Stromgren M., Linder S. (2001) – Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda – Tree Physiology 21: 841–850 – https://doi.org/10.1093/treephys/21.12-13.841 – https://academic.oup.com/treephys/article/21/12-13/841/1626108 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/canopy-stomatal-conductance-responses-to-water-and-nutrient-availabilities/ )

Ewers B. E., Oren R., Sperry J. S. (2000) – Root hydraulic conductance: a reflection of water balance and a constraint on canopy stomatal conductance – Plant Cell Environ. 23: 1055–1066 –

Ewers B. E., Pendall E., Reed D. E., Barnard H. R., Whitehouse F., Frank J. M., Massman W. J., Brooks P. D., Biederman J. A., Harpold A. A., Naithani K. J., Mitra B., Mackay D. S., Norton U., Borkhuu B. (2011) – Use of Plant Hydraulic Theory to Predict Ecosystem Fluxes Across Mountainous Gradients in Environmental Controls and Insect Disturbances – https://ui.adsabs.harvard.edu/abs/2011AGUFMGC34A..06E/abstract – (On our blog : https://plantstomata.wordpress.com/2022/09/10/the-data-fit-the-predictions-of-plant-hydraulic-theory-namely-there-was-a-proportional-tradeoff-between-the-reference-canopy-stomatal-conductance-to-water-vapor-and-the-sensitivity-of-that-stomatal/ )

Ewert M. S., Outlaw W. H. Jr, Zhang S., Aghoram K., Riddle K. A. (2000) – Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets – Plant, Cell and Environment 23(2): 195 – doi: 10.1046/j.1365-3040.2000.00539.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2000.00539.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/22/accumulation-of-mannitol-in-the-guard-cell-wall-of-stomata/)

Eyland D., Wesemael J. v., Lawson T., Sebastien Carpentier S. (2021) – The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light – Plant Physiology 186(2): 998–1012 – https://doi.org/10.1093/plphys/kiab114https://academic.oup.com/plphys/article/186/2/998/6162873 – (On our blog : https://plantstomata.wordpress.com/2021/11/29/the-impact-of-differential-stomatal-conductance-gs-kinetics-depends-on-target-light-intensity-magnitude-of-change-gs-prior-to-the-change-in-light-intensity-and-particularly-ti/ )

Facette M. R. (2022) – GDCB Seminar: ‘Cell polarity and stomatal function in grasses’ – https://www.gdcb.iastate.edu/gdcb-seminar-cell-polarity-and-stomatal-function-grasses – (On our blog : https://plantstomata.wordpress.com/2022/07/21/cell-polarity-and-stomatal-function/)

Facette M. R., Park Y., Sultimantanapi D., Luo A., Cartwright H. N., Yang B.,  Bennett E. J., Sylvester A. W., Smith L. G. 2015) – The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize – Nature Plants, Art. 14024 – doi: 10.1038/nplants.2014.24 – https://www.nature.com/articles/nplants201424 – (On our blog : https://plantstomata.wordpress.com/2018/08/08/receptor-like-kinases-promote-mother-cell-polarity-and-subsequent-division-asymmetry-in-developing-maize-stomata/

Facette M. R., Smith L. G.(2012) – Division polarity in developing stomata – Curr. Opin. Plant Biol. 15: 585–592 – http://dx.doi.org/10.1016/j.pbi.2012.09.013https://www.infona.pl/resource/bwmeta1.element.elsevier-a7d52571-17b3-36da-b4d0-f4e6c9d3a8fb – (On our blog : https://plantstomata.wordpress.com/2017/10/07/division-polarity-in-developing-stomata/)

Faghani E., Khavari-Nejad R. A., Salekdeh G. H., Najafi F. (2012) – Evaluation Of Cuticular Wax Deposition, Stomata And Carbohydrate Of Wheat Leaves For Screening Drought Tolerance – Advances in Environmental Biology 6(13): 4035-4040 – ISSN 1995-0756 – https://research-management.mq.edu.au/ws/portalfiles/portal/105988808/103092598.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/11/stomata-for-screening-drought-tolerance/ )

Fairley-Grenot K., Assmann S. M. (1991) – Evidence for G-protein regulation of inward K+ channel current in guard-cells of fava-bean – Plant Cell 3: 1037–1044 – https://doi.org/10.1105/tpc.3.9.1037 – http://www.plantcell.org/content/3/9/1037?ijkey=c15d11e8f7e05d16c1837bc07c4d78f11f466ec8&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ion-channel-regulation-by-environmental-stimuli-may-be-mediated-by-g-proteins-in-stomata/ )

Fairley-Grenot K., Assmann S. (1992) – Whole-cell K+ current across the plasma membrane of guard cells from a grass: Zea mays – Planta 186: 282–293 –  10.1007/BF00196258 – https://www.ncbi.nlm.nih.gov/pubmed/24186668 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/whole-cell-k-current-across-the-plasma-membrane-of-stomata/ )

Fairley-Grenot K. A., Assmann S. M. (1992) – Permeation of Ca2+ through K+ channels in the plasma membrane of Vicia faba guard cells – J. Membr. Biol. 128: 103–113 – https://doi.org/10.1007/BF00231883https://link.springer.com/article/10.1007/BF00231883#citeas – (On our blog : https://plantstomata.wordpress.com/2019/11/13/permeation-of-ca2-through-k-channels-in-the-plasma-membrane-of-stomatal-guard-cells/ )

Fairley-Grenot K., Assmann S. (1993) – Comparison of K’-channel activation and deactivation in guard cells from dicotyledon (Vicia faba L.) and a graminaceous monocotyledon (Zea mays) – Planta 189: 410-419 – https://doi.org/10.1007/BF00194439https://link.springer.com/article/10.1007/BF00194439#citeas – (On our blog : https://plantstomata.wordpress.com/2019/11/13/k-channel-activation-and-deactivation-in-stomatal-guard-cells/ )

Falik O., Mordoch Y., Ben-Natan D., Vanunu M., Goldstein O., Novoplansky A. (2012) – Plant responsiveness to root-root communication of stress cues – Ann Bot. 110(2): 271-280 – doi: 10.1093/aob/mcs045 – Epub 2012 Mar 8 – PMID: 22408186 – PMCID: PMC3394639 – https://pubmed.ncbi.nlm.nih.gov/22408186/ – (On our blog : https://plantstomata.wordpress.com/2022/09/23/stomatal-behavior-and-stress-cues/ )

Falik O., Mordoch Y., Quansah L., Fait A., Novoplansky A. ( 2011) – Rumor Has It…: Relay Communication of Stress Cues in Plants – PLOS One November 2, 2011 – https://doi.org/10.1371/journal.pone.0023625 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023625 – (On our blog : https://plantstomata.wordpress.com/2018/02/16/the-mechanisms-and-adaptive-implications-of-the-observed-communication-of-stress-cues/ )

Fall R., Monson R. K. (1992) – Isoprene Emission Rate and Intercellular Isoprene Concentration as Influenced by Stomatal Distribution and Conductance – Plant Physiol. – https://doi.org/10.1104/pp.100.2.987http://www.plantphysiol.org/content/100/2/987?ijkey=aac13b15b3304cf133068771105b5e20572c91e2&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2021/04/06/a-stimulation-of-isoprene-synthesis-in-response-to-aba-or-stomatal-closure-with-unknown-cause/ )

Fan D.-Y., Dang Q.-L., Xu C., Jiang C.-D., Zhang W., Xu X., Yang X., Zhang S. (2020) – Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in Populus euphratica, a Desert Phreatophyte Species – Frontiers in Plant Science 14 – DOI:10.3389/fpls.2020.01248https://www.frontiersin.org/articles/10.3389/fpls.2020.01248/full – (On our blog : https://plantstomata.wordpress.com/2021/03/13/stomatal-sensitivity-to-vapor-pressure-deficit-2/ )

Fan J. Z., Wang D., Hu Y. L., Jing P. P., Wang P. P., Chen J. Q. (2016) – Optimal stomatal behavior theory for simulating stomatal conductance – Chinese Journal of Plant Ecology, 40: 631-642 –


[ 范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉 (2016). 最优气孔行为理论和气孔导度模拟. 植物生态学报, 40,631-642.]

Fan L.-M., Zhang W., Chen J.-G., Taylor J. P., Alan M., Jones A. M., Assmann S. M. (2008) – Abscisic acid regulation of guard-cell K+ and anion channels in Gβ- and RGS-deficient Arabidopsis lines – Current Issue 105(24): 8476–8481 – doi: 10.1073/pnas.0800980105 http://www.pnas.org/content/105/24/8476.full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/ion-channel-regulation-by-heterotrimeric-g-proteins-in-stomata/)

Fan L.-M., Zhao Z. X., Assmann S. M. (2004) – Guard cells: a dynamic signaling model – Curr. Opin. Plant Biol. 7: 537–546 – (On our blog : https://plantstomata.wordpress.com/2016/05/23/aba-blue-light-and-stomatal-regulation/)

Fan X., Cao X., Zhou H., Hao L., Dong W., He C., Xu M., Wu H., Wang L., Chang Z., Zheng Y. (2020) – Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.) – Environmental and Experimental Botany 179: 104203 – doi.org/10.1016/j.envexpbot.2020.104203http://www.co2science.org/articles/V23/nov/a9.php – (On our blog : https://plantstomata.wordpress.com/2020/12/02/co2-fertilization-effect-on-plant-growth-under-soil-water-stress-associates-with-changes-in-stomatal-traits/ )

Fang L., Abdelhakim L. O. A., Hegelund J. N., Li S., Liu J., Peng X., Li X., Wei Z., Liu F. (2019) – ABA-mediated regulation of leaf and root hydraulic conductance in tomato grown at elevated CO2 is associated with altered gene expression of aquaporins – Horticulture Research 6, Article 104  – https://www.nature.com/articles/s41438-019-0187-6 – (On our blog : https://plantstomata.wordpress.com/2019/09/27/aba-mediated-regulation-of-stomatal-conductance-stomatal-density-and-gene-expression-of-aquaporins-coordinates-the-whole-plant-hydraulics-of-tomato-grown-at-different-co2-environments/ )

Fanjul L., Jones H. G. (1982) – Rapid stomatal responses to humidity – Planta 154: 135-138 – https://doi.org/10.1007/BF00387906https://link.springer.com/article/10.1007/BF00387906 – (On our blog : https://plantstomata.wordpress.com/2019/07/20/rapid-stomatal-responses-to-humidity/ )

Fanourakis D. (2011) – Stomatal Response Characteristics as Affected by Long-term Elevated Humidity Levels – PhD Wageningenhttps://edepot.wur.nl/177938 – (On our blog : https://plantstomata.wordpress.com/2020/02/09/stomatal-response-characteristics-as-affected-by-long-term-elevated-humidity-levels/ )

Fanourakis D., Aliniaeifard S., Sellin A., Giday H., Körner O., Rezaei Nejad A., Delis C., Bouranis D., Koubouris G., Kambourakis E., Nikoloudakis N., Tsaniklidis G. (2020) – Stomatal behavior following mid- or long-term exposure to high relative air humidity: A review – Plant Physiol Biochem. 153: 92-105 – doi: 10.1016/j.plaphy.2020.05.024 – Epub 2020 May 24 – PMID: 32485617 – https://pubmed.ncbi.nlm.nih.gov/32485617/ – (On our blog : https://plantstomata.wordpress.com/2020/11/21/most-species-lose-stomatal-function-following-mid-term-4-7-d-exposure-to-high-rh-following-leaf-expansion/ )

Fanourakis D., Bouranis D., Giday H., Carvalho D. R. A., Rezaei N. A., Ottosen C.-O. (2016) – Improving stomatal functioning at elevated growth air humidity: A review – Journal of Plant Physiology 207: 51-60 –  https://doi.org/10.1016/j.jplph.2016.10.003https://www.sciencedirect.com/science/article/pii/S0176161716302206?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/10/genotypic-and-phenotypic-differences-in-stomatal-functioning-following-cultivation-at-high-rh-are-realized-through-the-intermediacy-of-aba/ )

Fanourakis D., Carvalho S. M. P., Almeida D. P. F., Heuvelink E. (2011) – Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning – Physiol. Plant. 142(3): 274-286 – (On our blog : https://plantstomata.wordpress.com/2015/09/29/stomatal-functioning-and-air-humidity/ )

Fanourakis D., Carvalho S. M. P., Almeida D. P. F., van Kooten O., van Doorn W. G., Heuvelink E. (2012) – Postharvest water relations in cut rose cultivars with contrasting sensitivity to high relative air humidity during growth – Postharvest Biology and Technology 64: 64-73 –  https://doi.org/10.1016/j.postharvbio.2011.09.016https://www.sciencedirect.com/science/article/abs/pii/S0925521411002304?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/10/higher-water-loss-resulted-from-reduced-stomatal-closure-in-response-to-both-low-water-potential-and-darkness/ )

Fanourakis D., Giday H., Hyldgaard B., Bouranis D. L., Körner O., Ottosen C.-O. (2019) – Low air humidity during cultivation promotes stomatal closure ability in rose – European Journal of Horticultural Science 84(4) – DOI: 10.17660/eJHS.2019/84.4.7https://www.researchgate.net/publication/335676613_Low_air_humidity_during_cultivation_promotes_stomatal_closure_ability_in_rose – (On our blog : https://plantstomata.wordpress.com/2019/09/10/low-rh-during-cultivation-leads-to-thicker-leaves-with-very-responsive-stomata/ )

Fanourakis D., Giday H., Milla R., Pieruschka R., Kjaer K. H., Bolger M., Vasilevski A., Nunes-Nesi A., Fiorani F., Ottosen C.-O. (2015) – Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides – Ann. Bot.-London 115: 555–565 – https://doi.org/10.1093/aob/mcu247  – https://link.springer.com/article/10.1007/s11099-018-0847-z – (On our blog : https://plantstomata.wordpress.com/2018/09/24/stomatal-densities-drive-the-partitioning-of-conductance-between-leaf-sides/

Fanourakis D., Heuvelink E., Carvalho S. M. P. (2013) – A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity – Journal of Plant Physiology 170: 890-898 – https://doi.org/10.1016/j.jplph.2013.01.013https://www.sciencedirect.com/science/article/pii/S0176161713000576?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/10/the-reduced-degree-and-the-reduced-rate-of-stomatal-closure-are-the-primary-causes-of-the-large-genotypic-variation-in-the-control-of-water-loss-in-high-rh-grown-plants/ )

Fanourakis D., Heuvelink E., Carvalho S. M. P. (2015) – Spatial heterogeneity in stomatal features during leaf elongation: an analysis using Rosa hybrida – Functional Plant Biology 42: 737- 745 – https://doi.org/10.1071/FP15008http://www.publish.csiro.au/fp/FP15008 – (On our blog : https://plantstomata.wordpress.com/2020/01/10/spatial-heterogeneity-in-stomatal-features-during-leaf-elongation/ )

Fanourakis D., Hyldgaard B., Giday H., Aulik I., Bouranis D. L., Körner O., Ottosen C.-O. (2019) – Stomatal anatomy and closing ability is affected by supplementary light intensity in rose (Rosa hybrida L.) – Hort. Sci. (Prague) 46: 81-89 – https://doi.org/10.17221/144/2017-HORTSCIhttps://www.agriculturejournals.cz/web/hortsci.htm?type=article&id=144_2017-HORTSCI – (On our blog : https://plantstomata.wordpress.com/2020/01/10/stomatal-anatomy-and-closing-ability-is-affected-by-supplementary-light-intensity/ )

Fanourakis D., Hyldgaard B., Giday H., Bouranis D. L., Körner O., Nielsen K. L., Ottosen C.-O. (2017) – Differential effects of elevated air humidity on stomatal closing ability of Kalanchoë blossfeldiana between the C 3 and CAM states – Environ. Exp. Bot.  143: 115–124 – https://doi.org/10.1016/j.envexpbot.2017.09.005https://www.sciencedirect.com/science/article/abs/pii/S0098847217302204?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/07/05/effects-of-elevated-air-humidity-on-stomatal-closing-ability/ )

Fanourakis D., Matkaris N., Heuvelink E., Carvalho S. M. P.(2010) – Effect of relative air humidity on the stomatal functionality in fully developed leaves – Acta Horticulturae  870: 83-88 – DOI 10.17660/ActaHortic.2010.870.8 – https://www.actahort.org/members/showpdf?booknrarnr=870_8 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/stomata-from-fully-developed-rose-leaves-conserve-their-behaviour-independently-of-the-post-development-humidity-level/ )

Fanourakis D., Nikoloudakis N., Pappi P., Markakis E., Doupis G., Charova S. N., Delis C., Tsaniklidis G. (2020) – The Role of Proteases in Determining Stomatal Development and Tuning Pore Aperture: A Review – Plants 9: 340 – doi:10.3390/plants9030340 – (On our blog : https://plantstomata.wordpress.com/2020/07/16/the-role-of-proteases-in-determining-stomatal-development/ )

Fanourakis D., Pieruschka R., Savvides A., Macnish A. J., Sarlikioti V., Woltering E. J. (2013) – Sources of vase life variation in cut roses: A review – Postharvest Biology and Technology 78: 1-15 – https://doi.org/10.1016/j.postharvbio.2012.12.001https://www.sciencedirect.com/science/article/abs/pii/S0925521412002670?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/10/82756/ )

Fanourakis D., Velez-Ramirez A. I., In B.-C., Barendse H., van Meeteren U., Woltering E. J. (2015) – A SURVEY OF PREHARVEST CONDITIONS AFFECTING THE REGULATION OF WATER LOSS DURING VASE LIFE – Acta Horticulturae 1064: VI International Symposium on Rose Research and Cultivation 195-204 –  https://doi.org/10.17660/ActaHortic.2015.1064.22https://www.actahort.org/books/1064/1064_22.htm – (On our blog : https://plantstomata.wordpress.com/2020/01/10/preharvest-conditions-affecting-the-regulation-of-water-loss-during-vase-life/ )

Fara S. J., Delazari F. T., Gomes R. S., Araujo W. L., da Silva D. J. H. (2019) – Stomata opening and productiveness response of fresh market tomato under different irrigation intervals – Scientia Horticulturae 255: 86-95 – https://doi.org/10.1016/j.scienta.2019.05.025https://www.sciencedirect.com/science/article/pii/S0304423819303711 – (On our blog : https://plantstomata.wordpress.com/2019/08/15/determination-of-irrigation-frequencies-that-could-maximize-the-functioning-of-stomata/ )

Faraday C. D., Thomson W. W., Platt-Aloia K. A. (1982) – Comparative ultrastructure of guard cells of C3 , C4 , and CAM plants – in P. Ting, M. Gibbs (Eds.), I. Crassulacean acid metabolism, American Society of Plant Physiologists, Rockville, MD.: 18-30 –

Faralli M., Cockram J., Ober E., Wall S., Galle A., Van Rie J., Raines C., Lawson T. (2019) – Genotypic, Developmental and Environmental Effects on the Rapidity of gs in Wheat: Impacts on Carbon Gain and Water-Use Efficiency – Front. Plant Sci., 17 April 2019 | https://doi.org/10.3389/fpls.2019.00492https://www.frontiersin.org/articles/10.3389/fpls.2019.00492/full – (On our blog : https://plantstomata.wordpress.com/2019/12/19/intraspecific-variation-in-the-rapidity-of-stomatal-responses-could-provide-a-potential-unexploited-breeding-target-to-optimize-the-physiological-responses-of-wheat-to-dynamic-field-conditions/ )

Faralli M., Matthews J., Lawson T. (2019) – Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement – Current Opinion in Plant Biology 49: 1-7 – https://doi.org/10.1016/j.pbi.2019.01.003 –http://repository.essex.ac.uk/24163/ – (On our blog : https://plantstomata.wordpress.com/2019/03/21/overview-of-variation-in-stomatal-traits-and-the-impact-these-have-on-gs-behaviour/ )

Farber M., Attia Z., Weiss D. (2016) – Cytokinin activity increases stomatal density and transpiration rate in tomato – J. Exp. Bot. 67(22): 6351-6362 – doi: 10.1093/jxb/erw398 – http://jxb.oxfordjournals.org/content/67/22/6351.short?rss=1 – (On our blog : https://plantstomata.wordpress.com/2016/11/18/increase-of-stomatal-density-with-cytokinin/)

Fard A. N. S. (2014) – Signal transduction pathway(s) in guard cells after prolonged exposure to low vapour pressure deficit – PhD Wageningenhttps://library.wur.nl/WebQuery/wurpubs/456311 – (On our blog : https://plantstomata.wordpress.com/2020/11/12/signal-transduction-pathways-in-stomata/ )

Fard A. N. S., Matamoros M. P., van Meeteren U. (2014) – Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? – Physiologia Plantarum 152(4): 688 – 699 – ISSN 0031-9317 – http://dx.doi.org/10.1111/ppl.12216 – http://library.wur.nl/WebQuery/wurpubs/480271 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/stomatal-malfunctioning-under-low-vpd-conditions/)

Fares S., Loreto F., Kleistr E., Wildt J. (2008) – Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants – Plant Biol (Stuttg) 10(1): 44-54 – doi: 10.1055/s-2007-965257 – Epub 2007 May 31 – https://pubmed.ncbi.nlm.nih.gov/17538866/ – (On our blog : https://plantstomata.wordpress.com/2022/03/09/stomatal-uptake-and-stomatal-deposition-of-ozone/ )

Fares S., Matteucci G., Scarascia Mugnozza G., Morani A., Calfapietra C., Salvatori E., Fusano L., Manes F., Loreto F. (2013) – Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest – Atmospheric Environment 67: 242–251 –  – https://doi.org/10.1016/j.atmosenv.2012.11.007 –https://www.sciencedirect.com/science/article/pii/S1352231012010527 – (On our blog : https://plantstomata.wordpress.com/2018/12/10/stomata-explained-almost-the-totality-of-ozone-fluxes-during-the-cold-days/ )

Fares S., Weber R., Park J.-H., Gentner D., Karlik J., Goldstein A. H. (2012) – Ozone deposition to an orange orchard: Partitioning between stomatal and non-stomatal sinks – Environmental Pollution 169: 258-266 – https://doi.org/10.1016/j.envpol.2012.01.030https://www.sciencedirect.com/science/article/pii/S0269749112000474 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/the-orange-orchard-constitutes-a-sink-for-ozone-with-non-stomatal-ozone-deposition-larger-than-stomatal-uptake/ )

Farmer S. (2016) – Open or Shut: How Trees Respond to Drought at the Leaf Level – USDA CompassLive – https://www.srs.fs.usda.gov/compass/2016/04/26/open-or-shut-how-trees-respond-to-drought-at-the-leaf-level/?doing_wp_cron=1516728235.2168309688568115234375 – (On our blog : https:// https://plantstomata.wordpress.com/2018/12/10/stomata-explained-almost-the-totality-of-ozone-fluxes-during-the-cold-days/.wordpress.com/2018/01/23/stomata-and-a-new-modeling-framework-linking-leaf-water-loss-and-carbon-gain/ )

Farooq M., Kobayashi N., Ito O., Wahid A., Serrai R. (2010) – Broader leaves result in better performance of indica rice under drought stress – J Plant Physiol. 167(13): 1066-1075 – doi: 10.1016/j.jplph.2010.03.003 – Epub 2010 Apr 13 – https://www.ncbi.nlm.nih.gov/pubmed/20392520 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/a-decrease-in-leaf-expansion-rate-usually-precedes-any-reduction-in-stomatal-conductance/ )

Farquhar G. D. (1973) – A Study of the Response of Stomata to Perturbations of Environment. PhD Thesis. Australian National University, Canberra, Australia –10.25911/5d7783b493c3ahttps://openresearch-repository.anu.edu.au/bitstream/1885/10760/1/Farquhar_G_1973.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/18/94532/ )

Farquhar G. D. (1977) – Stomatal function in relation to leaf metabolism and environment – Symp Soc Exp Biol 31: 471-505 – https://scholar.google.be/citations?view_op=view_citation&hl=en&user=YQKKTRYAAAAJ&citation_for_view=YQKKTRYAAAAJ:unp9ATQDT5gC 

Farquhar G. D. (1978) – Feedforward responses of stomata to humidity – Australian Journal of Plant Physiology 5: 787–800 – (On our blog : https://plantstomata.wordpress.com/2016/05/23/responses-of-stomatal-conductance-to-changes-in-humidity/)

Farquhar G.D., Buckley T.N., Miller J.M. (2002) – Optimal stomatal control in relation to leaf area and nitrogen content – Silva Fennica 36(3): 625–737 – http://www.metsantutkimuslaitos.fi/silvafennica/full/sf36/sf363625.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/11/optimal-stomatal-control-in-relation-to-leaf-area-and-nitrogen/ )

Farquhar G. D., Cowan I. R. (1974) – Oscillations in stomatal conductance. The influence of environmental gain – Plant Physiology 54: 769–772 –  https://doi.org/10.1104/pp.54.5.769 – http://www.plantphysiol.org/content/54/5/769 – (On our blog : https://plantstomata.wordpress.com/2018/03/12/the-influence-of-environmental-gain-and-the-oscillations-in-stomatal-conductance/ )

Farquhar G. D., Dubbe D. R., Raschke K. (1978) – Gain of the feedback loop involving carbon dioxide and stomata: Theory and mesurement – Plant Physiol. 62: 406–412 – PMID: 16660527 – PMCID: PMC1092136 – https://doi.org/10.1104/pp.62.3.406 – – https://www.ncbi.nlm.nih.gov/pubmed/16660527 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/gain-of-the-feedback-loop-involving-co2-and-stomata/

Farquhar G. D., Dubbe D. R., Raschke K. (1978) – Gain of the feedback loop involving carbon dioxide and stomata – Plant Physiol. 62: 413-417 –

Farquhar G. D., Hubick K. T., Terashima I., Condon A. C., Richards R.
A. (1987)
– Genetic variation in the relationship between photosynthetic CO2 loss and stomatal conductance to water loss. In “Progress in photosynthesis research”, VOI. IV (J. Biggins, ed.), pp. 209-212. Martinus Nijhoff Publishers, Dordrecht, Netherlands.

Farquhar G. D., Raschke K. (1978) – On the resistance to transpiration of
the sites of evaporation within the leaf – Plant Physiology 61: 1000–1005 –

Farquhar G. D., Schulze E. D., Kuppers M. (1980) – Responses to humidity by stomata of Nicotiana glauca L. and Corylus avellana L. are consistent with the optimization of carbon dioxide uptake with respect to water loss – Australian Journal of Plant Physiology 7: 315-327 – DOI: 10.1071/PP9800315 – https://www.cabdirect.org/cabdirect/abstract/19801958115 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomata-vary-their-apertures-so-as-to-keep-delta-e-delta-a-constant-which-optimizes-carbon-gain-with-respect-to-water-loss/ )

Farquhar G. D., Sharkey T. D. (1982) – Stomatal conductance and photosynthesis – Annual Review of Plant Physiology 33: 317-345 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.33.060182.001533?journalCode=arplant.1 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomatal-conductance-and-photosynthesis/ )

Farquhar G.D., Wong S.C. (1984) – An empirical model of stomatal conductance. – Australian Journal of Plant Physiology 11: 191–209 – https://doi.org/10.1071/PP9840191 – http://www.publish.csiro.au/FP/PP9840191 – (On our blog :  https://plantstomata.wordpress.com/2018/04/13/an-empirical-model-of-stomatal-conductance/ )

Farquharson K. L. (2012) – Polarization of Subsidiary Cell Division in Maize Stomatal Complexes – Plant Cell – https://doi.org/10.1105/tpc.112.241112 – http://www.plantcell.org/content/24/11/4313 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/polarization-of-subsidiary-cell-division-in-stomata/ )

Farrell G. M., Preece T. F., Wren M. J. (1969) – Effects of infection by Phytophthora infestans (Mont.) de Bary on the stomata of potato leaves – Ann. Appl. Biol. 63: 265–275 – doi: 10.1111/j.1744-7348.1969.tb05488.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1744-7348.1969.tb05488.x – (On our blog : https://plantstomata.wordpress.com/2021/11/09/phytophthora-infestans-infection-of-potato-leaves-causes-abnormal-opening-of-the-stomata/ )

Farrow B. J., Taylor N., van den Berg N. (2011) – The physiological response of two tolerant Persea americana rootstocks to Phytophthora cinnamomi and flooding – Proceedings VII World Avocado Congress 2011 (Actas VII Congreso Mundial del Aguacate 2011) – http://www.avocadosource.com/wac7/Section_01/FarrowBianca2011.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/12/99609/ )

Fatemy F., Trinder P. K. E. , Wingfiel J. N., Evans K. (1985) – Effects of Globodera rostochiensis, water stress and exogenous abscisic acid on stomatal function and water use of Cara and Pentland Dell potato plants – Revue Nematology. 8(3): 249- 255 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.3446&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/11/effects-of-nematod-infection-water-stress-and-exogenous-aba-on-stomatal-function/ )

Fatima U., Bhorali P., Senthil-Kumar M. (2019) –
Morpho-Pathological and Global Transcriptomic Analysis Reveals the Robust Nonhost Resistance Responses in Chickpea Interaction with Alternaria brassicae – Molecular Plant-Microbe Interactions 32(3): – https://doi.org/10.1094/MPMI-05-19-0117-Rhttps://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-05-19-0117-R?journalCode=mpmi& – (On our blog : https://plantstomata.wordpress.com/2020/03/23/the-morpho-pathological-analysis-revealed-stomatal-closure-ros-accumulation-and-localized-cell-death-in-c-arietinum-as-the-defense-strategies-against-a-brassicae/ )

Fatma L., Masood A., Per T. S., Khan N. A. (2016) – Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard – Front. Plant Sci. – https://doi.org/10.3389/fpls.2016.00521 –https://www.frontiersin.org/articles/10.3389/fpls.2016.00521/full – (On our blog : https://plantstomata.wordpress.com/2019/04/11/the-effect-of-no-on-stomatal-responses-and-photosynthetic-performance-of-plants-grown-under-salt-stress/ )

Fauset S., Oliveira L., Buckeridge M. S., Foyer C. H., Galbraith D., Tiwari R., Gloor M. (2018) – Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species Alchornea glandulosa under heatwave conditions – Environ. Exp. Bot. 158: 28–39 – doi: 10.1016/j.envexpbot.2018.10.030https://www.sciencedirect.com/science/article/pii/S0098847218311663 – (On our blog : https://plantstomata.wordpress.com/2019/08/18/contrasting-responses-of-stomatal-conductance-and-photosynthetic-capacity-to-warming-and-elevated-co2/ )

Faustino L. I.1, Bulfe N. M. L.2, Pinazo M. A.2, Monteoliva S. E.3, Graciano C.1, (2012) – Dry weight partitioning and hydraulic traits in youngPinus taeda  trees fertilized with nitrogen and phosphorus in a subtropical area – Tree Physiology 11 pp. – doi: 10.1093/treephys/tps 129https://www.academia.edu/34324681/Dry_weight_partitioning_and_hydraulic_traits_in_young_Pinus_taeda_trees_fertilized_with_nitrogen_and_phosphorus_in_a_subtropical_area?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/09/hydraulic-traits-in-young-pinus-taeda-trees-stomatal-conductance-stomatal-closure/ )

Fay P. A., Knapp A. K. (1993) – Photosynthetic and stomatal responses of Avena sativa (Poaceae) to a variable light environment – American Journal of Botany 80(12) – https://doi.org/10.1002/j.1537-2197.1993.tb15380.xhttps://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1993.tb15380.x – (On our blog : https://plantstomata.wordpress.com/2020/05/23/stomatal-responses-to-a-variable-light-environment/ )

Fay P. A., Knapp A. K. (1995) – Stomatal and photosynthetic responses to shade in sorghum, soybean and eastern gamagrass – Physiologia Plantarum 94(4): 613–620 – DOI: 10.1034/j.1399-3054.1995.940411.xhttps://www.elibrary.ru/item.asp?id=1223779 – (On our blog : https://plantstomata.wordpress.com/2020/11/19/photosynthetic-and-stomatal-responses-of-plants-during-experimental-sun-and-shade-periods-simulating-summer-cloud-cover/ )

Fayez K. A. (2000) – Action of Photosynthetic Diuron Herbicide on Cell Organelles and Biochemical Constituents of the Leaves of Two Soybean Cultivars – Pesticide Biochemistry and Physiology 66: 105–115 – doi:10.1006/pest.1999.2459https://www.academia.edu/35913805/Action_of_Photosynthetic_Diuron_Herbicide_on_Cell_Organelles_and_Biochemical_Constituents_of_the_Leaves_of_Two_Soybean_Cultivars – (On our blog : https://plantstomata.wordpress.com/2019/11/18/82035/ )

Feild T. S., Zwieniecki M. A., Donoghue M. J., Holbrook N. M. (1998) – Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought – Proceedings of the National Academy of Sciences USA 95: 14256–14259 – https://doi.org/10.1073/pnas.95.24.14256https://www.pnas.org/content/95/24/14256 – (On our blog : https://plantstomata.wordpress.com/2021/04/02/stomatal-occlusions-pose-only-a-small-fixed-resistance-to-water-loss/ )

Felemban A. (2016) – Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways – KAUST Research Repository – https://doi.org/10.25781/KAUST-Q9D97https://repository.kaust.edu.sa/handle/10754/608677 – (On our blog : https://plantstomata.wordpress.com/2022/03/13/the-effect-of-stress-conditions-on-stomatal-development-and-the-involvement-of-analysed-mapk-in-stomatal-patterning/ )

Felle H. H., Hanstein S. (2002) – The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors – Journal of Experimental Botany 53: 7378 – PMID: 11741043 – https://www.ncbi.nlm.nih.gov/pubmed/11741043 – (On our blog : https://plantstomata.wordpress.com/2018/03/11/the-apoplastic-ph-of-the-substomatal-cavity-and-its-regulation-responding-to-different-stress-factors/

Felle H. H., Hanstein S., Steinmeyer R., Hedrich R. (2000) – Dynamics of ionic activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness – The Plant Journal 24(3): 297-304 – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.2000.00878.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/23/ionic-activities-in-the-apoplast-of-the-sub-stomatal-cavity/)

Feller U. (2006) – Stomatal opening at elevated temperature: an underestimated regulatory mechanism? – Gen. Appl. Plant Physiol. XXXII: 19–31 (special issue) – http://www.bio21.bas.bg/ipp/gapbfiles/pisa-06/06_pisa_19-31.pdf – (On our blog : https://plantstomata.wordpress.com/2020/02/25/elevated-temperature-stimulates-stomatal-opening-regardless-of-the-co2-assimilation-status/ )

Feng X., Lu Y., Jiang M., Katul G. G., Manzoni S., Mrad A., Vico G. (2022) – Instantaneous stomatal optimization results in suboptimal carbon gain due to legacy effects – Plant Cell and Environment – DOI:  10.1111/pce.14427https://onlinelibrary.wiley.com/doi/10.1111/pce.14427 – (On our blog : https://plantstomata.wordpress.com/2022/09/01/legacy-effects-are-significant-to-shape-vegetation-acclimation-and-must-be-resolved-in-future-stomatal-optimization-schemes/ )

Feng Z., Kobayashi K., Ainsworth E. A. (2008) – Impact of elevated ozone concentration on growth,physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis – Global Change Biology 14: 2696–2708 – doi: 10.1111/j.1365-2486.2008.01673.x https://www.academia.edu/35915627/Impact_of_elevated_ozone_concentration_on_growth_physiology_and_yield_of_wheat_Triticum_aestivum_L._a_meta-analysis – (On our blog : https://plantstomata.wordpress.com/2019/11/18/impact-of-elevated-ozone-concentration-on-growth-physiology-stomatal-conductance-and-yield-of-wheat/ )

Feng Z., Tang H., Uddling J., Pleijel H., Kobayashi K., Zhu J., Oue H., Guo W. (2012) – A stomatal ozone flux–response relationship to assess ozone-induced yield loss of winter wheat in subtropical China – Environmental Pollution – 164: 16–23 – https://doi.org/10.1016/j.envpol.2012.01.014 –https://www.sciencedirect.com/science/article/pii/S0269749112000310 – (On our blog : https://plantstomata.wordpress.com/2019/04/26/a-stomatal-ozone-flux-response-relationship-to-assess-ozone-induced-yield-loss/ )

Fenoli C., Serna L., Torres-Contreras J. (2002) – Clonal analysis of stomatal development and patterning in Arabidopsis leaves – Developmental Biology 241: 24-33 – DOI: 10.1006/dbio.2001.0506https://pubmed.ncbi.nlm.nih.gov/11784092/ – (On outr blog : https://plantstomata.wordpress.com/2021/01/22/cell-lineage-plays-a-very-important-role-during-stomatal-pattern-establishment-2/ )

Fenton P., Davies W. J., Mansfield T. A. (1977) – The Role of Famesol as a Regulator of Stomatal Opening in Sorghum – J. Exp. Bot 28: 1043-1053 –

Fenton R., Mansfield T. A., Wellburn A. R. (1976) – Effects of Isoprenoid Alcohols on Oxygen Exchange of Isolated Chloroplasts in Relation to their Possible Physiological Effects on Stomata – J. Exp. Bot. 27: 1206-1214 –

Fernández J. E., Moreno F., Girón I. F., Blázquez O. M. (1997) – Stomatal control of water use in olive tree leaves – Plant Soil 190: 179–192 – https://doi.org/10.1023/A:1004293026973https://link.springer.com/article/10.1023%2FA%3A1004293026973 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-control-of-water-use-in-olive-tree-leaves/ )

Fernández M. D., Pieters A., Donoso C., Tezara W., Azkue M.,Herrera C., Regifo E., Herrera A. (1998) – Effects of a natural source of very high CO2 concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of Spatiphylum cannifolium and Bauhinia multinervia – New Phytologist 138: 689-697 –

Fernández M. E., Gyenge J. E., Schlichter T. M. (2006) – Growth of Festuca pallescens in silvopastoral systems in Patagonia, Part 2: Parametrization of models od stomatal conductance and leaf photosynthesis – Agrof. Syst. 66: 271-280 – 

Fernandez O. A., Mujica B. (1973) – Effects of some environmental factors on the differentiation of stomata in Spirodela intermedia – Bot. Gaz. 134: 117-121 – http://agris.fao.org/agris-search/search.do?recordID=US201303266932 – (On our blog : https://plantstomata.wordpress.com/2016/05/12/environmental-factors-and-the-differentiation-of-stomata/ )

Fernández V. (2009) – Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization – Plant Sci. 2009 –http://digital.csic.es/bitstream/10261/12470/1/FernandezV_CritRevPlantSci_2009.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/20/the-major-factors-involved-and-the-existing-experimental-approaches-to-safely-assess-the-penetration-mechanisms-of-hydrophilic-solutes-through-plant-leaves-the-potential-contribution-of-stomata-to-th/ )

Ferri M. G., Lex A. (1948) – Stomatal behaviour as influenced by treatment with β-naphthoxyacetic acid. – Contr. Boyce Thompson Inst. Pl. Res. 15: 283-290 – ISSN: 0006-8543 – http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=wiley&version=1%2E0&coi=1%3aCAS%3a528%3aDyaH1MXhslyqsA%253D%253D&md5=b2639abb226314e3a3fab96292aa343e – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-%ce%b2-naphthoxyacetic-acid/ )

Ferri M. G., Rachid M. (1949) – Further information on stomatal behaviour as influenced by treatment with hormone-like substances – Anais Acad. bras. Cienc 21: 155.

Ferris R. (1991) – A study of stomatal patterns in Plantago lanceolata L. Acer pseudoplatanus L. Sesleria caerulea L. in relation to environmental parameters – Masters thesis, Durham University – http://etheses.dur.ac.uk/6176/ – (On our blog : https://plantstomata.wordpress.com/2021/04/15/considerable-variation-in-stomatal-index-both-in-the-field-and-under-manipulated-environmental-conditions-may-have-both-a-genetic-and-plastic-base/ )

Ferris R., Long L., Bunn S. M., Robinson K. M., Bradshaw H. D., Rae A. M., Taylor G. (2002) – Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar – Tree Physiol. 22: 633-640 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.567.1731&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-development-putative-quantitative-trait-loci-in-relation-to-elevated-co2-concentration/ )

Ferris R., Taylor G. (1994) – Stomatal characteristics of four native herbs following exposure to elevated CO2. – Annals of Botany 73: 477–453 – https://doi.org/10.1006/anbo.1994.1055 – https://www.sciencedirect.com/science/article/pii/S0305736484710559 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-exposure-to-elevated-co2/ )

Ferry R. J. (2008) – Stomata, subsidiary cells and implications – http://miosjournal.org/journal/2008/03/StomataSubsidiary.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-in-orchids-3/)

Fetcher N., Mcgraw J., Bennington C., Peterson C. (2014) – Stomatal length and density in 2010 for the 1980-82 Eriophorum vaginatum reciprocal transplant experiment – Environmental Data Initiative – http://dx.doi.org/10.6073/pasta/3e82c04f8b8d18d6f8094b6f2ade694ehttps://arc-lter.ecosystems.mbl.edu/2010evrt1980stomataldensity – (On our blog : https://plantstomata.wordpress.com/2020/12/10/stomatal-length-and-density/ )

Fetter K. C., Eberhardt S., Barclay R. S., Wing S., Keller S. R. (2019) – StomataCounter: a neural network for automatic stomata identification and counting – https://doi.org/10.1111/nph.15892 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15892?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/07/stomatacounter-automatic-stomata-identification-and-counting/ )

Fetter K. C., Nelson D. M., Keller S. R. (2019) – Trade-Offs and Selection Conflicts in Hybrid Poplars Indicate the Stomatal Ratio as an Important Trait Regulating Disease Resistance – Burlington, VT: University of Vermont – https://doi.org/10.1101/814046https://www.biorxiv.org/content/10.1101/814046v3 – (On our blog : https://plantstomata.wordpress.com/2021/12/20/97944/ )

Field C. B. (1987) – Leaf-age effects of stomatal conductance. In: Zeiger GD, Farquhar GD, Cowan IR, editors. Stomatal function – Stanford: Stanford University Press – )

Field C. B., Jackson R. B., Mooney H. A. (1995) – Stomatal responses to increased CO2: implications from the plant to the global scale – Plant Cell Environ. 18: 1214–1225 – DOI: 10.1111/j.1365-3040.1995.tb00630.x http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00630.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/06/stomatal-responses-to-increased-co2/)

Field K. J., Duckett J. G., Cameron D. D., Pressel S. (2015) – Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations – Annals of Botany 115(6): 915-922 – http://eprints.whiterose.ac.uk/86084/ – http://aob.oxfordjournals.org/content/115/6/915– (On our blog : https://plantstomata.wordpress.com/2016/04/10/stomata-in-non-vascular-land-plants-and-co2/)

Field T. S., Zwieniecki M. A., Donoghue M. J., Holbrook N. M. (1998) – Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought – Evolution 95: 14256-14259 –

Fghire R., Anaya F., Issa O. A., Whabi S. (2017) – Physiological and growth response traits to water deficit as indicators of tolerance criteria between quinoa genotypes – Journal of Materials and Environmental Sciences – 8(6): 2084-2093 – ISSN : 2028-2508 – https://www.jmaterenvironsci.com/Document/vol8/vol8_N6/223-JMES-2443-Fghire.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/20/stomatal-physiological-and-growth-response-traits-to-water-deficit-as-indicators-of-tolerance-criteria/ )

Figueroa J. A., Cabrera H. M., Queirolo C., Hinojosa F. (2010) – Variability of water relations and photosynthesis in Eucryphia cordifolia Cav. (Cunoniaceae) over the range of its latitudinal and altitudinal distribution in Chile – Tree Physiology 30(5): 574-585 – DOI: 10.1093/treephys/tpq016 https://www.researchgate.net/publication/43072998_Variability_of_water_relations_and_photosynthesis_in_Eucryphia_cordifolia_Cav_Cunoniaceae_over_the_range_of_its_latitudinal_and_altitudinal_distribution_in_Chile – (On our blog : https://plantstomata.wordpress.com/2019/08/06/stomatal-density-stomatal-conductance-and-variability-of-water-relations-and-photosynthesis/ )

Filho H. A., Bruno O. M. (2018) – Plants with purple abaxial leaves: A repository of metrics from stomata distribution – bioRxiv – doi: http://dx.doi.org/10.1101/294553 – https://www.biorxiv.org/content/biorxiv/early/2018/04/04/294553.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-repository-of-metrics-from-stomata-distribution/ )

Filho H. A., Machicao J., Bruno O. M. (2017) – Geometric plasticity at leaves from Ctenanthe oppenheimiana probed by measure of distances between stomata – In Journal of Physics: Conference Series 936: 012094 – DOI: 10.1088/1742-6596/936/1/012094 – http://iopscience.iop.org/article/10.1088/1742-6596/936/1/012094 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/plasticity-induced-by-environmental-adaptations-are-measurable-using-the-distance-between-neighbor-stomata/ )

Filmer A. (2018) – Sending a canopy-wide message in plants – News Blog: Plant Sciences, University of California, Davis April 2, 2018 – https://news.plantsciences.ucdavis.edu/2018/04/02/sending-a-canopy-wide-message-in-plants/ – (On our blog : https://plantstomata.wordpress.com/2018/10/09/sending-a-canopy-wide-message-in-plants/ )

Finkelstein R.R., Rock C.D. (2002) Abscisic acid biosynthesis and response – In The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. American Society of Plant Biologists, Rockville, pp 1–52 –  – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243367/ – (On our blog : https://plantstomata.wordpress.com/2018/03/13/aba-and-stomatal-regulation/ )

Finn G. A., Brun W. A. (1980) – Water stress effects on CO2 assimilation, photosynthate partitioning, stomatal resistance, and nodule activity in soybean – Crop Sci. 20: 431-434 – https://doi.org/10.2135/cropsci1980.0011183X002000040003xhttps://acsess.onlinelibrary.wiley.com/doi/10.2135/cropsci1980.0011183X002000040003x – (On our blog : https://plantstomata.wordpress.com/2020/07/03/water-stress-effects-on-stomatal-resistance/ )

Finnigan J. J., Raupach M. R. (1987) – Modern theory of transfer in plant canopies in relation to stomata1 characteristics – In Stomatal Function, 385-429 (edited by Zeiger E., Farquhar G. and Cowan I.) – Stanford University Press, Stanford, CA –

Finsinger W., Dos Santos T., McKey D. (2013) – Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon – Geoscience 345: 350–359 – DOI : 10.1016/j.crte.2013.06.003 – https://www.sciencedirect.com/science/article/pii/S1631071313001120 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/68039/ )

Finsinger W., Wagner-Cremer F. (2009) – Stomatal-based inference models for reconstruction of atmospheric CO2 concentration: a method assessment using a calibration and validation approach – Holocene 19: 757–764 – http://www.geocraft.com/WVFossils/Reference_Docs/Last_200_years_stomatal_changes_Finsinger_etal_2009.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomatal-based-inference-models-for-reconstruction-of-atmospheric-co2-concentration/ )

Fiorin L. (xxxx) – Spatial coordination between veins and stomata – Links water supply with water loss in leaves – Università degli Studi di Padova – http://paduaresearch.cab.unipd.it/5809/1/fiorin_lucia_tesi.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/06/spatial-coordination-between-veins-and-stomata/)

Fiorin L., Brodribb T. J., Anfodillo T. (2016) – Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves – New Phytol. 209(1): 216-227 – doi: 10.1111/nph.13577 – Epub 2015 Jul 30 – PMID: 262242 – https://www.researchgate.net/publication/280585417_Transport_efficiency_through_uniformity_Organization_of_veins_and_stomata_in_angiosperm_leaves – (On our blog : https://plantstomata.wordpress.com/2016/02/19/6153/)

Fisher M. J., Charles-Edwards D. A., Ludlow M. M. (1981) – An analysis of the effects of repeated short-term soil water deficits on stomatal conductance to carbon dioxide and leaf photosynthesis by the legume, Macroptilium atropurpureum, cv. Siratro – Aust. J. Plant Physiol. 8: 347-357 – https://doi.org/10.1071/pp9810347 – http://www.publish.csiro.au/fp/PP9810347 – (On our blog : https://plantstomata.wordpress.com/2019/04/26/effects-of-repeated-short-term-soil-water-deficits-on-stomatal-conductance-to-co2-and-leaf-photosynthesis/ )

Fischer R. A. (1968) – Stomatal opening: role of potassium uptake by guard cells. – Science. N.Y. 160: 784-785 – https://doi.org/10.1126/science.160.3829.784 – (On our blog : https://plantstomata.wordpress.com/2015/09/29/active-accumulation-of-potassium-and-stomatal-opening/)

Fischer R. A. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. I. Responses to light and to CO2-free air – Plant Physiol. 43: 1947–1952 – doi: 10.1104/pp.43.12.1947https://pubmed.ncbi.nlm.nih.gov/16656995/ – (On our blog : https://plantstomata.wordpress.com/2015/09/29/independent-responses-in-stomatal-aperture-to-light-and-to-co2-free-air/).

Fischer R. A. (1970) – After-effect of water stress on stomatal opening potential. II. Possible causes –  J. Exp. Bot. 21: 386–404 – https://doi.org/10.1093/jxb/21.2.386 – https://www.jstor.org/stable/23687209?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/13/after-effect-of-water-stress-on-stomatal-opening-potential-ii/ )

Fischer R. A. (1971) – Role of potassium in stomatal opening in the leaf of Vicia faba. – Plant Physiol. 47: 555–558 – https://doi.org/10.1104/pp.47.4.555 – http://www.plantphysiol.org/content/47/4/555 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/role-of-potassium-in-stomatal-opening/ )

Fischer R. A. (1972) – The Role of Potassium in Stomatal Opening – Potash Review Subject 3, Biology, 44th suite – https://www.ipipotash.org/uploads/pdf/review/44_1972_3.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/13/potassium-and-stomatal-opening/ )

Fischer R. A. (1972) – Aspects of potassium accumulation by stomata of Vicia faba. – Aust. J. Biol. Sci. 25: 1107–1123 – http://www.publish.csiro.au/bi/pdf/bi9721107 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/aspects-of-k-accumulation-by-stomata/)

Fischer R. A. (1973) – The relationship of stomatal aperture and guard-cell turgor pressure in Vicia faba – J Exp Bot 24: 387–399 – https://doi.org/10.1093/jxb/24.2.387https://academic.oup.com/jxb/article-abstract/24/2/387/439680?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/09/24/stomatal-aperture-was-linearly-related-to-guard-cell-turgor-pressure/ )

Fischer R. A., Hsiao T. C. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. II. Responses to KCl concentration and the role of potassium absorption – Plant Physiol. 43: 1953–1958 – DOI: https://doi.org/10.1104/pp.43.12.1947 – http://www.plantphysiol.org/content/43/12/1947 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/stomatal-opening-in-isolated-epidermal-strips/ )

Fischer R. A., Hsiao T. C., Hagan R. M. (1970) – After effect of water stress on stomatal opening potential. I. Techniques and magnitudes – J. Exp. Bot. 21(2):  – DOI : 10.1093/jxb/21.2.371 – https://www.researchgate.net/publication/31051272_After-effect_of_water_stress_on_stomatal_opening_potential_I_Techniques_and_magnitudes – (On our blog : https://plantstomata.wordpress.com/2018/03/13/after-effect-of-water-stress-on-stomatal-opening-potential-i/ )

Fischer R. A., Rees D., Sayre K. D., Lu Z. M., Condon A. G., Saavedra A. L. (1998) – Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies – Crop Sci 38: 1467- 1475 – doi:10.2135/cropsci1998.0011183X003800060011x – https://dl.sciencesocieties.org/publications/cs/abstracts/38/6/CS0380061467 – (On our blog : https://plantstomata.wordpress.com/2018/01/15/wheat-yield-higher-stomatal-conductance-photosynthetic-rate-and-cooler-canopies/

Fischer R. A., Sanchez M., Syme J. R. (1977) – Pressure chamber and air flow porometer for rapid field indication of water status and stomatal conductance in wheat – Exp. Agric. 13: 341-351 –

Fites J. A., Teskey R. O. (1988) – CO2 and water-vapor exchange of Pinus taeda
in relation to stomatal behavior – Test of an optimization hypothesis – Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere
18: 150–157 – https://doi.org/10.1139/x88-024https://cdnsciencepub.com/doi/10.1139/x88-024 – (On our blog : https://plantstomata.wordpress.com/2021/09/01/co2-and-water-vapor-exchange-in-relation-to-stomatal-behavior/ )

Fitzsimons P. J., Weyers J. D. B. (1986) – Volume changes of Commelina communis guard cell protoplasts in response to K+, light and CO2 – Physiologia Plantarum 66(3): 463–468 – DOI: 10.1111/j.1399-3054.1986.tb05952.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb05952.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/14/guard-cell-protoplasts-swelling-in-response-to-k-light-and-co2/)

Fitzsimons P. J., Weyers J. D. B. (1986) – Potassium ion uptake by swelling Commelina communis guard cell protoplasts – Physiologia Plantarum 66(3): 469–475 – DOI: 10.1111/j.1399-3054.1986.tb05953.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb05953.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/14/k-ion-uptake-by-swelling-guard-cell-protoplasts-in-stomata-of-commelina/)

Fitzsimons P. J., Weyers J. D. B. (1987) – Responses of Commelina communis guard cell protoplasts to abscisic acid. – J. Exp. Bot. 38: 992-1001 – https://doi.org/10.1093/jxb/38.6.992 https://academic.oup.com/jxb/article-abstract/38/6/992/485888?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/14/responses-of-guard-cell-protoplasts-to-aba/)

Flanagan L. B., Jefferies R. L. (1988) – Stomatal limitation of photosynthesis and reduced growth of the halophyte, Plantago maritima L., at high salinity – Plant, Cell & Environment 11(4): 239–245 – DOI: 10.1111/j.1365-3040.1988.tb01142.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1988.tb01142.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/30/stomatal-limitation-of-photosynthesis-at-high-salinity/)

Flanagan L. B., Jeffries R. L. (1989) – Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity – Plant, Cell & Environment 12(5): 559–568 – DOI: 10.1111/j.1365-3040.1989.tb02129.x http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb02129.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/30/strong-nonuniform-stomatal-closure/)

Fleming A. (s.d.) – Cell wall mechanics and stomatal function – Leverhulme Trust Awards Made – https://www.leverhulme.ac.uk/awards-made/awards-focus/cell-wall-mechanics-and-stomatal-function – (On our blog : https://plantstomata.wordpress.com/2017/11/27/stomatal-function-and-cell-wall-mechanics/)

Fleming A., Gray J. E. (s.d.) – Shape Shifting Stomata: The Role of Geometry in Plant Cell Function – Lead Research Organisation: University of Sheffield – Department Name: Animal and Plant Sciences – https://gtr.ukri.org/projects?ref=BB%2FT005041%2F1

Fletcher L. R., Cui H., Callahan H., Scoffoni C., John G. P., Bartlett M. K., Burge D., O., Sack L. (2018) – Evolution of leaf structure and drought tolerance in species of Californian Ceanothus – American Journal of Botany 105(10): 1672–1687 – doi:10.1002/ajb2.1164https://sites.lifesci.ucla.edu/eeb-sacklab/wp-content/uploads/sites/71/2018/10/Fletcher_et_al-2018-American_Journal_of_Botany.pdf – (On our blog : https://plantstomata.wordpress.com/2020/08/19/drought-tolerance-and-stomata-in-ceanothus/ )

Flexas J., Bota J., Escalona J. M., Sampol B., Medrano H. (2002) – Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations – Funct. Plant Biol. 29: 461–471 – 10.1071/PP01119 – https://www.publish.csiro.au/FP/PP01119 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/effects-of-drought-on-photosynthesis-and-stomatal-and-mesophyll-limitations/ )

Flexas J., Carriquí M., Coopman R. E., Gago J., Galmés J., Martorell S., Morales F., Diaz-Espejo A., (2014) – Stomatal and mesophyll conductances to CO₂ in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change? – Plant Sci 226: 41-48 – doi: 10.1016/j.plantsci.2014.06.011 – Epub 2014 Jun 20 – https://pubmed.ncbi.nlm.nih.gov/25113449/ – (On our blog : https://plantstomata.wordpress.com/2021/01/25/stomatal-and-mesophyll-conductances-to-co2/ )

Flexas J., Escalona J. M., Evain S., Gulías J., Moya I., Osmond C. B., Medrano H. (2002) – Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants – Physiologia Plantarum 114: 231–240 – PMID: 11903970 – DOI: 10.1034/j.1399-3054.2002.1140209.xhttps://pubmed.ncbi.nlm.nih.gov/11903970/ – (On our blog : https://plantstomata.wordpress.com/2021/07/28/steady-state-chlorophyll-fluorescence-fs-and-stomatal-conductance/ )

Flexas J., Medrano H. (2002) – Drought-inhibition of photosynthesis in C-3 plants: Stomatal and non-stomatal limitations revisited – Ann Bot. 89: 183–189 – 10.1093/aob/mcf027 – https://app.dimensions.ai/details/publication/pub.1022610702 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/stomatal-closure-is-the-earliest-response-to-drought-and-the-dominant-limitation-to-photosynthesis-at-mild-to-moderate-drought/ )

Flexas J., Ribas‐Carbó M., Bota J, Galmés J., Henkle M., Martínez‐Cañellas S., Medrano H. (2006) – Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration – New Phytologist 172: 73-82 –

Flexas J., Scoffoni C., Gago J., Sack L. (2013) – Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination – J Exp Bot. 64(13): 3965-3981 – doi: 10.1093/jxb/ert319https://www.ncbi.nlm.nih.gov/pubmed/24123453 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomata-leaf-mesophyll-conductance-and-leaf-hydraulic-conductance/ )

Flogeras J. (2019) – Bioelectronic Implants for Drought-Resistant Plants – Advanced Science News Oct. 8, 2019 – https://www.advancedsciencenews.com/bioelectronic-implants-for-drought-resistant-plants/ – (On our blog : https://plantstomata.wordpress.com/2019/11/29/the-organic-electronic-ion-pump-c-oeip-is-minimally-invasive-for-the-plant-and-delivers-aba-electronically-into-the-leaf-apoplast-inducing-closure-of-the-stomata/ )

Florindo J. B., Landini G., Almeida Filho H., Martinez Bruno O. (2015) – Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia zebrina – J. Phys.: Conf. Ser. 633 012113 – doi:10.1088/1742-6596/633/1/012113 – http://iopscience.iop.org/article/10.1088/1742-6596/633/1/012113/pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/27/analysis-of-stomata-distribution-patterns/)

Flütsch S., Distefano L., Santelia D. (2018) – Quantification of Starch in Guard Cells of Arabidopsis thaliana – Bio-protocol 8(13) – DOI:10.21769/BioProtoc.2920https://bio-protocol.org/e2920 – (On our blog : https://plantstomata.wordpress.com/2019/04/14/quantification-of-starch-in-stomatal-guard-cells/ )

Flütsch S., Nigro A., Conci F., Fajkus J., Thalmann M., Trtilek M., Panzarova K. Santelia D. (2020) – Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth – EMBO Rep (2020)e49719 – https://doi.org/10.15252/embr.201949719https://www.embopress.org/doi/10.15252/embr.201949719 – (On our blog : https://plantstomata.wordpress.com/2020/07/25/carbon-sources-for-stomatal-opening-and-plant-growth/ )

Flütsch S., Wang Y., Takemiya A., Vialet-Chabrand S. R. M., Klejchová M., Nigro A., Hills A., Lawson T., Blatt M. R., Santelia D. (2020) – Guard Cell Starch Degradation Yields Glucose for Rapid Stomatal Opening in Arabidopsis – The Plant Cell 32(7): 2325-2344 – https://doi.org/10.1105/tpc.18.00802http://www.plantcell.org/content/32/7/2325 – (On our blog : https://plantstomata.wordpress.com/2020/07/15/guard-cell-starch-degradation-yields-glucose-for-rapid-stomatal-opening/ )

Fordham M. C., Harrison-Murray R. S., Knight L., Evered C. E. (2001) – Effects of leaf wetting and high humidity on stomatal function in leafy cuttings and intact plants of Corylus maxima. – Physiologia Plantarum 113: 233-240 – http://www.ingentaconnect.com/content/mksg/ppl/2001/00000113/00000002/art00011 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/effects-of-leaf-wetting-and-high-humidity-on-stomatal-function/)

Forestier C., Bouteau F., Leonhardt N., Vavasseur A. (1998) – Pharmacological properties of slow anion currents in intact guard cells of Arabidopsis. Application of the discontinuous single-electrode voltage-clamp to different species. – Pflugers Archiv Eur J Physiol 436: 920–927 – DOI 10.1007/s004240050724 – https://www.ncbi.nlm.nih.gov/pubmed/9799408 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/ion-channel-currents-in-intact-guard-cells-of-stomata-and-especially-of-slow-anion-channels/

Forlani M., Pasquarella C., Coppola V. (1983) – The relationship between stomatal density and vigour in grapevine rootstocks – Riv. Viticolt. Enol. 36: 117-125 [ Abstr.: Hort. Abstr. 53, 4948] –

Förster S., Schmidt L. K., Kopic E., Anschütz U., Huang S., Schlücking K., Köster P., Waadt R., Larrieu A., Batistic O., Rodriguez P. L., Grill E.,l J., Becker D. (2018) – Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K+ Channels by a Ca2+ Sensor-Kinase CBL1-CIPK5 Complex – Dev. Cell 48(1): 87-99 – DOI:https://doi.org/10.1016/j.devcel.2018.11.014 –https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30932-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1534580718309328%3Fshowall%3Dtrue#%20 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/wounding-induced-stomatal-closure-requires-jasmonate-mediated-activation-of-gork-k-channels/ )

Fort C., Fauveau M. L., Muller F., Label P., Granier A., Dreyer E. (1997) – Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying – Tree Physiol. 17(5): 281-289 – doi:10.1093/treephys/17.5.281https://pubmed.ncbi.nlm.nih.gov/14759851/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/stomatal-conductance-growth-and-root-signaling-in-young-oak-seedlings-subjected-to-partial-soil-drying/ )

Foschi M. L., Martínez L. E., Ponc M. T., Galmarini C. R., Bohanec B. (2013) – Effect of colchicine and amiprophos-methyl on the production of in vitro doubled haploid onion plants and correlation assessment between ploidy level and stomatal size – Rev. Fac. Cienc. Agrar., Univ. Nac. Cuyo vol.45 no.2 Mendoza dic. 2013. (http://www.scielo.org.ar/scielo.php?pid=S1853-86652013000200012&script=sci_arttext) – (On our blog : https://plantstomata.wordpress.com/2015/09/29/correlation-assessment-between-ploidy-level-and-stomatal-characteristics/)

Foster J. R., Smith W. K. (1986) – Influence of stomatal distribution on transpiration in low-wind environments – Plant Cell Environ. 9: 751–759 –

Fotopoulos V., De Tullio M. C., Barnes J., Kanellis A. K. (2008) – Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling – J. Exp. Bot. 59: 729–737 – doi: 10.1093/jxb/erm359  – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=18349048 – (On our blog : https://plantstomata.wordpress.com/2018/09/19/dha-acts-as-a-regulator-of-stomatal-dynamics/ )

Fowler D., Flechard C., Cape J. N., Storeton-West R. L., Coyle M. (2001) – Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components – Water. Air. Soil Pollut. 130: 63–74 – https://doi.org/10.1023/A:1012243317471https://link.springer.com/article/10.1023%2FA%3A1012243317471#citeas – (On our blog : https://plantstomata.wordpress.com/2022/01/25/the-ozone-flux-has-been-partitioned-between-stomatal-and-non-stomatal-fluxes-and-shows-over-a-seasonal-scale-that-the-non-stomatal-deposition-dominates-the-overall-flux/ )

Fowler D., Flechard C., Coyle M., Storeton-West R. L. (1999) – Ozone fluxes to vegetation in the field, separating stomatal from non-stomatal uptake – In: J. Fuhrer and B. Achermann (Eds.), Critical Levels for Ozone – Level II. Environmental Documentation No. 115. Swiss Agency for Environment, Forest and Landscape, Bern, Switzerland, pp. 279-287

Fox D. G. (1970) – The influence of stomatal aperture on leaf diffusive resistance.
p. 43–51 – In E.J. Kinbacher et al. (ed.): Physiological and biochemical
responses of plants to different internal water potentials. Annual Rep. 1. Office of Water Resources Res., U.S. Dep. of the Interior, Nebraska
Water Resources Inst. – Project A-015-NEB – Available at http://water.
usgs.gov/wrri/institutes.html
(verifi ed 30 Oct. 2008) – Nebraska Water
Resources Ctr., Univ. of Nebraska, Lincoln.

Francesconi S., Balestra G. M. (2020) – The modulation of stomatal conductance and photosynthetic parameters is involved in Fusarium head blight resistance in wheat – PLOS One 15(6): e0235482 – https://doi.org/10.1371/journal.pone.0235482https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235482 – (On our blog : https://plantstomata.wordpress.com/2020/08/02/the-modulation-of-stomatal-conductance-and-photosynthetic-parameters/ )

Francia P., Simoni L., Cominelli E., Tonelli C., Galbiati M. (2008) – Gene trap-based identification of a guard cell promoter in Arabidopsis – Plant Signal Behav. 3(9): 684–686 – http://pubmedcentralcanada.ca/pmcc/articles/PMC2634557/ – (On our blog : https://plantstomata.wordpress.com/2017/11/12/the-cyp86a2-guard-cell-promoter-and-its-potential-for-gene-expression-in-stomata/)

Franco C. M. (1938) – Sôbre a fisiologia dos estômatos de cafeeiro Coffea arabica L. – Annais da Primeira Reuniao Sul-Americano de Botânica, Rio de Janeiro 3: 293-302 –

Franco C. M. (1939) – Relation between chromosome number and stomata in Coffea. Botanical Gazette 100: 817-827 – https://www.jstor.org/stable/2471773?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-chromosome-number/ )

Franco‐Navarro J. D., Rosales M. A., Cubero‐Font P., Calvo P., Álvarez R., Diaz‐Espejo A., Colmenero‐Flores J. M. (2019) – Chloride as a macronutrient increases water‐use efficiency by anatomically driven reduced stomatal conductance and increased mesophyll diffusion to CO2 – The Plant Journal – https://doi.org/10.1111/tpj.14423https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14423?af=R – (On our blog : https://plantstomata.wordpress.com/2019/07/08/chloride-increases-water%e2%80%90use-efficiency-by-anatomically-driven-reduced-stomatal-conductance/ )

Frank A. B. (1981) – Effect of Leaf Age and Position on Photosynthesis and Stomatal Conductance of Forage Grasses – Agronomy Journal 73(1): 70-74 – https://doi.org/10.2134/agronj1981.00021962007300010017xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1981.00021962007300010017x – (On our blog : https://plantstomata.wordpress.com/2021/09/28/photosynthesis-and-stomatal-conductance-of-leaves-of-different-age-and-in-different-position/ )

Frank A. B., Power J. F., Willis W. O. (1973) – Effect of Temperature and Plant Water Stress on Photosynthesis, Diffusion Resistance, and Leaf Water Potential in Spring Wheat – Agronomy Journal 65: 777-780 – https://pubag.nal.usda.gov/download/17198/PDF – (On our blog : https://plantstomata.wordpress.com/2021/10/16/the-combined-effects-of-temperature-and-soil-water-supply-on-the-development-of-plant-water-stress-and-stomatal-diffusion-resistance/ )

Franke W. (1964) – Role of guard cells in foliar absorption – Nature (Lond.) 202: 1236-1237 –  (On our blog : https://plantstomata.wordpress.com/2016/05/23/stomatal-guard-cells-and-foliar-absorption/)

Franke W. (1967) – Ektodesmen und die Peristomatäre Transpiration – Planta 73: 138 –

Franks P. J. (xxxx) – Research interests – http://sydney.edu.au/science/people/peter.franks.php – (On our blog : https://plantstomata.wordpress.com/2018/01/22/research-interests-of-peter-j-franks/ )

Franks P. J. (2003) – Use of the pressure probe in studies of stomatal function. – Journal of Experimental Botany 54: 1495-1504 – oai:researchonline.jcu.edu.au:13775 – http://trove.nla.gov.au/work/2873425?q&versionId=187635831+206889243 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/the-construction-and-use-of-the-pressure-probe-in-studies-relating-to-stomatal-function/)

Franks P. J. (2004) – Stomatal control and hydraulic conductance, with special reference to tall trees – Tree Physiol 24 865–878 – (On our blog : https://plantstomata.wordpress.com/2015/09/29/stomatal-control-in-tall-trees/)

Franks P. J. (2006) – Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients – Plant, Cell Environ 29: 584–592 – https://doi.org/10.1111/j.1365-3040.2005.01434.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2005.01434.x – (On our blog : https://plantstomata.wordpress.com/2021/11/29/a-mechanistic-model-incorporating-the-stomatal-hydromechanical-feedback-loop-is-used-to-predict-the-relationship-between-%ce%b4%cf%88leaf-and-kleaf/ )

Franks P. J. (2012) – Genome size as a constraint on productivity and water-use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/genome-size-plant-productivity-and-water-use-efficiency/ )

Franks P. J. (2013) – Passive and active stomatal control: either or both? – New Phytologist 198(2): 325-327 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12228/abstract – http://onlinelibrary.wiley.com/store/10.1111/nph.12228/asset/nph12228.pdf;jsessionid=86FBD0E3A3AE75FC27989E2A067593B0.f02t03?v=1&t=jcncmcfn&s=e5bbc00257355a1524ae53ee4b7ec0b37a466fd7 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/passive-and-active-stomatal-control/ )

Franks P. J., Beerling D. J. (2009) – Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time – PNAS 106: 10343–10347 –  https://doi.org/10.1073/pnas.0904209106 –http://www.pnas.org/content/106/25/10343.short – (On our blog : https://plantstomata.wordpress.com/2018/12/04/maximum-leaf-conductance-driven-by-co2-effects-on-stomatal-size-and-density-over-geologic-time/

Franks P. J., Beerling D. J., Berner R. A. (2009) – Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time – Proceedings of the National Academy of Sciences, USA (2009) 106(10): 343–34 – doi: 10.1073/pnas.0904209106 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-characteristics-over-geologic-time/).

Franks P. J., Berry J. A., Lombardozzi D. L., Bonan G. B. (2017) – Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling, and global models – Plant Physiol 174: 583–602 – https://doi.org/10.1104/pp.17.00287 – http://www.plantphysiol.org/content/174/2/583 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/future-efforts-must-focus-on-more-accurate-parameterization-of-stomatal-conductance-models/)

Franks P. J., Bonan G. B., Berry J. A., Lombardozzi D. L., Holbrook N. M., Herold N., Oleson K. W. (2018) – Comparing optimal and empirical stomatal conductance models for application in Earth system models – Global Change Biol.,24: 5709–5723 – https://doi.org/10.1111/gcb.14445https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14445 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/comparing-optimal-and-empirical-stomatal-conductance-models/ )

Franks P. J., Britton-Harper Z. J. (2016) – No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? – New Phytologist 211(3): 819 – 827 – DOI: 10.1111/nph.14020 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-211-i-3-nph14020 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/a-universal-stomatal-control-mechanism-2/)

Franks P. J., Britton-Harper Z. J. (2016) – No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? – Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14020 http://onlinelibrary.wiley.com/doi/10.1111/nph.14020/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/07/a-universal-stomatal-control-mechanism-2/)

Franks, P., Brodribb, T.J. (2005) – Stomatal control and water transport in the xylem – In: Holbrook, N. Michelle, and Zwieniecki, Macief A., (eds.) Vascular Transport in Plants. Physiological Ecology, 1 . Elsevier, Oxford, UK, pp. 69-89 – https://researchonline.jcu.edu.au/14422/ – (On our blog https://wordpress.com/post/plantstomata.wordpress.com/5201).

Franks P. J., Buckley T. N., Shope J. C., Mott K. A. (2001) – Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. – Plant Physiol 125 1577–1584 – (On our blog : https://plantstomata.wordpress.com/2015/09/30/stomata-microscopic-study-of-guard-cell-volume/).

Franks P. J., Casson S. (2014) – Connecting stomatal development and physiology – New Phytologist 201(4): 1079-1082 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12673/abstract – (On our blog : https://plantstomata.wordpress.com/2015/09/30/stomatal-development-and-physiology/)

Special Commentary by Franks & Casson ‘Connecting stomatal development and physiology’ highlighting Graham’s two papers  http://onlinelibrary.wiley.com/doi/10.1111/nph.12673/full

Franks P. J., Cowan I. R., Farquhar G. D. (1997) – The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees – Plant, Cell and Environment 20: 142–145 – DOI: 10.1046/j.1365-3040.1997.d01-14.x – (On our blog : https://plantstomata.wordpress.com/2016/05/23/feedforward-response-of-stomata-to-air-vapour-pressure-deficit/)

Franks P. J., Cowan I. R., Farquhar G. D. (1998) – A study of stomatal mechanics using the cell pressure probe – Plant Cell Environ 21: 94–100 – DOI: 10.1046/j.1365-3040.1998.00248.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1998.00248.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomatal-mechanics-and-the-cell-pressure-probe/ )

Franks P. J., Cowan I. R., Tyerman S. D., Cleary A. L., Lloyd J., Farquhar G. D. (1995) – Guard cell pressure/aperture characteristics measured with the pressure probe – Plant Cell Environ 18: 795–800 – doi:10.1111/j.1365-3040.1995.tb00583.x  – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00583.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/14/stomatal-behavior-and-the-pressure-probe/ )

Franks P. J., Doheny-Adams T. W., Britton-Harper Z. J., Gray J. E. (2015) – Increasing water-use efficiency directly through genetic manipulation of stomatal density – New Phytol. 207: 188–195 – doi: 10.1111/nph.13347 – (On our blog : https://plantstomata.wordpress.com/2015/03/09/stomatal-density-and-wue/).

Franks P. J., Drake P.L., Beerling D. J. (2009) – Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus – Plant, Cell & Environment 32: 1737–1748 – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.002031.x/abstract –  (On our blog : https://plantstomata.wordpress.com/2015/09/30/3961/)

Franks P. J., Drake P. L., Froend R. H. (2007) – Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance – Plant, Cell and Environment 30: 19-30 – DOI 10.1111/j.1365-3040.2006.01600.x – https://www.ncbi.nlm.nih.gov/pubmed/17177873 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/stomatal-control-mechanism-incorporating-variable-plant-hydraulic-conductance/ )

Franks P. J., Farquhar G. D. (2001) – The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana – Plant Physiol 125: 935–942 – (On our blog : https://plantstomata.wordpress.com/2015/10/11/the-effect-of-exogenous-aba-on-stomata/)

Franks  P. J., Farquhar G. D. (2007) – The mechanical diversity of stomata and its significance in gas-exchange control – Plant Physiology 143: 78–87 – doi: 10.1104/pp.106.089367 – (http://www.plantphysiol.org/content/143/1/78) – (On our blog : https://plantstomata.wordpress.com/2015/08/03/mechanical-diversity-of-stomata/)

Franks P. J., Leitch I., Ruszala E., Hetherington A., Beerling D. J. (2012) – Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations – Philosophical Transactions of the Royal Society B. Biological Sciences 367(1588): 537-546 – https://doi.org/10.1098/rstb.2011.0270 – http://rstb.royalsocietypublishing.org/content/367/1588/537 – (On our blog : https://plantstomata.wordpress.com/2016/05/24/adaptation-of-stomata-to-co2/ )

Franzisky B. L. (2020) – Aspects of stomatal physiology during salt-stress-related disturbances of ion homeostasis – PhD Thesis University of Hohenheim – http://opus.uni-hohenheim.de/volltexte/2021/1842/pdf/Diss_BLF.pdf – (On our blog : https://plantstomata.wordpress.com/2022/04/28/the-differential-metabolic-acclimatisation-of-guard-cells-to-disturbed-ion-homeostasis-might-represent-an-important-aspect-of-tissue-tolerance-enabling-the-maintenance-of-stomatal-regulation-during-lo/ )

Franzisky B. L., Geilfus C.-M., Romo-Pérez M. L., Fehrle I., Erban A., Kopka J., Zörb C. (2020) – Acclimatisation of guard cell metabolism to long-term salinity – Plant, Cell & Environment 44(3): 870-884 – doi: 10.1111/pce.13964 – Epub 2020 Dec 18 – https://pubmed.ncbi.nlm.nih.gov/33251628/ – (On our blog : https://plantstomata.wordpress.com/2022/04/28/stress-related-photosynthate-accumulation-in-leaves-contributes-to-the-permanent-closing-response-of-stomata-under-stress/ )

Fraser J. (2019) – How a Tiny Pit Decides a Pine Tree’s Fate – Scientific American Blog 2019-10-14 – https://blogs.scientificamerican.com/artful-amoeba/how-a-tiny-pit-decides-a-pine-trees-fate/ – (On our blog : https://plantstomata.wordpress.com/2019/10/23/stomata-in-pinus-gymnospermae/ )

Fraser L. H., Greenall A., Carlyle C., Turkington R., Friedman C. R. (2009) – Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature – Ann. Bot. (London) 103: 769–775 – doi: 10.1093/aob/mcn252 – (On our blog : https://plantstomata.wordpress.com/2015/10/02/the-plasticity-of-stomatal-density-changes-in-water-supply-and-temperature/ )

Fraudentali I., Ghuge S. A., Carucci A., Tavladoraki P., Angelini R., Cona A., Rodrigues-Pousada R. A. (2019) – The Copper Amine Oxidase AtCuAOδ Participates in Abscisic Acid-Induced Stomatal Closure in Arabidopsis – Plants 8(6) – https://doi.org/10.3390/plants8060183https://www.mdpi.com/2223-7747/8/6/183 – (On our blog : https://plantstomata.wordpress.com/2019/07/08/atcuao%ce%b4-is-involved-in-the-h2o2-production-related-to-aba-induced-stomatal-closure/ )

Frechilla S., Talbott L. D., Bogomolni R. A., Zeiger E. (2000) – Reversal of blue light-stimulated stomatal opening by green light – Plant Cell Physiol 41: 171-176 –  – https://doi.org/10.1093/pcp/41.2.171 –https://academic.oup.com/pcp/article/41/2/171/1853516 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/reversal-of-blue-light-stimulated-stomatal-opening-by-green-light/

Frechilla S., Talbott L., Zeiger E. (1997) – The blue light response of guard cells acclimates to growth environment – Plant Physiology 114 (Suppl.): 98 –

Frechilla S., Talbott L. D., Zeiger E. (2002) – The CO2 response of Vicia guard cells acclimates to growth environment – Journal of Experimental Botany 53(368): 545–550 – https://doi.org/10.1093/jexbot/53.368.545https://academic.oup.com/jxb/article/53/368/545/577362 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/co2-responses-of-stomata-acclimate-to-growth-environment/ )

Frechilla S., Talbott L. D., Zeiger E. (2004) – The blue light-specific response of Vicia faba stomata acclimates to growth environment – Plant Cell Physiol. 45(11): 1709–1714 – https://pdfs.semanticscholar.org/3456/f8cef5149846c30dbcc03905013b980a4e0f.pdf?_ga=2.131195020.2049058054.1611513744-828366126.1607691538 – (On our blog : https://plantstomata.wordpress.com/2021/01/24/the-blue-lightspecific-response-of-stomata-acclimates-to-growth-environment/ )

Frechilla S., Zhu J., Talbott L. D., Zeiger E. (1999) – Stomata from npq1, a zeaxanthin‐less Arabidopsis mutant, lack a specific response to blue light – Plant and Cell Physiology 40: 949-954 – DOI: 10.1093/oxfordjournals.pcp.a029627 – https://scinapse.io/papers/2156072438 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/stomata-from-npq1-lack-a-specific-response-to-blue-light/

Frederick J. R. (1997) – Winter wheat photosynthesis, stomatal conductance, and leaf nitrogen concentration during reproductive development – Crop Science, Madison 37(6): 1819-1826 – doi:10.2135/cropsci1997.0011183X003700060026xhttps://dl.sciencesocieties.org/publications/cs/abstracts/37/6/CS0370061819?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/26/winter-wheat-photosynthesis-stomatal-conductance-and-leaf-nitrogen-concentration/ )

Freeland R. O. (1948) – Photosynthesis in relation to stomatal frequency and distribution – Plant Physiology 23: 595-600 – DOI: https://doi.org/10.1104/pp.23.4.595 – http://www.plantphysiol.org/content/23/4/595 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/photosynthesis-stomatal-frequency-and-distribution/ )

Freeman B. C., Beattie G. A. (2009) – Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana – Mol Plant-Microbe Interact. 22: 857–867 – doi: 10.1094/MPMI-22-7-0857https://www.ncbi.nlm.nih.gov/pubmed/19522568 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/78887/ )

Fregoni M., Roversi A. (1968) – Indagine biometrica sugli stomi di alcune
cultivar di pesco – Riv. Ortoflorofrutt. 52: 531-548 –

Frensch J., Schulze E. D. (1988) – The effect of humidity and light on cellular water relations and diffusion conductance of leaves of Tradescantia virginiana L. – Planta 173: 554– 562 – https://doi.org/10.1007/BF00958969https://link.springer.com/article/10.1007%2FBF00958969#citeas – (On our blog : https://plantstomata.wordpress.com/2021/04/22/stomatal-conductance-g-increased-with-increasing-epidermal-turgor/ )

Frenyo V. (1969) – Distribution of stomata on the leaf-blade of maize varieties producing different yields- Botanikai Kozlemeyek Budapest 56(2): 81-84 – https://eurekamag.com/research/014/423/014423457.php – (On our blog : https://plantstomata.wordpress.com/2022/01/13/the-number-of-stomata-decreases-gradually-towards-the-abaxial-part-of-the-maize-leaf-blade/ )

Freudenberger H. (1940) – Die Reaktion der Schliesszellen auf Kohlensäure und Sauerstoff-Entzug – Protoplasma 35: Heft 1 – DOI 10.1007/BF02807306 – Thesis/dissertation – Berlin : Borntraeger

Frey B., Scheidegger C., Gunthardt-Goerg M. S., Matyssek R. (1996) – The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital as image-analysis and X-ray microanalysis – New Phytologist 132: 135–143 – (On our blog) : https://plantstomata.wordpress.com/2015/10/03/stomata-ozone-and-fertilizer/ )

Fribourg University (2020) – Reducing pesticide use with nanoparticles – https://phys.org/news/2020-12-pesticide-nanoparticles.html

Fricker M. D., Gilroy S., Read N. D., Trewavas A. J. (1991) – Visualisation and measurement of the calcium message in guard cells – In: Molecular Biology of Plant Development. W. Schuch and G. Jenkins, editor. Cambridge University Press, Cambridge – Symp Soc Exp Biol. 45: 177-190 – https://www.ncbi.nlm.nih.gov/pubmed/1843407 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/the-calcium-message-in-stomata/ )

Fricker M. D., White N. (1990) – Volume measurements of guard cell vacuoles during stomatal movements using confocal microscopy. – Transactions of the Royal Microscopical Society 1: 345–358 –

Fricker M. D., Willmer C. M. (1996) – Stomata – Springer – https://www.springer.com › book – (On our blog : https://plantstomata.wordpress.com/2020/02/24/book-stomata/ )

Fricker M. D., Willmer C. M. (1987) – Vanadate sensitive ATPase and phosphatase activity in guard cell protoplasts of Commelina – J. Exp. Bot. 38: 642–648 – https://doi.org/10.1093/jxb/38.4.642 – https://academic.oup.com/jxb/article-abstract/38/4/642/457629?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/09/18/atpase-and-phosphatase-activity-in-stomatal-protoplasts/ )

Fricker M. D., Willmer C. M. (1990) – Some properties of proton pumping ATPase at the plasma membrane and tonoplast of guard cells – Biochem. Physiol. Pflanzen 186: 301–308 – https://doi.org/10.1016/S0015-3796(11)80222-2 – https://ac.els-cdn.com/S0015379611802222/1-s2.0-S0015379611802222-main.pdf?_tid=3a9b974c-d577-411a-b8bf-4eed9d488ead&acdnat=1537294363_aab9f248c47abe7f470849568e671e06 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/proton-pumping-atpase-at-the-plasma-membrane-and-tonoplast-of-stomata/ )

Fricker M. D., Willmer C. M. (1990) – Nitrate-sensitive ATPase activity and proton pumping in guard cell protoplasts of Commelina – J. Exp. Bot. 41(2): 193-198 – https://doi.org/10.1093/jxb/41.2.193 – https://academic.oup.com/jxb/article-abstract/41/2/193/498816?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/09/25/nitrate-sensitive-atpase-activity-and-proton-pumping-in-stomatal-protoplasts/ )

Friday D. (2022) – What are Stomata? Functions, Structure, and Types – Jotscroll – https://www.jotscroll.com/what-are-stomata-functions-structure-and-types – (On our blog : https://plantstomata.wordpress.com/2022/03/27/functions-structure-and-types-of-stomata/ )

Friday D. (2022) – What is the function of stomata? – Jotscroll – https://www.jotscroll.com/what-is-the-function-of-stomata – (On our blog : https://plantstomata.wordpress.com/2022/03/27/the-function-of-stomata/ )

Friedl S. (2015) –  Stomata of Plants: Function, Definition & Structure – Video & Lesson Transcript | Study.com – http://study.com/academy/lesson/stomata-of-plants-function-definition-structure.html

Friend A. D. (1991) – Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning – Plant, Cell & Environment 14(6): 895-905 – https://doi.org/10.1111/j.1365-3040.1991.tb00958.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb00958.x – (On our blog : https://plantstomata.wordpress.com/2019/04/26/a-model-of-photosynthesis-and-leaf-microenvironment-to-predict-optimal-stomatal-conductance/ )

Friend A., Woodward F., Switsur V. (1989) – Field Measurements of Photosynthesis, Stomatal Conductance, Leaf Nitrogen and δ13C Along Altitudinal Gradients in Scotland – Functional Ecology 3(1): 117-122 – doi:10.2307/2389682https://www.jstor.org/stable/2389682 – (On our blog : https://plantstomata.wordpress.com/2021/06/23/increasing-stomatal-conductance-and-leaf-nitrogen-per-unit-leaf-area-with-altitude/ )

Frohnmeyer H., Grabov A., Blatt M. R. (1998) – A role for the vacuole in auxin-mediated control of cytosolic pH by Vicia mesophyll and guard cells – Plant J. 13: 109–116 – https://doi.org/10.1046/j.1365-313X.1998.00013.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1998.00013.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/the-vacuole-in-auxin-mediated-control-of-cytosolic-ph-by-mesophyll-and-guard-cells/ )

Frommhold I. (1971) – Ontogenetische und funktionelle Entwicklung der Stomata von Hafer (Avena sativa L.) – Biochem. Physiol. Pflanzen (BPP) 162: 410-416 – https://ac.els-cdn.com/S0015379617311654/1-s2.0-S0015379617311654-main.pdf?_tid=04595029-8657-423c-893f-5c5d509e5d8a&acdnat=1521046168_500ab3f8d4c0be3cd5451c5af634d376 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/ontogenetic-and-functional-development-of-stomata/ )

Fry K. E. (1965) – A study of transpiration and photosynthesis in relation to stomatal resisance and internal water potential in Douglas Fir – Ph.D. thesis Univ. Washington.

Fry K. E., Walker R. B. (1967) – A pressure infiltration method for estimating stomatal opening in conifers – Ecology 48: 155-157- DOI: 10.2307/1933428 – https://www.jstor.org/stable/1933428?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/14/a-pressure-infiltration-method-for-estimating-stomatal-opening/ )

Fu Q. S. , Zhao B., Wang Y. J.. Ren S., Guo Y. D. (2010) – Stomatal development and associated photosynthetic performance of Capsicum in response to differential light availabilities – Photosynthetica 48: 189-198 –  https://doi.org/10.1007/s11099-010-0024-5 – https://link.springer.com/article/10.1007%2Fs11099-010-0024-5#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/14/stomatal-development-in-response-to-differential-light-availabilities/ )

Fu X., Meinzer F. C., Woodruff D. R., Liu Y.-Y., Smith D. D., McCulloh K. A., Howard A. R. (2019) – Coordination and trade‐offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry -Plant, Cell & Environment – https://doi.org/10.1111/pce.13543 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13543?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/01/leaf-and-stem-hydraulic-traits-and-stomatal-regulation-along-a-spectrum-of-isohydry-to-anisohydry/ )

Fuchs E. E., Livingston N. J. (1996) – Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesi (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings – Plant, Cell & Environment 19: 1091-1098 – https://doi.org/10.1111/j.1365-3040.1996.tb00216.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb00216.x – (On our blog : https://plantstomata.wordpress.com/2019/02/04/hydraulic-control-of-stomatal-conductance-3/ )

Fuentes S., Canamero R. C., Serna L. (2012) – Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl – Int. J. Dev. Biol. 56: 675–680 – DOI10.1387/ijdb.120029ls – https://www.semanticscholar.org/paper/Relationship-between-brassinosteroids-and-genes-co-Fuentes-Ca%C3%B1amero/11707d77f3e5fdb6f7ad40bb71fef8d1d69c5739 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/differences-in-the-genetic-control-of-stomatal-development-between-cotyledons-or-leaves-and-hypocotyls/

Fuehring H. D., Mazaheri A., Bybordi M., Khan A. K. S. (1966) – Effect of Soil Moisture Depletion on Crop Yield and Stomatal Infiltration – Agronomy journal 58: 195-198 – doi: 10.2134/agronj1966.00021962005800020023xhttps://pubag.nal.usda.gov/catalog/6633564 – (On our blog : https://plantstomata.wordpress.com/2021/11/15/soil-moisture-depletion-on-crop-yield-and-stomatal-infiltration/ )

Fujita T., Noguchi K., Ozaki H., Terashima I. (2019) – Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method – Funct Plant Biol. 46(5): 467-481 – doi: 10.1071/FP18250 – PMID: 30940335 – https://pubmed.ncbi.nlm.nih.gov/30940335/ – (On our blog : https://plantstomata.wordpress.com/2022/01/03/mesophyll-signals-controlling-stomatal-responses-2/ )

Fujita T., Noguchi K.,Terashima I. (2013) – Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis – New Phytol. 2: 395–406 – doi: 10.1111/nph.12261https://pubmed.ncbi.nlm.nih.gov/23560389/ – (On our blog : https://plantstomata.wordpress.com/2022/01/03/the-apoplast-transfer-of-mesophyll-signals-and-the-stomatal-opening-at-low-co2-are-dependent-on-photosynthesis-whereas-the-stomatal-closure-at-high-co2-is-independent-of-photosynthesis/ )

Fujino M. (1959) – Correlation among the stomatal movement, pH, salts concentration, starch content and osmotic value in Commelina (in Japanese) – Kagaku 29: 147-148 –

Fujino M. (1959) – Stomatal movement and active migration of potassium (in Japanese) – Kagaku 29: 660-661 –

Fujino M. (1967) – Role of adenosinetriphosphate and adenosinetriphosphatase in stomatal movement – Sci. Bull. Fac. Educ. Nagasaki Univ. 18: 1–47 – kyoikuS18_001.pdfnaosite.lb.nagasaki-u.ac.jp/dspace/bitstream/10069/33158/1/kyoikuS18_001.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/15/atp-and-atp-ase-in-stomatal-movements/ )

Fujino M. (1969) – Effect of Monoiodoacetic Acid on Stomatal Movement – Sci. Bull. Fac. Educ., Nagasaki Univ. 20: 57-66 – https://core.ac.uk/download/pdf/58761342.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/18/monoiodoacetic-acid-and-stomatal-movement/ )

Fujino M., Jinno N. (1972) – The fine structure of the guard cell of Commelina communis L. – Sci. Bull., Fac. Educ. Nagasake Univ. (23): 101–111 – http://hdl.handle.net/10069/33029 – kyoikuS23_101.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/14/the-ultrastructure-of-a-guard-cell-in-stomata/

Fujioka H., Samejima H., Suzuki H., Mizutani M., Okamoto M., Sugimoto Y. (2019) – Aberrant protein phosphatase 2C leads to abscisic acid insensitivity and high transpiration in parasitic Striga – Nature Plants – DOI: 10.1038/s41477-019-0362-7 –https://www.nature.com/articles/s41477-019-0362-7 – (On our blog : https://plantstomata.wordpress.com/2019/03/03/shpp2c1-interrupts-aba-signalling-responsible-for-controlling-stomatal-closure/ )

Fujita T., Noguchi K., Ozaki H., Tefrashima I. (2019) – Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method – Functional Plant Biology – https://doi.org/10.1071/FP18250http://www.publish.csiro.au/fp/FP18250 – (On our blog : https://plantstomata.wordpress.com/2019/03/04/mesophyll-signals-controlling-stomatal-responses/ )

Fujita T., Noguchi K., Terashima I. (2013) – Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. – New Phytologist 199(2): 395 – DOI: 10.1111/nph.12261 – (On our blog : https://plantstomata.wordpress.com/2016/05/24/apoplastic-mesophyll-signals-and-stomatal-responses-to-co2/ )

Fujiwara M., Yasuzawa M., Kojo K. H., Abe T., Yoshida S., Nakano T., Itoh R. D. (2018) – The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis – PLOS One13(2): e0192380 – https://doi.org/10.1371/journal.pone.0192380 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192380 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/arabidopsis-arc5-and-arc6-mutations-differentially-affect-plastid-morphology-in-pavement-and-stomata/ )

Fukuda M., Hasezawa S., Asai N., Nakajima N., Kondo N. (1998) – Dynamic organization of microtubules in guard cells of Vicia faba L. with diurnal cycle – Plant Cell Physiology 39: 80–86 – https://www.ncbi.nlm.nih.gov/pubmed/9517004 – (On our blog : https://plantstomata.wordpress.com/2018/09/25/radially-organized-cortical-mts-of-guard-cells-may-control-diurnal-stomatal-movement/ )

Fukuda M., Hasezawa S., Nakajima N., Kondo N. (2000) – Changes in tubulin expression in guard cells of Vicia faba L. accompanied with dynamic organization of microtubules during the diurnal cycle – Plant Cell Physiology 41: 600–607 – https://www.ncbi.nlm.nih.gov/pubmed/10929943 – (On our blog : https://plantstomata.wordpress.com/2018/09/25/changes-in-tubulin-expression-in-stomata/ )

Fulton J. M (1967) – Stomatal aperture and evapotranspiration from field grown potatoes – Can. J. Plant Sci. 47: 109-111 – https://cdnsciencepub.com/doi/pdf/10.4141/cjps67-014 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/95713 )

Funchs E. E., Livingston J. J. (1996) – Hydraulic control of stomatal conductance in Douglars fir (Pseuodotsuga menziesii) and alder (Alnus rubra) seedlings – Plant Cell and Environment 19: 1091-1098 –

Furukawa A. (1992) – Ontogenetic changes in stomatal size and conductance of sunflowers – Ecol. Res. 7: 147-153 – https://doi.org/10.1007/BF02348493https://esj-journals.onlinelibrary.wiley.com/doi/abs/10.1007/BF02348493 – (On our blog : https://plantstomata.wordpress.com/2021/01/03/ontogenetic-changes-in-stomatal-size-and-conductance/ )

Furukawa A. (1997) – Stomatal frequency of Querqus myrsinaefolia
grown under different irradiances – Photosynthetica 34: 195-199 – https://doi.org/10.1023/A:1006884306017https://link.springer.com/article/10.1023/A:1006884306017#citeas – (On our blog : https://plantstomata.wordpress.com/2021/01/03/stomatal-frequency-of-querqus-myrsinaefolia/ )

Furukawa A., Park S.-Y., Fujinuma Y. (1990) – Hybrid poplar stomata unresponsive to changes in environmental conditions – Trees December 4(4): 191-197 – http://link.springer.com/article/10.1007%2FBF00225315 – (On our blog https://plantstomata.wordpress.com/2016/05/24/factors-affecting-stomatal-conductance/ )