PHYSIO-BIBLIOGRAPHY M-O

Ma X., Zheng J., Zhang X., Hu Q., Qian R. (2017) – Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System – Frontiers in Plant Science – https://doi.org/10.3389/fpls.2017.00600https://www.frontiersin.org/articles/10.3389/fpls.2017.00600/full – (On our blog : https://plantstomata.wordpress.com/2019/04/10/exogenous-sa-can-effectively-counteract-the-adverse-effect-of-moderate-salt-stress-e-g-the-poorly-developed-stomata/ )

Ma Y.-L., Niu J., Zhang W., Wu X. (2017) – Hydrogen Sulfide May Function Downstream of Hydrogen Peroxide in Mediating Darkness-induced Stomatal Closure in Vicia faba – Functional Plant Biology – https://doi.org/10.1071/FP17274 – http://www.publish.csiro.au/fp/FP17274 – (On our blog :  https://plantstomata.wordpress.com/2017/12/04/h2s-is-involved-in-darkness-induced-stomatal-closure-and-acts-downstream-of-h2o2/ )

Ma Y. L., She X. P., Yang S. S. (2012) – Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H2O2) levels in guard cells in Vicia faba – Science China Life Sciences 55(11): 974-983 – DOI10.1007/s11427-012-4386-8 –https://www.infona.pl/resource/bwmeta1.element.springer-7f5d9a25-3c26-304a-8786-944d63ee107a – (On our blog : https://plantstomata.wordpress.com/2017/10/22/darkness-induced-s1p-synthesis-causing-cytosolic-alkalization-and-subsequent-h2o2-production-finally-leads-to-stomatal-closure/ )

Ma Y., She X., Yang S. (2013) – Cytosolic alkalization-mediated H2O2 and NO production are involved in darkness induced stomatal closure in Vicia faba. – Can. J. Plant Sci. 93, 119–130. – doi: 10.4141/cjps2012-040 – CrossRef | CAS |http://www.nrcresearchpress.com/doi/abs/10.4141/cjps2012-040  – (On our blog :- https://plantstomata.wordpress.com/2016/07/30/h2o2-and-no-production-are-involved-in-darkness-induced-stomatal-closure/ )

MacAlister C. A., Bergmann D. C. (2007)  – Stomatal Patterning – eLS. Edited by Anonymous. John Wiley & Sons, Ltd; 2001. – Encyclopedia of Life Sciences. – DOI: 10.1002/9780470015902.a0020125 – http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0020125/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/05/mechanisms-that-lead-to-pattern-and-cell-fate-acquisition-in-stomata/ )

MacAlister C. A., Bergmann D. C. (2011) – Sequence and function of bHLHs required for stomatal development in Arabidopsis are deeply conserved in land plants – Evolution and Development 13182-192. -10.1111/j.1525-142X.2011.00468.x. – PMID: 21410874 – Publisher Full Text |PubMed Central Full Text) – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139685/?tool=pubmed – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/17011 )

MacAlister C. A., Ohashi-Ito K., Bergmann D. C. (2007) – Transcription factor control of asymmetric cell divisions that establish the stomatal lineage – Nature 445: 537–540 – CrossRefPubMedGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/30/speechless-spch-encoding-a-basic-helix-loop-helix-bhlh-transcription-factor-for-stomatal-lineage/)

Machado E. C., Lagoa A. M. M. A. (1994) – Trocas gasosas e condutância estomatica em três espêcies de gramíneas – Bragantia, Campinas 53: 141–149 – http://dx.doi.org/10.1590/S0006-87051994000200003 – [In Portuguese with English summary] – http://www.scielo.br/pdf/brag/v53n2/03.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/30/gas-exchanges-and-stomatal-conductance/ )

Machado E. C., Medina C. L., Gomes M. M. A., Habermann G. (2002) – Seasonal variation of photosynthetic rates, stomatal conductance and leaf water potential in ‘Valencia’ orange trees – Sci. Agricola 59: 53-58 – http://dx.doi.org/10.1590/S0103-90162002000100007  – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162002000100007 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/seasonal-variation-of-photosynthetic-rates-and-stomatal-conductance/ )

Machida Y., Lin C., Tamanoi F. (2014) – Signaling Pathways in Plants, Volume 35, 1st Edition, eBook ISBN: 9780128020159, Academic Press, 298 pp., in The Enzymes, 2.4 Light-Controlled Stomatal Opening and Development – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stoma – (On our blog : https://plantstomata.wordpress.com/2018/01/07/light-controlled-stomatal-opening-and-development/ )

Macho A. P., Boutrot F., Rathjen J. P., Zipfel, C. (2012) – Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. – Plant Physiol. 159: 1845–1856. – doi: 10.1104/pp.112.199810 – https://www.researchgate.net/publication/228064322_ASPARTATE_OXIDASE_plays_an_important_role_in_Arabidopsis_stomatal_immunity – (On our blog : https://plantstomata.wordpress.com/2016/10/18/stomatal-immunity-and-aspartate-oxidase/ )

Mackowiak C. L., Wheeler R. M. (1996) – Growth and stomatal behavior of hydroponically cultured potato (Solanum tuberosum L.) at elevated and super-elevated CO2 – J. Plant Physiol. 149: 205-210 – https://doi.org/10.1016/S0176-1617(96)80196-9 – https://www.sciencedirect.com/science/article/pii/S0176161796801969 –  (On our blog : https://plantstomata.wordpress.com/2018/11/01/growth-and-stomatal-behavior-at-elevated-and-super-elevated-co2/)

MacRobbie E. A. C. (1980) – Osmotic measurements on stomatal cells of Commelina communis L. – J. Membr. Biol. 53: 189-198. – DOI: 10.1007/BF01868824 –https://www.researchgate.net/publication/246987913_Osmotic_measurements_on_stomatal_cells_of_Commelina_communis_L – (On our blog : https://plantstomata.wordpress.com/2016/11/05/osmotic-measurements-on-stomata/ )

MacRobbie E. A. C. (1981) – Effects of ABA in isolated guard-cells of Commelina communis L. – J Exp Bot 32: 563–572 – https://doi.org/10.1093/jxb/32.3.563 –https://academic.oup.com/jxb/article-abstract/32/3/563/489770?redirectedFrom=PDF – (On our blog :  https://plantstomata.wordpress.com/2018/11/26/effects-of-aba-in-isolated-stomatal-guard-cells/

MacRobbie E. A. C. (1981) – Ionic relations of stomatal guard cells – In : Stomatal Physiology, (Ed. by P. G.Jarvis & T. A.Mansfield), pp. 51–70.- Cambridge University Press. Cambridge) – Google Scholar – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/ion-movements-and-stomata/ )

MacRobbie E. A. C. (1982) -Chloride Transport in Stomatal Guard Cells – Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 299(1097), The Binding and Transport of Anions in Living Tissues (Dec. 1, 1982), pp. 469-481 – https://www.jstor.org/stable/2395789?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/17/chloride-transport-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1983) – Effects of light/dark on cation fluxes in guard cells of Commelina communis L. – J Exp Bot 34: 1695-710 –  http://dx.doi.org/10.1093/jxb/34.12.1695 – https://academic.oup.com/jxb/article-abstract/34/12/1695/599248?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/11/03/effects-of-light-dark-on-cation-fluxes-in-stomata/ )

MacRobbie E. A. C. (1987) – Ionic relations of guard cells. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), pp. 125–162. Stanford University Press, California.

MacRobbie E. A. C. (1988) – Stomatal guard cells. In: Solute transport in plant cells and tissues (Eds. D. A. BAKER and J. I. HALL) pp. 453-497. John Wiley and Sons. Inc ., New York .

MacRobbie E. A. C. (1988) – Control of ion fluxes in stomatal guard cells – Botanica Acta 101: 140-148. – DOI: 10.1111/j.1438-8677.1988.tb00025.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1988.tb00025.x/abstract – (https://plantstomata.wordpress.com/2016/12/01/ion-fluxes-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1990) – Calcium-dependent and calcium-independent events in the initiation of stomatal closure by abscisic acid – Philos. Trans. R. Soc. Lond. B 241, 214–219 – https://www.jstor.org/stable/76663?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/06/calcium-in-the-initiation-of-stomatal-closure-by-aba/ )

MacRobbie E. A. C. (1992) – Calcium and ABA-induced stomatal closure – Philos Trans R Soc Lond Ser B 338: 5–18 – DOI: 10.1098/rstb.1992.0124 – http://rstb.royalsocietypublishing.org/content/338/1283/5 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/calcium-and-aba-induced-stomatal-closure-2/

MacRobbie E. A. C. (1993) – Ca2+ and cell signalling in guard cells – Semin Cell Biol 4:113–122 – http://dx.doi.org/10.1006/scel.1993.1014 – CrossRefMedlineGoogle Scholar – http://www.sciencedirect.com/science/article/pii/S1043468283710147 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-and-cell-signalling-in-stomata/ )

MacRobbie E. A. C. (1995) – ABA-induced ion efflux in stomatal guard cells: multiple actions of ABA inside and outside the cell – Plant J.7: 565–576 – https://doi.org/10.1046/j.1365-313X.1995.7040565.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.7040565.x –  (On our blog : https://plantstomata.wordpress.com/2018/11/01/multiple-actions-of-aba-inside-and-outside-the-stomatal-guard-cells/

MacRobbie E. A. C. (1995) – Effects of ABA on 86Rb+ fluxes at plasmalemma and tonoplast of stomatal guard cells –  Plant J.7: 835–843 – https://doi.org/10.1046/j.1365-313X.1995.07050835.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.07050835.x – (On our blog : https://plantstomata.wordpress.com/2018/11/15/effects-of-aba-on-86rb-fluxes-at-plasmalemma-and-tonoplast-of-stomatal-guard-cells/

MacRobbie E. A. C. (1997) – Signalling in guard cells and regulation of ion channel activity – Journal of Experimental Botany 48: 515–528 –  – doi:  [10.1098/rstb.1998.0303] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692354/ – (On our blog : https://plantstomata.wordpress.com/2018/12/01/signalling-in-stomata-and-regulation-of-ion-channel-activity/ )

MacRobbie E. A. C. (1998) – Signal transduction and ion channels in guard cells. – Philos. Trans. R Soc. Lond. [B], 353: 1475–1488 – doi:  10.1098/rstb.1998.0303 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692354/ – (On our blog : https://plantstomata.wordpress.com/2018/06/01/signal-transduction-and-ion-channels-in-stomata-3/

MacRobbie E. A. C. (2000) – ABA activates multiple Ca(2+) fluxes in stomatal guard cells, triggering vacuolar K(+)(Rb(+)) release – Proc. Natl. Acad. Sci. USA 97: 12361–12368 – DOI: 10.1073/pnas.220417197 –https://www.ncbi.nlm.nih.gov/pubmed/11027317 – (On our blog : https://plantstomata.wordpress.com/2018/12/01/aba-activates-multiple-ca2-fluxes-in-stomata/

MacRobbie E. A. C. (2006) – Osmotic effects on vacuolar ion release in guard cells – Proc. Natl. Acad. Sci. USA 103: 1135–1140 – https://doi.org/10.1073/pnas.0510023103 – https://www.ncbi.nlm.nih.gov/pubmed/16418285 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/osmotic-effects-on-vacuolar-ion-release-in-stomata-2/

MacRobbie E. A. C. (2006) – Control of volume and turgor in stomatal guard cells. – J. Membr. Biol. 210, 131. – doi: 10.1007/s00232-005-0851-7 – https://www.ncbi.nlm.nih.gov/pubmed/16868673 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/volume-and-turgor-of-a-pair-of-stomatal-guard-cells/ )

MacRobbie E. A. C., Kurup S. (2007) – Signaling mechanisms in the regulation of vacuolar ion release in guard cells – New Phytologist 175: 630–640 – https://doi.org/10.1111/j.1469-8137.2007.02131.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2007.02131.x – (On our blog : https://plantstomata.wordpress.com/2018/11/15/signaling-mechanisms-in-the-regulation-of-vacuolar-ion-release-in-stomata/ )

MacRobbie E. A. C., Lettau J. (1980) – Ion content and aperture in “isolated” guard cells of Commelina communis L. – J. Membr. Biol. 53: 199–205 – ttps://doi.org/10.1007/BF01868825 – https://link.springer.com/article/10.1007/BF01868825 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/ion-content-and-aperture-in-isolated-stomata/

MacRobbie E. A. C., Smyth W. D. (2010) – Effects of fusicoccin on ion fluxes in guard cells – New Phytol 186:636-647. – DOI: 10.1111/j.1469-8137.2010.03209.x –https://www.researchgate.net/publication/42344067_Effects_of_fusicoccin_on_ion_fluxes_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2016/10/18/fusicoccins-effect-on-ion-fluxes-in-stomata/ )

Madhavan S., Chrominiski A., Smith B. N. (1983) – Effect of ethylene on stomatal opening in tomato and carnation leaves – Plant Cell Physiol. 24: 569–572 – https://doi.org/10.1093/oxfordjournals.pcp.a076550https://academic.oup.com/pcp/article-abstract/24/3/569/1904722?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/06/01/effect-of-ethylene-on-stomatal-opening/

Maercker U. (1965) – Zur Kenntnis der Transpiration der Schliesszellen – Protoplasma 60: 61–78. – doi:10.1007/BF01248129 –http://link.springer.com/article/10.1007/BF01248129 – https://plantstomata.wordpress.com/2016/10/18/25426/ )

Maherali H., Johnson H. B., Jackson R. B. (2003) – Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland – Plant, Cell and Environment 26: 1297–1306 – https://jacksonlab.stanford.edu/sites/default/files/pce03.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-sensitivity-to-vapour-pressure-difference-over-a-subambient-to-elevated-co2-gradient/ )

Maherali H., Reid C. D., Polley H. W., Johnson H. B., Jackson R. B. (2002) – Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland – Plant, Cell and Environment 25: 557-566 – doi: 10.1046/j.1365-3040.2002.00832.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2002.00832.x – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-acclimation-over-a-subambient-to-elevated-co2-gradient/ )

Maierhofer T., Diekmann M., Offenborn J. N., Lind C., Bauer H., Hashimoto K., Al-Rashied K. A. S., Luan S., Kudla J., Geiger D.,  Rainer Hedrich R. (2014) – Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. – Sci. Signal. 7:ra86. – doi: 10.1126/scisignal.2005703 – http://stke.sciencemag.org/content/7/342/ra86 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/cbl-cipk-complexes-are-potential-regulators-of-stomatal-aperture-through-s-type-anion-channels/ )

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – I. Additional proof of peristomatal transpiration by hydrophotography and a comprehensive discus- sion in the light of recent results – Z. Pflanzenphysiol. 91:25–43. – doi:10.1016/S0044-328X(81)80236-X – http://www.sciencedirect.com/science/article/pii/S0044328X8180236X – (On our blog : https://plantstomata.wordpress.com/2016/09/18/a-mechanistic-model-in-which-peristomatal-transpiration-has-a-central-role/)

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – II. Observation of Stomatal Movements under Different Conditions of Water Supply and Demand – Zeitschrift für Pflanzenphysiologie 91(2): 157-172 – https://doi.org/10.1016/S0044-328X(79)80090-2 – https://www.sciencedirect.com/science/article/pii/S0044328X79800902 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/stomatal-control-by-conditions-of-water-supply-and-peristomatal-transpiration/ )

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – III. Visible Effects of Peristomatal Transpiration on the Epidermis – Zeitschrift für Pflanzenphysiologie 91(3): 225–238 – DOI: 10.1016/S0044-328X(79)80097-5 – https://www.researchgate.net/publication/256915197_Peristomatal_Transpiration_and_Stomatal_Movement_A_Controversial_View_III_Visible_Effects_of_Peri_stomatal_Transpiration_on_the_Epidermis – (On our blog : https://plantstomata.wordpress.com/2018/11/02/each-stomatal-complex-is-an-independent-unit-and-it-acts-according-to-its-own-supply-demand-relationship/)

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – IV. Ion Accumulation by Peristomatal Transpiration – Zeitschrift für Pflanzenphysiologie 91(3): 239-254 – https://doi.org/10.1016/S0044-328X(79)80098-7 – https://www.sciencedirect.com/science/article/pii/S0044328X79800987 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/ion-accumulation-by-peristomatal-transpiration/ )

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – V. Rubidium-86 in the Epidermal Transpiration Stream- Zeitschrift für Pflanzenphysiologie 101(5)): 447-459 – https://doi.org/10.1016/S0044-328X(81)80084-0 – https://www.sciencedirect.com/science/article/pii/S0044328X81800840 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/stomatal-movement-rubidium-86-in-the-epidermal-transpiration-stream/ )

Maier-Maercker U. (1980) – “Peristomatal transpiration” and stomatal movement: a controversial view – VI. Lanthanum deposits in the epidermal apoplast – Z. Pflanzenphysiol. 100: 121-130 – https://doi.org/10.1016/S0044-328X(80)80206-6 –https://www.sciencedirect.com/science/article/pii/S0044328X80802066 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/peristomatal-transpiration-and-stomatal-movement-lanthanum-ions-as-a-tracer-for-ion-movement/

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – VII. Correlation of Stomatal Aperture with Evaporative Demand and Water Uptake Through the Roots – Zeitschrift für Pflanzenphysiologie 102(5)): 397-413 – DOI: 10.1016/S0044-328X(81)80175-4 – https://www.researchgate.net/publication/256915943_Peristomatal_Transpiration_and_Stomatal_Movement_A_Controversial_View_VII_Correlation_of_Stomatal_Aperture_with_Evaporative_Demand_and_Water_Uptake_Through_the_Roots – (On our blog : https://plantstomata.wordpress.com/2018/11/02/peristomatal-transpiration-is-seen-as-the-capacity-of-the-guard-cell-to-determine-the-sensitivity-of-the-hydraulic-system/)

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – VIII.Stomatal Control by Conditions of Water Supply and Peristomatal Transpiration – Zeitschrift für Pflanzenphysiologie 103(1)): 15-25 – https://doi.org/10.1016/S0044-328X(81)80236-Xhttps://www.sciencedirect.com/science/article/pii/S0044328X8180236X – (On our blog : https://plantstomata.wordpress.com/2018/08/15/stomatal-control-by-conditions-of-water-supply-and-peristomatal-transpiration/ )

Maier-Maercker U. (1983) – The role of peristomatal transpiration in the mechanism of stomatal movement – Plant, Cell & Environment 6(5): 369-380 – https://doi.org/10.1111/j.1365-3040.1983.tb01269.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1983.tb01269.x – (On our blog : https://plantstomata.wordpress.com/2016/09/18/peristomatal-transpiration-and-stomatal-movement/)

Maier-Maercker U. (1989) – Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst by fumigation with ozone – Trees 3: 57-64 – https://doi.org/10.1007/BF00202401 – https://link.springer.com/article/10.1007/BF00202401 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/the-significance-of-delignification-for-the-regulatory-capacity-of-the-stomata/ )

Maier-Maercker U., Koch W. (1986) – Delignification of subsidiary and guard cell walls by SOand probable implication on the humidity response of Picea abies (L.) Karst. – European Journal of Forest Pathology 16(5‐6): 342-351 – https://doi.org/10.1111/j.1439-0329.1986.tb00200.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0329.1986.tb00200.x – (On our blog : https://plantstomata.wordpress.com/2018/06/02/delignification-of-cell-walls-in-stomata/ )

Maier-Maercker U., Koch W. (1991) – Experiments on the control capacity of stomata of Picea abies (L.) Karst after fumigation by ozone and in environmentally damaged material – Plant, Cell and Environment 14: 175-184 – https://doi.org/10.1111/j.1365-3040.1991.tb01334.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01334.x – On our blog : https://plantstomata.wordpress.com/2018/06/03/control-capacity-of-stomata/ )

Maier C. A., Teskey R. O. (1992) – Internal and external control of net photosynthesis and stomatal conductance of mature eastern white pine (Pinus strobus) – Canadian Journal of Forest Research 22: 1387–1394 – https://www.srs.fs.usda.gov/pubs/3089 – (On our blog : https://plantstomata.wordpress.com/2018/11/02/internal-and-external-control-of-net-photosynthesis-and-stomatal-conductance/)

Majernik O., Mansfield T. A. (1970) – Effects of SO2 pollution on stomatal movements in Vicia faba – Phytopathologische Zeitschrift 71: 123-128 – https://doi.org/10.1111/j.1439-0434.1971.tb03147.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0434.1971.tb03147.x – (On our blog : https://plantstomata.wordpress.com/2018/06/02/so2-pollution-and-stomatal-movements/ )

Majernik O., Mansfield T. A. (1971) – Direct effect of SO2 pollution on the degree of opening of stomata – Nature 227: 377-378 – https://www.nature.com/articles/227377a0 – (On our blog : https://plantstomata.wordpress.com/2018/06/03/effect-of-so2-pollution-on-opening-of-stomata/ )

Majewska-Sawka A., Münster A., Rodriguez-Garcia M. I. (2002) – Guard cell wall: immunocytochemical detection of polysaccharide components – Journal of Experimental Botany 53(371): 1067–1079 – https://doi.org/10.1093/jexbot/53.371.1067 – https://academic.oup.com/jxb/article/53/371/1067/509295 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/the-histochemical-and-immunocytochemical-structure-of-the-guard-cell-wall-in-stomata-2/ )

Malcheska F., Ahmad A., Batool S., Müller H. M., Ludwig-Müller J., Kreuzwieser J., Randewig D., Hänsch R., Mendel R. R., Hell R., et al. (2017) – Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. – Plant Physiol 174: 798–814 – http://www.plantphysiol.org/content/174/2/798 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/xylem-derived-sulfate-seems-to-be-a-chemical-signal-of-drought-that-induces-stomatal-closure/)

Males J., Griffiths H. (2017) – Stomatal biology of CAM plants. – Plant Physiol 174: 550–560 – http://www.plantphysiol.org/content/174/2/550 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-functional-biology-of-cam-plant-stomata/)

Males J., Griffiths H. (2017) – Specialized stomatal humidity responses underpin ecological diversity in C3 bromeliads – Plant, Cell & Environment, doi: 10.1111/pce.13024. – http://onlinelibrary.wiley.com/doi/10.1111/pce.13024/full – (on our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-humidity-responses-and-ecological-diversity-in-c3-bromeliads )

Malewar A. (2018) – How a hormone helps plants build leaves’ ventilation system – Techexplorist – https://www.techexplorist.com/hormone-helps-plants-build-leaves-ventilation-system/16831/ – (On our blog : https://plantstomata.wordpress.com/2019/04/05/77351/ )

Malone S. R., Mayeux H. S., Johnson H. B., Polley H. W. (1993) – Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient – American Journal of Botany 80: 1413–1418 – DOI: 10.2307/2445670 – https://www.jstor.org/stable/2445670?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/02/stomatal-density-and-aperture-length-across-a-subambient-co2-gradient/

Mansfield T. A. (1967) – Stomatal behavior following treatment with auxin-like substances and phenylmercuric acetate – New Phytol. 66: 325-330 – https://doi.org/10.1111/j.1469-8137.1967.tb06011.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1967.tb06011.x – (On our blog : https://plantstomata.wordpress.com/2019/06/04/stomatal-behavior-following-treatment-with-auxin-like-substances-and-pma/ )

Mansfield T. A. (1973) – The role of stomata in determining the responses of plants to air pollutants – Commentaries in Plant Science 2: 11-20 – (Article not found)

Mansfield T. A. (1976) – Chemical control of stomatal movements – Philosophical Transactions of the Royal Society, London B273: 541-550 – DOI: 10.1098/rstb.1976.0030 – http://rstb.royalsocietypublishing.org/content/273/927/541 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/chemical-control-of-stomatal-movements/ )

Mansfield T. A. (1976) – Delay in the Response of Stomata to Abscisic Acid in CO2-free Air – Journal of Experimental Botany, 27(3): 559–564 – https://doi.org/10.1093/jxb/27.3.559 –https://academic.oup.com/jxb/article-abstract/27/3/559/448782?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/14/delay-in-the-response-of-stomata-to-abscisic-acid-in-co2-free-air/ )

Mansfield T. A. (1983) – Movements of stomata – Science Progress 68(272): 519-542 – https://www.jstor.org/stable/43420581?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/01/11/movements-of-stomata/ )

Mansfield T. A. (1986) – The physiology of stomata: new insights into old problems – In: Steward, F.C. (Ed.). Plant Physiology, a treatise, Vol IX. Academic Press, Orlando, 155-224 –

Mansfield T. A. (1998) – Stomata and plant water relations: does air pollution create problems? – Environmental Pollution 101 (1998) 1-l 1  – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomata-and-plant-water-relations-does-air-pollution-create-problems.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-pollution-and-plant-water-relations/ )

Mansfield T. A., Atkinson C. J. (1990) – Stomatal behavior in water stressed plants. In: Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Alscher RG, Cumming JR (Eds), Wiley‐Liss, New York. pp. 241–264. (Article not found)

Mansfield T. A., Da Silva D. L. R. (1994) – Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves – Physiological Chemistry and  Physics and Medical NMR 26: 89-99 – (Article not found)

Mansfield T. A., Davies W. J. (1985) – Mechanisms for Leaf Control of Gas Exchange –BioScience 35(3): 158-164 – DOI: 10.2307/1309865 – https://www.jstor.org/stable/1309865?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/22/stomata-and-mechanisms-for-leaf-control-of-gas-exchange/ )

Mansfield T. A., Freer-Smith P. H. (1984) – The role of stomata in resistance mechanisms. In: Koziol, M.J., Whatley, F.R. (Eds.). Gaseous air pollutants and plant metabolism. Butterworths, London, pp. 131-146 – (Article not found)

Mansfield T. A., Hetherington A. M., Atkinson C. J. (1990) – Some current aspects of stomatal physiology. – Annu. Rev. Plant Physiol.  – Plant Mol. Biol. 41, 55–75. – doi: 10.1146/annurev.pp.41.060190.000415 – https://www.annualreviews.org/doi/10.1146/annurev.pp.41.060190.000415 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/aspects-of-stomatal-physiology/ )

Mansfield T. A., Majernik O. (1970) – Can stomata play a part in protecting plants against air pollutants? – Environmental Pollution 1970;1:149–154. – doi:10.1016/0013-9327(70)90015-7 – http://www.sciencedirect.com/science/article/pii/0013932770900157 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomata-and-protection-against-air-pollutants/ )

Mansfield T. A., Meidner H. (1966) – Stomatal opening in light of different wavelengths: Effects of blue light independent of CO2 concentration – J. Exp. Bot. 17: 510-521 – https://doi.org/10.1093/jxb/17.3.510 – https://academic.oup.com/jxb/article-abstract/17/3/510/672837?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/11/02/effects-of-blue-light-on-stomatal-opening-independent-of-co2-concentration/

Mansfield T. A., Travis A. J., Jarvis R. G. (1981) – Responses to light and carbon dioxide. In PE Jarvis, TA Mansfield, eds, Stomatal Physiology. Cambridge University Press, London, pp 119-135 – (Article not found) –

Mansfield T. A., Willmer C. M. (1969) – Stomatal responses to light and carbon dioxide in the hart’s-tongue fern, Phyllitis scolopendrium Newm. – New Phytol. 68 : 63-66. – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomata-light-and-co2/ )

Mansouri D., Neila R., Chalh A., Fethi B., El Gazzah M. (2016) – Stomata development variability of ten wheat genotypes under early water stress – Journ. New Sciences_AgriBiotech_Vol_35_05.pdf – (On our blog: https://plantstomata.wordpress.com/2019/07/18/stomata-development-variability-under-early-water-stress/ )

Manzoni S., Vico G., Katul G., Fay P. A., Polley W., Palmroth S., Porporato A. (2011) – Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates – Functional Ecology 25, 456–467. -doi: 10.1111/j.1365-2435.2010.01822.x –Wiley Online Library | https://nicholas.duke.edu/people/faculty/katul/fec_1822_Rev_EV.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/08/31221/ )

Manzoni S., Vico G., Palmroth S., Porporato A. , Katul G. (2013) – Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture – Advances in Water Resources Volume 62, Part A,  90–105 – http://dx.doi.org/10.1016/j.advwatres.2013.09.020http://www.sciencedirect.com/science/article/pii/S0309170813001814 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-conductance-under-dynamic-soil-moisture/ )

Mao A. A., Wetten A. C., Fay M. F., Caligari P. D. S. (2000) – In vitro propagation of Litsea cubeba (Lours.) Pers., a multipurpose tree – Plant Cell Reports 19(3): 263-267 – DOI:10.1007/s002999900099 –https://www.semanticscholar.org/paper/In-vitro-propagation-of-Litsea-cubeba-(Lours.)-a-Mao-Wetten/dcebd854759e2f0d2c66d6f436482d5e90484e72 – (On our blog : https://plantstomata.wordpress.com/2019/04/10/the-effects-of-four-growth-regulators-on-stomata/ )

Mao J., Zhang Y. C., Sang Y., Li Q. H., Yang H. Q. (2005) – A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 102, 12270–12275. – doi: 10.1073/pnas.0501011102 – https://www.researchgate.net/publication/7667688_A_role_for_Arabidopsis_cryptochromes_and_COP1_in_the_regulation_of_stomatal_opening – (On our blog : https://plantstomata.wordpress.com/2018/06/04/cop1-is-a-repressor-of-stomatal-opening-and-likely-acts-downstream-of-cry-and-phot-signaling-pathways/ )

Mao Z.-J., Wang Y.-J., Wang X.-W., Voronin P. Y. (2004) – Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves – Russ J Plant Physiol (2005) 52: 171. https://doi.org/10.1007/s11183-005-0025-6 – https://link.springer.com/article/10.1007/s11183-005-0025-6 – (On our blog : https://plantstomata.wordpress.com/2018/02/05/doubled-co2-concentration-exerts-a-morphotropic-effect-on-differentiation-of-young-epidermal-tissue/ )

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989) – The generation and consolidation of a radial array of cortical microtubules in developing guard cells of Allium cepa L. – Planta 179: 516–529 – DOI: 10.1007/BF00397591 –https://www.researchgate.net/publication/258348454_The_generation_and_consolidation_of_a_radial_array_of_cortical_microtubules_in_developing_guard_cells_of_Allium_cepa_L – (On our blog : https://plantstomata.wordpress.com/2016/10/18/25436/ )

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989) – A planar microtubule-organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules –Planta. 179(4): 530-40. – doi: 10.1007/BF00397592. –https://www.ncbi.nlm.nih.gov/pubmed/24201776 – (On our blog : https://plantstomata.wordpress.com/2016/10/19/experimental-depolymerization-and-reassembly-of-microtubules-in-stomata/ )

Marc J., Palevitz B. A. (1990) – Regulation of the spatial order of cortical microtubules in developing guard cells of Allium – Planta 182: 626–634 – doi:10.1007/BF02341041 –  http://link.springer.com/article/10.1007/BF02341041 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/cortical-microtubules-in-developing-guard-cells/ )

Marchin R. M., Broadhead A. A., Bostic L. E., Dunn R. R., Hoffmann W. A. (2016) – Stomatal acclimation to vapor pressure deficit doubles transpiration of small tree seedlings with warming – Plant Cell Environ. 39: 2221–2234 – doi: 10.1111/pce.12790 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12790 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-acclimation-to-vapor-pressure-deficit-doubles-transpiration/ )

Marcus A., Moore R. C., Cyr R. J. (2001) – The role of microtubules in guard cell function – Plant Physiology 125: 387–395 – PMID: 11154346 PMCID: PMC61019 – https://www.ncbi.nlm.nih.gov/pubmed/11154346 – (On our blog : https://plantstomata.wordpress.com/2018/11/02/microtubules-are-involved-in-an-upstream-event-prior-to-the-ionic-fluxes-leading-to-stomatal-opening/

Marenco R. A., Siebke K., Farquhar G. D., Ball M. C. (2006) – Hydraulically based stomatal oscillations and stomatal patchiness in Gossypium hirsutum – Functional Plant Biology 33: 1103-1113 – 10.1071/FP06115 – http://biology-assets.anu.edu.au/CMS/FileUploads/file/Farquhar/237MarencoPFB2006.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/03/hydraulically-based-stomatal-oscillations-and-stomatal-patchiness/ )

Marias D. (2015) – Accurately measuring cavitation resistance to understand how plants cope with drought – Botany One Jan 10, 2018 – https://www.botany.one/2015/03/accurately-measuring-cavitation-resistance-to-understand-how-plants-cope-with-drought/ – (On our blog : https://plantstomata.wordpress.com/2018/01/10/cavitation-resistance-is-crucial-to-coping-with-and-surviving-drought/ )

Maricle B. R., Koteyeva N. K., Voznesenskaya E. V., Thomasson J. R., Edwards G. E. (2009) – Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae)  – New Phytol. 184(1): 216-233 – https://doi.org/10.1111/j.1469-8137.2009.02903.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2009.02903.x – (On our blog : https://plantstomata.wordpress.com/2018/07/07/stomata-in-salt-marsh-and-freshwater-species-in-the-c4-genus-spartina-poaceae/ )

Marom Z., Shtein I., Bar-On B. (2017) – Stomatal Opening: The Role of Cell-Wall Mechanical Anisotropy and Its Analytical Relations to the Bio-composite Characteristics – Frontiers in Plant Science  8: 2061-  – DOI=10.3389/fpls.2017.02061 – https://www.frontiersin.org/articles/10.3389/fpls.2017.02061/full – (On our blog : https://plantstomata.wordpress.com/2018/01/31/cell-wall-mechanical-anisotropy-and-stomatal-opening/ )

Marques M., Arrabaca J., Chagas I. (2005) – The Mechanism of Guard Cell Movement – Journal of Biological Education 39 (3): 131-135 – https://eric.ed.gov/?id=EJ939430 – (On our blog : https://plantstomata.wordpress.com/2019/04/14/the-mechanism-of-stomatal-guard-cell-movement/ )

Marritz L. (2013) – Video: Stomata Opening and Closing – http://www.deeproot.com/blog/blog-entries/video-stomata-opening-and-closing – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomata-opening-and-closing/

Marten I., Busch H., Raschke K., Hedrich R. (1993) – Modulation and block of the plasma membrane anion channel of guard cells by stilbene derivatives – Eur Biophys J 21:403–408. – Web of ScienceGoogle Scholar –http://cel.webofknowledge.com/InboundService.do?product=CEL&SID=Z2xW27ed8sTOsZMc3ZE&UT=WOS%3AA1993KM49400004&SrcApp=Highwire&action=retrieve&Init=Yes&SrcAuth=Highwire&Func=Frame&customersID=Highwire&IsProductCode=Yes&mode=FullRecord – (On our blog : https://plantstomata.wordpress.com/2016/10/20/stilbene-derivatives-and-the-plasma-membrane-anion-channel-of-stomata/ )

Marten H., Hyun T., Gomi K., Seo S., Hedrich R., Roelfsema M. R. (2008) – Silencing of NtMPK4 impairs CO-induced stomatal closure, activation of anion channels and cytosolic Casignals in Nicotiana tabacum guard cells. – Plant J. 55: 698–708. – doi: 10.1111/j.1365-313X.2008.03542.x – https://www.ncbi.nlm.nih.gov/pubmed/18452588 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/ntmpk4-and-co2-and-darkness-induced-activation-of-guard-cell-anion-channels-in-stomata/ )

Marten H., Konrad K. R., Dietrich P., Roelfsema M. R. G., Hedrich, R. (2007) – Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum – Plant Physiol. 143, 28–37. – doi: 10.1104/pp.106.092643 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – http://www.plantphysiol.org/content/143/1/28.long – (On our blog : https://plantstomata.wordpress.com/2016/10/18/ca2-aba-and-plasma-membrane-anion-channels-in-stomata/ )

Marten I., Lohse G. Hedrich R. (1991) – Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells – Nature 353: 759-762 – DOI:10.1038/353758a – https://www.nature.com/articles/353758a0 – (On our blog : https://plantstomata.wordpress.com/2018/11/03/auxins-can-elicit-stomatal-opening/ )

Marten I., Zeilinger C., Redhead C., Landry D. W., Al-Awqati Q., Hedrich R. (1992) – Identification and modulation of a voltagedependent anion channel in the plasma membrane of guard cells by high-affinity ligands – EMBO J 11: 3569-3575 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556815/ – (On our blog : https://plantstomata.wordpress.com/2016/10/29/a-voltagedependent-anion-channel-in-the-plasma-membrane-of-guard-cells-stomata/ )

Martin C., Glover B.J. (2007) – Functional aspects of cell patterning in aerial epidermis  – Current Opinion in Plant Biology 10: 70–82 – http://dx.doi.org/10.1016/j.pbi.2006.11.004 –http://www.sciencedirect.com/science/article/pii/S1369526606001853 – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-patterning-of-stomata-and-trichomes-in-different-plant-species/ ) – ( https://wordpress.com/post/plantstomata.wordpress.com/26150 ) 

Martin E. S., Donkin M. E., Stevens R. A. (1983) – Stomata. Edward Arnold, London.

Martin L., Jacquet H., Renaud J., Cotelle V., Giacalone C., Vavasseur A., Leonhardt N. (2012) – Guard cell plasma membrane H+- ATPases: highly regulated proton pumps to control gas exchange – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/three-isoforms-of-the-plasma-membrane-h-atpases-in-the-stomatal-movement-regulation/ )

Martin W. J., Stimart D. P. (2005) – Stomatal density in Antirrhinum majus L.: inheritance and trends with development – HortScience 40: 1252–1258 – Google Scholar – http://hortsci.ashspublications.org/content/40/5/1252.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/09/08/stomatal-density-in-antirrhinum-majus-l/ )

Martinez-Vilalta J., Garcia-Forner N. (2016) – Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept – Plant, Cell & Environment – DOI: 10.1111/pce.12846 – Accepted, unedited articles published online and citable. – http://onlinelibrary.wiley.com/doi/10.1111/pce.12846/abstract;jsessionid=412556820134C849930721AF4E74DE29.f02t03 – (On our blog : https://plantstomata.wordpress.com/2016/10/16/stomatal-behaviour-and-hydraulic-transport-under-drought/ )

Martin-StPaul N., Delzon S., Cochard H. (2017) – Plants resistance to drought relies on early stomata closure – BioRxiv – doi: https://doi.org/10.1101/099531 – http://biorxiv.org/content/early/2017/01/10/099531 – (https://plantstomata.wordpress.com/2017/01/13/drought-tolerance-and-stomatal-closure/ )

Martin-StPaul N., Delzon S., Cochard H. (2017) – Plants resistance to drought depends on timely stomatal closure – Ecol Lett, 20: 1437–1447. doi:10.1111/ele.12851 – http://onlinelibrary.wiley.com/doi/10.1111/ele.12851/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/15/the-functional-coordination-between-stomata-and-hydraulic-traits/ )

Martin C. E., Peters E. A. (1984) – Functional stomata of the atmospheric epiphyte Tillandsia usneoides – Bot. Gaz. 145(4): 502-5047 – Martin_BotGaz_145_502-507.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/functional-stomata-in-tillandsia-usneoides/ )

Martins S. C. V., McAdam S. A. M., Deans R. M., DaMatta F. M., Brodribb T. J. (2016) – Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapor fluxes in leaves – Plant, Cell and Environment 39: 694–705 – doi: 10.1111/pce.12668 – http://www.brodribblab.org.au/wp-content/uploads/2016/03/Stomatal-Dynamics1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/03/stomatal-dynamics-are-limited-by-leaf-hydraulics-in-ferns-and-conifers/ )

Maryani M. M., Morse M. V., Bradley G., Irving H. R., Cahill D. M., Gehring C. A. (2003) – In situ localization associates biologically active plant natriuretic peptide immuno-analogues with conductive tissue and stomata – Journal of Experimental Botany, 54(387): 1553-1564 – DOI: 10.1093/jxb/erg174 – In_situ_localization_associates_biologic.pdf (On our blog : https://plantstomata.wordpress.com/2019/02/23/natriuretic-peptide-immuno-analogues-associated-with-conductive-tissue-and-stomata/ )

Masamoto K. Kinoshita T., Shimazaki K. (1993) – Light-induced de-epoxidation of violaxanthin in guard cell protoplasts of Vicia faba – Plant & Cell Physiology 34: 935-938 – https://doi.org/10.1093/oxfordjournals.pcp.a078504https://academic.oup.com/pcp/article-abstract/34/6/935/1907497?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/05/07/light-induced-de-epoxidation-of-violaxanthin-in-stomatal-guard-cell-protoplasts/ )

Masarovicova E. (1991) – Leaf shape, stomata density and photosynthetic rate of the common oak leaves – Biologia Plantarum (Prague) 33(6): 495-500 – DOI10.1007/bf02897727 – https://eurekamag.com/research/002/422/002422412.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/leaf-shape-stomata-density-and-photosynthetic-rate/ )

Mäser P., Leonhardt N., Schroeder J. I. (2003) – The Clickable Guard Cell: Electronically linked Model of Guard Cell Signal Transduction Pathways – Schroeder lab home page  –  – http://labs.biology.ucsd.edu/schroeder/clickablegc.html – http://www.bioone.org/doi/suppl/10.1199/tab.0114?file=10.1199_tab.0099.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/model-of-guard-cell-signal-transduction-pathways-stomata/ )

Masle J. (2012) – From roots to stomata  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/stomata-and-novel-networks-for-concerted-responses-to-stress/ )

Masle J., Gilmore S. R., Farquhar G. D. (2005) – The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. – Nature 436: 866–870. – DOI: 10.1038/nature03835  – https://www.researchgate.net/publication/7737627_The_ERECTA_gene_regulates_plant_transpiration_efficiency_in – (On our blog : https://plantstomata.wordpress.com/2016/10/18/plant-transpiration-ef%EF%AC%81ciency-the-erecta-gene-and-stomata/ )

Massman W. J., Kaufmann M. R. (1991) – Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains – Agric For Meteorol. 54: 155–167 – doi: 10.1016/0168-1923(91)90004-A – https://www.sciencedirect.com/science/article/pii/016819239190004A – (On our blog : https://plantstomata.wordpress.com/2018/11/04/stomatal-response-to-certain-environmental-factors/ )

Massonnet C., Costes E., Rambal S., Dreyer E., Regnard Jean-Luc (2008) – Stomatal Regulation of Photosynthesis in Apple Leaves: Evidence for Different Water-use Strategies between Two Cultivars – Annals of Botany 100(6): 1347-1356 – DOI: 10.1093/aob/mcm222https://www.researchgate.net/publication/5943824_Stomatal_Regulation_of_Photosynthesis_in_Apple_Leaves_Evidence_for_Different_Water-use_Strategies_between_Two_Cultivars – (On our blog : https://plantstomata.wordpress.com/2019/07/17/stomatal-regulation-of-photosynthesis-in-apple-leaves/ )

Matos J. L., Bergmann D. C. (2014) – Convergence of stem cell behaviors and genetic regulation between animals and plants: insights from the Arabidopsis thaliana stomatal lineage – F1000Prime Rep. 2014 Jul 8;6:53. – doi: 10.12703/P6-53. eCollection 2014. Review. – PMID: 25184043 – https://www.ncbi.nlm.nih.gov/pubmed/25184043 – (On our blog : https://plantstomata.wordpress.com/2018/11/04/convergence-of-stem-cell-regulation-at-developmental-and-molecular-levels-genetic-control-of-stomatal-lineage/ )

Matos J. L., Lau O. S., Hachez C., Cruz-Ramírez A., Scheres B., Bergmann D.C. (2014) – Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module – eLife. 2014 3: 1-15  –DOI: 10.7554/eLife.03271 – https://elifesciences.org/articles/03271 – (On our blog : https://plantstomata.wordpress.com/2018/09/19/irreversible-fate-commitment-in-the-arabidopsis-stomatal-lineage-requires-a-fama-and-retinoblastoma-related-module/

Matrosova A. (2015) – New Insights into the Regulation of Stomatal Movements by Red Light, Carbon Dioxide and Circadian Rhythms  – Doctoral Thesis Swedish University of Agricultural Sciences Umeå 2015 – https://pub.epsilon.slu.se/12812/1/matrosova_a_151113.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/18/requirement-of-both-ztl-and-ost1-in-the-regulation-of-guard-cell-turgor-and-suggestion-of-a-direct-link-between-the-circadian-clock-and-ost1-activity/ )

Matsuda S., Takano S., Sato M., Furukawa K., Nagasawa H., Yoshikawa S., Kasuga J., Tokuji Y., Yazaki K. Nakazono M., Takamure I., Kato K. (2016) – Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter RCN1/OsABCG5 – Molecular Plant 9(3):417-427 – DOI: 10.1016/j.molp.2015.12.007 – https://www.ncbi.nlm.nih.gov/pubmed/26708605 – (On our blog : https://plantstomata.wordpress.com/2019/06/13/rcn1-osabcg5-is-involved-in-accumulation-of-aba-in-stomatal-guard-cells/ )

Matsumoto K., Ohta T., Tanaka T. (2005) – Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables – Agricultural and Forest Meteorology 132: 44–57 – https://doi.org/10.1016/j.agrformet.2005.07.001 – https://www.sciencedirect.com/science/article/pii/S0168192305001334 – (On our blog :https://plantstomata.wordpress.com/2018/11/04/stomatal-conductance-leaf-chlorophyll-concentration-and-meteorological-variables/

Matsuo N., Ozawa K., Mochizuki T. (2010) – Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems – Plant and Soil 335(1): 349-361 – DOI: 10.1007/s11104-010-0423-1 – https://www.scopus.com/record/display.uri?eid=2-s2.0-77956874424&origin=inward&txGid=18753fd66f4441b72bab306d3a39df7e – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-conductance-in-rice/ )

Matteoni J. A., Sinclair W. A., (1983) – Stomatal closure in plants infected with mycoplasmalike organisms – Phytopathology 73: 398-402 –https://www.apsnet.org/publications/phytopathology/backissues/Documents/1983Articles/Phyto73n03_398.PDF – (On our blog : https://plantstomata.wordpress.com/2017/11/20/stomata-and-foliar-infections/ )

Matthews J. S. A., Vialet-Chabrand S. R. M., Lawson T. (2017) – Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss – Plant Physiol. 174 (2) 614-623 – DOI: https://doi.org/10.1104/pp.17.00152 – http://www.plantphysiol.org/content/174/2/614 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/integrating-spatial-and-temporal-stomatal-conductance-behavior-to-reflect-the-impact-on-carbon-gain-and-water-use/ )

Matthews J. S. A., Vialet-Chabrand S. R. M., Lawson T. (2018) – Acclimation to Fluctuating Light Impacts the Rapidity of Response and Diurnal Rhythm of Stomatal Conductance – Plant Physiol. 176 (3), 1939-1951 –  DOI: https://doi.org/10.1104/pp.17.01809http://www.plantphysiol.org/content/176/3/1939- (On our blog : https://plantstomata.wordpress.com/2019/01/12/light-and-the-rapidity-of-response-and-diurnal-rhythm-of-stomatal-conductance/ )

Matthews P. G. D., Seymour R. S. (2014) – Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera – Plant, Cell and Environment 37: 402–413 – doi: 10.1111/pce.12163 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/pce.12163 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/a-novel-function-for-stomata-the-active-regulation-of-convective-airflow-2/ )

Matzner S., Comstock J. (2001) – The temperature dependence of shoot hydraulic resistyance implications for stomatal behavior and hydraulic limitation – Plant, Cell & Environm. 24: 1299-1307 – https://doi.org/10.1046/j.0016-8025.2001.00785.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.0016-8025.2001.00785.x – (On our blog : https://plantstomata.wordpress.com/2018/11/04/the-interactive-effects-of-temperature-and-humidity-on-stomatal-conductance/ )

Mawson B. T. (1993) – Modulation of photosynthesis and respiration in guard and mesophyll cell protoplasts by oxygen concentration – Plant, Cell and Environment1993 a;16:207–214. – DOI: 10.1111/j.1365-3040.1993.tb00862.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1993.tb00862.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/photosynthesis-and-respiration-in-guard-and-mesophyll-cell-protoplasts/ )

Mawson B. T. (1993) – Regulation of blue-light-induced proton-pumping by Vicia faba L guard-cell protoplasts—energetic contributions by chloroplastic and mitochondrial activities – Planta 1993b; 191:293–301. – doi:10.1007/BF00195685 –Google Scholar –http://link.springer.com/article/10.1007/BF00195685 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/blue-light-induced-proton-pumping-by-guard-cell-protoplasts/ )

Mawson B. T., Cummins W. R. (1986) – The Kinetics of in Vivo State Transitions in Mesophyll and Guard Cell Chloroplasts Monitored by 77 K Fluorescence Emission Spectra – Plant Physiology – DOI: https://doi.org/10.1104/pp.82.4.873http://www.plantphysiol.org/content/82/4/873.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/the-kinetics-of-in-vivo-state-transitions-in-mesophyll-and-stomatal-guard-cell-chloroplasts/ )

Mawson B. T., Franklin A., Filion W. G., Cummins W. R. (1984) – Comparative studies of fluorescence from mesophyll and guard cell chloroplasts in Saxifraga cernua – Plant Physiology 74: 481-486 – DOI: https://doi.org/10.1104/pp.74.3.481http://www.plantphysiol.org/content/74/3/481 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/fluorescence-from-mesophyll-and-guard-cell-chloroplasts/ )

Mawson B. T., Zeiger E. (1991) – Blue light-modulation of chlorophyll a fluorescence transients in guard cell chloroplasts – Plant Physiol. 96: 753–760 – DOI: https://doi.org/10.1104/pp.96.3.753 – http://www.plantphysiol.org/content/96/3/753 – (On our blog : https://plantstomata.wordpress.com/2018/11/04/blue-light-modulates-photosynthetic-activity-in-stomatal-chloroplasts/ )

Maynard J. C., Mertz S. M. Jr., Arntzen C. J., Payne W. W. (1974) – Abnormal Guard Cell Development in an Olive Necrotic Mutant of Maize – American Journal of Botany 61(6): 580-584  – CrossRefGoogle Scholar – https://www.jstor.org/stable/2441680?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/17/ontogeny-of-the-stomatal-complex-is-abnormal-in-a-mutant-variety-of-zea-mays/ )

McAdam E. L., Brodribb T. J., McAdam S.A.M. (2017) – Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close? – Plant, Cell and Environment 40, 741–747 – doi: 10.1111/pce.12893 – http://www.brodribblab.org.au/wp-content/uploads/2017/05/Does-ozone-increase-ABA-levels-by-non%E2%80%90enzymatic-synthesis-causing-stomata-to-close.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/ozone-exposure-aba-and-stomatal-closure/ )

McAdam S. A. M. (2012) – Evolutionary innovations in the stomatal control of vascular plants – PhD Thesis University of Tasmania – https://eprints.utas.edu.au/16733/2/whole-McAdams-thesis-ex-pub-mat.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/14/evolutionary-innovations-in-the-stomatal-control/ )

McAdam S. A. M., Brodribb T. J. (2011) – Passive origins of stomatal control in vascular plants – Science 331: 582–585 – DOI: 10.1126/science.1197985 – [Google Scholar] [CrossRef] [PubMed] – http://science.sciencemag.org/content/331/6017/582 –  (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-and-a-fundamental-transition-from-passive-to-active-metabolic-control-of-plant-water-balance/ )

McAdam S. A. M., Brodribb T. J. (2012) – Stomatal innovation and the rise of seed plants. Ecol. Lett. 15: 1–8 – https://doi.org/10.1111/j.1461-0248.2011.01700.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2011.01700.x – (On our blog : https://plantstomata.wordpress.com/2018/10/08/stomatal-innovation-and-the-rise-of-seed-plants/ )

McAdam S. A. M., Brodribb T. J. (2012) – Fern and lycophyte guard cells do not respond to abscisic acid – The Plant Cell 24: 1510-1521 – doi:  10.1105/tpc.112.096404 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398560/ – (On our blog : https://plantstomata.wordpress.com/2018/06/04/aba-in-ferns-and-lycophytes-plays-little-role-in-the-regulation-of-transpiration-with-stomata-passively-responsive-to-leaf-water-potential/ ) –  (This paper comprises the entirety of chapter 3 of Scott McAdam’s PhD Thesis. Scott McAdam was the primary author (70%), Timothy Brodribb assisted with the conceptualisation and technical implementation of the study, as well as assisting with the writing of the manuscript (30%).)

McAdam S. A. M., Brodribb T. J. (2013) – Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought – New Phytol. 198(2): 429-441 – DOI: 10.1111/nph.12190 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12190/full – (On our blog : https://plantstomata.wordpress.com/2018/03/16/ferns-and-lycophytes-have-constrained-stomatal-responses-to-soil-and-atmospheric-water-deficit/ )

McAdam S.A.M., Brodribb T. J. (2014) – Separating active and passive influences on stomatal control of transpiration – Plant Physiol 164: 1578-1586 – DOI: https://doi.org/10.1104/pp.113.231944http://www.plantphysiol.org/content/164/4/1578 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-importance-of-considering-phylogeny-as-a-major-determinant-of-stomatal-behavior/ )

McAdam S.A.M., Brodribb T. J. (2015) – Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community – Plant, Cell & Environment Volume 38, Issue 3, March 2015, Pages: 423–432. – doi: 10.1111/pce.12398. Epub 2014 Aug 6. – PMID: 24995884. – https://www.ncbi.nlm.nih.gov/pubmed/24995884 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/seasonal-stomatal-behaviour-in-a-monsoonal-plant-community/ )

McAdam S.A.M., Brodribb T. J. (2015) – The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit – Plant Physiol. 167(3): 833–843 – doi:  10.1104/pp.114.252940 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348763/ – (On our blog : https://plantstomata.wordpress.com/2018/05/28/mechanisms-driving-the-stomatal-response-to-vapor-pressure-deficit/ )

McAdam S. A. M., Brodribb T. J. (2016) – Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants – Plant Physiol 171: 2008–2016 – DOI:10.1104/pp.16.00380 – http://www.brodribblab.org.au/wp-content/uploads/2016/08/Linking-turgor.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/08/a-new-tool-for-characterizing-the-response-of-stomata-to-water-availability/ )

McAdam S. A. M., Brodribb T. J., Ross J. J., Jordan G. J. (2011) – Augmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species – Journal of Experimental Botany 62(1): 195-203 – doi: 10.1093/jxb/erq260. Epub 2010 Aug 25 – https://www.ncbi.nlm.nih.gov/pubmed/20797996 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/increase-of-aba-levels-by-drought-does-not-induce-short-term-stomatal-sensitivity-to-co2/(This paper comprises the entirety of chapter 4 of Scott McAdam’s PhD Thesis. Scott McAdam was the primary author (70%), Timothy Brodribb, John Ross and Gregory Jordan assisted with the conceptualisation of the study, as well assisting with the writing of the manuscript (combined 30%))

McAdam S. A. M., Sussmilch F. C., Brodribb T. J. (2016) – Stomatal responses to vapour pressure deficit are regulated by high speed gene
expression in angiosperms – Plant Cell Environ 39: 485-491 – https://doi.org/10.1111/pce.12633https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12633 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/rapid-de-novo-biosynthesis-of-aba-mediated-by-a-single-gene-as-the-means-by-which-angiosperm-stomata-respond-to-natural-changes-in-vpd/ )

McAinsh M. R. (2000) – Calcium signalling in stomatal guard cells – Biochemical Society Transactions 28(3): A57 – http://www.research.lancs.ac.uk/portal/en/publications/-(84e1d9a4-9d2f-45db-b9f5-646a46ba8530).html – (On our blog : https://plantstomata.wordpress.com/2018/01/17/calcium-signalling-in-stomatal-guard-cells/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Abscisic acid- induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. – Nature 343: 186–188. – doi: 10.1038/343186a0 – http://www.research.lancs.ac.uk/portal/en/publications/abscisic-acidinduced-elevation-of-guard-cell-cytosolic-ca2-precedes-stomatal-closure(36cb6e8c-e5e8-43ee-ae9b-0dea3cbb78e7)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-induces-a-rapid-increase-in-guard-cell-cytosolic-free-ca2-this-increase-precedes-stomatal-closure/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1991) – Partial inhibition of ABA-induced stomatal closure by calcium channel blockers. – Proc. R. Soc. B Biol. Sci. 243, 195–201. – doi: 10.1098/rspb.1991.0031 – CrossRef Full Text | Google Scholar –http://rspb.royalsocietypublishing.org/content/243/1308/195 – https://plantstomata.wordpress.com/2016/11/04/calcium-channel-blockers-aba-and-stomatal-closure/ )

McAinsh M. R, Brownlee C., Hetherington A. M. (1992) – Visualizing changes in cytoplasmic free Ca2+during the response of stomatal guard cells to abscisic acid – Plant Cell, 4, 1113–1122. – doi: http://dx.doi.org/10.1105/tpc.4.9.1113 – CrossRef |PubMed | –http://www.plantcell.org/content/4/9/1113.abstract – (On our blog : Plant Cell, 4, 1113–1122. – doi: http://dx.doi.org/10.1105/tpc.4.9.1113 – CrossRef |PubMed | –http://www.plantcell.org/content/4/9/1113.abstract – https://plantstomata.wordpress.com/2016/11/05/aba-induced-turgor-loss-in-guard-cells-is-a-ca2-dependent-process/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1997) – Calcium ions as second messengers in guard cell signal transduction – Plant Physiology 1997;100:16-29. – DOI: 10.1111/j.1399-3054.1997.tb03451.x – Wiley Online Library |CrossRefGoogle Scholar – CrossRef |PubMed |CAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03451.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-role-of-ca2-based-signal-transduction-in-stomatal-guard-cells/ )

McAinsh M. R., Clayton H., Mansfield T. A., Hetheringto, A. M. (1996) – Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. – Plant Physiol. 111, 1031–1042. – Plant Physiology 111: 1031–1042.  – PubMedCASWeb of Science – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12226345 – (On our blog : https://plantstomata.wordpress.com/2016/11/10/stomatal-behavior-in-oxidative-stress/ )

McAinsh M. R., Evans N. H., Montgomery L. T., North K. A. (2002) –  Calcium signalling in stomatal responses to pollutants – New Phytologist 153: 441-447 – DOI: 10.1046/j.0028-646X.2001.00336.x – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1046/j.0028-646X.2001.00336.x – (On our blog : https://plantstomata.wordpress.com/2018/11/15/the-effects-of-air-pollutants-on-stomatal-responses-and-their-possible-effects-on-ca2-based-signalling/ )

McAinsh M. R., Gray J. E., Hetherington A. M., Leckie C. P., Ng C. (2000) – Ca2+ signalling in stomatal guard cells – Biochemical Society Transactions 28: 476–481 – DOI: 10.1042/0300-5127:0280476  – http://eprints.lancs.ac.uk/8975/ – (On our blog : https://plantstomata.wordpress.com/2018/11/15/ca2-signalling-in-stomatal-guard-cells/ )

McAinsh M. R., Hetherington A. M. (1998) – Encoding specificity in Ca2+ signalling systems – Trends in Plant Science 3(1): 32-36 – DOI:https://doi.org/10.1016/S1360-1385(97)01150-3 –https://www.cell.com/trends/plant-science/pdf/S1360-1385(97)01150-3.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138597011503%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/04/15/stomata-and-specificity-in-ca2-signalling-systems/ )

McAinsh M. R., Webb A. A. R., Taylor J. E., Hetherington A. M. (1995) – Stimulus-induced oscillations in guard-cell cytosolic-free calcium – Plant Cell 7: 1207–1219 – doi: http://dx.doi.org/10.1105/tpc.7.8.1207 – CrossRef |PubMed |CAS | –http://www.plantcell.org/content/7/8/1207 – (On our blog : https://plantstomata.wordpress.com/2017/01/09/oscillations-in-guard-cell-cytosolic-free-calcium/ )

McAusland L., Dumbrell A., Baker N. R., Lawson T. (2012) – Fluctuations in stomatal behaviour: impacts on carbon gain and water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/fluctuations-in-stomatal-behaviour/ )

McAusland L., Vialet-Chabrand S., Davey P., Baker N. R., Brendel O., Lawson T. (2016) – Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency – New Phytologist 211: 1209–1220 – 1: 1209–1220 – doi: 10.1111/nph.14000 – https://pdfs.semanticscholar.org/baeb/07fb05f712449be52e32b88395ee44281ceb.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/05/variation-in-the-rapidity-of-stomatal-responses-amongst-species-providing-a-novel-target-for-improving-photosynthesis-and-water-use/ )

McAusland L., Vialet-Chabrand S. R. M., Matthews J. S. A., Lawson T. (2015) – Spatial and temporal responses in stomatal behaviour, photosynthesis and implications for water-use efficiency – Book: Rhythms in plants: 97-119 – Springer, Cham – https://scholar.google.com/citations?user=QPMz_d8AAAAJ&hl=en#d=gs_md_cita-d&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Den%26user%3DQPMz_d8AAAAJ%26citation_for_view%3DQPMz_d8AAAAJ%3ATyk-4Ss8FVUC%26tzom%3D-60 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/spatial-and-temporal-responses-in-stomatal-behaviour/ )

McCaughey J. H., Iacobelli A. (1993) – Modelling stomatal conductance in a northern deciduous forest, Chalk River, Ontario – Can J For Res 24: 904–910 – https://doi.org/10.1139/x94-119 – http://www.nrcresearchpress.com/doi/abs/10.1139/x94-119?journalCode=cjfr – (On our blog : https://plantstomata.wordpress.com/2018/11/05/modelling-stomatal-conductance-2/ )

McCormick S. (2017) – A 3-dimensional biomechanical model of guard cell mechanics – The Plant Journal 92(1): 3-4 – DOI: 10.1111/tpj.13665 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13665/abstract;jsessionid=BE068827E2606E5DB2C82F356C97941D.f02t04 – https://www.sciencedaily.com/releases/2017/09/170921101743.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/13/an-unexpected-stiffening-in-the-guard-cell-end-regions-preventing-stomata-increasing-in-length-as-they-open/ )

McCree K. J. (1974) – Changes in stomatal response characteristics of grain sorghum produced by water stress during growth – Crop Sci. 1974;14:273–278. – doi:10.2135/cropsci1974.0011183X001400020032x –https://dl.sciencesocieties.org/publications/cs/abstracts/14/2/CS0140020273?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-response-characteristics-in-water-stress-conditions/ )

McDonald R., Liu B., Joshi M., Palevitz B. A. (1993) – γ-Tubulin is associated with a cortical-microtubule-organizing zone in the developing guard cells of Allium cepa L. Planta 191: 357–361 – https://doi.org/10.1007/BF00195693 – https://link.springer.com/article/10.1007/BF00195693#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/05/%ce%b3-tubulin-is-associated-with-a-cortical-microtubule-organizing-zone-in-developing-stomata/ )

McElwain J. C. (2004) – Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure – Geology 32: 1017–1020 – https://doi.org/10.1130/G20915.1 – https://pubs.geoscienceworld.org/gsa/geology/article-abstract/32/12/1017/29359/climate-independent-paleoaltimetry-using-stomatal?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-density-in-fossil-leaves-as-a-proxy-for-co2-partial-pressure/ )

McElwain J. C. (2005) – Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure: Comment and Reply: REPLY – Geology 33(1): e83 – https://doi.org/10.1130/0091-7613-33.1.e83 – https://pubs.geoscienceworld.org/gsa/geology/article/33/1/e83/129341/climate-independent-paleoaltimetry-using-stomatal – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-density-in-fossil-leaves-as-a-proxy-for-co2-partial-pressure-comment-and-reply/ )

McElwain J. C. (2013) – Evolution of Stomatal Function – UCD Dublin – https://www.ucd.ie/plantpalaeo/evol_stomatal_function.html – (On our blog : https://plantstomata.wordpress.com/2017/11/18/the-function-of-land-plant-stomata-over-evolutionary-time/ )

McElwain J. C., Chaloner W. G. (1995) – Stomatal density and index of fossil
plants track atmospheric carbon dioxide in the Palaeozoic – Annals of Botany 76: 389-395 – https://doi.org/10.1006/anbo.1995.1112https://www.sciencedirect.com/science/article/pii/S0305736485711122 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/stomatal-density-of-fossil-leaves-has-potential-value-for-assessing-changes-in-atmospheric-co2-concentration-through-geological-time/ )

McElwain J. C., Mayle F. E., Beerling D. J. (2002) – Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records – Journal of Quaternary Science 17: 21-29 – https://doi.org/10.1002/jqs.664 – https://onlinelibrary.wiley.com/doi/abs/10.1002/jqs.664 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-evidence-for-a-decline-in-atmospheric-co2-concentration/ )

McElwain J. C., Yiotis C., Lawson T. (2016) – Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution – New Phytologist 209(1): 94-103 – ISSN 0028-646X – http://repository.essex.ac.uk/14471/ – (On our blog : https://plantstomata.wordpress.com/2019/03/21/using-modern-plant-trait-relationships-between-observed-and-theoretical-maximum-stomatal-conductance-and-vein-density-to-examine-patterns-of-plant-macroevolution/ )

McGinley M. A. (2012) – Stomatal function and CAM photosynthesis – Slideshare, Technology, Business Feb 23, 2012 – https://www.slideshare.net/MarkMcGinley/stomatal-function-and-cam-photosynthesis – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cam-photosynthesis/

McGoey B. V., Chau K., Dickinson T. A. (2014) – Stomata Size in Relation to Ploidy Level in North American Hawthorns (Crataegus, Rosaceae) – Madroño 61(2): 177-193 –
https://doi.org/10.3120/0024-9637-61.2.177 – http://www.bioone.org/doi/abs/10.3120/0024-9637-61.2.177 – (On our blog : https://plantstomata.wordpress.com/2018/03/20/associations-between-taxon-ploidy-level-stomatal-size-and-density-elevation-and-environmental-parameters/ )

McKee S. (2018) – How Plants Breathe: The Stimulating Story of Stomata – Maximum Yield February 8, 2018 – https://www.maximumyield.com/how-plants-breathe-the-stimulating-story-of-stomata/2/3827 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66556 )

McKown A. D., Guy R. D., Quamme L, Klápště J., La Mantia J., Constabel C. P., El-Kassaby Y. A., Hamelin R. C., Zifkin M., Azam M. S. (2014) – Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs – Mol. Ecol. 23: 5771–5790 – doi:10.1111/mec.12969 –https://www.ncbi.nlm.nih.gov/pubmed/25319679 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/association-genetics-geography-and-ecophysiology-link-stomatal-patterning-with-carbon-gain-and-disease-resistance-trade-offs/

McKown A. D., Klápště J., Guy R. D., Corea O. R. A., Fritsche S., Ehlting J., El-Kassaby Y. A., Mansfield S. D..(2019) – A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs disease trade‐off in poplar – https://doi.org/10.1111/nph.15911https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15911?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/15/a-role-for-speechless-in-the-integration-of-leaf-stomatal-patterning/ )

McKnown K. H., Bergmann D. C. (2018) – Grass stomata – Curr. Biol. 28(15):R814-R816 –  doi: 10.1016/j.cub.2018.05.074 –  PMID: 30086309 – https://www.ncbi.nlm.nih.gov/pubmed/?term=30086309 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/the-essential-function-and-features-of-stomata-from-grasses-2/ )

McLachlan D. H., Kopischke M., Robatzek, S. (2014) – Gate control: guard cell regulation by microbial stress – New Phytol. 203: 1049–1063 – doi: 10.1111/nph.12916. Epub 2014 Jul 8. – https://www.ncbi.nlm.nih.gov/pubmed/25040778 – (On our blog :https://plantstomata.wordpress.com/2018/06/04/stomatal-regulation-in-response-to-microbes-3/ )

McLachlan D. H., Lan J., Geilfus C.-M., Dodd A. N., Larson T., Baker A., Hõrak H., Kollist H., He Z., Graham I., Mickelbart M. V., Hetherington A. M. (2016) – The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening – Current Biology 26(5): 707-712 – DOI10.1016/j.cub.2016.01.019 –https://www.infona.pl/resource/bwmeta1.element.elsevier-099d1c17-a54c-32e5-be39-24c8080a077d – (On our blog : https://plantstomata.wordpress.com/2017/10/25/light-induced-stomatal-opening/ )

McLean F. T. (1921) – A study of the structure of the stomata of two species of Citrus in relation to citrus canker – Bull. Torrey Bot. Club 48(4): 101-106 – https://www.jstor.org/stable/2480340?seq=6#metadata_info_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/21/the-structure-of-the-stomata-of-two-species-of-citrus/ )

McNaughton K. G. (1994) – Effective stomatal and boundary layer resistances of heterogeneous surfaces – Plant, Cell & Environment 17: 1061-1068 – https://doi.org/10.1111/j.1365-3040.1994.tb02029.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1994.tb02029.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/effective-stomatal-and-boundary-layer-resistances-of-heterogeneous-surfaces/ )

McNaughton K., Jarvis P. G. (1991) – Effects of spatial scale on stomatal control of transpiration – Agric. Forest Meterol. 54, 279–301 (1991) – doi:10.1016/0168-1923(91)90010-N – http://www.sciencedirect.com/science/article/pii/016819239190010N – (On our blog : https://plantstomata.wordpress.com/2016/11/04/26883/ )

McQueen-Mason S., Jones L., Milne J. L., Ashford D. (2003) – Cell wall arabinan is essential for guard cell function – In: Proceedings of the National Academy of Sciences of the United States of America. 100(20): 11783-11788 – https://pure.york.ac.uk/portal/en/publications/cell-wall-arabinan-is-essential-for-guard-cell-function(fd459df7-27d4-4a7a-8644-0fd642f91d5f)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/10/06/arabinans-maintain-flexibility-in-the-stomatal-cell-wall-by-preventing-homogalacturonan-polymers-from-forming-tight-associations/ )

Meckel T., Gall L., Semrau S., Homann U., Thiel G. (2007) – Guard Cells Elongate: Relationship of Volume and Surface Area during Stomatal Movement – Biophys J. 92(3): 1072–1080 – doi:  10.1529/biophysj.106.092734 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779957 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/an-elongation-of-the-guard-cells-during-stomatal-movement/ )

Medeiros D. B., Barros K. A., Barros J. A. S., Omena-Garcia R. P., Arrivault S., Sanglard L. M. V. P., Detmann K. C., Silva W. B., Daloso D. M., DaMatta F. M., Nunes-Nesi A., Fernie A. R., Araújo W. L. (2017) – Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior – Plant Physiol. 2017 Nov;175(3):1068-1081. doi: 10.1104/pp.17.00971 – Epub 2017 Sep 12 – https://www.ncbi.nlm.nih.gov/pubmed/28899959 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/manipulation-of-the-tonoplastic-organic-acid-transporter-impacted-mitochondrial-metabolism-while-the-overall-stomatal-and-photosynthetic-capacity-were-unaffected/ )

Medeiros D. B., Daloso D. M., Fernie A. R., Nikoloski Z., Araújo W. L. (2015) – Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. – Plant Cell Environ. 38, 1457–1470. – doi: 10.1111/pce.12517 – https://www.ncbi.nlm.nih.gov/pubmed/25689387 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/a-system-biology-approach-may-be-used-to-elucidate-the-mechanisms-underlying-stomata-control/ )

Medeiros D. B., da Luz L. M., de Oliveira H. O., Araujo W. L., Daloso D. M., Fernie A. R. (2019) – Metabolomics for understanding stomatal movements – Theoretical and Experimental Plant Physiology 31(1): 91-102 – https://doi.org/10.1007/s40626-019-00139-9https://link.springer.com/article/10.1007/s40626-019-00139-9 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/how-stomatal-guard-cells-sense-and-respond-to-relative-air-humidity-co2-aba-and-sucrose/ )

Medeiros D. B., Fernie A. R., Araújo W. L. (2018) – Discriminating the Function(s) of Guard Cell ALMT Channels – Trends in Plant Science (Online June 21, 201) – DOI: https://doi.org/10.1016/j.tplants.2018.06.006 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30135-3?rss=yes – (On our blog : https://plantstomata.wordpress.com/2018/06/23/regulatory-mechanisms-and-individual-roles-for-specific-almt-proteins-in-stomata/ )

Medeiros D. B., Martins S. C. V., Cavalcanti J. H. F., Daloso D. M., Martinoia E., Nunes-Nesi A., Fábio M. DaMatta, Fernie A. R., Araújo W. L. (2016) – Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance – Plant Physiol. 170 (1): 86-101; DOI – https://doi.org/10.1104/pp.15.01053 – – http://www.plantphysiol.org/content/170/1/86 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/an-increase-in-both-stomatal-and-mesophyll-conductance/ )   

Medeiros D. B., Perez de Souza L., Antunes W. C., Araújo W. L., Daloso D. M., Fernie A. R. (2018) – Sucrose breakdown within guard cells is a substrate for glycolysis and glutamine biosynthesis during light-induced stomatal opening – The Plant Journal – Accepted Article – DOI: 10.1111/tpj.13889 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13889/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/16/redrawing-current-models-concerning-the-influence-of-sucrose-during-light-induced-stomatal-opening/

Mediavilla S., Escudero A. (2003) – Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity – Tree Physiol 23: 987–996 –https://www.ncbi.nlm.nih.gov/pubmed/12952785 – https://plantstomata.wordpress.com/2016/11/10/stomatal-responses-to-drought-2/ )

Medina C. L., Machado E. C., Gomes M. M. A. (1999) – Stomatal conductance, transpiration and photosynthesis rates in “Valencia” orange trees submitted to water stress – Braz. J. Plant Physiol. 11: 29-34 – https://www.researchgate.net/publication/291795968_Condutancia_estomatica_transpiracao_e_fotossintese_em_laranjeira_’Valencia’_sob_deficiencia_hidrica – (On our blog : https://plantstomata.wordpress.com/2019/05/07/stomatal-conductance-transpiration-and-photosynthesis-rates-in-orange-trees-submitted-to-water-stress/ )

Medlyn B. E., Barton C. V. M. , Broadmeadow M. S. J. , Ceulemans R. , De Angelis P. , Forstreuter M. , Freeman M. , Jackson S. B. , Kellomäki S. , Laitat E. , Rey A. , Roberntz P., Sigurdsson B. D. , Strassemeyer J. , Wang K. , Curtis P. S. , Jarvis P. G. (2001) – Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis – New Phytol 149: 247–164 – https://doi.org/10.1046/j.1469-8137.2001.00028.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.2001.00028.x – (On our blog : https://plantstomata.wordpress.com/2018/06/04/stomatal-conductance-after-long-term-exposure-to-elevated-co2-concentration/ )

Medlyn B. E., Duursma R. A., Eamus D., Ellsworth D. S., Prentice I. C., Barton C. V. M., Crous K. V., De Angelis P., Freeman M., Wingate L. (2011) – Reconciling the optimal and empirical approaches to modelling stomatal conductance – Global Change Biology 17: 2134–2144 – https://doi.org/10.1111/j.1365-2486.2010.02375.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2010.02375.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/optimal-and-empirical-approaches-to-modelling-stomatal-conductance/ )

Medrano H., Escalona J. M., Bota J., Gulías J., Flexas J. (2002) – Regulation of photosynthesis of C3 plants in response to progressive drought: the stomatal conductance as a reference parameter – Annals of Botany 89 Spec No:895-905 – PMID: 12102515 PMCID: PMC4233802 – https://www.ncbi.nlm.nih.gov/pubmed/12102515 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/photosynthesis-of-c3-plants-drought-and-stomatal-conductance/ )

Meerabai G., Koteswari B. (2017) – Studies on stomatal movement in Dolichus biflorus Linn. (Fabaceae) – Int. J. Trend Scientific Res. & Dev. (IJTSRD) 1(6): 365-368 – ISSN No: 2456 – 6470 – https://www.academia.edu/35941875/Studies_on_Stomatal_Movement_in_Dolichus_biflorus_Linn._Fabaceae_ – (On our blog : https://plantstomata.wordpress.com/2018/09/27/stomatal-movement-in-dolichus-biflorus-linn-fabaceae/

Mega R., Abe F., Kimm J.-S., Tsuboi Y., Tanaka K., Kaboyashi H., Sakata Y., Hanada K., Tsujimoto H., Kikuchi J., Cutler S. R., Okamoto M. (2019) – Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors – Nature Plants 5: 153–159 – https://www.nature.com/articles/s41477-019-0361-8 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/a-general-strategy-for-increasing-water-productivity-and-the-aba-signalling-pathway-stomata/ )

Mehri N., Fotovat R., Saba J., Jabbari F. (2009) – Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress – Journal of Food, Agriculture & Environment 7(1): 167-170 – ISSN:1459-0255 – https://doi.org/10.1234/4.2009.1461https://www.wflpublisher.com/Abstract/1461 – (On our blog : https://plantstomata.wordpress.com/2019/07/18/variation-of-stomata-dimensions-and-densities-under-drought-stress/

Meidner H. (1965) – Stomatal control of transpirational water loss – In: The State and Movement of Water in Living Organisms (ed. G. E. Fogg) : 185-204 – Academic Press, New York –

Meidner H . (1967) – The effects of kinetin on stomatal opening and the rate of intake of carbon dioxide in mature primary leaves of barley – J. Experim. Bot. 18: 556-561 – https://doi.org/10.1093/jxb/18.3.556https://academic.oup.com/jxb/article-abstract/18/3/556/437968?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/27/the-effects-of-kinetin-on-stomatal-opening/ )

Meidner H. (1968) – The Comparative Effects of Blue and Red Light on the Stomata of Allium cepa L. and Xanthium pennsylvanicum – Journal of Experimental Botany 19(1): 146–151 – https://doi.org/10.1093/jxb/19.1.146 – https://academic.oup.com/jxb/article-abstract/19/1/146/447351?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/16/blue-light-may-promote-stomatal-opening-by-its-effect-on-enzymes/ )

Meidner H. (1975) – Water supply, evaporation and vapour diffusion in leaves – J. Exp. Bot. 26: 666–673 – https://doi.org/10.1093/jxb/26.5.666https://academic.oup.com/jxb/article-abstract/26/5/666/548440?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/08/water-supply-from-major-veins-in-leaves-travels-within-the-epidermal-tissue-to-sites-of-evaporation-close-to-the-stomatal-pores/ )

Meidner H., Bannister P. (1979) – Pressure and solute potentials in stomatal cells of Tradescantia virginiana – J Exp Bot 30 255–265. – doi: 10.1093/jxb/30.2.255 –http://jxb.oxfordjournals.org/content/30/2/255.abstract – https://plantstomata.wordpress.com/2016/11/10/pressure-and-solute-potentials-in-stomata/ )

Meidner H., Edwards M. (1975) – Direct measurements of turgor pressure potentials of guard cells – I. J. Exp. Bot. 26: 319–330 – https://doi.org/10.1093/jxb/26.3.319https://academic.oup.com/jxb/article-abstract/26/3/319/605577?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/08/turgor-pressure-potentials-of-stomatal-guard-cells/ )

Meidner H., Mansfield T. A. (1965) – Stomatal responses to illumination – Biol. Reviews 40, Issue 4: 483–508 – DOI: 10.1111/j.1469-185X.1965.tb00813.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1965.tb00813.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/effects-of-environmental-factors-on-stomatal-movements/

Meidner H., Mansfield T. A. (1966) – Rates of photosynthesis and respiration in relation to stomatal movements in leaves treated with a-hydroxysulphonate and glycollate – J. Exp. Bot. 17: 502

Meidner H., Mansfield T. A. (1968) – Physiology of stomata – New York, NY: McGraw-Hill. – http://krishikosh.egranth.ac.in/bitstream/1/2061723/2/IISR-198.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/20/physiology-of-stomata-2/ )

Meinhard M., Schnabl H. (2001) – Fusicoccin- and light-induced activation and in vivo phosphorylation of phosphoenolpyruvate carboxylase in Vicia guard cell protoplasts – Plant Sci. 160: 635–646 – https://doi.org/10.1016/S0168-9452(00)00437-4 – https://www.sciencedirect.com/science/article/pii/S0168945200004374 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-guard-cell-pepcase-is-regulated-by-reversible-phosphorylation-of-at-least-one-isoform-and-elucidate-first-components-of-the-signaling-pathway/ )

Meinzer F. C. (1982) – The effect of vapor pressure on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings – Oecologia 54: 236-242 – doi: 10.1007/BF00378398 – https://www.ncbi.nlm.nih.gov/pubmed/28311434 – (On our blog : https://plantstomata.wordpress.com/2019/05/08/the-effect-of-vapor-pressure-on-stomatal-control-of-gas-exchange-2/ )

Meinzer F. C. (1982) – The Effect of Light on Stomatal Control of Gas Exchange in Douglas Fir (Pseudotsuga menziesii) Saplings – Oecologia 54(2): 270-274 – https://www.jstor.org/stable/4216760?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/22/the-effect-of-light-on-stomatal-control-of-gas-exchange/ )

Meinzer F. C., Andrade J. L., Goldstein G., Holbrook N. M., Cavelier J., Jackson P. (1997) – Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture – Plant, Cell & Environm. 20: 1242-1252 – https://doi.org/10.1046/j.1365-3040.1997.d01-26.x – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-3040.1997.d01-26.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/the-role-of-stomatal-boundary-layer-and-hydraulic-architecture-in-the-control-of-transpiration/ )

Meinzer F. C., Goldstein G., Holbrook N.M.,Jackson P., Cavelier J. (1993) – Stomatal and environmental control of transpiration in a lowland tropical forest tree – Plant, Cell and Environment 16: 429-436 – Stomatal_and_environmental_control_of_tr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-and-environmental-control-of-transpiration/ )

Meinzer F. C., Goldstein G., Jackson P., Holbrook N. M., Gutierrez M. V., Cavelier J.(1995) – Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic conductance properties – Oec. 101: 514–522 – doi: 10.1007/BF00329432 – https://www.ncbi.nlm.nih.gov/pubmed/28306968 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/contrasting-stomatal-responses-to-similar-leaf-bulk-air-vpd-may-be-governed-as-much-by-the-external-boundary-layer-as-by-intrinsic-physiological-differences-among-species/ )

Meinzer F. C., Goldstein G., Jaimes M. (1984) – The effect of atmospheric humidity on stomatal control of gas exchange in two tropical coniferous species – Canadian Journal of Botany 62(3): 591-595 – https://doi.org/10.1139/b84-089 – http://www.nrcresearchpress.com/doi/10.1139/b84-089 – (On our blog : https://plantstomata.wordpress.com/2018/09/22/the-effect-of-atmospheric-humidity-on-stomatal-control-of-gas-exchange/ )

Meinzer F. C., Grantz D. A. (1990) – Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity – Plant, Cell & Environm. 13: 383–388 – https://doi.org/10.1111/j.1365-3040.1990.tb02142.x -https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1990.tb02142.x – (On our blog :https://plantstomata.wordpress.com/2018/12/20/stomata-adjust-to-the-ratio-of-total-hydraulic-conductance-to-total-transpiring-leaf-area/ )

Meinzer F. C., Grantz D. A. (1991) – Coordination of stomatal, hydraulic, and canopy boundary-layer properties. Do stomata balance conductances by measuring transpiration? – Physiol. Plant. 83: 324–329 – https://doi.org/10.1111/j.1399-3054.1991.tb02160.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1991.tb02160.x – (On our blog : https://plantstomata.wordpress.com/2018/12/20/stomata-exert-an-active-role-in-regulating-transpiration-even-in-dense-canopies/ )

Meinzer F. C., Grantz D. A., Smit B. (1991) – Root signals mediate coordination of stomatal and hydraulic conductance in growing sugarcane – Australian Journ. Plant Physiology 18: 329-338 – https://doi.org/10.1071/PP9910329 – http://www.publish.csiro.au/FP/PP9910329 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/root-signals-mediate-coordination-of-stomatal-and-hydraulic-conductance-2/ )

Meinzer F. C., Hinckley T. M., Ceulemans R. (1997) – Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy – Plant, Cell Environ. 20(10): 1301- 1308. – DOI: 10.1046/j.1365-3040.1997.d01-18.x –http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-18.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/10/27481/ )

Meinzer F. C., Johnson D. M.,  Lachenbruch B.,  McCulloh K. A.,  Woodruff D. R. (2009) – Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance – Functional Ecology 23: 922-930 – https://doi.org/10.1111/j.1365-2435.2009.01577.x –https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2435.2009.01577.x – (On our blog : https://plantstomata.wordpress.com/2018/12/20/coordination-of-stomatal-control-of-xylem-tension-with-hydraulic-capacitance/ )

Meinzer F. C., Smith D. D., Woodruff D. R., Marias D. E., McCulloh K. A., Howard A. R., Magedman A. L. (2017) – Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status – Plant, Cell and Environment (2017) 40, 1618–1628 – doi: 10.1111/pce.12970 – https://www.fs.fed.us/pnw/pubs/journals/pnw_2017_meinzer001.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/stomatal-kinetics-and-photosynthetic-gas-exchange/

Meinzer F. C., Woodruff D. R., Marias D. E., Smith D. D., McCulloh K. A., Howard A. R., Magedman A. L. (2016) – Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status – Ecology Letters 19: 1343–1352 – DOI: 10.1111/ele.12670 – https://www.ncbi.nlm.nih.gov/pubmed/27604411 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/mapping-hydroscapes-along-the-iso-to-anisohydric-continuum-of-stomatal-regulation/

Melhorn V., Matsumi K., Koiwai H., Ikegami K., Okamoto M., Nambara E., Bittner F., Koshiba T. (2008) –  Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba – J. Plant Res. 121, 125–131 – 10.1007/s10265-007-0127-7 – [PubMed][Cross Ref] – https://link.springer.com/article/10.1007/s10265-007-0127-7 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/transient-expression-of-atnced3-and-aao3-genes-in-guard-cells-causes-stomatal-closure/

Melis A., Zeiger E. (1982) – Chlorophyll a fluorescence transients in mesophyll and guard cells – Modulation of guard cell photophosphorylation by CO2 – Plant Physiol. 69: 642–647 – https://doi.org/10.1104/pp.69.3.642 – http://www.plantphysiol.org/content/69/3/642 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/modulation-of-stomatal-guard-cell-photophosphorylation-by-co2/ )

Melotto M., Underwood W., He S. Y. (2008) – Role of stomata in plant innate immunity and foliar bacterial diseases. – Annu. Rev. Phytopathol. 46, 101–122. – doi: 10.1146/annurev.phyto.121107.104959 – http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.121107.104959 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/microbial-and-environmental-regulation-of-stomatal-closure/ )

Melotto M., Underwood W., Koczan J., Nomura K., He S. Y. (2006) – Plant stomata function in innate immunity against bacterial invasion. – Cell 126, 969–980 (2006) – doi: 10.1016/j.cell.2006.06.054 – CAS – Article – PubMed – http://www.cell.com/cell/abstract/S0092-8674(06)01015-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867406010154%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/09/23/stomata-act-as-a-barrier-against-bacterial-infection/)

Melotto M., Zhang L., Oblessuc P. R., He S. Y. (2017) – Stomatal defense a decade later. – Plant Physiol 174: 561–571 – http://www.plantphysiol.org/content/174/2/561 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/significant-understanding-of-the-basic-mechanisms-of-stomatal-defense/)

Mencuccini M., Mambelli S., Comstock J. P. (2000) – Stomatal responsiveness to leaf water status in common bean is a function of time of day – Plant, Cell and Environment 23: 110–1118 – https://doi.org/10.1046/j.1365-3040.2000.00617.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2000.00617.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-responsiveness-to-leaf-water-status-is-a-function-of-time-of-day/ )

Mendes K. R., Marenco R.  A. (2010) – Leaf traits and gas exchange in saplings of native tree species in the Central Amazon – Scientia Agricola, 67:624-632. – http://dx.doi.org/10.1590/S0103-90162010000600002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162010000600002 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-conductance-gs-in-saplings-of-native-tree-species/ )

Meng F. (2007) – ABA Contents in the Guard-Cell Symplast and Guard-Cell Apoplast Are Not Correlated with Stomatal Aperture Size under Three Conditions of Water Sufficiency – Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2485 – FSU_migr_etd-2485 (IID) – http://diginole.lib.fsu.edu/islandora/object/fsu%3A180678 – https://plantstomata.wordpress.com/2017/11/13/aba-and-stomatal-aperture/ )

Meng L., Li L., Chen W., Xu Z., Liu L. (1999) – Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves – Journal of Shenyang Agricultural University 30: 477–480 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYNY199905000.htm – (On our blog : https://plantstomata.wordpress.com/2018/06/04/water-stress-and-stomatal-density-length-and-width/ )

Meng L.-S., Li C., Xu M.-K., Sun X.-D., Wan W., Cao X.-Y., Zhang J.-L., Chen K.-M. (2018) – Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light‐mediated stomatal development – Plant, Cell & Environm. – Online Version of Record  – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13212?af=R – (On our blog : https://plantstomata.wordpress.com/2018/05/15/an3-cop1-and-light%e2%80%90mediated-stomatal-development/ )

Meng L.-S., Yao S.-Q. (2015) – Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA) – Plant Biotechnol. J. 13 893–902 – DOI: 10.1111/pbi.12324 – [PubMed] [Cross Ref] – https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.12324#support-information-section – (On our blog : https://plantstomata.wordpress.com/2018/11/06/an3-regulates-water-use-efficiency-and-drought-tolerance-by-modulating-stomatal-density/

Meng X., Chen X., Mang H., Liu C., Yu X., Gao X., Torii K. U., He P., Shan L. (2015) – Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning – Current Biology 252361-2372 – doi:  10.1016/j.cub.2015.07.068 – [PubMed Abstract] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714584/ – (On our blog : https://plantstomata.wordpress.com/2017/12/17/serk-family-receptor-like-kinases-in-stomatal-patterning/ )

Menke U, Renault N, Mueller‐Roeber B. (2000) – StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline‐rich proteins – Plant Physiology 122,677–686. – doi:http://dx.doi.org/10.1104/pp.122.3.677 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/122/3/677.abstract?ijkey=c25910eb9cbd456ca3b67dd31d90f0cb1e7047de&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/01/26490/ )

Merced A., Renzaglia K. S. (2018) – Contrasting pectin polymers in guard cell walls of Arabidopsisand the hornwort Phaeoceros reflect physiological differences – Annals of Botany, mcy168, https://doi.org/10.1093/aob/mcy168 – https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcy168/5092734 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/variations-in-guard-cell-wall-composition-reflect-different-physiological-activity-of-stomata-in-land-plants-2/ )

Merilo E., Jalakas P., Kollist H., Brosché M. (2015) -The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA – Mol Plant. 8(4): 657-659 – doi: 10.1016/j.molp.2015.01.014 – Epub 2015 Jan 22 – https://www.cell.com/molecular-plant/abstract/S1674-2052(15)00101-X?code=cell-site – (On our blog : https://plantstomata.wordpress.com/2018/06/04/stomatal-responses-to-elevated-co2-concentration-reduced-air-humidity-and-exogenous-aba-in-different-mutants-of-aba-transport/ )

Merilo E., Jõesaar I., Brosché M., Kollist H. (2014) – To open or to close: Species-specific stomatal responses to simultaneously applied opposing environmental factors. – New Phytol. 202, 499–508. –  doi: 10.1111/Nph. 12667 – https://www.ncbi.nlm.nih.gov/pubmed/24392838 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/species-specific-and-nonadditive-responses-to-two-simultaneously-applied-opposing-factors-in-stomata/ )

Merilo E., Laanemets K., Hu H., Xue S., Jakobson L., Tulva I., Gonzalez-Guzman M., Rodriguez P. L., Schroeder J. I., Broschè M., Kollist H., (2013) – PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness- and CO2-induced stomatal regulation – Plant Physiol. 162:  1652–1668  – DOI: https://doi.org/10.1104/pp.113.220608 – http://www.plantphysiol.org/content/162/3/1652 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/pyr-rcar-receptors-and-stomatal-adjustments-and-responses-to-low-humidity-darkness-and-o3-and-are-involved-in-responses-to-elevated-co2/ )

Merilo E., Yarmolinsky D., Jalakas P., Parik H., Tulva I., Rasulov B., Kilk K., Kollist H. (2017) – Stomatal VPD response: There is more to the story than ABA – Plant Physiol. 2017: 1532-1548 -DOI: http://dx.doi.org/10.1104/pp.17.0091 – [Google Scholar] [CrossRef] [PubMed]  – http://www.ncbi.nlm.nih.gov/pubmed/28986421 – – https://www.bioportfolio.com/resources/pmarticle/1861501/Stomatal-VPD-response-there-is-more-to-the-story-than-ABA.html – (On our blog : https://plantstomata.wordpress.com/2017/12/17/origin-and-role-of-aba-in-stomatal-regulation/ )

Merlaen B., De Keyser E., Van Labeke M.-C. (2017) – Effect of GA, SA and JA on PIP Aquaporin Expression in Fragaria x ananassa Leaves – SCIENCE ACROSS BOUNDARIES ABSTRACTS: SEB Annual Meeting Gothenburg 2017: 37, Goteborg, Zweden, 3/07/17 – http://pure.ilvo.vlaanderen.be/portal/en/publications/effect-of-ga-sa-and-ja-on-pip-aquaporin-expression-in-fragaria-x-ananassa-leaves(cccf1527-e44b-407c-850a-38b671e91b72)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-and-the-effect-of-ga-sa-and-ja-on-pip-aquaporin-expression/

Merlot S., Leonhardt N., Fenzi F., Valon C., Costa M., Piette L., Vavasseur A., Genty B., Boivin K., Müller A., Giraudat J., Leung J. (2007) – Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure – EMBO J. 26, 3216–3226 – doi:  10.1038/sj.emboj.7601750 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914098/ – (On our blog : https://plantstomata.wordpress.com/2018/06/05/aha1-and-stomatal-closure/ )

Merlot S., Mustilli A. C., Genty B., North H., Lefebvre V., Sotta B., Vavasseur A., Giraudat J. (2002) – Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. – Plant J. Cell Mol. Biol. 30, 601–609. – doi: 10.1046/j.1365- 313X.2002.01322.x – CrossRefPubMedWeb of ScienceGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/12047634 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/arabidopsis-mutants-defective-in-stomatal-regulation-2/ )

Merritt F., Kemper A., Tallman G. (2001) – Inhibitors of ethylene synthesis inhibit auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L. – Plant Cell Physiol. 42: 223–230 – https://doi.org/10.1093/pcp/pce030https://academic.oup.com/pcp/article/42/2/223/1930030 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/auxin-induced-stomatal-opening-is-mediated-through-auxin-induced-ethylene-production-by-guard-cells/ )  

Messinger S. M., Buckley T. N., Mott K. A. (2006) – Evidence for Involvement of Photosynthetic Processes in the Stomatal Response to CO2 – WHOLE PLANT AND ECOPHYSIOLOGY – DOI: https://doi.org/10.1104/pp.105.073676 – http://www.plantphysiol.org/content/140/2/771.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/involvement-of-photosynthetic-processes-in-the-stomatal-response-to-co2/ )

Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K. A. S., Geiger D, Marten I, Martinoia E, Hedrich R. (2010) – AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. – Plant J. 63: 1054–1062. – doi: 10.1111/j.1365-313X.2010.04302.x – https://www.ncbi.nlm.nih.gov/pubmed/20626656 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/atalmt12-represents-an-r-type-anion-channel-required-for-stomatal-movement/ )

Meyer S., Scholz-Starke J., De Angeli A., Kovermann P., Burla B., Gambale F., Martinois E. (2011) – Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation – Plant J. 2011 Jul;67(2):247-57. doi: 10.1111/j.1365-313X.2011.04587.x. Epub 2011 Apr 26 – https://www.ncbi.nlm.nih.gov/pubmed/21443686 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/malate-transport-by-the-vacuolar-atalmt6-channel-in-stomata/ )

Meyers A. (2017) – MIT researchers create plants that glow – Boston Globe 2017-12-14 –https://www.bostonglobe.com/metro/2017/12/14/mit-researchers-create-plants-that-glow/BWSXklirU8N78UcFJiXstL/story.html – (On our blog : https://plantstomata.wordpress.com/2017/12/15/plants-that-glow-at-mit/ )

Meza-Canales I. D., Meldau S., Zavala J. A., Baldwin I. T. (2016) – Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception – Plant, Cell & Environment – DOI: 10.1111/pce.12874 – Accepted manuscript online: 7 December 2016 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12874/abstract – (https://plantstomata.wordpress.com/2016/12/08/herbivore-attack-and-stomatal-conductance/ )

Michalke B., Schnabl H. (1987) – The status of adenine nucleotides and malate in chloroplasts, mitochondria and supernatant of guard protoplasts from Vicia faba – J. Plant Physiol. 130: 243–253 – https://doi.org/10.1016/S0176-1617(87)80228-6 -https://www.sciencedirect.com/science/article/pii/S0176161787802286 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/the-status-of-adenine-nucleotides-and-malate-in-chloroplasts-mitochondria-and-supernatant-of-stomatal-protoplasts/ )

Michalke B., Schnabl H. (1990) – Modulation of the activity of phosphoenolpyruvate carboxylase during potassium-induced swelling of guard-cell protoplasts of Vicia faba L. after light and dark treatments – Planta 180: 188–193 – https://doi.org/10.1007/BF00193994 – https://link.springer.com/article/10.1007%2FBF00193994#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/06/pepcase-and-swelling-of-stomatal-guard-cell-protoplasts/ )

Miedema H., Assmann S. M. (1996) – A membrane-delimited effect of internal pH on the K+outward rectifier of Vicia faba guard cells. – J. Mem. Biol. 154, 227–237. -10.1007/s002329900147 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/8952952 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/effect-of-internal-ph-on-the-koutward-rectifier-of-guard-cells-in-stomata/

Mielke M. S., Oliva M. A., de Barrros N. F., Penchel R. M., Martinez C. A., de Almeida A. C. (1999) – Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation – Trees 13: 152–160 – ftp://ftp.aphis.usda.gov/foia/FOLDER_10/AR00038647%20Mielke%20et%20al%201999.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/stomatal-control-of-transpiration-2/ )

Miller A. (2017) – Stomatal pores in plants regulate the amount of water and solutes within them by opening and closing their guard cells using osmotic pressure – AskNature April 3, 2017 – https://asknature.org/strategy/guard-cells-regulate-gas-and-moisture-exchange/ – (On our blog : https://plantstomata.wordpress.com/2018/11/04/plant-stomata/ )

Miller A. (2016) – Guard cells regulate gas and moisture exchange – https://asknature.org/strategy/guard-cells-regulate-gas-and-moisture-exchange/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-regulate-gas-and-moisture-exchange/ )

Miller J. (2017) – Modeling guard cell-to-leaf scales with OnGuard2 – Plant Cell 10.1105/tpc.17.00694 – https://plantae.org/modeling-guard-cell-to-leaf-scales-with-onguard2/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-single-framework-to-understand-stomatal-physiology-in-greater-detail/ )

Mills G., Hayes F., Wilkinson S., Davies W. J. (2009) – Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species – Global Change Biol. 15: 1522–1533 – https://doi.org/10.1111/j.1365-2486.2008.01798.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2008.01798.x – (On our blog : https://plantstomata.wordpress.com/2018/11/06/ozone-appears-to-be-disrupting-the-aba%e2%80%90induced-signal-transduction-pathway-for-stomatal-control/ )

Mills G., Pleijel H., Braun S., Büker P., Bermejo V., Calvo E., Danielsson H., Emberson L., Fernández I. G., Grünhage L., Harmens H., Hayes F., Karlsson P.-E., Simpson D. (2011) – New stomatal flux-based critical levels for ozone effects on vegetation – Atmos. Environ. 45: 5064–5068 – https://doi.org/10.1016/j.atmosenv.2011.06.009 – https://www.sciencedirect.com/science/article/pii/S1352231011006029 – (On our blog : https://plantstomata.wordpress.com/2018/11/06/new-stomatal-flux-based-critical-levels-for-ozone-effects/ )

Milne R. (2016) – Image highlight: stomata pores – The Royal Society Publishing Blog  Nov. 7, 2016 – https://blogs.royalsociety.org/publishing/image-highlight-stomata-pores/ – (On our blog : https://plantstomata.wordpress.com/2018/01/12/stomata-pores/ )

Miner G. L., Bauerle W. L., Baldocchi D. D. (2016) – Estimating the sensitivity of stomatal conductance to photosynthesis: A review – Plant, Cell & Environment – DOI: 10.1111/pce.12871 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12871/abstract – (https://plantstomata.wordpress.com/2016/12/13/sensitivity-of-stomatal-conductance-to-photosynthesis/ )

Mineyuki Y., Marc J., Palevitz B. A. (1988) – Formation of the oblique spindle in dividing guard mother cell of Allium – Protoplasma 147: 200–203 – https://doi.org/10.1007/BF01403348 – https://link.springer.com/article/10.1007%2FBF01403348#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/06/formation-of-the-oblique-spindle-in-the-dividing-stomatal-guard-mother-cell/ )

Mineyuki Y., Marc J., Palevitz B. A. (1989) – Development of the preprophase band from random cytoplasmic microtubules in guard mother cell of Allium cepa L. – Planta 178: 291–296 –  https://doi.org/10.1007/BF00391856 – https://link.springer.com/article/10.1007/BF00391856#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/06/the-preprophase-band-from-random-cytoplasmic-microtubules-in-the-stomatal-guard-mother-cell/ )

Minguet-Parramona C., Wang Y., Hills A., Vialet-Chabrand S., Griffiths H., Rogers S., Lawson T., Lew V. L., Blatt M. R. (2016) – An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells – Plant Physiol. 170: 33–42 – DOI: https://doi.org/10.1104/pp.15.01607 – Abstract/FREE Full TextGoogle Scholar –http://www.plantphysiol.org/content/170/1/33 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/ca2-oscillations-for-stomatal-closure-and-ion-transport-in-guard-cells/ )

Minnocci A., Panicucci A., Sebastiani L., Lorenzini G., Vitagliano C. (1999) – Physiological and morphological responses of olive plants to ozone exposure during a growing season – Tree Physiology 19, 391–397 – © 1999 Heron Publishing—-Victoria, Canada – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.417.7142&rep=rep1&type=pdf– (On our blog : https://plantstomata.wordpress.com/2018/02/06/o3-induced-reduction-in-transpiring-stomatal-surface-in-olive-trees/ )

Mino Y., Matsuhita Y., Sakai R. (1987) – Effect of coronatine on stomatal opening in leaves of braodbean and italian ryegrass – Ann Phytopath Soc Japan 53: 53–55 –https://www.jstage.jst.go.jp/article/jjphytopath1918/53/1/53_1_53/_pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/effect-of-coronatine-on-stomatal-opening/ )

Minorsky P. (2017) – Origin and Role of ABA in Stomatal Regulation – https://plantae.org/origin-and-role-of-aba-in-stomatal-regulation/ – (On our blog : https://plantstomata.wordpress.com/2017/11/19/aba-in-regulation-of-stomatal-movements/ )

Minorsky P. (2017) – Clathrin and Stomatal Function – Plantae blog –https://plantae.org/clathrin-and-stomatal-function/ – (On our blog : https://plantstomata.wordpress.com/2017/11/27/the-functions-of-clathrin-and-syp121-affect-stomatal-function/ )

Minorsky P. (2018) – Red Light and the Plasma Membrane H+-ATPase in Guard Cells –  Plant Physiology: On The Inside – https://plantae.org/red-light-and-the-plasma-membrane-h-atpase-in-guard-cells/ – (On our blog : https://plantstomata.wordpress.com/2018/10/06/red-light-induced-pm-h-atpase-phosphorylation-in-guard-cells-promotes-stomatal-opening-in-whole-leaves/ )

Minorsky P. (2019) – Hydraulic Regulation of Stomata in Ferns – Plantae: Plant Physiology: On The Inside – https://plantae.org/hydraulic-regulation-of-stomata-in-ferns/ – (On our blog : https://plantstomata.wordpress.com/2019/04/06/hydraulic-regulation-of-stomata-in-ferns/ )

Mirfenderesgi G., Bohrer G., Matheny A. M., Fatichi S., de Moraes Frasson R. P., Schäfer K. V. R. (2016) – Tree-level hydrodynamic approach for modeling aboveground water storage and stomatal conductance illuminates the effects of tree hydraulic strategy – J Geophys Res Biogeosci. 121: 1792-1813 – [Crossref] – https://doi.org/10.1002/2016JG003467https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JG003467 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/the-effect-of-hydraulic-strategies-on-stomatal-conductance-under-different-soil%e2%80%90water-availability-conditions/ )

Miroslavov E. G. (1972) – Submicroscopic organization of guard cells in open and closed stomata – Doklady Akademii nauk SSR, 203: 939-941 – (Article not found)

Mirzaie-Nodoushan H., Ghamari-Zare A., Tavousi Rad F., Yousefifard M. (2015) – Inducing genetic variation in growth related characteristics of poplar germplasm, by producing inter-specific hybrids between P. albaand P. euphratica – Silvae Genetica 64, 5–6 (2015) – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomata-in-inter-specific-hybrids-between-p-alba-and-p-euphratica/ )

Mishkind M., Palevitz B. A., Raikhel N. V. (1981) – Cell wall architecture: normal development and environmental modification of guard cells of the Cyperaceae and related species – Plant, Cell & Environment 4(4): 319-328 – https://doi.org/10.1111/1365-3040.ep11604559 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11604559 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/normal-development-and-environmental-modification-of-cyperaceae-stomata/ )

Mishra G., Zhang W. H., Deng F., Zhao J., Wang X. M. (2006) – A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis – Science 312:264-6 – PMID:16614222; – http://dx.doi.org/10.1126/science.1123769 – https://www.ncbi.nlm.nih.gov/pubmed/16614222 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/a-bifurcating-signaling-pathway-that-regulates-plant-water-loss-with-stomatal-movements/ )

Miskin K. E., Rasmusson D. C. (1970) – Frequency and distribution of stomata in barley – Crop Sci. 10: 575-578 – doi:10.2135/cropsci1970.0011183X001000050038x – https://dl.sciencesocieties.org/publications/cs/abstracts/10/5/CS0100050575?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/06/frequency-and-distribution-of-stomata/ )

Miskin K. E., Rasmusson D. C., Moss D. N. (1972) – Inheritance and physiological effects of stomatal frequency in barley – Crop Science 12: 780-783 –doi:10.2135/cropsci1972.0011183X001200060019x –https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060780?access=0&view=pdf – https://plantstomata.wordpress.com/2016/11/01/stomatal-frequency-in-barley/ )

Misra B. B., Acharya B. R., Granot D., Assmann S. M.,  Chen S . (2015) – The guard cell metabolome: functions in stomatal movement and global food security – Front Plant Sci 6; 334 – doi:  10.3389/fpls.2015.00334 – PMC4436583 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/ – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-guard-cell-metabolome-functions-in-stomatal-movement/ )

Misra B. B., de Armas E., Tong Z., Chen S. (2015) – Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate – PLoS ONE 10(12): e0144206. – https://doi.org/10.1371/journal.pone.0144206 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144206 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/metabolomic-responses-of-guard-cells-and-mesophyll-cells-to-bicarbonate/ )

Mittelheuser C. J., Van Steveninck R. F. M. (1969) – Stomatal closure and inhibition of transpiration induced by (RS)-abscisic acid – Nature 221: 281-282 – DOI: 10.1038/221281a0https://www.nature.com/articles/221281a0 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/rs-abscisic-acid-induces-stomatal-closure/ )

Mittelheuser C. J., Van Steveninck R. F. M. (1971) – Rapid action of abscisic acid on photosynthesis and stomatal resistance – Planta, Berl. 97: 83-86 – https://doi.org/10.1007/BF00388408https://link.springer.com/article/10.1007/BF00388408 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/rapid-action-of-aba-on-stomatal-resistance/ )

Miyashita K., Tanakamaru S., Maitani T., Kimura K. (2005) – Recovery responses of photosynthesis, transpiration and stomatal conductance in kidney bean following drought stress – Environ. Exp. Bot. 53: 205–214 https://doi.org/10.1016/j.envexpbot.2004.03.015 — https://www.sciencedirect.com/science/article/abs/pii/S009884720400053X – (On our blog : https://plantstomata.wordpress.com/2018/10/15/close-correlation-between-leaf-water-potential-and-recovery-level-and-speed-of-photosynthesis-transpiration-and-stomatal-conductance/ )

Miyazaki A. (2014) – Plant growth enhanced through promotion of pore opening – Phys.org 2014-03 – http://phys.org/news/2014-03-growth-pore.html – (On our blog : https://plantstomata.wordpress.com/2016/08/09/plant-growth-and-promotion-of-pore-opening-in-stomata/ )

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) –  Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany 57: 373-380 – DOI: 10.1093/jxb/eri278 – https://www.ncbi.nlm.nih.gov/pubmed/16172139 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/stomatal-conductance-of-mature-leaves-has-a-regulatory-effect-on-the-stomatal-development-of-expanding-leaves-2/ )

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) – Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany 57: 373–380. – PMID:16172139DOI:10.1093/jxb/eri278 –https://www.ncbi.nlm.nih.gov/pubmed/16172139 – (On our blog : https://plantstomata.wordpress.com/2016/09/29/stomatal-development-and-stomatal-conductance-of-mature-leaves-in-poplar/ )

Mizokami Y., Noguchi K., Kojima M., Sakakibara H., Terashima I. (2018) – Effects of instantaneous and growth CO2 levels, and ABA on stomatal and mesophyll conductances – https://doi.org/10.1111/pce.13484h –https://doi.org/10.1111/pce.13484 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/effects-of-instantaneous-and-growth-co2-levels-and-aba-on-stomatal-and-mesophyll-conductances/

Mochizuki A., Sueoka N. (1955) – Genetic studies on the number of plastid in stomata. I. Effects of autopolyploidy in sugar beets – Cytologia 20, No. 4, 358-366 – http://doi.org/10.1508/cytologia.20.358 – https://www.jstage.jst.go.jp/article/cytologia1929/20/4/20_4_358/_article – (On our blog : https://plantstomata.wordpress.com/2016/11/14/27587/ )

Mohajerani H., Casper M., Kalantari Z., Ferreira C. S. S. (2019) – Project: Session at Biohydrology 2019: “Learning from Biohydrological Journey of Evapotranspiration : Departing from soil reservoir, transferring to the plant roots and leaf stomata and arriving at the atmosphere” – https://www.researchgate.net/project/Session-at-Biohydrology-2019-Learning-from-Biohydrological-Journey-of-Evapotranspiration-Departing-from-soil-reservoir-transferring-to-the-plant-roots-and-leaf-stomata-and-arriving-at-the-atmosphere-2 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/evapotranspiration-departing-from-soil-reservoir-transferring-to-the-plant-roots-and-leaf-stomata-and-arriving-at-the-atmosphere/ )

Mohamed-Yasseen Y., Davenport T. L., Splittstoesser W. E., Litz R. E. (1992) – Abnormal stomata in vitrified plants formed in vitro – Proceedings of the Florida State Horticultural Society 105:
210–212 –

Mohammadian M. A., Watling J., Hill R. S. (2007) – Do waxy stomatal plugs impact leaf gas exchange in a rain forest gymnosperm Agathis robusta ? – Gen. Appl. Plant Physiology 33 (3-4): 203-220 – https://www.researchgate.net/publication/228753842_DO_WAXY_STOMATAL_PLUGS_IMPACT_LEAF_GAS_EXCHANGE_IN_A_RAIN_FOREST_GYMNOSPERM_AGATHIS_ROBUSTA – (On our blog : https://plantstomata.wordpress.com/2018/12/23/do-waxy-stomatal-plugs-impact-leaf-gas-exchange/ )

Mohammadian M. A., Watling J., Hill R. S. (2007) – The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae) – Acta Oecologica 31: 91-101 – https://doi.org/10.1016/j.actao.2006.10.005https://www.sciencedirect.com/science/article/pii/S1146609X06001226?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/05/08/wax-coverage-at-the-entrance-of-stomata-increased-resistance-to-gas-diffusion-and-decreased-stomatal-conductance/ )

Mohammed U., Caine R. S., Atkinson J. A., Harrison E. L., Wells D., Chater C. C., Gray J. E., Swarup R., Murchie E. H. (2019) – Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation – Scientific Reports 9, Article 5584 – https://doi.org/10.1038/s41598-019-41922-7 –https://www.nature.com/articles/s41598-019-41922-7.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/05/plants-overexpressing-osepf1-show-reduced-stomatal-density/ )

Moldau H., Vahisalu T., Kollist H. (2011) – Rapid stomatal closure triggered by a short ozone pulse is followed by re-opening to overshooting values – Plant Signal. Behav. 6: 311–313 – doi:  [10.4161/psb.6.2.15044] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121993/ – (On our blog : https://plantstomata.wordpress.com/2018/11/06/rapid-stomatal-closure-triggered-by-a-short-ozone-pulse-is-followed-by-re-opening-to-overshooting-values/ )

Molisch H. (1912) – Das Offen- und Geschlossensein der Spaltöffnungen, veranschaulicht durch eine neue Methode (Infiltration-method) – Zeit. f. Bot. 4: 106-122 –

Monda K., Araki H., Kuhara S.,Ishigaki G., Akashi R., Negi J., Kojima M., Sakakibara H., Takahashi S., Hashimoto-Sugimoto M., Goto N., Iba K. (2016) – Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture – Plant Physiol. Mar 170 (3): 1435-1444 – DOI: https://doi.org/10.1104/pp.15.01450 – http://www.plantphysiol.org/content/170/3/1435 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/enhanced-stomatal-conductance-by-a-spontaneous-tetraploid/

Monda K., Negi J., Iio A., Kusumi K., Kojima M., Hashimoto M., Sakakibara H., Iba K. (2011) – Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype –  Planta 234: 555–563 – DOI: 10.1007/s00425-011-1424-x – https://www.ncbi.nlm.nih.gov/pubmed/21553123 – (On our blog : https://plantstomata.wordpress.com/2018/11/06/environmental-regulation-of-stomatal-response/

Monteith J. L. (1995) – A reinterpretation of stomatal responses to humidity – Plant, Cell & Environment 18: 357–364 – DOI: 10.1111/j.1365-3040.1995.tb00371.x – Wiley Online Library | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00371.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/01/stomatal-responses-to-humidity-3/ )

Monteith J. L., Szeicz G., Waggoner P. E. (1965) – The Measurement and Control of Stomatal Resistance in the Field – Journal of Applied Ecology 2(2) : 345-355 – DOI: 10.2307/2401484 – https://www.jstor.org/stable/2401484?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/29/measurement-and-control-of-stomatal-resistance-in-the-field/ )

Montillet J. L., Hirt H. (2013) – New checkpoints in stomatal defense. – Trends Plant Sci. 18, 295–297. – 10.1016/j.tplants.2013.03.007 – [PubMed] [Cross Ref] – https://www.sciencedirect.com/science/article/pii/S1360138513000605 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/the-role-of-oxylipins-sa-and-aba-in-stomatal-immunity-in-response-to-pseudomonas-syringae/

Montillet J. L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A. V.,Douki T.,Bigeard J.,Laurière C.,Chevalier A., Castresana C.,Hirt H.5 (2013) – An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. – PLoS Biol. 11:e1001513. – doi: 10.1371/journal.pbio.1001513 – http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001513 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/lox1-a-gene-that-encodes-lipoxygenase-lox-in-guard-cells-plays-a-major-role-in-stomatal-defense/ )

Montoro A., Lopez-Urrea R., Sanchez J. M. (2016) – Meteorological parameters effect on diurnal and nocturnal transpiration and stomatal conductance grapevine – XI International Terroir Congress, July 2016, McMinnville, Oregon (USA) – https://www.infowine.com/en/technical_articles/meteorological_parameters_effect_on_diurnal_and_nocturnal_transpiration_and_stomatal_conductance_grapevine_sc_16978.htm – (On our blog : https://plantstomata.wordpress.com/2019/03/28/evapotranspiration-and-stomatal-conductance-are-affected-by-the-different-meteorological-parameters/ )

Mooney H. A., Chu C. (1983) – Stomatal responses to humidity of coastal and interior populations of a California shrub – Oecologia 57: 148-150 – DOI: 10.1007/BF00379572 – https://www.researchgate.net/publication/226080287_Stomatal_responses_to_humidity_of_coastal_and_interior_populations_of_a_Californian_shrub – (On our blog : https://plantstomata.wordpress.com/2019/05/08/stomatal-responses-to-humidity-7/ )

Mooney H. A., Field C., Vazquez-Yanes C., Chu C. (1983) – Environmental controls on stomatal conductance in a shrub of the humid tropics. Proceedings of the National Academy of Sciences USA 80: 1295–1297

Morales-Navarro S., Pérez-Díaz R., Ortega A., de Marcos A., Mena M., Fenoll C., Mena M., Fenoll C., González-Villanueva E., Ruiz-Lara S. (2018) – Overexpression of a SDD1-Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance in Arabidopsis and Cultivated Tomato – Frontiers in Plant Science 9: 940 – http://doi.org/10.3389/fpls.2018.00940 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039981/ – (On our blog : https://plantstomata.wordpress.com/2018/08/11/schsdd1-like-functions-in-a-similar-manner-to-atsdd1-in-the-stomatal-development-pathway/ )

Morecroft M. D., Roberts J. M. (1999) – Photosynthesis and stomatal conductance of mature canopy oak (Quercus robur) and sycamore (Acer pseudoplatanus) trees throughout the growing season – Functional Ecology 13: 332–342 – https://doi.org/10.1046/j.1365-2435.1999.00327.x – https://besjournals.onlinelibrary.wiley.com/doi/10.1046/j.1365-2435.1999.00327.x – (On our blog : https://plantstomata.wordpress.com/2018/11/06/photosynthesis-and-stomatal-conductance-of-mature-canopies-throughout-the-growing-season/ )

Mori I., Murata Y. (2011) – ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. – J. Plant Res. 124, 477–487. – doi: 10.1007/s10265-011- 0435-9 – PubMed Abstract | CrossRef Full Text | Google Scholar –http://link.springer.com/article/10.1007%2Fs10265-011-0435-9 – (On our blog : https://plantstomata.wordpress.com/2016/11/11/aba-signaling-in-stomata-2/ )

Mori I. C., Murata Y., Yang Y. Z., Munemasa S., Wang Y. F., Andreoli S., Tiriac H., Alonso J. M., Harper J. F., Ecker J. R., Kwak J. M., Schroeder J. I.  (2006) – CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2 + -permeable channels and stomatal closure. – PLoS Biol. 4:e327. – doi: 10.1371/journal.pbio.0040327 – pmid:17032064 – CrossRefMedline – CrossRef | PubMed | CAS | – https://www.ncbi.nlm.nih.gov/pubmed/17032064 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/cpk6-and-cpk3-cdpks-aba-and-stomatal-closure/ )

Mori I. C., Muto S. (1997) – Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. – Plant Physiol. 113, 833–839. – Google ScholarCrossRefAbstractMedline – PubMed Abstract | Google Scholar –https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12223647 – (On our blog : https://plantstomata.wordpress.com/2016/11/24/aba-and-a-48-kilodalton-protein-kinase-in-stomatal-protoplasts/ )

Mori I. C., Pinontoan R., Kawano T., Muto S. (2001) – Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. – Plant Cell Physiol. 42, 1383–1388. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/11773531 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/involvement-of-reactive-oxygen-species-in-signal-transduction-in-sa-induced-stomatal-closure/ )

Mori I. C., Uozumi N., Muto S. (2000) – Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cell – Plant and Cell Physiology2000;41:850-856. – Abstract/FREE Full Text – CrossRef | PubMed | CAS | –http://pcp.oxfordjournals.org/content/41/7/850.abstract?ijkey=e21d47298d062f959117cbcb070cfebf17d0c143&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/abr-kinase-phosphorylates-the-inward-rectifying-kchannel-in-response-to-treatment-of-stomatal-guard-cells-with-aba/ )

Moriana A. F., Villalobos J., Fereres E. (2002) – Stomatal and photosynthethic responses of olive (Olive europaea L.) leaves to water. – Plant, Cell Environ. 25: 395-405 – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.0016-8025.2001.00822.x – (On our blog : https://plantstomata.wordpress.com/2018/06/07/stomatal-and-photosynthethic-responses-to-water/ )

Morison J. I. L. (1985) – Sensitivity of stomata and water use efficiency to high CO2 –  Plant, Cell and Environment 8, 467–474. –Wiley Online Library | –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1985.tb01682.x/full – (https://plantstomata.wordpress.com/2016/11/27/co2-stomata-and-water-use-efficiency/

Morison J. I. L. (1987) – Intercellular CO2 concentration and stomata1 response to CO2. In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (Eds.). Stomata1 Function. Stanford University Press, California, pp. 229-251 – 

Morison J. I. L. (1998) – Stomatal response to increased CO2concentration – Journal of Experimental Botany 49: 443–452 – http://jxb.oxfordjournals.org/content/49/Special_Issue/443 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-sensitivity-of-plants-grown-in-different-co2-concentrations/ )

Morison J. I. L. (2003) –  Plant water use, stomatal control. In BA Stewart, TA Howell, eds, Encyclopedia of Water Science – Marcel Dekker, New York, pp 680–685

Morison J. I. L., Gifford R. M. (1983) – Stomatal sensitivity to carbon dioxide and humidity. A comparison of two C3 and C4 grass species – Plant Physiol. 71:789–796. – doi: http://dx.doi.org/10.1104/pp.71.4.789 – Abstract/FREE Full Text –http://www.plantphysiol.org/content/71/4/789.abstract?ijkey=cc55c7551ba49662b4448cd371092f668a51927d&keytype2=tf_ipsecsha – https://plantstomata.wordpress.com/2016/11/11/stomata-co2-and-humidity/ )

Morison J. I. L., Jarvis P. G. (1983) – Direct and indirect effects of light on stomata. II. In Commelina communis L. – Plant, Cell and Environment 6: 103-109 – https://doi.org/10.1111/j.1365-3040.1983.tb01882.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1983.tb01882.x – (On our blog : https://plantstomata.wordpress.com/2019/05/08/78260/ )

Morris R., Woolfenden H. (2018) – How do plants breathe ? – JIC 17 January 2018 – https://www.jic.ac.uk/news-and-events/blog-copy/2018/01/how-do-plants-breathe/ – (On our blog : https://plantstomata.wordpress.com/2018/02/15/66561/ )

Morsucci R., Curvetto N., Delmastro S.(1991) – Involvement of cytokinins and adenosine 3′,5′-cyclic monophosphate in stomatal movement in Vicia faba – Plant Physiol. Biochem. 29: 537-547, 1991. –  https://eurekamag.com/research/007/487/007487174.php – (On our blog : https://plantstomata.wordpress.com/2016/11/25/cytokinins-and-adenosine-3%E2%80%B25%E2%80%B2-cyclic-monophosphate-in-stomatal-movement/ )

Morsucci R., Curvetto N., Delmastro S.(1992) – High concentration of adenosine or kinetin riboside induces stomatal closure in Vicia faba, probably through inhibition of adenylate cyclase – Plant Physiol. Biochem. 30: 383-388, 1992. –https://eurekamag.com/research/007/398/007398046.php – https://plantstomata.wordpress.com/2016/11/11/adenosine-or-kinetin-riboside-induces-stomatal-closure/ )

Mott K. A. (1988) – Do stomata respond to CO2 concentrations other than intercellular? – Plant Physiol. 86 200–203. – Abstract/FREE Full Text – CrossRef |PubMed | –http://www.plantphysiol.org/content/86/1/200.abstract?ijkey=dc59583300881ff958ec03d17e92af3a61841e1d&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/stomata-intercellular-co2-concentration-and-co2-concentration-at-the-surface-of-the-leaf-and-in-the-stomatal-pore/ )

Mott K. A. (1995) – Effects of patchy stomatal closure on gas exchange measurements following abscisic acid treatment – Plant, Cell and Environment 18: 1291–1300 – https://doi.org/10.1111/j.1365-3040.1995.tb00188.x -https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1995.tb00188.x – (On our blog : https://plantstomata.wordpress.com/2018/12/20/stomatal-patches-can-be-temporary-and-that-patchiness-may-not-be-reflected-in-gas-exchange-data-if-the-range-of-stomatal-conductances-is-not-large/ )

Mott K. A. (2007) – Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves – Plant, Cell and Environment 30: 1444-1449. – DOI: 10.1111/j.1365-3040.2007.01720.x – https://www.researchgate.net/publication/5948120_Leaf_hydraulic_conductivity_and_stomatal_responses_to_humidity_in_amphistomatous_leaves – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-responses-to-humidity-in-amphistomatous-leaves/ )

Mott K. A. (2009) – Opinion: stomatal responses to light and CO2 depend on the mesophyll – Plant, Cell & Environment 32: 1479–1486 – https://doi.org/10.1111/j.1365-3040.2009.02022.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.02022.x – (On our blog : https://plantstomata.wordpress.com/2018/10/27/most-of-the-stomatal-response-to-red-light-and-co2-in-leaves-is-caused-by-an-unknown-signal-that-originates-in-the-mesophyll/ )

Mott K. A. (2012) – Stomatal responses to humidity and temperature are consistent with a vapor-phase mechanism – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-responses-to-humidity-and-temperature/ )

Mott K. A., Berg D., Hunt S., Peak D. (2014) – Is the signal from the mesophyll to the guard cells a vapour-phase ion? – Plant, Cell & Environment 37: 1184–1191 – https://doi.org/10.1111/pce.12226 – https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12226 – (On our blog : https://plantstomata.wordpress.com/2018/10/27/stomatal-responses-to-co2-and-light-are-caused-by-possibly-hydronium-ions/ )

Mott K. A., Buckley T. N. (1998) – Stomatal heterogeneity – J. Exp. Bot. 49: 407-418 – https://doi.org/10.1093/jxb/49.Special_Issue.407 -https://academic.oup.com/jxb/article/49/Special_Issue/407/508000 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/hydraulic-interactions-among-stomata-are-proposed-as-a-mechanism-that-may-explain-many-aspects-of-patchiness/ )

Mott K. A., Buckley T. N. (2000) – Patchy stomatal conductance: emergent collective behaviour of stomata – Trends Plant Sci 5: 258–262 – PMID: 10838617 – https://doi.org/10.1016/S1360-1385(00)01648-4 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Patchy-stomatal-conductance-emergent-collective-behaviour-of-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/06/patchy-stomatal-conductance-a-hitherto-unknown-type-of-emergent-collective-behaviour/ )

Mott K. A., Cardon Z. G., Berry J. A. (1993) – Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity – Plant, Cell & Environment 16: 25-34 – https://doi.org/10.1111/j.1365-3040.1993.tb00841.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1993.tb00841.x – (On our blog : https://plantstomata.wordpress.com/2018/11/07/patchy-stomatal-closure-can-be-a-factor-in-the-steady%e2%80%90state-responses-of-stomata-to-humidity/ )

Mott K.A., Denne F., Powell J. (1997) – Interactions among stomata in response to perturbations in humidity – Plant Cell Environ. 20(9): 1098–1107 – DOI: 10.1046/j.1365-3040.1997.d01-138.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-138.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-responding-to-perturbations-in-humidity/ )

Mott K. A., Franks P. J. (2001) – The role of epidermal turgor in stomatal interactions following a local perturbation in humidity – Plant Cell Environ 24: 657–662 – https://doi.org/10.1046/j.0016-8025.2001.00705.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.0016-8025.2001.00705.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/neighbouring-stomata-can-interact-through-the-influence-of-transpiration-on-epidermal-turgor-2/ )

Mott K. A., Gibson A. C., O’Leary J. W. (1982) – The adaptive significance of amphistomatic leaves – Plant, Cell & Environment 5: 455–460 – DOI: 10.1111/1365-3040.ep11611750 – | CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11611750/abstract;jsessionid=81D3541DAB67DFFA4699036AD4F759B6.f01t04 – (https://plantstomata.wordpress.com/2016/12/01/the-effect-of-developing-stomata-on-the-upper-surface-as-well-as-the-lower/ )

Mott K. A., Michaelson O. (1991) – Amphistomy as an Adaptation to High Light Intensity in Ambrosia cordifolia (Compositae) – American Journal of Botany 78(1) : 76-79 – DOI: 10.2307/2445230 – https://www.jstor.org/stable/2445230?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/09/high-light-intensity-amphistomy-and-maximum-stomatal-conductance/ )

Mott K. A., O’Leary J. W. (1984) – Stomatal Behavior and CO2 Exchange Characteristics in Amphistomatous Leaves – Plant Physiology https://doi.org/10.1104/pp.74.1.47http://www.plantphysiol.org/content/74/1/47 – (On our blog : https://plantstomata.wordpress.com/2018/12/21/differences-in-conductance-between-upper-and-lower-stomates-are-not-adaptations-to-differences-in-co2-exchange-characteristics/ )

Mott K. A., Parkhurst D. F. (1991) – Stomatal responses to humidity in air and helox – Plant, Cell & Environment 14(5): 509–515 – DOI: 10.1111/j.1365-3040.1991.tb01521.x – CrossRefWiley Online Library | http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01521.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/air-humidity-helox-and-stomata/ )

Mott K. A., Peak D. (2007) – Stomatal patchiness and task-performing networks – Annals of Botany 99: 219-226. – doi:  10.1093/aob/mcl234https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802990/ – https://plantstomata.wordpress.com/2016/11/06/stomatal-patchiness-and-networks/ )

Mott K. A., Peak D. (2010) – Stomatal responses to humidity and temperature in darkness – Plant Cell Environ. 33: 1084-1090 – doi: 10.1111/j.1365-3040.2010.02129.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.2010.02129.x – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-responses-to-humidity-and-temperature-in-darkness/

Mott K. A., Peak D. (2013) – Testing a vapour-phase model of stomatal responses to humidity – Plant, Cell & Environment 36, 936–944. – DOI: 10.1111/pce.12026 – Wiley Online Library | CAS – http://onlinelibrary.wiley.com/doi/10.1111/pce.12026/full – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomatal-responses-to-humidity-4/ )

Mott K. A., Peak D. (2018) – Effects of the Mesophyll on Stomatal Responses in Amphistomatous Leaves – Plant, Cell & Ennvironment, published online and citable.  – https://doi.org/10.1111/pce.13411 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13411?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/07/mesophyll-and-stomatal-responses-in-amphistomatous-leaves/ )

Mott K. A., Shope J. C., Buckley T. N. (1999) – Effects of humidity on light-induced stomatal opening: evidence for hydraulic coupling among stomata – J Exp Bot 50: 1207–1213 – DOI: 10.1093/jexbot/50.336.1207 – https://academic.oup.com/jxb/article/50/336/1207/515760 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/effects-of-humidity-on-light-induced-stomatal-opening/ )

Mott K. A., Sibbernsen E. D., Shope J. C. (2008) – The role of the mesophyll in stomatal responses to light and CO2 – Plant, Cell & Environment 31, 1299–1306. – DOI: 10.1111/j.1365-3040.2008.01845.x – Wiley Online Library | PubMed | CAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01845.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-co2-and-light-occurs-in-response-to-a-signal-generated-by-the-mesophyll/ )

Mott K. A., Takemoto J. Y. (1989) – Syringomycin, a bacterial phytotoxin, closes stomata – Plant Physiol. 90: 1435–1439 – DOI: https://doi.org/10.1104/pp.90.4.1435  – [PMC free article] [PubMed] – http://www.plantphysiol.org/content/90/4/1435 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/syringomycin-and-aba-activate-the-same-k-export-system-in-stomata/ )

Mrinalini T., Latha Y. K., Raghavendra A. S., Das V. S. R. (1982) – Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis – New Phytology 91, 413–418. – doi:10.1111/j.1469-8137.1982.tb03320.x –Wiley Online Library | CrossRefWeb of ScienceGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1982.tb03320.x/full – (https://plantstomata.wordpress.com/2016/11/27/bicarbonate-fusicoccin-and-stomatal-opening/ )

Muchow R. C. (1985) – Stomatal behavior in grain legumes grown under different soil water regimes in a semi-arid tropical environment – Field Crops Research 11: 291–307 – https://doi.org/10.1016/0378-4290(85)90110-8https://www.sciencedirect.com/science/article/pii/0378429085901108?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/06/08/stomatal-behavior-in-grain-legumes-grown-under-different-soil-water-regimes/ )

Muchow R. C., Ludlow M. M., Fisher M. J., Myers R. J. K.  (1980) – Stomatal behaviour of kenaf and sorghum in a semiarid tropical environment. I. During the night – Australian Journal of Plant Physiology 7: 609–619 – https://doi.org/10.1071/PP9800609 – http://www.publish.csiro.au/FP/PP9800609 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/the-importance-of-night-time-stomatal-opening-on-the-water-relations-of-a-crop/ )

Muchow R. C., Sinclair T. R. (1989) – Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench – Plant, Cell and Environment 12, 425–431. – DOI: 10.1111/j.1365-3040.1989.tb01958.x – CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01958.x/abstract – (https://plantstomata.wordpress.com/2016/11/27/stomatal-density-and-stomatal-size-among-genotypes-of-sorghum/ )

Muir C. D. (2015) – Making pore choices: repeated regime shifts in stomatal ratio – Proc. Royal Soc. B 282(1813) :   – DOI: 10.1098/rspb.2015.1498 – http://rspb.royalsocietypublishing.org/content/royprsb/282/1813/20151498.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-ratio-hypostomy-and-amphistomy/ )

Muir C. D. (2017) – Light and growth form interact to shape stomatal ratio among British angiosperms – New Phytologist Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14956 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14956/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/31/light-and-growth-form-stomatal-ratio-hypostomy-and-amphistomy/)

Muir C. D. (2018) – Light and growth form interact to shape stomatal ratio among British angiosperms – New Phytol. 218 (1): 242–252 – DOI: 10.1111/nph.14956 – https://www.ncbi.nlm.nih.gov/pubmed/29288622 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/light-and-growth-form-interact-to-shape-stomatal-ratio/ )

Muir C. D., Conesa M. A., Galmés J. (2015) – Independent evolution of ab- and adaxial stomatal density enables adaptation – bioRxiv 034355 – doi: https://doi.org/10.1101/034355https://www.biorxiv.org/content/early/2015/12/15/034355 –https://www.biorxiv.org/content/biorxiv/early/2015/12/15/034355.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/independent-evolution-of-stomatal-function-on-each-leaf-surface/ )

Mukha D., Ostretsov B., Mukha D., Brodsky L. (2015) – Stomatal Movement and Stomatal Formation Mechanisms Utilize the Same
Regulatory Genes – Botanica Pacifica 4(2): 95–101 –
DOI: 10.17581/bp.2015.04207 – http://botsad.ru/media/aux/bp/BP_2015_4_2_mukha.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-movement-and-stomatal-formation-mechanisms/ )

Mukhtar N., Hameed M., Ashraf M., Ahmed R., (2013) – Modifications in stomatal structure and function in Cenchrus ciliaris L. and Cynodon dactylon (L.) pers. in response to cadmium stress – Pakistan Journal of Botany 45(2): 351-357 – https://www.pakbs.org/pjbot/PDFs/45(2)/01.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/the-effect-of-cadmium-on-modifications-in-stomatal-structure-and-function/ )

Müller N. J. C. (1872) – Die Anatomie die Mechanik der Spaltöffnung – Jahrb. f. wiss. Bot. 8: 75-116 –

Müller‐Röber B., Ellenberg J., Provart N., Willmitzer L., Busch H., Becker D., Dietrich P., Hoth S., Hedrich R. (1995) – Cloning and electrophysiological analysis of KST1, an inward rectifying K+channel expressed in potato guard cells – EMBO Journal 14: 2409-2416 – DOI: 10.1002/j.1460-2075.1995.tb07238.x – https://www.ncbi.nlm.nih.gov/pubmed/7781596 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/kst1-represents-a-major-k-uptake-channel-in-stomatal-guard-cells/ )

Müller-Röber B., Sonnewald U., Willmitzer L. (1993) – Expression cassette and plasmids for a guard cell specific expression and their use for the introduction of transgenic plant cells and plants – International Patent Application No. WO 93/18169. –https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1993018169 – (https://plantstomata.wordpress.com/2016/12/01/the-transcriptional-regulatory-starter-region-for-a-guard-cell-specific-gene-expression/ )

Mullinax J. B., Palevitz B. A. (1989) – Microtubule reorganization accompanying preprophase band formation in guard mother cells of Avena sativa – Protoplasma 149: 89–94 – https://doi.org/10.1007/BF01322981 – https://link.springer.com/article/10.1007/BF01322981#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/07/microtubule-reorganization-accompanying-preprophase-band-formation-in-stomatal-guard-mother-cells/ )

Mumm P., Imes D., Martinoia E., Al-Rasheid K. A. S., Geiger D.,  Marten I.,  Hedrich R. (2013) – C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1 – Molecular Plant 6(5): 1550-1563 – http://www.zora.uzh.ch/id/eprint/87851/ – (On our blog : https://plantstomata.wordpress.com/2018/01/19/c-terminus-mediated-voltage-gating-of-guard-cell-anion-channel-quac1-stomata/ )

Munemasa S., Hauser F., Park J., Waadt R., Brandt B., Schroeder J. I. (2015) – Mechanisms of abscisic acid-mediated control of stomatal aperture – Curr Opin Plant Biol. 28: 154–162 – doi:  10.1016/j.pbi.2015.10.010 – CrossRefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679528/ – (On our blog : https://plantstomata.wordpress.com/2018/06/07/mechanisms-of-aba-mediated-control-of-stomatal-aperture/ )

Munemasa S., Hossain M. A., Nakamura Y., Mori I. C., Murata Y. (2011) – The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. – Plant Physiol. 155, 553–561. – doi: 10.1104/pp.110.162750 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=20978156 – (https://plantstomata.wordpress.com/2016/12/01/cpk6-functions-as-a-positive-regulator-of-meja-signaling-in-arabidopsis-stomata/

Munemasa S., Mori I. C., Murata Y. (2011) – Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. – Plant Signal. Behav. 6, 939–941. – doi: 10.4161/psb.6.7.15439 –  [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/21681023 – (On our blog : https://plantstomata.wordpress.com/2017/01/13/meja-signaling-and-signal-crosstalk-between-meja-and-aba-pathways-in-stomata/ )

Munemasa S., Muroyama D., Nagahashi H., Nakamura Y., Mori I. C., Murata Y. (2013) – Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione – Front. Plant Sci. 4:472 – 10.3389/fpls.2013.00472 – [PMC free article] [PubMed] [Cross Ref] – https://core.ac.uk/download/pdf/82837615.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/08/regulation-of-reactive-oxygen-species-mediated-aba-signaling-in-stomata-and-drought-tolerance-by-glutathione/

Munemasa S., Oda K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Murata Y. (2007) – The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. – Plant Physiol. 143, 1398–1407 – doi: 10.1104/pp.106.091298 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed]. – http://www.plantphysiol.org/content/143/3/1398.long – (On our blog : https://plantstomata.wordpress.com/2017/01/18/hormonal-signaling-interaction-between-aba-and-meja-in-stomata/ )

Munns R., King R. W. (1988) – Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants – Plant Physiol. 88: 703-708. –CrossRef |PubMed |CAS –https://www.ncbi.nlm.nih.gov/pubmed/16666371 – (https://plantstomata.wordpress.com/2016/12/01/inhibitory-activity-of-stomatal-transpiration-was-triggered-partly-by-leaf-water-deficit-and-partly-by-root-water-deficit/ )

Murata Y., Mori I. C., Munemasa S. (2015) – Diverse stomatal signaling and the signal integration mechanism. – Annu. Rev. Plant Biol. 66, 369–392. – doi: 10.1146/annurev-arplant-043014-114707 – https://www.ncbi.nlm.nih.gov/pubmed/25665132 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/signal-integration-and-signal-interaction-in-stomatal-movement/ )

Murata Y., Pei Z. M., Mori I. C., Schroeder J. I. (2001) – Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants – Plant Cell 13: 2513–2523 – DOI: https://doi.org/10.1105/tpc.010210 – http://www.plantcell.org/content/13/11/2513 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/early-aba-signal-transduction-aba-abi1-1-nadph-dependent-ros-production-abi2-1-icaca2-channel-activation-followed-by-stomatal-closing/ )

Murray M., Soh W. K., Yiotis C., Batke S., Parnell A. C., Spicer R. A., Lawson T., Caballero R., Wright I. J., Purcell C., McElwain J. C. (2019) – Convergence in Maximum Stomatal Conductance of C3 Woody Angiosperms in Natural Ecosystems Across Bioclimatic Zones – Front. Plant Sci., 07 May 2019 – https://doi.org/10.3389/fpls.2019.00558https://www.frontiersin.org/articles/10.3389/fpls.2019.00558/full – (On our blog :

Musa S., Awayewaserere K., Njoku K. (2019) – Effects of Dump Site Soil on the Leaf Structures of Luffa cylindrical (Sponge gourd) and Amaranthus viridis (Green Amaranth) – J. Appl. Sci. Environ. Manage. 23 (2) 307-311 – DOI: https://dx.doi.org/10.4314/jasem.v23i2.17https://www.academia.edu/38694216/Effects_of_Dump_Site_Soil_on_the_Leaf_Structures_of_Luffa_cylindrical_Sponge_gourd_and_Amaranthus_viridis_Green_Amaranth?email_work_card=title– (On our blog : https://plantstomata.wordpress.com/2019/04/05/changes-in-stomatal-traits-grown-on-dumpsite-soils-are-an-indication-of-hms-such-as-zn-and-pb-present/ )

Musselman R. C., Minnick T. J. (2000) – Nocturnal stomatal conductance and ambient air quality standards for ozone – Atmospheric Environment 34: 719–733 – https://doi.org/10.1016/S1352-2310(99)00355-6 – https://www.sciencedirect.com/science/article/pii/S1352231099003556- (On our blog : https://plantstomata.wordpress.com/2018/11/08/nocturnal-stomatal-conductance-and-ambient-air-quality-standards-for-ozone/ )

Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. (2002) – Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. – Plant Cell 14, 3089–3099 (2002). – doi: 10.1105/tpc.007906 – CAS – Article – PubMed – PubMed Central – http://www.plantcell.org/lens/plantcell/14/12/3089 – (On our blog : https://plantstomata.wordpress.com/2016/03/29/ost1-protein-kinase-and-stomatal-movement/)

Mutiibwa D., Irmak S. (2013) – Transferability of jarvis-type models developed and re-parameterized for maize to estimate stomatal resistance of soybean: analyses on model calibration, validation, performance, sensitivity, and elasticity – Biological Systems Engineering: Papers and Publications. 400. –http://digitalcommons.unl.edu/biosysengfacpub/400 – http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1402&context=biosysengfacpub – (On our blog : https://plantstomata.wordpress.com/2017/11/05/stomatal-resistance-of-soybean/ )

Mwendia S., Yanusa B. M., Whalley R. D. B., Bruhl J. J. (2019) – Osmotic adjustment, stomata morphology and function show contrasting responses to water stress in mesic and hydric grasses under elevated CO2 concentration – Photosynthetica 57(1): 121-131 – https://doi.org/10.32615/ps.2019.016 –https://hdl.handle.net/10568/99321https://cgspace.cgiar.org/handle/10568/99321 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/osmotic-adjustment-stomata-morphology-and-function-show-contrasting-responses-to-water-stress-under-elevated-co2-concentration/ )

Myazawa S.-I., Livingston N. J., Turpin D. H. (2006) – Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany, 57(2): 373–380 – Phenotypic Plasticity and the Changing Environment Special Issue – doi:10.1093/jxb/eri278 – Stomatal_development_in_new_leaves_is_re.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/stomatal-conductance-of-mature-leaves-has-a-regulatory-effect-on-stomatal-development-of-expanding-leaves/ )

Nabity P. D., Haus M. J., Berenbaum M. R., DeLucia E. H. (2013) – Leaf-galling Phylloxera on grapes reprograms host metabolism and morphology – PNAS 2013 October, 110 (41) 16663-16668 – https://doi.org/10.1073/pnas.1220219110 – http://www.pnas.org/content/110/41/16663.full – (On our  blog : https://wordpress.com/post/plantstomata.wordpress.com/66362 )

Nadeau J. A. (2009) – Stomatal development: new signals and fate determinants – Current Opinion in Plant Biology 12: 29–35 – [PMC free article] [PubMed] – https://doi.org/10.1016/j.pbi.2008.10.006 – https://www.sciencedirect.com/science/article/pii/S1369526608001763 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/72680/

Nadeau J. A., Sack F. D. (2002) – Stomatal Development in Arabidopsis – The Arabidopsis Book  1: e0066. 2002 – https://doi.org/10.1199/tab.0066 – http://www.bioone.org/doi/abs/10.1199/tab.0066 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/stomatal-development-in-arabidopsis-3/ )

Nadeau J. A., Sack F. D. (2002) – Control of stomatal distribution on the Arabidopsis leaf surface – Science 296: 1697–1700. – DOI: 10.1126/science.1069596 – Abstract/FREE Full Text Google Scholar – View ArticlePubMed – http://science.sciencemag.org/content/296/5573/1697.abstract?ijkey=61fdf63a0df9f80f6399baa35458f421570c77ef&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/10/25/control-of-stomatal-distribution/ )

Nadeau J. A., Sack F. D. (2003) – Stomatal development: cross talk puts mouths in place – Trends in Plant Science 8: 294–299. – http://dx.doi.org/10.1016/S1360-1385(03)00102-X – CrossRefMedlineWeb of Science  – http://www.sciencedirect.com/science/article/pii/S136013850300102X – (On our blog : https://plantstomata.wordpress.com/2016/10/25/stomatal-patterning-2/ )

Naidoo G., Von Willert D. J. (1994) – Stomatal oscillations in the mangrove Avicennia germinans – Functional Ecology 8: 651–657. – CrossRef – https://www.jstor.org/stable/2389928?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/01/18/stomatal-oscillations-in-a-mangrove/ )

Nakajima N., Saji H., Aono M., Kondo N. (1995) – Isolation of cDNA for a plasma membrane H+-ATPase from guard cells of Vicia faba L. – Plant Cell Physiol. 36: 919–924 – https://doi.org/10.1093/oxfordjournals.pcp.a078839 – https://academic.oup.com/pcp/article-abstract/36/5/919/1879069?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/11/08/isolation-of-cdna-for-a-plasma-membrane-h-atpase-from-stomatal-guard-cells/ )

Nakamura R. L., McKendree W. L., Hirsch R. E., Sedbrook J. C., Gaber R. F., Sussman M. R. (1995) – Expression of an Arabidopsis potassium channel gene in guard cells. – Plant Physiol. 109, 371–374. – doi: 10.1104/pp.109.2.371 – Plant Physiology 109, 371–374. – doi: http://dx.doi.org/10.1104/pp.109.2.371 – Abstract – http://www.plantphysiol.org/content/109/2/371.abstract?ijkey=689d58408d6b9a54709eb09fb192130693cc858f&keytype2=tf_ipse – (On our blog : https://plantstomata.wordpress.com/2017/01/25/a-potassium-channel-gene-in-stomata/ )

Nandy P. (Datta), Das S., Ghose M. (2005) – Relation of leaf micromorphology with photosynthesis and water efflux in some Indian mangroves – Acta Bot. Croat. 64 (2): 331–340 – ISSN 0365–0588Nandy_Datta_et_al_2005.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/05/relation-of-leaf-micromorphology-stomata-with-photosynthesis-and-water-efflux/ )

Nandy (Datta) P., Ghose M. (2001) – Photosynthesis and water-use efficiency of some mangroves from Sundarbans, India – J. Plant Biol. 44: 213–219 –

Nardini A., Salleo S. (2000) – Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? – Trees15: 14–24 – doi:10.1007/s004680000071 – http://link.springer.com/article/10.1007%2Fs004680000071 – (On our blog : https://plantstomata.wordpress.com/2017/01/25/stomata-and-sensing-or-preventing-xylem-cavitation/ )

Naulin P. I., Valenzuela G., Estay S. A. (2016) – New Phytologist, Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14305 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14305/abstract – https://plantstomata.wordpress.com/2016/11/08/point-pattern-analysis-and-size-point-and-disc-null-models-for-stomata-distribution/ )

Negash L., Bjorn L. O. (1986) – Stomata closure by UV radiation – Physiol. Plant 66: 360-364 – https://doi.org/10.1111/j.1399-3054.1986.tb05935.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb05935.x – (On our blog : https://plantstomata.wordpress.com/2018/10/15/stomata-closure-by-uv-radiation/

Negash L., Jensén P., Bjorn L. O. (1987) – Effects of ultraviolet radiation on accumulation and leakage of 86Rb+ in guard cells of Vicia faba –  Physiol Plant 69: 200–204 – https://doi.org/10.1111/j.1399-3054.1987.tb04276.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1987.tb04276.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/effects-of-ultraviolet-radiation-on-accumulation-and-leakage-of-86rb-in-stomata/ )

Negi J., Hashimoto-Sugimoto M., Kusumi K., Iba K. (2014) – New Approaches to the Biology of Stomatal Guard Cells  – Plant and Cell Physiology 55(2):  241–250,- https://doi.org/10.1093/pcp/pct145 – https://academic.oup.com/pcp/article/55/2/241/1859195 – (On our blog : https://plantstomata.wordpress.com/2018/09/07/new-approaches-to-the-biology-of-stomata/ )

Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K. (2008) – CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells – Nature 452: 483-486 – doi: 10.1038/nature06720 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – Medline– http://www.nature.com/nature/journal/v452/n7186/full/nature06720.html – (On our blog : https://plantstomata.wordpress.com/2017/01/25/co2-regulator-slac1-and-its-homologues-in-stomata/ )

Negi J., Moriwaki K., Konishi M., Yokoyama R., Nakano T., Kusumi K., Hashimoto-Sugimoto M., Schroeder J. I., Nishitani K., Yanagisawa S., Iba K. (2013) – A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis – Curr. Biol. 23: 479-484 – doi: 10.1016/j.cub.2013.02.001 – https://www.sciencedirect.com/science/article/pii/S0960982213001425 – (On our blog : https://plantstomata.wordpress.com/2018/11/10/scap1-regulates-essential-processes-of-stomatal-guard-cell-maturation/ )

Negi J., Munemasa S., Song B., Tadakuma R., Fujita M., Azoulay-Shemer T., Engineer C. B., Kusumi K., Nishida I., Schroeder J. I., Iba K. (2018) – Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells – PNAS September 4, 2018 115 (36) 9038-9043; published ahead of print August 20, 2018 https://doi.org/10.1073/pnas.1810458115 – http://www.pnas.org/content/115/36/9038 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71065

Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P, Ribeiro D, Wilson I. (2008) – Nitric oxide, stomatal closure, and abiotic stress. – J. Exp. Bot. 59, 165–176. – doi: 10.1093/jxb/erm293 – https://www.ncbi.nlm.nih.gov/pubmed/18332225 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/two-processes-that-both-involve-no-as-a-key-signalling-intermediate-in-stomata/ )

Neill S. J., Desikan R., Clarke A., Hancock, J. T. (2002) – Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. – Plant Physiol. 128: 13–16. – doi: 10.1104/pp.010707 – CrossRef | CAS | PubMed |FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/128/1/13 – (https://plantstomata.wordpress.com/2017/01/26/aba-signaling-in-stomata-and-nitric-oxide/ )

Nejad A. R., van Meeteren U. (2005) – Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity – Physiologia Plantarum 125: 324-332 – https://doi.org/10.1111/j.1399-3054.2005.00567.x – http://library.wur.nl/WebQuery/wurpubs/341172 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/stomatal-response-characteristics-of-plants-grown-at-high-relative-air-humidity/ )

Nejidat A., Roth-Bejerano N., Ital C. (1986) – K, Mg-ATPase activitiy in guard cells of Commelina communis – Physiol. Plant. 68: 315-319 – https://doi.org/10.1111/j.1399-3054.1986.tb01932.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb01932.x – (On our blog : https://plantstomata.wordpress.com/2018/11/08/a-mg2%e2%80%90dependent-k%e2%80%90stimulated-atpase-activity-was-detected-in-microsomal-preparations-from-stomatal-guard-cell-protoplasts/ )

Nelson S. D., Mayo J. M. (1975) – The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp. – Canadian Journal of Botany, 1975, 53(1): 1-7 –  https://doi.org/10.1139/b75-001 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-001 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/guard-cell-chlorophyll-is-not-necessary-for-stomatal-functioning-2/ )

Nemeskeri E., Molnar K., Vigh R., Nagy J., Dobos A. (2015) – Relationships between stomatal behaviour, spectral traits and water use and productivity of green peas (Pisum sativum L.) in dry seasons – Acta Physiol Plant 37: 1–16 – https://doi.org/10.1007/s11738-015-1776-0https://link.springer.com/article/10.1007/s11738-015-1776-0#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/stomatal-behaviour-spectral-traits-and-water-use-and-productivity-of-green-peas/ )

Nerkar Y. S., Wilson D., Lawes D. A. (1981) – Genetic variation in stomatal characteristics and behavior (water use and growth in five Vicia faba) genotypes under contrasting soil moisture regimes – Euphytica 30: 335–345 – https://doi.org/10.1007/BF00033995https://link.springer.com/article/10.1007/BF00033995#citeas – (On our blog : https://plantstomata.wordpress.com/2019/05/25/genetic-variation-in-stomatal-characteristics-and-behavior/ )

New Phytologist Symposium Nr. 29 (2012) – Stomata 2012 — https://www.newphytologist.org/symposia/29 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/65558 )

Ng C. K. Y., Carr K., McAinsh M. R., Powell B., Hetherington A. M. (2001) – Drought-induced guard cell signal transduction involves sphingosine- 1-phosphate. – Nature 410, 596–599. doi: 10.1038/35069092 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.nature.com/nature/journal/v410/n6828/full/410596a0.html – (https://plantstomata.wordpress.com/2017/01/26/sphingosine-1-phosphate-and-stomata/ )

Ng C.K.-Y., McAinsh M.R., Gray J.E., Hunt L., Leckie C.P., Mills L., Hetherington A.M.(2001) – Calcium-based signalling systems in guard cells – New Phytol. 151: 109-120 – DOI: 10.1046/j.1469-8137.2001.00152.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00152.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/07/calcium-based-signalling-pathways-have-been-identified-in-stomata/ )

Ng P. A. P. (1979) – Response of stomata to environmental variables in Pinus sylvestris L – PhD Thesis. University of Edinburgh.

Ng P. A. P., Jarvis P. G. (1980) – Hysteresis in the response of stomatal conductance in Pinus sylvestris L needles to light – observations and a hypothesis – Plant, Cell & Environment 3: 207–216 – https://doi.org/10.1111/1365-3040.ep11581594https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11581594 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/hysteresis-in-the-response-of-stomatal-conductance-to-light/ )

Ni B. R., Pallardy S. G. (1992) – Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms – Plant Physiol 99: 1502–1508 – https://doi.org/10.1104/pp.99.4.1502http://www.plantphysiol.org/content/99/4/1502 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/patchy-stomatal-closure-under-mild-water-stress-might-be-important-for-water-stress-induced-inhibition-of-photosynthesis/ )

Ni D. A. (2012) – Role of vacuolar invertase in regulating Arabidopsis stomatal opening – Acta Physiol. Plant. 34: 2449–2452. – doi: 10.1007/s11738-012-1036-5 – CrossRef Full Text | Google Scholar  – https://link.springer.com/article/10.1007/s11738-012-1036-5 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-aperture-correlated-with-vacuolar-invertase/ )

Niglas A., Alber M., Suur K., Jasinska A. K., Kupper P., Sellin A. (2015) – Does increased air humidity affect stomatal morphology and functioning in hybrid aspen? – Botany 93: 243–250 – dx.doi.org/10.1139/cjb-2015-0004 – http://www.nrcresearchpress.com/cjb – (On our blog : https://plantstomata.wordpress.com/2018/02/04/air-humidity-stomatal-morphology-and-functioning/ )

Niinemets Ü, Reichstein M., Staudt M., Seufert G., Tenhunen J. D. (2002) – Stomatal Constraints May Affect Emission of Oxygenated Monoterpenoids from the Foliage of Pinus pinea –  Plant Physiol. 130(3): 1371–1385 – doi:  10.1104/pp.009670 – Abstract/FREE Full TextGoogle Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166656/ – (On our blog : https://plantstomata.wordpress.com/2018/06/07/stomatal-constraints-may-affect-emission-of-oxygenated-monoterpenoids/ )

Niinemets Ü, Reichstein M. (2003) – Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained – JOURNAL OF GEOPHYSICAL RESEARCH, 108, NO. D7, 4208 – doi:10.1029/2002JD002620 – Controls_on_the_emission_of_plant_volati.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/23/emission-of-plant-volatiles-through-stomata/ )

Nijs I., Ferris R., Blum H., Hendrey G., Impens I. (1997) – Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE) – Plant, Cell & Environment 20: 1041–1050 –

Nir I., Shohat H., Panizel I., Olszewski N. E., Aharoni A., Weiss D. (2017) – The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure – The Plant Cell 29(12): – tpc.00542.201 – DOI: 10.1105/tpc.17.00542 – http://www.plantcell.org/content/early/2017/11/17/tpc.17.00542 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/della-promotes-stomatal-closure-independently-of-its-effect-on-growth/ )

Nishida K. (1963) – Studies on stomatal movement of crassulacean plants in relation to the acid metabolism – Physiol. Plant. 16: 281–310 – https://doi.org/10.1111/j.1399-3054.1963.tb08309.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1963.tb08309.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-movement-and-acid-metabolism/ )

Niu M. L., Huang Y., Sun S. T., Sun J. Y., Cao H. S., Shabala S., Bie Z. L. (2018) – Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure – Journal of Experimental Botany 69: 3465–3476 – DOI: 10.1093/jxb/erx386 – https://www.ncbi.nlm.nih.gov/pubmed/29145593 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/pumpkin-grafted-cucumber-plants-increase-their-salt-tolerance-by-controlling-na-exclusion-and-stomatal-closure/ )

Niu M., Xie J., Chen C., Cao H., Sun J., Kong Q., Shabala S., Shabala L., Huang Y., Bie Z. (2018) – An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species – Journal of Experimental Botany, 69(20): 4945–4960 – doi:10.1093/jxb/ery251 – https://watermark.silverchair.com/ery251.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAhcwggITB – (On our blog : https://plantstomata.wordpress.com/2018/10/08/stomata-and-salt-tissue-tolerance-in-cucurbita-species/

Nobel P. S., Hartsock T. L. (1979) – Environmental influences on open stomates of a crassulacean acid metabolism plant, Agave deserti – Plant Physiol. 63: 63–66 – PMCID: PMC542767 – PMID: 16660695 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC542767/ – (On our blog : https://plantstomata.wordpress.com/2019/04/04/environmental-influences-on-open-stomates-of-a-crassulacean-acid-metabolism-plant/ )

Nogués S., Allen D. J., Morison J. I. L., Baker N. R., (1999) – Characterization of stomatal closure caused by ultraviolet-B radiation – Plant Physiol 121: 489–496 – https://doi.org/10.1104/pp.121.2.489http://www.plantphysiol.org/content/121/2/489?ijkey=d18dc382f6c7fea459566ef091e7e48e3a049479&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/06/27/a-direct-effect-of-uv-b-on-stomata/ )

Nomura H., Komori T., Kobori M., Nakahira Y., Shiina T. (2008) – Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. – Plant J. 53: 988–998 – doi: 10.1111/j.1365-313X.2007.03390.x – https://www.ncbi.nlm.nih.gov/pubmed/18088326 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/thylakoid-membrane-localized-cas-is-essential-for-ca2ext-induced-ca2cyt-transients-and-stomatal-closure/ )

Nonami H., Schulze E.-D. (1989) – Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves – Planta 177: 35–46 – https://doi.org/10.1007/BF00392152 – https://link.springer.com/article/10.1007%2FBF00392152#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/09/evaporation-of-water-is-mainly-occurring-from-mesophyll-cells-and-peristomatal-transpiration-could-be-less-important/ )

Nonami H., Schulze E.‐D., Ziegler H. (1990) – Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential – Planta 183, 57–64. – doi: 10.1007/BF00197567. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/24193533 – (https://plantstomata.wordpress.com/2017/01/26/stomatal-movement-in-response-to-air-humidity/ )

Noormets A., Sober A., Pell E. J., Dickson R. E., Podila G. K., Sôber J., Isebrands J. G., Karnosky D. F. (2001) – Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3 – Plant Cell Environ. 24, 327–336. doi: 10.1046/j.1365-3040.2001.00678.x – CrossRef Full Text | Google Scholar – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.4303&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-and-non-stomatal-limitation-to-photosynthesis-when-exposed-to-elevated-co2-and-or-o3/ )

Novick K. A., Miniat C. F., Vose J. M. (2016) – Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory – Plant, Cell & Environment 39(3): 583-596 – Station ID: JRNL-SRS-39doi: 10.1111/pce.12657 – – https://www.srs.fs.fed.us/pubs/50416 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/a-model-linking-stomatal-optimization-and-cohesion-tension-theory-2/ )

Nunes-Nesi A., Carrari F., Gibon Y., Sulpice R., Lytovchenko A., Fisahn J.,  Graham J., Ratcliffe R. G, Sweetlove L. J, Fernie A. R. (2007) – Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function – Plant J. 50, 1093–1106. doi: 10.1111/j.1365-313X.2007.03115.x – PubMed Abstract | CrossRef Full Text | Google Scholar https://www.ncbi.nlm.nih.gov/pubmed/17461782 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/deficiency-of-mitochondrial-fumarase-activity-impairs-photosynthesis-via-an-effect-on-stomatal-function/ )

Nutman F. J. (1937) – Studies of the physiology of Coffea arabica. II. Stomatal movement in relation to photosynthesis under natural conditions – Ann. Bot. n.S. 1(4): 682-693. – https://doi.org/10.1093/oxfordjournals.aob.a083497https://academic.oup.com/aob/article-abstract/1/4/681/90618?redirectedFrom=fulltext – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64987 )

Obiremi E. O., Oladele F. A. (2001) – Water-conserving stomatal systems in selected Citrus species – S. Afr. J. Bot. 67(2): 258 –260 – https://ac.els-cdn.com/S0254629915311273/1-s2.0-S0254629915311273-main.pdf?_tid=48eca991-8fe4-4743-85fc-5127236bee40&acdnat=1528555820_e082676094418811436c37d6472866f2 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/water-conserving-stomatal-systems-in-citrus/ )

Obulareddy N., Panchal S., Melotto M. (2013) – Guard cell purification and RNA isolation suitable for high throughput transcriptional analysis of cell- type responses to biotic stresses – Mol. Plant Microbe Interact. 26, 844–849 – doi: 10.1094/MPMI-03-13-0081-TA – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982617/ – (On our blog : https://plantstomata.wordpress.com/2018/06/09/guard-cell-purification-and-rna-isolation/ )

O’Carrigan A., Hinde E., Lu N., Xu X.-Q., Duan H., Huang G., Mak M., Belotti B., Chen Z.-H. (2014) – Effects of light irradiance on stomatal regulation and growth of tomato – Environ. Exp. Bot. 98, 65–73. doi: 10.1016/j.envexpbot.2013.10.007 –CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0098847213001512 – (https://plantstomata.wordpress.com/2017/01/26/stomata-as-physiological-markers-for-assessment-of-performance-of-plants/ )

Ogawa T. (1981) – Blue light response of stomata with starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cells under background illumination with red light -Plant Sci. Lett. 22: 103–108 – https://doi.org/10.1016/0304-4211(81)90131-0https://www.sciencedirect.com/science/article/pii/0304421181901310 – (On our blog : https://plantstomata.wordpress.com/2018/11/10/blue-light-response-of-stomata-is-observable-only-when-photosynthetic-mechanism-is-operating-with-red-light/ )

Ogawa T., Ishikawa H., Shimada K., Shibata K. (1978) – Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. – Planta 142: 61– 65 – https://doi.org/10.1007/BF00385121https://link.springer.com/article/10.1007%2FBF00385121#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/12/synergistic-action-of-red-and-blue-light-and-action-spectra-for-malate-formation-in-stomata-2/ )

Ogaya R., Llorens L., J. Peñuelas J. (2011) – Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime – Acta Oecologica 37: 381-385 – http://www.creaf.uab.es/Global-Ecology/Pdfs_UEG/2011%20ActaOecol.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/20/density-and-length-of-stomata-in-living-fossil-trees-2/ )

Ogle K., Lucas R. W., Bentley L. P, Cable J. M., Barron-Gafford G. A., Griffith A., Ignace D., Jenerette G. D., Tyler A., Huxman T. E., Loik M. E.,
Stanley D. Smith S. D., Tissue D. T. (2012)

Differential daytime and nighttime stomatal behavior in plants from North American deserts – New Phytologist 194: 464–476 – DOI: 10.1111/j.1469-8137.2012.04068.x – https://www.ncbi.nlm.nih.gov/pubmed/22348404 – (On our blog : https://plantstomata.wordpress.com/2018/11/09/differential-daytime-and-nighttime-stomatal-behavior/ )

Ogle K., Reynolds J. F. (2002) – Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata – Plant, Cell and Environment 25: 909–921 – https://doi.org/10.1046/j.1365-3040.2002.00876.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2002.00876.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/coupling-of-stomatal-conductance-and-photosynthesis/ )

Ohashi-Ito K., Bergmann D. C. (2006) – Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development – Plant Cell 18: 2493–2505 – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/18/10/2493.abstract?ijkey=2b5f61553059c587dce02e954964848c45dd4412&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/08/15/fama-and-stomatal-development/)

Ohsumi A., Hamasaki A., Nakagawa H., et al. (2008) – Response of Leaf Photosynthesis to Vapor Pressure Difference in Rice (Oryza sativa L) Varieties in Relation to Stomatal and Leaf Internal Conductance – Plant Production Science. 11(2): 184-191 – DOI: 10.1626/pps.11.184 – https://www.tandfonline.com/doi/pdf/10.1626/pps.11.184 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-and-leaf-internal-conductance/ )

Ohsumi A., Hamasaki A., Nakagawa H., Yoshida H., Shiraiwa T., Horie T. (2007) – A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance – Ann Bot-London 99: 265–273 – https://doi.org/10.1093/aob/mcl253 –https://academic.oup.com/aob/article/99/2/265/2389881 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/variation-of-leaf-photosynthetic-rate-based-on-leaf-nitrogen-content-and-stomatal-conductance/ )

Ohsumi A., Kanemura T., Homma K., Horie T., Shiraiwa T. (2007) – Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.) – Plant Prod Sci 10: 322–328 – https://doi.org/10.1626/pps.10.322 – Google Scholar – https://www.tandfonline.com/doi/abs/10.1626/pps.10.322 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-conductance-stomatal-density-and-length/

Okamoto M., Tanaka Y., Abrams S. R., Kamiya Y., Seki M., Nambara E. (2009) – High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis – Plant Physiol. 149(2): 825-834 – doi: http://dx.doi.org/10.1104/pp.108.130823 – (CrossRef,Medline). – Abstract/FREE Full Text – http://dx.doi.org/10.1104/pp.108.130823 – (On our blog :  https://plantstomata.wordpress.com/2016/10/31/high-humidity-induces-aba-8%E2%80%B2-hydroxylase-in-stomata/ )

Okuma E., Jahan M.S., Munemasa S., Hossain M.A., Muroyama D., Islam M.M., Ogawa K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Mori I.C., Murata Y. (2011) – Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis – J. Plant Physiol. 168: 2048–2055. – doi: 10.1016/j.jplph.2011.06.002 –PubMed Abstract |Pubmed Full Text , CrossRef Full Text | Google Scholar –http://www.sciencedirect.com/science/article/pii/S0176161711002768 – (On our blog : https://plantstomata.wordpress.com/2016/10/31/aba-induced-stomatal-closure-by-glutathione/ )

Olioso A., Bethenod O., Rambal S., Thamitchian M. (1995) – Comparison of empirical leaf photosynthesis and stomatal conductance models – In 10th International Photosynthesis Congress (p. 4). Montpellier, France. – (Article not found)

Oljača R., Govedar Z., Hrkić Z. (2008) – Air pollution effects on percentage of stomata in leaves at tested species horse chestnut and birch in Banja Luka conditions. – Bulletin of the Faculty of Forestry 98: 155-166 – http://www.doiserbia.nb.rs/img/doi/0353-4537/2008/0353-45370898155O.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/air-pollution-effects-on-percentage-of-stomata-in-trees/ )

Olsen R. L., Pratt R. B., Gump P., Kemper A., Tallman G. (2002) – Red light activates a chloroplast-dependent ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. – New Phytol. 153 :497–508 – https://doi.org/10.1046/j.0028-646X.2001.00337.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.0028-646X.2001.00337.x – (On our blog : https://plantstomata.wordpress.com/2018/10/27/stomatal-chloroplasts-transduce-reduced-co2-activating-stomatal-opening-through-an-ion-uptake-mechanism-that-depends-on-chloroplastic-photosynthetic-electron-transport/ )

Olsson T., Leverenz J. W. (1994) – Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve – Plant, Cell and Environment 17: 701– 710 – https://doi.org/10.1111/j.1365-3040.1994.tb00162.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1994.tb00162.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/non-uniform-stomatal-closure-2/ )

Omasa K. (1990) – Study on changes in stomata and their surroundings cells using a nondestructive light microscope system: responses to air pollutants – J. Agric. Meteorol. 45, 251–257 (in Japanese with English summary) – Abstract not found

Omasa K, Hashimoto Y., Aiga I. (1983) – Observation of stomatal movements of intact plants using an image instrumentation system with a light microscope – Plant and Cell Physiology 24: 281-288 – https://doi.org/10.1093/pcp/24.2.281https://academic.oup.com/pcp/article-abstract/24/2/281/1827640?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/09/observation-of-stomatal-movements-of-intact-plants-using-an-image-instrumentation-system-with-a-light-microscope/ )

Omasa K., Hashimoto Y., Kramer P. J., Strain B. R., Aiga I., Kondo J. (1985) – Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO2 – Plant Physiology 84: 748–752. –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1074843/ – (On our blog : https://plantstomata.wordpress.com/2016/10/31/continuous-observation-of-individual-stomata-under-the-microscope/ )

Omasa K., Maruyama Y. (1990) – Study on changes in stomata and their surroundings cells using a nondestructive light microscope system: responses to changes in water absorption through roots – J. Agric. Meteorol. 45: 259–264 (in Japanese with English summary). – Abstract not found

Omasa K., Onoe M. (1984) – Measurement of stomatal aperture by digital image processing – Plant and Cell Physiology 25: 1379–1388. – DOI:https://doi.org/10.1093/oxfordjournals.pcp.a076848 – Abstract/FREE Full Text –https://academic.oup.com/pcp/article-abstract/25/8/1379/1811066/Measurement-of-Stomatal-Aperture-by-Digital-Image?ijkey=cda0d53df21790a0c1f7259b1d57ade20030bf32&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/01/29/digital-image-processing-for-measurement-of-stomatal-aperture/ )

Omi S. K., Yoder B., Rose R. (1991) – Fall lifting and long-term freezer storage of ponderosa pine seedlings: effects on post-storage leaf water potential, stomatal conductance, and root growth potential – Tree Physiol 8: 315–325 – DOI: 10.1093/treephys/8.3.315https://www.ncbi.nlm.nih.gov/pubmed/14972882?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/06/05/fall-lifting-and-long-term-freezer-storage-effects-on-stomatal-conductance/ )

Onoe T., Tani T., Minagawa S., Sagawa H. (1987) – Ultrastructural changes of stomata in relation to specificity of rust fungi – Molecular Determinants of Plant Diseases – Nishimura S. et al (Eds.) – Jap. Sci. Soc. Tokyo /Springer Verlag, Berlin 29-45 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-rust-infection/ )

Onuminya T. O., Adediran I. G. (2018) – Foliar epidermal morphology of some members of subfamily Dodonaeoideae-Sapindaceae – Pak. J. Bot . 50(5): 1865-1869 – https://www.academia.edu/38617926/FOLIAR_EPIDERMAL_MORPHOLOGY_OF_SOME_MEMBERS_OF_SUBFAMILY_DODONAEOIDEAE_-_SAPINDACEAE?email_work_card=title – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomata-in-dodonaeoideae-sapindaceae/ )

Onwueme I. C., Johnston M. (2000) – Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro – Experimental Agriculture 36: 509-516. – DOI: https://doi.org/10.1017/S0014479700001071 – https://www.cambridge.org/core/journals/experimental-agriculture/article/influence-of-shade-on-stomatal-density-leaf-size-and-other-leaf-characteristics-in-the-major-tropical-root-crops-tannia-sweet-potato-yam-cassava-and-taro/64ABAA0DDD9E69191D1EC2AD23977F0E – (On our blog : https://plantstomata.wordpress.com/2017/01/29/stomatal-density-in-tropical-root-crops/ )

Ooba M., Takahashi H. (2003) – Effect of asymmetric stomatal response on gas-exchange dynamics – Ecological Modelling 164, 65–82.  – http://dx.doi.org/10.1016/S0304-3800(03)00012-7 – http://www.sciencedirect.com/science/article/pii/S0304380003000127 – (On our blog : https://plantstomata.wordpress.com/2017/01/29/asymmetric-stomatal-response-on-gas-exchange-dynamics/ )

Ooi L., Matsuura T., Munemasa S., Murata Y., Katsuhara M., Hirayam T., Mori I. C. (2018) – The Mechanism of SO2‐Induced Stomatal Closure Differs from O3and CO2 Responses and Is Mediated by Non‐Apoptotic Cell Death in Guard Cells – Accepted, unedited article – https://doi.org/10.1111/pce.13406 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13406?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/21/the-mechanism-of-so2%e2%80%90induced-stomatal-closure/ )  

Oosterhuis D. M., Walker S. (1987) – Stomatal resistance measurement as an indicator of water deficit stress in wheat and soybeans – S. Afr. J. Plant Soil 4(3): 1132-120 – https://doi.org/10.1080/02571862.1987.10634956http://www.tandfonline.com/doi/abs/10.1080/02571862.1987.10634956 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomatal-resistance-measurement-is-a-potentially-useful-and-reliable-plant-indicator-of-crop-water-stress/ )

Oren R., Phillips N.Ewers B. E.Pataki D. E., Megonigal J. P. (1999) – Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest – Tree Physiol 19: 337–347 – PMID: 12651555 – https://www.ncbi.nlm.nih.gov/pubmed/12651555 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/sap-flux-scaled-transpiration-responses-to-light-vapor-pressure-deficit-and-leaf-area-reduction/ )

Oren R., Sperry J. S., Ewers B. E., Pataki D. E., Phillips N. (2000) – The effect of defoliation by hurricane on stomatal response tp vapour pressure deficit in Taxodium distichum L. – Oecologia – (Article not found)

Oren R., Sperry J. S., Ewers B. E., Pataki D. E., Phillips N., Megonigal J. P. (2001) – Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects – Oecologia 126, 21–29. – doi:10.1007/s004420000497 – CrossRef  – http://link.springer.com/article/10.1007%2Fs004420000497 – (https://plantstomata.wordpress.com/2017/01/31/canopy-stomatal-conductance-and-vapor-pressure-deficit/ )

Oren R., Sperry J. S., Katul G. G., Pataki D. E., Ewers B. E., Phillips N., Schäfer K. V. R. (1999) – Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit – Plant Cell Environ. 22(12): 1515-1526  – DOI: 10.1046/j.1365-3040.1999.00513.x – (CrossRefISI) , Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1999.00513.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/31/stomatal-sensitivity-to-vapour-pressure-deficit/ )

Ormrod D. J., Renney A. J. (1968) – A survey of weed leaf stomata and trichomes – Can. J. Plant Sci. 48: 197-209 – http://www.nrcresearchpress.com/doi/pdf/10.4141/cjps68-034 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/54983 )

Osakabe Y., Osakabe K., Shinozaki K., Tran L-S P. (2014) – Response of plants to water stress – Front Plant Sci. 5: 86 – doi: 10.3389/fpls.2014.00086 – https://www.ncbi.nlm.nih.gov/pubmed/24659993?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/06/13/response-of-plants-to-water-stress/ )

Osborne C. P. (2016) – Crop yields: CO2 fertilization dries up – Nature Plants 2, Article number: 16138 – DOI: 10.1038/nplants.2016.138
https://www.nature.com/articles/nplants2016138 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/co2-fertilization-dries-up/ )

Osborne C. P., Taylor S., Franks P., Ripley B., Pasquet-Kok J., Scoffoni C., Sack L., Spriggs B., Christin P.A., Edwards E., Woodward I. (2012) – The significance of C4 photosynthesis for stomatal patterning and behaviour  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/c4-photosynthesis-and-stomatal-patterning-and-behaviour/ )

Osmond C. B., Kramer D., Lüttge U. (1999) – Reversible water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses – Plant Biol. 1: 618-624 – https://doi.org/10.1111/j.1438-8677.1999.tb00272.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-8677.1999.tb00272.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/chlorophyll-fluorescence-quenching-in-wilting-leaves-and-patchy-stomatal-responses/ )

Osonubi O., Davies W. J. (1980) – The influence of water tress on the photosynthetic performance and stomatal behaviour of tree seedlings subjected to variation in temperature and irradiance – Oecologia (Berl.) 45: 3-10 – https://doi.org/10.1007/BF00346699https://link.springer.com/article/10.1007/BF00346699 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/influence-of-water-tress-on-the-photosynthetic-performance-and-stomatal-behaviour/ )

Osonubi O., Davies W. J. (1980) – The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity – Oecologia (Berlin) 46: 1–6 – DOI: 10.1007/BF00346957 – http://link.springer.com/article/10.1007/BF00346957 – (On our blog :https://plantstomata.wordpress.com/2017/01/31/plant-water-stress-and-stomatal-control-of-gas-exchange/ )

Osório M. L., Rodrigues M. L., Chaves M. M., Correia M. J., (1999) – Effect of growth temperature on the response of lupin stomata to drought and abscisic acid. – Aust. J. Plant Physiol. 26(6): 549-559 – https://doi.org/10.1071/PP99053 – http://www.publish.csiro.au/FP/PP99053 – (On our blog : https://plantstomata.wordpress.com/2018/02/25/growth-temperature-and-the-response-of-stomata-to-drought-and-aba/ )

Ou X., Gan Y., Chen P., Qiu M., Jiang K., Wang G. (2014) – Stomata prioritize their responses to multiple biotic and abiotic signal inputs. – PLoS ONE 9:e101587. – 10.1371/journal.pone.0101587 – [PMC free article] [PubMed] [Cross Ref] – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101587 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/successful-colonization-of-bacteria-on-the-leaf-surface-is-correlated-with-stomatal-aperture-regulation/ )

Outlaw W. H. (1982) – Carbon metabolism in guard cells. – In Recent Advances in Phytochemistry. p. 185-222. Edited by L. L. Greasy and G. Hrazdina, Plenum Publishing Co., New York

Outlaw W. H. (1983) – Current concepts on the role of potassium in stomatal movements – Physiol. Plant 59: 302–311 – https://doi.org/10.1111/j.1399-3054.1983.tb00775.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1983.tb00775.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/the-role-of-potassium-in-stomatal-movements/ )

Outlaw W. H. Jr (1989) – Critical examination of the quantitative evidence for and against photosynthetic CO2 fixation by guard cells – Physiol. Plant. 77, 275–281. – doi: 10.1111/j.1399-3054.1989.tb04981.x – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1989.tb04981.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/02/the-evidence-for-and-against-photosynthetic-co2-fixation-by-stomata/ )

Outlaw W. H. Jr (2003) – Integration of cellular and physiological functions of guard cells. – Crit. Rev. Plant Sci. 22, 503–529. – doi: 10.1080/713608316 – CrossRef-Google Scholar – http://www.tandfonline.com/doi/abs/10.1080/713608316 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomata-and-an-overview-of-cellular-mechanisms-that-are-involved-in-turgor-regulation/ )

Outlaw W. H. Jr., De Vlieghere-He X. (2001) – Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean – Plant Physiology 126: 1716–1724. – CrossRef, CAS – http://www.plantphysiol.org/content/plantphysiol/126/4/1716.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-transpiration-rate/ )

Outlaw W. H. Jr., Kennedy J. (1978) – Enzymic and substrate basis for the anaplerotic step in guard cells – Plant Physiol 62: 648-652 – PMCID: PMC1092188 – PMID: 16660576 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1092188/ – (On our blog : https://plantstomata.wordpress.com/2018/11/12/possibility-that-the-carboxylation-of-pep-is-the-anaplerotic-step-in-stomata/ )

Outlaw W. H. Jr., Lowry O. H. (1977) – Organic acid and potassium accumulation in guard cells during stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 74: 4434–4438. – https://doi.org/10.1073/pnas.74.10.4434 – [PMC free article] [PubMed] – http://www.pnas.org/content/74/10/4434 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/malic-and-citric-acids-provide-much-of-the-counter-ion-for-the-k-taken-up-during-stomatal-opening-2/

Outlaw W. H., Manchester J. (1979) – Guard cell starch concentration quantitatively related to stomatal aperture – Plant Physiol. 64: 79-82 -PMID: 16660919 – PMCID: PMC543028 – https://www.ncbi.nlm.nih.gov/pubmed/16660919 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/soluble-sugars-increase-in-guard-cells-when-stomata-open/ )

Outlaw W. H. Jr., Manchester J., DiCamelli C. A., Randall D. P., Rapp B., Veith G. M. (1979) – Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. – Proc. Natl. Acad. Sci. USA 76: 6371-6375 – PMID: 16592740 – PMCID: PMC411866 – https://www.ncbi.nlm.nih.gov/pubmed/16592740 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/enzymes-unique-to-the-photosynthetic-carbon-reduction-pathway-are-absent-in-stomata/ )

Outlaw W. H. Jr., Mayne B. C., Zenger V. E., Manchester J. (1981) – Presence of both photosystems in guard cells of Vicia faba L.; Implications for environmental signal processing – Plant Physiol. 67: 12–16. – doi: 10.1104/pp.67.1.12 – http://www.plantphysiol.org/content/67/1/12 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/noncyclic-photosynthetic-electron-flow-is-an-environmental-sensor-which-causes-stomata-to-remain-open-in-light/ )

Outlaw W. H. Jr., Zhang S., Hite D. R. C., Thistle A. B. (1996) – Stomata: Biophysical and Biochemical Aspects – In: Baker N.R. (eds) Photosynthesis and the Environment. Advances in Photosynthesis and Respiration, vol 5., 241-259,  Springer, Dordrecht –https://link.springer.com/chapter/10.1007/0-306-48135-9_9#citeas – https://plantstomata.wordpress.com/2017/12/18/biophysics-and-biochemistry-of-stomata/ )

Overlach S., Diekmann W., Raschke K. (1993) – Phosphate translocator of isolated guard cell chloroplasts from Pisum sativum L. transports glucose-6-phosphate – Plant Physiol. 101:1201–1207 – PMID: 12231774 – PMCID: PMC160640 – https://www.ncbi.nlm.nih.gov/pubmed/12231774 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/phosphate-translocator-of-isolated-stomatal-guard-cell-chloroplasts-transports-glucose-6-phosphate/ )

Oyeleke M. O., AbdulRahaman A. A., Oladele F. A. (2004) – Stomatal anatomy and transpiration rate in some afforestation tree species – Nigerian Society for Experimental Biology Journal 4(2): 83-90 – (Article not found)

Ozuna R., Yera R., Ortega K., Tallman G. (1985) – Analysis of guard cell viability and action in senescing leaves of Nicotiana glauca Graham, tree tobacco – Plant Physiol. 79: 7-10 – doi: 10.1104/pp.79.1.7 – http://www.plantphysiol.org/content/plantphysiol/79/1/7.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/12/stomatal-guard-cell-viability-and-action-in-senescing-leaves/ )

Advertisements