Stomata in Syringa

File:Angiosperm Morphology Stomata in Lower Epidermis of Syringa Leaf (36823825206).jpg

Wikimedia Commons Photos (2014)

Berkshire Community College Bioscience Image Library –

The change in leaf size, leaf thickness, stomata density and stomata size among the 1st, 5th and 10th leaves on the main shoots and leaves on the laterals

Investigation of the stomata size and frequency of grapevine (Vitis vinifera L.) cultivar ‘Kékfrankos’

Bodor P., Szekszárdi A., Varga Z., Bálo B. (2019)

Bodor Péter, Szekszárdi Andrea, Varga Zsuzsanna,  Bálo Borbála,



Grapevine (Vitis vinifera L.) leaves show high morphological diversity alongside the shoot. This variability has been investigated in this study to explore the change in leaf size, leaf thickness, stomata density and stomata size among the 1st, 5th and 10th leaves on the main shoots and leaves on the laterals. Results showed that leaf size altered from the basal abaxial leaves to the middle of the shoot, while the laterals had the smallest leaves. Number of stomata also varied significantly regarding the different levels of the canopy. First leaves on the shoots had the least stomata per unit leaf area while this number increased above. In contrast with this the size, i.e. length and width of the stomata did not differ. Leaf thickness was the lowest on the leaves of the lateral shoots, while the values decreased from the 1st to the 10th nodes. These results raised the question about the ontogeny and heteroblasty of the grapevine foliage.

Divergent evolution between stomata and water pores

Study on the laminar hydathodes of Ficus formosana (Moraceae) V.: Divergent evolution between stomata and water pores

Chen C.-C., Chen Y.-R. (2019)

Chyi-Chuann Chen,Yung-Reui Chen,


Taiwania 64(2):149-163 – DOI: 10.6165/tai.2019.64.149


Water pores and stomata play roles in water regulation through guttation and transpiration, respectively. On the Ficus formosana leaves, water pores are present in the hydathodes on the upper surface, whereas stomata are randomly distributed on the abaxial epidermis of non-vein regions. Here, we investigate the development and physiological functions of water pores and stomata from the same leaves and explore their evolutionary relationships. We compare their structures using optical and electron microscope, and establish their functions through physiological experiments. Ficus formosana Maxim. f. shimadae Hayata water pores are almost circular, whereas its stomata are elliptical. Water pores are clustered and occur at a higher density than stomata, with these latter being anomocytic. Our ultrastructural analysis shows that F. formosana f. shimadae water pores contain amyloplasts and have thickened walls around the pores, with many plasmodesmata observed during their development. The chloroplasts of the stomatal guard cells possess typical plant cell grana and thylakoids, and the inner walls around the stomatal space are thickened. The differentiation and developmental processes of water pores and stomata are similar. Stomatal apertures were regulated by light/dark, fusicoccin, ABA, or mannitol treatments, but water pores were not. Our findings indicate that water pores and stomata on the F. formosana f. shimadae leaves evolved divergently.

Stomata in Scrophulariaceae

Figures 1 – 8
1, 2: Juxtaposed type of contiguous stomata in Capraria biflora and Digitalis laciniata
3: Obliquely posed type of contiguous stomata in Phygelius capensis,
: Obliquely posed type of contiguous stomata (Triplet) in Phygelius capensis
: Superposed type of contiguous stomata in Linaria vulgaris,
Stomata with single guard cell in Bacopa monnieri,
Stomata with degenerated guard cell and single guard cell in Pedicularis tubiflora
Heteromorphic stomata (Circular, oval, nearly circular) in Pedicularis pyramidata
Scale bar: 1 – 8: = 15µm

Stomatal abnormalities in the foliar epidermis of some Scrophulariaceae

Lahari P. S., Rao B. H. (2019)

Lahari P. S., Hanumantha Rao B.,

Department of Botany, Andhra University, Visakhapatnam – 530 003


Int. Journ. of Current research 11(05): 3923-3927 –

Figures 9 – 16
Heteromorphic stomata (Giant, large, small) in Calceolaria mexicana,
Heteromorphic stomata (Oval, elliptic, nearly circular), (Giant, large, small) in Scrophularia nodosa
Heteromorphic stomata (Giant, large, small) in Pedicularis pyramidata,
Stomata with polar nodules in Mazus rugosus and Pedicularis tubiflora respectively,
Stomata with polar nodular outgrowths in Bacopa monnieri,
: Stomata with polar caps in Digitalis grandiflora,
: Stomata with polar rods in Centranthera hispida.
Scale bar: 9-16: = 15µm

Leaf stomata and stem lenticels of some stone fruits stocks

Leaf stomata and stem lenticels as a means of identification of some stone fruits stocks

Guirguis N. S., Soubhy I., Khalil M. A., Stino G. R. (1995)

Naguib S. Guirguis, I. Soubhy, M. A. Khalil, George R. Stino,


Acta Hort. 409: 229-240 –

IV International Symposium on Growing Temperate Zone Fruits in the Tropics and in the Subtropics


Number of stomata differ in the lower surface of leaves, the highest number (193) per mm was found in Nemaguard and lowest in Florda 9/3 (87) and Sweet almond (88.6).

Longest stomata were those of Okinawa and Bitter almond while the narrowest were of Okinawa and Nemaguard. However, Sweet almond has the narrowest frequency of lenticels differing considerably. Local apricot has the highest number per cm, while Sweet almond has the lowest.

The shape of the lenticels as a whole is elliptical. Closing layer is oval in all stocks, however, it is nearly circular in Almond.

The only evident difference between the cultivated and wild almonds concerned the leaf area; stomata frequency and size were independent of other characteristics

Stomatal size and frequency in wild (Amygdalus webbii) and cultivated (Amygdalus communis) almonds

Palasciano M., Camposeo S., Godini A. (2005)

Marino Palasciano, Salvatore Camposeo, A. Godini,

Dipartimento di Scienze delle Produzioni VegetaliUniversità degli Studi di Bari, Via Amendola 165/A, 70126 Bari, Italy


Options Mediterraneennes, Serie A 63: 305-310 –


Stomatal size and frequency are features commonly related to plant water stress tolerance. Ingeneral, size and number are negatively correlated and may vary greatly among species and genotypes. The number of stomata per leaf area unit is considered a peculiar characteristic of species and plant varieties.

In order to provide information concerning this topic, a study was carried out on the stomata size and frequency of 15 cultivated almonds (A. communis) and 5 Apulian wild almonds ( A. webbii). The varieties of A. communis were chosen taking into consideration their country of origin (extra Mediterranean/Mediterranean/Apulian), shell hardness (paper/hard) and kernel taste (sweet/bitter).

The only evident difference between the cultivated and wild almonds concerned the leaf area; stomata frequency and size were independent of other characteristics, such as origin, country of origin, shell hardness and kernel taste of the twenty varieties/seedlings investigated.

RESUME – “Taille et fréquence stomatales chez des amandiers sauvages (A. webbii) et cultivés (A. communis)”.La taille et la fréquence stomatales sont des caractères généralement rattachés à la tolérance de la plante auxconditions hydriques adverses. En général, la taille et le nombre sont négativement corrélés et peuvent varierfortement entre espèces et génotypes. Le nombre de stomates par unité de surface foliaire est considéré commeune caractéristique particulière des espèces et des variétés végétales. Afin d’apporter de l’information sur cettequestion, une étude a été entreprise sur la taille et la fréquence stomatales de 15 amandiers cultivés ( A.communis) et de 5 amandiers sauvages des Pouilles ( A. webbii). Les variétés de A. communis ont été choisiesen tenant compte de leur pays d’origine (hors Méditerranée/Méditerranée/Pouilles), de la dureté de leur coque(extrafine/dure) et du goût de leur amandon (doux/amer). La seule différence évidente entre les amandierscultivés et les amandiers sauvages concernait la surface foliaire ; la fréquence et la taille stomatales s’avérantindépendantes d’autres caractéristiques, telles que l’origine, le pays d’origine, la dureté de la coque et le goût del’amandon pour les vingt variétés/porte-graines étudiés.

Stomata in Bignonieae

Leaflet blade epidermis and its taxonomic significance in 13 species of Bignonieae (Bignoniaceae) from Pico do Jabre, Paraíba, northeast of Brazil

Lopes-Silva R. F., Lima e Silva A., Santos E. A. V. dos, Fátima Agra M. de (2020)

Rafael Francisco Lopes-SilvaAnauara Lima e SilvaEdnalva Alves Vital dos SantosMaria de Fátima Agra,


Botany • 9 October 2020 –


Bignonieae is the largest tribe of Bignoniaceae, with 21 genera and 393 species of lianas and shrubs that are 1–3-foliolate with the terminal leaflet modified as tendrils. We examined the micromorphologies of the epidermis from the leaflet blade of 13 species of Bignonieae belonging to AmphilophiumAnemopaegmaBignoniaCuspidariaDolichandraFridericiaPyrostegiaTanaecium, and Xylophragma, from Pico do Jabre, Paraíba, Brazil. These are lianas except for Tanaecium parviflorum (shrub). We sought to identify the epidermal leaflet parameters to support their taxonomy, subject to great similarities between their vegetative characters, mainly in species of the same genus and related genera. Analyses were performed using light and scanning electron microscopy, and showed five types of epicuticular waxes, four cuticle types, three epidermal cell anticlinal wall types, and nonglandular and glandular trichomes. Hypostomatic leaves showed 10 different types of stomata, with stomatal indices from 6.21% (Bignonia ramentacea) to 23.52% (Tanaecium parviflorum), and stomatal densities from 76 stomata/mm2 (Pyrostegia venusta) to 752.9 stomata/mm2 (T. parviflorum). The presence of raphides in Amphilophium crucigerum and styloids in Fridericia pubescens constitute the first records for these genera. Epidermal micromorphology provided a set of distinctive characters with which to separate these species, representing an additional tool to support their taxonomies, as well as that of tribe Bignonieae.


Bignonieae est la plus grande tribu de Bignoniaceae avec 21 genres et 393 espèces de lianes et d’arbustes, 1–3-foliolés avec la foliole terminale modifiée en vrille. Nous avons examiné la micromorphologie des épidermes de folioles de 13 espèces appartenant à AmphilophiumAnemopaegmaBignoniaCuspidariaDolichandraFridericiaPyrostegiaTanaecium et Xylophragma, du Pico do Jabre, Paraíba, Brésil. Ces espèces sont toutes des lianes sauf Tanaecium parviflorum (espèce arbustive). Nous cherchons à identifier les paramètres de l’épiderme foliolaire en soutien à la taxonomie au regard des grandes similitudes des caractères végétatifs, en particulier entre espèces du même genre et genres apparentés. Les analyses ont été effectuées en utilisant la microscopie optique et la microscopie électronique à balayage, et démontrent cinq types de cires épicuticulaires, quatre types de cuticules, trois formes de parois anticlinales de cellules épidermiques et des trichomes non glandulaires et glandulaires. Les feuilles hypostomatiques présentent dix types de stomates, et des indices stomatiques variant de 6,21 % chez Bignonia ramentacea à 23,52 % chez Tanaecium parviflorum et des densités stomatiques variaient de 76 stomates/mm2 chez Pyrostegia venusta à 753 stomates/mm2 chez T. parviflorum. La présence de raphides chez Amphilophium crucigerum et de styloïdes chez Fridericia pubescens font l’objet de premières descriptions de ces types d’idioblastes pour ces genres. La micromorphologie épidermique a fourni un ensemble de caractères distinctifs pour séparer ces taxons et offre un outil additionnel pour soutenir la taxonomie des espèces et de la tribu Bignonieae.

On the laterocytic type of stomatal apparatus in flowering plants

Baranova, M. A.(1983) – (1981 ?)

Botanicheskii Zhurnal (St Petersburg) 66(2): 179-186 (in Russian)

The segregation of the laterocytic type of the stomatal apparatus enables analysis of the stomata of the angiosperms in detail and with more certainty establish the phylogenetic interrelations between different taxa. The stomatal apparatus of 18 spp. belonging to 14 genera of the Hamamelidaceae [Exbucklandia, Tetrathyrium, Mytilaria, Embolanthera, Ostrearia, Matudea, Rhodoleia, Distyliopsis, Eustigma, Fothergilla, Dicoryphe, Distylium, Sycopsis, Altingia] has been studied.

In addition to the anomocytic, paracytic and encyclocytic stomatal types encountered in the Hamamelidaceae (Skvortsova, 1960, 1975) laterocytic stomata are recorded in some genera, notably Dicoryphe and Exbucklandia, for the 1st time. They occur together with paracytic or encyclocytic stomata. The laterocytic stomata are the main stomatotype in Barbeya (Barbeyaceae) and 4 spp. of Balanops (Balanopacae) studied. Laterocytic stomata are found in the leaves of Kadsura and Schisandra (Schisandraceae) alongside the paracytic type.

Stomatal crypts of oleander

Transverse section of oleander leaf (Nerium oleander)

University of Texas (xxxx) – –

Fig. 10.3-10. Transverse section of oleander leaf (Nerium oleander). Oleander leaves are a favorite in plant anatomy laboratories because they demonstrate a placement of stomata that has ecological significance. The arrows indicate three stomatal crypts: the crypts are large chambers in the mesophyll, covered with an epidermis that contains stomata as well as trichomes (hairs) that project into the crypt. The epidermis on the exposed surface of the leaf – between crypts – lacks stomata. The narrow opening between the crypt and the atmosphere, combined with the presence of trichomes, causes the air inside the crypt to be rather immobile, even if there is a strong wind blowing over the leaf. Any water molecule that diffuses out of a stomatal pore will spend so much time that there is a high probability it will diffuse back into one of the stomata in the crypt. See following figures for higher magnifications.

Fig. 10.3-11. Magnification of oleander crypt. The arrows indicate three stomata present in this small portion of the crypt epidermis. In an SEM view, we would see many stomata in the bowl-shaped crypt epidermis. The numerous trichomes prevent the air inside the crypt from being disturbed by wind outside the crypt. Notice that once carbon dioxide enters the crypt and then one of the stomatal pores, it encounters a very open aerenchyma that permits it to diffuse deep into the leaf, away from the stomata. By diffusing deep into the leaf, it is more likely to enter a photosynthetic cell rather than accidentally diffusing back out of the leaf.
Stomatal crypt seen in cross section of a leaf of Nerium oleander – (Clayton Michael W.)
Stomata in stomatal crypt seen in cross section of a leaf of Nerium oleander – (Clayton, Michael W.) –