PHYSIO-BIBLIOGRAPHY M-O

Ma D. (1987) – Stomates – Science Press 1987: 10-30 –

Ma N., Lin C., Wu N., Liu Q., Ma J.-L., Meng W., Wang X.-S., Zhang L., Xu X., Zhao Y., Zhuang L., Fan J., Sun J., Zhuo R.-X., Zhang X.-Z. (2017) – Stomata-like metal peptide coordination polymer – Journal of Materials Chemistry A Issue 45 – https://pubs.rsc.org/en/content/articlelanding/2017/ta/c7ta08002f – (On our blog : https://plantstomata.wordpress.com/2022/05/30/a-flexible-coordination-polymer-cu-gly-thr%c2%b72h2o-efficient-at-taking-up-co2-under-wet-conditions-which-is-similar-to-the-function-of-plant-stomata/ )

Ma S. 1, Jahan M. S. 2, Guo S. R., Tian M. 1, Zhou R. 1, Liu H. 1, Feng B. 1, Shu S. 1, (2020) – H2O2/ABA signal pathway participates in the regulation of
stomata opening of cucumber leaves under salt stress by putrescine – Authorea – DOI: 10.22541/au.160028049.98305114https://www.authorea.com/users/359205/articles/481379-h2o2-aba-signal-pathway-participates-in-the-regulation-of-stomata-opening-of-cucumber-leaves-under-salt-stress-by-putrescine – (On our blog : https://plantstomata.wordpress.com/2022/04/11/put-can-regulate-gsh-content-by-promoting-h2o2-generation-through-polyamine-metabolic-pathway-which-inhibits-aba-accumulation-to-achieve-stomatal-regulation-under-salt-stress/ )

Ma X., Zheng J., Zhang X., Hu Q., Qian R. (2017) – Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System – Frontiers in Plant Science – https://doi.org/10.3389/fpls.2017.00600https://www.frontiersin.org/articles/10.3389/fpls.2017.00600/full – (On our blog : https://plantstomata.wordpress.com/2019/04/10/exogenous-sa-can-effectively-counteract-the-adverse-effect-of-moderate-salt-stress-e-g-the-poorly-developed-stomata/ )

Ma Y., Zhao F., Wang L., Ding Y., Zhao H., Wang H., Liu J. (2021) – A stomata-inspired superhydrophobic portable filter system – RSC Adv. 11: 18783-18786 – DOI: 10.1039/D1RA03297Fhttps://pubs.rsc.org/en/content/articlehtml/2021/ra/d1ra03297f – (On our blog : https://plantstomata.wordpress.com/2022/01/05/superhydrophobic-setae-which-prevent-direct-contact-between-the-stomata-and-water-in-humid-environments-by-suspending-water-droplets-on-the-top-of-the-setae/ )

Ma Y.-L., Niu J., Zhang W., Wu X. (2017)  Hydrogen Sulfide May Function Downstream of Hydrogen Peroxide in Mediating Darkness-induced Stomatal Closure in Vicia faba – Functional Plant Biology – https://doi.org/10.1071/FP17274 – http://www.publish.csiro.au/fp/FP17274 – (On our blog :  https://plantstomata.wordpress.com/2017/12/04/h2s-is-involved-in-darkness-induced-stomatal-closure-and-acts-downstream-of-h2o2/ )

Ma Y. L., She X. P., Yang S. S. (2012) – Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H2O2) levels in guard cells in Vicia faba – Science China Life Sciences 55(11): 974-983 – DOI: 10.1007/s11427-012-4386-8 –https://www.infona.pl/resource/bwmeta1.element.springer-7f5d9a25-3c26-304a-8786-944d63ee107a – (On our blog : https://plantstomata.wordpress.com/2017/10/22/darkness-induced-s1p-synthesis-causing-cytosolic-alkalization-and-subsequent-h2o2-production-finally-leads-to-stomatal-closure/ )

Ma Y., She X., Yang S. (2013) – Cytosolic alkalization-mediated H2O2 and NO production are involved in darkness induced stomatal closure in Vicia faba – Can. J. Plant Sci. 93: 119–130 – doi: 10.4141/cjps2012-040 – http://www.nrcresearchpress.com/doi/abs/10.4141/cjps2012-040  – (On our blog :- https://plantstomata.wordpress.com/2016/07/30/h2o2-and-no-production-are-involved-in-darkness-induced-stomatal-closure/ )

Ma Z. (2010) – Plant Vacuoles and the Regulation of Stomatal Opening – Nature Education 3(9): 45 – https://www.nature.com/scitable/topicpage/plant-vacuoles-and-the-regulation-of-stomatal-14163334/ – (On our blog : https://plantstomata.wordpress.com/2020/12/09/how-do-plants-breathe-through-stomata/ )

Mabapa P. M., Ayisi K. K., Mariga I. K. (2018) – Comparison of Gas Exchange in Moringa oleifera and other Drought Tolerant Tree Species for Climate Change Mitigation under Semi-arid Condition of Northern South Africa – https://www.semanticscholar.org/paper/Comparison-of-Gas-Exchange-in-Moringa-oleifera-and-Mabapa-Ayisi/ac5f6f649abcd193b3196c50f752d7f8ccc674ef – (On our blog : https://plantstomata.wordpress.com/2020/03/22/comparison-of-gas-exchange-e-g-stomatal-behaviour-in-moringa-oleifera-and-other-drought-tolerant-tree-species/ )

MacAlister C. A., Bergmann D. C. (2007)  – Stomatal Patterning – eLS. Edited by Anonymous. John Wiley & Sons, Ltd; 2001 – Encyclopedia of Life Sciences – DOI: 10.1002/9780470015902.a0020125 – http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0020125/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/05/mechanisms-that-lead-to-pattern-and-cell-fate-acquisition-in-stomata/ )

MacAlister C. A., Bergmann D. C. (2011) – Sequence and function of bHLHs required for stomatal development in Arabidopsis are deeply conserved in land plants – Evolution and Development 13182-192 – doi: 10.1111/j.1525-142X.2011.00468.x – PMID: 21410874 — http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139685/?tool=pubmed – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/17011 )

MacAlister C. A., Ohashi-Ito K., Bergmann D. C. (2007) – Transcription factor control of asymmetric cell divisions that establish the stomatal lineage – Nature 445: 537–540 – (On our blog : https://plantstomata.wordpress.com/2016/07/30/speechless-spch-encoding-a-basic-helix-loop-helix-bhlh-transcription-factor-for-stomatal-lineage/)

MacAlister C. A., Ohashi-Ito K., Bergmann D. C. (2007) – Transcription factor control of asymmetric cell divisions that establish the stomatal lineage – Nature 445(7127): 537-540 – doi: 10.1038/nature05491 – Epub 2006 Dec 20 – PMID: 17183265 – https://pubmed.ncbi.nlm.nih.gov/17183265/ (On our blog : 539(7630): 524-527 –

Macarisin D., Bauchan G., Fayer R. (2020)Spinacia oleracea L. Leaf Stomata Harboring Cryptosporidium parvum Oocysts: a Potential Threat to Food Safety – Applied and Environmental Microbiology 76(2): 555-559 – https://doi.org/10.1128/AEM.02118-09https://journals.asm.org/doi/epub/10.1128/AEM.02118-09 – (On our blog : https://plantstomata.wordpress.com/2022/01/22/a-cosmopolitan-microscopic-protozoan-parasite-strongly-adheres-to-spinach-plants-after-contact-with-contaminated-water-and-infiltrates-through-the-stomatal-openings-in-spinach-leaves/ )

Macdowall F. D. H. (1963) – Midday closure of stomata in aging tobacco leaves – Canadian Journal of Botany 41(9): 1289-1300 – https://doi.org/10.1139/b63-109https://www.nrcresearchpress.com/doi/abs/10.1139/b63-109 – (On our blog : https://plantstomata.wordpress.com/2020/01/30/a-well-known-light-reaction-supports-an-active-stomatal-opening-mechanism/ )

Macfarlane C., White D. A., Adams M. A. (2004) – The apparent feed‐forward response to vapour pressure deficit of stomata in droughted, field‐grown Eucalyptus globulus Labill – Plant, Cell & Environment 27: 1268–1280 – https://doi.org/10.1111/j.1365-3040.2004.01234.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2004.01234.x – (On our blog : https://plantstomata.wordpress.com/2021/04/22/the-stomatal-response-to-ci-may-strengthen-the-link-between-photosynthetic-capacity-and-stomatal-conductance-during-leaf-drying/ )

Machado E. C., Lagoa A. M. M. A. (1994) – Trocas gasosas e condutância estomatica em três espêcies de gramíneas – Bragantia, Campinas 53: 141–149 – http://dx.doi.org/10.1590/S0006-87051994000200003 – [In Portuguese with English summary] – http://www.scielo.br/pdf/brag/v53n2/03.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/30/gas-exchanges-and-stomatal-conductance/ )

Machado E. C., Medina C. L., Gomes M. M. A., Habermann G. (2002) – Seasonal variation of photosynthetic rates, stomatal conductance and leaf water potential in ‘Valencia’ orange trees) (Variação sazonal da fotossíntese, condutância estomática e potencial da água na folha de laranjeira ‘Valência) – Sci. Agricola 59: 53-58 – http://dx.doi.org/10.1590/S0103-90162002000100007  – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162002000100007 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/seasonal-variation-of-photosynthetic-rates-and-stomatal-conductance/ )

Machida Y., Lin C., Tamanoi F. (2014) – Signaling Pathways in Plants 35, 1st Edition, eBook ISBN: 9780128020159, Academic Press, 298 pp., in The Enzymes, 2.4 Light-Controlled Stomatal Opening and Development – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stoma – (On our blog : https://plantstomata.wordpress.com/2018/01/07/light-controlled-stomatal-opening-and-development/ )

Macho A. P., Boutrot F., Rathjen J. P., Zipfel, C. (2012) – Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. – Plant Physiol. 159: 1845–1856 – doi: 10.1104/pp.112.199810 – https://www.researchgate.net/publication/228064322_ASPARTATE_OXIDASE_plays_an_important_role_in_Arabidopsis_stomatal_immunity – (On our blog : https://plantstomata.wordpress.com/2016/10/18/stomatal-immunity-and-aspartate-oxidase/ )

Maciejewska-Potapczyk W. (1955) – The Action of 2,4 D on Same of the Enzymes of the Stomatal Cells (Wpływ 2,4 D na niektóre enzymy komórek szparkowych ) – Acta Soc. Bot. Poloniae 24(3): 639-645 – https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.1955.036

Mackowiak C. L., Wheeler R. M. (1996) – Growth and stomatal behavior of hydroponically cultured potato (Solanum tuberosum L.) at elevated and super-elevated CO2 – J. Plant Physiol. 149: 205-210 – https://doi.org/10.1016/S0176-1617(96)80196-9 – https://www.sciencedirect.com/science/article/pii/S0176161796801969 –  (On our blog : https://plantstomata.wordpress.com/2018/11/01/growth-and-stomatal-behavior-at-elevated-and-super-elevated-co2/)

MacRobbie E. A. C. (1980) – Osmotic measurements on stomatal cells of Commelina communis L. – J. Membr. Biol. 53: 189-198 – DOI: 10.1007/BF01868824 https://www.researchgate.net/publication/246987913_Osmotic_measurements_on_stomatal_cells_of_Commelina_communis_L – (On our blog : https://plantstomata.wordpress.com/2016/11/05/osmotic-measurements-on-stomata/ )

MacRobbie E. A. C. (1981) – Ion fluxes in isolated guard cells of Commelina communis L. – J. Exp. Bot. 32: 545–562 – https://doi.org/10.1093/jxb/32.3.545https://academic.oup.com/jxb/article-abstract/32/3/545/489766?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2022/12/15/ion-fluxes-in-isolated-stomatal-guard-cells/ )

MacRobbie E. A. C. (1981) – Effects of ABA in isolated guard-cells of Commelina communis L. – J Exp Bot 32: 563–572 – https://doi.org/10.1093/jxb/32.3.563 –https://academic.oup.com/jxb/article-abstract/32/3/563/489770?redirectedFrom=PDF – (On our blog :  https://plantstomata.wordpress.com/2018/11/26/effects-of-aba-in-isolated-stomatal-guard-cells/

MacRobbie E. A. C. (1981) – Ionic relations of stomatal guard cells – In : Stomatal Physiology, (Ed. by P. G.Jarvis & T. A.Mansfield),  51–70 – Cambridge University Press. Cambridge) –  https://books.google.be/books hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/ion-movements-and-stomata/ )

MacRobbie E. A. C. (1982) – Chloride Transport in Stomatal Guard Cells – Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 299(1097) – The Binding and Transport of Anions in Living Tissues 469-481 – https://doi.org/10.1098/rstb.1982.0145 – https://royalsocietypublishing.org/doi/abs/10.1098/rstb.1982.0145https://www.jstor.org/stable/2395789?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/17/chloride-transport-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1983) – Effects of light/dark on cation fluxes in guard cells of Commelina communis L. – J Exp Bot 34: 1695-710 –  http://dx.doi.org/10.1093/jxb/34.12.1695 – https://academic.oup.com/jxb/article-abstract/34/12/1695/599248?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/11/03/effects-of-light-dark-on-cation-fluxes-in-stomata/ )

MacRobbie E. A. C. (1987) – Ionic relations of guard cells – In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan) 125–162 – Stanford University Press, California.

MacRobbie E. A. C. (1988) – Stomatal guard cells – In: Solute transport in plant cells and tissues (Eds. D. A. BAKER and J. I. HALL) 453-497 – John Wiley and Sons. Inc ., New York .

MacRobbie E. A. C. (1988) Control of ion fluxes in stomatal guard cells – Botanica Acta 101: 140-148 – DOI: 10.1111/j.1438-8677.1988.tb00025.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1988.tb00025.x/abstract – (https://plantstomata.wordpress.com/2016/12/01/ion-fluxes-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1989) Calcium influx at the plasmalemma of
isolated guard cells of Commelina communis – Planta 178: 231-241 – https://doi.org/10.1007/BF00393199https://link.springer.com/article/10.1007/BF00393199#citeas – (On our blog : https://plantstomata.wordpress.com/2022/12/15/calcium-influx-at-the-plasmalemma-of-isolated-guard-cells/ )

MacRobbie E. A. C. (1990) – Calcium-dependent and calcium-independent events in the initiation of stomatal closure by abscisic acid – Philos. Trans. R. Soc. Lond. B 241: 214–219 – https://www.jstor.org/stable/76663?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/06/calcium-in-the-initiation-of-stomatal-closure-by-aba/ )

MacRobbie E. A. C. (1992) – Calcium and ABA-induced stomatal closure – Philos Trans R Soc Lond Ser B 338: 5–18 – DOI: 10.1098/rstb.1992.0124 – http://rstb.royalsocietypublishing.org/content/338/1283/5 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/calcium-and-aba-induced-stomatal-closure-2/

MacRobbie E. A. C. (1993) – Ca2+ and cell signalling in guard cells – Semin Cell Biol 4:113–122 – http://dx.doi.org/10.1006/scel.1993.1014 –  http://www.sciencedirect.com/science/article/pii/S1043468283710147 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-and-cell-signalling-in-stomata/ )

MacRobbie E. A. C. (1995) – ABA-induced ion efflux in stomatal guard cells: multiple actions of ABA inside and outside the cell – Plant J. 7: 565–576 – https://doi.org/10.1046/j.1365-313X.1995.7040565.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.7040565.x –  (On our blog : https://plantstomata.wordpress.com/2018/11/01/multiple-actions-of-aba-inside-and-outside-the-stomatal-guard-cells/

MacRobbie E. A. C. (1995) – Effects of ABA on 86Rb+ fluxes at plasmalemma and tonoplast of stomatal guard cells –  Plant J. 7: 835–843 – https://doi.org/10.1046/j.1365-313X.1995.07050835.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.07050835.x – (On our blog : https://plantstomata.wordpress.com/2018/11/15/effects-of-aba-on-86rb-fluxes-at-plasmalemma-and-tonoplast-of-stomatal-guard-cells/

MacRobbie E. A. C. (1997) – Signalling in guard cells and regulation of ion channel activity – Journal of Experimental Botany 48: 515–528 –  – doi: 10.1098/rstb.1998.0303] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692354/ – (On our blog : https://plantstomata.wordpress.com/2018/12/01/signalling-in-stomata-and-regulation-of-ion-channel-activity/ )

MacRobbie E. A. C. (1998) – Signal transduction and ion channels in guard cells – Phil. Trans. R. Soc. Lond. B 353: 1475–1488 – http://doi.org/10.1098/rstb.1998.0303https://royalsocietypublishing.org/doi/10.1098/rstb.1998.0303 – (On our blog : https://plantstomata.wordpress.com/2022/03/30/stomatal-closure-and-the-nature-of-the-signalling-chains-linking-transport-and-metabolism-of-sugars-to-the-closing-signal/ )

MacRobbie E. A. C. (2000) – ABA activates multiple Ca(2+) fluxes in stomatal guard cells, triggering vacuolar K(+)(Rb(+)) release – Proc. Natl. Acad. Sci. USA 97: 12361–12368 – DOI: 10.1073/pnas.220417197 https://www.ncbi.nlm.nih.gov/pubmed/11027317 – (On our blog : https://plantstomata.wordpress.com/2018/12/01/aba-activates-multiple-ca2-fluxes-in-stomata/

MacRobbie E. A. C. (2006) – Osmotic effects on vacuolar ion release in guard cells – Proc. Natl. Acad. Sci. USA 103: 1135–1140 – https://doi.org/10.1073/pnas.0510023103 – https://www.ncbi.nlm.nih.gov/pubmed/16418285 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/osmotic-effects-on-vacuolar-ion-release-in-stomata-2/

MacRobbie E. A. C. (2006) – Control of volume and turgor in stomatal guard cells – J. Membr. Biol. 210: 131 – doi: 10.1007/s00232-005-0851-7 – https://www.ncbi.nlm.nih.gov/pubmed/16868673 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/volume-and-turgor-of-a-pair-of-stomatal-guard-cells/ )

MacRobbie E. A. C., Kurup S. (2007) – Signaling mechanisms in the regulation of vacuolar ion release in guard cells – New Phytologist 175: 630–640 – https://doi.org/10.1111/j.1469-8137.2007.02131.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2007.02131.x – (On our blog : https://plantstomata.wordpress.com/2018/11/15/signaling-mechanisms-in-the-regulation-of-vacuolar-ion-release-in-stomata/ )

MacRobbie E. A. C., Lettau J. (1980) – Ion content and aperture in “isolated” guard cells of Commelina communis L. – J. Membr. Biol. 53: 199–205 – https://doi.org/10.1007/BF01868825 – https://link.springer.com/article/10.1007/BF01868825 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/ion-content-and-aperture-in-isolated-stomata/

MacRobbie E. A. C., Lettau J. (1980) – Potassium content and aperture in ‘intact’ stomatal epidermal cells of Commelina communis L. – J. Membrane Biol. 56: 249-256 – https://doi.org/10.1007/BF01869480https://link.springer.com/article/10.1007/BF01869480#citeas – (On our blog : https://plantstomata.wordpress.com/2022/12/15/potassium-content-and-aperture-in-intact-stomatal-epidermal-cells/ )

MacRobbie E. A. C., Lettau J., Bray M. (1978) – Ionic Relations of Stomatal Guard Cells – Fed. Eur. Soc. Pl. Physiol. Inaug. Meeting Edinburgh Abs. 341-342 –

MacRobbie E. A. C., Smyth W. D. (2010) – Effects of fusicoccin on ion fluxes in guard cells – New Phytol 186: 636-647 – DOI: 10.1111/j.1469-8137.2010.03209.xhttps://www.researchgate.net/publication/42344067_Effects_of_fusicoccin_on_ion_fluxes_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2016/10/18/fusicoccins-effect-on-ion-fluxes-in-stomata/ )

Madhavan S., Chrominiski A., Smith B. N. (1983) – Effect of ethylene on stomatal opening in tomato and carnation leaves – Plant Cell Physiol. 24: 569–572 – https://doi.org/10.1093/oxfordjournals.pcp.a076550https://academic.oup.com/pcp/article-abstract/24/3/569/1904722?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/06/01/effect-of-ethylene-on-stomatal-opening/

Maeda E., Maeda K. (1987) – Ultrastructural studies of leaf hydathodes. I. Wheat (Triticum aestivum) leaf tips – Jpn. J. Crop Sci. 56(4): 641-651 –

Maeda E., Maeda K. (1988) – Ultrastructural studies of leaf hydathodes II. Rice (Oryza sativa) leaf tips – Jpn. J. Crop Sci. 57(4): 733-742 –

Maercker U. (1965) – Zur Kenntnis der Transpiration der Schliesszellen – Protoplasma 60: 61–78 – doi:10.1007/BF01248129http://link.springer.com/article/10.1007/BF01248129 – (On our blog : https://plantstomata.wordpress.com/2016/10/18/25426/ )

Maercker U. (1965) – Beiträge zur Histochemie der Schließzellen – Protoplasma 60: 173–191 – https://doi.org/10.1007/BF01252997https://link.springer.com/article/10.1007%2FBF01252997#citeas – (On our blog : https://plantstomata.wordpress.com/2021/12/14/histochemistry-of-the-stomatal-guard-cells/ )

Maes W. H., Achten W., Reubens B., Muys B. (2011) – Monitoring stomatal conductance of Jatropha curcas seedlings under different levels of water shortage with infrared thermography – Agricultural and Forest Meteorology 151: 554-564 – https://doi.org/10.1016/j.agrformet.2010.12.011https://pureportal.ilvo.be/en/publications/monitoring-stomatal-conductance-of-jatropha-curcas-seedlings-unde – (On our blog : https://plantstomata.wordpress.com/2022/02/28/the-stomatal-conductance-index-ig-calculated-from-the-leaf-temperature-and-the-temperature-of-a-dry-and-wet-reference-leaf/ )

Magalhaes N. (2010) – Crescimento e variação diurna da condutância estomática e taxas fotossintéticas de cinco espécies arbóreas da flora amazônica – [Growth and diurnal variation of stomatal conductance and photosynthetic rates of five Amazonian tree species] – 2010. 88f. Dissertação (Mestrado em Botanica)) – Instituto Nacional de Pesquisas da Amazonia, Manaus, 2010 –

Maghsoudi K., Maghsoudi A. (2008) – Analysis of the Effects of Stomatal Frequency and Size on Transpiration and Yield of Wheat (Triticum aestivum L.) – American-Eurasian J. Agric. & Environ. Sci. 3(6): 865-872 –
ISSN 1818-6769 – https://www.idosi.org/aejaes/jaes3(6)/12.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/28/effects-of-stomatal-frequency-and-size-on-transpiration-and-yield/ )

Maherali H., Johnson H. B., Jackson R. B. (2003) – Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland – Plant, Cell and Environment 26: 1297–1306 – https://jacksonlab.stanford.edu/sites/default/files/pce03.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-sensitivity-to-vapour-pressure-difference-over-a-subambient-to-elevated-co2-gradient/ )

Maherali H., Reid C. D., Polley H. W., Johnson H. B., Jackson R. B. (2002) – Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland – Plant, Cell and Environment 25: 557-566 – doi: 10.1046/j.1365-3040.2002.00832.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2002.00832.x – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-acclimation-over-a-subambient-to-elevated-co2-gradient/ )

Maheshwari P., Assmann S. M., Albert R. (2020) – A Guard Cell Abscisic Acid (ABA) Network Model That Captures the Stomatal Resting State – Frontiers Physiol. 2020 – https://doi.org/10.3389/fphys.2020.00927https://figshare.com/collections/A_Guard_Cell_Abscisic_Acid_ABA_Network_Model_That_Captures_the_Stomatal_Resting_State/5090567 – (On our blog : https://plantstomata.wordpress.com/2020/08/13/an-aba-network-model-that-captures-the-stomatal-resting-state/ )

Mahoney A. (2012) – Promoter deletion analysis and identification of putative CIS-elements of MUTE in Arabidopsis – MSc Thesis Western Washington University – https://doi.org/10.25710/rsff-jq61https://cedar.wwu.edu/wwuet/212/ – (On our blog : https://plantstomata.wordpress.com/2021/12/14/novel-insight-into-the-regulatory-mechanism-driving-mute-expression/ )

Mahoney A. K., Anderson E. M., Bakker R. A., Williams A. F., Flood J. J., Sullivan K. C., Pillitteri L. J. (2016) – Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression – Planta 243(4): 987-998 – doi: 10.1007/s00425-015-2445-7 – Epub 2016 Jan 9 – PMID: 26748914 – PMCID: PMC4819751 – https://pubmed.ncbi.nlm.nih.gov/26748914/ – (On our blog : https://plantstomata.wordpress.com/2023/03/26/the-complexity-and-combinatorial-control-of-gene-regulation-and-provides-tools-to-further-investigate-the-genetic-control-of-stomatal-development/ )

Maibenik O. (1970) – Responses of stomata of barley and maize to phenylmercuric acetate – Biologia Plantarum – DOI:10.1007/BF02922306https://www.semanticscholar.org/paper/Effects-of-Phenylmercuric-Acetate-on-Transpiration-Davenport/4bb43dfc50787bfd280a1df1771568a1bc981397 – (On our blog : https://plantstomata.wordpress.com/2022/12/14/responses-of-stomata-to-phenylmercuric-acetate/ )

Maierhofer T., Diekmann M., Offenborn J. N., Lind C., Bauer H., Hashimoto K., Al-Rashied K. A. S., Luan S., Kudla J., Geiger D.,  Rainer Hedrich R. (2014) – Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid – Sci. Signal. 7:ra86 – doi: 10.1126/scisignal.2005703 – http://stke.sciencemag.org/content/7/342/ra86 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/cbl-cipk-complexes-are-potential-regulators-of-stomatal-aperture-through-s-type-anion-channels/ )

Maierhofer T., Lind C., Huttl S., Scherzer S., Papenfuss M., Simon J., Al‐Rasheid K. A. S., Ache P., Rennenberg H., Hedrich R.,  Müller T. D., Geiger D. (2014) – A single‐pore residue renders the Arabidopsis root anion channel SLAH2 highly nitrate selective – Plant Cell 26: 2554– 2567 – https://doi.org/10.1105/tpc.114.125849http://www.plantcell.org/content/26/6/2554 – (On our blog : https://plantstomata.wordpress.com/2019/08/28/a-single%e2%80%90pore-residue-renders-the-root-anion-channel-slah2-highly-nitrate-selective/ )

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – I. Additional proof of peristomatal transpiration by hydrophotography and a comprehensive discus- sion in the light of recent results – Z. Pflanzenphysiol. 91: 25–43 – doi:10.1016/S0044-328X(81)80236-X – http://www.sciencedirect.com/science/article/pii/S0044328X8180236X – (On our blog : https://plantstomata.wordpress.com/2016/09/18/a-mechanistic-model-in-which-peristomatal-transpiration-has-a-central-role/)

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – II. Observation of Stomatal Movements under Different Conditions of Water Supply and Demand – Zeitschrift für Pflanzenphysiologie 91(2): 157-172 – https://doi.org/10.1016/S0044-328X(79)80090-2 – https://www.sciencedirect.com/science/article/pii/S0044328X79800902 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/stomatal-control-by-conditions-of-water-supply-and-peristomatal-transpiration/ )

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – III. Visible Effects of Peristomatal Transpiration on the Epidermis – Zeitschrift für Pflanzenphysiologie 91(3): 225–238 – DOI: 10.1016/S0044-328X(79)80097-5 – https://www.researchgate.net/publication/256915197_Peristomatal_Transpiration_and_Stomatal_Movement_A_Controversial_View_III_Visible_Effects_of_Peri_stomatal_Transpiration_on_the_Epidermis – (On our blog : https://plantstomata.wordpress.com/2018/11/02/each-stomatal-complex-is-an-independent-unit-and-it-acts-according-to-its-own-supply-demand-relationship/)

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – IV. Ion Accumulation by Peristomatal Transpiration – Zeitschrift für Pflanzenphysiologie 91(3): 239-254 – https://doi.org/10.1016/S0044-328X(79)80098-7 – https://www.sciencedirect.com/science/article/pii/S0044328X79800987 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/ion-accumulation-by-peristomatal-transpiration/ )

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – V. Rubidium-86 in the Epidermal Transpiration Stream- Zeitschrift für Pflanzenphysiologie 101(5)): 447-459 – https://doi.org/10.1016/S0044-328X(81)80084-0 – https://www.sciencedirect.com/science/article/pii/S0044328X81800840 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/stomatal-movement-rubidium-86-in-the-epidermal-transpiration-stream/ )

Maier-Maercker U. (1980) – “Peristomatal transpiration” and stomatal movement: a controversial view – VI. Lanthanum deposits in the epidermal apoplast – Z. Pflanzenphysiol. 100: 121-130 – https://doi.org/10.1016/S0044-328X(80)80206-6 –https://www.sciencedirect.com/science/article/pii/S0044328X80802066 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/peristomatal-transpiration-and-stomatal-movement-lanthanum-ions-as-a-tracer-for-ion-movement/

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – VII. Correlation of Stomatal Aperture with Evaporative Demand and Water Uptake Through the Roots – Zeitschrift für Pflanzenphysiologie 102(5)): 397-413 – DOI: 10.1016/S0044-328X(81)80175-4 – https://www.researchgate.net/publication/256915943_Peristomatal_Transpiration_and_Stomatal_Movement_A_Controversial_View_VII_Correlation_of_Stomatal_Aperture_with_Evaporative_Demand_and_Water_Uptake_Through_the_Roots – (On our blog : https://plantstomata.wordpress.com/2018/11/02/peristomatal-transpiration-is-seen-as-the-capacity-of-the-guard-cell-to-determine-the-sensitivity-of-the-hydraulic-system/)

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – VIII.Stomatal Control by Conditions of Water Supply and Peristomatal Transpiration – Zeitschrift für Pflanzenphysiologie 103(1)): 15-25 – https://doi.org/10.1016/S0044-328X(81)80236-Xhttps://www.sciencedirect.com/science/article/pii/S0044328X8180236X – (On our blog : https://plantstomata.wordpress.com/2018/08/15/stomatal-control-by-conditions-of-water-supply-and-peristomatal-transpiration/ )

Maier-Maercker U. (1983) – The role of peristomatal transpiration in the mechanism of stomatal movement – Plant, Cell & Environment 6(5): 369-380 – https://doi.org/10.1111/j.1365-3040.1983.tb01269.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1983.tb01269.x – (On our blog : https://plantstomata.wordpress.com/2016/09/18/peristomatal-transpiration-and-stomatal-movement/)

Maier-Maercker U. (1983) – A Critical Assessment of the Role of Potassium and Osmolarity in Stomatal Opening – Journal of Experimental Botany 34(144): 811-824 – http://www.jstor.org/stable/23690717https://www.jstor.org/stable/23690717?seq=1#page_scan_tab_contents – (On lour blog : https://plantstomata.wordpress.com/2019/11/09/the-role-of-potassium-and-osmolarity-in-stomatal-opening/ )

Maier-Maercker U. (1989) – Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst by fumigation with ozone – Trees 3: 57-64 – https://doi.org/10.1007/BF00202401 – https://link.springer.com/article/10.1007/BF00202401 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/the-significance-of-delignification-for-the-regulatory-capacity-of-the-stomata/ )

Maier-Maercker U. (1998) – Dynamics of change in stomatal response and water status of Picea abies during a persistent drought period: a contribution to the traditional view of plant water relations – Tree Physiology 18: 211–222 – DOI:10.1093/TREEPHYS/18.4.211 – Corpus ID: 33155376 – https://pubmed.ncbi.nlm.nih.gov/12651375/ – (On our blog : https://plantstomata.wordpress.com/2022/12/15/dynamics-of-change-in-stomatal-response-and-water-status/ )

Maier-Maercker U., Koch W. (1986) – Delignification of subsidiary and guard cell walls by SOand probable implication on the humidity response of Picea abies (L.) Karst. – European Journal of Forest Pathology 16(5‐6): 342-351 – https://doi.org/10.1111/j.1439-0329.1986.tb00200.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0329.1986.tb00200.x – (On our blog : https://plantstomata.wordpress.com/2018/06/02/delignification-of-cell-walls-in-stomata/ )

Maier-Maercker U., Koch W. (1991) – Experiments on the control capacity of stomata of Picea abies (L.) Karst after fumigation by ozone and in environmentally damaged material – Plant, Cell and Environment 14: 175-184 – https://doi.org/10.1111/j.1365-3040.1991.tb01334.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01334.x – On our blog : https://plantstomata.wordpress.com/2018/06/03/control-capacity-of-stomata/ )

Maier-Maercker U., Koch W. (1992) – The effect of air pollution on the mechanism of stomatal control – Trees 7: 12–25 – https://doi.org/10.1007/BF00225227https://link.springer.com/article/10.1007/BF00225227#citeas – (On our blog : https://plantstomata.wordpress.com/2020/03/01/air-pollution-and-stomatal-control/ )

Maier C. A., Teskey R. O. (1992) – Internal and external control of net photosynthesis and stomatal conductance of mature eastern white pine (Pinus strobus) – Canadian Journal of Forest Research 22: 1387–1394 – https://www.srs.fs.usda.gov/pubs/3089 – (On our blog : https://plantstomata.wordpress.com/2018/11/02/internal-and-external-control-of-net-photosynthesis-and-stomatal-conductance/)

Maiti R., González Rodríguez H., Rodríguez Balboa P. C., Marmolejo Moncivais J. G., Dueñas Tijerina H. A.,  González Díaz J. C.,  Kumari A. (2018) – Leaf surface anatomy in some woody plants from northeastern Mexico – Pakistan Journal of Botany 48(5): 1825-1831 ref.18 – ISSN : 0556-3321 – https://www.cabdirect.org/cabdirect/abstract/20163389193 – (On our blog : https://plantstomata.wordpress.com/2022/10/06/better-adapters-to-semi-arid-environments-on-the-basis-of-the-presence-and-absence-of-stomata-on-both-adaxial-and-abaxial-surface/ )

Majada J. P., Centeno M. L., Feito I.,  Fernández B., Sanchez-Tames R. (1998) – Stomatal and cuticular traits on carnation tissue culture under different ventilation conditions – Plant Growth Regulation 25: 113–121 – https://doi.org/10.1023/B:GROW.0000009706.70078.1chttps://link.springer.com/article/10.1023/B:GROW.0000009706.70078.1c#citeas – (On our blog : https://plantstomata.wordpress.com/2023/05/11/the-improvement-of-stomatal-function-in-leaves-obtained-in-ventilated-vessels-can-be-due-to-a-performance-of-ionic-relations-between-guard-and-subsidiary-cells-mainly-by-an-increasing-k-concent/ )

Majada J., Fal M. A., Tadeo F. R., Sánchez-Tamés R. (2002) – Effects of natural ventilation on leaf ultrastructure of Dianthus caryophyllus L. cultured in vitro – In Vitro Cellular & Developmental Biology – Plant 38: 272-278 – DOI:10.1079/IVP2001271 – https://link.springer.com/article/10.1079/IVP2001271 – (On our blog : https://plantstomata.wordpress.com/2023/05/11/stomata-from-in-vitro-plants-are-ready-to-carry-out-their-task-although-there-are-significant-differences-in-guard-cell-size-and-vacuolar-area-between-acclimated-and-in-vitro-plan/ )

Majernik O., (1970) – Responses of stomata of barley and maize to phenylmercuric acetate – Biologia plantarum 12: 419-423 – DOI: 10.1007/BF02922306https://bp.ueb.cas.cz/artkey/bpl-197006-0009_Responses-of-stomata-of-barley-and-maize-to-phenylmercuric-acetate.php?back=/magno/bpl/1970/mn6.php?secid=7 – (On our blog : https://plantstomata.wordpress.com/2021/11/03/stomata-and-pma/ )

Majernik O., Mansfield T. A. (1970) – Effects of SO2 pollution on stomatal movements in Vicia faba – Phytopathologische Zeitschrift 71: 123-128 – https://doi.org/10.1111/j.1439-0434.1971.tb03147.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0434.1971.tb03147.x – (On our blog : https://plantstomata.wordpress.com/2018/06/02/so2-pollution-and-stomatal-movements/ )

Majernik O., Mansfield T. A. (1971) – Direct effect of SO2 pollution on the degree of opening of stomata – Nature 227: 377-378 – https://www.nature.com/articles/227377a0 – (On our blog : https://plantstomata.wordpress.com/2018/06/03/effect-of-so2-pollution-on-opening-of-stomata/ )

Majernik O., Mansfield T. A. (1972) – Stomatal responses to raised atmospheric CO2 concentrations during exposure of plants to SO2 pollution – Environ. Pollut. 3: 1–7 – https://doi.org/10.1016/0013-9327(72)90012-2https://www.sciencedirect.com/science/article/abs/pii/0013932772900122 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/the-stomatal-closing-response-to-co2-still-occurs-in-the-presence-of-so2/ )

Majewska-Sawka A., Münster A., Rodriguez-Garcia M. I. (2002) – Guard cell wall: immunocytochemical detection of polysaccharide components – Journal of Experimental Botany 53(371): 1067–1079 – https://doi.org/10.1093/jexbot/53.371.1067 – https://academic.oup.com/jxb/article/53/371/1067/509295 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/the-histochemical-and-immunocytochemical-structure-of-the-guard-cell-wall-in-stomata-2/ )

Major D. J. (1975) – Stomatal frequency and distribution in rape – Can. J. Plant Sci. 55: 1077-1178 – https://cdnsciencepub.com/doi/pdf/10.4141/cjps75-168 – (On our blog : https://plantstomata.wordpress.com/2021/10/08/94205/ )

Majore I., Wilhelm B., Marten I. (2002) – Identification of K(+) channels in the plasma membrane of maize subsidiary cells – Plant Cell Physiol. 43: 844–852 – https://doi.org/10.1093/pcp/pcf104https://academic.oup.com/pcp/article/43/8/844/1805624 – (On our blog : https://plantstomata.wordpress.com/2019/11/25/the-plasma-membrane-of-subsidiary-cells-and-guard-cells-has-to-be-inversely-polarized-in-order-to-achieve-the-anti-parallel-direction-of-k-fluxes-between-these-cell-types-during-stomatal-movement/ )

Mak M., Babla M., Xu S.-C., O’Carrigan A., Liu X.-H., Gong Y.-M., Holford P., Chen Z.-H. (2014) – Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean – Environ Exp. Bot. 98: 1–12 – https://doi.org/10.1016/j.envexpbot.2013.10.003https://www.sciencedirect.com/science/article/abs/pii/S0098847213001470 – (On our blog : https://plantstomata.wordpress.com/2022/12/15/leaf-mesophyll-k-h-and-ca2-fluxes-and-stomatal-closure/ )

Makela A., Beninger F., Hari P. ( 1996) – Optimal control of gas exchange during drought: Theoretical analysis – Ann. Bot. 77(5) : 461-467 – DOI: 10.1006/anbo.1996.0056https://www.webofscience.com/wos/woscc/full-record/WOS:A1996UM06900006?SID=EUW1ED0F73245FCXix8M8Xrfd0ARe – (On our blog : https://plantstomata.wordpress.com/2023/03/22/the-resulting-optimal-stomatal-control-consists-of-two-processes-with-different-time-constants/ )

Mäkelä J., Knauer J., Aurela M., Black A., Heimann M., Kobayashi H., Lohila A.,Mammarella I., Margolis H., Markkanen T., Susiluoto J., Thum T., Viskari T., Zaehle S., Aalto T. (2019) – Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH – Geosci. Model Dev. 12: 4075–4098 – https://doi.org/10.5194/gmd-12-4075-2019https://www.geosci-model-dev.net/12/4075/2019/ – (On our blog : https://plantstomata.wordpress.com/2019/10/15/parameter-calibration-and-stomatal-conductance-formulation-comparison-for-boreal-forests/ )

Makkulawu A. T. (2007) – Inheritance of resistance on downy mildew Pereonoslerospora maydis (Rac.) Shaw in maize (Zea mays L.) and correlation between number of stomlata and degree of resistance – Indonesian Agricultural Research – Abstracts 24(1): 27 –

Makusova Z. (1986) – Changes in the number of stomata in Dactylis glomerata L. leaves. 1. Using graduated mineral nutrition of the stand – Sbornik Vysoke Skoly Zemedelske v Praze, Fakulta Agronomicka, A 44: 23-39 – https://eurekamag.com/research/001/543/001543866.php – (On our blog : https://plantstomata.wordpress.com/2022/02/18/stomatal-area-increased-with-increase-in-nutrients-applied/ )

Malcheska F., Ahmad A., Batool S., Müller H. M., Ludwig-Müller J., Kreuzwieser J., Randewig D., Hänsch R., Mendel R. R., Hell R., et al. (2017) – Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis – Plant Physiol 174: 798–814 – http://www.plantphysiol.org/content/174/2/798 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/xylem-derived-sulfate-seems-to-be-a-chemical-signal-of-drought-that-induces-stomatal-closure/)

Maleki F. A., Seidl-Adams I., Fahimi A., Peiffer M. L., Kersch-Becker M. F., Felton G. W., Tumlinson J. H. (2023) – Stomatal closure prevents xylem transport of green leaf volatiles and impairs their systemic function in plants – Plant, Cell & Environment 47(1): 122-139 – https://doi.org/10.1111/pce.14735https://onlinelibrary.wiley.com/doi/10.1111/pce.14735 – (On our blog : https://plantstomata.wordpress.com/2024/01/12/since-transpiration-is-mediated-by-the-stomatal-aperture-closing-stomata-by-two-independent-methods-diminishes-the-transport-of-glv-alcohol-and-its-isomer/ )

Males J., Griffiths H. (2017) – Stomatal biology of CAM plants – Plant Physiol 174: 550–560 – http://www.plantphysiol.org/content/174/2/550 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-functional-biology-of-cam-plant-stomata/)

Males J., Griffiths H. (2017)  Specialized stomatal humidity responses underpin ecological diversity in C3 bromeliads – Plant, Cell & Environment – doi: 10.1111/pce.13024. – http://onlinelibrary.wiley.com/doi/10.1111/pce.13024/full – (on our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-humidity-responses-and-ecological-diversity-in-c3-bromeliads )

Malewar A. (2018) – How a hormone helps plants build leaves’ ventilation system – Techexplorist – https://www.techexplorist.com/hormone-helps-plants-build-leaves-ventilation-system/16831/ – (On our blog : https://plantstomata.wordpress.com/2019/04/05/77351/ )

Malik C. P., Sethi R. S. (1975) – Histochemical studies in stomatal apparatus of Phaseolus mungo Linn. IV. Mechanism of stomatal action – Acta Histochem. 53(1): 1-11 – PMID: 127501 – https://www.ncbi.nlm.nih.gov/pubmed/127501 – (On our blog : https://plantstomata.wordpress.com/2020/01/06/histochemical-studies-in-stomatal-apparatus-and-the-mechanism-of-stomatal-action/ )

Malone S. R., Mayeux H. S., Johnson H. B., Polley H. W. (1993) – Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient – American Journal of Botany 80: 1413–1418 – DOI: 10.2307/2445670https://www.jstor.org/stable/2445670?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/02/stomatal-density-and-aperture-length-across-a-subambient-co2-gradient/

Manacorda C. A., Gudesblat G., Sutka M., Alemano S., Peluso F., Oricchio P., Baroli I., Asurmendi S. (2020) – TuMV triggers stomatal closure but reduces drought tolerance in Arabidopsis – Plant, Cell & Environment – doi: 10.1111/pce.14024https://www.biorxiv.org/content/10.1101/2020.08.03.235234v1.full – (On our blog : https://plantstomata.wordpress.com/2023/04/14/in-spite-of-stomatal-closure-triggered-by-tumv-additional-phenomena-cause-compromised-drought-tolerance-of-tumv-infected-arabidopsis-plants/ )

Manandhar A. (2022) – Making space for the pore: Structural characterization of stomatal movements when guard cells and epidermal cells interact – (Doctoral dissertation, Harvard University) –

Mandal M., Mitra S., Maity D. (2014) – Structure of polymorphic
stomata in Canella winterena (L.) Geartn.(Canellaceae) – Feddes Repert. 123(4): 295-303 – https://doi.org/10.1002/fedr.201300015https://onlinelibrary.wiley.com/doi/10.1002/fedr.201300015 – (On our blog : https://plantstomata.wordpress.com/2023/11/23/10-types-of-normal-stomata-along-with-4-subtypes-one-intermediate-type-between-stephanocytic-and-hemiparacytic-and-some-abnormal-stomatal-structures-both-in-the-vegetative-and-floral-organs-of-c/ )

Mano N. A., Lopez S. F., Mickelbart M. V. (2020) – Divergent strategies to reduce stomatal pore index during water deficit in perennial angiosperms – bioRxiv – https://doi.org/10.1101/2020.07 – https://www.biorxiv.org/content/10.1101/2020.07.07.191817v1.full.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/01/divergent-strategies-to-reduce-stomatal-pore-index-during-water-deficit/ )

Mansfield J. I. (1965) – Studies in stomatal behaviour: XII. Opening in high temperature in darkness – J. Exp. Bot. 16: 721-731 – https://doi.org/10.1093/jxb/16.4.721https://academic.oup.com/jxb/article-abstract/16/4/721/502089?login=false – (On our blog : https://plantstomata.wordpress.com/2022/12/15/stomatal-behaviour-in-high-temperature-in-darkness/ )

Mansfield T. A. (1965) – Reponses of Stomata to Short Duration Increases in Carbon Dioxide Concentration – Physiologia Plantarum 18(1): 79-84 – https://doi.org/10.1111/j.1399-3054.1965.tb06871.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1965.tb06871.x – (On our blog : https://plantstomata.wordpress.com/2024/01/05/stomatal-responses-to-short-duration-increases-in-co2-concentration/ ) 

Mansfield T. A. (1965) – Glycollic Acid Metabolism and the Movements of Stomata – Nature 205(4971): 617-618 – DOI: 10.1038/205617a0https://ui.adsabs.harvard.edu/abs/1965Natur.205..617M/abstract – (On our blog : https://plantstomata.wordpress.com/2021/12/26/the-metabolism-of-glycollic-acid-may-be-implicated-in-stomatal-movements-2/ )

Mansfield T. A. (1965) – The low intensity light reaction of stomata: effects of red light on rhythmic stomatal behaviour in Xanthium pennsyIvanicum – Proc. Royal Soc. B, Biol. Sci. – https://doi.org/10.1098/rspb.1965.0057https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1965.0057 – (On our blog : https://plantstomata.wordpress.com/2021/11/18/stomatal-response-to-low-intensity-light-operates-through-a-pigment-system-different-from-that-which-drives-the-ordinary-stomatal-opening-in-light/ )

Mansfield T. A. (1967) – Glycollic Acid Metabolism and the Movements of Stomata – Nature 205: 617–618 – https://doi.org/10.1038/205617a0https://www.nature.com/articles/205617a0#citeas – (On our blog : https://plantstomata.wordpress.com/2021/11/18/the-metabolism-of-glycollic-acid-may-be-implicated-in-stomatal-movements/ )

Mansfield T. A. (1967) – Stomatal behavior following treatment with auxin-like substances and phenylmercuric acetate – New Phytol. 66: 325-330 – https://doi.org/10.1111/j.1469-8137.1967.tb06011.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1967.tb06011.x – (On our blog : https://plantstomata.wordpress.com/2019/06/04/stomatal-behavior-following-treatment-with-auxin-like-substances-and-pma/ )

Mansfield T. A. (1973) – The role of stomata in determining the responses of plants to air pollutants – Commentaries in Plant Science 2: 11-20 – https://books.google.be/books?id=7ArLBAAAQBAJ&pg=PA21&lpg=PA21&dq=stomata+1970&source=bl&ots=vPJ94iii2Z&sig=ACfU3U2DLotSLzMBnxHNcvJyDxnlbr44DA&hl=en&sa=X&ved=2ahUKEwjIxKDVt4P0AhVF26QKHa8_BWA4KBDoAXoECBMQAw#v=onepage&q=stomata%201970&f=false – (On our blog : https://plantstomata.wordpress.com/2021/11/06/95060/ )

Mansfield T. A. (1976) – Stomatal behaviour: Chemical control of stomatal movements – Philosophical Transactions of the Royal Society, London B273: 541-550 – DOI: 10.1098/rstb.1976.0030 – http://rstb.royalsocietypublishing.org/content/273/927/541 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/chemical-control-of-stomatal-movements/ )

Mansfield T. A. (1976) – The role of stomata in determining the responses of plants to air pollutants – Commentaries in Plant Science : 13-22 – https://doi.org/10.1016/B978-0-08-019759-3.50008-0https://www.sciencedirect.com/science/article/abs/pii/B9780080197593500080?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2024/02/13/stomatal-apertures-are-important-in-determining-the-sensitivity-of-plants-during-exposure-to-air-pollutants/ )

Mansfield T. A. (1976) – Delay in the Response of Stomata to Abscisic Acid in CO2-free Air – Journal of Experimental Botany 27(3): 559–564 – https://doi.org/10.1093/jxb/27.3.559 –https://academic.oup.com/jxb/article-abstract/27/3/559/448782?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/14/delay-in-the-response-of-stomata-to-abscisic-acid-in-co2-free-air/ )

Mansfield T. A. (1983) – Movements of stomata – Science Progress 68(272): 519-542 – https://www.jstor.org/stable/43420581?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/01/11/movements-of-stomata/ )

Mansfield T. A. (1985) – Porosity at a price: the control of stomatal conductance in relation to photosynthesis – In: J Barber, NR Baker (eds) Photosynthetic Mechanisms and the Environment – Elsevier, Amsterdam 419–452 –

Mansfield T. A. (1986) – The physiology of stomata: new insights into old problems – In: Steward, F.C. (Ed.). Plant Physiology, a treatise, Vol IX. Academic Press, Orlando, 155-224 –

Mansfield T. A. (1998) – Stomata and plant water relations: does air pollution create problems? – Environmental Pollution 101: 1-11 – doi:10.1016/S0269-7491(98)00076-1 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomata-and-plant-water-relations-does-air-pollution-create-problems.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-pollution-and-plant-water-relations/ )

Mansfield T. A., Atkinson C. J. (1990) – Stomatal behavior in water stressed plants – In: Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Alscher RG, Cumming JR (Eds), Wiley‐Liss, New York 241–264 –

Mansfield T. A., Davies W. J. (1985) – Mechanisms for Leaf Control of Gas Exchange – BioScience 35(3): 158-164 – DOI: 10.2307/1309865 – https://www.jstor.org/stable/1309865?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/22/stomata-and-mechanisms-for-leaf-control-of-gas-exchange/ )

Mansfield T. A., De Silva D. L. R. (1994) – Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves – Physiological Chemistry and  Physics and Medical NMR 26: 89-99 –

Mansfield T. A., Freer-Smith P. H. (1984)  The role of stomata in resistance mechanisms. In: Koziol, M.J., Whatley, F.R. (Eds.). Gaseous air pollutants and plant metabolism. Butterworths, London, 131-146 –

Mansfield T. A., Heath, 0. V. S. (1961) – Photoperiodic Effects on Stomatal Behaviour in Xanthium pennsylvanicum – Nature 191: 974–975 – https://doi.org/10.1038/191974a0https://www.nature.com/articles/191974a0#citeas

Mansfield T. A., Heath, 0. V. S. (1963) – Studies in stomatal behaviour, IX. Photoperiodic effects on rhythmic phenomena in Xanthium pennsylvanicum – J. Exp. Bot. 14: 334-352 – https://doi.org/10.1093/jxb/14.2.334https://academic.oup.com/jxb/article-abstract/14/2/334/516791?redirectedFrom=fulltext&login=false – (On our blog : https://plantstomata.wordpress.com/2023/07/30/the-effects-of-different-day-length-treatments-on-stomatal-behaviour/ )

Mansfield T. A., Heath O. V. S. (1976)  Biology: an effect of smog on stomatal behaviour – Nature 200: 596 – https://www.osti.gov/etdeweb/biblio/5353928 – (On our blog : https://plantstomata.wordpress.com/2021/09/28/stomata-in-dense-fog/ )

Mansfield T. A., Hetherington A. M., Atkinson C. J. (1990) – Some current aspects of stomatal physiology – Annu. Rev. Plant Physiol. – Plant Mol. Biol. 41: 55–75 – doi: 10.1146/annurev.pp.41.060190.000415 – https://www.annualreviews.org/doi/10.1146/annurev.pp.41.060190.000415 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/aspects-of-stomatal-physiology/ )

Mansfield T. A., Jones R. J. (1971) – Effects of abscisic acid on potassium uptake and starch content of stomatal guard cells – Planta 101: 147-158 – https://doi.org/10.1007/BF00387625https://link.springer.com/article/10.1007/BF00387625#citeas – (On our blog : https://plantstomata.wordpress.com/2020/06/10/effects-of-aba-on-k-uptake-and-starch-content-of-stomatal-guard-cells/ )

Mansfield T. A., Majernik O. (1970) – Can stomata play a part in protecting plants against air pollutants? – Environmental Pollution 1: 149–154 – doi:10.1016/0013-9327(70)90015-7 – http://www.sciencedirect.com/science/article/pii/0013932770900157 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomata-and-protection-against-air-pollutants/ )

Mansfield T. A., Martin E. S., Meidner H. (1973) – The sun and the stomatal apparatus~ AFEDES 12: 1-10 (UNESCO, Paris) –

Mansfield T. A., Meidner H. (1966) – Stomatal opening in light of different wavelengths: Effects of blue light independent of CO2 concentration – J. Exp. Bot. 17: 510-521 – https://doi.org/10.1093/jxb/17.3.510 – https://academic.oup.com/jxb/article-abstract/17/3/510/672837?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/11/02/effects-of-blue-light-on-stomatal-opening-independent-of-co2-concentration/

Mansfield T. A., Pemadasa M. A., Snaith P. J. (1983) – New possibilities for controlling foliar absorption via stomata – Pesticide Sciencee 14(3): 294-298 – https://doi.org/10.1002/ps.2780140310https://onlinelibrary.wiley.com/doi/10.1002/ps.2780140310 – (On our blog : https://plantstomata.wordpress.com/2023/12/02/indol-3-ylacetic-acid-can-overcome-the-influence-of-natural-agents-causing-stomatal-closure-thus-providing-the-possibility-of-regulating-stomatal-aperture-in-the-field-to-facilitate-the-uptake-of-app/ )

Mansfield T. A., Wellburn A. R., Morieira T. J. S. (1978) – The Role of Abscisic Acid and Farnesol in the Alleviation of Water Stress – Phil. Trans. Roy. Soc, Lond. Series B, Biol. Sci. 284(1002): 471-482 – https://www.jstor.org/stable/2418127 – (On our blog : https://plantstomata.wordpress.com/2022/12/15/stomata-and-the-role-of-aba-and-farnesol/ )

Mansfield T. A., Willmer C. M. (1969)  Stomatal responses to light and carbon dioxide in the hart’s-tongue fern, Phyllitis scolopendrium Newm. – New Phytol. 68: 63-66 – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomata-light-and-co2/ )

Mansouri D., Rassaa N., Chalh A., Fethi B., El Gazzah M. (2016) – Stomata development variability of ten wheat genotypes under early water stress – Journ. New Sciences_AgriBiotech_Vol_35_05.pdf – (On our blog: https://plantstomata.wordpress.com/2019/07/18/stomata-development-variability-under-early-water-stress/ )

Manter D. K., Bond B. J., Kavanagh K. L., Rosso P. H., Filip G. M. (2000) – Pseudothecia of Swiss needle cast fungus, Phaeocryptopus gaeumannii, physically block stomata of Douglas fir, reducing CO2 assimilation – New Phytologist 148: 481–491 – https://doi.org/10.1046/j.1469-8137.2000.00779.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.2000.00779.x – (On our blog : https://plantstomata.wordpress.com/2021/04/02/the-impact-of-pseudothecia-development-on-stomatal-conductance-and-co2-assimilation-rates/ )

Manzoni S., Vico G., Katul P. A., Fay W., Polley S., Palmroth S., Porporato A. (2011) – Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates – Funct. Ecol. 25: 456–467 – doi: 10.1111/j.1365-2435.2010.01822.xhttps://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2435.2010.01822.x – (On our blog : https://plantstomata.wordpress.com/2021/10/19/optimizing-stomatal-conductance/ )

Manzoni S., Vico G., Palmroth S., Katul G., Porporato A., (2013) – Optimal plant water use across temporal scales: bridging eco-hydrological theories and plant eco-physiological responses – American Geophysical Union, Fall Meeting 2013, abstract id. B54A-02 – https://ui.adsabs.harvard.edu/abs/2013AGUFM.B54A..02M/abstract – (On our blog : https://plantstomata.wordpress.com/2022/03/09/optimality-theories-describing-the-behavior-of-stomata-and-plant-morphological-features-in-a-fluctuating-soil-moisture-environment/ )

Manzoni S., Vico G., Palmroth S., Porporato A., Katul G. (2013) – Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture – Advances in Water Resources 62, Part A: 90–105 – http://dx.doi.org/10.1016/j.advwatres.2013.09.020http://www.sciencedirect.com/science/article/pii/S0309170813001814 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-conductance-under-dynamic-soil-moisture/ )

Manzoor A., Ahmad T., Bashir M. A., Muhammad M., Baig Q., Qureshi A. A., Kausar M. Shah N., Hafiz I. A. (2018) – Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity’ – Folia Horticulturae 30(2): 307-319 – DOI: 10.2478/fhort-2018-0026https://www.researchgate.net/publication/326711275_Induction_and_identification_of_colchicine_induced_polyploidy_in_Gladiolus_grandiflorus_’White_Prosperity’ – (On our blog : https://plantstomata.wordpress.com/2020/03/11/both-pollen-and-stomata-size-were-increased-while-stomatal-density-and-pollen-fertility-was-significantly-reduced-in-polyploid-plants/ )

Manzoor R., Zafar M., Yaqoob T., Ahmad M., Fawzy Ramadan M., Althobaiti A. T., Demirpolat A., Çobanoğlu D. N., Sultana S., Makhkamov T., Mamarakhimov O., Yuldashev A., Khakimova D., Nizomova M.,  Ochilov U., Majeed S. (2023) – Micromorphological Sculptural Diversity in Foliar Epidermis and Trichomes Features among Invasive Species – Microscopy and Microanalysis, ozad063, https://doi.org/10.1093/micmic/ozad063https://academic.oup.com/mam/advance-article-abstract/doi/10.1093/micmic/ozad063/7220572?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2023/07/09/the-micromorphological-attributes-under-observation-e-g-stomata-provide-a-standard-criterion-to-the-researcher-for-identifications-of-invasive-flora-in-future-morpho-taxonomic-studies/ )

Mao A. A., Wetten A. C., Fay M. F., Caligari P. D. S. (2000) – In vitro propagation of Litsea cubeba (Lours.) Pers., a multipurpose tree – Plant Cell Reports 19(3): 263-267 – DOI:10.1007/s002999900099 –https://www.semanticscholar.org/paper/In-vitro-propagation-of-Litsea-cubeba-(Lours.)-a-Mao-Wetten/dcebd854759e2f0d2c66d6f436482d5e90484e72 – (On our blog : https://plantstomata.wordpress.com/2019/04/10/the-effects-of-four-growth-regulators-on-stomata/ )

Mao J., Zhang Y. C., Sang Y., Li Q. H., Yang H. Q. (2005) – A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 102: 12270–12275 – doi: 10.1073/pnas.0501011102 – https://www.researchgate.net/publication/7667688_A_role_for_Arabidopsis_cryptochromes_and_COP1_in_the_regulation_of_stomatal_opening – (On our blog : https://plantstomata.wordpress.com/2018/06/04/cop1-is-a-repressor-of-stomatal-opening-and-likely-acts-downstream-of-cry-and-phot-signaling-pathways/ )

Mao Z.-J., Wang Y.-J., Wang X.-W., Voronin P. Y. (2004) – Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves – Russ J Plant Physiol 52: 171 – https://doi.org/10.1007/s11183-005-0025-6 – https://link.springer.com/article/10.1007/s11183-005-0025-6 – (On our blog : https://plantstomata.wordpress.com/2018/02/05/doubled-co2-concentration-exerts-a-morphotropic-effect-on-differentiation-of-young-epidermal-tissue/ )

Marantika M., Hiariej A., Sahertian D. E. (2021) – Kerapatan dan Distribusi Stomata Daun Spesies Mangrove di Desa Negeri Lama Kota Ambon – Jurnal Ilmu Alam dan Lingkungan 12(1): 1-6 – file:///C:/Users/wille/Downloads/11041-Article%20Text-33726-2-10-20200906%20(3).pdf – (On our blog : https://plantstomata.wordpress.com/2023/04/12/the-density-and-distribution-of-mangrove-species-stomata-in-the-negeri-lama-village-of-ambon-city/ )

Marasali B., Aktekin A. (2003) – Comparative study on stomatal density of grape cultivars grown under dry and irrigated vineyard conditions – J. Agric. Fac. Ankara Univ. 9: 370-372 –

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989)  The generation and consolidation of a radial array of cortical microtubules in developing guard cells of Allium cepa L. – Planta 179: 516–529 – DOI: 10.1007/BF00397591https://www.researchgate.net/publication/258348454_The_generation_and_consolidation_of_a_radial_array_of_cortical_microtubules_in_developing_guard_cells_of_Allium_cepa_L – (On our blog : https://plantstomata.wordpress.com/2016/10/18/25436/ )

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989)  A planar microtubule-organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules – Planta 179(4): 530-540 – doi: 10.1007/BF00397592https://www.ncbi.nlm.nih.gov/pubmed/24201776 – (On our blog : https://plantstomata.wordpress.com/2016/10/19/experimental-depolymerization-and-reassembly-of-microtubules-in-stomata/ )

Marc J., Palevitz B. A. (1990)  Regulation of the spatial order of cortical microtubules in developing guard cells of Allium – Planta 182: 626–634 – doi: 10.1007/BF02341041 –  http://link.springer.com/article/10.1007/BF02341041 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/cortical-microtubules-in-developing-guard-cells/ )

Marchadier E., Hetherington A. M. (2014) – Involvement of two-component signalling systems in the regulation of stomatal aperture by light in Arabidopsis thaliana – New Phytologist 203: 462–468 – DOI: 10.1111/nph.12813https://pubmed.ncbi.nlm.nih.gov/24758561/ – (On our blog : https://plantstomata.wordpress.com/2020/11/18/new-insights-into-the-operation-of-tcs-in-plants-cross-talk-in-stomatal-signalling-and-in-particular-the-process-of-light-induced-stomatal-opening/ )

Marchin R. M., Backes D., Ossola A., Leishman M. R., Tjoelker M. G., Ellsworth D. S. (2022) – Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species – Global Change Biology 28(3): 1133-1146 – https://doi.org/10.1111/gcb.15976https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15976 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/isohydric-species-may-dramatically-increase-stomatal-conductance-gs-even-past-their-leaf-turgor-loss-point/ )

Marchin R. M., Broadhead A. A., Bostic L. E., Dunn R. R., Hoffmann W. A. (2016) – Stomatal acclimation to vapor pressure deficit doubles transpiration of small tree seedlings with warming – Plant Cell Environ. 39: 2221–2234 – doi: 10.1111/pce.12790 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12790 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-acclimation-to-vapor-pressure-deficit-doubles-transpiration/ )

Marchin R. M., Medlyn B. E., Tjoelker M. G., Ellsworth D. S. (2023) – Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access – Global Change Biology 29(22): 6319-6335 – https://doi.org/10.1111/gcb.16929https://onlinelibrary.wiley.com/doi/10.1111/gcb.16929 – (On our blog: https://wordpress.com/post/plantstomata.wordpress.com/120703 )

Marcus A., Moore R. C., Cyr R. J. (2001) – The role of microtubules in guard cell function – Plant Physiology 125: 387–395 – PMID: 11154346 PMCID: PMC61019 – https://www.ncbi.nlm.nih.gov/pubmed/11154346 – (On our blog : https://plantstomata.wordpress.com/2018/11/02/microtubules-are-involved-in-an-upstream-event-prior-to-the-ionic-fluxes-leading-to-stomatal-opening/

Marek S., Tomaszewski D., Żytkowiak R., Jasińska A., Zadworny M., Boratyńska K., Dering M., Danusevičius D., Oleksyn J., Wyka T. P. (2021) – Stomatal density in Pinus sylvestris as an indicator of temperature rather than CO2: Evidence from a pan-European transect – Plant, Cell & Environment 45(1): 121-132 – https://doi.org/10.1111/pce.14220Stomatal density in Pinus sylvestris as an indicator of temperature rather than CO2: Evidence from a pan‐European transect – Marek – 2022 – Plant, Cell & Environment – Wiley Online Library – (On our blog : https://plantstomata.wordpress.com/2024/01/20/one-of-the-strongest-intraspecific-relationships-between-stomatal-density-and-climate-in-any-woody-species-supporting-the-utility-of-stomatal-density-as-a-temperature-rather-than-direct-co2-proxy/ )

Marenco R. A., Siebke K., Farquhar G. D., Ball M. C. (2006) – Hydraulically based stomatal oscillations and stomatal patchiness in Gossypium hirsutum – Functional Plant Biology 33: 1103-1113 – doi: 10.1071/FP06115 – http://biology-assets.anu.edu.au/CMS/FileUploads/file/Farquhar/237MarencoPFB2006.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/03/hydraulically-based-stomatal-oscillations-and-stomatal-patchiness/ )

Marias D. (2015) – Accurately measuring cavitation resistance to understand how plants cope with drought – Botany One Jan 10, 2018 – https://www.botany.one/2015/03/accurately-measuring-cavitation-resistance-to-understand-how-plants-cope-with-drought/ – (On our blog : https://plantstomata.wordpress.com/2018/01/10/cavitation-resistance-is-crucial-to-coping-with-and-surviving-drought/ )

Maricle B. R., Koteyeva N. K., Voznesenskaya E. V., Thomasson J. R., Edwards G. E. (2009) – Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae)  – New Phytol. 184(1): 216-233 – https://doi.org/10.1111/j.1469-8137.2009.02903.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2009.02903.x – (On our blog : https://plantstomata.wordpress.com/2018/07/07/stomata-in-salt-marsh-and-freshwater-species-in-the-c4-genus-spartina-poaceae/ )

Maricle B. R., Lee R. W. (2006) – Effects of enviromental salinity on carbon isotope ratio and stomatal conductance in Spartina grasses – Marine Ecology Progress Series 313: 305-310 – DOI:10.3354/MEPS313305https://www.researchgate.net/publication/270086578_Effects_of_environmental_salinity_on_carbon_isotope_discrimination_and_stomatal_conductance_in_Spartina_grasseshttps://www.semanticscholar.org/paper/Effects-of-environmental-salinity-on-carbon-isotope-Maricle-Lee/aa357994018c6b40b4c873667f507b278cd195f5 – (On our blog : https://plantstomata.wordpress.com/2022/12/08/effects-of-enviromental-salinity-on-stomatal-conductance/ )

Marin J. A., Gella R., Herrero M. (1988) – Stomatal Structure and Functioning as a Response to Environmental Changes in Acclimatized Micropropagated Prunus cerasus L. – Annals of Botany 62(6): 663-670 – https://www.jstor.org/stable/42765013https://www.jstor.org/stable/42765013?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/10/18/stomatal-structure-and-functioning-as-a-response-to-environmental-changes/ )

Marinho R. C., Mendes-Rodrigues C., Bonetti A. M., Oliveira P. E. (2014) – Pollen and stomata morphometrics and polyploidy in Eriotheca (Malvaceae-Bombacoideae) – Plant Biology 16(2): 508-511 – https://eurekamag.com/research/055/038/055038367.php – (On our blog : https://plantstomata.wordpress.com/2022/01/08/the-size-of-the-pollen-grains-and-stomata-are-effective-parameters-for-analysis-of-ploidy-levels-2/ )

Marinho R. C., Mendes-Rodrigues C., Bonetti A. M., Oliveira P. E. (2020) – Stomatal size, ploidy and polyembryony in Eriotheca Stellate Trichome Species Complex (Bombacoideae – Malvaceae) in the Cerrados of Brazil – Plant Biology 23(1): 91-99 – https://doi.org/10.1111/plb.13177https://onlinelibrary.wiley.com/doi/10.1111/plb.13177 – (On our blog : https://plantstomata.wordpress.com/2024/05/10/stomatal-size-ploidy-and-polyembryony-in-eriotheca-stellate-trichome-species-complex/ )

Mariyaraj J., Gideon A. V., Britto J. S. (2019) – Chemical Screening and Anatomical Investigation of Hydnocarpus macrocarpa (Bedd.) Warb. (Achariaceae) – International Journal of Pharmacy and Biological Sciences IJPBSTM 9(3): 433-439 – Online ISSN: 2230-7605 – Print ISSN: 2321-3272 – https://ijpbs.com/ijpbsadmin/upload/ijpbs_5d723969004d7.pdf – (On our blog : https://plantstomata.wordpress.com/2022/06/09/the-presence-of-stomata-unicellular-or-uniseriate-covering-in-hydnocarpus-macrocarpa-achariaceae/ )

Markelz R. J. C., Strellner R. S., Leakey A. D. B. (2011) – Impairment of C 4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO 2] in maize – Journal of experimental botany 62(9): 3235-3246 – https://doi.org/10.1093/jxb/err056https://experts.illinois.edu/en/publications/impairment-of-c-sub4sub-photosynthesis-by-drought-is-exacerbated–2 – (On our blog : https://plantstomata.wordpress.com/2020/05/20/stomata-and-the-impairment-of-c-4-photosynthesis-by-drought/ )

Maroco J. P., Pereira J. S., Chaves M. M. (1997) – Stomatal responses to leaf‐to‐air vapour pressure deficit in Sahelian species – Australian Journal of Plant Physiology 24: 381–387 – https://doi.org/10.1071/PP96062http://www.publish.csiro.au/fp/PP96062 – (On our blog : https://plantstomata.wordpress.com/2019/10/08/resistance-to-drought-was-associated-with-stomatal-closure-as-lavpd-increased/ )

Marom Z., Shtein I., Bar-On B. (2017) – Stomatal Opening: The Role of Cell-Wall Mechanical Anisotropy and Its Analytical Relations to the Bio-composite Characteristics – Frontiers in Plant Science  8: 2061-  – DOI=10.3389/fpls.2017.02061 – https://www.frontiersin.org/articles/10.3389/fpls.2017.02061/full – (On our blog : https://plantstomata.wordpress.com/2018/01/31/cell-wall-mechanical-anisotropy-and-stomatal-opening/ )

Marques M., Arrabaca J., Chagas I. (2005) – The Mechanism of Guard Cell Movement – Journal of Biological Education 39 (3): 131-135 – https://eric.ed.gov/?id=EJ939430 – (On our blog : https://plantstomata.wordpress.com/2019/04/14/the-mechanism-of-stomatal-guard-cell-movement/ )

Marquez D. A., Stuart-Williams H., Farquhar G. D. (2021) – An improved theory for calculating leaf gas exchange more precisely accounting for small fluxes – Nat. Plants 7: 317–326 – https://doi.org/10.1038/s41477-021-00861-whttps://www.nature.com/articles/s41477-021-00861-w#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/23/a-more-precise-physical-approach-to-the-electrical-resistance-analogy-for-gas-exchange-resulting-in-a-more-accurate-calculation-of-gas-exchange-parameters-stomatal-conductance/ )

Marritz L. (2013) – Video: Stomata Opening and Closing – http://www.deeproot.com/blog/blog-entries/video-stomata-opening-and-closing – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomata-opening-and-closing/

Marsh P., Dodge S., Tallman G., (1989) – Responses of guard cell protoplasts of Nicotiana glauca from leaves with closed or open stomata to red and blue light – Plant Physiology 89(Suppl. 4): 23 – https://eurekamag.com/research/001/934/001934802.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/responses-of-stomatal-guard-cell-protoplasts-from-leaves-with-closed-or-open-stomata-to-red-and-blue-light/ )

Marshall S. J. (2014) – The Water Cycle – Elsevier – https://reader.elsevier.com/reader/sd/pii/B9780124095489090916?token=7D9E5B051CF1516420ACADA2BD61C713D42EED090B7713565203C6416734C620B6F36C2297196425C9844442E09FCDA3 – (On our blog : https://plantstomata.wordpress.com/2021/03/02/evaporation-and-transpiration/ )

Marten H., Hedrich R., Roelfsema M. R. G. (2007) –  Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner – Plant J. 50(1): 29-39 – Epub 2007 Feb 22 – DOI: 10.1111/j.1365-313X.2006.03026.xhttps://www.ncbi.nlm.nih.gov/pubmed/17319842 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/blue-light-inhibits-plasma-membrane-anion-channels-through-a-pathway-involving-phototropins-in-addition-to-the-stimulation-of-stomatal-guard-cell-plasma-membrane-h-atpases/ )

Marten H., Hyun T., Gomi K., Seo S., Hedrich R., Roelfsema M. R. (2008) – Silencing of NtMPK4 impairs CO-induced stomatal closure, activation of anion channels and cytosolic Casignals in Nicotiana tabacum guard cells. – Plant J. 55: 698–708 – doi: 10.1111/j.1365-313X.2008.03542.x – https://www.ncbi.nlm.nih.gov/pubmed/18452588 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/ntmpk4-and-co2-and-darkness-induced-activation-of-guard-cell-anion-channels-in-stomata/ )

Marten H., Konrad K. R., Dietrich P., Roelfsema M. R. G., Hedrich R. (2007) – Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum – Plant Physiol. 143: 28–37 – doi: 10.1104/pp.106.092643 – http://www.plantphysiol.org/content/143/1/28.long – (On our blog : https://plantstomata.wordpress.com/2016/10/18/ca2-aba-and-plasma-membrane-anion-channels-in-stomata/ )

Marten I., Busch H., Raschke K., Hedrich R. (1993)  Modulation and block of the plasma membrane anion channel of guard cells by stilbene derivatives – Eur Biophys J 21:403–408 – http://cel.webofknowledge.com/InboundService.do?product=CEL&SID=Z2xW27ed8sTOsZMc3ZE&UT=WOS%3AA1993KM49400004&SrcApp=Highwire&action=retrieve&Init=Yes&SrcAuth=Highwire&Func=Frame&customersID=Highwire&IsProductCode=Yes&mode=FullRecord – (On our blog : https://plantstomata.wordpress.com/2016/10/20/stilbene-derivatives-and-the-plasma-membrane-anion-channel-of-stomata/ )

Marten I., Lohse G. Hedrich R. (1991) – Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells – Nature 353: 759-762 – DOI:10.1038/353758a – https://www.nature.com/articles/353758a0 – (On our blog : https://plantstomata.wordpress.com/2018/11/03/auxins-can-elicit-stomatal-opening/ )

Marten I., Zeilinger C., Redhead C., Landry D. W., Al-Awqati Q., Hedrich R. (1992) – Identification and modulation of a voltagedependent anion channel in the plasma membrane of guard cells by high-affinity ligands – EMBO J 11: 3569-3575 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556815/ – (On our blog : https://plantstomata.wordpress.com/2016/10/29/a-voltagedependent-anion-channel-in-the-plasma-membrane-of-guard-cells-stomata/ )

Martin C., Glover B.J. (2007) – Functional aspects of cell patterning in aerial epidermis  – Current Opinion in Plant Biology 10: 70–82 – http://dx.doi.org/10.1016/j.pbi.2006.11.004 –http://www.sciencedirect.com/science/article/pii/S1369526606001853 – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-patterning-of-stomata-and-trichomes-in-different-plant-species/ ) – ( https://wordpress.com/post/plantstomata.wordpress.com/26150 ) 

Martin C. E., Peters E. A. (1984) – Functional stomata of the atmospheric epiphyte Tillandsia usneoides – Bot. Gaz. 145(4): 502-5047 – Martin_BotGaz_145_502-507.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/functional-stomata-in-tillandsia-usneoides/ )

Martin C. E., von Willert D. J. (2000) – Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa – Plant Biol. 2(2): 229-242 – DOI: 10.1055/s-2000-9163https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2000-9163 – (On our blog : https://plantstomata.wordpress.com/2022/12/15/111094/ )

Martin E. S., Donkin M. E., Stevens R. A. (1983) – Stomata – Edward Arnold, London – https://www.journals.uchicago.edu/doi/abs/10.1086/414360 – (On our blog : https://plantstomata.wordpress.com/2021/08/22/92514/ )

Martin E. S., Meidner H. (1971) – Endogenous stomatal movements in Tradescantia virginiana – New Phytologist 70: 923-928 – https://doi.org/10.1111/j.1469-8137.1971.tb02592.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1971.tb02592.x – (On our blog: https://plantstomata.wordpress.com/2022/12/15/stomatal-opening-and-closing-in-response-to-short-light-dark-treatments/ )

Martin E. S., Meidner H. (1972) – The phase response of the dark stomatal rhythm in Tradescantia virginiana to light and dark treatments – New Phytol. 71: 1045–1054https://doi.org/10.1111/j.1469-8137.1972.tb01982.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1972.tb01982.x – (On our blog : https://plantstomata.wordpress.com/2019/09/21/the-phase-response-of-the-dark-stomatal-rhythm-to-light-and-dark-treatments/ )

Martin E. S., Meidner H. (1975) – The influence of night length on stomatal behaviour in Tradescantia virginiana – New Phytol. 75: 507-511 – https://doi.org/10.1111/j.1469-8137.1975.tb01412.xhttps://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1975.tb01412.x – (On our blog : https://plantstomata.wordpress.com/2022/12/18/influence-of-night-length-on-stomatal-behaviour/ )

Martin G. E., Outlaw W. H., Anderson L. C., Jackson S. G. (1984) -Photosynthetic electron transport in guard cells of diverse species – Plant Physiol. 75(2): 336-337 – doi: 10.1104/pp.75.2.336 – PMID: 16663621 -PMCID: PMC1066907 – https://pubmed.ncbi.nlm.nih.gov/16663621/ – (On our blog : https://plantstomata.wordpress.com/2022/12/27/stomatal-guard-cells-conduct-photosynthetic-electron-transport-through-the-reaction-center-of-photosystem-ii/ )

Martin L., Jacquet H., Renaud J., Cotelle V., Giacalone C., Vavasseur A., Leonhardt N. (2012) – Guard cell plasma membrane H+- ATPases: highly regulated proton pumps to control gas exchange – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/three-isoforms-of-the-plasma-membrane-h-atpases-in-the-stomatal-movement-regulation/ )

Martin M. J., Farage P. K., Humphries S. W., Long S. P. (2000) – Can the stomatal changes caused by acute ozone exposure be predicted by changes occurring in the mesophyll? A simplification for models of vegetation response to the global increase in tropospheric elevated ozone episodes – Aust J Plant Physiol 27: 211–219 – https://doi.org/10.1071/PP99132https://experts.illinois.edu/en/publications/can-the-stomatal-changes-caused-by-acute-ozone-exposure-be-predic – (On our blog : https://plantstomata.wordpress.com/2019/10/15/can-the-stomatal-changes-caused-by-acute-ozone-exposure-be-predicted-by-changes-occurring-in-the-mesophyll/ )

Martin W. J., Stimart D. P. (2005) – Stomatal density in Antirrhinum majus L.: inheritance and trends with development – HortScience 40: 1252–1258 – http://hortsci.ashspublications.org/content/40/5/1252.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/09/08/stomatal-density-in-antirrhinum-majus-l/ )

Martinez-Sancho E., Vasconez Navas L., Seidel H., Dorado-Linan I., Menzel A. (2017) – Responses of Contrasting Tree Functional Types toAir Warming and Drought – Forests 8: 450 – doi:10.3390/f8110450https://www.academia.edu/35276044/Responses_of_Contrasting_Tree_Functional_Types_to_Air_Warming_and_Drought?email_work_card=view-paper  – (On our blog : https://plantstomata.wordpress.com/2022/02/04/tree-functional-types-to-air-warming-and-drought-and-stomatal-conductance/ )

Martinez-Vilalta J., Garcia-Forner N. (2016) – Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept – Plant, Cell & Environment – DOI: 10.1111/pce.12846 –  http://onlinelibrary.wiley.com/doi/10.1111/pce.12846/abstract;jsessionid=412556820134C849930721AF4E74DE29.f02t03 – (On our blog : https://plantstomata.wordpress.com/2016/10/16/stomatal-behaviour-and-hydraulic-transport-under-drought/ )

Martinez-Vilalta J., Mangiron M., Ogaya R., Sauret M., Serrano L., Penuelas J., Pinol J. (2003) – Sapflow of three co-occurring Mediterranean woody species undervarying atmospheric and soil water conditions – Tree Physiology 23: 747–758 – https://www.academia.edu/22036909/Sap_flow_of_three_co_occurring_Mediterranean_woody_species_under_varying_atmospheric_and_soil_water_conditions?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/01/canopy-stomatal-conductance-and-the-seasonal-patterns-of-water-use-in-three-woody-species/ )

Martins G. A., Soares A. M., Delfino Barbosa J. P. R. A., de Mello J. M., de Castro E. M., Ferraz A. C. Jr. (2012) – Stomatal density distribution patterns in leaves of the Jatobá (Hymenaea courbaril L.) – Trees 26(2): 571 – DOI: 10.1007/s00468-011-0620-4https://www.researchgate.net/publication/230675685_Stomatal_density_distribution_patterns_in_leaves_of_the_Jatoba_Hymenaea_courbaril_L – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-density-distribution-patterns-in-hymenaea-courbaril/ )

Martins S. C. V., McAdam S. A. M., Deans R. M., DaMatta F. M., Brodribb T. J. (2016) – Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapor fluxes in leaves – Plant, Cell and Environment 39: 694–705 – doi: 10.1111/pce.12668 – http://www.brodribblab.org.au/wp-content/uploads/2016/03/Stomatal-Dynamics1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/03/stomatal-dynamics-are-limited-by-leaf-hydraulics-in-ferns-and-conifers/ )

Martinson T., Lakso A. (2016) – Grapes 101 – Cornell Newsletters – https://grapesandwine.cals.cornell.edu/newsletters/appellation-cornell/2016-newsletters/issue-26-august-2016/grapes-101/ – (On our blog : https://plantstomata.wordpress.com/2022/05/28/stoamata-of-grapes/ )

Martin-StPaul N., Delzon S., Cochard H. (2017) – Plants resistance to drought relies on early stomata closure – BioRxiv – Ecology Letters 20(11): 1437-1447 – doi: https://doi.org/10.1101/099531 – https://doi.org/10.1111/ele.12851 – http://biorxiv.org/content/early/2017/01/10/099531 – (https://plantstomata.wordpress.com/2017/01/13/drought-tolerance-and-stomatal-closure/ )

Martin-StPaul N., Delzon S., Cochard H. (2017) – Plants resistance to drought depends on timely stomatal closure – Ecol Lett. 20: 1437–1447 –doi:10.1111/ele.12851 – http://onlinelibrary.wiley.com/doi/10.1111/ele.12851/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/15/the-functional-coordination-between-stomata-and-hydraulic-traits/ )

Martorell S., Diaz-Espejo A., Medrano H., Ball M. C., Choat B. (2013) – Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange – Plant, Cell & Environment – doi: 10.1111/pce.12182https://www.academia.edu/12947169/Rapid_hydraulic_recovery_in_Eucalyptus_pauciflora_after_drought_linkages_between_stem_hydraulics_and_leaf_gas_exchange?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/19/100232/ )

Marur C. J. (1991) – Comparison of net photosynthetic rate, stomatal resistance and yield of two cotton cultivars under water stress – Pesquisa Agropecuaria Brasileira 26(2): 153-161 – https://eurekamag.com/research/002/328/002328636.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/after-the-last-irrigation-stomatal-resistance-was-greater-and-photosynthetic-rate-lower-with-than-without-water-stress/ )

Maruyama A., Kuwagata T. (2008) – Diurnal and seasonal variation in bulk stomatal conductance of the rice canopy and its dependence on developmental stage – Agricultural and Forest Meteorology 148(6-7): 1161 – https://doi.org/10.1016/j.agrformet.2008.03.001https://www.sciencedirect.com/science/article/pii/S0168192308000725?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/11/25/diurnal-and-seasonal-variation-in-bulk-stomatal-conductance/ )

Maruyama S., Tajima K. (1990) – Leaf conductance in japonica and indica rice varieties. I. Size, frequency, and aperture of stomata – Jpn J Crop Sci 59: 801–808 – https://www.cabdirect.org/cabdirect/abstract/19910742690 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/size-frequency-and-aperture-of-stomata/ )

Marx A., Sachs T. (1997) – The Determination of Stomata Pattern and Frequency in Anagallis – Botanical Gazette 138(4): 385-392 – https://www.jstor.org/stable/2473869https://www.journals.uchicago.edu/doi/abs/10.1086/336938?journalCode=botanicalgazette – (On our blog : https://plantstomata.wordpress.com/2021/09/21/stomata-pattern-and-frequency-in-anagallis/ )

Maryani M. M., Morse M. V., Bradley G., Irving H. R., Cahill D. M., Gehring C. A. (2003) – In situ localization associates biologically active plant natriuretic peptide immuno-analogues with conductive tissue and stomata – Journal of Experimental Botany 54(387): 1553-1564 – DOI: 10.1093/jxb/erg174In_situ_localization_associates_biologic.pdf (On our blog : https://plantstomata.wordpress.com/2019/02/23/natriuretic-peptide-immuno-analogues-associated-with-conductive-tissue-and-stomata/ )

Maryland University (2020) – How plants shut the door on infection – Phys.Org. – https://phys.org/news/2020-08-door-infection.html – (On our blog : https://plantstomata.wordpress.com/2020/09/01/how-plants-shut-the-door-on-infection/ )

Masamoto K. Kinoshita T., Shimazaki K. (1993) – Light-induced de-epoxidation of violaxanthin in guard cell protoplasts of Vicia faba – Plant & Cell Physiology 34: 935-938 – https://doi.org/10.1093/oxfordjournals.pcp.a078504https://academic.oup.com/pcp/article-abstract/34/6/935/1907497?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/05/07/light-induced-de-epoxidation-of-violaxanthin-in-stomatal-guard-cell-protoplasts/ )

Masarovičová E. (1991) – Leaf shape, stomata density and photosynthetic rate of the common oak leaves – Biol. Plant. 33: 495–500 – https://doi.org/10.1007/BF02897727https://link.springer.com/article/10.1007/BF02897727#citeas – (On our blog : https://plantstomata.wordpress.com/2020/02/17/stomatal-density-and-chlorophyll-contents-were-significantly-higher-in-shoots-of-the-second-growth-phase/ )

Masarovičová E., Cicák A., Štefančík I. (1996) -Ecophysiological,biochemical, anatomical and productional characteristics ofbeech (Fagus sylvatica L.) leaves from regions with different degree of immision impact – Ekológia 15: 337-351 –

Maseda P. H., Fernández R. J. (2006) – Stay wet or else: three ways in which plants can adjust hydraulically to their environment – Journal of Experimental Botany – doi:10.1093/jxb/erl127https://www.academia.edu/12613728/Stay_wet_or_else_three_ways_in_which_plants_can_adjust_hydraulically_to_their_environment?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/26/stomata-and-a-conservative-leaf-behaviour-or-a-risky-leaf-behaviour/ )

Mäser P., Leonhardt N., Schroeder J. I. (2003) – The Clickable Guard Cell: Electronically linked Model of Guard Cell Signal Transduction Pathways – Schroeder lab home page  –  – http://labs.biology.ucsd.edu/schroeder/clickablegc.html – http://www.bioone.org/doi/suppl/10.1199/tab.0114?file=10.1199_tab.0099.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/model-of-guard-cell-signal-transduction-pathways-stomata/ )

Maskell E. J. (1927) – Experimental Researches on Vegetable Assimilation and Respiration XVIII— The Relation between Stomatal Openingand Assimilation— A Critical Study of Assimilation Rates and Porometer Rates in Leaves o f Cherry Laurel – https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.1928.0021 – (On our blog : https://plantstomata.wordpress.com/2022/03/03/the-relation-between-stomatal-opening-and-assimilation/ )

Masle J. (1990) – Growth and stomatal behaviour: response to soil resistance to root penetration – In: Davies WJ, Jeffcoat B, eds. Importance of root to shoot communication in the responses to environmental stress. Monograph 21: 95–113 – (On our blog : https://plantstomata.wordpress.com/2021/01/07/growth-and-stomatal-behaviour-response-to-soil-resistance-to-root-penetration/ )

Masle J. (1998) – Growth and stomatal responses of wheat seedlings to spatial and temporal variations in soil strength of bi-layered soils – Journal of Experimental Botany 49(324): 1245–1257 – (On our blog : https://plantstomata.wordpress.com/2021/01/07/87387/ )

Masle J. (2012) – From roots to stomata  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/stomata-and-novel-networks-for-concerted-responses-to-stress/ )

Masle J., Gilmore S. R., Farquhar G. D. (2005) – The ERECTA gene regulates plant transpiration efficiency in Arabidopsis – Nature 436: 866–870 – DOI: 10.1038/nature03835  – https://www.researchgate.net/publication/7737627_The_ERECTA_gene_regulates_plant_transpiration_efficiency_in – (On our blog : https://plantstomata.wordpress.com/2016/10/18/plant-transpiration-ef%EF%AC%81ciency-the-erecta-gene-and-stomata/ )

Massman W. J., Kaufmann M. R. (1989) – Parameterizations of leaf stomatal conductance response functions – In: Price, J.C. (Ed.), Proceedings of the Workshop on Stomatal Resistance Formulation and its Application to Modeling of Transpiration. Pennsylvania State University, College of earth and Mineral Sciences, 101-103 –

Massman W. J., Kaufmann M. R. (1991) – Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains – Agric For Meteorol. 54: 155–167 – doi: 10.1016/0168-1923(91)90004-A – https://www.sciencedirect.com/science/article/pii/016819239190004A – (On our blog : https://plantstomata.wordpress.com/2018/11/04/stomatal-response-to-certain-environmental-factors/ )

Massmann A., Gentine P., Lin C. (2019) – When does vapor pressure deficit drive or reduce evapotranspiration? – Hydrol. Earth Syst. Sci. -Discuss. paper – https://doi.org/10.5194/hess-2018-553https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-553/ – (On our blog : https://plantstomata.wordpress.com/2019/11/29/which-effect-dominates-response-to-increasing-vpd-atmospheric-demand-and-increases-in-et-or-plant-physiological-response-stomata-closure-and-decreases-in-et/ )

Massonnet C., Costes E., Rambal S., Dreyer E., Regnard Jean-Luc (2008) – Stomatal Regulation of Photosynthesis in Apple Leaves: Evidence for Different Water-use Strategies between Two Cultivars – Annals of Botany 100(6): 1347-1356 – DOI: 10.1093/aob/mcm222https://www.researchgate.net/publication/5943824_Stomatal_Regulation_of_Photosynthesis_in_Apple_Leaves_Evidence_for_Different_Water-use_Strategies_between_Two_Cultivars – (On our blog : https://plantstomata.wordpress.com/2019/07/17/stomatal-regulation-of-photosynthesis-in-apple-leaves/ )

Mast A. R., Givnish T. J. (2002) – Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny – American Journal of Botany 89(8): 1311-1323 – https://doi.org/10.3732/ajb.89.8.1311https://bsapubs.onlinelibrary.wiley.com/doi/full/10.3732/ajb.89.8.1311 – (On our blog : https://plantstomata.wordpress.com/2020/05/20/the-origin-of-stomatal-distributions-in-banksia-and-dryandra-proteaceae/ )

Masterson J. (1994) – Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms – Science 264: 421-424 – DOI: 10.1126/science.264.5157.421https://science.sciencemag.org/content/264/5157/421 – (On our blog : https://plantstomata.wordpress.com/2019/08/01/the-use-of-fossil-guard-cell-size-as-a-proxy-for-cellular-dna-content/ )

Masutomi Y., Kinose Y., Takimoto T., Yonekura T., Oue H., Kobayashi K.. (2019) – Ozone changes the linear relationship between photosynthesis and stomatal conductance and decreases water use efficiency in rice – Science of The Total Environment  655: 1009-1016 – DOI:10.1016/j.scitotenv.2018.11.132https://www.ncbi.nlm.nih.gov/pubmed/30577095 – (On our blog : https://plantstomata.wordpress.com/2020/02/27/ozone-changes-the-linear-relationship-between-photosynthesis-and-stomatal-conductance/ )

Mata C. G., Lamattina L. (2001) – Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress – Plant Physiol. 126: 1196-1204 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Nitric-Oxide-Induces-Stomatal-Closure-and-Enhances-the-Adaptive-Plant-Responses-against-Drought-Stress.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/25/the-exogenous-application-of-no-donors-might-confer-an-increased-tolerance-to-severe-drought-stress-conditions-in-plants/ )

Mata C. G., Lamattina L. (2002) – Nitric oxide and abscisic acid cross talk in guard cells – Plant Physiol. 128: 790-792 – PMID: 11891235 -PMCID: PMC1540215 – DOI: 10.1104/pp.011020https://academic.oup.com/plphys/article/128/3/790/6110129 – (On our blog : https://plantstomata.wordpress.com/2022/12/18/small-and-rapid-changes-in-both-aba-and-no-concentrations-can-determine-variations-in-percentages-of-stomatal-closure/ )

Mateus N. S., Florentino A. L., Oliveira J. B., Santos E. F., Gaziola S. A., Rossi M. L., Linhares F. S., Bendassolli J. A., Azevedo R. A., Lavres J. (2021) Leaf 13C and 15N composition shedding light on easing drought stress through partial K substitution by Na in eucalyptus species – Sci Rep 1120158 – https://doi.org/10.1038/s41598-021-99710-1https://www.nature.com/articles/s41598-021-99710-1#citeas – (On our blog : https://plantstomata.wordpress.com/2021/11/17/easing-drought-stress-through-partial-k-substitution-by-na/ )

Mathur T., Sen D. N. (1973) – Effect of Potassium Chloride and Phenylmercuric Acetate on the Regulation of Stomatal Opening and Water Economy in Tephrosia purpurea Pers – Flora 162(3): 180-190 – https://doi.org/10.1016/S0367-2530(17)31702-4https://www.sciencedirect.com/science/article/abs/pii/S0367253017317024?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/12/14/effect-of-potassium-chloride-and-phenylmercuric-acetate-on-the-regulation-of-stomatal-opening/ )

Matkowski H., Daszkowska-Golec, A. (2023) – Update on stomata development and action under abiotic stress – Front Plant Sci 14:1270180 – doi: 10.3389/fpls.2023.1270180 – eCollection 2023 – PMID: 37849845 – PMCID: PMC10577295 – https://pubmed.ncbi.nlm.nih.gov/37849845/ – (On our blog : https://plantstomata.wordpress.com/2023/11/14/current-discoveries-on-the-molecular-foundations-of-stomatal-development-and-behavior-in-various-stress-conditions-and-their-implications-for-wue/

Matos J. L., Bergmann D. C. (2014) – Convergence of stem cell behaviors and genetic regulation between animals and plants: insights from the Arabidopsis thaliana stomatal lineage – F1000Prime Rep. 6: 53 – doi: 10.12703/P6-53 – eCollection 2014. Review – PMID: 25184043 – https://www.ncbi.nlm.nih.gov/pubmed/25184043 – (On our blog : https://plantstomata.wordpress.com/2018/11/04/convergence-of-stem-cell-regulation-at-developmental-and-molecular-levels-genetic-control-of-stomatal-lineage/ )

Matos J. L., Lau O. S., Hachez C., Cruz-Ramírez A., Scheres B., Bergmann D.C. (2014) – Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module – eLife 3: 1-15  –DOI: 10.7554/eLife.03271 – https://elifesciences.org/articles/03271 – (On our blog : https://plantstomata.wordpress.com/2018/09/19/irreversible-fate-commitment-in-the-arabidopsis-stomatal-lineage-requires-a-fama-and-retinoblastoma-related-module/

Matrosova A. (2015) – New Insights into the Regulation of Stomatal Movements by Red Light, Carbon Dioxide and Circadian Rhythms  – Doctoral Thesis Swedish University of Agricultural Sciences Umeå 2015 – https://pub.epsilon.slu.se/12812/1/matrosova_a_151113.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/18/requirement-of-both-ztl-and-ost1-in-the-regulation-of-guard-cell-turgor-and-suggestion-of-a-direct-link-between-the-circadian-clock-and-ost1-activity/ )

Matrosova A., Bogireddi H., Mateo-Peñas A., Hashimoto-Sugimoto M., Iba K., Schroeder J. I., Israelsson-Nordström M. (2015) – The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2 -induced stomatal movement responses – New Phytol. 208(4): 1126-1137 – doi: 10.1111/nph.13566 – Epub 2015 Jul 20 https://www.ncbi.nlm.nih.gov/pubmed/26192339 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/ht1-is-essential-for-red-light-induced-stomatal-opening-and-interacts-genetically-with-ost1-during-stomatal-responses-to-red-light-and-altered-co2/ )

Matsuda S., Takano S., Sato M., Furukawa K., Nagasawa H., Yoshikawa S., Kasuga J., Tokuji Y., Yazaki K. Nakazono M., Takamure I., Kato K. (2016) – Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter RCN1/OsABCG5 – Molecular Plant 9(3): 417-427 – DOI: 10.1016/j.molp.2015.12.007https://www.ncbi.nlm.nih.gov/pubmed/26708605 – (On our blog : https://plantstomata.wordpress.com/2019/06/13/rcn1-osabcg5-is-involved-in-accumulation-of-aba-in-stomatal-guard-cells/ )

Matsumoto K., Ohta T., Tanaka T. (2005) – Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables – Agricultural and Forest Meteorology 132: 44–57 – https://doi.org/10.1016/j.agrformet.2005.07.001 – https://www.sciencedirect.com/science/article/pii/S0168192305001334 – (On our blog :https://plantstomata.wordpress.com/2018/11/04/stomatal-conductance-leaf-chlorophyll-concentration-and-meteorological-variables/

Matsuo N., Ozawa K., Mochizuki T. (2010) Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems – Plant and Soil 335(1): 349-361 – DOI: 10.1007/s11104-010-0423-1 – https://www.scopus.com/record/display.uri?eid=2-s2.0-77956874424&origin=inward&txGid=18753fd66f4441b72bab306d3a39df7e – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-conductance-in-rice/ )

Matteoni J. A., Sinclair W. A., (1983) – Stomatal closure in plants infected with mycoplasmalike organisms – Phytopathology 73: 398-402 –https://www.apsnet.org/publications/phytopathology/backissues/Documents/1983Articles/Phyto73n03_398.PDF – (On our blog : https://plantstomata.wordpress.com/2017/11/20/stomata-and-foliar-infections/ )

Matthews J. S. A., Lawson T. (2019) – Climate Change and Stomatal Physiology – Annual Plant Reviews Online 2019, Issue 3 – https://doi.org/10.1002/9781119312994.apr0667https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119312994.apr0667 – (On our blog : https://plantstomata.wordpress.com/2019/08/25/stomatal-response-to-key-environmental-factors-at-the-leaf-and-ecosystem-levels/ )

Matthews J. S. A., Vialet-Chabrand S. R. M., Lawson T. (2017) – Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss – Plant Physiol. 174 (2) 614-623 –  https://doi.org/10.1104/pp.17.00152 – http://www.plantphysiol.org/content/174/2/614 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/integrating-spatial-and-temporal-stomatal-conductance-behavior-to-reflect-the-impact-on-carbon-gain-and-water-use/ )

Matthews J. S. A., Vialet-Chabrand S. R. M., Lawson T. (2018) – Acclimation to Fluctuating Light Impacts the Rapidity of Response and Diurnal Rhythm of Stomatal Conductance – Plant Physiol. 176(3): 1939-1951 – https://doi.org/10.1104/pp.17.01809http://www.plantphysiol.org/content/176/3/1939– (On our blog : https://plantstomata.wordpress.com/2019/01/12/light-and-the-rapidity-of-response-and-diurnal-rhythm-of-stomatal-conductance/ )

Matthews J. S. A., Vialet-Chabrand S. R. M., Lawson T. (2020) – Role of blue and red light in stomatal dynamic behaviour – Journal of Experimental Botany 71(7): 2253–2269 – https://doi.org/10.1093/jxb/erz563https://academic.oup.com/jxb/article/71/7/2253/5686167 – (On our blog : https://plantstomata.wordpress.com/2020/05/28/blue-and-red-light-in-stomatal-dynamic-behaviour/ )

Matthews M. A., Boyer J. S. (1984) – Acclimation of Photosynthesis to Low Leaf Water Potentials – Plant Physiology 74(1): 161-166 – DOI: 10.1104/pp.74.1.161https://www.researchgate.net/publication/7118239_Acclimation_of_Photosynthesis_to_Low_Leaf_Water_Potentials – (On our blog : https://plantstomata.wordpress.com/2021/01/07/chloroplast-activity-was-inhibited-at-low-psil-and-contributed-more-than-closure-of-stomata-both-to-losses-in-photosynthesis-and-to-the-acclimation-of-photosynthesis-to-low-psil/ )

Matthews P. G. D., Seymour R. S. (2014) – Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera – Plant, Cell and Environment 37: 402–413 – doi: 10.1111/pce.12163 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/pce.12163 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/a-novel-function-for-stomata-the-active-regulation-of-convective-airflow-2/ )

Matyssek R., M.Baumgarten M., Hummel U., Häberle K.-H., Kitao M., Wieser G. (2015) – Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress – Means of preventing enhanced O3 uptake under high O3 exposure? Environmental Pollution 196: 518-526 – https://doi.org/10.1016/j.envpol.2014.06.029https://www.sciencedirect.com/science/article/pii/S0269749114002619 – (On our blog : https://plantstomata.wordpress.com/2019/09/06/canopy-level-stomatal-narrowing-under-o3-stress/ )

Matzner S., Comstock J. (2001) – The temperature dependence of shoot hydraulic resistyance implications for stomatal behavior and hydraulic limitation – Plant, Cell & Environm. 24: 1299-1307 – https://doi.org/10.1046/j.0016-8025.2001.00785.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.0016-8025.2001.00785.x – (On our blog : https://plantstomata.wordpress.com/2018/11/04/the-interactive-effects-of-temperature-and-humidity-on-stomatal-conductance/ )

Mawson B. T. (1993)  Modulation of photosynthesis and respiration in guard and mesophyll cell protoplasts by oxygen concentration – Plant, Cell and Environment 16: 207–214 – DOI: 10.1111/j.1365-3040.1993.tb00862.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1993.tb00862.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/photosynthesis-and-respiration-in-guard-and-mesophyll-cell-protoplasts/ )

Mawson B. T. (1993)  Regulation of blue-light-induced proton-pumping by Vicia faba L guard-cell protoplasts—energetic contributions by chloroplastic and mitochondrial activities – Planta 191: 293–301 – doi:10.1007/BF00195685 –http://link.springer.com/article/10.1007/BF00195685 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/blue-light-induced-proton-pumping-by-guard-cell-protoplasts/ )

Mawson B. T., Cummins W. R. (1986) – The Kinetics of in Vivo State Transitions in Mesophyll and Guard Cell Chloroplasts Monitored by 77 K Fluorescence Emission Spectra – Plant Physiology – https://doi.org/10.1104/pp.82.4.873http://www.plantphysiol.org/content/82/4/873.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/the-kinetics-of-in-vivo-state-transitions-in-mesophyll-and-stomatal-guard-cell-chloroplasts/ )

Mawson B. T., Cummins W. R. (1991) – Low temperature acclimation of guard cell chloroplasts by the arctic plant Saxifraga cernua L. – Plant, Cell & Environment 14(6): 569-576 – https://doi.org/10.1111/j.1365-3040.1991.tb01527.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01527.x – (On our blog : https://plantstomata.wordpress.com/2023/06/01/thermal-acclimation-of-guard-cell-chloroplasts-function-to-low-temperatures/ )

Mawson B. T., Franklin A., Filion W. G., Cummins W. R. (1984) – Comparative studies of fluorescence from mesophyll and guard cell chloroplasts in Saxifraga cernua – Plant Physiology 74: 481-486 – https://doi.org/10.1104/pp.74.3.481http://www.plantphysiol.org/content/74/3/481 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/fluorescence-from-mesophyll-and-guard-cell-chloroplasts/ )

Mawson B. T., Zeiger E. (1991) – Blue light-modulation of chlorophyll a fluorescence transients in guard cell chloroplasts – Plant Physiol. 96: 753–760 – https://doi.org/10.1104/pp.96.3.753 – http://www.plantphysiol.org/content/96/3/753 – (On our blog : https://plantstomata.wordpress.com/2018/11/04/blue-light-modulates-photosynthetic-activity-in-stomatal-chloroplasts/ )

Maylani E. D., Yuniati R., Wardhana W. (2020) – The Effect of leaf surface character on the ability of water hyacinth, Eichhornia crassipes (Mart.) Solms. to transpire water – IOP Conf. Ser.: Mater. Sci. Eng. 902: 012070 – https://iopscience.iop.org/article/10.1088/1757-899X/902/1/012070 – (On our blog : https://plantstomata.wordpress.com/2022/05/15/the-lowest-leaf-surface-area-is-correlated-with-the-number-of-stomatal-and-transpiration-rates-in-the-individual-measured-plants/ )

Maynard J. C., Mertz S. M. Jr., Arntzen C. J., Payne W. W. (1974) – Abnormal Guard Cell Development in an Olive Necrotic Mutant of Maize – American Journal of Botany 61(6): 580-584 – https://www.jstor.org/stable/2441680?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/17/ontogeny-of-the-stomatal-complex-is-abnormal-in-a-mutant-variety-of-zea-mays/ )

Maximov N. A., Zernova L. K. (1936) – Behavior of Stomata of Irrigated Wheat Plants – Plant Physiology 11(3): 651–654 – https://doi.org/10.1104/pp.11.3.651https://academic.oup.com/plphys/article/11/3/651/6071550 – (On our blog : https://plantstomata.wordpress.com/2022/01/25/the-degree-of-opening-of-the-stomata-during-the-day-may-serve-as-an-index-of-the-amount-of-water-available-to-the-plant/ )

Mbandlwa N. P., Fotouo-M. H., Maboko M. M., Sivakumar D. (2019) – Stomatal conductance, leaf chlorophyll content, growth, and yield of sweet pepper in response to plant growth regulators – International Journal of Vegetable Science – DOI: 10.1080/19315260.2019.1610925https://www.tandfonline.com/action/showCitFormats?doi=10.1080%2F19315260.2019.1610925 – (On our blog : https://plantstomata.wordpress.com/2019/12/09/the-effects-of-the-pgrs-naphthalene-acetic-acid-naa-gibberellic-acid-ga3-4-chlorophenoxyacetic-acid-kelpak-seaweed-extract-and-their-combinations-on-stomatal-conductance/ )

McAdam E. L., Brodribb T. J., McAdam S.A.M. (2017)  Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close? – Plant, Cell and Environment 40: 741–747 – doi: 10.1111/pce.12893 – http://www.brodribblab.org.au/wp-content/uploads/2017/05/Does-ozone-increase-ABA-levels-by-non%E2%80%90enzymatic-synthesis-causing-stomata-to-close.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/ozone-exposure-aba-and-stomatal-closure/ )

McAdam S. A. M. (2012) – Evolutionary innovations in the stomatal control of vascular plants – PhD Thesis University of Tasmania – https://eprints.utas.edu.au/16733/2/whole-McAdams-thesis-ex-pub-mat.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/14/evolutionary-innovations-in-the-stomatal-control/ )

McAdam S. A. M. (2022) – The stomata are opening, they’re closing, they’re dynamically responding to the environment – Purdue University – https://www.hortidaily.com/article/9402535/the-stomata-are-opening-they-re-closing-they-re-dynamically-responding-to-the-environment/

McAdam S. A. M. (2022) – Stomata: The most important cells of the plant – Stomata: The most important cells of the plant – Video https://www.youtube.com/watch?v=jw78K4vzwtw – (On our blog : https://plantstomata.wordpress.com/2023/03/08/video-on-stomata-2/ )

McAdam S. A. M. (2023) – What stops stomata reopening after a drought? – Tree Physiology – tpad031 –https://doi.org/10.1093/treephys/tpad031https://academic.oup.com/treephys/advance-article-abstract/doi/10.1093/treephys/tpad031/7076573 – (On our blog : https://plantstomata.wordpress.com/2024/02/02/ethylene-keeps-the-stomata-of-fraxinus-chinensis-closed-on-recovery-from-drought-and-acts-as-a-conservative-water-use-signal-for-stomata-following-an-intermittent-and-non-lethal-drought/ )

McAdam S. A. M., Brodribb T. J. (2011) – Passive origins of stomatal control in vascular plants – Science 331: 582–585 – DOI: 10.1126/science.1197985 – http://science.sciencemag.org/content/331/6017/582 –  (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-and-a-fundamental-transition-from-passive-to-active-metabolic-control-of-plant-water-balance/ )

McAdam S. A. M., Brodribb T. J. (2011) – Stomatal innovation and the rise of seed plants – Ecol. Lett. 15: 1–8 – https://doi.org/10.1111/j.1461-0248.2011.01700.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2011.01700.x – (On our blog : https://plantstomata.wordpress.com/2018/10/08/stomatal-innovation-and-the-rise-of-seed-plants/ )

McAdam S. A. M., Brodribb T. J. (2012) – Fern and lycophyte guard cells do not respond to abscisic acid – The Plant Cell 24: 1510-1521 -doi:  10.1105/tpc.112.096404 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398560/ – (On our blog : https://plantstomata.wordpress.com/2018/06/04/aba-in-ferns-and-lycophytes-plays-little-role-in-the-regulation-of-transpiration-with-stomata-passively-responsive-to-leaf-water-potential/ )

McAdam S. A. M., Brodribb T. J. (2013) – Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought – New Phytol. 198(2): 429-441 – DOI: 10.1111/nph.12190 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12190/full – (On our blog : https://plantstomata.wordpress.com/2018/03/16/ferns-and-lycophytes-have-constrained-stomatal-responses-to-soil-and-atmospheric-water-deficit/ )

McAdam S.A.M., Brodribb T. J. (2014)  Separating active and passive influences on stomatal control of transpiration – Plant Physiol 164: 1578-1586 – https://doi.org/10.1104/pp.113.231944http://www.plantphysiol.org/content/164/4/1578 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/the-importance-of-considering-phylogeny-as-a-major-determinant-of-stomatal-behavior/ )

McAdam S.A.M., Brodribb T. J. (2015)  Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community – Plant, Cell & Environment Volume 38(3): 423–432 – doi: 10.1111/pce.12398 – Epub 2014 Aug 6 – PMID: 24995884. – https://www.ncbi.nlm.nih.gov/pubmed/24995884 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/seasonal-stomatal-behaviour-in-a-monsoonal-plant-community/ )

McAdam S. A. M., Brodribb T. J. (2015) – Stomatal innovation and the rise of seed plants – Ecol. Lett. 14: 1-8 – PMID:22017636 – https://doi.org/10.1111/j.1461-0248.2011.01700.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2011.01700.x – (On our blog :

McAdam S.A.M., Brodribb T. J. (2015) – The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit – Plant Physiol. 167(3): 833–843 – doi:  10.1104/pp.114.252940 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348763/ – (On our blog : https://plantstomata.wordpress.com/2018/05/28/mechanisms-driving-the-stomatal-response-to-vapor-pressure-deficit/ )

McAdam S. A. M., Brodribb T. J. (2016) – Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants – Plant Physiol 171: 2008–2016 – DOI:10.1104/pp.16.00380http://www.brodribblab.org.au/wp-content/uploads/2016/08/Linking-turgor.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/08/a-new-tool-for-characterizing-the-response-of-stomata-to-water-availability/ )

McAdam E. L., Brodribb T. J., McAdam S. A. M. (2017) – Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close? – Plant, Cell & Environment 40(5): 741-747 – https://doi.org/10.1111/pce.12893https://onlinelibrary.wiley.com/doi/10.1111/pce.12893 – (On our blog: )

McAdam S. A. M., Brodribb T. J., Ross J. J., Jordan G. J. (2011) – Augmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species – Journal of Experimental Botany 62(1): 195-203 – doi: 10.1093/jxb/erq260 – Epub 2010 Aug 25 – https://www.ncbi.nlm.nih.gov/pubmed/20797996 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/increase-of-aba-levels-by-drought-does-not-induce-short-term-stomatal-sensitivity-to-co2/

McAdam S. A. M., Chater C., Shpak E. D., Raisssig M., Dow G. J. (2021) – Editorial: Linking Stomatal Development and Physiology: From Stomatal Models to Non-model Species and Crops – Frontiers in Plant Science 12: 743964 – DOI: 10.3389/fpls.2021.743964https://www.frontiersin.org/articles/10.3389/fpls.2021.743964/full – (On our blog : https://plantstomata.wordpress.com/2021/10/11/from-stomatal-models-to-non-model-species-and-crops/ )

McAdam S. A. M., Duckett J. G., Sussmilch F. C., Pressel S., Renzaglia K. S., Hedrich R., Brodribb T. J., Merced A. (2021) – Stomata: the holly grail of plant evolution – American Journal of Botany 108(3): 366-371 – https://doi.org/10.1002/ajb2.1619 https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/ajb2.1619 – (On our blog : https://plantstomata.wordpress.com/2021/07/23/stomata-the-holey-grail-of-plant-evolution/ )

McAdam S. A., Manzi M., Ross J. J., Brodribb T. J., Gómez-Cadenas A. (2016) – Uprooting an abscisic acid paradigm: Shoots are the primary source – Plant Signal Behav. 11(6): e1169359 – doi: 10.1080/15592324.2016.1169359 – Erratum in: Addendum to: McAdam SAM, Brodribb TJ, Ross JJ. (2016) Shoot-derived abscisic acid promotes root growth – Plant, Cell and Environment 39: 652-659 – doi: 10.111/pce.12669 – Erratum in: Manzi M, Lado J, Rodrigo MJ, Zacarías L, Arbona V, Gómez-Cadenas A. (2015) – Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs – Plant and Cell Physiology 56: 2457-2466 – PMID: 27031537; – PMCID: PMC4973758 – https://pubmed.ncbi.nlm.nih.gov/27031537/ – (On our blog : https://plantstomata.wordpress.com/2022/09/26/aba-is-acting-in-the-shoot-to-close-stomata-in-response-to-a-decrease-in-plant-water-status-a-challenge-of-this-root-sourced-aba-paradigm/ )

McAdam S. A. M., Sussmilch F. C., Brodribb T. J. (2016) – Stomatal responses to vapour pressure deficit are regulated by high speed gene
expression in angiosperms – Plant Cell Environ 39: 485-491 – https://doi.org/10.1111/pce.12633https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12633 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/rapid-de-novo-biosynthesis-of-aba-mediated-by-a-single-gene-as-the-means-by-which-angiosperm-stomata-respond-to-natural-changes-in-vpd/ )

McAdam S. A. M., Sussmilch F. C., Brodribb T. J., Ross J. J. (2015) – Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species – AoB Plants 7: 1–11 – doi: 10.1093/aobpla/plv091https://academic.oup.com/aobpla/article/doi/10.1093/aobpla/plv091/1800196 – (On our blog : https://plantstomata.wordpress.com/2021/11/08/a-mutation-affecting-aba-biosynthesis-and-consequently-stomatal-responses-to-humidity/ )

McAinsh M. R. (2000) – Calcium signalling in stomatal guard cells – Biochemical Society Transactions 28(3): A57 – http://www.research.lancs.ac.uk/portal/en/publications/-(84e1d9a4-9d2f-45db-b9f5-646a46ba8530).html – (On our blog : https://plantstomata.wordpress.com/2018/01/17/calcium-signalling-in-stomatal-guard-cells/ )

McAinsh M. R. (2003) – Water relations of plants / Stomata – In : Encyclopedia of Applied Plant Sciences 2003 – https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stoma – (On our blog : https://plantstomata.wordpress.com/2021/02/08/88071/ )

McAinsh M. R., Allen G. J., Hetherington A. M., Sanders D. (1996) – The role of cyclic-ADP-ribose in stomatal guard cells – Plant Physiology 111(2) : 692 –

McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Early cellular events in the response of guard cells to ABA – Importance of Root to Shoot Communication in the Response to Environmental Stress. Monographs 21. ed. / W. J. Davies; B. Jeffcoat. Bristol : BSPGR 1-11 – https://www.research.lancs.ac.uk/portal/en/publications/early-cellular-events-in-the-response-of-guard-cells-to-aba(68dd7b19-9eb0-430b-8178-d8a9d6ff2f4c).html – (On our blog : https://plantstomata.wordpress.com/2022/12/18/response-of-guard-cells-to-aba/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Abscisic acid- induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure – Nature 343: 186–188 – doi: 10.1038/343186a0 – http://www.research.lancs.ac.uk/portal/en/publications/abscisic-acidinduced-elevation-of-guard-cell-cytosolic-ca2-precedes-stomatal-closure(36cb6e8c-e5e8-43ee-ae9b-0dea3cbb78e7)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-induces-a-rapid-increase-in-guard-cell-cytosolic-free-ca2-this-increase-precedes-stomatal-closure/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1991) – Partial inhibition of ABA-induced stomatal closure by calcium channel blockers – Proc. R. Soc. B Biol. Sci. 243: 195–201 – doi: 10.1098/rspb.1991.0031 – https://plantstomata.wordpress.com/2016/11/04/calcium-channel-blockers-aba-and-stomatal-closure/ )

McAinsh M. R, Brownlee C., Hetherington A. M. (1992) – Visualizing changes in cytoplasmic free Ca2+during the response of stomatal guard cells to abscisic acid – Plant Cell 4: 1113–1122 – http://dx.doi.org/10.1105/tpc.4.9.1113  –http://www.plantcell.org/content/4/9/1113.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/05/aba-induced-turgor-loss-in-guard-cells-is-a-ca2-dependent-process/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1997) – Calcium ions as second messengers in guard cell signal transduction – Plant Physiology 100: 16-29 – DOI: 10.1111/j.1399-3054.1997.tb03451.x  – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03451.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-role-of-ca2-based-signal-transduction-in-stomatal-guard-cells/ )

McAinsh M. R., Clayton H., Mansfield T. A., Hetherington A. M. (1996) – Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress – Plant Physiology 111: 1031–1042 – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12226345 – (On our blog : https://plantstomata.wordpress.com/2016/11/10/stomatal-behavior-in-oxidative-stress/ )

McAinsh M. R., Evans N. H., Montgomery L. T., North K. A. (2002) –  Calcium signalling in stomatal responses to pollutants – New Phytologist 153: 441-447 – DOI: 10.1046/j.0028-646X.2001.00336.x  – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1046/j.0028-646X.2001.00336.x – (On our blog : https://plantstomata.wordpress.com/2018/11/15/the-effects-of-air-pollutants-on-stomatal-responses-and-their-possible-effects-on-ca2-based-signalling/ )

McAinsh M. R., Gray J. E., Hetherington A. M., Leckie C. P., Ng C. (2000) – Ca2+ signalling in stomatal guard cells – Biochemical Society Transactions 28: 476–481 – DOI: 10.1042/0300-5127:0280476  – http://eprints.lancs.ac.uk/8975/ – (On our blog : https://plantstomata.wordpress.com/2018/11/15/ca2-signalling-in-stomatal-guard-cells/ )

McAinsh M. R., Hetherington A. M. (1998) – Encoding specificity in Ca2+ signalling systems – Trends in Plant Science 3(1): 32-36 – https://doi.org/10.1016/S1360-1385(97)01150-3https://www.cell.com/trends/plant-science/pdf/S1360-1385(97)01150-3.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138597011503%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/04/15/stomata-and-specificity-in-ca2-signalling-systems/ )

McAinsh M. R., Hetherington A. M., Leckie C. P., Mills L., Ng C. K. Y., Aitken F. L., Gray J. E., Hunt L. (2000) – The role of the phospholipase C/inositol 1, 4, 5-trisphosphate-mediated calcium-mobilizing pathway in guard cell signal transduction – Plant Biology 2000: 35-36 – https://eprints.lancs.ac.uk/id/eprint/70280/ – (On our blog : https://plantstomata.wordpress.com/2021/04/25/a-role-for-the-pi-plc-insp3-mediated-calcium-mobilizing-pathway-in-the-response-of-stomata-to-aba-and-drought/ )

McAinsh M. R., Hetherington A. M., Montgommery L. T.., Gray J. E., Pical C., Staxen I. (1999) – The role of PI-PLC in the generation of Ca2+ signatures in stomatal guard cells – Journal of Experimental Botany 50(suppl.): S74 –

McAinsh M. R., Leckie C. P., Hetherington A. M. (2000) – Calcium oscillations in guard cells – Journal of Experimental Botany 51(suppl.): S32 –

McAinsh M. R., Read N. D., Trewavas A. J., Brownlee C., Hetherington A. M. (1992) – ABA-stimulated increases in guard cell [Ca2] cyt- – Journal of Experimental Botany 43(suppl.): P4 –

McAinsh M. R., Taylor J. E. (2017) –  Plant Physiology and Development – In Encyclopedia of Applied Plant Sciences (Second Edition)

McAinsh M. R., Webb A. A. R., Staxen I., Taylor J. E., Hetherington A. M. (1995) –  Stimulus-induced oscillations in guard-cell cytosolic-free calcium – Plant Physiology 108(suppl.): 100 –

McAinsh M. R., Webb A. A. R., Taylor J. E., Hetherington A. M. (1994) – Modulation of stimulus-induced oscillations in guard cell cytosolic free Ca2+ – Plant Physiology 105(suppl.): 632 –

McAinsh M. R., Webb A. A. R., Taylor J. E., Hetherington A. M. (1995) – Stimulus-induced oscillations in guard-cell cytosolic-free calcium – Plant Cell 7: 1207–1219 – http://dx.doi.org/10.1105/tpc.7.8.1207 http://www.plantcell.org/content/7/8/1207 – (On our blog : https://plantstomata.wordpress.com/2017/01/09/oscillations-in-guard-cell-cytosolic-free-calcium/ )

McAusland L., Dumbrell A., Baker N. R., Lawson T. (2012) – Fluctuations in stomatal behaviour: impacts on carbon gain and water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/fluctuations-in-stomatal-behaviour/ )

McAusland L., Smith K. E., Williams A., Molero G., Murchie E. H. (2021) – Nocturnal stomatal conductance in wheat is growth-stage specific and shows genotypic variation – New Phytologist 232(1): 162-175 – https://doi.org/10.1111/nph.17563https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17563 – (On our blog : https://plantstomata.wordpress.com/2023/08/19/nocturnal-stomatal-conductance-in-wheat-is-growth-stage-specific-and-shows-genotypic-variation/ )

McAusland L., Vialet-Chabrand S., Davey P., Baker N. R., Brendel O., Lawson T. (2016) – Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency – New Phytologist 211: 1209–1220 – doi: 10.1111/nph.14000 – https://pdfs.semanticscholar.org/baeb/07fb05f712449be52e32b88395ee44281ceb.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/05/variation-in-the-rapidity-of-stomatal-responses-amongst-species-providing-a-novel-target-for-improving-photosynthesis-and-water-use/ )

McAusland L., Vialet-Chabrand S., Jaregui I., Burridge A., Hubbart-Edwards S., Fryer M. J., King I. P., King J., Pyke K., Edwards K. J., Carmo-Silva E., Lawson T., Murchie E. H. (2020) – Variation in key leaf photosynthesis traits across wheat wil relatives is accession dependent not species dependent – New Phytologist 228: 1767–1780 – https://doi.org/10.1111/nph.16832https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16832 – (On our blog : https://plantstomata.wordpress.com/2021/11/22/the-phenotypic-variation-in-photosynthetic-stomatal-and-morphological-traits/ )

McAusland L., Vialet-Chabrand S. R. M., Matthews J. S. A., Lawson T. (2015) – Spatial and temporal responses in stomatal behaviour, photosynthesis and implications for water-use efficiency – Book: Rhythms in plants: 97-119 – Springer, Cham – https://scholar.google.com/citations?user=QPMz_d8AAAAJ&hl=en#d=gs_md_cita-d&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Den%26user%3DQPMz_d8AAAAJ%26citation_for_view%3DQPMz_d8AAAAJ%3ATyk-4Ss8FVUC%26tzom%3D-60 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/spatial-and-temporal-responses-in-stomatal-behaviour/ )

McCaughey J. H., Iacobelli A. (1993) – Modelling stomatal conductance in a northern deciduous forest, Chalk River, Ontario – Can J For Res 24: 904–910 – https://doi.org/10.1139/x94-119 – http://www.nrcresearchpress.com/doi/abs/10.1139/x94-119?journalCode=cjfr – (On our blog : https://plantstomata.wordpress.com/2018/11/05/modelling-stomatal-conductance-2/ )

McConathy R. K. (1983) – Tulip-poplar Leaf Diffusion Resistance Calculated From Stomatal Dimensions and Varying Environmental Parameters – Forest Science 29(1): 139–148 –  https://doi.org/10.1093/forestscience/29.1.139https://academic.oup.com/forestscience/article-abstract/29/1/139/4656717?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2023/06/17/under-normal-forest-conditions-tulip-poplar-stomatal-resistance-exercised-more-control-over-transpiration-than-did-boundary-layer-resistance/ )

McCord T. P. (1978) – A genetic study of stomates in cucumber, Cucumis sativus L. and its relationship with fruit wilting and brining quality – Texas A&M University. Texas A&M University. Libraries – Available electronically from https : / /hdl .handle .net /1969 .1 /DISSERTATIONS -324483https://oaktrust.library.tamu.edu/handle/1969.1/DISSERTATIONS-324483 – (On our blog : https://plantstomata.wordpress.com/2022/03/02/no-relationship-between-epidermal-cell-number-and-stomatal-frequency-but-a-small-relationship-between-stomatal-size-and-frequency/ )

McCormick A. L., Cramer R. A., Watt M. A. (2015) – Stomatal movement and water use efficiency in response to drought and elevated CO2 in Arabidopsis – Plant, Cell & Environment 38(10): 2108-2118 –

McCormick S. (2017) – A 3-dimensional biomechanical model of guard cell mechanics – The Plant Journal 92(1): 3-4 – DOI: 10.1111/tpj.13665 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13665/abstract;jsessionid=BE068827E2606E5DB2C82F356C97941D.f02t04 – https://www.sciencedaily.com/releases/2017/09/170921101743.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/13/an-unexpected-stiffening-in-the-guard-cell-end-regions-preventing-stomata-increasing-in-length-as-they-open/ )

McCree K. J. (1974) – Changes in stomatal response characteristics of grain sorghum produced by water stress during growth – Crop Sci. 14: 273–278 – doi:10.2135/cropsci1974.0011183X001400020032xhttps://dl.sciencesocieties.org/publications/cs/abstracts/14/2/CS0140020273?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-response-characteristics-in-water-stress-conditions/ )

McCree K. J., Davis S. D. (1974) – Effect of water stress and temperature on leaf size and on size and number of epidermal cells in grain sorghum – Crop Science 14: 751 – 755 – https://doi.org/10.2135/cropsci1974.0011183X001400050041xhttps://acsess.onlinelibrary.wiley.com/doi/10.2135/cropsci1974.0011183X001400050041x – (On our blog : https://plantstomata.wordpress.com/2023/05/30/the-relative-importance-of-rates-of-cell-division-and-cell-enlargement-in-determining-the-final-sizes-of-sorghum-leaves-grown-under-varying-degrees-of-water-stress/ )

McCulloh K. A., Woodruff D. R. (2012) – Linking stomatal sensitivity and whole-tree hydraulic architecture – Tree Physiol. 32: 369-372 –

McDermitt D. K. (1990) – Sources of error in the estimation of stomatal conductance and transpiration from porometer data – Horticultural Science 25: 1538–1548 – file:///C:/Users/wille/Downloads/[HortScience]%20Sources%20of%20Error%20in%20the%20Estimation%20of%20Stomatal%20Conductance%20and%20Transpiration%20from%20Porometer%20Data.pdf – (On our blog : https://plantstomata.wordpress.com/2021/05/02/sources-of-error-in-the-estimation-of-stomatal-conductance/ )

McDonald K. L., Cahill D. M. (1999) – Evidence for a transmissible factor that causes rapid stomatal closure in soybean at sites adjacent to and remote from hypersensitive cell death induced by Phytophthora sojae – Physiological and Molecular Plant Pathology 55: 197-203 – https://doi.org/10.1006/pmpp.1999.0220https://www.sciencedirect.com/science/article/abs/pii/S0885576599902205?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/03/08/stomata-in-the-incompatible-interaction-is-apparently-brought-about-by-a-transmissible-signal-that-is-derived-from-cells-that-react-hypersensitively-to-pathogen-invasion/ )

McDonald R., Liu B., Joshi M., Palevitz B. A. (1993) – γ-Tubulin is associated with a cortical-microtubule-organizing zone in the developing guard cells of Allium cepa L. – Planta 191: 357–361 – https://doi.org/10.1007/BF00195693 – https://link.springer.com/article/10.1007/BF00195693#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/05/%ce%b3-tubulin-is-associated-with-a-cortical-microtubule-organizing-zone-in-developing-stomata/ )

McElwain J. C. (2001) – Atmospheric Carbon Dioxide-stomata – Book Editor(s):Derek E.G. BriggsPeter R. Crowther (Chapter 4.3.5.) – https://doi.org/10.1002/9780470999295.ch118https://onlinelibrary.wiley.com/doi/10.1002/9780470999295.ch118 – (On our blog : https://plantstomata.wordpress.com/2023/11/25/120301/)

McElwain J. C. (2004) – Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure – Geology 32: 1017–1020 – https://doi.org/10.1130/G20915.1 – https://pubs.geoscienceworld.org/gsa/geology/article-abstract/32/12/1017/29359/climate-independent-paleoaltimetry-using-stomatal?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-density-in-fossil-leaves-as-a-proxy-for-co2-partial-pressure/ )

McElwain J. C. (2005) – Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure: Comment and Reply: REPLY – Geology 33(1): e83 – https://doi.org/10.1130/0091-7613-33.1.e83 – https://pubs.geoscienceworld.org/gsa/geology/article/33/1/e83/129341/climate-independent-paleoaltimetry-using-stomatal – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-density-in-fossil-leaves-as-a-proxy-for-co2-partial-pressure-comment-and-reply/ )

McElwain J. C. (2013) Evolution of Stomatal Function – UCD Dublin – https://www.ucd.ie/plantpalaeo/evol_stomatal_function.html – (On our blog : https://plantstomata.wordpress.com/2017/11/18/the-function-of-land-plant-stomata-over-evolutionary-time/ )

McElwain J. C., Chaloner W. G. (1995) – Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Palaeozoic – Annals of Botany 76: 389-395 – https://doi.org/10.1006/anbo.1995.1112https://www.sciencedirect.com/science/article/pii/S0305736485711122 – (On our blog : https://plantstomata.wordpress.com/2019/05/07/stomatal-density-of-fossil-leaves-has-potential-value-for-assessing-changes-in-atmospheric-co2-concentration-through-geological-time/ )

McElwain J. C., Mayle F. E., Beerling D. J. (2002) – Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records – Journal of Quaternary Science 17: 21-29 – https://doi.org/10.1002/jqs.664 – https://onlinelibrary.wiley.com/doi/abs/10.1002/jqs.664 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-evidence-for-a-decline-in-atmospheric-co2-concentration/ )

McElwain J. C., Yiotis C., Lawson T. (2016) – Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution – New Phytologist 209(1): 94-103 – ISSN 0028-646X – http://repository.essex.ac.uk/14471/ – (On our blog : https://plantstomata.wordpress.com/2019/03/21/using-modern-plant-trait-relationships-between-observed-and-theoretical-maximum-stomatal-conductance-and-vein-density-to-examine-patterns-of-plant-macroevolution/ )

McGinley M. A. (2012) – Stomatal function and CAM photosynthesis – Slideshare, Technology, Business Feb 23, 2012 – https://www.slideshare.net/MarkMcGinley/stomatal-function-and-cam-photosynthesis – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cam-photosynthesis/

McGoey B. V., Chau K., Dickinson T. A. (2014) – Stomata Size in Relation to Ploidy Level in North American Hawthorns (Crataegus, Rosaceae) – Madroño 61(2): 177-193 –
https://doi.org/10.3120/0024-9637-61.2.177 – http://www.bioone.org/doi/abs/10.3120/0024-9637-61.2.177 – (On our blog : https://plantstomata.wordpress.com/2018/03/20/associations-between-taxon-ploidy-level-stomatal-size-and-density-elevation-and-environmental-parameters/ )

McKee S. (2018) – How Plants Breathe: The Stimulating Story of Stomata – Maximum Yield February 8, 2018 – https://www.maximumyield.com/how-plants-breathe-the-stimulating-story-of-stomata/2/3827 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66556 )

McKown A. D., Guy R. D., Quamme L, Klápště J., La Mantia J., Constabel C. P., El-Kassaby Y. A., Hamelin R. C., Zifkin M., Azam M. S. (2014) – Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs – Mol. Ecol. 23: 5771–5790 – doi:10.1111/mec.12969 –https://www.ncbi.nlm.nih.gov/pubmed/25319679 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/association-genetics-geography-and-ecophysiology-link-stomatal-patterning-with-carbon-gain-and-disease-resistance-trade-offs/

McKown A. D., Klápště J., Guy R. D., Corea O. R. A., Fritsche S., Ehlting J., El-Kassaby Y. A., Mansfield S. D..(2019) – A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs disease trade‐off in poplar – New Phytologist 223(4): 1888-1903 – https://doi.org/10.1111/nph.15911https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15911?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/15/a-role-for-speechless-in-the-integration-of-leaf-stomatal-patterning/ )

McKown K. H., Anleu Gil M. X., Mair A., Xu S. L., Raissig M. T., Bergmann D. C. (2023) – Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development – Plant Cell. 35(2): 756-775 – doi: 10.1093/plcell/koac341 – PMID: 36440974 – PMCID: PMC9940870 – https://pubmed.ncbi.nlm.nih.gov/36440974/ – (On our blog : https://plantstomata.wordpress.com/2023/07/14/refining-the-current-models-of-stomatal-bhlh-function-and-regulatory-feedback-among-paralogues-within-grasses-as-well-as-across-the-monocot-dicot-divide/ )

McKnown K. H., Bergmann D. C. (2018) – Grass stomata – Curr. Biol. 28(15):R814-R816 – doi: 10.1016/j.cub.2018.05.074 –  PMID: 30086309 – https://www.ncbi.nlm.nih.gov/pubmed/?term=30086309 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/the-essential-function-and-features-of-stomata-from-grasses-2/ )

McKnown K. H., Bergmann D. C. (2020) – Stomatal development in the grasses: lessons from models and crops (and crop models) – New Phytologist 227(6): 1636-1648 – https://doi.org/10.1111/nph.16450https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16450 – (On our blog : https://plantstomata.wordpress.com/2021/02/07/genetic-regulation-of-grass-stomatal-development-and-prospects-for-the-future/ )

McKown K. H., Gil M. X. A., Mair A., Xu S. L., Raissig M. T., Bergmann D. C. (2022) – Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development – Plant Cell. 28:koac341 – doi: 10.1093/plcell/koac341 – Epub ahead of print – PMID: 36440974 – https://pubmed.ncbi.nlm.nih.gov/36440974/ – (On our blog : https://plantstomata.wordpress.com/2023/01/11/refinement-of-the-current-models-of-stomatal-bhlh-function-and-regulatory-feedbacks-amongst-paralogues-within-grasses-as-well-as-across-the-monocot-dicot-divide/ )

McLachlan D. H. (2019) – Systemic signalling, and the synchronization of stomatal response – New Phytologist Early View Online Version – https://doi.org/10.1111/nph.16253https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16253 – (On our blog : https://plantstomata.wordpress.com/2019/11/24/the-synchronization-of-stomatal-response/ )

McLachlan D. H., Kopischke M., Robatzek, S. (2014) – Gate control: guard cell regulation by microbial stress – New Phytol. 203: 1049–1063 – doi: 10.1111/nph.12916 – Epub 2014 Jul 8 – https://www.ncbi.nlm.nih.gov/pubmed/25040778 – (On our blog :https://plantstomata.wordpress.com/2018/06/04/stomatal-regulation-in-response-to-microbes-3/ )

McLachlan D. H., Lan J., Geilfus C.-M., Dodd A. N., Larson T., Baker A., Hõrak H., Kollist H., He Z., Graham I., Mickelbart M. V., Hetherington A. M. (2016)  The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening – Current Biology 26(5): 707-712 – DOI: 10.1016/j.cub.2016.01.019 –https://www.infona.pl/resource/bwmeta1.element.elsevier-099d1c17-a54c-32e5-be39-24c8080a077d – (On our blog : https://plantstomata.wordpress.com/2017/10/25/light-induced-stomatal-opening/ )

McLean F. T. (1921) – A study of the structure of the stomata of two species of Citrus in relation to citrus canker – Bull. Torrey Bot. Club 48(4): 101-106 – https://www.jstor.org/stable/2480340?seq=6#metadata_info_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/21/the-structure-of-the-stomata-of-two-species-of-citrus/ )

McLean F. T. (1927) – Feeding Plants Manganese Through the Stomata – Science 66(1716): 487-489 – DOI: 10.1126/science.66.1716.487https://www.science.org/doi/10.1126/science.66.1716.487 – (On our blog : https://plantstomata.wordpress.com/2022/02/17/manganese-through-the-stomata/ )

McLean F. T., Lee H. A. (1922) – Pressures required to cause stomatal infections with the citrus caker organism – Philipp. J. Sci. 20: 309-320 –

McNaughton K. G. (1994) – Effective stomatal and boundary layer resistances of heterogeneous surfaces – Plant, Cell & Environment 17: 1061-1068 – https://doi.org/10.1111/j.1365-3040.1994.tb02029.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1994.tb02029.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/effective-stomatal-and-boundary-layer-resistances-of-heterogeneous-surfaces/ )

McNaughton K., Jarvis P. G. (1991) – Effects of spatial scale on stomatal control of transpiration – Agric. Forest Meterol. 54: 279–301 – doi:10.1016/0168-1923(91)90010-N – http://www.sciencedirect.com/science/article/pii/016819239190010N – (On our blog : https://plantstomata.wordpress.com/2016/11/04/26883/ )

McQueen-Mason S., Jones L., Milne J. L., Ashford D. (2003) – Cell wall arabinan is essential for guard cell function – In: Proceedings of the National Academy of Sciences of the United States of America. 100(20): 11783-11788 – https://pure.york.ac.uk/portal/en/publications/cell-wall-arabinan-is-essential-for-guard-cell-function(fd459df7-27d4-4a7a-8644-0fd642f91d5f)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/10/06/arabinans-maintain-flexibility-in-the-stomatal-cell-wall-by-preventing-homogalacturonan-polymers-from-forming-tight-associations/ )

Meckel T., Gall L., Semrau S., Homann U., Thiel G. (2007) Guard Cells Elongate: Relationship of Volume and Surface Area during Stomatal Movement – Biophys J. 92(3): 1072–1080 – doi:  10.1529/biophysj.106.092734 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779957 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/an-elongation-of-the-guard-cells-during-stomatal-movement/ )

Meckel T., Hurst A. C., Thiel G., Homann U. (2004) – Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K-channel KAT1 – The Plant Journal 39: 182-193 – https://doi.org/10.1111/j.1365-313X.2004.02119.xhttps://pubmed.ncbi.nlm.nih.gov/15225284/ – (On our blog : https://plantstomata.wordpress.com/2021/02/03/turgid-stomatal-guard-cells-undergo-vigorous-constitutive-endocytosis-and-retrieve-membrane/ )

Meckel T., Hurst A. C., Thiel G., Homann U. (2005) – Guard cells undergo constitutive and pressure-driven membrane turnover – Protoplasma. 226(1-2): 23-29 – doi: 10.1007/s00709-005-0106-6 – Epub 2005 Oct 20 -PMID: 16231098 – https://pubmed.ncbi.nlm.nih.gov/16231098/ – (On our blog : https://plantstomata.wordpress.com/2023/07/03/exo-and-endocytosis-is-an-essential-process-in-stomatal-guard-cell-functioning/ )

Meddya S., Meshram S., Sarkar D., Rakesh S., Datta R., Singh S., Avinash G., Kondeti A. K., Savani A. K., Thulasinathan T. (2023) – Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance – Planta 12(19): 3380 – https://doi.org/10.3390/plants12193380https://www.mdpi.com/2223-7747/12/19/3380 – (On our blog : https://plantstomata.wordpress.com/2024/01/24/various-roles-of-stomata-during-biotic-and-abiotic-stress-such-as-insects-and-water-stress-and-with-specific-context-to-pathogens-and-their-strategies-for-evading-stomatal-defense-subverting-plant/ )

Medeiros D. B., Barros K. A., Barros J. A. S., Omena-Garcia R. P., Arrivault S., Sanglard L. M. V. P., Detmann K. C., Silva W. B., Daloso D. M., DaMatta F. M., Nunes-Nesi A., Fernie A. R., Araújo W. L. (2017) – Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior – Plant Physiol. 175(3): 1068-1081 – doi: 10.1104/pp.17.00971 – Epub 2017 Sep 12 – https://www.ncbi.nlm.nih.gov/pubmed/28899959 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/manipulation-of-the-tonoplastic-organic-acid-transporter-impacted-mitochondrial-metabolism-while-the-overall-stomatal-and-photosynthetic-capacity-were-unaffected/ )

Medeiros D. B., Barros J. A. S., Fernie A. R., Araújo W. L. (2020) – Eating Away at ROS to Regulate Stomatal Opening – Trends in Plant Science – https://doi.org/10.1016/j.tplants.2019.12.023https://www.cell.com/trends/plant-science/fulltext/S1360-1385(19)30348-6 – (On our blog : https://plantstomata.wordpress.com/2020/01/13/eating-away-at-ros-to-regulate-stomatal-opening/ )

Medeiros D. B., Daloso D. M., Fernie A. R., Nikoloski Z., Araújo W. L. (2015) – Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. – Plant Cell Environ. 38: 1457–1470 – doi: 10.1111/pce.12517 – https://www.ncbi.nlm.nih.gov/pubmed/25689387 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/a-system-biology-approach-may-be-used-to-elucidate-the-mechanisms-underlying-stomata-control/ )

Medeiros D. B., da Luz L. M., de Oliveira H. O., Araujo W. L., Daloso D. M., Fernie A. R. (2019) – Metabolomics for understanding stomatal movements – Theoretical and Experimental Plant Physiology 31(1): 91-102 – https://doi.org/10.1007/s40626-019-00139-9https://link.springer.com/article/10.1007/s40626-019-00139-9 – (On our blog : https://plantstomata.wordpress.com/2019/04/02/how-stomatal-guard-cells-sense-and-respond-to-relative-air-humidity-co2-aba-and-sucrose/ )

Medeiros D. B., Fernie A. R., Araújo W. L. (2018) – Discriminating the Function(s) of Guard Cell ALMT Channels – Trends in Plant Science (Online June 21, 201) – https://doi.org/10.1016/j.tplants.2018.06.006 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30135-3?rss=yes – (On our blog : https://plantstomata.wordpress.com/2018/06/23/regulatory-mechanisms-and-individual-roles-for-specific-almt-proteins-in-stomata/ )

Medeiros D. B., Martins S. C. V., Cavalcanti J. H. F., Daloso D. M., Martinoia E., Nunes-Nesi A., Fábio M. DaMatta, Fernie A. R., Araújo W. L. (2016) – Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance – Plant Physiol. 170(1): 86-101 – https://doi.org/10.1104/pp.15.01053 – – http://www.plantphysiol.org/content/170/1/86 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/an-increase-in-both-stomatal-and-mesophyll-conductance/ )   

Medeiros D. B., Perez de Souza L., Antunes W. C., Araújo W. L., Daloso D. M., Fernie A. R. (2018) – Sucrose breakdown within guard cells is a substrate for glycolysis and glutamine biosynthesis during light-induced stomatal opening – The Plant Journal  – DOI: 10.1111/tpj.13889 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13889/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/16/redrawing-current-models-concerning-the-influence-of-sucrose-during-light-induced-stomatal-opening/

Medeiros M., Nunes-Nesi M. C. (2015) – The role of abscisic acid in stomatal regulation – Frontiers in Plant Science 6: 1-11 –

Mederski H. J., Chen L. H., Curry R. B. (1975) – Effect of Leaf Water Deficit on Stomatal and Nonstomatal Regulation of Net Carbon Dioxide Assimilation – Plant Physiol. 55: 589-593 – Journal Article No. 45-72 of the Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 – (On our blog : https://plantstomata.wordpress.com/2022/01/12/when-the-stomata-were-allowed-to-regulate-the-gaseous-diffusive-resistance-of-the-leaf-co2-assimilation-decreased-with-increasing-leaf-water-deficit/ )

Mediavilla S., Escudero A. (2003) – Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity – Tree Physiol 23: 987–996 –https://www.ncbi.nlm.nih.gov/pubmed/12952785 – https://plantstomata.wordpress.com/2016/11/10/stomatal-responses-to-drought-2/ )

Mediavilla S., Santiago H., Escudero A. (2002) – Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species – Photosynthetica 40: 553–559 – DOI: 10.1023/A:1024399919107https://ps.ueb.cas.cz/artkey/phs-200204-0013_stomatal-and-mesophyll-limitations-to-photosynthesis-in-one-evergreen-and-one-deciduous-mediterranean-oak-speci.php – (On our blog : https://plantstomata.wordpress.com/2024/01/11/reduced-stomatal-limitation-of-photosynthesis-under-favourable-conditions-especially-in-q-faginea/ )

Medina C. L., Machado E. C., Gomes M. M. A. (1999) – Stomatal conductance, transpiration and photosynthesis rates in “Valencia” orange trees submitted to water stress – Braz. J. Plant Physiol. 11: 29-34 – https://www.researchgate.net/publication/291795968_Condutancia_estomatica_transpiracao_e_fotossintese_em_laranjeira_’Valencia’_sob_deficiencia_hidrica – (On our blog : https://plantstomata.wordpress.com/2019/05/07/stomatal-conductance-transpiration-and-photosynthesis-rates-in-orange-trees-submitted-to-water-stress/ )

Medina V., Berny-Mier Teran J. C., Gepts P., Gilbert M. E. (2017) – Low stomatal sensitivity to vapor pressure deficit in irrigated common, lima and tepary beans – Field Crops Research – TBD.

Medina V., Gilbert M. E. (2015) – Physiological trade-offs of stomatal closure under high evaporative gradients in field grown soybean – Functional Plant Biology 43(1): 40-51 – https://doi.org/10.1071/FP15304https://www.publish.csiro.au/FP/FP15304 – (On our blog : https://plantstomata.wordpress.com/2020/06/01/physiological-trade-offs-of-stomatal-closure-under-high-evaporative-gradients/ )

Medlyn B. E., Barton C. V. M. , Broadmeadow M. S. J. , Ceulemans R. , De Angelis P. , Forstreuter M. , Freeman M. , Jackson S. B. , Kellomäki S. , Laitat E. , Rey A. , Roberntz P., Sigurdsson B. D. , Strassemeyer J. , Wang K. , Curtis P. S. , Jarvis P. G. (2001) – Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis – New Phytol 149: 247–164 – https://doi.org/10.1046/j.1469-8137.2001.00028.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.2001.00028.x – (On our blog : https://plantstomata.wordpress.com/2018/06/04/stomatal-conductance-after-long-term-exposure-to-elevated-co2-concentration/ )

Medlyn B. E., Duursma R., De Kauwe M. G., Prentice I. C. (2013) – The optimal stomatal response to atmospheric CO2: alternative solutions, alternative interpretations – Agricultural and Forest Meteorology 182–183: 200–203 – https://doi.org/10.1016/j.agrformet.2013.04.019https://www.sciencedirect.com/science/article/abs/pii/S0168192313000968?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2024/01/11/stomatal-behaviour-clearly-departs-from-that-predicted-by-optimal-stomatal-theory-when-rubisco-activity-is-limiting-to-photosynthesis-the-optimal-stomatal-response-to-atmospheric-co2-alternative-so/ )

Medlyn B. E., Duursma R., Eamus D., Ellsworth D. S., Prentice I. C., Barton C. V. M., Crous K., De Angelis P. , Freeman M., Wingate L. (2010) – Reconciling the optimal and empirical approaches to modelling stomatal conductance – Global Change Biology 17: 2134–2144 (corrigendum 18: 3476) – https://doi.org/10.1111/j.1365-2486.2010.02375.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02375.x – (On our blog : https://plantstomata.wordpress.com/2024/01/18/the-reconciliation-of-the-optimal-and-empirical-approaches-to-modelling-stomatal-conductance-is-important-for-global-change-biology-because-it-provides-a-simple-theoretical-framework-for-analyzing-an/ )

Medlyn B. E., Duursma R. A., Eamus D., Ellsworth D. S., Prentice I. C., Barton C. V. M., Crous K. V., De Angelis P., Freeman M., Wingate L. (2011) – Reconciling the optimal and empirical approaches to modelling stomatal conductance – Global Change Biology 17: 2134–2144 – https://doi.org/10.1111/j.1365-2486.2010.02375.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2010.02375.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/optimal-and-empirical-approaches-to-modelling-stomatal-conductance/ )

Medrano H., Escalona J. M., Bota J., Gulías J., Flexas J. (2002) – Regulation of photosynthesis of C3 plants in response to progressive drought: the stomatal conductance as a reference parameter – Annals of Botany 89 Spec No:895-905 – PMID: 12102515 PMCID: PMC4233802 – https://www.ncbi.nlm.nih.gov/pubmed/12102515 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/photosynthesis-of-c3-plants-drought-and-stomatal-conductance/ )

Meerabai G., Koteswari B. (2017) – Studies on stomatal movement in Dolichus biflorus Linn. (Fabaceae) – Int. J. Trend Scientific Res. & Dev. (IJTSRD) 1(6): 365-368 – ISSN No: 2456 – 6470 – https://www.academia.edu/35941875/Studies_on_Stomatal_Movement_in_Dolichus_biflorus_Linn._Fabaceae_ – (On our blog : https://plantstomata.wordpress.com/2018/09/27/stomatal-movement-in-dolichus-biflorus-linn-fabaceae/)

Meeus S., Van den Bulcke J., Wyffels F. (2020) – From Leaf to Label: A robust automated workflow for stomata detection – Biodiversity Information Science and Standards 3: e37504 – https://doi.org/10.3897/biss.3.37504 – ECOLOGY AND EVOLUTION 10(17): 9178–9191 – doi:10.1002/ece3.6571https://biblio.ugent.be/publication/8620898/file/8620900.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/25/a-workflow-for-extracting-stomatal-trait-data-starting-from-the-herbarium-specimen-involving-the-automatic-detection-of-stomata-using-a-deep-learning-approach/ )

Mega R., Abe F., Kimm J.-S., Tsuboi Y., Tanaka K., Kaboyashi H., Sakata Y., Hanada K., Tsujimoto H., Kikuchi J., Cutler S. R., Okamoto M. (2019) – Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors – Nature Plants 5: 153–159 – https://www.nature.com/articles/s41477-019-0361-8 – (On our blog : https://plantstomata.wordpress.com/2019/02/09/a-general-strategy-for-increasing-water-productivity-and-the-aba-signalling-pathway-stomata/ )

Mehrez M. B., Taconet O., Vidal-Madjar D., Valancogne C. (1992) – Estimation of stomatal resistance and canopy evaporation during the HAPEX-MOBILHY experiment – Agricultural and Forest Meteorology, Elsevier Masson 58(3-4): 285-313 – doi: 10.1016/0168-1923(92)90066-Dhttps://hal.inrae.fr/hal-02714316 – (On our blog : https://plantstomata.wordpress.com/2022/03/01/monitoring-of-global-vegetation-stomatal-resistance-through-the-growing-season/ )

Mehri N., Fotovat R., Saba J., Jabbari F. (2009) – Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress – Journal of Food, Agriculture & Environment 7(1): 167-170 – ISSN:1459-0255 – https://doi.org/10.1234/4.2009.1461https://www.wflpublisher.com/Abstract/1461 – (On our blog : https://plantstomata.wordpress.com/2019/07/18/variation-of-stomata-dimensions-and-densities-under-drought-stress/

Meidner H. (1962) – The minimum intercellular-space CO2 -concentration (r) of maize leaves and its influence on stomatal movements – J. Exp. Bot. 13: 284-293 –

Meidner H. (1965) – Stomatal control of transpirational water loss – In: The State and Movement of Water in Living Organisms (ed. G. E. Fogg) : 185-204 – Academic Press, New York – Symp. Soc. Exp. Biol. 19: 185-204 –

Meidner H . (1967) – The effects of kinetin on stomatal opening and the rate of intake of carbon dioxide in mature primary leaves of barley – J. Experim. Bot. 18: 556-561 – https://doi.org/10.1093/jxb/18.3.556https://academic.oup.com/jxb/article-abstract/18/3/556/437968?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/27/the-effects-of-kinetin-on-stomatal-opening/ )

Meidner H. (1968) – The Comparative Effects of Blue and Red Light on the Stomata of Allium cepa L. and Xanthium pennsylvanicum – Journal of Experimental Botany 19(1): 146–151 – https://doi.org/10.1093/jxb/19.1.146 – https://academic.oup.com/jxb/article-abstract/19/1/146/447351?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/16/blue-light-may-promote-stomatal-opening-by-its-effect-on-enzymes/ )

Meidner H. (1975) – Water supply, evaporation and vapour diffusion in leaves – J. Exp. Bot. 26: 666–673 – https://doi.org/10.1093/jxb/26.5.666https://academic.oup.com/jxb/article-abstract/26/5/666/548440?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/08/water-supply-from-major-veins-in-leaves-travels-within-the-epidermal-tissue-to-sites-of-evaporation-close-to-the-stomatal-pores/ )

Meidner H. (1976) – Vapour loss through stomatal pores with the mesophyll tissue excluded – J Exp Bot 27: 172–174 – https://doi.org/10.1093/jxb/27.1.172https://academic.oup.com/jxb/article-abstract/27/1/172/451853?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/09/24/vapour-loss-through-stomatal-pores/ )

Meidner H. (1976) – Water vapour loss from a physical model of a substomatal cavity – Journal of Experimental Botany 27: 691– 694 –

Meidner H. (1982) – Guard cell pressures and wall properties during stomatal opening – J Exp Bot 33: 355–359 – https://doi.org/10.1093/jxb/33.2.355https://academic.oup.com/jxb/article-abstract/33/2/355/634316?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/09/24/guard-cell-pressures-and-wall-properties-during-stomatal-opening/ )

Meidner H. (1986) – Historical sketches 13 – Journal of Experimental Botany 37(174): 135-137 – https://www.jstor.org/stable/23688641 – (On our blog : https://plantstomata.wordpress.com/2022/01/10/historical-sketches-13/ )

Meidner H. (1986) – Cuticular conductance and the humidity response of stomata – J Exp Bot 37: 517–525 – https://doi.org/10.1093/jxb/37.4.517https://academic.oup.com/jxb/article-abstract/37/4/517/454733?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/09/24/hydropassive-movements-which-initiate-a-metabolic-adjustment-of-the-guard-cells-to-altered-evaporative-demand/ )

Meidner H. (1987) – Tree hundred years of research into stomata – In: Stomatal Function, Zieger, E., Farquhar, G.D. and Cowan, I.R. (eds). Stanford University Press, Stanford (CA), 7-27 –

Meidner H. (1990) – The absorption lag, epidermal turgor and stomata – Journ. Exp. Botany 41(9): 1115-1118 – https://doi.org/10.1093/jxb/41.9.1115https://academic.oup.com/jxb/article-abstract/41/9/1115/594474?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2021/03/19/the-absorption-lag-epidermal-turgor-and-stomata/ )

Meidner H. (1992) – Developments in Mass Flow Porometry – Journal of Experimental Botany 43(10): 1309–1314 – https://doi.org/10.1093/jxb/43.10.1309https://academic.oup.com/jxb/article-abstract/43/10/1309/480350?redirectedFrom=fulltext&login=false – (On our blog : https://plantstomata.wordpress.com/2024/03/16/based-on-parallel-measurements-with-a-diffusion-porometer-the-relation-between-mass-flow-and-diffusive-stomatal-flow-conductances-has-been-experimentally-determined/ )

Meidner H., Bannister P. (1979) – Pressure and solute potentials in stomatal cells of Tradescantia virginiana – J Exp Bot 30 255–265 – doi: 10.1093/jxb/30.2.255http://jxb.oxfordjournals.org/content/30/2/255.abstract – https://plantstomata.wordpress.com/2016/11/10/pressure-and-solute-potentials-in-stomata/ )

Meidner H., Edwards M. (1975) – Direct measurements of turgor pressure potentials of guard cells – I. J. Exp. Bot. 26: 319–330 – https://doi.org/10.1093/jxb/26.3.319https://academic.oup.com/jxb/article-abstract/26/3/319/605577?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/08/turgor-pressure-potentials-of-stomatal-guard-cells/ )

Meidner H., Edwards M. (1996) – Osmotic and turgor pressures of guard cells – Plant Cell Environ. 19: 503 –

Meidner H., Heath O. V. S. (1959) – Studies in stomatal behaviour VIII. Stomatal responses to temperature and carbon dioxide concentration in Allium cepa L. and theoretical relevance to mid‐day closure – Journal of Experimental Botany 10: 206– 219 – https://doi.org/10.1093/jxb/10.2.206https://academic.oup.com/jxb/article-abstract/10/2/206/528173?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/04/22/stomatal-responses-to-temperature-and-co2-concentration/ )

Meidner H., Mansfield T. A. (1965) – Stomatal responses to illumination – Biol. Reviews 40, Issue 4: 483–508 – DOI: 10.1111/j.1469-185X.1965.tb00813.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1965.tb00813.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/effects-of-environmental-factors-on-stomatal-movements/

Meidner H., Mansfield T. A. (1965) – Studies in stomatal behaviour : XI. Further observations on responses to night length – Journal of Experimental Botany 16(1): 145–150 –  https://doi.org/10.1093/jxb/16.1.145https://academic.oup.com/jxb/article-abstract/16/1/145/535210?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/11/18/the-rate-of-stomatal-opening-is-markedly-affected-by-night-length-treatment/ )

Meidner H., Mansfield T. A. (1966) – Rates of photosynthesis and respiration in relation to stomatal movements in leaves treated with a-hydroxysulphonate and glycollate – J. Exp. Bot. 17: 502-509 –

Meidner H., Mansfield T. A. (1968) – Physiology of stomata – New York, NY: McGraw-Hill – http://krishikosh.egranth.ac.in/bitstream/1/2061723/2/IISR-198.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/20/physiology-of-stomata-2/ )

Meidner H., Willmer C. M. (1975) – Mechanics and Metabolism of Guard Cells – Current Advances in Plant Science 17: 1-15 –

Meidner H., Willmer C. M. (1993) – Circadian rhythm of stomatal
movements in epidermal strips – J. Exp. Bot. 44: 1649–1652 –

Meigas E., Uusküla B., Merilo E. (2024) – Abscisic acid induces stomatal closure in horsetails – New PhytologistEarly View – https://doi.org/10.1111/nph.19542https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.19542

Meimand M. J. M., Shamshiri M. H., Malekzadeh K., Dehghani, M. R.. (2021) – How photoautotrophy, photomixotrophy, and ventilation affect the stomata and fluorescence emission of pistachios rootstock? –  Open Life Sciences 16(1): 1151-1163 – https://doi.org/10.1515/biol-2021-0115https://www.degruyter.com/document/doi/10.1515/biol-2021-0115/html – (On our blog : https://plantstomata.wordpress.com/2021/11/29/photoautotrophy-photomixotrophy-and-ventilation-affect-the-stomata/ )

Meinhard M., Schnabl H. (2001) – Fusicoccin- and light-induced activation and in vivo phosphorylation of phosphoenolpyruvate carboxylase in Vicia guard cell protoplasts – Plant Sci. 160: 635–646 – https://doi.org/10.1016/S0168-9452(00)00437-4 – https://www.sciencedirect.com/science/article/pii/S0168945200004374 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-guard-cell-pepcase-is-regulated-by-reversible-phosphorylation-of-at-least-one-isoform-and-elucidate-first-components-of-the-signaling-pathway/ )

Meinzer F. C. (1982) – The effect of vapor pressure on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings – Oecologia 54: 236-242 – doi: 10.1007/BF00378398https://www.ncbi.nlm.nih.gov/pubmed/28311434 – (On our blog : https://plantstomata.wordpress.com/2019/05/08/the-effect-of-vapor-pressure-on-stomatal-control-of-gas-exchange-2/ )

Meinzer F. C. (1982) – The Effect of Light on Stomatal Control of Gas Exchange in Douglas Fir (Pseudotsuga menziesii) Saplings – Oecologia 54(2): 270-274 – https://www.jstor.org/stable/4216760?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/22/the-effect-of-light-on-stomatal-control-of-gas-exchange/ )

Meinzer F. C. (1993) – Stomatal control of transpiration – Trends in Ecology & Evolution 8(8): 289-294 – https://doi.org/10.1016/0169-5347(93)90257-Phttps://www.cell.com/trends/ecology-evolution/fulltext/0169-5347(93)90257-P – (On our blog : https://plantstomata.wordpress.com/2020/03/30/the-role-of-stomata-in-regulating-transpiration-from-different-types-of-vegetation/ )

Meinzer F. C., Andrade J. L., Goldstein G., Holbrook N. M., Cavelier J., Jackson P. (1997) – Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture – Plant, Cell & Environm. 20: 1242-1252 – https://doi.org/10.1046/j.1365-3040.1997.d01-26.x – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-3040.1997.d01-26.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/the-role-of-stomatal-boundary-layer-and-hydraulic-architecture-in-the-control-of-transpiration/ )

Meinzer F. C., Clearwater M. J., Goldstein G., (2001) – Water transport in trees: current perspectives, new insightsand some controversies – Environmental and Experimental Botany 45: 239–262 – https://www.academia.edu/18598890/Water_transport_in_trees_current_perspectives_new_insights_and_some_controversies?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/12/24/leaf-physiology-is-closely-linked-to-hydraulic-architecture-and-hydraulic-perturbations-but-the-precise-nature-of-the-signals-to-which-stomata-respond-remains-to-be-elucidated/ )

Meinzer F. C., Goldstein G., Holbrook N.M.,Jackson P., Cavelier J. (1993)  Stomatal and environmental control of transpiration in a lowland tropical forest tree – Plant, Cell and Environment 16: 429-436 – Stomatal_and_environmental_control_of_tr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-and-environmental-control-of-transpiration/ )

Meinzer F. C., Goldstein G., Jackson P., Holbrook N. M., Gutierrez M. V., Cavelier J.(1995) – Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic conductance properties – Oec. 101: 514–522 – doi: 10.1007/BF00329432 – https://www.ncbi.nlm.nih.gov/pubmed/28306968 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/contrasting-stomatal-responses-to-similar-leaf-bulk-air-vpd-may-be-governed-as-much-by-the-external-boundary-layer-as-by-intrinsic-physiological-differences-among-species/ )

Meinzer F. C., Goldstein G., Jaimes M. (1984) – The effect of atmospheric humidity on stomatal control of gas exchange in two tropical coniferous species – Canadian Journal of Botany 62(3): 591-595 – https://doi.org/10.1139/b84-089 – http://www.nrcresearchpress.com/doi/10.1139/b84-089 – (On our blog : https://plantstomata.wordpress.com/2018/09/22/the-effect-of-atmospheric-humidity-on-stomatal-control-of-gas-exchange/ )

Meinzer F. C., Grantz D. A. (1990) – Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity – Plant, Cell & Environm. 13: 383–388 – https://doi.org/10.1111/j.1365-3040.1990.tb02142.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1990.tb02142.x – (On our blog :https://plantstomata.wordpress.com/2018/12/20/stomata-adjust-to-the-ratio-of-total-hydraulic-conductance-to-total-transpiring-leaf-area/ )

Meinzer F. C., Grantz D. A. (1991) – Coordination of stomatal, hydraulic, and canopy boundary-layer properties. Do stomata balance conductances by measuring transpiration? – Physiol. Plant. 83: 324–329 – https://doi.org/10.1111/j.1399-3054.1991.tb02160.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1991.tb02160.x – (On our blog : https://plantstomata.wordpress.com/2018/12/20/stomata-exert-an-active-role-in-regulating-transpiration-even-in-dense-canopies/ )

Meinzer F. C., Grantz D. A., Smit B. (1991) – Root signals mediate coordination of stomatal and hydraulic conductance in growing sugarcane – Australian Journ. Plant Physiology 18: 329-338 – https://doi.org/10.1071/PP9910329 – http://www.publish.csiro.au/FP/PP9910329 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/root-signals-mediate-coordination-of-stomatal-and-hydraulic-conductance-2/ )

Meinzer F. C., Hinckley T. M., Ceulemans R. (1997) – Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy – Plant, Cell Environ. 20(10): 1301- 1308 – DOI: 10.1046/j.1365-3040.1997.d01-18.xhttp://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-18.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/10/27481/ )

Meinzer F. C., Johnson D. M.,  Lachenbruch B.,  McCulloh K. A.,  Woodruff D. R. (2009) – Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance – Functional Ecology 23: 922-930 – https://doi.org/10.1111/j.1365-2435.2009.01577.x –https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2435.2009.01577.x – (On our blog : https://plantstomata.wordpress.com/2018/12/20/coordination-of-stomatal-control-of-xylem-tension-with-hydraulic-capacitance/ )

Meinzer F. C., Smith D. D., Woodruff D. R., Marias D. E., McCulloh K. A., Howard A. R., Magedman A. L. (2017) – Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status – Plant, Cell and Environment 40: 1618–1628 – doi: 10.1111/pce.12970 – https://www.fs.fed.us/pnw/pubs/journals/pnw_2017_meinzer001.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/stomatal-kinetics-and-photosynthetic-gas-exchange/

Meinzer F. C., Woodruff D. R., Marias D. E., Smith D. D., McCulloh K. A., Howard A. R., Magedman A. L. (2016) – Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status – Ecology Letters 19: 1343–1352 – DOI: 10.1111/ele.12670 – https://www.ncbi.nlm.nih.gov/pubmed/27604411 – (On our blog : https://plantstomata.wordpress.com/2018/11/15/mapping-hydroscapes-along-the-iso-to-anisohydric-continuum-of-stomatal-regulation/

Meister M. (2001) – The effect of CO2 and drought on stomatal conductance and stomata density in white clover (Trifolium repens L.) – Photosynthesis research 69(1-3): 209-210 – ISSN: 0166-8595, 1573-5079 –

Mekonnen D. W., Flügge U.-I., Frank Ludewig F. (2016) – Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana – Plant Sci 245: 25-34 – doi: 10.1016/j.plantsci.2016.01.005 – Epub 2016 Jan 23 – https://pubmed.ncbi.nlm.nih.gov/26940489/ – (On our blog : https://plantstomata.wordpress.com/2022/03/06/gaba-accumulation-during-drought-is-a-stress-specific-response-and-its-accumulation-induces-the-regulation-of-stomatal-opening-thereby-prevents-loss-of-water/ )

Melhorn V., Matsumi K., Koiwai H., Ikegami K., Okamoto M., Nambara E., Bittner F., Koshiba T. (2008) – Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba – J. Plant Res. 121: 125–131 – doi: 10.1007/s10265-007-0127-7 – https://link.springer.com/article/10.1007/s10265-007-0127-7 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/transient-expression-of-atnced3-and-aao3-genes-in-guard-cells-causes-stomatal-closure/

Melis A., Zeiger E. (1982) – Chlorophyll a fluorescence transients in mesophyll and guard cells – Modulation of guard cell photophosphorylation by CO2 – Plant Physiol. 69: 642–647 – https://doi.org/10.1104/pp.69.3.642 – http://www.plantphysiol.org/content/69/3/642 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/modulation-of-stomatal-guard-cell-photophosphorylation-by-co2/ )

Melkonian J., Wolfe D. W. (1995) – Relative sensivity of leaf elongation and stomatal conductance of cucumber plants to chnages in leaf and soil water potentials – Sensibilité relative de l’élongation des feuilles et de la conductance stomatique chez Ie concombre aux modifications des potentiels hydrique et du sol – Canad. Journ. Plant Sci. 75(4): 909-915 – https://doi.org/10.4141/cjps95-153https://cdnsciencepub.com/doi/pdf/10.4141/cjps95-153 – (On our blog : https://plantstomata.wordpress.com/2021/01/06/87356/ )

Melkonian J., Yu L. X., Setter T. L. (2004) – Chilling responses of maize
(Zea mays L.) seedlings: Root hydraulic conductance, abscisic acid,
and stomatal conductance – Journal of Experimental Botany 55: 1751-1760 –

Melotto M., Underwood W., He S. Y. (2008) – Role of stomata in plant innate immunity and foliar bacterial diseases – Annu. Rev. Phytopathol. 46, 101–122 – doi: 10.1146/annurev.phyto.121107.104959 – http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.121107.104959 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/microbial-and-environmental-regulation-of-stomatal-closure/ )

Melotto M., Underwood W., Koczan J., Nomura K., He S. Y. (2006) – Plant stomata function in innate immunity against bacterial invasion – Cell 126: 969–980 – doi: 10.1016/j.cell.2006.06.054 – http://www.cell.com/cell/abstract/S0092-8674(06)01015-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867406010154%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/09/23/stomata-act-as-a-barrier-against-bacterial-infection/)

Melotto M., Zhang L., Oblessuc P. R., He S. Y. (2017) – Stomatal defense a decade later – Plant Physiol 174: 561–571 – http://www.plantphysiol.org/content/174/2/561 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/significant-understanding-of-the-basic-mechanisms-of-stomatal-defense/)

Mencuccini M., Mambelli S., Comstock J. P. (2000) – Stomatal responsiveness to leaf water status in common bean is a function of time of day – Plant, Cell and Environment 23: 110–1118 – https://doi.org/10.1046/j.1365-3040.2000.00617.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2000.00617.x – (On our blog : https://plantstomata.wordpress.com/2018/11/05/stomatal-responsiveness-to-leaf-water-status-is-a-function-of-time-of-day/ )

Mendes K. R., Marenco R.  A. (2010) – Leaf traits and gas exchange in saplings of native tree species in the Central Amazon – Scientia Agricola, 67:624-632 – http://dx.doi.org/10.1590/S0103-90162010000600002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162010000600002 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-conductance-gs-in-saplings-of-native-tree-species/ )

Meng D., Ma J., Min X., Zang Y., Sun W. (2024) – Nocturnal stomatal behaviour and its impact on water use strategies of desert herbs in the Gurbantunggut Desert, Northwest China – Science of The Total Environment 929: 172749 – https://doi.org/10.1016/j.scitotenv.2024.172749 ScienceDirect – (On our blog : https://plantstomata.wordpress.com/2024/05/03/plant-functional-type-differences-in-the-magnitude-of-nocturnal-stomatal-opening-were-related-to-differences-in-water-acquisition-and-utilization-and-highlighted-diverse-water-use-strategies-in-the-de/ )

Meng F. (2007) – ABA Contents in the Guard-Cell Symplast and Guard-Cell Apoplast Are Not Correlated with Stomatal Aperture Size under Three Conditions of Water Sufficiency – Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2485 – FSU_migr_etd-2485 (IID) – http://diginole.lib.fsu.edu/islandora/object/fsu%3A180678 – https://plantstomata.wordpress.com/2017/11/13/aba-and-stomatal-aperture/ )

Meng F. R., Arp P. A. (1993) – Net photosynthesis and stomatal conductance of red spruce twigs before and after twig detachment – Can. J. For. Res. 23: 716-721 –

Meng L.-S. (2018) – Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency – Science.gov (United States) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/stomata-and-new-genetic-factors-for-ameliorating-drought-tolerance-or-water-use-efficiency-water-uptake-efficiency-of-plants/ )

Meng L., Li L., Chen W., Xu Z., Liu L. (1999) – Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves – Journal of Shenyang Agricultural University 30: 477–480 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYNY199905000.htm – (On our blog : https://plantstomata.wordpress.com/2018/06/04/water-stress-and-stomatal-density-length-and-width/ )

Meng L.-S., Li C., Xu M.-K., Sun X.-D., Wan W., Cao X.-Y., Zhang J.-L., Chen K.-M. (2018) – Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light‐mediated stomatal development – Plant, Cell & Environm. – Online Version of Record  – https://doi.org/10.1111/pce.13212https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13212?af=R – (On our blog : https://plantstomata.wordpress.com/2018/05/15/an3-cop1-and-light%e2%80%90mediated-stomatal-development/ )

Meng L.-S., Yao S.-Q. (2015) – Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA) – Plant Biotechnol. J. 13 893–902 – DOI: 10.1111/pbi.12324 – https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.12324#support-information-section – (On our blog : https://plantstomata.wordpress.com/2018/11/06/an3-regulates-water-use-efficiency-and-drought-tolerance-by-modulating-stomatal-density/

Meng X., Chen X., Mang H., Liu C., Yu X., Gao X., Torii K. U., He P., Shan L. (2015) – Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning – Current Biology 252361-2372 – doi:  10.1016/j.cub.2015.07.068  – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714584/ – (On our blog : https://plantstomata.wordpress.com/2017/12/17/serk-family-receptor-like-kinases-in-stomatal-patterning/ )

Menghiu G., Iriza E., Danciu A., ZSombori O. T., Gaman C., Muntean H.-E. (2012) – Biomonitoring of urban area by anatomical leaf changes – Annals of West University of Timişoara, ser. Biology XV(2): 125-130 – https://biologie.uvt.ro/annals/fullaccess/vol_XV_2_125_130.pdf – (On our blog : https://plantstomata.wordpress.com/2022/09/11/an-increase-in-the-number-of-stomata-and-trichomes-of-polluted-populations-in-comparison-to-control-populations/ )

Mengis N., Keller D. P., Eby M., Oschlies A. (2015) – Uncertainty in the response of transpiration to CO2 and implications for climate change –  Environ. Res. Lett. 10(9):  094001 – https://iopscience.iop.org/article/10.1088/1748-9326/10/9/094001 – (On our blog : https://plantstomata.wordpress.com/2022/09/18/stomata-the-response-of-transpiration-to-co2-and-implications-for-climate-change/ )

Menke U, Renault N, Mueller‐Roeber B. (2000) – StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline‐rich proteins – Plant Physiology 122: 677–686 – http://dx.doi.org/10.1104/pp.122.3.677 – http://www.plantphysiol.org/content/122/3/677.abstract?ijkey=c25910eb9cbd456ca3b67dd31d90f0cb1e7047de&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/01/26490/ )

Menzhulin G. V. (xxxx) – Transpiration – HYDROLOGICAL CYCLE – Vol. II – in : Encyclopedia of Life Support Systems (EOLSS) – https://www.eolss.net/sample-chapters/C07/E2-02-04-03.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/12/stomata-opening-and-transpiration/ )

Merced A., Renzaglia K. S. (2018) – Contrasting pectin polymers in guard cell walls of Arabidopsisand the hornwort Phaeoceros reflect physiological differences – Annals of Botany 1223: 579-585 – mcy168 – https://doi.org/10.1093/aob/mcy168 – https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcy168/5092734 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/variations-in-guard-cell-wall-composition-reflect-different-physiological-activity-of-stomata-in-land-plants-2/ )

Mereu S., Salvatori E., Fusaro L., Gerosa G., Muys B., Manes F. (2009) – A whole plant approach to evaluate the water use of mediterranean maquis species in a coastal dune ecosystem – Biogeosciences Discuss. 6: 1713–1746 – www.biogeosciences-discuss.net/6/1713/2009/https://www.academia.edu/33731136/A_whole_plant_approach_to_evaluate_the_water_use_of_mediterranean_maquis_species_in_a_coastal_dune_ecosystem?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/18/stomatal-conductance-in-maquis/ )

Merilo E., Jalakas P., Kollist H., Brosché M. (2015) -The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA – Mol Plant. 8(4): 657-659 – doi: 10.1016/j.molp.2015.01.014 – Epub 2015 Jan 22 – https://www.cell.com/molecular-plant/abstract/S1674-2052(15)00101-X?code=cell-site – (On our blog : https://plantstomata.wordpress.com/2018/06/04/stomatal-responses-to-elevated-co2-concentration-reduced-air-humidity-and-exogenous-aba-in-different-mutants-of-aba-transport/ )

Merilo E., Jalakas P., Laanemets K., Mohammadi O., Hõrak H., Kollist H., Brosché M. (2015) – Abscisic acid transport and homeostasis in the context of stomatal regulation – Mol Plant. 8:1321–1333 – doi: 10.1016/j.molp.2015.06.006 – Epub 2015 Jun 20 – https://pubmed.ncbi.nlm.nih.gov/26099923/ – (On our blog : https://plantstomata.wordpress.com/2020/08/15/aba-transport-and-homeostasis-in-the-context-of-stomatal-regulation/

Merilo E., Jõesaar I., Brosché M., Kollist H. (2014) – To open or to close: Species-specific stomatal responses to simultaneously applied opposing environmental factors – New Phytol. 202, 499–508 –  doi: 10.1111/Nph. 12667 – https://www.ncbi.nlm.nih.gov/pubmed/24392838 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/species-specific-and-nonadditive-responses-to-two-simultaneously-applied-opposing-factors-in-stomata/ )

Merilo E., Laanemets K., Hu H., Xue S., Jakobson L., Tulva I., Gonzalez-Guzman M., Rodriguez P. L., Schroeder J. I., Broschè M., Kollist H., (2013) – PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness- and CO2-induced stomatal regulation – Plant Physiol. 162: 1652–1668 – https://doi.org/10.1104/pp.113.220608 – http://www.plantphysiol.org/content/162/3/1652 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/pyr-rcar-receptors-and-stomatal-adjustments-and-responses-to-low-humidity-darkness-and-o3-and-are-involved-in-responses-to-elevated-co2/ )

Merilo E., Yarmolinsky D., Jalakas P., Parik H., Tulva I., Rasulov B., Kilk K., Kollist H. (2017) – Stomatal VPD response: There is more to the story than ABA – Plant Physiol. 2017: 1532-1548 –http://dx.doi.org/10.1104/pp.17.0091  – http://www.ncbi.nlm.nih.gov/pubmed/28986421 – – https://www.bioportfolio.com/resources/pmarticle/1861501/Stomatal-VPD-response-there-is-more-to-the-story-than-ABA.html – (On our blog : https://plantstomata.wordpress.com/2017/12/17/origin-and-role-of-aba-in-stomatal-regulation/ )

Merlaen B., De Keyser E., Van Labeke M.-C. (2017) – Effect of GA, SA and JA on PIP Aquaporin Expression in Fragaria x ananassa Leaves – SCIENCE ACROSS BOUNDARIES ABSTRACTS: SEB Annual Meeting Gothenburg 2017: 37, Goteborg, Zweden, 3/07/17 – http://pure.ilvo.vlaanderen.be/portal/en/publications/effect-of-ga-sa-and-ja-on-pip-aquaporin-expression-in-fragaria-x-ananassa-leaves(cccf1527-e44b-407c-850a-38b671e91b72)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-and-the-effect-of-ga-sa-and-ja-on-pip-aquaporin-expression/

Merlot S., Leonhardt N., Fenzi F., Valon C., Costa M., Piette L., Vavasseur A., Genty B., Boivin K., Müller A., Giraudat J., Leung J. (2007) – Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure – EMBO J. 26: 3216–3226 – doi:  10.1038/sj.emboj.7601750 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914098/ – (On our blog : https://plantstomata.wordpress.com/2018/06/05/aha1-and-stomatal-closure/ )

Merlot S., Mustilli A. C., Genty B., North H., Lefebvre V., Sotta B., Vavasseur A., Giraudat J. (2002) – Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation – Plant J. Cell Mol. Biol. 30: 601–609 – doi: 10.1046/j.1365- 313X.2002.01322.x – https://www.ncbi.nlm.nih.gov/pubmed/12047634 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/arabidopsis-mutants-defective-in-stomatal-regulation-2/ )

Merritt F., Kemper A., Tallman G. (2001) – Inhibitors of ethylene synthesis inhibit auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L. – Plant Cell Physiol. 42: 223–230 – https://doi.org/10.1093/pcp/pce030https://academic.oup.com/pcp/article/42/2/223/1930030 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/auxin-induced-stomatal-opening-is-mediated-through-auxin-induced-ethylene-production-by-guard-cells/ )  

Mes M. G., Aymer-Ainslie K. M. (1935) – Studies on the water relations of grasses. I : Themeda triandra Forsk. – South African Journal of Science XXXII: 280-304 – https://journals.co.za/doi/pdf/10.10520/AJA00382353_7971 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/stomatal-behaviour-and-transpiration-of-grasses/ )

Messinger S. M., Buckley T. N., Mott K. A. (2006) – Evidence for Involvement of Photosynthetic Processes in the Stomatal Response to CO2 – WHOLE PLANT AND ECOPHYSIOLOGY – https://doi.org/10.1104/pp.105.073676 – http://www.plantphysiol.org/content/140/2/771.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/involvement-of-photosynthetic-processes-in-the-stomatal-response-to-co2/ )

Meyer C., Bangh L., Zavala P., Michelle E., Mitchell N. (2022) – Stomatal size in Populus trichocarpa is related to climate and exhibits plasticity across growing environments – Poster Annual Conference Botany 2022 Anchorage Alaska July 24-27 – http://botanyconference.org/engine/search/index.php?func=detail&aid=130 – (On our blog : https://plantstomata.wordpress.com/2022/04/25/future-research-is-needed-to-investigate-how-stomatal-morphology-will-adapt-to-the-changing-climate/ )

Meyer J. (1955) – Multiplication des stomates sous l’action du Peronospora parasitica (Pers.) – Bull. Soc. bot. Fr. 102: 6-9 –

Meyer J. (1959) – Enrichissement en stomates sous l’action de Pemphigus spirothecae – Marcellia 30 (suppl.): 95-102 –

Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K. A. S., Geiger D, Marten I, Martinoia E, Hedrich R. (2010) – AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells – Plant J. 63: 1054–1062 – doi: 10.1111/j.1365-313X.2010.04302.x – https://www.ncbi.nlm.nih.gov/pubmed/20626656 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/atalmt12-represents-an-r-type-anion-channel-required-for-stomatal-movement/ )

Meyer S., Scholz-Starke J., De Angeli A., Kovermann P., Burla B., Gambale F., Martinois E. (2011) – Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation – Plant J. 67(2): 247-257 – doi: 10.1111/j.1365-313X.2011.04587.x – Epub 2011 Apr 26 – https://www.ncbi.nlm.nih.gov/pubmed/21443686 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/malate-transport-by-the-vacuolar-atalmt6-channel-in-stomata/ )

Meyers A. (2017) – MIT researchers create plants that glow – Boston Globe 2017-12-14 – https://www.bostonglobe.com/metro/2017/12/14/mit-researchers-create-plants-that-glow/BWSXklirU8N78UcFJiXstL/story.html – (On our blog : https://plantstomata.wordpress.com/2017/12/15/plants-that-glow-at-mit/ )

Meza-Canales I. D., Meldau S., Zavala J. A., Baldwin I. T. (2016)  Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception – Plant, Cell & Environment – DOI: 10.1111/pce.12874 –  http://onlinelibrary.wiley.com/doi/10.1111/pce.12874/abstract – (https://plantstomata.wordpress.com/2016/12/08/herbivore-attack-and-stomatal-conductance/ )

Miao Y., Song C., Dong F. , Wang X. (2000) – ABA-induced hydrogen peroxide generation in guard cells of Vicia faba – Zhi wu Sheng li xue bao = Acta Phytophysiologica Sinica 26(1):53-58 – Language:chi – CBA: 335700 – https://europepmc.org/article/cba/335700 – (On our blog : https://plantstomata.wordpress.com/2023/05/23/h2o2-is-involved-in-the-signal-transduction-pathway-of-aba-induced-stomatal-closure/ )

Michael J. H., William H. O. (1991) – Rapid adjustment of guard cell abscisic acid levels to current leaf-water status – Plant Physiol. 95: 171-173 –

Michalke B., Schnabl H. (1987) – The status of adenine nucleotides and malate in chloroplasts, mitochondria and supernatant of guard protoplasts from Vicia faba – J. Plant Physiol. 130: 243–253 – https://doi.org/10.1016/S0176-1617(87)80228-6 –https://www.sciencedirect.com/science/article/pii/S0176161787802286 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/the-status-of-adenine-nucleotides-and-malate-in-chloroplasts-mitochondria-and-supernatant-of-stomatal-protoplasts/ )

Michalke B., Schnabl H. (1990) – Modulation of the activity of phosphoenolpyruvate carboxylase during potassium-induced swelling of guard-cell protoplasts of Vicia faba L. after light and dark treatments – Planta 180: 188–193 – https://doi.org/10.1007/BF00193994 – https://link.springer.com/article/10.1007%2FBF00193994#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/06/pepcase-and-swelling-of-stomatal-guard-cell-protoplasts/ )

Mickelbart M. V., Miller R., Parry S., Arpaia M. L., Heath R. (2000) – Avocado Leaf Surface Morphology – California Avocado Society 2000 Yearbook 84: 139-150 – http://www.avocadosource.com/cas_yearbooks/cas_84_2000/cas_2000_pg_139-150.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/20/the-physiological-development-of-avocado-leaves-and-the-interactions-between-the-leaf-development-environmental-conditions-gas-exchange-and-changes-in-the-surface-near-the-stomata/ )

Miedema H., Assmann S. M. (1996) – A membrane-delimited effect of internal pH on the K+outward rectifier of Vicia faba guard cells – J. Mem. Biol. 154: 227–237 – doi: 10.1007/s002329900147 – https://www.ncbi.nlm.nih.gov/pubmed/8952952 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/effect-of-internal-ph-on-the-koutward-rectifier-of-guard-cells-in-stomata/

Mielke M. S., Oliva M. A., de Barrros N. F., Penchel R. M., Martinez C. A., de Almeida A. C. (1999) – Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation – Trees 13: 152–160 – ftp://ftp.aphis.usda.gov/foia/FOLDER_10/AR00038647%20Mielke%20et%20al%201999.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/stomatal-control-of-transpiration-2/ )

Migahid A. M., Abu Raya M. A. (1952) – Studies in stomatal frequency I.-IV – Bull Inst. Fouad Premier Désert 2: 40-83 –

Milborrow B. V. (1969) – The occurrence and function of abscisic acid in plants – Sci. Progr. (Lond.) 57: 533-558 –

Milla R., de Diego-Vico N., Martın-Robles N. (2013) – Shifts in stomatal traits following the domestication of plant species – Journal of Experimental Botany 64: 3137–3146 – DOI: 10.1093/jxb/ert147https://pubmed.ncbi.nlm.nih.gov/23918960/ – (On our blog : https://plantstomata.wordpress.com/2021/03/29/the-contribution-of-upper-leaf-sides-to-maximum-stomatal-conductance-was-statistically-higher-in-cultivated-than-in-wild-ancestors/ )

Miller A. (2016)  Guard cells regulate gas and moisture exchange – https://asknature.org/strategy/guard-cells-regulate-gas-and-moisture-exchange/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-regulate-gas-and-moisture-exchange/ )

Miller A. (2017) – Stomatal pores in plants regulate the amount of water and solutes within them by opening and closing their guard cells using osmotic pressure – AskNature April 3, 2017 – https://asknature.org/strategy/guard-cells-regulate-gas-and-moisture-exchange/ – (On our blog : https://plantstomata.wordpress.com/2018/11/04/plant-stomata/ )

Miller A. (2020) – Guard cells use osmotic pressure to open and close stomata, allowing plants to regulate the amount of water and solutes within them – Ask Nature May 2, 2020 – https://asknature.org/strategy/guard-cells-regulate-gas-and-moisture-exchange/ – (On our blog : https://plantstomata.wordpress.com/2023/04/15/how-guard-cells-function/ )

Miller J. (2017) – Modeling guard cell-to-leaf scales with OnGuard2 – Plant Cell 10:1105/tpc.17.00694 – https://plantae.org/modeling-guard-cell-to-leaf-scales-with-onguard2/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-single-framework-to-understand-stomatal-physiology-in-greater-detail/ )

Miller-Rushing A. J., Primack R. B., Templer P. H., Rathbone S., Mukunda S. (2009) – Long‐term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees – American Journal of Botany 96(10): 1779-1786 – https://doi.org/10.3732/ajb.0800410https://bsapubs.onlinelibrary.wiley.com/doi/full/10.3732/ajb.0800410 – (On our blog : https://plantstomata.wordpress.com/2020/05/20/atmospheric-co2-stomata-and-intrinsic-water-use-efficiency-in-individual-trees/ )

Mills G., Hayes F., Wilkinson S., Davies W. J. (2009) – Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species – Global Change Biol. 15: 1522–1533 – https://doi.org/10.1111/j.1365-2486.2008.01798.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2008.01798.x – (On our blog : https://plantstomata.wordpress.com/2018/11/06/ozone-appears-to-be-disrupting-the-aba%e2%80%90induced-signal-transduction-pathway-for-stomatal-control/ )

Mills G., Pleijel H., Braun S., Büker P., Bermejo V., Calvo E., Danielsson H., Emberson L., Fernández I. G., Grünhage L., Harmens H., Hayes F., Karlsson P.-E., Simpson D. (2011) – New stomatal flux-based critical levels for ozone effects on vegetation – Atmos. Environ. 45: 5064–5068 – https://doi.org/10.1016/j.atmosenv.2011.06.009 – https://www.sciencedirect.com/science/article/pii/S1352231011006029 – (On our blog : https://plantstomata.wordpress.com/2018/11/06/new-stomatal-flux-based-critical-levels-for-ozone-effects/ )

Mills L. N., Hunt L., Leckie C. P., Aitken F. L., Wentworth M., McAinsh M. R. Gray J. E., Hetherington A. M.(2004) – The effects of manipulating phospholipase C on guard cell ABA‐signalling – Journal of Experimental Botany 55(395): 199-204 – https://www.jstor.org/stable/24012700?seq=1 – (On our blog : https://plantstomata.wordpress.com/2021/04/25/manipulating-phospholipase-c-on-stomata-aba%e2%80%90signalling/ )

Milne R. (2016) – Image highlight: stomata pores – The Royal Society Publishing Blog  Nov. 7, 2016 – https://blogs.royalsociety.org/publishing/image-highlight-stomata-pores/ – (On our blog : https://plantstomata.wordpress.com/2018/01/12/stomata-pores/ )

Milthorpe F. L. (1969) – The significance and mechanism of stomatal
movement – Austr. J. Sci. 32: 31-35 –

Milthorpe F. L., Penman H. L. (1967) – The diffusive conductivity of stomata of wheat leaves – Journal of Experimental Botany 18(56): 422-457 – https://doi.org/10.1093/jxb/18.3.422https://repository.rothamsted.ac.uk/item/8w203/the-diffusive-conductivity-of-stomata-of-wheat-leaves – (On our blog : https://plantstomata.wordpress.com/2021/11/01/diffusive-conductivity-of-stomata/ )

Mimata Y., Munemasa S., Nakamura T., Nakamura Y., Murata Y. (2022) – Extracellular malate induces stomatal closure via direct activation of guard-cell anion channel SLAC1 and stimulation of Ca2+ signalling – New Phytol. 236(3): 852-863 – doi: 10.1111/nph.18400 – Epub 2022 Aug 9 – PMID: 35879859 – https://pubmed.ncbi.nlm.nih.gov/35879859/ – (On our blog : https://plantstomata.wordpress.com/2023/04/17/extracellular-malate-directly-activates-slac1-and-simultaneously-stimulates-ca2-signalling-in-guard-cells-resulting-in-steady-and-solid-activation-of-slac1-for-stomatal-closure/ )

Min M. K., Choi E.-H., Kim J.-A., Yoon I. S.,  Han S., Lee Y., Sangho Lee, Kim B.-G.(2019) – Two Clade A Phosphatase 2Cs Expressed in Guard Cells Physically Interact With Abscisic Acid Signaling Components to Induce Stomatal Closure in Rice – Rice evolume 12, Article number: 37 – https://doi.org/10.1186/s12284-019-0297-7https://thericejournal.springeropen.com/articles/10.1186/s12284-019-0297-7 – (On our blog : https://plantstomata.wordpress.com/2019/08/08/ospp2c50-and-ospp2c53-specifically-expressed-in-rice-guard-cells-and-are-major-negative-regulators-of-aba-signaling-regarding-stomata-closing-in-rice/ )

Miner G. L., Bauerle W. L., Baldocchi D. D. (2016)  Estimating the sensitivity of stomatal conductance to photosynthesis: A review – Plant, Cell & Environment – DOI: 10.1111/pce.12871 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12871/abstract – (https://plantstomata.wordpress.com/2016/12/13/sensitivity-of-stomatal-conductance-to-photosynthesis/ )

Mineyuki Y., Marc J., Palevitz B. A. (1988) – Formation of the oblique spindle in dividing guard mother cell of Allium – Protoplasma 147: 200–203 – https://doi.org/10.1007/BF01403348 – https://link.springer.com/article/10.1007%2FBF01403348#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/06/formation-of-the-oblique-spindle-in-the-dividing-stomatal-guard-mother-cell/ )

Mineyuki Y., Marc J., Palevitz B. A. (1989) – Development of the preprophase band from random cytoplasmic microtubules in guard mother cell of Allium cepa L. – Planta 178: 291–296 –  https://doi.org/10.1007/BF00391856 – https://link.springer.com/article/10.1007/BF00391856#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/06/the-preprophase-band-from-random-cytoplasmic-microtubules-in-the-stomatal-guard-mother-cell/ )

Minguet-Parramona C., Wang Y., Hills A., Vialet-Chabrand S., Griffiths H., Rogers S., Lawson T., Lew V. L., Blatt M. R. (2016) – An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells – Plant Physiol. 170: 33–42 – https://doi.org/10.1104/pp.15.01607 –http://www.plantphysiol.org/content/170/1/33 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/ca2-oscillations-for-stomatal-closure-and-ion-transport-in-guard-cells/ )

Minnocci A., Panicucci A., Sebastiani L., Lorenzini G., Vitagliano C. (1999) – Physiological and morphological responses of olive plants to ozone exposure during a growing season – Tree Physiology 19, 391–397 – 1999 Heron Publishing – Victoria, Canada – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.417.7142&rep=rep1&type=pdf– (On our blog : https://plantstomata.wordpress.com/2018/02/06/o3-induced-reduction-in-transpiring-stomatal-surface-in-olive-trees/ )

Mino Y., Matsuhita Y., Sakai R. (1987) – Effect of coronatine on stomatal opening in leaves of braodbean and italian ryegrass – Ann Phytopath Soc Japan 53: 53–55 –https://www.jstage.jst.go.jp/article/jjphytopath1918/53/1/53_1_53/_pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/effect-of-coronatine-on-stomatal-opening/ )

Minorsky P. (2017) – Origin and Role of ABA in Stomatal Regulation – https://plantae.org/origin-and-role-of-aba-in-stomatal-regulation/ – (On our blog : https://plantstomata.wordpress.com/2017/11/19/aba-in-regulation-of-stomatal-movements/ )

Minorsky P. (2017) – Clathrin and Stomatal Function – Plantae blog –https://plantae.org/clathrin-and-stomatal-function/ – (On our blog : https://plantstomata.wordpress.com/2017/11/27/the-functions-of-clathrin-and-syp121-affect-stomatal-function/ )

Minorsky P. (2017) – Engineering Increased Stomatal Density in Rice – Plant Physiology: On The Inside – https://plantae.org/engineering-increased-stomatal-density-in-rice/ – (On our blog : https://plantstomata.wordpress.com/2023/01/28/engineering-increased-stomatal-density-in-rice/ )

Minorsky P. (2018) – Red Light and the Plasma Membrane H+-ATPase in Guard Cells –  Plant Physiology: On The Inside – https://plantae.org/red-light-and-the-plasma-membrane-h-atpase-in-guard-cells/ – (On our blog : https://plantstomata.wordpress.com/2018/10/06/red-light-induced-pm-h-atpase-phosphorylation-in-guard-cells-promotes-stomatal-opening-in-whole-leaves/ )

Minorsky P. (2019) – Hydraulic Regulation of Stomata in Ferns – Plantae: Plant Physiology: On The Inside – https://plantae.org/hydraulic-regulation-of-stomata-in-ferns/ – (On our blog : https://plantstomata.wordpress.com/2019/04/06/hydraulic-regulation-of-stomata-in-ferns/ )

Mir A. R., Siddiqui H., Alam P., Hayat S. (2020) – Melatonin modulates photosynthesis, redox status, and elementalcomposition to promote growth of Brassica juncea—adose-dependent effect – Protoplasma 257: 1685-1700 – https://doi.org/10.1007/s00709-020-01537-6https://www.researchgate.net/publication/343569193_Melatonin_modulates_photosynthesis_redox_status_and_elemental_composition_to_promote_growth_of_Brassica_juncea-a_dose-dependent_effect – (On our blog : https://plantstomata.wordpress.com/2022/05/02/a-significant-increase-in-the-size-of-the-stomatal-aperture-in-the-presence-of-mel/ )

Miranda V., Baker N. R., Long S. P. (1981) – Anatomical varation along the length of the Zea mays leaf in relation to photosynthesis – New Phytol. 88: 595-605 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Anatomical-variation-along-the-length-of-the-zea-ma-ys-leaf-in-relation-to-photosynthesis.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/04/changes-of-significance-to-photosynthetic-activity-were-observed-in-stomatal-size-and-frequency/ )

Mirfenderesgi G., Bohrer G., Matheny A. M , Fatichi S. , Frasson R. P. de M., Schafer K. V. R. (2016) – Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy – J.Geophys.Res.Biogeosci. 121 – doi:10.1002/2016J G003467https://www.osti.gov/servlets/purl/1418512 – (On our blog : https://plantstomata.wordpress.com/2021/12/26/additional-realism-to-the-simulation-of-transpiration-by-linking-stomatal-responses-to-stem-water-potential-rather-than-directly-to-soil-moisture/ )

Miroslavov E. G. (1972) – Submicroscopic organization of guard cells in open and closed stomata – Doklady Akademii nauk SSR, 203: 939-941 –

Mirzaie M., Ladanmoghadam A. R., Hakimi L., Danaee E. (2020) – Water Stress Modifies Essential Oil Yield and Composition, Glandular Trichomes and Stomatal Features of Lemongrass (Cymbopogon citratus) Inoculated with Arbuscular Mycorrhizal Fungi – Jast 22(6): 1575-1585 –
URL: http://jast.modares.ac.ir/article-23-34457-en.html – (On our blog : https://plantstomata.wordpress.com/2023/04/15/the-anatomical-parameters-stomatal-density-and-size-as-well-as-glandular-trichomes-eo-content-and-yield-significantly-increased-under-moderate-water-stress-50-fc-and-amf-inoculation/ )

Mirzaie-Nodoushan H., Ghamari-Zare A., Tavousi Rad F., Yousefifard M. (2015)  Inducing genetic variation in growth related characteristics of poplar germplasm, by producing inter-specific hybrids between P. alba and P. euphratica – Silvae Genetica 64: 5–6 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomata-in-inter-specific-hybrids-between-p-alba-and-p-euphratica/ )

Mishkind M., Palevitz B. A., Raikhel N. V. (1981) – Cell wall architecture: normal development and environmental modification of guard cells of the Cyperaceae and related species – Plant, Cell & Environment 4(4): 319-328 – https://doi.org/10.1111/1365-3040.ep11604559 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11604559 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/normal-development-and-environmental-modification-of-cyperaceae-stomata/ )

Mishra D., Panda K. C. (1970) – Acid Phosphatases of Rice Leaves Showing Diurnal Variation and its Relation to Stomatal Opening – Biochemie und Physiologie der Pflanzen 161(6): 532 –

Mishra D., Pradhan G. C. (1968) – Delayed wilting of tomato plants by chemical closure of stomata – Bot. Mag. (Tokio) 81: 219-225 –  https://doi.org/10.15281/jplantres1887.81.219https://www.jstage.jst.go.jp/article/jplantres1887/81/958/81_958_219/_article – (On our blog : https://plantstomata.wordpress.com/2021/11/03/growth-retardants-ccc-and-b-nine-and-the-fungicides-pma-and-8-hq-delayed-the-wilting-of-plants/ )

Mishra G., Zhang W. H., Deng F., Zhao J., Wang X. M. (2006) – A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis – Science 312:264-6 – PMID:16614222; – http://dx.doi.org/10.1126/science.1123769 – https://www.ncbi.nlm.nih.gov/pubmed/16614222 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/a-bifurcating-signaling-pathway-that-regulates-plant-water-loss-with-stomatal-movements/ )

Mishra M. K. (1999) – Stomatal characteristics at different ploidy level in Coffea L. – Annals of Botany 80: 689-692 – https://doi.org/10.1006/anbo.1997.0491ttps://academic.oup.com/aob/article-lookup/doi/10.1006/anbo.1997.0491 – (On our blog : https://plantstomata.wordpress.com/2017/08/07/stomatal-characteristics-at-different-ploidy-levels/ )

Misirli A., Aksoy U. (1994) – A study on the leaf and stomatal properties of Sarilop fig variety – Research on clonal variation of Fig cv. Sarilop in terms of leaf properties and stomata distribution – J. Agric. Fac. Ege Univ. 31: 57-63 –

Misirli A., Aksoy U. (1994) –  Sarılop incir klonlarının yaprak özellikleri ve stoma da_ılımları üzerinde ara_tırmalar. E. Ü. Zir. Fakültesi Dergisi 31(2-3): 57-63

Misirli A., Topuz F., Zeybekolu N. (1998) – Research on variation of female and male figs in terms of leaf properties and stomatal distribution – Acta Hortic. 480: 129-132 –

Miskin K. E. (1971) – Inheritance and physiological effects of stomatal frequency in barley – PhD thesis Ann Arbor Michtigan University –

Miskin K. E., Rasmusson D. C. (1970) – Frequency and distribution of stomata in barley – Crop Sci. 10: 575-578 – doi:10.2135/cropsci1970.0011183X001000050038x – https://dl.sciencesocieties.org/publications/cs/abstracts/10/5/CS0100050575?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/06/frequency-and-distribution-of-stomata/ )

Miskin K. E., Rasmusson D. C., Moss D. N. (1972)  Inheritance and physiological effects of stomatal frequency in barley – Crop Science 12: 780-783 – doi:10.2135/cropsci1972.0011183X001200060019xhttps://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060780?access=0&view=pdf – https://plantstomata.wordpress.com/2016/11/01/stomatal-frequency-in-barley/ )

Misra B. B., Acharya B. R., Granot D., Assmann S. M.,  Chen S . (2015) – The guard cell metabolome: functions in stomatal movement and global food security – Front Plant Sci 6: 334 – doi:  10.3389/fpls.2015.00334 – PMC4436583 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/ – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-guard-cell-metabolome-functions-in-stomatal-movement/ )

Misra B. B., de Armas E., Tong Z., Chen S. (2015) – Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate – PLoS ONE 10(12): e0144206 – https://doi.org/10.1371/journal.pone.0144206 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144206 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/metabolomic-responses-of-guard-cells-and-mesophyll-cells-to-bicarbonate/ )

Misra B. B., Reichman S. M., Sixue Chen S. (2019) – The guard cell ionome: Understanding the role of ions in guard cell functions – Prog Biophys Mol Biol. 146: 50-62 – doi: 10.1016/j.pbiomolbio.2018.11.007 – Epub 2018 Nov 17 – PMID: 30458181 – https://pubmed.ncbi.nlm.nih.gov/30458181/ – (On our blog : https://plantstomata.wordpress.com/2023/05/27/research-efforts-on-guard-cell-ionomes-were-collated-and-categorized-and-highlighting-the-underlying-role-of-the-largely-unknown-ionome-in-guard-cell-function-towards-a-systems-physiology-understand/ )

Misra D. C., Sahu R. C., Sahu B. (1968) – Development of stomata in Phaseolus – Curr. Sci. 37: 380–389 –

Misson L., Limousin J. M., Rodriguez R., Letts M. G. (2010) – Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest – Plant Cell Environ. 33(11): 1898-1910 – doi: 10.1111/j.1365-3040.2010.02193.xhttps://www.ncbi.nlm.nih.gov/pubmed/20561253 – (on our blog : https://plantstomata.wordpress.com/2019/08/30/the-impact-of-rainfall-exclusion-on-stomatal-sl-and-non-stomatal-nsl-limitations-of-photosynthesis/ )

Mitra S., Maiti G. G., Maity D. (2015) – Structure and distribution of heteromorphic stomata in Pterygota alata (Roxb.) R. Br. (Malvaceae, formerly Sterculiaceae) – Adansonia 37(1): 139-147 – DOI: 10.5252/a2015n1a9 –

Mittelheuser C. J., Van Steveninck R. F. M. (1969) – Stomatal closure and inhibition of transpiration induced by (RS)-abscisic acid – Nature 221: 281-282 – DOI: 10.1038/221281a0https://www.nature.com/articles/221281a0 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/rs-abscisic-acid-induces-stomatal-closure/ )

Mittelheuser C. J., Van Steveninck R. F. M. (1971) – Rapid action of abscisic acid on photosynthesis and stomatal resistance – Planta, Berl. 97: 83-86 – https://doi.org/10.1007/BF00388408https://link.springer.com/article/10.1007/BF00388408 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/rapid-action-of-aba-on-stomatal-resistance/ )

Mittler R., Zandalinas S. I., Fichman Y., Van Breusegem F. (2022) – Reactive oxygen species signalling in plant stress responses – Nature Reviews Molecular Cell Biology – DOI: 10.1038/s41580-022-00499-2https://www.sciencedaily.com/releases/2022/08/220801161112.htm – (On our blog : https://plantstomata.wordpress.com/2022/08/02/stomata-and-plants-that-experience-multiple-stressors-from-heat-drought-and-flooding/ )

Mitton J. B., Grant M. C., Yoshino A. M. (1998) – Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture – American Journal of Botany 85(9): 1262–1265 – https://bsapubs.onlinelibrary.wiley.com/doi/pdf/10.2307/2446636 – (On our blog : https://plantstomata.wordpress.com/2020/05/20/stomatal-shape-may-play-a-role-in-adapting-pinyon-to-heterogeneity-in-soil-moisture/ )

Miura K., Okamoto H., Okuma E., Shiba H., Kamada H., Hasegawa P. M., Murata Y. (2012) – SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis – Plant J. 73: 91 – https://doi.org/10.1111/tpj.12014https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.12014 – (On our blog : https://plantstomata.wordpress.com/2020/04/12/siz1-negatively-affects-stomatal-closure-and-drought-tolerance-through-the-accumulation-of-sa/ )

Miyashita K., Tanakamaru S., Maitani T., Kimura K. (2005) – Recovery responses of photosynthesis, transpiration and stomatal conductance in kidney bean following drought stress – Environ. Exp. Bot. 53: 205–214 https://doi.org/10.1016/j.envexpbot.2004.03.015 — https://www.sciencedirect.com/science/article/abs/pii/S009884720400053X – (On our blog : https://plantstomata.wordpress.com/2018/10/15/close-correlation-between-leaf-water-potential-and-recovery-level-and-speed-of-photosynthesis-transpiration-and-stomatal-conductance/ )

Miyazaki A. (2014) – Plant growth enhanced through promotion of pore opening – Phys.org 2014-03 – http://phys.org/news/2014-03-growth-pore.html – (On our blog : https://plantstomata.wordpress.com/2016/08/09/plant-growth-and-promotion-of-pore-opening-in-stomata/ )

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) – Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa×P. deltoides) – Journal of Experimental Botany 57(2): 373–380 – https://doi.org/10.1093/jxb/eri278https://academic.oup.com/jxb/article/57/2/373/489910 – (On our blog : https://plantstomata.wordpress.com/2020/12/29/epidermal-cell-development-and-stomatal-development-are-regulated-by-different-physiological-mechanisms/ )

Mizokami Y., Noguchi K., Kojima M., Sakakibara H., Terashima I. (2018) – Effects of instantaneous and growth CO2 levels, and ABA on stomatal and mesophyll conductances – https://doi.org/10.1111/pce.13484h -https://doi.org/10.1111/pce.13484 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/effects-of-instantaneous-and-growth-co2-levels-and-aba-on-stomatal-and-mesophyll-conductances/

Mochizuki A., Sueoka N. (1955) – Genetic studies on the number of plastid in stomata. I. Effects of autopolyploidy in sugar beets – Cytologia 20(4): 358-366 – http://doi.org/10.1508/cytologia.20.358 – https://www.jstage.jst.go.jp/article/cytologia1929/20/4/20_4_358/_article – (On our blog : https://plantstomata.wordpress.com/2016/11/14/27587/ )

Moghbel F. e., Payamnoor V., Sattarian A. (2024) – Stomatal variations and their position relative to leaf epidermal cells in ten Maple species – Folia Oecologica 51(1):  - https://sciendo.com/article/10.2478/foecol-2024-0009 – (On our blog : https://plantstomata.wordpress.com/2024/01/28/the-results-of-the-discriminant-analysis-identified-stomatal-density-as-the-essential-factor-in-differentiation-between-the-studied-species/ )

Moghbel N., Borujeni M. K., Bernard F. (2015) – Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro – Journal of Genetic Engineering and Biotechnology 13(1): 1-6 – DOI: 10.1016/j.jgeb.2015.02.002https://cyberleninka.org/article/n/1031052https://www.researchgate.net/publication/273480257_Colchicine_effect_on_the_DNA_content_and_stomata_size_of_Glycyrrhiza_glabra_varglandulifera_and_Carthamus_tinctorius_L_cultured_in_vitro – (On our blog : https://plantstomata.wordpress.com/2020/03/24/colchicine-effect-on-the-dna-content-and-stomata-size/ )

Mohajerani H., Casper M., Kalantari Z., Ferreira C. S. S. (2019) – Project: Session at Biohydrology 2019: “Learning from Biohydrological Journey of Evapotranspiration : Departing from soil reservoir, transferring to the plant roots and leaf stomata and arriving at the atmosphere” – https://www.researchgate.net/project/Session-at-Biohydrology-2019-Learning-from-Biohydrological-Journey-of-Evapotranspiration-Departing-from-soil-reservoir-transferring-to-the-plant-roots-and-leaf-stomata-and-arriving-at-the-atmosphere-2 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/evapotranspiration-departing-from-soil-reservoir-transferring-to-the-plant-roots-and-leaf-stomata-and-arriving-at-the-atmosphere/ )

Mohamed I. A. A., Shalby N., Bai C., Qin M., Agami R. A., Jie K., Wang B., Zhou G. (2020) – Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus l. Cultivars – Plants  9: 62 – doi: 10.3390/plants9010062 – PMID: 31906529 – PMCID: PMC7020420 – https://pubmed.ncbi.nlm.nih.gov/31906529/ – (On our blog : https://plantstomata.wordpress.com/2023/02/18/the-stomatal-aperture-is-the-most-highly-correlated-with-salinity-tolerance-in-rapeseed-cultivars/ )

Mohamed I. A. A., Shalby N., El-Badri A. M. A., Saleem M. H., Khan M. N., Nawaz M. A., Qin M., Agami R. A., Kuai J., Wang B., Zhou G.(2020) – Stomata and Xylem Vessels Traits Improved by Melatonin Application Contribute to Enhancing Salt Tolerance and Fatty Acid Composition of Brassica napus L. Plants – Agronomy 10(8): 1186 – https://doi.org/10.3390/agronomy10081186https://www.mdpi.com/2073-4395/10/8/1186 – (On our blog : https://plantstomata.wordpress.com/2023/02/18/stomatal-and-xylem-vessels-traits-are-associated-with-sodium-chloride-tolerance-yield-and-seed-fatty-acid-composition/ )

Mohamed-Yasseen Y., Davenport T. L., Splittstoesser W. E., Litz R. E. (1992) – Abnormal stomata in vitrified plants formed in vitro – Proceedings of the Florida State Horticultural Society 105: 210–212 –

Mohammadian M. A., Hill R. S., Watling J. (2008) – Stomatal plugs and their impact on fungal invasion in Agathis robusta – Australian Journal of Botany 57(5): 389-395 – https://doi.org/10.1071/BT08175https://www.publish.csiro.au/bt/bt08175 – (On our blog : https://plantstomata.wordpress.com/2021/04/02/stomatal-plugs-and-their-impact-on-fungal-invasion/ )

Mohammadian M. A., Watling J., Hill R. S. (2007) – Do waxy stomatal plugs impact leaf gas exchange in a rain forest gymnosperm Agathis robusta ? – Gen. Appl. Plant Physiology 33 (3-4): 203-220 – https://www.researchgate.net/publication/228753842_DO_WAXY_STOMATAL_PLUGS_IMPACT_LEAF_GAS_EXCHANGE_IN_A_RAIN_FOREST_GYMNOSPERM_AGATHIS_ROBUSTA – (On our blog : https://plantstomata.wordpress.com/2018/12/23/do-waxy-stomatal-plugs-impact-leaf-gas-exchange/ )

Mohammadian M. A., Watling J., Hill R. S. (2007) – The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae) – Acta Oecologica 31: 91-101 – https://doi.org/10.1016/j.actao.2006.10.005https://www.sciencedirect.com/science/article/pii/S1146609X06001226?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/05/08/wax-coverage-at-the-entrance-of-stomata-increased-resistance-to-gas-diffusion-and-decreased-stomatal-conductance/ )

Mohammdy S., Khazaei H., Raeisi F. (2006) – The study of stomatal characteristics in Iranian wheat wild accessions and land races – Wheat
Information Service electronic newsletter for wheat researchers – Available at: http://www.shigen.nig.ac.jp/ewis/index.jsp

Mohammed U., Caine R. S., Atkinson J. A., Harrison E. L., Wells D., Chater C. C., Gray J. E., Swarup R., Murchie E. H. (2019) – Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation – Scientific Reports 9, Article 5584 – https://doi.org/10.1038/s41598-019-41922-7 –https://www.nature.com/articles/s41598-019-41922-7.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/05/plants-overexpressing-osepf1-show-reduced-stomatal-density/ )

Mohl H. (1856) – Welche Ursachen bewirken die Erweiterung und Verengung der Spaltöffnungen – Bot. Ztg. 14: 697–704, 713–720 –

Moldau H. (1973) – Effects of various water regimes on stomatal and mesophyll conductances of bean leaves – Photosynthetica 7: 1-7 – https://www.researchgate.net/publication/284318098_Effects_of_various_water_regimes_on_stomatal_and_mesophyll_conductances_of_bean_leaves – (On our blog : https://plantstomata.wordpress.com/2020/06/10/effects-of-various-water-regimes-on-stomatal-conductance/ )

Moldau H., Sober J., Sober A. (1990) – Differential sensitivity of stomata and mesophyll to, sudden exposure of bean shoots to ozone – Photosynthetica 24: 446-458 – 

Moldau H., Vahisalu T., Kollist H. (2011) – Rapid stomatal closure triggered by a short ozone pulse is followed by re-opening to overshooting values – Plant Signal. Behav. 6: 311–313 – doi: 10.4161/psb.6.2.15044 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121993/ – (On our blog : https://plantstomata.wordpress.com/2018/11/06/rapid-stomatal-closure-triggered-by-a-short-ozone-pulse-is-followed-by-re-opening-to-overshooting-values/ )

Molenaar W. S., de Oliveira Couto E. G., Piepho H.-P., Melchinger A. E. (2019) – Early diagnosis of ploidy status in doubled haploid production of maize by stomata length and flow cytometry measurements – Plant Breeding 138(3): 266-276 – https://doi.org/10.1111/pbr.12694https://onlinelibrary.wiley.com/doi/abs/10.1111/pbr.12694 – (On our blog : https://plantstomata.wordpress.com/2023/05/31/identification-of-misclassified-crossing-seeds-is-possible-because-the-overlap-in-distributions-of-stomata-length-between-haploid-and-doubled-haploid-and-crosisng-plants-is-small-and-the-association-b/ )

Molisch H. (1912) – Das Offen- und Geschlossensein der Spaltöffnungen, veranschaulicht durch eine neue Methode (Infiltrationsmethode) – Zeitschr.. f. Bot. 4: 106-122 –

Monakhos S. G., Nguen M. L., Bezbozhnaya A. V., Monakhos G. F. (2014) – A relationship between ploidylevel and the number of chloroplasts in stomatal guard cellsin diploid and amphidiploid Brassica species – Sel’skokhozyaistvennaya Biologiya (Agricultural Biology) 5: 44-54 – doi: 10.15389/agrobiology.2014.5.44enghttp://www.agrobiology.ru/5-2014monakhos-eng.html – (On our blog : https://plantstomata.wordpress.com/2022/04/04/the-chloroplast-average-number-in-stomatal-guard-cells-was-very-similar-among-the-same-ploidy-genotypes-while-the-variation-of-chloroplast-number-in-diploid-and-tetraploid-was-significant/ )

Moncalean P., Fernández B., Rodríguez A. (2007)Actinidia deliciosa
leaf stomatal characteristics in relation to benzyladenine incubation periods in micropropagated expiants – New Zealand Journal of Crop and Horticultural Science 35(1): 159-169 – DOI: 10.1080/01140670709510180https://www.tandfonline.com/doi/pdf/10.1080/01140670709510180 – (On our blog : https://plantstomata.wordpress.com/2021/04/02/leaf-stomatal-characteristics-in-relation-to-benzyladenine-incubation/ )

Monda K., Araki H., Kuhara S.,Ishigaki G., Akashi R., Negi J., Kojima M., Sakakibara H., Takahashi S., Hashimoto-Sugimoto M., Goto N., Iba K. (2016) – Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture – Plant Physiol. Mar 170(3): 1435-1444 – https://doi.org/10.1104/pp.15.01450 – http://www.plantphysiol.org/content/170/3/1435 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/enhanced-stomatal-conductance-by-a-spontaneous-tetraploid/

Monda K., Mabuchi A., Takahashi S., Negi J., Tohmori R., Terashima I., Yamori W., Iba K. (2020) – Increased Cuticle Permeability Caused by a New Allele of ACETYLCOA CARBOXYLASE1 Enhances CO2 Uptake – Plant Physiol. 184(4): 1917-1926 – doi: 10.1104/pp.20.00978 – Epub 2020 Sep 29 – PMID: 32994218 – PMCID: PMC7723107 – https://pubmed.ncbi.nlm.nih.gov/32994218/ – (On our blog : https://plantstomata.wordpress.com/2022/02/18/the-efficiency-of-co2-uptake-via-a-permeable-cuticle-is-greater-than-the-efficiency-via-stomata-and-confirm-that-land-plants-suffer-a-greater-loss-of-co2-uptake-efficiency-by-developing-a-cu/ )

Monda K., Negi J., Iio A., Kusumi K., Kojima M., Hashimoto M., Sakakibara H., Iba K. (2011) – Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype – Planta 234: 555–563 – DOI: 10.1007/s00425-011-1424-x  – https://www.ncbi.nlm.nih.gov/pubmed/21553123 – (On our blog : https://plantstomata.wordpress.com/2018/11/06/environmental-regulation-of-stomatal-response/

Monje O., Bugbee B. (2019) – Radiometric Method for Determining Canopy Stomatal Conductance in Controlled Environments – Agronomy 9(3): 114 –  https://doi.org/10.3390/agronomy9030114https://www.mdpi.com/2073-4395/9/3/114/htm – (On our blog : https://plantstomata.wordpress.com/2020/01/09/a-method-to-determine-the-response-of-canopy-stomatal-conductance-to-increased-co2-concentration-and-to-determine-the-sensitivity-of-canopy-transpiration-to-changes-in-canopy-stomatal-conductance/ )

Montano J., Melotto M. (2017) – Stomatal Bioassay to Characterize Bacterial-Stimulated PTI at the Pre-Invasion Phase of Infection. In: Shan L., He P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, 1578. Humana Press, New York, NY. – https://doi.org/10.1007/978-1-4939-6859-6_19https://link.springer.com/protocol/10.1007/978-1-4939-6859-6_19 – (On our blog : https://plantstomata.wordpress.com/2021/01/03/methods-in-molecular-biology-book-stomatal-bioassay/ )

Montano J., Porwollik S., McClelland M., Melotto M. (2016) – Determining the genetic basis for stomatal aperture modulation by Salmonella enterica serovar Typhimurium strain 14028 – Phytopathology 106(12): 149-149 –

Monteith J. L. (1995) – A reinterpretation of stomatal responses to humidity – Plant, Cell & Environment 18: 357–364 – DOI: 10.1111/j.1365-3040.1995.tb00371.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00371.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/01/stomatal-responses-to-humidity-3/ )

Monteith J. L. (1995) – Accommodation between transpiring vegetation and the convective boundary-layer – J. Hydrol. 166: 251-263 –

Monteith J. L., Szeicz G., Waggoner P. E. (1965) – The Measurement and Control of Stomatal Resistance in the Field – Journal of Applied Ecology 2(2) : 345-355 – DOI: 10.2307/2401484 – https://www.jstor.org/stable/2401484?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/29/measurement-and-control-of-stomatal-resistance-in-the-field/ )

Montillet J. L., Hirt H. (2013) – New checkpoints in stomatal defense – Trends Plant Sci. 18: 295–297 – doi: 10.1016/j.tplants.2013.03.007 – https://www.sciencedirect.com/science/article/pii/S1360138513000605 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/the-role-of-oxylipins-sa-and-aba-in-stomatal-immunity-in-response-to-pseudomonas-syringae/

Montillet J. L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A. V.,Douki T.,Bigeard J.,Laurière C.,Chevalier A., Castresana C.,Hirt H. (2013) – An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. – PLoS Biol. 11:e1001513 – doi: 10.1371/journal.pbio.1001513 – http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001513 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/lox1-a-gene-that-encodes-lipoxygenase-lox-in-guard-cells-plays-a-major-role-in-stomatal-defense/ )

Montillet J.-L., Rondet D., Brugière S., Henri P., Rumeau D., Reichheld J.-P., Couté J., Leonhardt N., Rey P. (2021) – Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning – Plant, Cell & Environment – https://doi.org/10.1111/pce.14013https://onlinelibrary.wiley.com/doi/10.1111/pce.14013 – (On our blog : https://plantstomata.wordpress.com/2022/03/31/the-contribution-of-thiol-redox-switches-within-the-signalling-network-regulating-stomatal-guard-cell-movements-and-stomatal-functioning/ )

Montoro A., López-Urrea R., Fereres E. (2016) – Role of stomata density in the water use of grapevines – Acta Hort. 1115: 41–47 – DOI:  10.17660/ActaHortic.2016.1115.7https://www.actahort.org/books/1115/1115_7.htm – (On our blog : https://plantstomata.wordpress.com/2019/12/03/stomatal-density-is-related-to-transpiration-in-various-ways/ )

Montoro A., Lopez-Urrea R., Sanchez J. M. (2016) – Meteorological parameters effect on diurnal and nocturnal transpiration and stomatal conductance grapevine – XI International Terroir Congress, July 2016, McMinnville, Oregon (USA) – https://www.infowine.com/en/technical_articles/meteorological_parameters_effect_on_diurnal_and_nocturnal_transpiration_and_stomatal_conductance_grapevine_sc_16978.htm – (On our blog : https://plantstomata.wordpress.com/2019/03/28/evapotranspiration-and-stomatal-conductance-are-affected-by-the-different-meteorological-parameters/ )

Monzi M. (1938) – Beeinflussung der Spaltoffnungsweite durch Regenfall – Jap. Journ. Bot. 9: 131-144 –

Monzi M. (1939) – Die Mitwirkung der Stomata-Nebenzellen auf die Spaltoffnungsbewegung – Jap. J. Bot. 9: 373-394 –

Moody W., Zeiger E. (1978) – Electro-physiological properties of onion guard cells – Planta 139: 159-165 – https://doi.org/10.1007/BF00387142 – https://link.springer.com/article/10.1007%2FBF00387142 – (On our blog : https://plantstomata.wordpress.com/2021/08/08/a-mechanism-driving-the-ion-fluxes-associated-with-stomatal-function/ )

Moon H. K., Park J. H., Park C. W. (2011) – Trichome morphology of Fallopia sect. Reynoutria (Polygonaceae) in Korea – 한국산 닭의덩굴속 호장근절 (마디풀과) 식물의 털의 형태와 분류 – 문혜경 , 박진희 , 박종욱 – Korean J. Pl. Taxon 41(1): 51-57 – https://doi.org/10.11110/kjpt.2011.41.1.051https://www.e-kjpt.org/journal/view.php?doi=10.11110/kjpt.2011.41.1.051 – (On our blog : https://plantstomata.wordpress.com/2022/06/18/stomatal-size-and-ploidy-in-fallopia-polygonaceae/ )

Mooney H. A., Chu C. (1983) – Stomatal responses to humidity of coastal and interior populations of a California shrub – Oecologia 57: 148-150 – DOI: 10.1007/BF00379572https://www.researchgate.net/publication/226080287_Stomatal_responses_to_humidity_of_coastal_and_interior_populations_of_a_Californian_shrub – (On our blog : https://plantstomata.wordpress.com/2019/05/08/stomatal-responses-to-humidity-7/ )

Mooney H. A., Field C., Vazquez-Yanes C., Chu C. (1983) – Environmental controls on stomatal conductance in a shrub of the humid tropics – Proceedings of the National Academy of Sciences USA 80: 1295–1297

Morais H., Medri M. E., Marur C. J., Caramori P. H., de Arruda Ribeiro A. M., Gomes J. C., (2004) – Modifications on leaf anatomy of Coffea arabica caused by shade of pigeonpea (Cajanus cajan) – Agriculture, Agribusiness and Biotechnology – Braz. arch. biol. technol. 47(6) –https://doi.org/10.1590/S1516-89132004000600005https://www.scielo.br/j/babt/a/QbbPb9X8DGDjDmJFQTLKkPn/?lang=en – (On our blog : https://plantstomata.wordpress.com/2021/12/17/97826/ )

Morales L. O., Shapiguzov A., Safronov O., Leppälä J., Vaahtera L., Yarmolinsky D., Kollist H., Brosche M. (2021) – Ozone responses in Arabidopsis: beyond stomatal conductance – Plant Physiology 186(1): 180-192 – https://doi.org/10.1093/plphys/kiab097https://researchportal.helsinki.fi/en/publications/ozone-responses-in-arabidopsis-beyond-stomatal-conductance – (On our blog : https://plantstomata.wordpress.com/2023/05/12/stomata-independent-mechanisms-for-the-development-of-o3-damage/ )

Morales-Navarro S., Pérez-Díaz R., Ortega A., de Marcos A., Mena M., Fenoll C., Mena M., Fenoll C., González-Villanueva E., Ruiz-Lara S. (2018) – Overexpression of a SDD1-Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance in Arabidopsis and Cultivated Tomato – Frontiers in Plant Science 9: 940 – http://doi.org/10.3389/fpls.2018.00940 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039981/ – (On our blog : https://plantstomata.wordpress.com/2018/08/11/schsdd1-like-functions-in-a-similar-manner-to-atsdd1-in-the-stomatal-development-pathway/ )

Morecroft M. D., Roberts J. M. (1999) – Photosynthesis and stomatal conductance of mature canopy oak (Quercus robur) and sycamore (Acer pseudoplatanus) trees throughout the growing season – Functional Ecology 13: 332–342 – https://doi.org/10.1046/j.1365-2435.1999.00327.x – https://besjournals.onlinelibrary.wiley.com/doi/10.1046/j.1365-2435.1999.00327.x – (On our blog : https://plantstomata.wordpress.com/2018/11/06/photosynthesis-and-stomatal-conductance-of-mature-canopies-throughout-the-growing-season/ )

Mori I., Murata Y. (2011) – ABA signaling in stomatal guard cells: lessons from Commelina and Vicia – J. Plant Res. 124: 477–487 – doi: 10.1007/s10265-011- 0435-9 – http://link.springer.com/article/10.1007%2Fs10265-011-0435-9 – (On our blog : https://plantstomata.wordpress.com/2016/11/11/aba-signaling-in-stomata-2/ )

Mori I. C., Murata Y., Yang Y. Z., Munemasa S., Wang Y. F., Andreoli S., Tiriac H., Alonso J. M., Harper J. F., Ecker J. R., Kwak J. M., Schroeder J. I.  (2006) – CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2 + -permeable channels and stomatal closure – PLoS Biol. 4:e327 – doi: 10.1371/journal.pbio.0040327 – pmid:17032064 – https://www.ncbi.nlm.nih.gov/pubmed/17032064 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/cpk6-and-cpk3-cdpks-aba-and-stomatal-closure/ )

Mori I. C., Muto S. (1997) – Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts – Plant Physiol. 113: 833–839 –https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12223647 – (On our blog : https://plantstomata.wordpress.com/2016/11/24/aba-and-a-48-kilodalton-protein-kinase-in-stomatal-protoplasts/ )

Mori I. C., Pinontoan R., Kawano T., Muto S. (2001) – Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba – Plant Cell Physiol. 42: 1383–1388 –  https://www.ncbi.nlm.nih.gov/pubmed/11773531 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/involvement-of-reactive-oxygen-species-in-signal-transduction-in-sa-induced-stomatal-closure/ )

Mori I. C., Uozumi N., Muto S. (2000) – Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cell – Plant and Cell Physiology 41: 850-856 –http://pcp.oxfordjournals.org/content/41/7/850.abstract?ijkey=e21d47298d062f959117cbcb070cfebf17d0c143&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/abr-kinase-phosphorylates-the-inward-rectifying-kchannel-in-response-to-treatment-of-stomatal-guard-cells-with-aba/ )

Moriana A. F., Villalobos J., Fereres E. (2002) – Stomatal and photosynthethic responses of olive (Olive europaea L.) leaves to water deficits – Plant, Cell Environ. 25: 395-405 – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.0016-8025.2001.00822.x – (On our blog : https://plantstomata.wordpress.com/2018/06/07/stomatal-and-photosynthethic-responses-to-water/ )

Morison J. I. L. (1985)  Sensitivity of stomata and water use efficiency to high CO2  – Plant, Cell and Environment 8: 467–474 –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1985.tb01682.x/full – (https://plantstomata.wordpress.com/2016/11/27/co2-stomata-and-water-use-efficiency/

Morison J. I. L. (1987) – Intercellular CO2 concentration and stomatal response to CO2 – In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (Eds.). Stomata1 Function. Stanford University Press, California, 229-251 – ISBN : 0804713472https://www.cabdirect.org/cabdirect/abstract/19880712523 – (On our blog : https://plantstomata.wordpress.com/2021/05/23/co2-is-not-the-major-signal-for-stomata-but-one-of-a-large-and-varying-set-of-signals/ )

Morison J. I. L. (1998) – Stomatal response to increased CO2concentration – Journal of Experimental Botany 49: 443–452  – http://jxb.oxfordjournals.org/content/49/Special_Issue/443 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-sensitivity-of-plants-grown-in-different-co2-concentrations/ )

Morison J. I. L. (2001) – Increasing atmospheric CO2 and stomata – New Phytologist 149(2): 154-156 – https://doi.org/10.1046/j.1469-8137.2001.00042.xhttps://nph.onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00042.x – (On our blog : https://plantstomata.wordpress.com/2022/07/31/increased-atmospheric-co2-concentration-will-cause-reduced-stomatal-conductance-gs/ )

Morison J. I. L. (2003) –  Plant water use, stomatal control. In BA Stewart, TA Howell, eds, Encyclopedia of Water Science – Marcel Dekker, New York, pp 680–685

Morison J. I. L. (2008) –  Increasing atmospheric CO2 and stomata – New Phytologist 149(2): 154-156 – https://doi.org/10.1046/j.1469-8137.2001.00042.xhttps://nph.onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00042.x – (On our blog : https://plantstomata.wordpress.com/2023/08/08/increased-atmospheric-co2-concentration-will-cause-reduced-stomatal-conductance/ )

Morison J. I. L., Gifford R. M. (1983)  Stomatal sensitivity to carbon dioxide and humidity. A comparison of two C3 and C4 grass species – Plant Physiol. 71:789–796 – doi: http://dx.doi.org/10.1104/pp.71.4.789 – http://www.plantphysiol.org/content/71/4/789.abstract?ijkey=cc55c7551ba49662b4448cd371092f668a51927d&keytype2=tf_ipsecsha – https://plantstomata.wordpress.com/2016/11/11/stomata-co2-and-humidity/ )

Morison J. I. L., Jarvis P. G. (1981) – The control of transpiration and photosynthesis by the stomata – In P. G. Jarvis & ‘I’. A. Mansfield (Eds), Stomatal Physiology, Cambridge: Cambridge University Press –

Morison J. I. L., Jarvis P. G. (1983) – Direct and indirect effects of light on stomata. I. In Scots pine and Sitka spruce – Plant, Cell and Environment 6(2): 95-101- https://doi.org/10.1111/j.1365-3040.1983.tb01881.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1983.tb01881.x – (On our blog : https://plantstomata.wordpress.com/2023/08/23/direct-and-indirect-effects-of-light-on-stomata-of-scots-pine-and-sitka-spruce/ )

Morison J. I. L., Jarvis P. G. (1983) – Direct and indirect effects of light on stomata. II. In Commelina communis L. – Plant, Cell and Environment 6: 103-109 – https://doi.org/10.1111/j.1365-3040.1983.tb01882.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1983.tb01882.x – (On our blog : https://plantstomata.wordpress.com/2019/05/08/78260/ )

Morison J. I. L.,, Lawson T. (2007) – Does lateral gas diffusion in leaves matter? – Plant Cell Environ. 30(9):1072-1085 – doi: 10.1111/j.1365-3040.2007.01685.x – PMID: 17661748 – https://pubmed.ncbi.nlm.nih.gov/17661748/ – (On our blog : https://plantstomata.wordpress.com/2023/07/05/the-need-to-consider-three-dimensional-diffusion-at-the-small-scale-of-a-few-stomata-is-emphasized-because-stomata-are-discrete/ )

Morison R. K., Grant, M. C. (1989) – EXPERIMENTAL STUDIES OF PONDEROSA PINE. III. DIFFERENCES IN PHOTOSYNTHESIS, STOMATAL CONDUCTANCE, AND WATER-USE EFFICIENCY BETWEEN TWO GENETIC LINES – American Journal of Botany 76(7à: 1041-1047 – https://doi.org/10.1002/j.1537-2197.1989.tb15085.xhttps://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1989.tb15085.x – (On our blog : https://plantstomata.wordpress.com/2022/07/05/differences-in-stomatal-conductance-and-water-use-efficiency-between-two-genetic-lines/ )

Moriwaki K., Yanagisawa S., Iba K, Negi J. (2022) – Two independent cis-acting elements are required for the guard cell-specific expression of SCAP1, which is essential for late stomatal development – The Plant Journal 110(2): 440-451 – https://doi.org/10.1111/tpj.15679https://onlinelibrary.wiley.com/doi/10.1111/tpj.15679 – (On our blog : https://plantstomata.wordpress.com/2023/05/31/a-novel-transcriptional-regulatory-mechanism-that-synchronously-promotes-the-expression-of-multiple-genes-required-for-the-stomatal-maturation-and-function/ )

Morris R., Woolfenden H. (2018) – How do plants breathe ? – JIC 17 January 2018 – https://www.jic.ac.uk/news-and-events/blog-copy/2018/01/how-do-plants-breathe/ – (On our blog : https://plantstomata.wordpress.com/2018/02/15/66561/ )

Morris R. J. (xxxx) – Shape Shifting Stomata: The Role of Geometry in Plant Cell Function – UKRI – https://gtr.ukri.org/projects?ref=BB%2FT005165%2F1 – (On our blog : https://plantstomata.wordpress.com/2022/05/30/the-role-of-geometry-in-plant-cell-function/ )

Morsucci R., Curvetto N., Delmastro S.(1991)  Involvement of cytokinins and adenosine 3′,5′-cyclic monophosphate in stomatal movement in Vicia faba – Plant Physiol. Biochem. 29: 537-554 –  https://eurekamag.com/research/007/487/007487174.php – (On our blog : https://plantstomata.wordpress.com/2016/11/25/cytokinins-and-adenosine-3%E2%80%B25%E2%80%B2-cyclic-monophosphate-in-stomatal-movement/ )

Morsucci R., Curvetto N., Delmastro S.(1992)  High concentration of adenosine or kinetin riboside induces stomatal closure in Vicia faba, probably through inhibition of adenylate cyclase – Plant Physiol. Biochem. 30: 383-388 – https://eurekamag.com/research/007/398/007398046.php – https://plantstomata.wordpress.com/2016/11/11/adenosine-or-kinetin-riboside-induces-stomatal-closure/ )

Mortlock C. (1951) – The structure and development of the hydathodes of Ranunculus fluitans Lam. – New Phytol. 51(2): 129-138 –

Moscow D., Lindow S. E. (1989) Infection of Milk Thistle (Silybum marianum) Leaves by Septoria silybi – The American Phytopathological Society – DOI: 10.1094/Phyto-79-1085https://www.apsnet.org/publications/phytopathology/backissues/Documents/1989Abstracts/Phyto79_1085.htm – (On our blog : https://plantstomata.wordpress.com/2021/05/02/stomata-and-infection-of-milk-thistle/ )

Moseley R. C., Motta F.Tuskan G. A., Haase S., Yang X. (2019) – Inference of Gene Regulatory Network Uncovers the Linkage Between Circadian Clock and Crassulacean Acid Metabolism in Kalanchoë fedtschenkoi – bioRxiv preprint – https://doi.org/10.1101/745893https://www.biorxiv.org/content/10.1101/745893v1.full.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/20/crassulacean-acid-metabolism-cam-photosynthetic-plants-represent-an-interesting-case-of-circadian-regulation-of-gene-expression-as-co2-fixation-and-stomatal-movement-in-cam-plants-display-strong-cir/ )

Moseley R. C., Tuskan G. A., Yang X. (2019) – Comparative Genomics Analysis Provides New Insight Into Molecular Basis of Stomatal Movement in Kalanchoë fedtschenkoi – Front. Plant Sci. – https://doi.org/10.3389/fpls.2019.00292https://www.frontiersin.org/articles/10.3389/fpls.2019.00292/full – (On our blog : https://plantstomata.wordpress.com/2019/08/16/new-insights-into-the-molecular-regulation-of-stomatal-movement-in-cam-plants/ )

Moss D. N. (1963) – The effect of environment on gas exchange of leaves. In
Stomata and water relations in plants – Conn. Agr. Exp. Sta. (New Haven) Bull. 664: 86-101 –

Mossmatters (2018) – Recording stomata – http://www.mossmatters.com/herbarium/RecordingStomata.html – (On our blog : https://plantstomata.wordpress.com/2021/10/08/recording-stomata/ )

Mott K. A. (1988) – Do stomata respond to CO2 concentrations other than intercellular? – Plant Physiol. 86: 200–203 –http://www.plantphysiol.org/content/86/1/200.abstract?ijkey=dc59583300881ff958ec03d17e92af3a61841e1d&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/stomata-intercellular-co2-concentration-and-co2-concentration-at-the-surface-of-the-leaf-and-in-the-stomatal-pore/ )

Mott K. A. (1990) – Sensing of atmospheric CO2 by plants – Plant, Cell & Environment 13(7): 731-737 – https://doi.org/10.1111/j.1365-3040.1990.tb01087.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01087.x – (On our blog : https://plantstomata.wordpress.com/2023/11/26/short-term-and-long-term-effects-of-co2-on-photosynthesis-and-stomatal-conductance-are-discussed-as-sensory-mechanisms-for-responses-of-plants-to-atmospheric-co2/ )

Mott K. A. (1995) – Effects of patchy stomatal closure on gas exchange measurements following abscisic acid treatment – Plant, Cell and Environment 18: 1291–1300 – https://doi.org/10.1111/j.1365-3040.1995.tb00188.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1995.tb00188.x – (On our blog : https://plantstomata.wordpress.com/2018/12/20/stomatal-patches-can-be-temporary-and-that-patchiness-may-not-be-reflected-in-gas-exchange-data-if-the-range-of-stomatal-conductances-is-not-large/ )

Mott K. A. (2007) – Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves – Plant, Cell and Environment 30: 1444-1449 – DOI: 10.1111/j.1365-3040.2007.01720.x – https://www.researchgate.net/publication/5948120_Leaf_hydraulic_conductivity_and_stomatal_responses_to_humidity_in_amphistomatous_leaves – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-responses-to-humidity-in-amphistomatous-leaves/ )

Mott K. A. (2009) – Opinion: stomatal responses to light and CO2 depend on the mesophyll – Plant, Cell & Environment 32: 1479–1486 – https://doi.org/10.1111/j.1365-3040.2009.02022.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.02022.x – (On our blog : https://plantstomata.wordpress.com/2018/10/27/most-of-the-stomatal-response-to-red-light-and-co2-in-leaves-is-caused-by-an-unknown-signal-that-originates-in-the-mesophyll/ )

Mott K. A. (2012) – Stomatal responses to humidity and temperature are consistent with a vapor-phase mechanism – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-responses-to-humidity-and-temperature/ )

Mott K. A., Berg D., Hunt S., Peak D. (2014) – Is the signal from the mesophyll to the guard cells a vapour-phase ion? – Plant, Cell & Environment 37: 1184–1191 – https://doi.org/10.1111/pce.12226 – https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12226 – (On our blog : https://plantstomata.wordpress.com/2018/10/27/stomatal-responses-to-co2-and-light-are-caused-by-possibly-hydronium-ions/ )

Mott K. A., Buckley T. N. (1998) – Stomatal heterogeneity – J. Exp. Bot. 49: 407-418 – https://doi.org/10.1093/jxb/49.Special_Issue.407 –https://academic.oup.com/jxb/article/49/Special_Issue/407/508000 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/hydraulic-interactions-among-stomata-are-proposed-as-a-mechanism-that-may-explain-many-aspects-of-patchiness/ )

Mott K. A., Buckley T. N. (2000) – Patchy stomatal conductance: emergent collective behaviour of stomata – Trends Plant Sci 5: 258–262 – PMID: 10838617 – https://doi.org/10.1016/S1360-1385(00)01648-4 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Patchy-stomatal-conductance-emergent-collective-behaviour-of-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/06/patchy-stomatal-conductance-a-hitherto-unknown-type-of-emergent-collective-behaviour/ )

Mott K. A., Cardon Z. G., Berry J. A. (1993) – Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity – Plant, Cell & Environment 16: 25-34 – https://doi.org/10.1111/j.1365-3040.1993.tb00841.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1993.tb00841.x – (On our blog : https://plantstomata.wordpress.com/2018/11/07/patchy-stomatal-closure-can-be-a-factor-in-the-steady%e2%80%90state-responses-of-stomata-to-humidity/ )

Mott K.A., Denne F., Powell J. (1997) – Interactions among stomata in response to perturbations in humidity – Plant Cell Environ. 20(9): 1098–1107 – DOI: 10.1046/j.1365-3040.1997.d01-138.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-138.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-responding-to-perturbations-in-humidity/ )

Mott K. A., Franks P. J. (2001) – The role of epidermal turgor in stomatal interactions following a local perturbation in humidity – Plant Cell Environ 24: 657–662 – https://doi.org/10.1046/j.0016-8025.2001.00705.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.0016-8025.2001.00705.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/neighbouring-stomata-can-interact-through-the-influence-of-transpiration-on-epidermal-turgor-2/ )

Mott K. A., Gibson A. C., O’Leary J. W. (1982) – The adaptive significance of amphistomatic leaves – Plant, Cell & Environment 5: 455–460 – DOI: 10.1111/1365-3040.ep11611750 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11611750/abstract;jsessionid=81D3541DAB67DFFA4699036AD4F759B6.f01t04 – (https://plantstomata.wordpress.com/2016/12/01/the-effect-of-developing-stomata-on-the-upper-surface-as-well-as-the-lower/ )

Mott K. A., Michaelson O. (1991) – Amphistomy as an Adaptation to High Light Intensity in Ambrosia cordifolia (Compositae) – American Journal of Botany 78(1): 76-79 – DOI: 10.2307/2445230 – https://www.jstor.org/stable/2445230?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/09/high-light-intensity-amphistomy-and-maximum-stomatal-conductance/ )

Mott K. A., O’Leary J. W. (1984) – Stomatal Behavior and CO2 Exchange Characteristics in Amphistomatous Leaves – Plant Physiology https://doi.org/10.1104/pp.74.1.47http://www.plantphysiol.org/content/74/1/47 – (On our blog : https://plantstomata.wordpress.com/2018/12/21/differences-in-conductance-between-upper-and-lower-stomates-are-not-adaptations-to-differences-in-co2-exchange-characteristics/ )

Mott K. A., Parkhurst D. F. (1991) – Stomatal responses to humidity in air and helox – Plant, Cell & Environment 14(5): 509–515 – DOI: 10.1111/j.1365-3040.1991.tb01521.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01521.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/air-humidity-helox-and-stomata/ )

Mott K. A., Peak D. (2007) – Stomatal patchiness and task-performing networks – Annals of Botany 99: 219-226 – doi:  10.1093/aob/mcl234https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802990/ – https://plantstomata.wordpress.com/2016/11/06/stomatal-patchiness-and-networks/ )

Mott K. A., Peak D. (2010) – Stomatal responses to humidity and temperature in darkness – Plant Cell Environ. 33: 1084-1090 – doi: 10.1111/j.1365-3040.2010.02129.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.2010.02129.x – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-responses-to-humidity-and-temperature-in-darkness/

Mott K. A., Peak D. (2011) – Alternative perspective on the control of transpiration by radiation – PNAS 108(49): 19820-19823 –  https://doi.org/10.1073/pnas.1113878108https://www.pnas.org/content/early/2011/11/16/1113878108.abstract – (On our blog : https://plantstomata.wordpress.com/2020/12/08/apparent-stomatal-responses-to-ir-radiation-are-explainable-as-experimental-artifacts/ )

Mott K. A., Peak D. (2013) – Testing a vapour-phase model of stomatal responses to humidity – Plant, Cell & Environment 36, 936–944. – DOI: 10.1111/pce.12026 – Wiley Online Library | CAS – http://onlinelibrary.wiley.com/doi/10.1111/pce.12026/full – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomatal-responses-to-humidity-4/ )

Mott K. A., Peak D. (2018) – Effects of the Mesophyll on Stomatal Responses in Amphistomatous Leaves – Plant, Cell & Ennvironment – https://doi.org/10.1111/pce.13411 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13411?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/07/mesophyll-and-stomatal-responses-in-amphistomatous-leaves/ )

Mott K. A., Shope J. C., Buckley T. N. (1999) – Effects of humidity on light-induced stomatal opening: evidence for hydraulic coupling among stomata – J Exp Bot 50: 1207–1213 – DOI: 10.1093/jexbot/50.336.1207 – https://academic.oup.com/jxb/article/50/336/1207/515760 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/effects-of-humidity-on-light-induced-stomatal-opening/ )

Mott K. A., Sibbernsen E. D., Shope J. C. (2008)  The role of the mesophyll in stomatal responses to light and CO2  – Plant, Cell & Environment 31: 1299–1306 – DOI: 10.1111/j.1365-3040.2008.01845.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01845.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-co2-and-light-occurs-in-response-to-a-signal-generated-by-the-mesophyll/ )

Mott K. A., Sibbernsen E. D., Shope J. C. (2016)  The measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux method (EFM) – Journal of Experimental Botany 67(5): 1339-1350 –

Mott K. A., Takemoto J. Y. (1989) – Syringomycin, a bacterial phytotoxin, closes stomata – Plant Physiol. 90: 1435–1439 – https://doi.org/10.1104/pp.90.4.1435 – http://www.plantphysiol.org/content/90/4/1435 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/syringomycin-and-aba-activate-the-same-k-export-system-in-stomata/ )

Motzer T., Munz N., Küppers M., Schmitt D., Anhuf D. (2005) – Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes – Tree Physiology 25: 1283–1293 DOI: 10.1093/treephys/25.10.1283https://www.ncbi.nlm.nih.gov/pubmed/16076777 – (On our blog : https://plantstomata.wordpress.com/2020/05/15/stomatal-conductance-transpiration-and-sap-flow-of-tropical-montane-rain-forest-trees/ )

Mouravieff P. I. (1956) – Action du CO2 et de la lumière sur l’appareil stomatique séparé du mesophylle – 2. Expériences avec les stomates maintenus sur es milieux complexes – Le Botaniste 40: 195– 208 –

Moutinho-Pereira J. M., Gonçalves B., Bacelar E., Cunha J. B., Coutinho J., Correia C. M. (2009) – Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes – Vitis 48: 159-165 – https://doi.org/10.5073/vitis.2009.48.159-165https://ojs.openagrar.de/index.php/VITIS/article/view/4162 – (On our blog : https://plantstomata.wordpress.com/2021/10/14/stomatal-conductance-and-co2/ )

Movahedi M., Zoulias N., Casson S. A., Sun P., Liang Y.-K., Hetherington A. M., Gray J. E., Chater C. C. (2021) – Stomatal responses to carbon dioxide and light require abscisic acid catabolism in Arabidopsis – Focus 112020003620200036 – http://doi.org/10.1098/rsfs.2020.0036https://royalsocietypublishing.org/doi/10.1098/rsfs.2020.0036 – (On our blog : https://plantstomata.wordpress.com/2021/09/12/the-importance-of-aba-catabolism-in-the-stomatal-responses-to-co2-and-light/ )

Mrinalini T., Latha Y. K., Raghavendra A. S., Das V. S. R. (1982)   Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis – New Phytology 91: 413–418 – doi:10.1111/j.1469-8137.1982.tb03320.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1982.tb03320.x/full – (https://plantstomata.wordpress.com/2016/11/27/bicarbonate-fusicoccin-and-stomatal-opening/ )

Mu D.-w., Feng N.-j., Zheng D.-f., Zhou H., Liu L., Chen G.-j., Mu B. M.  (2022) – Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings – Sci Rep 12: 20439 – https://doi.org/10.1038/s41598-022-24747-9https://www.nature.com/articles/s41598-022-24747-9#citeas – (On our blog : https://plantstomata.wordpress.com/2023/04/25/salt-stress-increases-the-contents-of-ros-mda-na-and-aba-reduces-the-the-spad-value-net-photosynthetic-rate-pn-and-stomatal-conductance-gs/ )

Muchow R. C. (1985) – Stomatal behavior in grain legumes grown under different soil water regimes in a semi-arid tropical environment – Field Crops Research 11: 291–307 – https://doi.org/10.1016/0378-4290(85)90110-8https://www.sciencedirect.com/science/article/pii/0378429085901108?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/06/08/stomatal-behavior-in-grain-legumes-grown-under-different-soil-water-regimes/ )

Muchow R. C., Ludlow M. M., Fisher M. J., Myers R. J. K.  (1980) – Stomatal behaviour of kenaf and sorghum in a semiarid tropical environment. I. During the night – Australian Journal of Plant Physiology 7: 609–619 – https://doi.org/10.1071/PP9800609 – http://www.publish.csiro.au/FP/PP9800609 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/the-importance-of-night-time-stomatal-opening-on-the-water-relations-of-a-crop/ )

Muchow R. C., Sinclair T. R. (1989) – Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench – Plant, Cell and Environment 12: 425–431 – DOI: 10.1111/j.1365-3040.1989.tb01958.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01958.x/abstract – (https://plantstomata.wordpress.com/2016/11/27/stomatal-density-and-stomatal-size-among-genotypes-of-sorghum/ )

Muchow R. C., Sinclair T. R., Bennett J. M., Hammond L. C. (1986) – Response of Leaf Growth, Leaf Nitrogen, and Stomatal Conductance to Water Deficits during Vegetative Growth of Field‐Grown Soybean – Crop Science 26(6): – https://doi.org/10.2135/cropsci1986.0011183X002600060024xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1986.0011183X002600060024x – (On our blog : https://plantstomata.wordpress.com/2020/06/20/response-of-stomatal-conductance-to-water-deficits/ )

Mudakir I., Pujiastuti, Asyiah I. N., Murdiyah S., Novenda I. L. (2021) – Comparison of leaves morphology and stomatal characteristics of frangipani (Plumeria acuminata) in polluted and not polluted place – Jurnal Biologi dan Pembelajarannya XIX(1): 15-19 – file:///C:/Users/wille/Downloads/20992-289-54704-1-10-20210429.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/19/stomatal-characteristics-of-frangipani/ )

Muenscher W. L. C. (1915) – A study of the relation of transpiration to size and number of stomata – American Journal of Botany 2(9): 487-504 – https://doi.org/10.1002/j.1537-2197.1915.tb09425.xhttps://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1915.tb09425.x – (On our blog : https://plantstomata.wordpress.com/2022/07/07/the-relation-of-transpiration-to-the-size-and-number-of-stomata/ )

Muffoletto M.-A. (2011) – Leafy social network: Scientists study how stomata communicate – Utah State University – https://phys.org/news/2011-11-leafy-social-network-scientists-stomata.html – (On our blog : https://plantstomata.wordpress.com/2020/12/08/scientists-study-how-stomata-communicate/ )

Muffoletto M.-A. (2019) – Leafy Social Network? USU Undergrad Researcher Explores How Plants ‘Think’ – Utah State University – Utah State Today – https://www.usu.edu/today/?id=58601 – (On our blog : https://plantstomata.wordpress.com/2019/09/20/how-plants-think/ )

Muir C. D. (2015) – Making pore choices: repeated regime shifts in stomatal ratio – Proc. Royal Soc. B 282(1813) :   – DOI: 10.1098/rspb.2015.1498 – http://rspb.royalsocietypublishing.org/content/royprsb/282/1813/20151498.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-ratio-hypostomy-and-amphistomy/ )

Muir C. D. (2018) – Light and growth form interact to shape stomatal ratio among British angiosperms – New Phytologist 218: 242–252 – https://doi.org/10.1111/nph.14956http://onlinelibrary.wiley.com/doi/10.1111/nph.14956/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/31/light-and-growth-form-stomatal-ratio-hypostomy-and-amphistomy/)

Muir C. D. (2018) – Light and growth form interact to shape stomatal ratio among British angiosperms – New Phytol. 218 (1): 242–252 – https://doi.org/10.1111/nph.14956 – https://www.ncbi.nlm.nih.gov/pubmed/29288622 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/light-and-growth-form-interact-to-shape-stomatal-ratio/ )

Muir C. D. (2019) – Is Amphistomy an Adaptation to High Light? Optimality Models of Stomatal Traits along Light Gradients – Integrative and Comparative Biology 59(3): 571–584 – https://doi.org/10.1093/icb/icz085https://academic.oup.com/icb/article-abstract/59/3/571/5505428 – (On our blog : https://plantstomata.wordpress.com/2020/04/10/covariation-between-costs-and-benefits-may-explain-why-stomatal-and-other-traits-form-discrete-phenotypic-clusters/ )

Muir C. D. (2019) – A stomatal model of anatomical tradeoffs between photosynthesis and pathogen defense – https://doi.org/10.1101/871228https://www.biorxiv.org/content/10.1101/871228v1.full.pdf – (On our blog : https://plantstomata.wordpress.com/2020/10/21/a-spatially-explicit-model-of-pathogen-colonization-on-the-leaf-as-a-function-of-stomatal-size-and-density/ )

Muir C. D. (2020) – A Stomatal Model of Anatomical Tradeoffs Between Gas Exchange and Pathogen Colonization – Front. Plant Sci. – https://doi.org/10.3389/fpls.2020.518991https://www.frontiersin.org/articles/10.3389/fpls.2020.518991/full – (On our blog : https://plantstomata.wordpress.com/2021/12/20/the-first-mathematical-model-connecting-gas-exchange-and-pathogen-defense-via-stomatal-anatomy/ )

Muir C. D., Conesa M. A., Galmés J. (2015) – Independent evolution of ab- and adaxial stomatal density enables adaptation – bioRxiv 034355 – https://doi.org/10.1101/034355https://www.biorxiv.org/content/early/2015/12/15/034355 –https://www.biorxiv.org/content/biorxiv/early/2015/12/15/034355.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/independent-evolution-of-stomatal-function-on-each-leaf-surface/ )

Mukha D., Ostretsov B., Mukha D., Brodsky L. (2015) – Stomatal Movement and Stomatal Formation Mechanisms Utilize the Same
Regulatory Genes – Botanica Pacifica 4(2): 95–101 –
DOI: 10.17581/bp.2015.04207http://botsad.ru/media/aux/bp/BP_2015_4_2_mukha.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-movement-and-stomatal-formation-mechanisms/ )

Mukhtar N., Hameed M., Ashraf M., Ahmed R., (2013) – Modifications in stomatal structure and function in Cenchrus ciliaris L. and Cynodon dactylon (L.) pers. in response to cadmium stress – Pakistan Journal of Botany 45(2): 351-357 – https://www.pakbs.org/pjbot/PDFs/45(2)/01.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/the-effect-of-cadmium-on-modifications-in-stomatal-structure-and-function/ )

Müller H. M., Schäfer N., Bauer H., Geiger D., Lautner S., Fromm J., Riederer M., Bueno A., Nussbaumer T., Mayer K., Alquraishi S. A., Alfarhan A. H., Neher E., Al‐Rasheid K. A. S., Ache P., Hedrich R. (2017) – The desert plant Phoenix dactylifera closes stomata via nitrate‐regulated SLAC1 anion channel – New Phytol. 216(1): 150-162 – https://doi.org/10.1111/nph.14672https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.14672 – (On our blog : https://plantstomata.wordpress.com/2019/08/28/the-guard-cell-osmotic-motor-driving-stomatal-closure-uses-nitrate-as-the-signal-to-open-the-major-anion-channel-slac1/ )

Müller N. J. C. (1872) – Die Anatomie die Mechanik der Spaltöffnung – Jahrb. f. wiss. Bot. 8: 75-116 –

Müller‐Röber B., Ehrhardt T., Plesch G. (1998) – Molecular features of stomatal guard cells – J Exp Bot 49: 293-304 – SPECIAL ISSUE: STOMATAL BIOLOGY – https://www.jstor.org/stable/i23694997https://www.jstor.org/stable/23695963https://academic.oup.com/jxb/article/49/Special_Issue/293/507969 – (On our blog : https://plantstomata.wordpress.com/2023/08/06/molecular-aspects-of-stomatal-guard-cells/ )

Müller‐Röber B., Ellenberg J., Provart N., Willmitzer L., Busch H., Becker D., Dietrich P., Hoth S., Hedrich R. (1995) – Cloning and electrophysiological analysis of KST1, an inward rectifying K+channel expressed in potato guard cells – EMBO Journal 14: 2409-2416 – doi: 10.1002/j.1460-2075.1995.tb07238.x – https://www.ncbi.nlm.nih.gov/pubmed/7781596 – (On our blog : https://plantstomata.wordpress.com/2018/11/07/kst1-represents-a-major-k-uptake-channel-in-stomatal-guard-cells/ )

Müller-Röber B., Sonnewald U., Willmitzer L. (1993) – Expression cassette and plasmids for a guard cell specific expression and their use for the introduction of transgenic plant cells and plants – International Patent Application No. WO 93/18169. –https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1993018169 – (https://plantstomata.wordpress.com/2016/12/01/the-transcriptional-regulatory-starter-region-for-a-guard-cell-specific-gene-expression/ )

Mullinax J. B., Palevitz B. A. (1989) – Microtubule reorganization accompanying preprophase band formation in guard mother cells of Avena sativa – Protoplasma 149: 89–94 – https://doi.org/10.1007/BF01322981 – https://link.springer.com/article/10.1007/BF01322981#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/07/microtubule-reorganization-accompanying-preprophase-band-formation-in-stomatal-guard-mother-cells/ )

Mumm P., Imes D., Martinoia E., Al-Rasheid K. A. S., Geiger D.,  Marten I.,  Hedrich R. (2013) – C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1 – Molecular Plant 6(5): 1550-1563 – http://www.zora.uzh.ch/id/eprint/87851/ – (On our blog : https://plantstomata.wordpress.com/2018/01/19/c-terminus-mediated-voltage-gating-of-guard-cell-anion-channel-quac1-stomata/ )

Mumm P., Wolf T., Fromm J., Roelfsema M. R. G., Marten I. (2011) – Cell type-specific regulation of ion channels within the maize stomatal complex – Plant Cell Physiol 52: 1365–1375 – doi: 10.1093/pcp/pcr082 – Epub 2011 Jun 20 – https://pubmed.ncbi.nlm.nih.gov/21690176/ – (On our blog : https://plantstomata.wordpress.com/2021/03/07/stomatal-closure-was-found-to-be-accompanied-by-an-initial-hyperpolarization-and-cytosolic-acidification-of-subsidiary-cells/ )

Munemasa S., Hauser F., Park J., Waadt R., Brandt B., Schroeder J. I. (2015) – Mechanisms of abscisic acid-mediated control of stomatal aperture – Curr Opin Plant Biol. 28: 154–162 – doi:  10.1016/j.pbi.2015.10.010  – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679528/ – (On our blog : https://plantstomata.wordpress.com/2018/06/07/mechanisms-of-aba-mediated-control-of-stomatal-aperture/ )

Munemasa S., Hirao Y., Tanami K., Mimata Y., Nakamura Y., Murata Y. (2019) – Ethylene Inhibits Methyl Jasmonate-Induced Stomatal Closure by Modulating Guard Cell Slow-Type Anion Channel Activity via the OPEN STOMATA 1/SnRK2.6 Kinase-Independent Pathway in Arabidopsis – Plant Cell Physiol 60(10): 2263-2271 – doi: 10.1093/pcp/pcz121https://pubmed.ncbi.nlm.nih.gov/31241163/ – (On our blog : https://plantstomata.wordpress.com/2021/06/29/ethylene-signaling-inhibits-meja-signaling-and-aba-signaling-by-targeting-s-type-anion-channels-and-ros-but-not-ost1-kinase-and-k-channels-in-arabidopsis-guard-cells/ )

Munemasa S., Hossain M. A., Nakamura Y., Mori I. C., Murata Y. (2011) – The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells – Plant Physiol. 155: 553–561 – doi: 10.1104/pp.110.162750 – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=20978156 – (https://plantstomata.wordpress.com/2016/12/01/cpk6-functions-as-a-positive-regulator-of-meja-signaling-in-arabidopsis-stomata/

Munemasa S., Mori I. C., Murata Y. (2011) – Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells – Plant Signal. Behav. 6: 939–941 – doi: 10.4161/psb.6.7.15439 –  https://www.ncbi.nlm.nih.gov/pubmed/21681023 – (On our blog : https://plantstomata.wordpress.com/2017/01/13/meja-signaling-and-signal-crosstalk-between-meja-and-aba-pathways-in-stomata/ )

Munemasa S., Muroyama D., Nagahashi H., Nakamura Y., Mori I. C., Murata Y. (2013) – Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione – Front. Plant Sci. 4: 472 – doi: 10.3389/fpls.2013.00472 – https://core.ac.uk/download/pdf/82837615.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/08/regulation-of-reactive-oxygen-species-mediated-aba-signaling-in-stomata-and-drought-tolerance-by-glutathione/

Munemasa S., Oda K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Murata Y. (2007) – The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production – Plant Physiol. 143: 1398–1407 – doi: 10.1104/pp.106.091298 – http://www.plantphysiol.org/content/143/3/1398.long – (On our blog : https://plantstomata.wordpress.com/2017/01/18/hormonal-signaling-interaction-between-aba-and-meja-in-stomata/ )

Munns R., King R. W. (1988) – Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants – Plant Physiol. 88: 703-708 – https://www.ncbi.nlm.nih.gov/pubmed/16666371 – (https://plantstomata.wordpress.com/2016/12/01/inhibitory-activity-of-stomatal-transpiration-was-triggered-partly-by-leaf-water-deficit-and-partly-by-root-water-deficit/ )

Mur L. A. J., Simpson C., Gay A., Smith J. A., Paveley N., Sánchez-Martin J., Prats E. (2013) – Stomatal lock up following pathogenic challenge, source or symptom of costs of resistance in crops? – Plant Pathology 62(S1): 72-82 – https://doi.org/10.1111/ppa.12174https://digital.csic.es/bitstream/10261/92483/4/stomatal_lock_up_Mur.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/26/reduced-stomatal-lock-up-could-be-used-as-a-readily-assessable-marker-for-lines-with-lesser-resistance-penalty/ )

Murata Y., Mori I. C. (2013) – Stomatal regulation of plant water status – Plant Abiotic Stress, Second Edition – Book Editor(s):Matthew A. Jenks, Paul M. Hasegawa – https://doi.org/10.1002/9781118764374.ch3https://onlinelibrary.wiley.com/doi/10.1002/9781118764374.ch3 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/119465 )

Murata Y., Mori I. C., Munemasa S. (2015) – Diverse stomatal signaling and the signal integration mechanism – Annu. Rev. Plant Biol. 66: 369–392 – doi: 10.1146/annurev-arplant-043014-114707https://www.annualreviews.org/doi/10.1146/annurev-arplant-043014-114707 – (On our blog : https://plantstomata.wordpress.com/2021/11/09/specific-emphasis-on-signal-integration-and-signal-interaction-in-stomatal-guard-cell-movement/ )

Murata Y., Pei Z. M., Mori I. C., Schroeder J. I. (2001) – Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants – Plant Cell 13: 2513–2523 – https://doi.org/10.1105/tpc.010210 – http://www.plantcell.org/content/13/11/2513 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/early-aba-signal-transduction-aba-abi1-1-nadph-dependent-ros-production-abi2-1-icaca2-channel-activation-followed-by-stomatal-closing/ )

Murata Y., Pei Z. M., Mori I. C., Schroeder J. I. (2016) – Abscisic acid signaling and the control of stomatal aperture – Plant Molecular Biology 91(6): 21-29 –

Muroyama A., Gong Y., Bergmann D. C. (2020) – Opposing, Polarity-Driven Nuclear Migrations Underpin Asymmetric Divisions to Pattern Arabidopsis Stomata – Curr. Biol. 30(22): 4549-4552 -https://doi.org/10.1016/j.cub.2020.09.087https://www.cell.com/current-biology/fulltext/S0960-9822(20)31290-2 – (On our blog : https://plantstomata.wordpress.com/2021/12/05/successive-and-polarity-driven-nuclear-migrations-that-regulate-acd-orientation-in-the-arabidopsis-stomatal-lineage/ )

Muroyama A., Gong Y., Hartman K. S., Bergmann D. C. (2023) – Cortical polarity ensures its own asymmetric inheritance in the stomatal lineage to pattern the leaf surface – Science 381(6653): 54-59 – DOI: 10.1126/science.add6162https://www.science.org/doi/10.1126/science.add6162 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/117919)

Murray M., Soh W. K., Yiotis C., Batke S., Parnell A. C., Spicer R. A., Lawson T., Caballero R., Wright I. J., Purcell C., McElwain J. C. (2019) – Convergence in Maximum Stomatal Conductance of C3 Woody Angiosperms in Natural Ecosystems Across Bioclimatic Zones – Front. Plant Sci., 07 May 2019 – https://doi.org/10.3389/fpls.2019.00558https://www.frontiersin.org/articles/10.3389/fpls.2019.00558/full – (On our blog : https://plantstomata.wordpress.com/2019/06/08/convergence-in-maximum-stomatal-conductance/ )

Murray M., Soh W. K., Yiotis C., Spicer R. A., Lawson T., McElwain J. C. (2019) – Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance – in C3 Woody Angiosperms in Four Major Biomes – Int. J. Plant Sci. 181(1): 142-154 https://www.journals.uchicago.edu/doi/full/10.1086/706260 – (On our blog : https://plantstomata.wordpress.com/2020/01/23/field-measured-stomatal-conductance-and-theoretical-maximum-stomatal-conductance-in-c3-woody-angiosperms/ )

Murray R. R., Emblow M. S. M., Hetherington A. M., Foster G. D. (2016) – Plant virus infections control stomatal development – Sci Rep 634507 – https://doi.org/10.1038/srep34507https://www.nature.com/articles/srep34507#citeas – (On our blog : https://plantstomata.wordpress.com/2020/10/21/viral-infection-influences-stomatal-development-in-two-susceptible-host-systems-but-not-in-resistant-host-systems/ )

Musa S., Awayewaserere K., Njoku K. (2019) – Effects of Dump Site Soil on the Leaf Structures of Luffa cylindrical (Sponge gourd) and Amaranthus viridis (Green Amaranth) – J. Appl. Sci. Environ. Manage. 23 (2) 307-311 – DOI: https://dx.doi.org/10.4314/jasem.v23i2.17https://www.academia.edu/38694216/Effects_of_Dump_Site_Soil_on_the_Leaf_Structures_of_Luffa_cylindrical_Sponge_gourd_and_Amaranthus_viridis_Green_Amaranth?email_work_card=title– (On our blog : https://plantstomata.wordpress.com/2019/04/05/changes-in-stomatal-traits-grown-on-dumpsite-soils-are-an-indication-of-hms-such-as-zn-and-pb-present/ )

Musselman R. C., Minnick T. J. (2000) – Nocturnal stomatal conductance and ambient air quality standards for ozone – Atmospheric Environment 34: 719–733 – https://doi.org/10.1016/S1352-2310(99)00355-6 – https://www.sciencedirect.com/science/article/pii/S1352231099003556– (On our blog : https://plantstomata.wordpress.com/2018/11/08/nocturnal-stomatal-conductance-and-ambient-air-quality-standards-for-ozone/ )

Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. (2002) – Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production – Plant Cell 14: 3089–3099 – doi: 10.1105/tpc.007906 –  http://www.plantcell.org/lens/plantcell/14/12/3089 – (On our blog : https://plantstomata.wordpress.com/2016/03/29/ost1-protein-kinase-and-stomatal-movement/)

Mutiibwa D., Irmak S. (2013) – Transferability of jarvis-type models developed and re-parameterized for maize to estimate stomatal resistance of soybean: analyses on model calibration, validation, performance, sensitivity, and elasticity – Biological Systems Engineering: Papers and Publications. 400. –http://digitalcommons.unl.edu/biosysengfacpub/400 – http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1402&context=biosysengfacpub – (On our blog : https://plantstomata.wordpress.com/2017/11/05/stomatal-resistance-of-soybean/ )

Mwamlima L. H., Ouma J. P., Cheruiyot E. K. (2020) – Leaf Gas Exchange and Root Nodulation Respond to Planting Density in Soybean [Glycine max (L) Merrill] – Hindawi 2020 Article ID 6424389  – https://doi.org/10.1155/2020/6424389https://www.hindawi.com/journals/aag/2020/6424389/ – (On our blog : https://plantstomata.wordpress.com/2020/05/14/84515/ )

Mwendia S., Yanusa B. M., Whalley R. D. B., Bruhl J. J. (2019) – Osmotic adjustment, stomata morphology and function show contrasting responses to water stress in mesic and hydric grasses under elevated CO2 concentration – Photosynthetica 57(1): 121-131 – https://doi.org/10.32615/ps.2019.016 –https://hdl.handle.net/10568/99321https://cgspace.cgiar.org/handle/10568/99321 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/osmotic-adjustment-stomata-morphology-and-function-show-contrasting-responses-to-water-stress-under-elevated-co2-concentration/ )

Myazawa S.-I., Livingston N. J., Turpin D. H. (2006) – Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany 57(2): 373–380 – Phenotypic Plasticity and the Changing Environment Special Issue – doi:10.1093/jxb/eri278Stomatal_development_in_new_leaves_is_re.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/stomatal-conductance-of-mature-leaves-has-a-regulatory-effect-on-stomatal-development-of-expanding-leaves/ )

Nabi G. (1998) – Influence of short-term partial shading on photosynthesis and stomatal conductance in relation to cropload and water status of grapevines and apples. Masters of Applied Science Thesis, Lincoln Univ., Canterbury, New Zealand.

Nabity P. D., Haus M. J., Berenbaum M. R., DeLucia E. H. (2013) – Leaf-galling Phylloxera on grapes reprograms host metabolism and morphology – PNAS 2013 October 110(41): 16663-16668 – https://doi.org/10.1073/pnas.1220219110 – http://www.pnas.org/content/110/41/16663.full – (On our  blog : https://wordpress.com/post/plantstomata.wordpress.com/66362 )

Nadeau J. A. (2009) – Stomatal development: new signals and fate determinants – Current Opinion in Plant Biology 12: 29–35 – https://doi.org/10.1016/j.pbi.2008.10.006 – https://www.sciencedirect.com/science/article/pii/S1369526608001763 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/72680/

Nadeau J. A., Sack F. D. (2002) – Stomatal Development in Arabidopsis – The Arabidopsis Book  1: e0066. 2002 – https://doi.org/10.1199/tab.0066 – http://www.bioone.org/doi/abs/10.1199/tab.0066 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/stomatal-development-in-arabidopsis-3/ )

Nadeau J. A., Sack F. D. (2002) – Control of stomatal distribution on the Arabidopsis leaf surface – Science 296: 1697–1700 – DOI: 10.1126/science.1069596 –  http://science.sciencemag.org/content/296/5573/1697.abstract?ijkey=61fdf63a0df9f80f6399baa35458f421570c77ef&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/10/25/control-of-stomatal-distribution/ )

Nadeau J. A., Sack F. D. (2003) – Stomatal development: cross talk puts mouths in place – Trends in Plant Science 8: 294–299 – http://dx.doi.org/10.1016/S1360-1385(03)00102-X   – http://www.sciencedirect.com/science/article/pii/S136013850300102X – (On our blog : https://plantstomata.wordpress.com/2016/10/25/stomatal-patterning-2/ )

Nadel M. (1940) – Sur la mesure do l’ouverture des stomates (Critique de la méthode de fixation des stomates par l’alcool) – Palestine J. Bot. Rehovot Ser. 3: 2-64 –

Naeem M. A., Hussain A., Azmi U. R., Maqsood S., Imtiaz U., Ali H. K., Rehman S. U., Kaleemullah, Munir H. M., Ghani U. (2019) – Comparative Anatomical Studies of Epidermis with Different Stomatal Patterns in Some Selected Plants Using Compound Light Microscopy – International Journal of Scientific and Research Publications (IJSRP) 9(10): – ISSN 2250-3153 – http://dx.doi.org/10.29322/IJSRP.9.10.2019.p9449https://www.ijsrp.org/research-paper-1019/ijsrp-p9449.pdf – (On our blog : https://plantstomata.wordpress.com/2023/04/14/stomata-shape-of-the-dicots-plants-using-the-compound-light-microscope-also-to-predict-algometric-relationships-between-morphologically-stomata-traits-in-relation-to-gaseous-exchange-in-leaf-and-requ/ )

Nagai S. (1952) – On the effect of stomata in the transpiration of sweet potato leaf – Shokubutsugaku Zasshi 65: 769-770 – https://www.jstage.jst.go.jp/article/jplantres1887/65/769-770/65_769-770_186/_article/-char/en – (On our blog : https://plantstomata.wordpress.com/2022/01/22/the-role-of-stomata-in-transpiration-may-hold-good-only-when-the-water-content-is-sufficient/ )

Nagano S., Nakano T., Hikosaka K., Maruta E. (2013)Pinus pumila Photosynthesis Is Suppressed by Water Stress in a Wind-Exposed Mountain Site – Arctic, Antarctic, and Alpine Research 45(2) : – https://doi.org/10.1657/1938-4246-45.2.229https://www.tandfonline.com/doi/full/10.1657/1938-4246-45.2.229 – (On our blog : https://plantstomata.wordpress.com/2022/01/20/the-carbon-gain-is-limited-by-water-stress-in-wind-exposed-regions-role-of-stomata/ )

Nagata C., Miwa C., Tanaka N., Kato M., Suito M., Tsuchihira A., Sato Y., Segami S., Maeshima M. (2016) – A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure – J Plant Res. 129(3): 539-550 – doi: 10.1007/s10265-016-0787-2 – Epub 2016 Mar 15 – PMID: 26979064 – https://pubmed.ncbi.nlm.nih.gov/26979064/ – (On our blog : https://plantstomata.wordpress.com/2022/03/09/pcap1-is-involved-in-the-stomatal-movement-especially-closure-process/ )

Nagatoshi Y., Mitsuda N., Hayashi M., Inoue S.-i., Okuma E., Kubo A., Murata Y., Seo M., Saji H., Kinoshita T., Ohme-Takagi M. (2016) – GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement – PNAS 113(15): 4218-4223 –  https://doi.org/10.1073/pnas.1513093113https://www.pnas.org/content/113/15/4218 – (On our blog : https://plantstomata.wordpress.com/2022/01/23/modulating-glk1-2-activity-may-provide-an-effective-tool-to-control-stomatal-movements-and-to-confer-resistance-to-air-pollutants/ )

Nagoya University (2018) – Discovery of compounds that keep plants fresh ~ Controlling plant pore openings for drought tolerance and delay in leaf withering – http://www.itbm.nagoya-u.ac.jp/en/research/2018/04/SCL-Kinoshita.php – (On our blog : https://plantstomata.wordpress.com/2020/09/06/controlling-stomata-for-drought-tolerance/ )

Nagoya University (2019) – SPEECHLESS, SCREAM and Stomata – http://en.nagoya-u.ac.jp/research/activities/news/2019/08/speechless-scream-and-stomata-1.html – (On our blog : https://plantstomata.wordpress.com/2019/08/16/speechless-scream-and-stomata/ )

Nagoya University (2019) – Key Genes That Make Stomata and Enforce Stomatal Patterning Identified – Genomics Research from Technology Networks – https://www.technologynetworks.com/genomics/news/key-genes-that-make-stomata-and-enforce-stomatal-patterning-identified-323733 – (On our blog : https://plantstomata.wordpress.com/2020/05/12/key-genes-that-make-stomata-and-enforce-stomatal-patterning-identified/ )

Naidoo G. (1983) – Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymnorrhiza (L.) Lam. – New Phytol. 93: 369-376 – https://doi.org/10.1111/j.1469-8137.1983.tb03437.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1983.tb03437.x – (On our blog : https://plantstomata.wordpress.com/2020/06/10/effects-of-flooding-on-stomatal-resistance/ )

Naidoo G., Von Willert D. J. (1994) – Stomatal oscillations in the mangrove Avicennia germinans – Functional Ecology 8: 651–657 – https://www.jstor.org/stable/2389928?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/01/18/stomatal-oscillations-in-a-mangrove/ )

Naithani K. J., Ewers B. E., Pendall E. (2012) – Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem – Journal of Hydrology 464–465: 176–185 – https://www.uwyo.edu/botany/_files/docs/plantecofizz/new-publications/55-nathani-et-al.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/30/a-combination-of-atmospheric-and-surface-soil-drought-controlled-el-whereas-stomatal-conductance-was-mainly-driven-by-atmospheric-drought/ )

Naizaque J., Garcia G., Fischer G., Melgarejo L. M. (2014) – Relación entre la
Densidad Estomática, la Transpiración y las Condiciones Ambientales en feijoa
(Accasellowiana [O. BERG] BURRET) – Revista U.D.C.A Actualidad & Divulgación
Científica 17(1): 115-121 – https://revistas.udca.edu.co/index.php/ruadc/article/view/946 – (On our blog : https://plantstomata.wordpress.com/2022/01/22/stomatal-density-transpiration-and-environmental-conditions/ )

Najihah T. S., Ibrahim M. H., Razak A. A., Nulit R., Wahab P. E.M., (2019) – Effects of water stress on the growth, physiology and biochemical properties of oil palm seedlings – AIMS Agriculture and Food 4(4): 854–868 – DOI: 10.3934/agrfood.2019.4.854https://www.aimspress.com/fileOther/PDF/agriculture/agrfood-04-04-854.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/22/severe-water-stress-decreased-vegetative-plant-growth-leaf-water-potential-relative-water-content-leaf-moisture-content-and-stomatal-conductance/ )

Nakajima N., Saji H., Aono M., Kondo N. (1995) – Isolation of cDNA for a plasma membrane H+-ATPase from guard cells of Vicia faba L. – Plant Cell Physiol. 36: 919–924 – https://doi.org/10.1093/oxfordjournals.pcp.a078839 – https://academic.oup.com/pcp/article-abstract/36/5/919/1879069?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/11/08/isolation-of-cdna-for-a-plasma-membrane-h-atpase-from-stomatal-guard-cells/ )

Nakamura R. L., McKendree W. L., Hirsch R. E., Sedbrook J. C., Gaber R. F., Sussman M. R. (1995) – Expression of an Arabidopsis potassium channel gene in guard cells – Plant Physiol. 109: 371–374 – http://dx.doi.org/10.1104/pp.109.2.371 –  http://www.plantphysiol.org/content/109/2/371.abstract?ijkey=689d58408d6b9a54709eb09fb192130693cc858f&keytype2=tf_ipse – (On our blog : https://plantstomata.wordpress.com/2017/01/25/a-potassium-channel-gene-in-stomata/ )

Nakhforoosh A., Bodewein T., Fiorani F., Gernot Bodner G. (2016) – Identification of Water Use Strategies at Early Growth Stages in Durum Wheat from Shoot Phenotyping and Physiological Measurements – Front. Plant Sci., 05 August 2016 – https://doi.org/10.3389/fpls.2016.01155https://www.frontiersin.org/articles/10.3389/fpls.2016.01155/full – (On our blog : https://plantstomata.wordpress.com/2022/03/09/identification-of-water-use-strategies-and-stomatal-conductance/ )

Nam Y. I., Ha Y. W., Kim K. J., (1984) – Stomatal movement and related environmental factors to stomata in wheat, 2: effect of nitrogen application on the stomatal aperture of wheat – Korean Journal of Crop Science (Korea R.)  – https://agris.fao.org/agris-search/search.do?recordID=XB8535395 -(On our blog: https://plantstomata.wordpress.com/2021/11/15/nitrogen-application-and-the-stomatal-aperture/ )

Nam Y. I., Ha Y. W., Yoshida T. (1982) – Studies on the stomatal movement and environmental factors relating to stomata in wheat. I. Measurement of stomatal aperture and diurnal movement of the stomata in wheat – Korean Journal of Crop Science 27(2): 130-136 – https://eurekamag.com/research/001/257/001257888.php – (On our blog : https://plantstomata.wordpress.com/2022/01/09/measurement-of-stomatal-aperture-and-diurnal-movement/ )

Nan Q., Char S. N., Yang B., Bennett E. J., Yang B., Facette M. R. (2023) – Polarly localized WPR proteins interact with PAN receptors and the actin cytoskeleton during maize stomatal development – Plant Cell. 35(1): 469-487 – doi: 10.1093/plcell/koac301 – PMID: 36227066 – PMCID: PMC9806561 – https://pubmed.ncbi.nlm.nih.gov/36227066/ – (On our blog : https://plantstomata.wordpress.com/2023/11/22/crispr-cas9-induced-mutations-result-in-division-plane-defects-in-smcs-and-ectopic-expression-of-wpr-rfp-results-in-stomatal-defects-and-alterations-to-the-actin-cytoskeleton/ )

Nanami S., Ishiga T., Masuo S., Hashimoto Y., Ishiga Y. (2021) – Coronatine Contributes to Pseudomonas cannabina pv. alisalensis Virulence by Overcoming Both Stomatal and Apoplastic Defenses in Dicot and Monocot Plants – IS-MPMI 34(7): – https://doi.org/10.1094/MPMI-09-20-0261-Rhttps://apsjournals.apsnet.org/doi/10.1094/MPMI-09-20-0261-R – (On our blog : https://plantstomata.wordpress.com/2023/04/13/cor-contributes-to-causing-disease-by-suppressing-stomatal-based-defense-and-apoplastic-defense-in-both-dicot-and-monocot-plants/ )

Nandy P. (Datta), Das S., Ghose M. (2005) – Relation of leaf micromorphology with photosynthesis and water efflux in some Indian mangroves – Acta Bot. Croat. 64 (2): 331–340 – ISSN 0365–0588 Nandy_Datta_et_al_2005.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/05/relation-of-leaf-micromorphology-stomata-with-photosynthesis-and-water-efflux/ )

Nandy (Datta) P., Ghose M. (2001) – Photosynthesis and water-use efficiency of some mangroves from Sundarbans, India – J. Plant Biol. 44: 213–219 –

Naor A., Gal Y., Bravdo B. (1997) – Crop load affects assimilation rate, stomatal conductance, stem water potential and water relations of field-grown Sauvignon blanc grapevines – Journal of Experimental Botany 48(9): 1675–1680 – https://doi.org/10.1093/jxb/48.9.1675https://academic.oup.com/jxb/article/48/9/1675/629213?login=false – (On our blog : https://plantstomata.wordpress.com/2023/03/31/similar-stomatal-conductance-gs-gm-responses-were-found-in-the-one-and-two-cluster-treatments-regardless-of-differences-between-the-treatments-in-gs-%cf%88stem-response/ )

Narahayaan C. S., Hiariej A., Riupassa P. A. (2022) – Study of Stomata Characteristics of Plantain and Horn Plants AAB genome – Jurnal Penelitian Pendidikan IPA 8(2): 614–619 – https://doi.org/10.29303/jppipa.v8i2.1382https://jppipa.unram.ac.id/index.php/jppipa/article/view/1382 – (On our blog : https://plantstomata.wordpress.com/2022/05/20/the-characteristics-of-plant-stomata-by-plantain-and-horn-banana-aab-genome/ )

Nardini A., Salleo S. (2000) – Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? – Trees15: 14–24 – doi:10.1007/s004680000071 – http://link.springer.com/article/10.1007%2Fs004680000071 – (On our blog : https://plantstomata.wordpress.com/2017/01/25/stomata-and-sensing-or-preventing-xylem-cavitation/ )

Narro A. (2007) – Growth, stomatal resistance, and transpiration of Aloe vera under different soil water potentials – https://www.semanticscholar.org/paper/Growth%2C-stomatal-resistance%2C-and-transpiration-of-Narro/fc54358852f23a24c54a920e114ddbac2e5e74ce – (On our blog : https://plantstomata.wordpress.com/2021/08/19/the-low-leaf-temperature-increases-stomatal-resistance-decreases-plant-and-leaf-growth-rates-a-behavior-opposite-to-other-cam-species/ )

Narula K., Elagamey E., Abdellatef M. A. E., Sinha A., Ghosh S., Chakraborty N., Chakraborty S. (2020) – Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome – The Plant Journal 103(2): 561-583 – https://doi.org/10.1111/tpj.14750https://onlinelibrary.wiley.com/doi/10.1111/tpj.14750 – (On our blog : https://plantstomata.wordpress.com/2023/07/15/the-discovery-of-chitosan-responsive-networks-that-cause-significant-an-extracellular-matrix-ecm-and-stomatal-guard-cell-remodeling-and-translate-ecm-cues-into-cell-fate-decisions-during-fusariosis/ )

Nason M. A., Farrar J., Bartlett D. (2007) – Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress – Pest Manag Sci. 63(12): 1191-1200 – doi: 10.1002/ps.1443 – PMID: 17912684 – https://pubmed.ncbi.nlm.nih.gov/17912684/ – (On our blog : https://plantstomata.wordpress.com/2022/09/26/the-response-of-stomata-to-strobilurin-fungicides-is-complex/ )

Nassuth A., Rahman M. A., Nguyen T., Ebadi A., Lee C. (2021) – Leaves of more cold hardy grapes have a higher density of small, sunken stomata – Vitis 60: 63–67 – DOI: 10.5073/vitis.2021.60.63-67file:///C:/Users/wille/Downloads/15779.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/14/fast-acting-small-sunken-stomata-whose-gas-and-water-exchange-are-less-affected-than-for-larger-stomata/ )

Naulin P. I., Valenzuela G., Estay S. A. (2016) – Size matters: point pattern analysis biases the estimation of spatial properties of stomata distribution – New Phytologist 213(4): 1956-1960 – https://doi.org/10.1111/nph.14305https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.14305 – (On our blog : https://plantstomata.wordpress.com/2021/12/06/96848/ )

Naulin P. I., Valenzuela G., Estay S. A. (2016) – New Phytologist, Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14305http://onlinelibrary.wiley.com/doi/10.1111/nph.14305/abstract – https://plantstomata.wordpress.com/2016/11/08/point-pattern-analysis-and-size-point-and-disc-null-models-for-stomata-distribution/ )

Nautiyal S., Purohit A. N. (1980) – High Altitude Acclimatization in Plants: Stomatal Frequency and Anatomical Changes in Leaves of Artemisia Species – Biologia Plantarum (Praha) 22(4): 282-286 – https://www.bp.ueb.cas.cz/pdfs/bpl/1980/04/10.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/02/adaptational-significance-of-stomatal-frequency-and-anatomical-changes-in-leaves/ )

Naves V. L. (1993) – Crescimento, distribuiçao de materia seca, concentraçao de clorofilas e comportamento estomatico de mudas de três espécies florestais submetidas a diferentes niveis de radiaçao fotossinteticamente ativa – Lavras, ESAL 76 pp. (Tese MS) –

Naves V. L., de Alvarenga A. A., de Oliveira L. E. M. (1994) – Stomatal behavior of sets of three forest species under different levels of light intensities (Comportamento estomático de mudas de três espécies florestais submetidas à diferentes níveis de radiação fotossinteticamente ativa – Ciência e Agrotecnologia 18(4): 408-414 – https://www.researchgate.net/publication/329512159_Comportamento_estomatico_de_mudas_de_tres_especies_florestais_submetidas_a_diferentes_niveis_de_radiacao_fotossinteticamente_ativa – (On our blog : https://plantstomata.wordpress.com/2019/09/11/stomatal-behavior-of-sets-of-three-forest-species-under-different-levels-of-light-intensities/ )

Nawazish S., Hussain M., Ashraf M., Ashraf M. Y., Jamil A. (2012) – Effect of automobile related metal pollution (Pb2+& Cd2+) on some physiological attributes of wild plants – Int. J. Agric. Biol. 14: 953‒958 – ISSN Print: 1560–8530 – ISSN Online: 1814–9596 – https://www.cabi.org/ISC/FullTextPDF/2012/20123416673.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/16/the-deposition-of-pb2-and-cd2-blocks-stomata-aperture-causing-reduction-in-photosynthetic-activity-of-plants-along-roadsides/ )

Nazir F., Anjuman H., Qazi F. (2019) – Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress – Environmental and Experimental Botany 162: 479-495 – ISSN 0098-8472 – https://doi.org/10.1016/j.envexpbot.2019.03.021https://www.sciencedirect.com/science/article/pii/S009884721831921X – (On our blog : https://plantstomata.wordpress.com/2022/12/03/epibrassinolide-and-hydrogen-peroxide-regulating-stomatal-physiology-under-nickel-stress/ )

Nazareno A. L., Hernandez B. S. (2017) – A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants – PloS one 12(2): e0171065 – https://doi.org/10.1371/journal.pone.0171065https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171065 – (On our blog : https://plantstomata.wordpress.com/2020/12/10/interaction-of-aba-aba-ete-and-aba-et-meja-on-stomatal-closure/ )

Neales T. F. (1973) – The effect of night temperature on CO2 assimilation, transpiration, and water use efficiency in Agave americana L. – Australian Journal of Biological Sciences 26(4): 705-714 – doi: 10.1071/bi9730705https://www.mendeley.com/catalogue/42b74ea3-c4ed-3550-8b10-b21b2b8e9ec0/ – (On our blog : https://plantstomata.wordpress.com/2022/02/03/high-night-temperatures-induced-greater-stomatal-closure-at-night-and-opening-during-the-day/ )

Nebel B. R. (1934) – Characteristics of diploid and triploid apple varieties: I, Measurements of stomata – New York Agricultural Experiment Station, Geneva, N. Y. Proc. Amer. Soc. Hort. Set. 32: 254 –

Negash L., Bjorn L. O. (1986) – Stomata closure by UV radiation – Physiol. Plant 66: 360-364 – https://doi.org/10.1111/j.1399-3054.1986.tb05935.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb05935.x – (On our blog : https://plantstomata.wordpress.com/2018/10/15/stomata-closure-by-uv-radiation/

Negash L., Jensén P., Bjorn L. O. (1987) – Effects of ultraviolet radiation on accumulation and leakage of 86Rb+ in guard cells of Vicia faba –  Physiol. Plant 69: 200–204 – https://doi.org/10.1111/j.1399-3054.1987.tb04276.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1987.tb04276.x – (On our blog : https://plantstomata.wordpress.com/2019/06/27/effects-of-ultraviolet-radiation-on-accumulation-and-leakage-of-86rb-in-stomata/ )

Negi J., Hashimoto-Sugimoto M., Kusumi K., Iba K. (2014) – New Approaches to the Biology of Stomatal Guard Cells  – Plant and Cell Physiology 55(2):  241–250 – https://doi.org/10.1093/pcp/pct145 – https://academic.oup.com/pcp/article/55/2/241/1859195 – (On our blog : https://plantstomata.wordpress.com/2018/09/07/new-approaches-to-the-biology-of-stomata/ )

Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K. (2008)  CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells – Nature 452: 483-486 – doi: 10.1038/nature06720 – http://www.nature.com/nature/journal/v452/n7186/full/nature06720.html – (On our blog : https://plantstomata.wordpress.com/2017/01/25/co2-regulator-slac1-and-its-homologues-in-stomata/ )

Negi J., Moriwaki K., Konishi M., Yokoyama R., Nakano T., Kusumi K., Hashimoto-Sugimoto M., Schroeder J. I., Nishitani K., Yanagisawa S., Iba K. (2013) – A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis – Curr. Biol. 23: 479-484 – doi: 10.1016/j.cub.2013.02.001https://www.sciencedirect.com/science/article/pii/S0960982213001425 – (On our blog : https://plantstomata.wordpress.com/2018/11/10/scap1-regulates-essential-processes-of-stomatal-guard-cell-maturation/ )

Negi J., Munemasa S., Song B., Tadakuma R., Fujita M., Azoulay-Shemer T., Engineer C. B., Kusumi K., Nishida I., Schroeder J. I., Iba K. (2018) – Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells – PNAS September 4, 2018 115 (36) 9038-9043; published ahead of print August 20, 2018 https://doi.org/10.1073/pnas.1810458115 – http://www.pnas.org/content/115/36/9038 – (On our blog: https://wordpress.com/post/plantstomata.wordpress.com/71065

Negi J., Obata T., Nishimura S., Song B., Yamagaki S., Ono Y., Okabe M., Hoshino N., Fukatsu K., Tabata R., Yamaguchi K., Shigenobu S., Yamada M., Hasebe M., Sawa S., Kinoshita T., Nishida I., Iba K. (2023) – PECT1, a rate-limiting enzyme in phosphatidylethanolamine biosynthesis, is involved in the regulation of stomatal movement in Arabidopsis – The Plant Journal Online Version of Record before inclusion in an issue – https://doi.org/10.1111/tpj.16245https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.16245 – (On our blog : https://plantstomata.wordpress.com/2023/05/31/how-pect1-can-regulate-co2-and-light-induced-stomatal-movements-in-guard-cells-in-a-manner-that-is-independent-and-downstream-of-the-activation-of-h-atpases/ )

Negi S., Tak H., Ganapathi T. R. (2018) – A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content – Plant Mol Biol. 96(4-5): 457-471 – doi: 10.1007/s11103-018-0710-4 – Epub 2018 Feb 22 – PMID: 29470695 – https://pubmed.ncbi.nlm.nih.gov/29470695/ – (On our blog : https://plantstomata.wordpress.com/2022/03/10/an-interesting-mechanism-of-drought-tolerance-through-stomatal-closure-by-h2o2-generation-in-guard-cells-regulated-by-a-nac-protein-in-banana/ )

Negin B., Moshelion M. (2016) – The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance – Plant Sci. 251:82-89 – https://doi.org/10.1016/j.plantsci.2016.05.007https://www.sciencedirect.com/science/article/abs/pii/S0168945216300851 – (On our blog : https://plantstomata.wordpress.com/2020/07/18/aba-from-biochemical-mechanisms-to-stomatal-conductance/ )

Negin B., Yaaran A., Kelly G., Zait Y., Moschelion M. (2019) – Mesophyll ABA restrains early growth and flowering but does not directly suppress photosynthesis – Plant Physiology – DOI:10.1104/pp.18.01334 – http://www.plantphysiol.org/content/plantphysiol/early/2019/03/25/pp.18.01334.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/12/09/mesophyll-aba-restrains-early-growth-and-flowering-but-does-not-directly-suppress-photosynthesis/ )

Neill R. L., Neill D. M., Frye B. F. (1990) – Is there a correlation between rainfall amounts and the number of stomata in cottonwood leaves? – American Biology Teacher 52:48–49 – https://doi.org/10.2307/4449024https://online.ucpress.edu/abt/article/52/1/48/14469/Is-There-a-Correlation-between-Rainfall-Amounts – (On our blog : https://plantstomata.wordpress.com/2020/11/30/86518/ )

Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P, Ribeiro D, Wilson I. (2008) – Nitric oxide, stomatal closure, and abiotic stress – J. Exp. Bot. 59: 165–176 – doi: 10.1093/jxb/erm293 – https://www.ncbi.nlm.nih.gov/pubmed/18332225 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/two-processes-that-both-involve-no-as-a-key-signalling-intermediate-in-stomata/ )

Neill S., Desikan R., Hancock, J. T. (2002) – Hydrogen peroxide signalling – Curr Opin Plant Biol. 5(5): 388-395 – doi: 10.1016/s1369-5266(02)00282-0 – PMID: 12183176 – https://pubmed.ncbi.nlm.nih.gov/12183176/ – (On our blog : https://plantstomata.wordpress.com/2023/12/19/signalling-roles-for-hydrogen-peroxide-during-abscisic-acid-mediated-stomatal-closure-auxin-regulated-root-gravitropism-and-tolerance-of-oxygen-deprivation-are-evident/ )

Neill S. J., Desikan R., Clarke A., Hancock, J. T. (2002) – Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells – Plant Physiol. 128: 13–16 – doi: 10.1104/pp.010707 –  http://www.plantphysiol.org/content/128/1/13 – (https://plantstomata.wordpress.com/2017/01/26/aba-signaling-in-stomata-and-nitric-oxide/ )

Neilson R. E., Jarvis P. G. (1975) – Photosynthesis in Sitka spruce ((Picea sitchensis (Bong.) Carr.): IV. Response of stomata to temperature – J. Appl. Ecol. 12(3): 879‐891 –

Nejad A. R. (2007) – Control of stomatal opening after growth at high relative air humidity – PhD Thesis Wageningen – ISBN 90-8504-556-8 – https://edepot.wur.nl/30660 – (On our blog : https://plantstomata.wordpress.com/2020/04/08/stomatal-opening-after-growth-at-high-relative-air-humidity/ )

Nejad A. R., Harbison J., van Meeteren U. (2006) – Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity. J Exp Bot  57: 3669–3678 – https://doi.org/10.1093/jxb/erl114https://academic.oup.com/jxb/article/57/14/3669/584033 – (On our blog : https://plantstomata.wordpress.com/2019/12/10/dynamics-of-spatial-heterogeneity-of-stomatal-closure/ )

Nejad A. R., van Meeteren U. (2005) – Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity – Physiologia Plantarum 125: 324-332 – https://doi.org/10.1111/j.1399-3054.2005.00567.x – http://library.wur.nl/WebQuery/wurpubs/341172 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/stomatal-response-characteristics-of-plants-grown-at-high-relative-air-humidity/ )

Nejad A. R., van Meeteren U. (2006) – Irreversible adaptation of stomata in Tradescantia virginiana grown at moderate relative air humidity to high RH – In: Proceedings of the 27th International Horticultural Congress, Seoul – Seoul : – p. 201 – 201 – http://library.wur.nl/WebQuery/wurpubs/353358urn:nbn:nl:ui:32-353358

Nejad A. R., van Meeteren U. (2007) – The role of abscisic and acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity – Journal of Experimental Botany 58(3): 627-636 – ISSN 0022-0957 – 10.1093/jxb/erl234https://www.narcis.nl/publication/RecordID/oai%3Alibrary.wur.nl%3Awurpubs%2F359973 – (On our blog : https://plantstomata.wordpress.com/2020/12/20/the-role-of-aba-in-disturbed-stomatal-response-characteristics-during-growth-at-high-relative-air-humidity/ )

Nejad A. R., van Meeteren U. (2008) – Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana – Journal of Experimental Botany 59(2): 289–301 – https://doi.org/10.1093/jxb/erm308https://academic.oup.com/jxb/article/59/2/289/537363?login=false – (On our blog : https://plantstomata.wordpress.com/2023/05/11/adaptation-of-stomatal-behaviour-to-moderate-or-high-relative-air-humidity/ )

Nejidat A. (1987) – Effect of ophiobolin A on stomatal movement: Role of calmodulin – Plant Cell Physiol. 28: 455-460 –

Nejidat A. (1995) – Possible involvement of calmodulin in the regulation of ATPase activity in guard cells – Physiologia Plantarum 94(3): 411-414 – https://doi.org/10.1111/j.1399-3054.1995.tb00946.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1995.tb00946.x – (On our blog : https://plantstomata.wordpress.com/2023/06/12/the-possibility-of-calmodulin-involvement-in-the-regulation-of-stomatal-guard-cell-atpase-activity-by-calcium-ions/ )

Nejidat A., Roth-Bejerano N., Ital C. (1986) – K, Mg-ATPase activitiy in guard cells of Commelina communis – Physiol. Plant. 68: 315-319 – https://doi.org/10.1111/j.1399-3054.1986.tb01932.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1986.tb01932.x – (On our blog : https://plantstomata.wordpress.com/2018/11/08/a-mg2%e2%80%90dependent-k%e2%80%90stimulated-atpase-activity-was-detected-in-microsomal-preparations-from-stomatal-guard-cell-protoplasts/ )

Nelson S. D., Mayo J. M. (1975) – The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp – Canadian Journal of Botany 53(1): 1-7 – https://doi.org/10.1139/b75-001 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-001 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/guard-cell-chlorophyll-is-not-necessary-for-stomatal-functioning-2/ )

Nemecek-Marshall M., MacDonald R. C., Franzen J. J., Wojciechowski C. L., Fall R. (1995) – Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development) – Plant Physiol. https://doi.org/10.1104/pp.108.4.1359http://www.plantphysiol.org/content/108/4/1359?ijkey=d2b164a31567cda992f0826d9da3184dbce30dc1&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2021/04/06/relation-of-methanol-fluxes-to-stomatal-conductance/ )

Nemeskéri E., Helyes L. (2019) – Physiological Responses of Selected Vegetable Crop Species to Water Stress – Agronomy 9(8): 447 – https://doi.org/10.3390/agronomy9080447https://www.mdpi.com/2073-4395/9/8/447/htm – (On our blog : https://plantstomata.wordpress.com/2020/03/09/physiological-responses-of-selected-vegetable-crop-species-to-water-stress/ )

Nemeskeri E., Molnar K., Vigh R., Nagy J., Dobos A. (2015) – Relationships between stomatal behaviour, spectral traits and water use and productivity of green peas (Pisum sativum L.) in dry seasons – Acta Physiol Plant 37: 1–16 – https://doi.org/10.1007/s11738-015-1776-0https://link.springer.com/article/10.1007/s11738-015-1776-0#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/stomatal-behaviour-spectral-traits-and-water-use-and-productivity-of-green-peas/ )

Nerkar Y. S., Wilson D., Lawes D. A. (1981) – Genetic variation in stomatal characteristics and behavior (water use and growth in five Vicia faba) genotypes under contrasting soil moisture regimes – Euphytica 30: 335–345 – https://doi.org/10.1007/BF00033995https://link.springer.com/article/10.1007/BF00033995#citeas – (On our blog : https://plantstomata.wordpress.com/2019/05/25/genetic-variation-in-stomatal-characteristics-and-behavior/ )

Nesrin O., Gholamreza N., Masooud G. (2013) – The responses of stomatal parameters and SPAD value in Asian tobacco exposed to chromium – Pol. J. Environ. Stud. 22: 1441 –

Neukam D., Böttcher U., Kage H. (2016) – Modelling Wheat Stomatal Resistance in Hourly Time Steps from Micrometeorological Variables and Soil Water Status – Journal of Agronomy and Crop Science 202: 174-191 – DOI:10.1111/JAC.12133https://onlinelibrary.wiley.com/doi/10.1111/jac.12133 – (On our blog : https://plantstomata.wordpress.com/2021/08/20/a-new-semi-empiric-approach-calculating-stomatal-resistance-rs-directly-from-external-environmental-conditions/ )

Neuman D. S., Smit B. A. (1991) – The influence of leaf water status and ABA on leaf growth and stomata of Phaseolus seedlings with hypoxic roots – J. Exp. Bot. 42: 1499-1506 – https://doi.org/10.1093/jxb/42.12.1499https://academic.oup.com/jxb/article-abstract/42/12/1499/603879?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2020/06/10/applications-of-aba-in-the-transpiration-stream-reduced-stomatal-conductance/ )

New Phytologist Symposium Nr. 29 (2012) – Stomata 2012 — https://www.newphytologist.org/symposia/29 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/65558 )

Ng C. K. Y., Carr K., McAinsh M. R., Powell B., Hetherington A. M. (2001) – Drought-induced guard cell signal transduction involves sphingosine- 1-phosphate. – Nature 410: 596–599 – doi: 10.1038/35069092 – http://www.nature.com/nature/journal/v410/n6828/full/410596a0.html – (https://plantstomata.wordpress.com/2017/01/26/sphingosine-1-phosphate-and-stomata/ )

Ng C.K.-Y., McAinsh M.R., Gray J.E., Hunt L., Leckie C.P., Mills L., Hetherington A.M.(2001)  Calcium-based signalling systems in guard cells – New Phytol. 151: 109-120 – DOI: 10.1046/j.1469-8137.2001.00152.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00152.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/07/calcium-based-signalling-pathways-have-been-identified-in-stomata/ )

Ng C. W. W., Liao J. X., Bordoloi S. (2021) – Relationship between matric suction and leaf indices of Schefflera arboricola in biochar amended soil – https://doi.org/10.1139/cgj-2020-0666https://cdnsciencepub.com/doi/10.1139/cgj-2020-0666 – (On our blog : https://plantstomata.wordpress.com/2022/04/17/to-quantify-the-relationships-between-sc-and-cc-with-%cf%88-for-schefflera-arboricola-grown-in-compacted-bare-silty-sand-and-biochar-amended-soil-bas/ )

Ng P. A. P. (1979) – Response of stomata to environmental variables in Pinus sylvestris L – PhD Thesis, University of Edinburgh –

Ng P. A. P., Jarvis P. G. (1980) – Hysteresis in the response of stomatal conductance in Pinus sylvestris L needles to light – observations and a hypothesis – Plant, Cell & Environment 3: 207–216 – https://doi.org/10.1111/1365-3040.ep11581594https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11581594 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/hysteresis-in-the-response-of-stomatal-conductance-to-light/ )

Nguyen T. B.-A., Lefoulon C., Nguyen T.-H., Blatt M. R., William Carroll W. (2023) – Engineering stomata for enhanced carbon capture and water-use efficiency – Trends in Plant Science – https://doi.org/10.1016/j.tplants.2023.06.002https://www.cell.com/trends/plant-science/fulltext/S1360-1385(23)00190-5?dgcid=raven_jbs_aip_email – (On our blog : https://plantstomata.wordpress.com/2023/07/09/attention-to-stomatal-speed-and-responsiveness-circumvents-the-physical-constraints-of-co2-and-water-exchange-and-offers-alternatives-to-enhancing-wue-that-also-promise-increases-in-carbon-assimi/ )

Nguyen T. H., Huang S., Meynard D., Chaine C., Michel R., Roelfsema M. R. G., Guiderdoni E., Sentenac H., Véry A.-A. (2017) – A  Dual Role for the OsK5.2 Ion Channel in Stomatal Movements and K+ Loading into Xylem Sap – Plant Physiol. 174: – https://doi.org/10.1104/pp.17.00691http://www.plantphysiol.org/content/plantphysiol/174/4/2409.full.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/07/xylem-loading-depends-on-skor-and-stomatal-closure-on-gork-in-arabidopsis-whereas-both-functions-are-executed-by-the-single-osk5-2-shaker-in-rice/ )

Nguyen T. H., Langensiepen M., Vanderborght J., Hüging H., Mboh C. M., Ewert F. (2020) – Comparison of root water uptake models in simulating CO2 and H2O fluxes and growth of wheat – Hydrol. Earth Syst. Sci. 24: 4943–4969 – https://doi.org/10.5194/hess-24-4943-2020https://hess.copernicus.org/articles/24/4943/2020/ – (On our blog : https://plantstomata.wordpress.com/2022/04/16/in-order-to-explicitly-represent-stomatal-regulation-by-soil-water-status-we-coupled-the-crop-model-lintulcc2-and-the-root-growth-model-slimroot-with-couvreurs-root-water-uptake-model-rwu-and/ )

Ni B. R., Pallardy S. G. (1992) – Stomatal and nonstomatal limitations to net photosynthesis in seedlings of woody angiosperms – Plant Physiol 99: 1502–1508 – https://doi.org/10.1104/pp.99.4.1502http://www.plantphysiol.org/content/99/4/1502 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/patchy-stomatal-closure-under-mild-water-stress-might-be-important-for-water-stress-induced-inhibition-of-photosynthesis/ )

Ni D. A. (2012) – Role of vacuolar invertase in regulating Arabidopsis stomatal opening – Acta Physiol. Plant. 34: 2449–2452 – doi: 10.1007/s11738-012-1036-5  – https://link.springer.com/article/10.1007/s11738-012-1036-5 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-aperture-correlated-with-vacuolar-invertase/ )

Nicholas H., Richardson A. D. (2009) – Stomatal length correlates with elevation of growth in four temperate species – Journal of Sustainable Forestry 28: 63-73 –

Nicolás E., Barradas V. L., Ortuño M. F., Navarro A., Torrecillas A., J.J. Alarcón J. J. (2008) – Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net – Environmental and Experimental Botany 63(1–3) 200-206 – ISSN 0098-8472 – https://doi.org/10.1016/j.envexpbot.2007.11.007
https://www.sciencedirect.com/science/article/pii/S0098847207002274 – (On our blog : https://plantstomata.wordpress.com/2023/02/05/environmental-and-stomatal-control-of-transpiration-and-canopy-conductance/ )

Niemczyck M., Hu Y., Thomas B. R. (2019) – Selection of Poplar Genotypes for Adapting to Climate Change – Forests 10: 1041 – doi:10.3390/f10111041file:///C:/Users/wille/Downloads/forests-10-01041-v2.pdf – (On our blog : https://plantstomata.wordpress.com/2022/05/03/106273/ )

Nieves-Cordones M., Azeem F., Long Y., Boeglin M., Duby G., Mouline K., Hosy E., Vavasseur A., Chérel I., Simonneau T., Gaymard F., Leung J., Gaillard I., Thibaud J.-B., Véry A.-A., Boudaoud A., Sentenac H. (2022) – Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit AtKC1– The Plant Cell 34(5): 2019–2037 –  https://doi.org/10.1093/plcell/koac038https://academic.oup.com/plcell/article-abstract/34/5/2019/6528330?redirectedFrom=fulltext&login=false#no-access-message – (On our blog : https://plantstomata.wordpress.com/2023/01/29/atkc1-activity-contributes-to-the-building-of-the-back-pressure-that-pavement-cells-exert-onto-stomatal-guard-cells-by-tuning-k-distribution-throughout-the-leaf-epidermis/ )

Nieves-Cordones M., Sentenac H. (2022) – Putting limits to water loss: A K+ channel subunit is involved in the control of stomatal aperture by pavement cells – Institute for Plant Sciences of Montpellier (IPSiM) Nov 2, 2022 – https://www1.montpellier.inra.fr/wp-inra/bpmp/en/putting-limits-to-water-loss-a-k-channel-subunit-is-involved-in-the-control-of-stomatal-aperture-by-pavement-cells-2/ – (On our blog : https://plantstomata.wordpress.com/2023/01/29/the-control-of-stomatal-aperture-by-pavement-cells/ )

Niinemets Ü, Reichstein M. (2003) – Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained – JOURNAL OF GEOPHYSICAL RESEARCH 108(D7): 4208 – doi:10.1029/2002JD002620Controls_on_the_emission_of_plant_volati.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/23/emission-of-plant-volatiles-through-stomata/ )

Niinemets Ü, Reichstein M., Staudt M., Seufert G., Tenhunen J. D. (2002) – Stomatal Constraints May Affect Emission of Oxygenated Monoterpenoids from the Foliage of Pinus pinea –  Plant Physiol. 130(3): 1371–1385 – doi:  10.1104/pp.009670 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166656/ – (On our blog : https://plantstomata.wordpress.com/2018/06/07/stomatal-constraints-may-affect-emission-of-oxygenated-monoterpenoids/ )

Nijs I., Ferris R., Blum H., Hendrey G., Impens I. (1997) – Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE) – Plant, Cell & Environment 20: 1041–1050 –

Nilsen E. T., Webb D. ( ) – JARS v61n2 – Does Scale Type and Density of Rhododendron Species of Section Vireya Have Any Relationship to Stomata? – https://scholar.lib.vt.edu/ejournals/JARS/v61n2/v61n2-nilsen.html – (On our blog : https://plantstomata.wordpress.com/2022/03/05/scales-and-stomata-in-rhododendron/ )

Ning C., Yang Y., Chen Q., Zhao W., Zhou X, He L., Laigeng Li, Zong D., Chen J. (2023) – An R2R3 MYB Transcription Factor PsFLP Regulates the Symmetric Division of Guard Mother Cells During Stomatal Development in Pisum sativum – Physiologia Plantarum Accepted Articles e13943 – https://doi.org/10.1111/ppl.13943https://onlinelibrary.wiley.com/doi/10.1111/ppl.13943 – (On our blog : https://plantstomata.wordpress.com/2023/06/14/psflp-regulates-the-genes-related-to-cell-cycle-division-during-the-stomatal-development-of-peas-and-participates-in-response-to-drought-stress/ )

Ninova D. (1970) – Anatomical indications of fume resistance in certain woody plants – Energy Technology Data Exchange (ETDEWEB) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/a-result-of-exposure-to-fumes-containing-s-from-a-bulgarian-factory-decreased-leaf-aeration-elongated-pallisade-cells-thicker-cuticles-and-more-stomata/ )

Nir I., Shohat H., Panizel I., Olszewski N., Aharoni A., Weiss D. (2017) – The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure – Plant Cell 29: 3186-3197 – https://doi.org/10.1105/tpc.17.00542http://www.plantcell.org/content/29/12/3186 – (On our blog : https://plantstomata.wordpress.com/2019/08/08/della-promotes-stomatal-closure-independently-of-its-effect-on-growth-2/ )

Nir I., Moschelion M., Weiss D. (2013) – The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato – Plant, Cell & Environment 37(1): 113-123 – https://doi.org/10.1111/pce.12135https://onlinelibrary.wiley.com/doi/10.1111/pce.12135 – On our blog : https://plantstomata.wordpress.com/2024/03/12/the-reduced-transpiration-can-be-attributed-to-reduced-stomatal-conductance/ )

Nishida K. (1963) – Studies on stomatal movement of Crassulacean plants in relation to the acid metabolism – Physiol. Plant. 16: 281–310 – https://doi.org/10.1111/j.1399-3054.1963.tb08309.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1963.tb08309.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-movement-and-acid-metabolism/ )

Niu M. L., Huang Y., Sun S. T., Sun J. Y., Cao H. S., Shabala S., Bie Z. L. (2018) – Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure – Journal of Experimental Botany 69: 3465–3476 – DOI: 10.1093/jxb/erx386 – https://www.ncbi.nlm.nih.gov/pubmed/29145593 – (On our blog : https://plantstomata.wordpress.com/2018/11/08/pumpkin-grafted-cucumber-plants-increase-their-salt-tolerance-by-controlling-na-exclusion-and-stomatal-closure/ )

Niu M., Sun S., Nawaz M. A., Sun J., Cao H., Lu J., Huang Y., Bie Z. (2019) – Grafting Cucumber Onto Pumpkin Induced Early Stomatal Closure by Increasing ABA Sensitivity Under Salinity Conditions – Front. Plant Sci., 11 November 2019 | https://doi.org/10.3389/fpls.2019.01290https://www.frontiersin.org/articles/10.3389/fpls.2019.01290/full – (On our blog : https://plantstomata.wordpress.com/2019/12/25/grafting-cucumber-onto-pumpkin-induced-early-stomatal-closure/ )

Niu M., Xie J., Chen C., Cao H., Sun J., Kong Q., Shabala S., Shabala L., Huang Y., Bie Z. (2018) – An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species – Journal of Experimental Botany 69(20): 4945–4960 – doi:10.1093/jxb/ery251 – https://watermark.silverchair.com/ery251.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAhcwggITB – (On our blog : https://plantstomata.wordpress.com/2018/10/08/stomata-and-salt-tissue-tolerance-in-cucurbita-species/ )

Nius E. (1931) – Untersuchungen über den Einfluß des Interzellularvolumens und der Öffnungsweite der Stomata auf die Luftwegigkeit der Laubblätter – Jb. f. wiss. Bot.74 –

Niyogi D., Raman S. (1997) – Comparison of Four Different Stomatal Resistance Schemes Using FIFE Observations – Journal of Applied Meteorology and Climatology 36(7): 903-917 – https://doi.org/10.1175/1520-0450(1997)036<0903:COFDSR>2.0.CO;2https://journals.ametsoc.org/view/journals/apme/36/7/1520-0450_1997_036_0903_cofdsr_2.0.co_2.xml – (On our blog : https://plantstomata.wordpress.com/2021/09/23/four-different-stomatal-resistance-schemes/ )

Niyogi D., Raman S., Alapaty K. (1998) – Comparison of Four Different Stomatal Resistance Schemes Using FIFE Data. Part II: Analysis of Terrestrial Biospheric–Atmospheric Interactions – Journal of Applied Meteorology and Climatology 37(10): – https://doi.org/10.1175/1520-0450(1998)037<1301:COFDSR>2.0.CO;2https://journals.ametsoc.org/view/journals/apme/37/10/1520-0450_1998_037_1301_cofdsr_2.0.co_2.xml – (On our blog : https://plantstomata.wordpress.com/2021/04/02/four-different-stomatal-resistance-schemes-using-fife-data-part-ii-analysis-of-terrestrial-biospheric-atmospheric-interactions/ )

Niyogi D., Raman S., Prabhu A., Kumar U., Joshi S. (1997) – Direct estimation of stomatal resistance for meteorological applications – Geophys. Res. Lett. 24: 1771–1774 –

Nobel P. S. (2001) – Ecophysiology of Opntia ficus-indicahttp://www.fao.org/3/Y2808E/y2808e06.htm – (On our blog : https://plantstomata.wordpress.com/2021/05/18/nocturnal-stomatal-opening-in-opuntia/ )

Nobel P. S., Hartsock T. L. (1979) – Environmental influences on open stomates of a crassulacean acid metabolism plant, Agave deserti – Plant Physiol. 63: 63–66 – PMCID: PMC542767 – PMID: 16660695 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC542767/ – (On our blog : https://plantstomata.wordpress.com/2019/04/04/environmental-influences-on-open-stomates-of-a-crassulacean-acid-metabolism-plant/ )

Nobori T. (2022) – Closing the gap: A plasma membrane H+-ATPase regulates stomatal closure – The Plant Cell, koac126 – https://doi.org/10.1093/plcell/koac126https://academic.oup.com/plcell/advance-article/doi/10.1093/plcell/koac126/6574911 – (On our blog : https://plantstomata.wordpress.com/2022/05/28/an-h-atpase-is-not-only-required-for-light-induced-stomatal-opening-but-for-also-aba-induced-stomatal-closure/ )

Nobutaka J. (1988) – Methionine significantly induced the stomatal opening – Scientific Bulletin of the Faculty of Education, Nagasaki University
39: 61–71 – https://nagasaki-u.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=7593&item_no=1&page_id=13&block_id=21 – (On our blog : https://plantstomata.wordpress.com/2022/03/30/methionine-significantly-induced-the-stomatal-opening/ )

Nogalska A., Ammendola M., Tylkowski B., Ambrogi V.,Garcia-Valls R. (2018) – Ambient CO2 adsorption via membrane contactors – Value of assimilation from air as nature stomata – Journal of Membrane Science 546: 41-49 – https://doi.org/10.1016/j.memsci.2017.10.007https://www.sciencedirect.com/science/article/abs/pii/S0376738817315594 – (On our blog : https://plantstomata.wordpress.com/2020/09/10/highly-improved-co2-absorption-from-ambient-air-in-comparison-to-commercially-available-membranes-artificial-stomata/ )

Nogués S., Allen D. J., Morison J. I. L., Baker N. R., (1999) – Characterization of stomatal closure caused by ultraviolet-B radiation – Plant Physiol. 121: 489–496 – https://doi.org/10.1104/pp.121.2.489http://www.plantphysiol.org/content/121/2/489?ijkey=d18dc382f6c7fea459566ef091e7e48e3a049479&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/06/27/a-direct-effect-of-uv-b-on-stomata/ )

Nolan R. H., Tarin T., Santini N. S., McAdam S. A. M., Ruman R., Eamus D. (2017) – Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought – Plant, Cell & Environment 40(12): 3122-3134 – https://doi.org/10.1111/pce.13077https://onlinelibrary.wiley.com/doi/10.1111/pce.13077 – (On our blog : https://plantstomata.wordpress.com/2023/03/31/plasticity-in-stomatal-regulation-in-an-isohydric-eucalyptus-camaldulensis-and-an-anisohydric-acacia-aptaneura-angiosperm-species-subject-to-repeated-drying-cycles/ )

Noland T. L., Kozlowski T. T. (1979) – Effect of SO2 on stomatal aperture and sulfur uptake of woody angiosperm seedlings – Canadian Journal of Forest Research – https://doi.org/10.1139/x79-010https://cdnsciencepub.com/doi/abs/10.1139/x79-010?journalCode=cjfr – (On our blog : https://plantstomata.wordpress.com/2021/12/23/the-effects-of-so2-on-stomatal-aperture-were-modulated-and-often-overridden-by-environmental-stresses-such-as-low-light-intensity-and-drought/ )

Nomura H., Komori T., Kobori M., Nakahira Y., Shiina T. (2008) – Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure – Plant J. 53: 988–998 – doi: 10.1111/j.1365-313X.2007.03390.x – https://www.ncbi.nlm.nih.gov/pubmed/18088326 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/thylakoid-membrane-localized-cas-is-essential-for-ca2ext-induced-ca2cyt-transients-and-stomatal-closure/ )

Nonami H., Schulze E.-D. (1989) – Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves – Planta 177: 35–46 – https://doi.org/10.1007/BF00392152 – https://link.springer.com/article/10.1007%2FBF00392152#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/09/evaporation-of-water-is-mainly-occurring-from-mesophyll-cells-and-peristomatal-transpiration-could-be-less-important/ )

Nonami H., Schulze E.‐D., Ziegler H. (1990) – Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential – Planta 183, 57–64 – doi: 10.1007/BF00197567 – https://www.ncbi.nlm.nih.gov/pubmed/24193533 – (https://plantstomata.wordpress.com/2017/01/26/stomatal-movement-in-response-to-air-humidity/ )

Noormets A., Gavazzi M. (2009) – Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation – Plant, Cell & Environment 32: 980–991 – doi: 10.1111/j.1365-3040.2009.01981.xhttps://www.academia.edu/13249562/Decoupling_the_influence_of_leaf_and_root_hydraulic_conductances_on_stomatal_conductance_and_its_sensitivity_to_vapour_pressure_deficit_as_soil_dries_in_a_drained_loblolly_pine_plantation – (On our blog : https://plantstomata.wordpress.com/2022/01/10/the-role-of-seasonal-variations-in-k-root-and-k-leaf-in-mediating-stomatal-control-of-transpiration-and-its-response-to-vapour-pressure-de%ef%ac%81cit-d-as/ )

Noormets A., Sober A., Pell E. J., Dickson R. E., Podila G. K., Sôber J., Isebrands J. G., Karnosky D. F. (2001) – Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3  – Plant Cell Environ. 24: 327–336 – doi: 10.1046/j.1365-3040.2001.00678.x  – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.4303&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-and-non-stomatal-limitation-to-photosynthesis-when-exposed-to-elevated-co2-and-or-o3/ )

Normasiwi S.1, Efendi M.1, Rahman W.1, Hafiizh E. A.2, Ermayanti T. M.2, Lelono R. A. 3, Yunarto N. 4 (2021) – Growth, stomata and trichome characteristics of diploid and tetraploid Artemisia annua L. plants – IOP Conf. Series: Earth and Environmental Science 762: 012022 – doi:10.1088/1755-1315/762/1/012022https://iopscience.iop.org/article/10.1088/1755-1315/762/1/012022/pdf – (On our blog : https://plantstomata.wordpress.com/2023/02/08/evaluation-of-growth-stomata-and-trichome-characteristics-of-diploids-compared-to-tetraploid-plants/ )

Norton H. W. (1938) – NOTE ON SMITH’S PAPER ON STOMA NUMBER – American Journal of Botany 25(3): 216 – https://doi.org/10.1002/j.1537-2197.1938.tb09206.x

Norwich BioScience Institutes (2011) – How plants space out the pores through which they breathe – Phys.Org. Cell & Microbiology – https://phys.org/news/2011-09-space-pores.html – (On our blog : https://plantstomata.wordpress.com/2022/02/01/how-plants-space-out-the-stomata/ )

Nouri F., Andalibi B. (2014) – Effect of cycocel on photosynthetic activity and essential oil of fennel (Foeniculum vulgare Mill.) under drought stress – Zīst/shināsī-i Giyāhī-i Irān 6(22): 91-104 – IRANIAN JOURNAL OF PLANT BIOLOGY (IJPB) – https://www.ingentaconnect.com/content/doaj/20088264/2014/00000006/00000022/art00009?crawler=true – (On our blog : https://plantstomata.wordpress.com/2022/09/06/to-study-the-effect-of-spraying-ccc-on-stomatal-conductivity/ )

Novello V., Gribaudo L., Roberts A. V. (1992) – Effects of paclobutrazol
and reduced humidity on stomatal conductance of micropropagated
grapevines – Acta Horticulturae 319: 65-70 – https://doi.org/10.17660/ActaHortic.1992.319.4https://www.ishs.org/ishs-article/319_4 – (On our blog : https://plantstomata.wordpress.com/2021/03/27/effects-of-paclobutrazol-and-reduced-humidity-on-stomatal-conductance/ )

Novick K. A., Miniat C. F., Vose J. M. (2016) – Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory – Plant, Cell & Environment 39(3): 583-596 – Station ID: JRNL-SRS-39 – doi: 10.1111/pce.12657 – https://www.srs.fs.fed.us/pubs/50416 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/a-model-linking-stomatal-optimization-and-cohesion-tension-theory-2/ )

Nowak A., Wröbel J. (2015) – Changes in the physiological activity of soybean (Glycine max L. Merr.) under the influence of exogenous growth regulators – Acta Agrobotanica 68(2) – DOI: 10.5586/aa.2015.012 https://pbsociety.org.pl/journals/index.php/aa/article/view/aa.2015.012/5647 – (On our blog : https://plantstomata.wordpress.com/2022/08/26/the-influence-of-exogenous-growth-regulators-on-stomatal-conductance-and-substomatal-co2-concentration/ )

Nüesch B. (1966) – The identification of tetraploids in red clover by the number of chloroplasts in the stomata – International Grasslands Congress proceedings 1Oth. – 661-663 –

Nunes T. D. G., Berg L. S., Slawinska M. W., Zhang D., Redt L., Sibout R., Vogel J. P., Laudencia-Chingcuanco, Jesenofsky B., Lindner H., Raissig M. T. (2023) – Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon – Current Biology 33(9): 1844-1854 – https://doi.org/10.1016/j.cub.2023.03.089https://www.cell.com/current-biology/fulltext/S0960-9822(23)00447-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982223004475%3Fshowall%3Dtrue – (On our blog : BdPOX promotes grass leaf prickle hair cell growth, which limits stomatal size)

Nunes T. D. G., Slawinska M. W., Lindner H., Raissig M. T. (2021) – Quantitative effects of environmental variation on stomatal anatomy and gas exchange in a grass model – Quantitative Plant Biology – doi: 10.1017/qpb.2021.19 – (bioRxiv https://doi.org/10.1101/2021.11.10.468085) – https://www.cambridge.org/core/journals/quantitative-plant-biology/article/quantitative-effects-of-environmental-variation-on-stomatal-anatomy-and-gas-exchange-in-a-grass-model/3FBB51AADBD8B7CFCDA22069C2EF8C25 – (On our blog : https://plantstomata.wordpress.com/2022/03/29/systemic-effects-and-variability-in-stomatal-anatomy-should-be-accounted-for-in-long-term-gas-exchange-studies/ )

Nunes T. D. G., Zhang D., Raissig M. T. (2019) – Form, development and function of grass stomata – The Plant Journal 101(4): 780-799 – doi: 10.1111/tpj.14552https://onlinelibrary.wiley.com/doi/10.1111/tpj.14552 – (On our blog : https://plantstomata.wordpress.com/2021/02/07/the-investigation-of-functionally-superior-grass-stomata-might-reveal-routes-to-improve-water%e2%80%90stress-resilience/ )

Nunes-Nesi A., Carrari F., Gibon Y., Sulpice R., Lytovchenko A., Fisahn J.,  Graham J., Ratcliffe R. G, Sweetlove L. J, Fernie A. R. (2007)  Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function – Plant J. 50: 1093–1106 – doi: 10.1111/j.1365-313X.2007.03115.x https://www.ncbi.nlm.nih.gov/pubmed/17461782 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/deficiency-of-mitochondrial-fumarase-activity-impairs-photosynthesis-via-an-effect-on-stomatal-function/ )

Nunn A. J, Cieslik S., Metzger U., Wieser G., Matyssek R. (2010) – Combining sap flow and eddy covariance approaches to derive stomatal and non stomatal O3 fluxes in a forest stand – Environ.Poll. 158: 2014–2022 – PMID: 20056523 – DOI: 10.1016/j.envpol.2009.11.034 – Epub 2009 Dec 28 – https://pubmed.ncbi.nlm.nih.gov/20056523/ – (On our blog : https://plantstomata.wordpress.com/2022/12/04/stomatal-and-non-stomatal-o3-%ef%ac%82uxes-in-a-forest-stand/ )

Nurten AVCIA, AYGÜN A. (2014) – Determination ofStomatal Density and Distribution on Leaves of Turkish Hazelnut (Corylus avellana L.) Cultivars – 20: 454459 – https://doi.org/10.15832/tbd.27845

Nussbaum S., Remund J., Rihm B., Mieglitz K., Gurtz J., Fuhrer J. (2003) – High-resolution spatial analysis of stomatal ozone uptake in arable crops and pastures – Environ Int. 29(2-3): 385-392 – doi: 10.1016/S0160-4120(02)00174-5 – PMID: 12676231 – https://pubmed.ncbi.nlm.nih.gov/12676231/ – (On our blog : https://plantstomata.wordpress.com/2023/01/07/to-estimate-the-ozone-risk-for-crops-using-a-flux-based-approach-may-lead-to-results-that-differ-substantially-from-those-obtained-with-a-concentration-based-approach/ )

Nutman F. J. (1937) – Studies of the physiology of Coffea arabica. II. Stomatal movement in relation to photosynthesis under natural conditions – Ann. Bot. n.S. 1(4): 682-693 – https://doi.org/10.1093/oxfordjournals.aob.a083497https://academic.oup.com/aob/article-abstract/1/4/681/90618?redirectedFrom=fulltext – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64987 )


Nyomarky K. M., Szasz J. (1980) – New method for study of injurious effect of dust pollution on leaves – Energy Technology Data Exchange (ETDEWEB) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/09/dust-clogged-stomata/ )

Oahin T., Soylu A. (1991) – A research on the leaf morphology and stomata frequency of some important selected chestnut cultivars – Uluda University Graduate School of Natural Sciences – Scientific Report Series: 10 (Turkish,

Obermeyer G., Armstrong F., Blatt M. R. (1994) – Selective block by alpha-dendrotoxin of the K+ inward rectifier at the Vicia guard cell plasma membrane – J. Membr. Biol. 137(3): 249-259 – doi: 10.1007/BF00232593https://pubmed.ncbi.nlm.nih.gov/8182733/ – (On our blog : https://plantstomata.wordpress.com/2020/08/29/selective-block-by-alpha-dendrotoxin-of-the-k-inward-rectifier-at-the-vicia-guard-cell-plasma-membrane/ )

Obiremi E. O., Oladele F. A. (2001) – Water-conserving stomatal systems in selected Citrus species – S. Afr. J. Bot. 67(2): 258 –260 – https://ac.els-cdn.com/S0254629915311273/1-s2.0-S0254629915311273-main.pdf?_tid=48eca991-8fe4-4743-85fc-5127236bee40&acdnat=1528555820_e082676094418811436c37d6472866f2 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/water-conserving-stomatal-systems-in-citrus/ )

Obulareddy N., Melotto M. (2013) – Do JAZs restrict/assist pathogen entry via stomata? – American Phytopathological Society APS-MSA Joint Meeting 2013, Austin, Texas – https://www.apsnet.org/meetings/Documents/2013_Meeting_Abstracts/aps2013abO72.htm – (On our blog : https://plantstomata.wordpress.com/2020/11/21/the-role-of-jaz-proteins-in-stomatal-and-apoplastic-immunity-against-bacterial-diseases/ )

Obulareddy N., Panchal S., Melotto M. (2010) – Towards understanding coronatine-dependent suppression of innate immunity in Arabidopsis guard cells – Phytopathology 100(6): S91-S91 –

Obulareddy N., Panchal S., Melotto M. (2013) – Guard cell purification and RNA isolation suitable for high throughput transcriptional analysis of cell- type responses to biotic stresses – Mol. Plant Microbe Interact. 26: 844–849 – doi: 10.1094/MPMI-03-13-0081-TA – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982617/ – (On our blog : https://plantstomata.wordpress.com/2018/06/09/guard-cell-purification-and-rna-isolation/ )

O’Carrigan A., Babla M., Wang F., Liu X., Mak M., Thomas R., Bellotti B., Chen Z. H. (2014) – Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic
light treatments – Plant Physiol. Biochem. 82: 105–115 –
doi:10.1016/j.plaphy.2014.05.012https://www.sciencedirect.com/science/article/abs/pii/S0981942814001776?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/01/05/stomatal-guard-cell-length-width-and-volume-all-showed-highly-significant-positive-correlations-to-gs-tr-and-negative-links-to-vpd/ )

O’Carrigan A., Hinde E., Lu N., Xu X.-Q., Duan H., Huang G., Mak M., Belotti B., Chen Z.-H. (2014) – Effects of light irradiance on stomatal regulation and growth of tomato – Environ. Exp. Bot. 98: 65–73 – doi: 10.1016/j.envexpbot.2013.10.007  – http://www.sciencedirect.com/science/article/pii/S0098847213001512 – (https://plantstomata.wordpress.com/2017/01/26/stomata-as-physiological-markers-for-assessment-of-performance-of-plants/ )

Ocheltree T. W., Nippert J. B., Prasad P. V. V. (2012) – Changes in stomatal conductance along grass blades reflect changes in leaf structure – Plant, Cell & Environment 35: 1040-1049 – DOI: 10.1111/j.1365-3040.2011.02470.xhttps://pubmed.ncbi.nlm.nih.gov/22146058/ – (On our blog : https://plantstomata.wordpress.com/2021/12/26/the-increase-in-stomatal-conductance-was-correlated-with-the-decreased-path-length-through-the-leaf-mesophyll/ )

Ocheltree T. W., Nippert J. B., Prasad P. V. (2014) – Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance – Plant Cell Environ. 37(1): 132-139 – doi: 10.1111/pce.12137 – Epub 2013 Jun 20 – PMID: 23701708 – https://pubmed.ncbi.nlm.nih.gov/23701708/ – (On our blog : https://plantstomata.wordpress.com/2021/12/26/stomatal-responses-to-changes-in-vapor-pressure-deficit/ )

Ocheltree T. W., Nippert J. B., Prasad P. V. (2016) – A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation – New Phytol. 210(1): 97-107 – doi: 10.1111/nph.13781 – Epub 2015 Dec 18 – https://www.ncbi.nlm.nih.gov/pubmed/26680276 – (On our blog : https://plantstomata.wordpress.com/2019/09/03/a-trade-off-between-safety-and-efficiency-in-the-hydraulic-system-of-grass-leaves-which-can-be-decoupled-from-stomatal-conductance-and-other-leaf-level-functions/ )

Ochoa M. E., Sack L., Buckley T. N., Henry C., Medeiros C. , Pan R., John G. P.  (2022) – How does stomatal anatomy influence leaf conductance from minimum to maximum? Causal relationships and meta-analysis – Botany Alaska 2022 – http://www.botanyconference.org/engine/search/index.php?func=detail&aid=763 – (On our blog : https://plantstomata.wordpress.com/2023/01/22/stomatal-anatomy-influences-leaf-conductance-from-minimum-to-maximum/ )

O’Dell R. A. , Taheri M., Kabel R. L. (1977) – A Model for Uptake of Pollutants by Vegetation – Journal of the Air Pollution Control Association 27(11): 1104-1109 – DOI: 10.1080/00022470.1977.10470533https://www.tandfonline.com/doi/pdf/10.1080/00022470.1977.10470533 – (On our blog : https://plantstomata.wordpress.com/2021/09/19/in-a-model-for-uptake-of-pollutants-the-leaf-physiology-is-the-determinant-of-the-stomatal-resistance-rs/ )

Odhiambo L. O., Irmak S. (2015) – Relative Evaporative Losses and Water Balance in Subsurface Drip and Center Pivot–Irrigated Soybean Fields – Journal of Irrigation and Drainage Engineering 141(11): – https://ascelibrary.org/doi/10.1061/%28ASCE%29IR.1943-4774.0000907 – (On our blog : https://plantstomata.wordpress.com/2022/01/09/the-variable-stomatal-resistances-and-relative-evaporative-losses/ )

Ogata T., Nagatoshi Y., Yamagishi N., Yoshikawa N., Fujita Y. (2017) – Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean – Plos One 12(4): e0175650 – https://doi.org/10.1371/journal.pone.0175650https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175650 – (On our blog : https://plantstomata.wordpress.com/2020/04/17/the-stomatal-response-to-aba-and-drought-resistance/ )

Ogawa T. (1980) – Synergistic Action of Red and Blue Light on Stomatal Opening of Vicia faba Leaves – In: Senger H. (eds) The Blue Light Syndrome. Proceedings in Life Sciences. Springer, Berlin, Heidelberg – https://doi.org/10.1007/978-3-642-67648-2_57https://link.springer.com/chapter/10.1007/978-3-642-67648-2_57#citeas – (On our blog : https://plantstomata.wordpress.com/2021/12/08/there-are-two-different-effects-of-light-on-stomata/ )

Ogawa T. (1981) – Blue light response of stomata with starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cells under background illumination with red light – Plant Sci. Lett. 22: 103–108 – https://doi.org/10.1016/0304-4211(81)90131-0https://www.sciencedirect.com/science/article/pii/0304421181901310 – (On our blog : https://plantstomata.wordpress.com/2018/11/10/blue-light-response-of-stomata-is-observable-only-when-photosynthetic-mechanism-is-operating-with-red-light/ )

Ogawa T., Ishikawa H., Shimada K., Shibata K. (1978) – Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. – Planta 142: 61– 65 – https://doi.org/10.1007/BF00385121https://link.springer.com/article/10.1007%2FBF00385121#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/12/synergistic-action-of-red-and-blue-light-and-action-spectra-for-malate-formation-in-stomata-2/ )

Ogaya R., Llorens L., J. Peñuelas J. (2011)  Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime – Acta Oecologica 37: 381-385 – http://www.creaf.uab.es/Global-Ecology/Pdfs_UEG/2011%20ActaOecol.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/20/density-and-length-of-stomata-in-living-fossil-trees-2/ )

Ogbonna C. E., Nwafor F. I., Nweze N. O. (2019) – Dust Pollution Reduced Stomatal Conductance and Photosynthetic Pigments of Selected Medicinal Plants Growing at Lokpa Ukwu Quarry Site in Abia State, Nigeria – Annual Research & Review in Biology 34(6): 1-11- DOI: 10.9734/ARRB/2019/v34i630173https://www.researchgate.net/publication/339956533_Dust_Pollution_Reduced_Stomatal_Conductance_and_Photosynthetic_Pigments_of_Selected_Medicinal_Plants_Growing_at_Lokpa_Ukwu_Quarry_Site_in_Abia_State_Nigeria – (On our blog : https://plantstomata.wordpress.com/2023/05/01/dust-pollution-reduced-stomatal-conductance-and-photosynthetic-pigments-of-selected-medicinal-plants/ )

Ogbonna C. E., Okeke C. U., Ugbogu O. C., Otuu F. C. (2013) – Leaf epidermal analysis of someplants in the Ishiagu lead-zinc mining area of Southeastern Nigeria – Int J Biosci. (11): 122-128 –

Ogle K., Lucas R. W., Bentley L. P, Cable J. M., Barron-Gafford G. A., Griffith A., Ignace D., Jenerette G. D., Tyler A., Huxman T. E., Loik M. E.,
Stanley D. Smith S. D., Tissue D. T. (2012)
– Differential daytime and nighttime stomatal behavior in plants from North American deserts – New Phytologist 194: 464–476 – DOI: 10.1111/j.1469-8137.2012.04068.x  – https://www.ncbi.nlm.nih.gov/pubmed/22348404 – (On our blog : https://plantstomata.wordpress.com/2018/11/09/differential-daytime-and-nighttime-stomatal-behavior/ )

Ogle K., Reynolds J. F. (2002) – Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata – Plant, Cell and Environment 25: 909–921 – https://doi.org/10.1046/j.1365-3040.2002.00876.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2002.00876.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/coupling-of-stomatal-conductance-and-photosynthesis/ )

Ogundare C. S., Saheed S. A. (2012) – Foliar epidermal characters and petiole anatomy of four species of Citrus L. (Rutaceae) from South-Western Nigeria – Bangladesh J. Plant Taxon. 19(1): 25-31 – https://www.academia.edu/27943474/FOLIAR_EPIDERMAL_CHARACTERS_AND_PETIOLE_ANATOMY_OF_FOUR_SPECIES_OF_CITRUS_L._RUTACEAE_FROM_SOUTH-WESTERN_NIGERIA?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2019/09/24/stomata-in-citrus-rutaceae-2/ )

Ogunkunle C. O., Abdulrahaman A. A., Fatoba P. O. (2013) – Influence of cement dust pollution on leaf epidermal features of Pennisetum purpureum and Sida acuta – Environmental and Experimental Biology 11: 73–79 – https://www.academia.edu/24287659/Influence_of_Cement_Dust_Pollution_on_Leaf_Epidermal_Features_of_Pennisetum_purpureum_and_sida_acuta?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2019/08/09/influence-of-cement-dust-pollution-on-stomata/ )

Oguntimehin I., Eissa F., Sakugawa H. (2010) – Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants – Chemosphere 78(7):877-884 – doi: 10.1016/j.chemosphere.2009.11.030– Epub 2009 Dec 14 – PMID: 20006894 – https://pubmed.ncbi.nlm.nih.gov/20006894/ – (On our blog : https://plantstomata.wordpress.com/2022/09/23/negative-effects-of-fluoranthene-on-the-ecophysiology-and-the-stomatal-conductance-of-tomato-plants/ )

Oh J. E., Kwon Y., Kim J. H., Noh H., Hong S.-W., Lee H. (2011) – A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress – Plant Mol. Biol. 77: 91–103 – doi: 10.1007/s11103-011-9796-7 – Epub 2011 Jun 3 – PMID: 21637967 – https://pubmed.ncbi.nlm.nih.gov/21637967/ – (On our blog : https://plantstomata.wordpress.com/2023/03/22/myb60-plays-a-dual-role-in-abiotic-stress-responses-in-arabidopsis-through-its-involvement-in-stomatal-regulation-and-root-growth/ )

Oh Y. B., Lee D. J., Han H. S., Park S. H., Park R. K. (1988) – Varietal differences in the frequency, size of stomata, and influence of nitrogen and low temperature on stomatal movement of rice seedlings – Korean Res Rep RDA 30: 39–45 – http://agris.fao.org/agris-search/search.do?recordID=KR8936147 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/varietal-differences-in-the-frequency-size-of-stomata-and-influence-of-nitrogen-and-low-temperature-on-stomatal-movement-of-rice-seedlings/ )

Ohashi-Ito K., Bergmann D. C. (2006) – Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal developmennt – Plant Cell 18: 2493-2505 – https://doi.org/10.1105/tpc.106.046136https://academic.oup.com/plcell/article/18/10/2493/6115417?login=false – (On our blog : https://plantstomata.wordpress.com/2022/12/21/fama-controls-the-final-proliferation-differentiation-switch-during-stomatal-developmennt/)

Ohki S., Takeuchi M., Mori M. (2011) – The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones – Nat. Commun. 2: 512 – https://doi.org/10.1038/ncomms1520https://www.nature.com/articles/ncomms1520#citeas – (On our blog : https://plantstomata.wordpress.com/2021/07/09/the-structure-function-relationships-of-epfs-by-integrating-nmr-and-semi-in-vitro-stomagen-experiments/ )

Ohsumi A., Hamasaki A., Nakagawa H., et al. (2008) – Response of Leaf Photosynthesis to Vapor Pressure Difference in Rice (Oryza sativa L) Varieties in Relation to Stomatal and Leaf Internal Conductance – Plant Production Science 11(2): 184-191 – DOI: 10.1626/pps.11.184 – https://www.tandfonline.com/doi/pdf/10.1626/pps.11.184 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-and-leaf-internal-conductance/ )

Ohsumi A., Hamasaki A., Nakagawa H., Yoshida H., Shiraiwa T., Horie T. (2007) – A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance – Ann Bot-London 99: 265–273 – https://doi.org/10.1093/aob/mcl253 –https://academic.oup.com/aob/article/99/2/265/2389881 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/variation-of-leaf-photosynthetic-rate-based-on-leaf-nitrogen-content-and-stomatal-conductance/ )

Ohsumi A., Kanemura T., Homma K., Horie T., Shiraiwa T. (2007) – Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.) – Plant Prod Sci 10: 322–328 – https://doi.org/10.1626/pps.10.322 – https://www.tandfonline.com/doi/abs/10.1626/pps.10.322 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-conductance-stomatal-density-and-length/ )

Ohya T., Shimazaki K. I. (1989) – Profiles of proteins in guard cell and mesophyll protoplasts from Vicia faba L. fractionated by sds polyacrylamide gel electrophoresis – Plant and Cell Physiology 3(5): 783-788 – https://eurekamag.com/research/007/692/007692531.php – (On our blog : https://plantstomata.wordpress.com/2021/09/21/profiles-of-proteins-in-stomatal-guard-cell-protoplasts-fractionated-by-sds-polyacrylamide-gel-electrophoresis/ )

Okada M., Ito S., Marsubara A., Iwakura I., Egoshi S., Ueda M. (2009) – Total syntheses of coronatine by exo-selective Diels-Alder reaction and their biological activities on stomatal opening – Org. Biolomol. Chem. 7: 3065–73 – doi:10.1039/b905159ghttps://www.tandfonline.com/doi/full/10.1080/15592324.2017.1362517 – (On our blog : https://plantstomata.wordpress.com/2020/04/12/the-stereo-structure-of-coronatine-is-very-important-for-its-stomatal-opening-activity/ )

Okamoto M., Peterson F. C., Defries A., Park S.-Y., Endo A., Nambara E., Volkman B. F., Cutler S. R. (2013) – Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance – PNAS 110(29): 12132-12137 – https://doi.org/10.1073/pnas.1305919110https://www.pnas.org/content/110/29/12132 – (On our blog : https://plantstomata.wordpress.com/2020/05/04/activation-of-dimeric-aba-receptors-elicits-guard-cell-closure/ )

Okamoto M., Tanaka Y., Abrams S. R., Kamiya Y., Seki M., Nambara E. (2009) – High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis – Plant Physiol. 149(2): 825-834 – doi: http://dx.doi.org/10.1104/pp.108.130823 –   http://dx.doi.org/10.1104/pp.108.130823 – (On our blog :  https://plantstomata.wordpress.com/2016/10/31/high-humidity-induces-aba-8%E2%80%B2-hydroxylase-in-stomata/ )

Okuma E., Jahan M.S., Munemasa S., Hossain M.A., Muroyama D., Islam M.M., Ogawa K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Mori I.C., Murata Y. (2011) – Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis – J. Plant Physiol. 168: 2048–2055 – doi: 10.1016/j.jplph.2011.06.002http://www.sciencedirect.com/science/article/pii/S0176161711002768 – (On our blog : https://plantstomata.wordpress.com/2016/10/31/aba-induced-stomatal-closure-by-glutathione/ )

O’Leary B. M. (2022) – Guarding the gates: TOR mediates guard cell starch degradation to control stomatal opening – The Plant Cell 34(3): 953–954 – https://doi.org/10.1093/plcell/koab313https://academic.oup.com/plcell/article/34/3/953/6501453 – (On our blog : https://plantstomata.wordpress.com/2022/03/19/a-role-for-tor-in-controlling-stomatal-opening/ )

Olioso A., Bethenod O., Rambal S., Thamitchian M. (1995) – Comparison of empirical leaf photosynthesis and stomatal conductance models – In 10th International Photosynthesis Congress (p. 4). Montpellier, France –

Oliveira E. C. de, Miglioranza É. (2013) – Dimensões e densidade estomática em diferentes variedades de mandioca – Cultivando o Saber, 6(4): 201-213 –

Oliveira E. C., Miglioranza E., Meschede D. K., Andrade F. A., Paccola M. S. F., Andrade C. G. T. J. (2015) – Stomatal density and distribution in different cassava genotypes – African Journal of Agricultural Research 10(30), 3008-3015 – https://doi.org/10.5897/AJAR2015.9861https://academicjournals.org/journal/AJAR/article-abstract/FB5ACB954472 – (On our blog : https://plantstomata.wordpress.com/2021/08/03/functionality-was-inversely-proportional-to-stomatal-density-with-a-negative-correlation-between-stomatal-density-and-the-polar-diameter-of-stomata-2/ )

Oliveira V. M. deI, Forni-Martins E. R.I, Magalhães P. M.II, Alves M. N.II, (2004) – Chromosomal and morphological studies of diploid and polyploid cytotypes of Stevia rebaudiana (Bertoni) Bertoni (Eupatorieae, Asteraceae) – Plant Genetics – Genet. Mol. Biol. 27(2)  – https://doi.org/10.1590/S1415-47572004000200015https://www.scielo.br/j/gmb/a/T6HvXxmGBFCwSPvgv7qXCJy/?lang=en – (On our blog : https://plantstomata.wordpress.com/2022/09/13/a-positive-correlation-between-the-level-of-ploidy-and-all-of-the-morphological-features-the-higher-the-ploidy-number-the-greater-the-size-of-the-pollen-and-the-stomata/ )

Oliver R. J., Mercado L. M., Clark D. B., Huntingford C., Taylor C. M., Vidale P. L., McGuire P. C., Todt M., Folwell S., Shamsudheen Semeena V., Medlyn B. E. (2022) – Improved representation of plant physiology in the JULES-vn5.6 land surface model: Photosynthesis, stomatal conductance and thermal acclimation – Geosci. Model Dev. Discuss. – https://doi.org/10.5194/gmd-15-5567-2022https://gmd.copernicus.org/articles/15/5567/2022/ – (On our blog : https://plantstomata.wordpress.com/2022/04/24/improved-representation-of-plant-physiology-in-the-jules-vn5-6-land-surface-model-photosynthesis-stomatal-conductance-and-thermal-acclimation/ )

Oljača R., Govedar Z., Hrkić Z. (2008) – Air pollution effects on percentage of stomata in leaves at tested species horse chestnut and birch in Banja Luka conditions. – Bulletin of the Faculty of Forestry 98: 155-166 – http://www.doiserbia.nb.rs/img/doi/0353-4537/2008/0353-45370898155O.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/air-pollution-effects-on-percentage-of-stomata-in-trees/ )

Olmez H. A., Ak B. E., Gulcan R. (2006) -The relationship between stomata density and fruit quality of some apricot varieties growing in different altitudes in Malatya province – Acta Hort 701: 163-166 – DOI:  10.17660/ActaHortic.2006.701.24https://www.researchgate.net/publication/283866411_The_relationship_between_stomata_density_and_fruit_quality_of_some_apricot_varieties_growing_in_different_altitudes_in_Malatya_province – (On our blog : https://plantstomata.wordpress.com/2022/12/21/stomata-numbers-in-leaves-of-apricot-cultivars-and-fruit-weight/ )

Oloffnoblnu E. O., Oladele F. A. (1997) – Stomatal complex types and
transpiration rate in some afforestation tree species – BiOSCience
Research Communications 9: 121-126 –

Olowokudejo J. D., Pereira-Sheteolu O. (1988) – The taxonomic value of epidermal characters in the genus Ocimum (Lamiaceae) – Phytomorphology 38 (2-3): 147-158 –

Olsen R. L., Pratt R. B., Gump P., Kemper A., Tallman G. (2002) – Red light activates a chloroplast-dependent ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. – New Phytol. 153 : 497–508 – https://doi.org/10.1046/j.0028-646X.2001.00337.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.0028-646X.2001.00337.x – (On our blog : https://plantstomata.wordpress.com/2018/10/27/stomatal-chloroplasts-transduce-reduced-co2-activating-stomatal-opening-through-an-ion-uptake-mechanism-that-depends-on-chloroplastic-photosynthetic-electron-transport/ )

Olsson T., Leverenz J. W. (1994) – Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve – Plant, Cell and Environment 17: 701– 710 – https://doi.org/10.1111/j.1365-3040.1994.tb00162.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1994.tb00162.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/non-uniform-stomatal-closure-2/ )

Olszyk D. M., Tibbitts T. W. (1981) – Stomatal response and leaf injury of Pisum sativum L. with SO2 and O3 exposures – Plant Physiol. 67: 545-549 – doi: 10.1104/pp.67.3.539https://www.ncbi.nlm.nih.gov/pmc/articles/PMC425721/ – (On our blog : https://plantstomata.wordpress.com/2022/12/21/stomatal-response-with-so2-and-o3-exposures/ )

Omasa K, Hashimoto Y., Aiga I. (1983) – Observation of stomatal movements of intact plants using an image instrumentation system with a light microscope – Plant and Cell Physiology 24: 281-288 – https://doi.org/10.1093/pcp/24.2.281https://academic.oup.com/pcp/article-abstract/24/2/281/1827640?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/05/09/observation-of-stomatal-movements-of-intact-plants-using-an-image-instrumentation-system-with-a-light-microscope/ )

Omasa K., Hashimoto Y., Kramer P. J., Strain B. R., Aiga I., Kondo J. (1985) – Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO2 – Plant Physiology 84: 748–752 (79: 153–158) –doi:10.1104/pp.79.1.153) –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1074843/ – (On our blog : https://plantstomata.wordpress.com/2016/10/31/continuous-observation-of-individual-stomata-under-the-microscope/ )

Omasa K., Maruyama Y. (1990) – Study on changes in stomata and their surroundings cells using a nondestructive light microscope system: responses to changes in water absorption through roots – J. Agric. Meteorol. 45: 259–264 (in Japanese with English summary) –

Omasa K., Onoe M. (1984) – Measurement of stomatal aperture by digital image processing – Plant and Cell Physiology 25: 1379–1388 – https://doi.org/10.1093/oxfordjournals.pcp.a076848  –https://academic.oup.com/pcp/article-abstract/25/8/1379/1811066/Measurement-of-Stomatal-Aperture-by-Digital-Image?ijkey=cda0d53df21790a0c1f7259b1d57ade20030bf32&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/01/29/digital-image-processing-for-measurement-of-stomatal-aperture/ )

Omi S. K., Yoder B., Rose R. (1991) – Fall lifting and long-term freezer storage of ponderosa pine seedlings: effects on post-storage leaf water potential, stomatal conductance, and root growth potential – Tree Physiol 8: 315–325 – DOI: 10.1093/treephys/8.3.315https://www.ncbi.nlm.nih.gov/pubmed/14972882?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/06/05/fall-lifting-and-long-term-freezer-storage-effects-on-stomatal-conductance/ )

Omrod D. J. (1966) – Surface anatomy of weed leaves with particular reference to stomata – MScThesis/Dissertation – Vancouver : University of British Columbia Library – http://hdl.handle.net/2429/37340https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/831/items/1.0104747 – (On our blog : https://plantstomata.wordpress.com/2021/11/17/stomata-in-weed-leaves/ )

Omrod D. J., Renney A. J. (1968) – A survey of weed leaf stomata and trichomes – Canadian Journal of Plant Science 48(2): 197-209 – https://doi.org/10.4141/cjps68-034https://www.nrcresearchpress.com/doi/10.4141/cjps68-034 – (On our blog : https://plantstomata.wordpress.com/2020/05/12/weed-leaf-stomata-and-trichomes/ )

Ono K., Maruyama A., Kuwagata T., Mano M., Takimoto T., Hayashi K., Hasegawa T., Miyata A. (2013) – Canopy‐scale relationships between stomatal conductance and photosynthesis in irrigated rice – Global Change Biology 19(7): – https://doi.org/10.1111/gcb.12188https://onlinelibrary.wiley.com/doi/10.1111/gcb.12188 (On our blog : https://plantstomata.wordpress.com/2019/10/15/canopy%e2%80%90scale-relationships-between-stomatal-conductance-and-photosynthesis/ )

Onoe T., Tani T., Minagawa S., Sagawa H. (1987) – Ultrastructural changes of stomata in relation to specificity of rust fungi – Molecular Determinants of Plant Diseases – Nishimura S. et al (Eds.) – Jap. Sci. Soc. Tokyo /Springer Verlag, Berlin 29-45 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-rust-infection/ )

Onuminya T. O., Adediran I. G. (2018) – Foliar epidermal morphology of some members of subfamily Dodonaeoideae-Sapindaceae – Pak. J. Bot . 50(5): 1865-1869 – https://www.academia.edu/38617926/FOLIAR_EPIDERMAL_MORPHOLOGY_OF_SOME_MEMBERS_OF_SUBFAMILY_DODONAEOIDEAE_-_SAPINDACEAE?email_work_card=title – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomata-in-dodonaeoideae-sapindaceae/ )

Onwueme I. C., Johnston M. (2000) – Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro – Experimental Agriculture 36: 509-516. – https://doi.org/10.1017/S0014479700001071 – https://www.cambridge.org/core/journals/experimental-agriculture/article/influence-of-shade-on-stomatal-density-leaf-size-and-other-leaf-characteristics-in-the-major-tropical-root-crops-tannia-sweet-potato-yam-cassava-and-taro/64ABAA0DDD9E69191D1EC2AD23977F0E – (On our blog : https://plantstomata.wordpress.com/2017/01/29/stomatal-density-in-tropical-root-crops/ )

Ooba M., Takahashi H. (2003) – Effect of asymmetric stomatal response on gas-exchange dynamics – Ecological Modelling 164: 65–82  – http://dx.doi.org/10.1016/S0304-3800(03)00012-7 – http://www.sciencedirect.com/science/article/pii/S0304380003000127 – (On our blog : https://plantstomata.wordpress.com/2017/01/29/asymmetric-stomatal-response-on-gas-exchange-dynamics/ )

Ooi L. (2018) – Studies on stomatal response to sulphur dioxide in Arabidopsis – Graduate School of Environmental and Life Science (Doctor’s Course) – Okayama University – https://ousar.lib.okayama-u.ac.jp/files/public/5/56304/2018121215334563824/K0005844_fulltext.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/25/so2-promotes-stomatal-opening-in-the-light-while-provoking-cell-death-in-the-guard-cells-at-the-same-time/ )

Ooi L., Matsuura T., Munemasa S., Murata Y., Katsuhara M., Hirayam T., Mori I. C. (2018) – The Mechanism of SO2‐Induced Stomatal Closure Differs from O3and CO2 Responses and Is Mediated by Non‐Apoptotic Cell Death in Guard Cells – https://doi.org/10.1111/pce.13406 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13406?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/21/the-mechanism-of-so2%e2%80%90induced-stomatal-closure/ )  

Oosterhuis D. M., Walker S. (1987) – Stomatal resistance measurement as an indicator of water deficit stress in wheat and soybeans – S. Afr. J. Plant Soil 4(3): 1132-120 – https://doi.org/10.1080/02571862.1987.10634956http://www.tandfonline.com/doi/abs/10.1080/02571862.1987.10634956 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomatal-resistance-measurement-is-a-potentially-useful-and-reliable-plant-indicator-of-crop-water-stress/ )

Op de Beeck M., Löw M., Verbeeck H., Deckmyn G. (2008) – Suitability of a Combined Stomatal Conductance and Photosynthesis Model for Calculation of Leaf‐Level Ozone Fluxes – Plant Biology 9(2) – https://doi.org/10.1055/s-2006-924635https://onlinelibrary.wiley.com/doi/abs/10.1055/s-2006-924635 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/combined-stomatal-conductance-and-photosynthesis-model-for-calculation-of-leaf%e2%80%90level-ozone-fluxes/ )

Orbit Biotech (x) – Stomatal movements – https://orbitbiotech.com/stomatal-movements-stomatal-movements-starch-stewards-hypothesis/ – (On our blog : https://plantstomata.wordpress.com/2021/11/20/stomatal-movements-2/ )

Ördog A., Wodala B., Rozsavölgyi T., Tari I., Horvath F. (2013) – Regulation of guard cell photosynthetic electron transport by nitric oxide – Journal of Experimental Botany 64: 1357-1366 – doi: 10.1093/jxb/ers397 – Epub 2013 Jan 30 – https://pubmed.ncbi.nlm.nih.gov/23364939/ – (On our blog : https://plantstomata.wordpress.com/2022/12/22/stomatal-guard-cell-photosynthetic-electron-transport-by-nitric-oxide/ )

Oren R., Phillips N., Ewers B. E., Pataki D. E., Megonigal J. P. (1999) – Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest – Tree Physiol 19: 337–347 – PMID: 12651555 – https://www.ncbi.nlm.nih.gov/pubmed/12651555 – (On our blog : https://plantstomata.wordpress.com/2018/12/20/sap-flux-scaled-transpiration-responses-to-light-vapor-pressure-deficit-and-leaf-area-reduction/ )

Oren R., Sperry J. S., Ewers B. E., Pataki D. E., Phillips N. (2000) – The effect of defoliation by hurricane on stomatal response tp vapour pressure deficit in Taxodium distichum L. – Oecologia –

Oren R., Sperry J. S., Ewers B. E., Pataki D. E., Phillips N., Megonigal J. P. (2001) – Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects – Oecologia 126: 21–29 – doi:10.1007/s004420000497  – http://link.springer.com/article/10.1007%2Fs004420000497 – (https://plantstomata.wordpress.com/2017/01/31/canopy-stomatal-conductance-and-vapor-pressure-deficit/ )

Oren R., Sperry J. S., Katul G. G., Pataki D. E., Ewers B. E., Phillips N., Schäfer K. V. R. (1999) – Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit – Plant Cell Environ. 22(12): 1515-1526  – DOI: 10.1046/j.1365-3040.1999.00513.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1999.00513.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/31/stomatal-sensitivity-to-vapour-pressure-deficit/ )

Orlović S. (1992) – Proučavanje morfologije i varijabilnosti stoma topola – Magistarski rad. Beograd, Serbia. Šumarski fakultet Univerziteta u Beogradu. 118 p.

Orlović S., Guzina V., Krstić B., Merkulov Lj. (1998) – Genetic variability in anatomical, physiological and growth characteristics of hybrid poplar (Populus x euramericana Dode (Guinier)) and eastern cottonwood (Populus deltoides Bartr.) clones – Silvae Genetica 47(4): 183-190 –

Ormrod D. J., Renney A. J. (1968) – A survey of weed leaf stomata and trichomes – Can. J. Plant Sci. 48: 197-209 – http://www.nrcresearchpress.com/doi/pdf/10.4141/cjps68-034 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/54983 )

Orrego J. P. (1999) – Temporal and spatial patterns of stomatal conductance, ozone concentration, and ozone uptake in a sugar maple canopy – Thesis Degree Master of Sciencehttps://www.uvm.edu/femc/attachments/project/86/Temporal-and-Spatial-patterns-1-40.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/13/patterns-of-stomatal-conductance/ )

Orsini F., Alnayef M., Bona S., Maggio A., Gianquinto G. (2012) – Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity – Environ. Exp. Bot. 81: 1–10 – https://doi.org/10.1016/j.envexpbot.2012.02.005https://www.sciencedirect.com/science/article/abs/pii/S0098847212000445?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/low-stomatal-density-and-reduced-transpiration-facilitate-strawberry-adaptation-to-salinity/ )

Orton P. J., Mansfield T. A. (1974) – The Activity of Abscisic Acid Analogues as Inhibitors of Stomatal Opening – Planta 121: 263-272 – PMID: 24442805 – DOI: 10.1007/BF00389326https://pubmed.ncbi.nlm.nih.gov/24442805/ – (On our blog: https://plantstomata.wordpress.com/2022/12/22/aba-analogues-as-inhibitors-of-stomatal-opening/ )

Osakabe Y., Osakabe K., Shinozaki K., Tran L-S P. (2014) – Response of plants to water stress – Front Plant Sci. 5: 86 – doi: 10.3389/fpls.2014.00086https://www.ncbi.nlm.nih.gov/pubmed/24659993?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/06/13/response-of-plants-to-water-stress/ )

Osborne C. P. (2016) – Crop yields: CO2 fertilization dries up – Nature Plants 2, Article number: 16138 – DOI: 10.1038/nplants.2016.138
https://www.nature.com/articles/nplants2016138 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/co2-fertilization-dries-up/ )

Osborne C. P., Taylor S., Franks P., Ripley B., Pasquet-Kok J., Scoffoni C., Sack L., Spriggs B., Christin P.A., Edwards E., Woodward I. (2012) – The significance of C4 photosynthesis for stomatal patterning and behaviour  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/c4-photosynthesis-and-stomatal-patterning-and-behaviour/ )

Osmond C. B., Kramer D., Lüttge U. (1999) – Reversible water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses – Plant Biol. 1: 618-624 – https://doi.org/10.1111/j.1438-8677.1999.tb00272.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-8677.1999.tb00272.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/chlorophyll-fluorescence-quenching-in-wilting-leaves-and-patchy-stomatal-responses/ )

Osmond C. B., Ludlow M. M., Davis R., Cowan I. R., Powles S. B., Winter K. (1979) – Stomatal responses to humidity in Opuntia inermis in relation to control of CO2 and H2O exchange patterns – Oecologia 41: 65-76 – PMID: 28310360 – DOI: 10.1007/BF00344837https://pubmed.ncbi.nlm.nih.gov/28310360/ – (On our blog : https://plantstomata.wordpress.com/2022/12/22/stomatal-responses-to-humidity-in-relation-to-control-of-co2-and-h2o-exchange-patterns-2/ )

Osonubi O., Davies W. J. (1980) – The influence of water tress on the photosynthetic performance and stomatal behaviour of tree seedlings subjected to variation in temperature and irradiance – Oecologia (Berl.) 45: 3-10 – https://doi.org/10.1007/BF00346699https://link.springer.com/article/10.1007/BF00346699 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/influence-of-water-tress-on-the-photosynthetic-performance-and-stomatal-behaviour/ )

Osonubi O., Davies W. J. (1980) – The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity – Oecologia (Berlin) 46: 1–6 – DOI: 10.1007/BF00346957 – http://link.springer.com/article/10.1007/BF00346957 – (On our blog :https://plantstomata.wordpress.com/2017/01/31/plant-water-stress-and-stomatal-control-of-gas-exchange/ )

Osonubi 0., Osundina M. A. (1987) – Stomatal responses of woody seedlings to flooding in relation to nutrient status in leaves – J. Exp. Bot. 38: 1166-1173 – https://doi.org/10.1093/jxb/38.7.1166https://academic.oup.com/jxb/article-abstract/38/7/1166/440742?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2020/06/10/stomatal-responses-of-woody-seedlings-to-flooding/ )

Osório M. L., Rodrigues M. L., Chaves M. M., Correia M. J., (1999) – Effect of growth temperature on the response of lupin stomata to drought and abscisic acid – Aust. J. Plant Physiol. 26(6): 549-559 – https://doi.org/10.1071/PP99053 – http://www.publish.csiro.au/FP/PP99053 – (On our blog : https://plantstomata.wordpress.com/2018/02/25/growth-temperature-and-the-response-of-stomata-to-drought-and-aba/ )

Ostrowski M., Kowalczyk S. (2015) – Plant signaling peptides. Cysteine-rich peptides – Postepy Biochemii. 61(1): 79-92 – PMID: 26281357 – https://europepmc.org/article/med/26281357 – (On our blog : https://plantstomata.wordpress.com/2022/09/30/stomata-development-and-plant-signaling-peptides/ )

Osunkoya O. O., Boyne R., Scharaschkin T. (2014) – Coordination and plasticity in leaf anatomical traits of invasive and native vine species – American Journal of Botany 101(9): 1423-1436 – https://doi.org/10.3732/ajb.1400125https://bsapubs.onlinelibrary.wiley.com/doi/10.3732/ajb.1400125 – (On our blog : https://plantstomata.wordpress.com/2022/07/05/leaf-anatomical-traits-e-g-stomata-need-to-be-considered-routinely-as-part-of-weed-species-assessment-and-in-the-worldwide-leaf-economic-spectrum/ )

Otieno D. O., Schmidt M. W., Kurz-Besson C., Lobo Do Vale R., Pereira J. S., Tenhunen J. D. (2007) – Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem – Tree Physiol. 27(8): 1179-1187 –
DOI: 10.1093/treephys/27.8.1179https://www.ncbi.nlm.nih.gov/pubmed/17472943 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomata-and-the-regulation-of-transpirational-water-loss/ )

O’Toole J. C., Cruz R. T., (1980) – Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress – Plant Physiol. 65: 428-432 – https://www.jstor.org/stable/4266157 – (On our blog : https://plantstomata.wordpress.com/2021/09/02/stomatal-resistance-and-water-stress/ )

Otto H. W., Daines R. H. (1969) – Plant Injury by Air Pollutants: Influence of Humidity on Stomatal Apertures and Plant Response to Ozone – Science 163(3872): 1209-1210 – DOI: 10.1126/science.163.3872.1209https://www.science.org/doi/10.1126/science.163.3872.1209 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/the-size-of-stomatal-apertures-increases-with-increasing-humidity/ )

Otu-Larbi F., Conte A., Fares S., Wild O., Ashworth K. (2021) – FORCAsT-gs: Importance of stomatal conductance parameterisation to estimated ozone deposition velocity – Published Online: Wed, 21 Apr 2021 – https://doi.org/10.1002/essoar.10506851.1https://www.essoar.org/doi/10.1002/essoar.10506851.1 – (On our blog : https://plantstomata.wordpress.com/2021/07/28/the-choice-of-stomatal-conductance-parameterisation-is-critical-in-understanding-ozone-deposition/ )

Ou X., Gan Y., Chen P., Qiu M., Jiang K., Wang G. (2014) – Stomata prioritize their responses to multiple biotic and abiotic signal inputs – PLoS ONE 9:e101587 – doi: 10.1371/journal.pone.0101587 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101587 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/successful-colonization-of-bacteria-on-the-leaf-surface-is-correlated-with-stomatal-aperture-regulation/ )

Ou X., Li T., Zhao Y., Chang Y., Wu L., Chen G., Day B., Jiang K. (2022) – Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells – J Plant Physiol. 268: 153585 – doi: 10.1016/j.jplph.2021.153585 – Epub 2021 Dec 4 – PMID: 34894596 – https://pubmed.ncbi.nlm.nih.gov/34894596/ – (On our blog : https://plantstomata.wordpress.com/2023/08/07/cpks-function-in-stomatal-immunity-through-fine-tuning-apoplastic-ros-levels-as-well-as-reinforcing-the-localized-sa-signal-in-stomatal-guard-cells/ )

Oue H., Feng Z., Pang J., Miyata A., Mano M., Kobayashi K., Zhu J. (2009) – Modeling the stomatal conductance and photosynthesis of a flag leaf of wheat under elevated O3 concentration – Journal of Agricultural Meteorology 65,: 239-248 – https://doi.org/10.2480/agrmet.65.3.7https://www.jstage.jst.go.jp/article/agrmet/65/3/65_65.3.7/_article – (On our blog : https://plantstomata.wordpress.com/2024/04/20/modeling-the-stomatal-conductance-and-photosynthesis-of-a-flag-leaf-of-wheat-under-elevated-ozone-concentration/ )

Oue H., Motohiro S., Inada K., Miyata A., Mano M., Kobayashi K., Zhu J. (2008) – Evaluation of ozone uptake by the rice canopy with the multi-layer model – Journal of Agricultural Meteorology 64: 223-232 – https://doi.org/10.2480/agrmet.64.4.8https://www.jstage.jst.go.jp/article/agrmet/64/4/64_64.4.8/_article – (On our blog : https://plantstomata.wordpress.com/2024/04/20/evaluation-of-ozone-uptake-by-the-rice-canopy-with-the-multi-layer-model/ )

Ouledali S., Ennajeh M., Ferrandino A., Khemira H., Schubert A., Secchi F. (2019) – Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants – South African Journal of Botany 121: 152-158 – Doi: 10.1016/j.sajb.2018.10.024https://www.researchgate.net/publication/331441929 – (On our blog : https://plantstomata.wordpress.com/2024/02/11/arbuscular-mycorrhizal-related-factors-are-involved-in-the-control-of-stomata-regulation-in-mycorrhizal-olive-plants-exposed-to-severe-drought-these-factors-act-specifically-in-the-drought-resistant/ )

Outlaw W. H. (1982) – Carbon metabolism in guard cells. – In Recent Advances in Phytochemistry. p. 185-222 – Edited by L. L. Greasy and G. Hrazdina, Plenum Publishing Co., New York –

Outlaw W. H. (1983) – Current concepts on the role of potassium in stomatal movements – Physiol. Plant 59: 302–311 – https://doi.org/10.1111/j.1399 -3054.1983.tb00775.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1983.tb00775.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/the-role-of-potassium-in-stomatal-movements/ )

Outlaw W. H. Jr (1989) – Critical examination of the quantitative evidence for and against photosynthetic CO2 fixation by guard cells – Physiol. Plant. 77: 275–281 – doi: 10.1111/j.1399-3054.1989.tb04981.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1989.tb04981.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/02/the-evidence-for-and-against-photosynthetic-co2-fixation-by-stomata/ )

Outlaw W. H. Jr (1995) – Sucrose and stomata: a full circle – In Carbon Partitioning and Source–Sink Interactions in Plants (eds M.A. Madore & W.J. Lucus), 56– 67 -American Society of Plant Physiologists, Rockville, MD, USA –

Outlaw W. H. Jr (2003) – Integration of cellular and physiological functions of guard cells – Crit. Rev. Plant Sci. 22: 503–529 – doi: 10.1080/713608316 – http://www.tandfonline.com/doi/abs/10.1080/713608316 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomata-and-an-overview-of-cellular-mechanisms-that-are-involved-in-turgor-regulation/ )

Outlaw W. H. Jr (2006) – Current concepts on the role of potassium in stomatal movement – Physiologia Plantarum 59(2): 302-311 – DOI: 10.1111/j.1399-3054.1983.tb00775.xhttps://www.researchgate.net/publication/230094973_Current_concepts_on_the_role_of_potassium_in_stomatal_movement – (On our blog : https://plantstomata.wordpress.com/2022/01/05/except-for-high-flux-capacity-and-different-responses-to-applied-chemicals-potassium-uptake-by-stomatal-guard-cells-is-similar-to-potassium-uptake-by-other-plant-cells/ )

Outlaw W. H. Jr (2007) – Integration of Cellular and Physiological Functions of Guard Cells – Critical Reviews in Plant Sciences – 25/06/2007 –

Outlaw W. H. Jr., De Vlieghere-He X. (2001)  Transpiration rate – An important factor controlling the sucrose content of the guard cell apoplast of broad bean – Plant Physiology 126: 1716–1724 –  http://www.plantphysiol.org/content/plantphysiol/126/4/1716.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-transpiration-rate/ )

Outlaw W. H. Jr., Du Z. R., Meng F. X., Aghoram K., Riddle K. A., Chollet R. (2002) – Requirements for activation of the signal-transduction network that leads to regulatory phosphorylation of leaf guard-cell phosphoenolpyruvate carboxylase during fusicoccin-stimulated stomatal opening – Archives of Biochemistry and Biophysics 407: 63-71 –

Outlaw W. H. Jr., Hite D. R. C., Zhang S. (1992) – Molecular, cellular, and plant mechanisms of ABA control of stomatal aperture size – In Proc. 14th Int. Conf. Plant Growth Subst., 474– 485 – Kluwer Academic Publishers, Dordrecht – ISBN 0-7923-1617-7 –

Outlaw W. H. Jr., Kennedy J. (1978) – Anion Synthesis in Guard Cells – Plant Physiol. Supp. 61: 86 –

Outlaw W. H. Jr., Kennedy J. (1978) – Enzymic and substrate basis for the anaplerotic step in guard cells – Plant Physiol 62: 648-652 – PMCID: PMC1092188 – PMID: 16660576 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1092188/ – (On our blog : https://plantstomata.wordpress.com/2018/11/12/possibility-that-the-carboxylation-of-pep-is-the-anaplerotic-step-in-stomata/ )

Outlaw W. H. Jr., Lowry O. H. (1977) – Organic acid and potassium accumulation in guard cells during stomatal opening – Proc. Natl. Acad. Sci. U.S.A. 74: 4434–4438 – https://doi.org/10.1073/pnas.74.10.4434 – http://www.pnas.org/content/74/10/4434 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/malic-and-citric-acids-provide-much-of-the-counter-ion-for-the-k-taken-up-during-stomatal-opening-2/

Outlaw W. H., Manchester J. (1979) – Guard cell starch concentration quantitatively related to stomatal aperture – Plant Physiol. 64: 79-82 -PMID: 16660919 – PMCID: PMC543028 – https://www.ncbi.nlm.nih.gov/pubmed/16660919 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/soluble-sugars-increase-in-guard-cells-when-stomata-open/ )

Outlaw W. H., Manchester J., Brown P. H. (1981) – High Levels of Malic Enzyme Activities in Vicia faba L. Epidermal Tissue – Plant Physiology 68(5):1047-1051 – doi: 10.1104/pp.68.5.1047 – PMID: 16662049 – PMCID: PMC426043 – https://pubmed.ncbi.nlm.nih.gov/16662049/ – (On our blog : https://plantstomata.wordpress.com/2023/06/07/the-averages-for-nadp-and-nad-malic-enzyme-specific-activities-were-higher-in-guard-cells-than-in-photosynthetic-parenchyma-cells/ )

Outlaw W. H. Jr., Manchester J., DiCamelli C. A., Randall D. P., Rapp B., Veith G. M. (1979) – Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells – Proc. Natl. Acad. Sci. USA 76: 6371-6375 – PMID: 16592740 – PMCID: PMC411866 – https://www.ncbi.nlm.nih.gov/pubmed/16592740 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/enzymes-unique-to-the-photosynthetic-carbon-reduction-pathway-are-absent-in-stomata/ )

Outlaw W. H. Jr., Mayne B. C., Zenger V. E., Manchester J. (1981) – Presence of both photosystems in guard cells of Vicia faba L. – Implications for environmental signal processing – Plant Physiol. 67: 12–16 – doi: 10.1104/pp.67.1.12 – http://www.plantphysiol.org/content/67/1/12 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/noncyclic-photosynthetic-electron-flow-is-an-environmental-sensor-which-causes-stomata-to-remain-open-in-light/ )

Outlaw W. H., Tarczynski M. C., Anderson L. C. (1982) – Taxonomic survey for the presence of ribulose-1,5-bisphosphate carboxylase activity in guard cells – Plant Physiol. 70(4): 1218-1220 – doi: 10.1104/pp.70.4.1218 – PMID: 16662641 – PMCID: PMC1065853 – https://pubmed.ncbi.nlm.nih.gov/16662641/ – (On our blog : https://plantstomata.wordpress.com/2022/12/27/the-photosynthetic-carbon-reduction-pathway-is-absent-or-virtually-so-in-stomatal-guard-cell-chloroplasts/ )

Outlaw W. H. Jr., Tarczynski M., Miller W. (1984) – Histological compartmentation of phosphate in Vicia faba L. leaflet: possible significance to stomatal functioning – Plant Physiol. 74: 430– 433 – https://doi.org/10.1104/pp.74.2.430http://www.plantphysiol.org/content/74/2/430 – (On our blog : https://plantstomata.wordpress.com/2020/12/05/high-epidermal-inorganic-phosphate-would-buffer-against-ph-changes-in-the-epidermis-during-stomatal-movements/ )

Outlaw W. H. Jr., Vlieghere-He X. D. (2001) – Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean – Plant Physiology 126: 1716-1724 –

Outlaw W. H. Jr., Zhang S., Hite D. R. C., Thistle A. B. (1996)  Stomata: Biophysical and Biochemical Aspects – In: Baker N.R. (eds) Photosynthesis and the Environment. Advances in Photosynthesis and Respiration 5: 241-259 –  Springer, Dordrecht – https://link.springer.com/chapter/10.1007/0-306-48135-9_9#citeas – https://plantstomata.wordpress.com/2017/12/18/biophysics-and-biochemistry-of-stomata/ )

Ouyang W., Struik P. C., Yin X., Yang J. (2017) – Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought – J Exp Bot. 68(18): 5191-5205 – doi: 10.1093/jxb/erx314https://www.ncbi.nlm.nih.gov/pubmed/28992130 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-conductance-mesophyll-conductance-and-transpiration-efficiency/ )

Overlach S., Diekmann W., Raschke K. (1993) – Phosphate translocator of isolated guard cell chloroplasts from Pisum sativum L. transports glucose-6-phosphate – Plant Physiol. 101:1201–1207 – PMID: 12231774 – PMCID: PMC160640 – https://www.ncbi.nlm.nih.gov/pubmed/12231774 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/phosphate-translocator-of-isolated-stomatal-guard-cell-chloroplasts-transports-glucose-6-phosphate/ )

Oyeleke M. O., AbdulRahaman A. A., Oladele F. A. (2004) – Stomatal anatomy and transpiration rate in some afforestation tree species – Nigerian Society for Experimental Biology Journal Niseb Journal 4(2): 83-90 – https://www.researchgate.net/profile/Abdullahi-Alanamu_Abdulrahaman/publication/263042120_Stomatal_anatomy_and_transpiration_rate_in_some_af/links/02e7e5399d6891dd69000000.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/10/stomatal-anatomy-in-some-tree-species/ )

Ozeki K., Miyazawa Y., Sugiura D. (2022) –  Rapid stomatal closure contributes to higher water use efficiency in C4 compared to C3 major Poaceae crops – Plant Physiol. – https://doi.org/10.1093/plphys/kiac040https://academic.oup.com/plphys/advance-article-abstract/doi/10.1093/plphys/kiac040/6521045?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2022/03/19/accelerating-the-speed-of-stomatal-closure-in-major-c3-crops-to-the-level-of-major-c4-crops-is-a-potential-breeding-target-for-the-realization-of-water-saving-agriculture/ )

Özygit I. I., Akinci S. (2009) – Effects of some Stress Factors (Aluminum, Cadmium and Drought) on Stomata of Roman Nettle (Urtica pilulifera L.) – Available online at www.notulaebotanicae.ro – Print ISSN 0255-965X – Electronic ISSN 1842-4309 – Not. Bot. Hort. Agrobot. Cluj 37(1): 108-115 – 3191-Manuscript-11967-1-10-20090623.pdf – (On our blog : https://plantstomata.wordpress.com/2019/11/11/effects-of-stress-factors-on-stomata-of-urtica-pilulifera/ )

Ozuna R., Yera R., Ortega K., Tallman G. (1985) – Analysis of guard cell viability and action in senescing leaves of Nicotiana glauca Graham, tree tobacco – Plant Physiol. 79: 7-10 – doi: 10.1104/pp.79.1.7http://www.plantphysiol.org/content/plantphysiol/79/1/7.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/12/stomatal-guard-cell-viability-and-action-in-senescing-leaves/ )

ÖZYİĞİT I. I., AKINCI Ş. (2009) – Effects of some Stress Factors (Aluminum, Cadmium and Drought) on Stomata of Roman Nettle (Urtica pilulifera L.) – Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(1): 108-115 – https://doi.org/10.15835/nbha3713191https://www.notulaebotanicae.ro/index.php/nbha/article/view/3191 – (On our blog : https://plantstomata.wordpress.com/2021/03/17/effects-of-some-stress-factors-aluminum-cadmium-and-drought-on-stomata/ )