BIBLIOGRAPHY OF FOSSIL PLANTS

 

 

Ammann B., van der Knaap W. O., Lang G., Gaillard M.-J., Kaltenrieder P., Rösch M., Finsinger W., Wright H. E., Tinner W. (2014) – The potential of stomata analysis in conifers to estimate presence of conifer trees: examples from the Alps – Vegetation History and Archaeobotany 23(3): 249-264 – DOI10.1007/s00334-014-0431-9 – https://www.infona.pl/resource/bwmeta1.element.springer-11d09098-6ac7-3882-9153-74a68b692ec8 – (On our blog : https://plantstomata.wordpress.com/2017/10/14/vegetation-history-and-stomata-records/)

Anonymous – (x) – Plant cuticles and some of their applications in palaeobotany – http://www.uni-muenster.de/GeoPalaeontologie/Palaeo/Palbot/cuticles.htm – (On our blog : https://plantstomata.wordpress.com/2016/05/21/cuticle-and-stomata-in-palaeobotany/)

Aucour A.-M., Gomez B., Sheppard S. M. F., Thévenard F. (2008) – δ13C and stomatal number variability in the Cretaceous conifer Frenelopsis – Palaeogeography, Palaeoclimatology, Palaeoecology  257(4): 462-473 – https://doi.org/10.1016/j.palaeo.2007.10.027 – http://www.sciencedirect.com/science/article/pii/S0031018207005445 – (On our blog : https://plantstomata.wordpress.com/2017/10/03/%CE%B413c-and-stomatal-number-variability-in-the-cretaceous-conifer-frenelopsis/)

 

Baldoni A. M. (1972) – El genero Lepidopteris (Pteridospermae) en el Triasico de Argentina  – Ameghiniana IX (1): 1-16. (On our blog : https://plantstomata.wordpress.com/2017/01/18/stomata-in-the-fossil-lepidopteris-pteridospermae/)

Baldoni A. M. (1974) – Revision de las Bennettitales de la formacion baquero (Cretacico inferior), Pcia. de Santa Cruz. II. Bracteas – Ameghiniana XI (4) 328-354 – (On our blog : https://plantstomata.wordpress.com/2017/05/01/39262/)

Bandulska H. (1923) – A preliminary paper on the cuticular structure of certain Dicotyledonous and Coniferous leaves from the Middle Eocene Flora of Bournemouth – Journ. Linn. Soc. (Bot.) 46: 241-266 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/cuticular-structure-and-stomata-of-fossil-dicotyledonous-and-coniferous-leaves/)

Bandulska H. (1924) – On the cuticles of some recent and fossil Fagaceae – Journ. Linn. Soc. (Bot.) 46: 427-441 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-in-recent-and-fossil-fagaceae-dicots/)

Bandulska H. (1924) – On the cuticles of some recent and fossil Myrtaceae – Journ. Linn. Soc. (Bot.) 46: 657-671 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-in-recent-and-fossil-myrtaceae-dicots/)

Bandulska H. (1928) – On the cuticles of some fossil and recent Lauraceae – Journ. Linn. Soc. (Bot.) 47: 383-425 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/stomata-in-some-fossil-and-recent-lauraceae/)

Barclay R., McElwain J., Dilcher D., Sageman B. (2007) – The Cuticle Database: developing an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record. – Courier Forschungsinst. Senckenberg 258. 39-55. – The Cuticle Database Project is an internet-accessible database of cuticle images for identification of fossil cuticle material; PaleoCollaborator; Florida Museum; Field Museum; LM pictures and drawings of stomatal complex types; table comparing cuticle and leaf characters controlled predominantly by genetics versus the environment. – https://www.scholars.northwestern.edu/en/publications/the-cuticle-database-developing-an-interactive-tool-for-taxonomic – (On our blog : https://plantstomata.wordpress.com/2016/10/20/the-cuticle-database-project-an-internet-accessible-database-of-cuticle-images/)

Barone Lumaga M. R., Coiro M., Truernit E., Erdei B., De Luca P. (2015) – Epidermal micromorphology in Dioon: Did volcanism constrain Dioon evolution? – Botanical Journal of the Linnean Society · August 2015 – DOI: 10.1111/boj.12326 – https://www.researchgate.net/publication/281371639_Epidermal_micromorphology_in_Dioon_Did_volcanism_constrain_Dioon_evolution – (On our blog : https://plantstomata.wordpress.com/2016/12/14/stomata-in-dioon-fossils/)

Barthel M. (1962) – Epidermis Untersuchungen an einigen inkohlter Pteridospermen-blättern des Oberkarbons und Perms – Geologie 11(33): 1-140 – (Article not found)

Beerling D. J. (1993) Changes in the stomatal density of Betula nana leaves in response to increase in atmospheric carbon dioxide concentration since the late glacial. – Special Papers in Palaeontology 49: 181-187. – (Article not found)

Beerling D. J. (1999) Stomatal density and index: theory and application. In: Fossil Plants and Spores: modern techniques. Eds. Jones T. P., Rowe N. P. – The Geological Society, London (1999) – (Article not found)

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J. (1991) – Tracking stomatal densities through a glacial cycle: their significance for predicting the response of plants to changing atmospheric CO2 concentration. – Global Ecology and Biography Letters 1: 136-142 – DOI: 10.2307/2997427 – https://www.jstor.org/stable/2997427?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/14/stomata-for-predicting-the-response-of-plants-to-changing-atmospheric-co2-concentration/)

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J. (1993) – Stomatal Density responds to the Glacial Cycle of Environmental Change. – Proceedings Royal Society London: Biological Sciences, 251, 133-138.
(http://dx.doi.org/10.1098/rspb.1993.0019) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/stomatal-density-and-environmental-change/).

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J., Woodward F. I. (1992) – Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and postglacial time. – Philosophical Transactions of the Royal Society London B 336: 215–224 – https://www.jstor.org/stable/55890?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/14/variations-in-stomatal-density-under-changing-atmospheric-co2-concentrations-of-late-and-postglacial-time/)

Beerling D. J., McElwain J. C., Osborne C. P. (1998) – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – Journal of Experimental Botany, Vol. 49, No. 326, pp. 1603–1607 – http://jxb.oxfordjournals.org/content/49/326/1603.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/stomatal-responses-to-changes-in-atmospheric-co2-concentrations/)

Beerling D. J., Royer D. L. (2002) – Reading a CO2 signal from fossil stomata. – New Phytol. 153. 387-397. – Stomatal index. – DOI: 10.1046/j.0028-646X.2001.00335.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00335.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/22/the-stomatal-approach-to-estimating-high-palaeo-co2-levels/)

Beerling D. J.Woodward I. (1997) – Changes in land plant function over the Phanerozoic: Reconstructions based on the fossil record – Botanical Journal of the Linnean Society 124(2):137 – 153 – https://doi.org/10.1006/bojl.1997.0098 – CrossRefWeb of ScienceGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S002440749790098X – (On our blog : https://plantstomata.wordpress.com/2018/08/01/stomatal-density-record-of-fossil-leaves-spanning-the-past-400-myr-supporting-the-predicted-changes-in-atsmopheric-co2/ )

Berry E. W. (1933) – The cuticle of an Eocene Combretum – Journ. Washingt. Acad. Sci. 23 (11): 505-508 – (On our blog : https://plantstomata.wordpress.com/2017/05/17/stomata-in-fossil-combretum/)

Boulter M. C. (xxxx) – Fine Details of Some Fossil and Recent Conifer Leaf Cuticles – +++++++ – (On our blog : https://plantstomata.wordpress.com/2017/04/22/stomata-in-fossil-and-recent-conifers/)

Boulter M. C. (1970) – Lignified guard cell thickenings in the leaves of some modern and fossil species of Taxodiaceae (Gymnospermae) – Biol. J. Linn. Soc. 2: 41-46 – DOI: 10.1111/j.1095-8312.1970.tb01685.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1970.tb01685.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/14/lignified-guard-cell-thickenings-in-stomata-of-modern-and-fossil-taxodiaceae-gymnospermae/)

Bowman J. L. (2011) – Stomata: Active Portals for Flourishing on Land – Current Biology 21(14): R540-R541 – DOI10.1016/j.cub.2011.06.021 – https://www.infona.pl/resource/bwmeta1.element.elsevier-30ed66d7-875e-3268-bd9f-edf4c55b60da – (On our blog : https://plantstomata.wordpress.com/2017/10/16/early-land-plants-could-actively-control-stomata-2/)

Cao Z. Y. (1998) – A study on the cuticles of some Bennettitaleans from the lower part of Xiangshan group in Jiangsu and Anhui Provinces. – Acta Palaeon Tologica Sin. 37: 283-294 – (Article not found)

Chater C., Kamisugi Y., Movahedi M., Fleming A., Cuming A. C., Gray J. E., Beerling D. J. (2011) – Regulatory Mechanism Controlling Stomatal Behavior Conserved across 400 Million Years of Land Plant Evolution – Current Biology 21(12): 1025-1029 – DOI10.1016/j.cub.2011.04.032 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1e5836e0-d96b-31d2-a897-fe1168ed01c4 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/regulatory-mechanism-controlling-stomatal-behavior-conserved-across-400-million-years/)

Chen L.Q., Cheng-Sen L., Chaloner W. G., Beerling D. J., Sun Q-G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. – Am J Bot 88:1309–1315. – https://core.ac.uk/download/pdf/245608.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/21/the-stomatal-density-and-index-of-fossil-ginkgo-leaves/)

Coiro M., Mickle J., Barone Lumaga M. R. (2015) – Epidermal micromorphology and the diversification of the cycads – https://www.researchgate.net/publication/280446209_Epidermal_micromorphology_and_the_diversification_of_the_cycads – (On our blog https://plantstomata.wordpress.com/2016/12/14/stomata-in-the-cycads/)

David F. (1997) – Holocene tree limit history in the northern French Alps stomata and pollen evidence – Review of Palaeobotany and Palynology 97(3-4): 227-237 – ISSN :0034-6667 – https://www.infona.pl/resource/bwmeta1.element.elsevier-4cc2ec84-1075-3711-8f3f-f6accb544942 – (On our blog : https://plantstomata.wordpress.com/2017/10/14/the-holocene-tree-limit-history-and-stomata-analysis/)

Denk T. (2003) – Phylogeny of Fagus L. (Fagaceae) based on morphological data – Plant Syst. Evol. 240: 55–81 (2003) – DOI 10.1007/s00606-003-0018-x – (On our blog : https://plantstomata.wordpress.com/2017/02/05/stomata-and-the-phylogeny-of-fagus-l-fagaceae/)

Dilcher D. L. (1963) – Cuticular analysis of Eocene leaves of Ocotea obtusifolia – Amer. J. Bot. 50(1): 1-8 – (On our blog : https://plantstomata.wordpress.com/2017/07/03/stomata-in-the-fossil-ocotea-obtusifolia/)

Dilcher D. L. (1974) – Approaches to the identification of angiosperm leaf remains. – Bot. Rev,. 40:1-157 – (On our blog : https://plantstomata.wordpress.com/2017/06/23/41912/)

Dilcher D. L., Daghlian C. P. (1977) – Investigations of Angiosperms from the Eocene of Southeastern North America: Philodendron leaf remains – Amer. J. Bot. 64 (5): 526-534 – (On our blog :https://plantstomata.wordpress.com/2017/06/24/stomata-in-fossil-philodendron/)

Edwards D., Axe L. (1992) – Stomata and mechanics of stomatal functioning in some early land plants.- Cour. Forsch.-Inst. Senckenberg. 147. 59-73. – Early Devonian axes. SEM. – Conference paper. Published in: Schaarschmidt, F. ed. International Symposium on Palaeobotany “Anatomical Investigations of Plant Fossils”: 3rd International Senckenberg Conference Frankfurt am Main 1990. Courier Forschungsinstitut Senckenberg , vol. 147. Stuttgart: Schweizerbart und Borntraeger, pp. 59-73. – (Article not found)

Edwards D., Kerp H., Hass H. – Stomata in early land plants: an anatomical and ecophysiological approach – J. Exp. Bot. 1998, 49(Suppl 1)255-278. – DOI: 10.1093/jexbot/49.suppl_1.255 – CrossRefWeb of ScienceGoogle Scholar – https://www.researchgate.net/publication/230299923_Stomata_in_early_land_plants_An_anatomical_and_ecophysiological_approach – (On our blog : https://plantstomata.wordpress.com/2016/05/19/stomata-in-rhynie-chert/)

Evans-Fitz.Gerald C., Porter A. S., Yiotis C., Elliott-Kingston C., McElwain J. C. (2016) – Co-ordination in Morphological Leaf Traits of Early Diverging Angiosperms Is Maintained Following Exposure to Experimental Palaeo-atmospheric Conditions of Sub-ambient O2 and Elevated CO2. – Frontiers in Plant Science, 7, Article 1368. – PMCID: PMC5023689 – https://doi.org/10.3389/fpls.2016.01368 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023689/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64610)

Fischer T. C., Meller B., Kustatscher E., Butzmann R. (2010) – Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L. –  BMC Evol Biol. 2010 Nov 3;10:337. doi: 10.1186/1471-2148-10-337. – Free PMC Article – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/4381)

Florin R. (1931) – Untersuchungen Zur stammesgeschichte der Coniferales and Corditates.- Kungliga Svenska Vetenskapsakademiens Handlingar Ⅲ, 10(1): 1-588.- (Article not found)

Florin R. (1933) – Studien über die Cycadales des Mesozoikums nebst Erörterungen über die Spaltöffnungsapparate der Bennettitales – Kungliga Svenska Vetenskapsakademiens Handlingar 12: 4–134.

Franks P. J., Adams M. A., Amthor J. S., Barbour M. M., Berry J. A., Ellsworth D. S., Farquhar G. D., Ghannoum O., Lloyd J., McDowell N., Norby R. J., Tissue D. T., von Caemmerer S. (2013) – Sensitivity of plants to changing atmospheric CO2concentration: from the geological past to the next century – New Phytol. 197(4): 1077-1094 – https://doi.org/10.1111/nph.12104 – CrossRefPubMedWeb of ScienceGoogle Scholar – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.12104 – (On our blog : https://plantstomata.wordpress.com/2018/08/01/stomata-and-models-to-develop-a-multi-scale-assessment-of-the-impact-of-changing-ca-on-co2-uptake-and-water-use/ )

Franks P. J., Royer Dana L. (2017) – Comment on “Was atmospheric CO2 capped at 1000ppm over the past 300millionyears?” by McElwain J. C. et al. [Palaeogeography, Palaeoclimatology, Palaeoecology 441 (2016) 653–658] – Palaeogeography Palaeoclimatology Palaeoecology · January 2017 – DOI: 10.1016/j.palaeo.2017.01.015 – https://www.researchgate.net/publication/312482729_Comment_on_Was_atmospheric_CO2_capped_at_1000ppm_over_the_past_300millionyears_by_McElwain_J_C_et_al_Palaeogeography_Palaeoclimatology_Palaeoecology_441_2016_653-658 – (On our blog : https://plantstomata.wordpress.com/2017/01/24/concentration-of-atmospheric-co2-support-for-the-strategy-of-model-implementation-outlined-in-franks-et-al-2014/)

Froyd, C.A. (2005) – Fossil stomata reveal early Pine presence in Scotland: implications for postglacial colonization analyses – Ecology 86:579–586. –DOI: 10.1890/04-0546 – http://www.esajournals.org/doi/abs/10.1890/04-0546 – (On our blog : https://plantstomata.wordpress.com/2016/05/21/fossil-stomata-provide-unambiguous-evidence-of-past-local-presence-for-plant-species/)

Hansen B. C. S. (1995) – Conifer stomate analysis as a paleoecological tool: an example from the Hudson Bay Lowlands – Canadian Journal of Botany, 1995, 73(2): 244-252, 10.1139/b95-027 – http://www.nrcresearchpress.com/doi/abs/10.1139/b95-027– (On our blog : https://plantstomata.wordpress.com/2017/01/06/conifer-stomate-analysis-as-a-paleoecological-tool/)

Harvey W. (1978) – The Maslin Bay flora, South Australia – 4. A cuticular survey of Angiosperm leaves – N. Jb. Geol. Paläont. Abh. 155(3): 360-373 – (On our blog : https://plantstomata.wordpress.com/2017/07/19/stomata-in-fossil-angiosperm-leaves/)

Haworth M., Hesselbo S. P., McElwain J. C., Robinson S. A., Brunt J. W. (2005) – Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae) – Geology 33(9): 749-752 – DOI: https://doi.org/10.1130/G21736.1 – http://www.gsapubs.org/geology/article-abstract/33/9/749/29636/mid-cretaceous-pco2-based-on-stomata-of-the?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/19/atmospheric-pco2-estimated-from-the-ratios-between-stomatal-indices-of-fossil-cuticles-and-those-from-modern-analogs/)

Haworth M., McElwain J. (2008) – Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. – Palaeogeography, Palaeoclimatology, Palaeoecology 262: 79–90 – https://doi.org/10.1016/j.palaeo.2008.02.009 – http://www.sciencedirect.com/science/article/pii/S003101820800117X – (On our blog : https://plantstomata.wordpress.com/2017/09/15/revisiting-the-ecological-significance-of-leaf-and-cuticular-micromorphology-e-g-stomata/)

Hu J.-J., Xing Y.-W., Turkington R., Jacques F. M. B., Su T., Huang Y.-J.,Zhou Z.-K. (2015) – A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels – Annals of Botany 115: 777-788. – doi: 10.1093/aob/mcv007 – http://aob.oxfordjournals.org/content/115/5/777 – (On our blog : https://plantstomata.wordpress.com/2016/10/22/the-variety-of-stomatal-densityindex-relationships-available-for-estimating-pco2/)

Hu Q., Xing Y. W., Hu J. J., Huang Y. J., Ma H. J., Zhou Z. K. (2013) – Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene. Chin Sci Bull, 2013, 58, doi: 10.1007/s11434-013-6005-x – https://link.springer.com/article/10.1007/s11434-013-0038-z – (On our blog : https://plantstomata.wordpress.com/2017/09/15/the-stomatal-density-of-the-quercus-delavayi-complex-may-be-a-useful-proxy-for-reconstruction-of-paleo-co2-concentrations/)

Hu Y.-Q., Mingram J., Stebich M., Li J.-F. (2016) – A key for the identification of conifer stomata from N.E. China based on fluorescence microscopy – Review of Palaeobotany and Palynology 233: 12-21 – DOI10.1016/j.revpalbo.2016.06.005 – https://www.infona.pl/resource/bwmeta1.element.elsevier-42885d03-b511-3452-b5df-0c70cff964d0 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/for-future-stomata-research-fluorescence-microscopy-using-blue-light-excitation-is-strongly-recommended/)

Jones J. H., Dilcher D. L. (1988) – Investigations of Angiosperms from the Eocene of North America: Rhamnus marginatus (Rhamnaceae reexamined – Amer. J. Bot. 67(6): 959-967 – https://www.researchgate.net/profile/David_Dilcher/publication/239278089_Investigations_of_Angiosperms_from_the_Eocene_of_North_America_Rhamnus_marginatus_Rhamnaceae_Reexamined/links/0deec529f3682311b0000000/Investigations-of-Angiosperms-from-the-Eocene-of-North-America-Rhamnus-marginatus-Rhamnaceae-Reexamined.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69776 )

Jones J. H., Dilcher D. L. (1988) – A study of the “Dryophyllum” leaf forms from the Palaeocene of Southeastern North America – Palaeontographica Abt. B, 208 (4-8),: 53-80 – (On our blog : https://plantstomata.wordpress.com/2017/02/05/dryophyllum-leaf-forms-and-stomata/).

Kenrick P. (2017) – How land plant life cycles first evolved – Science 358(6370): 1538-1539 – DOI: 10.1126/science.aan2923 – http://science.sciencemag.org/content/358/6370/1538.full – (On our blog : https://plantstomata.wordpress.com/2017/12/23/how-land-plant-life-cycles-first-evolved/)

Kouwenberg L. L. R. (2004 ) – Application of conifer needles in the reconstruction of Holocene CO2 levels. PhD Thesis. LPP Contributions series 16. LPP Foundation, Utrecht. – https://ib.berkeley.edu/labs/looy/People/lenny.html –

Kouwenberg L. L. R., Broughton J. D., Tiffney B. H., McElwain J. C. – Ancient elevation of Northern Sierra Nevada Mountains detected from stomatal analyses of 16 – 23 million year old fossil leaves. – https://gsa.confex.com/gsa/2007AM/finalprogram/abstract_129307.htm – (On our blog : https://plantstomata.wordpress.com/2017/09/15/stomata-in-fossils-and-mountain-elevation-estimation/)

Kouwenberg L. L. R., Kürschner W. M., McElwain J. C. (2007) – Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. – Reviews in Mineralogy and Geochemistry 66, 215-241. – DOI: 10.2138/rmg.2007.66.9 – http://rimg.geoscienceworld.org/content/66/1/215 – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-frequency-and-altitude-paleoaltimetry/)

Kouwenberg L. L. R., Kürschner W. M., Visscher H. (2004) – Changes in stomatal frequency and size during elongation of Tsuga heterophylla needles. – Annals of Botany 94: 561-569 – https://doi.org/10.1093/aob/mch175 – https://academic.oup.com/aob/article/94/4/561/189674 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/changes-in-stomatal-frequency-and-size-during-elongation-of-needles/)

Kouwenberg L. L. R., McElwain J. C. (    ) – The effect of light intensity and temperature changes on the stomatal and epidermal morphology of Quercus kelloggi: implications for paleoelevation reconstruction – http://www.ucmp.berkeley.edu/science/profiles/lenny_poster1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/06/light-intensity-temperature-and-stomatal-morphology/ )

Kouwenberg L. L. R., McElwain J. C., Kürschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H. (2003) – Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. – American Journal of Botany 90(4): 610-619 – doi: 10.3732/ajb.90.4.610 – http://www.amjbot.org/content/90/4/610.abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/10/stomatal-frequency-adjustment-to-historical-changes-in-atmospheric-co2/)

Kouwenberg L. L. R., Wagner F., Kürschner W. M., Visscher H. (2005) – Atmospheric CO2 fluctuations during the last Millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. – Geology 33, 33-36 – https://doi.org/10.1130/G20941.1 – https://pubs.geoscienceworld.org/gsa/geology/article-abstract/33/1/33/129251/atmospheric-co2-fluctuations-during-the-last?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/10/atmospheric-co2-fluctuations-reconstructed-by-stomatal-frequency-analysis/)

Krassilov V. A. (1968) – On classification of stomata – Palaeontol. J. (Moscow), vol. 1, pp. 102-109, 1968. (В. А. Красилов, “О классификации устьиц,” Палеонтол. Ж., № 1, стр. 102-109, 1968). – (Article not found)

Krassilov V. A. (1978) – Electron microscopy of stomatal guard cells. – Palaeontol. J. (Moscow), vol. 3, pp. 128-130, 1978a. (В. А. Красилов, “Электронная микроскопия замыкающих клеток устьиц,” Палеонтол. Ж., № 3, стр. 128-130, 1978а). – (Article not found)

Krassilov V. A. (1978) – Bennettitalean stomata,” Palaeobotanist, vol. 25, pp. 179-184, 1978b. (Article not found)

Krassilov V. A., Berner A., Barinova S. (2013) – Morphology as clue to developmental regulation: stomata – Plant Vol. 1, No. 3, 2013, pp. 30-44. doi: 10.11648/j.plant.20130103.11 – http://paleobotany.ru/pdf/Krassilov%202013%20-%20Morphology%20as%20Clue%20to%20Developmental.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/27/evolution-of-stomatal-complexes/)

Kunzmann L. (2010) – Geinitzia reichenbachii (Geinitz, 1842) Hollick and Jeffrey, 1909 and Sedites rabenhorstii Geinitz, 1842 (Pinopsida; Late Cretaceous) reconsidered and redescribed – Review of Palaeobotany and Palynology 159(1-2): 123-140 – DOI10.1016/j.revpalbo.2009.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-67b34033-2167-3802-b071-5d94873bbcca – (On our blog : https://plantstomata.wordpress.com/2017/10/09/58993/)

Kürschner W. M. (1996) – Leaf stomata as biosensors of palaeoatmospheric CO2 levels. –PhD thesisLaboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 5: 1-153.

Lacourse T., Beer K. W., Hoffman E. H. (2016) – Identification of conifer stomata in pollen samples from western North America – Review of Palaeobotany and Palynology 232: 140-150 – DOI10.1016/j.revpalbo.2016.05.005 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5fe5c0a0-08b2-36e3-9359-19c33b713a5c – (On our blog : https://plantstomata.wordpress.com/2017/10/14/identification-of-conifer-stomata-in-fossil-pollen-samples/)

Li Y., Popova S., Yao J., Li C. (2014) – A Review on the Taxonomic, Evolutionary and Phytogeographic Studies of the Lotus Plant (Nelumbonaceae: Nelumbo) – Acta Geologica Sinica 88(4) – DOI: 10.1111/1755-6724.12287 – https://www.researchgate.net/publication/265912612_A_Review_on_the_Taxonomic_Evolutionary_and_Phytogeographic_Studies_of_the_Lotus_Plant_Nelumbonaceae_Nelumbo – (On our blog : https://plantstomata.wordpress.com/2018/06/11/the-characters-of-lotus-stomatal-development/ )

Liu X.-Y., Gao Q., Han M., Jin J.-H. (2015) –  The pCO2 estimates of the late Eocene in South China based on stomatal densities of Nageia Gaertner leaves – Clim. Past. Discuss., 11, 2615–2647 – doi:10.5194/cpd-11-2615-2015 – http://adsabs.harvard.edu/abs/2015CliPD..11.2615L – (On our blog : https://plantstomata.wordpress.com/2017/12/10/pco2-estimates-of-the-late-eocene-based-on-stomatal-densities/)

Lockheart M. J., Poole I., Van Bergen P. F., Evershed R. P. (1998) – Leaf carbon isotope compositions and stomatal characters: important considerations for palaeoclimate reconstructions – Organic Geochemistry 29: 1003–1008 –

Lydon S. (2015) – Living fossils: the plants holding the key to ancient and modern climate change. – The Guardian 2015-12-14 – https://www.theguardian.com/science/blog/2015/dec/14/climate-change-plants-key-to-ancient-modern-fossil – (On our blog : https://plantstomata.wordpress.com/2017/01/20/ginkgo-stomata-key-to-ancient-and-modern-climate-change/)

Lydon S. (2018) – How the earliest plants made our world muddy – The Guardian 2018-03-23 – https://www.theguardian.com/science/2018/mar/23/how-the-earliest-plants-made-our-world-muddy – (On our blog : https://plantstomata.wordpress.com/2018/03/23/stomata-in-fossil-land-plants-of-445-million-years-ago/ )

Manchester S. R., Dillhoff R. M. (2004)Fagus (Fagaceae) fruits, foliage, and pollen from the Middle Eocene of Pacific Northwestern North America – Can. J. Bot. 82: 1509–1517 (2004) – doi: 10.1139/B04-112 – (On our blog : https://plantstomata.wordpress.com/2017/02/08/stomata-in-fossil-fagus-fagaceae/)

Masterson J. (1994) – Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. – Science 264: 421–424 – DOI: 10.1126/science.264.5157.421 – http://science.sciencemag.org/content/264/5157/421 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/estimating-the-genome-size-of-extinct-woody-angiosperms-with-the-use-of-fossil-guard-cell-size/)

McElwain J. C. (1997) – Fossil stomatal parameters as indicators of palaeo-atmospheric CO2 concentration through Phanerozoic time. PhD thesis, University of London.

McElwain J. C. (1998) – Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? – Phil.Trans. R. Soc. Lond. B (1998) 353, 83-96 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692169/pdf/YAKVJWBFM62NRFN4_353_83.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/palaeoatmospheric-co2-concentrations-for-the-middle-eocene-lutetian-based-on-the-stomatal-ratios-of-fossil-lauraceae/)

McElwain J. C. (2004) – Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure – Geology 32: 1017–1020 –

McElwain J. C. (2012) – Evolution of stomatal function: New perspectives and application to the fossil record – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/fossils-and-the-evolution-of-stomatal-function/ )

McElwain J. C., Chaloner W. G. (1995) –  Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic – Annals of Botany 76: 389–395 – doi: 10.1006/anbo.1995.1112 – Abstract/FREE Full Text – http://aob.oxfordjournals.org/content/76/4/389.abstract?ijkey=151721401487fcc4d4138061d603f620e4d2a388&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-density-of-fossil-leaves-and-changes-in-atmospheric-co2-concentration-through-geological-time/)

McElwain J. C., Mitchell F. J. G., Jones M. B. (2016) – Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene. – Holocene 5: 216-219.- DOI: 10.1177/095968369500500209 – https://www.researchgate.net/publication/249868813_Relationship_of_Stomatal_density_and_index_of_Salix_cinerea_to_atmospheric_carbon_dioxide_concentrations_in_the_Holocene – (On our blog : https://plantstomata.wordpress.com/2017/02/02/relationship-of-stomatal-density-and-index-to-co2-in-the-holocene-fossils/)

McElwain J. C., Mitchell F. J. G., Jones M. B. (2016) – Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene. – The Holocene 5: 216-219. – Abstract/FREE Full Text – http://journals.sagepub.com/doi/abs/10.1177/095968369500500209 – (On our blog : https://plantstomata.wordpress.com/2017/02/15/stomatal-density-and-index-of-fossils-in-relation-to-co2/)

McElwain J. C., Steinthorsdottir M. (2017) – Paleoecology, Ploidy, Paleoatmospheric Composition, and Developmental Biology: A Review of the Multiple Uses of Fossil Stomata – 

McElwain J. C. , Yiotis C., Lawson T. (2016) – Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution – New Phytologist 2016 Jan;209(1):94-103. doi: 10.1111/nph. – https://www.ncbi.nlm.nih.gov/pubmed/26230251 – (On our blog : https://plantstomata.wordpress.com/2016/10/05/patterns-of-plant-macroevolution-maximum-stomatal-conductance-and-vein-density/)

Menzel P. (1969) – Revision zu originalen strukturbietender Blätter aus der Lausitzer un Niederrheinischen Braunkohle – Geologie 18(1): 77-111 – (On our blog : https://plantstomata.wordpress.com/2017/07/22/stomata-in-originals-of-structure-showing-leaves-in-brown-coal-deposits-in-german/)

Murphy J., McElwain J., Weinstein J. (n.d.) – The story in the stomata. – Understanding Evolution.berkeley.edu. -Fossils & climate change
page 3 of 8 – http://evolution.berkeley.edu/evolibrary/article/mcelwain_03 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64645)

Odell M. E. (1932) – The determination of fossil Angiosperms by the characteristics of their vegetative organs – Ann. Bot. 46: 941-963 – (On our blog : https://plantstomata.wordpress.com/2017/08/09/stomata-in-fossil-angiosperms/)

Ogaya R., Llorens L., Penuelas (2011) – Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime – Acta Oecologica 37: 381-385 – http://www.creaf.uab.es/global-ecology/Pdfs_UEG/2011%20ActaOecol.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/07/leaf-epidermal-cells-of-living-fossil-species-are-more-sensitive-than-stomata-to-a-doubling-of-co2-concentration/ )

Ogunkunle A. T. J., Oladele F. A. (2008) – Leaf epidermal studies in some Nigerian species of Ficus L. (Moraceae) – Plant Syst Evol (2008) 274:209–221 – DOI 10.1007/s00606-008-0044-9 – (On our blog : https://plantstomata.wordpress.com/2017/02/08/stomata-in-ficus-moraceae-2/)

Pennisi E. (2017) – How plants learned to breathe. – Science 335(6330): 1110-1111 – DOI: 10.1126/science.355.6330.1110 – http://science.sciencemag.org/content/355/6330/1110 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/how-plants-learned-to-breathe/)

Poole I., Kurschner M. (1999) – Stomatal density and index: the practice. – In: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. – The Geological Society, London, 257–260 – https://www.researchgate.net/publication/46596820_Stomatal_density_and_index_The_practice – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64659)

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (1996) – Variations in stomatal density and index: implications for palaeoclimatic reconstructions. – Plant, Cell and Environment 19, 705712 – DOI: 10.1111/j.1365-3040.1996.tb00405.x – Wiley Online LibraryCrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00405.x/abstract – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64665)

Renzaglia K. S., Villareal J. C., Piatkowski B. T., Lucas J. R., Merced A. (2017) – Hornwort stomata: Architecture and fate shared with 400 million year old fossil plants without leaves – Plant physiology · April 2017 – DOI: 10.1104/pp.17.00156 – https://www.researchgate.net/publication/316247209_Hornwort_stomata_Architecture_and_fate_shared_with_400_million_year_old_fossil_plants_without_leaves – (On our blog https://plantstomata.wordpress.com/2017/04/28/an-architecture-and-fate-of-stomata-in-hornworts-that-is-ancient-and-common-to-plants-without-sporophytic-leaves/)

Rivera L., Baraza E., Alcover J. A., Bover P., Rovira C. M., Bartolomé J. (2014) – Stomatal density and stomatal index of fossil Buxus from coprolites of extinct Myotragus balearicus Bate (Artiodactyla, Caprinae) as evidence of increased CO2 concentration during the late Holocene. – Holocene 24, 876–880 –  doi: 10.1177/0959683614530445 – CrossRef Full Text | Google Scholar – http://journals.sagepub.com/doi/abs/10.1177/0959683614530445 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/65018)

Roth-Nebelsick A., Grein M., Utescher T., Konrad W. (2012) – Stomatal pore length change in leaves of Eotrigonolanalus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange – Rev. Palaeobot. Palynol. 174: 106–112 – DOI: 10.1016/j.revpalbo.2012.01.001 – https://www.infona.pl/resource/bwmeta1.element.elsevier-ac1d9a03-045f-38fb-b9fb-93cae038d708 – (On our blog : https://plantstomata.wordpress.com/2018/08/01/stomatal-pore-length-change-from-the-late-eocene-to-the-latest-oligocene/ )

Roth-Nebelsick A., Oehm C., Grein M., Utescher T., Kunzmann L., Friedrich J. P., Konrad W. (2014) – Stomatal density and index data of Platanus neptuni leaf fossils and their evaluation as a CO2 proxy for the Oligocene – Rev. Palaeobot. Palynol. – 206: 1– 9 – DOI: 10.1016/j.revpalbo.2014.03.001 – http://www.sciencedirect.com/science/article/pii/S0034666714000359 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomatal-density-and-index-of-a-fossil-platanus/)

Royer D. L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Review of Palaeobotany and Palynology 114: 1-28 – http://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Royer%202001.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/19/stomata-and-paleoatmospheric-co2-concentration/)

Royer D. L. (2003) – Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices, in Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene: Boulder, Colorado, Geological Society of America Special Paper 369, p. 79–93 – doi:10.1130/0-8137-2369-8.79 – http://droyer.web.wesleyan.edu/GSA_Paper.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/02/a-co2-reconstruction-based-on-stomatal-distributions-in-fossil-and-extant-ginkgo-and-metasequoia-cuticles/ )

Rundgren M., Beerling D. (1999) – A holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. – The Holocene 9: 509-513.(http://hol.sagepub.com/content/9/5/509) – http://journals.sagepub.com/doi/10.1191/095968399677717287 – (On our blog : https://plantstomata.wordpress.com/2017/08/05/a-holocene-co2-record-from-the-stomatal-index-of-subfossil-salix-herbacea-l/)

Rundgren M., Björck S. (2003) – Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by highresolution stomatal index data – Earth Planet. Sc. Lett. 213: 191–204 – https://doi.org/10.1016/S0012-821X(03)00324-8 – (On our blog : https://plantstomata.wordpress.com/2018/08/02/highresolution-stomatal-index-data-show-that-atmospheric-co2-may-have-played-an-important-role-in-climate-dynamics-during-the-last-deglaciation/ )

Ruszala E. M., Beerling D. J., Franks P. J., Chater C., Casson S. A., Gray J. E., Hetherington A. M. (2011) – Land plants acquired active stomatal control early in their evolutionary history – Curr Biol 21(12): 1030–1035 – https://doi.org/10.1016/j.cub.2011.04.044 – https://www.sciencedirect.com/science/article/pii/S0960982211004866 – (On our blog : https://plantstomata.wordpress.com/2018/08/14/physiologically-active-stomatal-control-originated-at-least-as-far-back-as-the-emergence-of-the-lycophytes-2/ )

Seyfullah L. J. (2012) – Fossil Focus: Using Plant Fossils to Understand Past Climates and Environments – Palaeontology Volume 2 | Article 7 | Page 1-8 – http://www.palaeontologyonline.com/articles/2012/fossil-focus-plant-fossils/ – (On our blog : https://plantstomata.wordpress.com/2016/11/23/stomata-in-plant-fossils-to-understand-past-climates-and-environments/)

Sharma B. D. (1968) – Investigations on the Jurassic Flora of Rajmahal Hill, India. 5. Epidermal studies of the bracts in two new species of Williamsonia, W. guptai and W. amarjolense – Acta Bot. Acad. Sci. Hungaricae 14(3-4): 373-383 – (On our blog : https://plantstomata.wordpress.com/2017/08/31/stomata-in-the-bracts-of-williamsonia-bennettitalean-fossils/)

Shi G., Herrera F., Herendeen P., Leslie A., Ichinnorov N., Takahashi M., Crane P. R. (2017) – Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships – Journal of Systematic Palaeontology · January 2017 – DOI: 10.1080/14772019.2016.1274343 – https://www.researchgate.net/publication/312870666_Leaves_of_Podozamites_and_Pseudotorellia_from_the_Early_Cretaceous_of_Mongolia_stomatal_patterns_and_implications_for_relationships – (On our blog : https://plantstomata.wordpress.com/2017/02/02/stomatal-patterns-of-podozamites-and-pseudotorellia-fossils/)

Shillito L.-M. (2015) – Microfossil of the month: Plant Stomata – Castles and Coprolites 2015-01-21 –  http://castlesandcoprolites.blogspot.be/2015/01/microfossil-of-month-plant-stomata.html – (On our blog : https://plantstomata.wordpress.com/2016/11/23/stomata-in-fossil-reed/)

Smith R. Y.Greenwood D. R.Basinger J. F. (2010) – Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. – Palaeogeography, Palaeoclimatology, Palaeoecology 2010;293:120131. – http://doi.org/10.1016/j.palaeo.2010.05.006 – Google Scholar – http://www.sciencedirect.com/science/article/pii/S003101821000283X – (On our blog : https://plantstomata.wordpress.com/2017/04/14/paleoatmospheric-pco2-and-stomatal-frequency-of-ginkgo/)

Steinthorsdottir M., Bacon K. L., Popa M. E., Bochner L., McElwain J. C. (2011) – Bennettitalean leaf cuticle fragments (here Anomozamites and Pterophyllum) can be used interchangeably in stomatal frequency-based palaeo-CO2 reconstructions – Palaeontology 54: 867–882 – Bennettitalean_leaf_cuticle_fragments_he.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-frequency-based-palaeo-co2-reconstructions/)

Steinthorsdottir M., Porter A. S., Holohan A., Kunzmann L., Collinson M., McElwain J. C. (2016) – Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary – Clim. Past, 12, 439-454, 2016 – doi:10.5194/cp-12-439-2016 – http://www.clim-past.net/12/439/2016/ – (On our blog : https://plantstomata.wordpress.com/2017/01/20/fossil-plant-stomata-indicate-decreasing-atmospheric-co2/)

Steinthorsdottir M., Vajda V. (2015) – Early Jurassic (late Pliensbachian) CO2 concentrations based on stomatal analysis of fossil conifer leaves from eastern Australia – Gondwana Res, 27: 932–939 –

Steinthorsdottir M., Wohlfarth B., Kylander M., Blaauw M., Reimer P. (2013) – Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions – Quaternary Sci. Rev. 68: 43–58 –

Stidd L. L. O., Stidd B. M. (1976) – Paracytic (Syndetocheilic) Stomata in Carboniferous Seed Ferns – Science 193: 156-157. -DOI:10.1126/science.193.4248.156 – https://www.ncbi.nlm.nih.gov/pubmed/17759253 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/33798/)

Sun B.-N., Ding S.-T., Wu J.-Y., Dong C., Xie S., Lin Z.-C. ( 2012) – Carbon Isotope and Stomatal Data of Late Pliocene Betulaceae Leaves from SW China: Implications for Palaeoatmospheric CO2 -levels – Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), 21: 237–250 – doi:10.3906/yer-1003-42 – http://journals.tubitak.gov.tr/earth/issues/yer-12-21-2/yer-21-2-4-1003-42.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/02/stomatal-data-of-late-pliocene-betulaceae-leaves/ )

Sun B. N., Xiao L., Xie S .P., Deng S. H., Wang Y. D., Jia H, Turner S. (2007) – Quantitative analysis of paleoatmospheric CO2 level based on stomatal characters of fossil Ginkgo from Jurassic to Cretaceous in China – Acta Geologica Sinica 81: 931– 939 –

Sun T.-X., Edwards D., Li C.-S. (2005) – The stomatal apparatus of Lycopodium japonicum and its bearing on the stomata of the Devonian lycophyte Drepanophycus spinaeformis.- Bot J Linn Soc 149 209–216. – DOI: 10.1111/j.1095-8339.2005.00434.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.2005.00434.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/02/stomata-in-lycopodium-lycopsida/)

Sweeney C. A. (2000-2004) – Conifer stomata analysis in Late Quaternary paleoecolgy in Scandinavia – AMAP Project Portal – http://projects.amap.no/project/conifer-stomata-analysis-in-late-quaternary-paleoecolgy-in-scandinavia/ – (On our blog : https://plantstomata.wordpress.com/2017/01/06/project-conifer-stomata-analysis-as-a-tool-for-study-of-fossils/)

Thompson W. P. (1912) – The Structure of the Stomata of Certain Cretaceous Conifers – Botanical Gazette – Vol. 54, No. 1 (Jul., 1912), pp. 63-67 – (On our blog).

Trautmann W. (1953) – Zur Unterscheidung fossiler Spaltöffnungen den mitteleuropaischen Coniferen.- Flora. 140. 523-33. – Stomata: Pinus, Picea, Taxus, Abies, Larix, Juniperus

Uzunova K., Palamarev E., Ehrendorfer F. (1997) – Anatomical changes and evolutionary trends in the foliar epidermis of extant and fossil Euro-Mediterranean oaks (Fagaceae). – Plant Systematics and Evolution 204, 141–159. – (On our blog : https://plantstomata.wordpress.com/2017/02/14/stomata-in-extant-and-fossil-euro-mediterranean-oaks-fagaceae/)

Van de Water P. K., Leavitt S. W., Betancourt J. L. (1994) – Trends in stomatal density and 13C/12C ratio of Plnus flexilis needles during last glacial-interglacial cycle. – Science 264: 239–243. – Int. J. Adv. Biol. Res. Vol 5 (1) 2015: 23-28.- Abstract/FREE Full  – Text – http://science.sciencemag.org/content/264/5156/239?ijkey=3dce4f02b56cc6e9b620cb718a6125df9e63b9d0&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/05/16/stomatal-density-and-13c12c-ratio-during-last-glacial-interglacial-cycle/)

Wagner F. (1998) The influence of environment on the stomatal frequency in Betula. -Ph.D. dissertation. Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 9:1–102.

Wagner F., Kouwenberg L. L. R., van Hoof T. B., Visscher H. (2004) – Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. – Quaternary Science Reviews 23, 1947-1954.

Wijninga V. M., Kuhry P. (1993) – Late Pliocene paleoecology of the Guasca Valley (Cordillera Oriental, Colombia). – Rev. Palaeobot. Palynol. 78. 69-127. – SEM- seed, cuticle, leaf, fruit. LM. 63 plant macrofossil types. Stomata, leaf venation.

Woodward F. I. (1987) – Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels – Nature 327: 617-618 –

Wooler M. J., Agnew A. D. Q. (2002) – Changes in graminoid stomatal morphology over the last glacial-interglacial transition: evidence from Mount Kenya, East Africa. -Paleogeography, Plaeoclimatology, Plaoecology, vol. 177(1-2), 123-136, 2002. – http://dx.doi.org/10.1016/S0031-0182(01)00355-8 – http://www.sciencedirect.com/science/article/pii/S0031018201003558 – (On our blog : https://plantstomata.wordpress.com/2016/11/23/graminoid-stomatal-morphology-over-the-last-glacial-interglacial-transition/)

Yao Z.-Q., Liu L.-J. (2004) – A new gigantopterid plant with cuticles from the Permian of South China – Review of Palaeobotany and Palynology 131(1-2): 29-48 – DOI10.1016/j.revpalbo.2004.02.007 – https://www.infona.pl/resource/bwmeta1.element.elsevier-ecc615d1-981f-3a7d-a16b-9bc9f17e03be – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-in-gigantopteridium-marginervum-fossil/)

Zhang K., Zhao Y., Guo X. L. (2011) – Conifer stomata analysis in paleoecological studies on the Loess Plateau: An example from Tianchi Lake, Liupan Mountains – Journal of Arid Environments Volume 75, Issue 11, November 2011, Pages 1209–1213 – http://www.sciencedirect.com/science/article/pii/S0140196311001406 – (On our blog : https://plantstomata.wordpress.com/2017/01/03/the-analysis-of-fossil-stomata-is-a-valuable-methodological-tool/)

Yu Z. (1997) – Late Quaternary paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada: pollen, stomata and macrofossils – Review of Palaeobotany and Palynology 96(3-4): 241-254 – ISSN :0034-6667 – https://www.infona.pl/resource/bwmeta1.element.elsevier-4687236f-5e44-3d32-a59f-d40bd1e44b98 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/stomata-of-thuja-and-juniperus-cupressaceae/)

 

Advertisements