Anonymous – (x) – Plant cuticles and some of their applications in palaeobotany – – (On our blog :

Baldoni A. M. (1972) – El genero Lepidopteris (Pteridospermae) en el Triasico de Argentina  – Ameghiniana IX (1): 1-16. (On our blog :

Baldoni A. M. (1974) – Revision de las Bennettitales de la formacion baquero (Cretacico inferior), Pcia. de Santa Cruz. II. Bracteas – Ameghiniana XI (4) 328-354 – (On our blog :

Bandulska H. (1923) – A preliminary paper on the cuticular structure of certain Dicotyledonous and Coniferous leaves from the Middle Eocene Flora of Bournemouth – Journ. Linn. Soc. (Bot.) 46: 241-266 – (On our blog :

Bandulska H. (1924) – On the cuticles of some recent and fossil Fagaceae – Journ. Linn. Soc. (Bot.) 46: 427-441 – (On our blog :

Bandulska H. (1924) – On the cuticles of some recent and fossil Myrtaceae – Journ. Linn. Soc. (Bot.) 46: 657-671 – (On our blog :

Bandulska H. (1928) – On the cuticles of some fossil and recent Lauraceae – Journ. Linn. Soc. (Bot.) 47: 383-425 – (On our blog :

Barclay R., McElwain J., Dilcher D., Sageman B. (2007) – The Cuticle Database: developing an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record. – Courier Forschungsinst. Senckenberg 258. 39-55. – The Cuticle Database Project is an internet-accessible database of cuticle images for identification of fossil cuticle material; PaleoCollaborator; Florida Museum; Field Museum; LM pictures and drawings of stomatal complex types; table comparing cuticle and leaf characters controlled predominantly by genetics versus the environment. – – (On our blog :

Barone Lumaga M. R., Coiro M., Truernit E., Erdei B., De Luca P. (2015) – Epidermal micromorphology in Dioon: Did volcanism constrain Dioon evolution? – Botanical Journal of the Linnean Society · August 2015 – DOI: 10.1111/boj.12326 – – (On our blog :

Barone Lumaga M. R., Moretti A., De Luca P. (1999) – Morphological aspects of stomata, cuticle and chloroplast in Ceratozamia kuesteriana Regel (Zamiaceae). –  Plant Biosystems 133: 47–53
Beerling D. J. (1993) Changes in the stomatal density of Betula nana leaves in response to increase in atmospheric carbon dioxide concentration since the late glacial. – Special Papers in Palaeontology 49: 181-187.
Beerling D. J. (1999) Stomatal density and index: theory and application. In: Fossil Plants and Spores: modern techniques. Eds. Jones T. P., Rowe N. P. – The Geological Society, London (1999) –
Beerling D. J., Chaloner W. (1992a) – Stomatal density as an indicator of past atmospheric CO2 concentrations – The Holocene 2: 71-78.
Beerling D. J., Chaloner W. (1993a) – The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur lammas leaves. Annals of Botany 71: 231–235.
Beerling D. J., Chaloner W. (1993) – Stomatal density responses of Egyptian Olea europaea L. leaves to CO2 change since 1327 BC. – Ann Bot 71:431–435 – doi: 10.1006/anbo.1993.1056 – CrossRef – (On our blog)
Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J. (1991) – Tracking stomatal densities through a glacial cycle: their significance for predicting the response of plants to changing atmospheric CO2 concentration. – Global Ecology and Biography Letters 1: 136-142.
Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J. (1993) – Stomatal Density responds to the Glacial Cycle of Environmental Change. – Proceedings Royal Society London: Biological Sciences, 251, 133-138.
( – (On our blog :
Beerling D. J., Chaloner W.G., Huntley, B., Pearson, J.A., Tooley, M. J., Woodward F. I. (1992) – Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and postglacial time. Philosophical Transactions of the Royal Society London B 336: 215–224.
Beerling D. J., McElwain J. C., Osborne C. P. (1998) – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – Journal of Experimental Botany, Vol. 49, No. 326, pp. 1603–1607 – – (On our blog :
Beerling D. J., Royer D. L. (2002) – Reading a CO2 signal from fossil stomata. – New Phytol. 153. 387-397. – Stomatal index. – DOI: 10.1046/j.0028-646X.2001.00335.x – – (On our blog :
Berry E. W. (1933) – The cuticle of an Eocene Combretum – Journ. Washingt. Acad. Sci. 23 (11): 505-508 – (On our blog :
Boulter M. C. (xxxx) – Fine Details of Some Fossil and Recent Conifer Leaf Cuticles – +++++++ – (On our blog :
Boulter M. C. (1970) – Lignified guard cell thickenings in the leaves of some modern and fossil species of Taxodiaceae (Gymnospermae) – Biol. J. Linn. Soc. 2: 41-46.
Cao Z. Y. (1998) – A study on the cuticles of some Bennettitaleans from the lower part of Xiangshan group in Jiangsu and Anhui Provinces. – Acta Palaeon Tologica Sin. 37: 283-294.

Chen L.Q., Cheng-Sen L., Chaloner W. G., Beerling D. J., Sun Q-G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. – Am J Bot 88:1309–1315. – – (On our blog :

Coiro M., Mickle J., Barone Lumaga M. R. (2015) – Epidermal micromorphology and the diversification of the cycads – – (On our blog

Denk T. (2003) – Phylogeny of Fagus L. (Fagaceae) based on morphological data – Plant Syst. Evol. 240: 55–81 (2003) – DOI 10.1007/s00606-003-0018-x – (On our blog :

Dilcher D. L. (1974) – Approaches to the identification of angiosperm leaf remains. – Bot. Rev,. 40:1-157 – (On our blog :

Dilcher D. L., Daghlian C. P. (1977) – Investigations of Angiosperms from the Eocene of Southeastern North America: Philodendron leaf remains – Amer. J. Bot. 64 (5): 526-534 – (On our blog :

Edwards D., Axe L. (1992) – Stomata and mechanics of stomatal functioning in some early land plants.- Cour. Forsch.-Inst. Senckenberg. 147. 59-73. – Early Devonian axes. SEM. – Conference paper.

Edwards D., Kerp H., Hass H. – Stomata in early land plants: an anatomical and ecophysiological approach – J. Exp. Bot. 1998, 49(Suppl 1)255-278. – DOI: 10.1093/jexbot/49.suppl_1.255 – CrossRefWeb of ScienceGoogle Scholar – – (On our blog :

Fischer T. C., Meller B., Kustatscher E., Butzmann R. (2010) – Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L. –  BMC Evol Biol. 2010 Nov 3;10:337. doi: 10.1186/1471-2148-10-337. – Free PMC Article – (On our blog)
Florin R. (1931) – Untersuchungen Zur stammesgeschichte der Coniferales and Corditates.- Kungliga Svenska Vetenskapsakademiens Handlingar Ⅲ, 10(1): 1-588.
Florin R. (1933) – Studien über die Cycadales des Mesozoikums nebst Erörterungen über die Spaltöffnungsapparate der Bennettitales – Kungliga Svenska Vetenskapsakademiens Handlingar 12: 4–134.

Franks P. J., Royer Dana L. (2017) – Comment on “Was atmospheric CO2 capped at 1000ppm over the past 300millionyears?” by McElwain J. C. et al. [Palaeogeography, Palaeoclimatology, Palaeoecology 441 (2016) 653–658] –

Palaeogeography Palaeoclimatology Palaeoecology · January 2017
Froyd, C.A. (2005) – Fossil stomata reveal early Pine presence in Scotland: implications for postglacial colonization analyses – Ecology 86:579–586. –DOI: 10.1890/04-0546 – – (On our blog)
Hansen B. C. S. (1995) – Conifer stomate analysis as a paleoecological tool: an example from the Hudson Bay Lowlands – Canadian Journal of Botany, 1995, 73(2): 244-252, 10.1139/b95-027 –– (On our blog :
Haworth M., McElwain J. (2008) – Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. – Palaeogeography, Palaeoclimatology, Palaeoecology 262: 79–90
Hu J.-J., Xing Y.-W., Turkington R., Jacques F. M. B., Su T., Huang Y.-J.,Zhou Z.-K. (2015) – A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels – Annals of Botany 115: 777-788. – doi: 10.1093/aob/mcv007 – – (On our blog :
Hu Q., Xing Y. W., Hu J. J., Huang Y. J., Ma H. J., Zhou Z. K. (2013) – Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene. Chin Sci Bull, 2013, 58, doi: 10.1007/s11434-013-6005-x –
Jones J. H., Dilcher D. L. (1988) – A study of the “Dryophyllum” leaf forms from the Palaeocene of Southeastern North America – Palaeontographica Abt. B, 208 (4-8),: 53-80 – (On our blog :

Kouwenberg L. L. R. (2004 ) – Application of conifer needles in the reconstruction of Holocene CO2 levels. PhD Thesis. LPP Contributions series 16. LPP Foundation, Utrecht. – – (No abstract).

Kouwenberg L. L. R., Broughton J. D., Tiffney B. H., McElwain J. C. – In revision. Ancient elevation of Northern Sierra Nevada Mountains detected from stomatal analyses of 16 – 23 million year old fossil leaves. – Proceedings of the National Academy of Sciences.

Kouwenberg L. L. R., Kürschner W. M., McElwain J. C. (2007) – Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. – Reviews in Mineralogy and Geochemistry 66, 215-241. – DOI: 10.2138/rmg.2007.66.9 – – (On our blog :

Kouwenberg L. L. R., Kürschner W. M., Visscher H. (2004) – Changes in stomatal frequency and size during elongation of Tsuga heterophylla needles. – Annals of Botany 94, 561-569.

Kouwenberg L. L. R., McElwain J. C., Kürschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H. (2003) – Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. – American Journal of Botany 90, 610-619.

Kouwenberg L. L. R., Wagner F., Kürschner W. M., Visscher H. (2005) – Atmospheric CO2 fluctuations during the last Millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. – Geology 33, 33-36.

Krassilov V. A. (1968) – On classification of stomata – Palaeontol. J. (Moscow), vol. 1, pp. 102-109, 1968. (В. А. Красилов, “О классификации устьиц,” Палеонтол. Ж., № 1, стр. 102-109, 1968).

Krassilov V. A. (1978) – Electron microscopy of stomatal guard cells. – Palaeontol. J. (Moscow), vol. 3, pp. 128-130, 1978a. (В. А. Красилов, “Электронная микроскопия замыкающих клеток устьиц,” Палеонтол. Ж., № 3, стр. 128-130, 1978а).

Krassilov V. A. (1978) – Bennettitalean stomata,” Palaeobotanist, vol. 25, pp. 179-184, 1978b.

Krassilov V. A., Berner A., Barinova S. (2013) – Morphology as clue to developmental regulation: stomata – Plant Vol. 1, No. 3, 2013, pp. 30-44. doi: 10.11648/j.plant.20130103.11 – – (On our blog :

Kürschner W. M. (1996) – Leaf stomata as biosensors of palaeoatmospheric CO2 levels. -PhD thesis,Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 5: 1-153.

Lydon S. (2015) – Living fossils: the plants holding the key to ancient and modern climate change. – The Guardian 2015-12-14 – – (On our blog :

Manchester S. R., Dillhoff R. M. (2004)Fagus (Fagaceae) fruits, foliage, and pollen from the Middle Eocene of Pacific Northwestern North America – Can. J. Bot. 82: 1509–1517 (2004) – doi: 10.1139/B04-112 – (On our blog :

Masterson J. (1994) – Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. – Science 264: 421–424.

McElwain J. C. (1997) – Fossil stomatal parameters as indicators of palaeo-atmospheric CO2 concentration through Phanerozoic time. PhD thesis, University of London.
McElwain J. C. (1997) – Fossil stomatal parameters as indicators of palaeo-atmospheric CO2 concentration through Phanerozoic time. PhD thesis, University of London.

McElwain J. C. (1998) – Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? – Phil.Trans. R. Soc. Lond. B (1998) 353, 83-96 – – (On our blog :

McElwain J. C., Chaloner W. G. (1995) –  Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. – Annals of Botany 76: 389–395. – doi: 10.1006/anbo.1995.1112 – Abstract/FREE Full Text – – (On our blog :

McElwain J. C., Mitchell F. J. G., Jones M. B. (2016) – Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene. – Holocene 5: 216-219.- DOI: 10.1177/095968369500500209 – – (On our blog :

McElwain J. C., Mitchell F. J. G., Jones M. B. (2016) – Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene. – The Holocene 5: 216-219. – Abstract/FREE Full Text – – (On our blog :


McElwain J. C., Steinthorsdottir M. (2017) – Paleoecology, Ploidy, Paleoatmospheric Composition, and Developmental Biology: A Review of the Multiple Uses of Fossil Stomata – 

McElwain J. C. , Yiotis C., Lawson T. (2016) – Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution – New Phytologist 2016 Jan;209(1):94-103. doi: 10.1111/nph. – – (On our blog :

Meyen S. V. (1988) – Origin of the angiosperm gynoecium by gamoheterotopy. – Bot. J. Linn. Soc. 97. 171-8. Gamoheterotopy = the transfer of characters from one sex to another. Transfer of bennettitalean microsporophyll structure to the seed-bearing organ is suggested and origin of angiosperms from Bennettitales postulated. Sahnioxylon has vesselless wood similar to that of some angiosperms; many bennettites have paracytic stomata, although in some bracts not all stomata are paracytic (oldest angiosperms have both paracytic and other types of stomata)

Mickle J. M., Barone Lumaga M. R., Moretti A., De Luca P. (2011) – Scanning electron microscopy studies of cuticle micromorphology in Cycas L. (Cycadaceae). – Plant Biosystems1 45: 191–201.
Ogunkunle A. T. J., Oladele F. A. (2008) – Leaf epidermal studies in some Nigerian species of Ficus L. (Moraceae) – Plant Syst Evol (2008) 274:209–221 – DOI 10.1007/s00606-008-0044-9 – (On our blog :
Papadopoulos S. (1928) – A morphological comparison of leaflets of a hybrid cycad and the two parents. – Botanical Gazette 85: 30–45.
Pérez-Farrera M. A., Vovides A. P., Avendaño S. (2014) – Morphology and leaflet anatomy of the Ceratozamia norstogii (Zamiaceae, Cycadales) species complex in Mexico with comments on relationships and speciation. – International Journal of Plant Sciences 175: 110–121.

Poole I., Kurschner M. (1999) – Stomatal density and index: the practice. – In: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. – The Geological Society, London, 1999; pp. 257–260

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (1996) – Variations in stomatal density and index: implications for palaeoclimatic reconstructions. – Plant, Cell and Environment 19, 705712. – Wiley Online LibraryCrossRef

Renzaglia K. S., Villareal J. C., Piatkowski B. T., Lucas J. R., Merced A. (2017) – Hornwort stomata: Architecture and fate shared with 400 million year old fossil plants without leaves – Plant physiology · April 2017 – DOI: 10.1104/pp.17.00156 – – (On our blog

Royer D. L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Review of Palaeobotany and Palynology 114: 1-28 – – (On our blog :

Rundgren M., Beerling D. (1999) – A holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. The Holocene 9: 509-513.(

Ruszala E. M., Beerling D. J., Franks P. J., Chater C., Casson S. A., Gray J. E., Hetherington A. M. (2011) – Land plants acquired active stomatal control early in their evolutionary history. – Curr Biol 21: 1030–1035


Seyfullah L. J. (2012) – Fossil Focus: Using Plant Fossils to Understand Past Climates and Environments – Palaeontology Volume 2 | Article 7 | Page 1-8 – – (On our blog :

Shi G., Herrera F., Herendeen P., Leslie A., Ichinnorov N., Takahashi M., Crane P. R. (2017) – Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships – Journal of Systematic Palaeontology · January 2017 – DOI: 10.1080/14772019.2016.1274343 – – (On our blog :

Shillito L.-M. (2015) – Microfossil of the month: Plant Stomata – Castles and Coprolites 2015-01-21 – – (On our blog :

Smith R. Y.Greenwood D. R.Basinger J. F. (2010) – Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. – Palaeogeography, Palaeoclimatology, Palaeoecology 2010;293:120131. – – Google Scholar – – (On our blog :

Steinthorsdottir M., Porter A. S., Holohan A., Kunzmann L., Collinson M., McElwain J. C. (2016) – Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary – Clim. Past, 12, 439-454, 2016 – doi:10.5194/cp-12-439-2016 – – (On our blog :

Stidd L. L. O., Stidd B. M. (1976) – Paracytic (Syndetocheilic) Stomata in Carboniferous Seed Ferns – Science 193: 156-157. -DOI:10.1126/science.193.4248.156 – – (On our blog :

Sun T.-X., Edwards D., Li C.-S. (2005) – The stomatal apparatus of Lycopodium japonicum and its bearing on the stomata of the Devonian lycophyte Drepanophycus spinaeformis.- Bot J Linn Soc 149 209–216. – DOI: 10.1111/j.1095-8339.2005.00434.x – – (On our blog :

Sweeney C. A. (2000-2004) – Conifer stomata analysis in Late Quaternary paleoecolgy in Scandinavia – AMAP Project Portal – – (On our blog :

Thompson W. P. (1912) – The Structure of the Stomata of Certain Cretaceous Conifers – Botanical Gazette – Vol. 54, No. 1 (Jul., 1912), pp. 63-67 – (On our blog).

Trautmann W. (1953) – Zur Unterscheidung fossiler Spaltöffnungen den mitteleuropaischen Coniferen.- Flora. 140. 523-33. – Stomata: Pinus, Picea, Taxus, Abies, Larix, Juniperus

Uzunova K., Palamarev E., Ehrendorfer F. (1997) – Anatomical changes and evolutionary trends in the foliar epidermis of extant and fossil Euro-Mediterranean oaks (Fagaceae). – Plant Systematics and Evolution 204, 141–159. – (On our blog :

Van de Water P. K., Leavitt S. W., Betancourt J. L. (1994) – Trends in stomatal density and 13C/12C ratio of Plnus flexilis needles during last glacial-interglacial cycle. – Science 264: 239–243. – Int. J. Adv. Biol. Res. Vol 5 (1) 2015: 23-28.- Abstract/FREE Full  – Text – – (On our blog :

Wagner F. (1998) The influence of environment on the stomatal frequency in Betula. Ph.D. dissertation. Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 9:1–102.

Wagner F., Kouwenberg L. L. R., van Hoof T. B., Visscher H. (2004) – Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. – Quaternary Science Reviews 23, 1947-1954.

Wijninga V. M., Kuhry P. (1993) – Late Pliocene paleoecology of the Guasca Valley (Cordillera Oriental, Colombia). – Rev. Palaeobot. Palynol. 78. 69-127. – SEM- seed, cuticle, leaf, fruit. LM. 63 plant macrofossil types. Stomata, leaf venation.

Woodward F. I. (1987) – Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels – Nature 327: 617-618.

Wooler M. J., Agnew A. D. Q. (2002) – Changes in graminoid stomatal morphology over the last glacial-interglacial transition: evidence from Mount Kenya, East Africa. -Paleogeography, Plaeoclimatology, Plaoecology, vol. 177(1-2), 123-136, 2002. – – – (On our blog :

Zhang K., Zhao Y., Guo X. L. (2011) – Conifer stomata analysis in paleoecological studies on the Loess Plateau: An example from Tianchi Lake, Liupan Mountains – Journal of Arid Environments Volume 75, Issue 11, November 2011, Pages 1209–1213 – – (On our blog :