Stomatal conductance under dynamic soil moisture


Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture


by Manzoni S., Vico G.Palmroth S., Porporato A. , Katul G.,  (2013)

  • a Departments of Crop Production Ecology and Ecology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
  • b Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708-0287, USA
  • c Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA
  • d Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden

in Advances in Water Resources Volume 62, Part A,  90–105 – –


Stomatal optimization theories have neglected the effect of dynamic soil moisture.

Here soil moisture is considered to provide a closure for the optimization problem.

The new solutions link marginal water use efficiency to air [CO2] and soil water.

Previously inconsistent theoretical results and data are generalized and explained.


Optimization theories explain a variety of forms and functions in plants. At the leaf scale, it is often hypothesized that carbon gain is maximized, thus providing a quantifiable objective for a mathematical definition of optimality conditions. Eco-physiological trade-offs and limited resource availability introduce natural bounds to this optimization process.

In particular, carbon uptake from the atmosphere is inherently linked to water losses from the soil as water is taken up by roots and evaporated. Hence, water availability in soils constrains the amount of carbon that can be taken up and assimilated into new biomass.

The problem of maximizing photosynthesis at a given water availability by modifying stomatal conductance, the plant-controlled variable to be optimized, has been traditionally formulated for short time intervals over which soil moisture changes can be neglected. This simplification led to a mathematically open solution, where the undefined Lagrange multiplier of the optimization (equivalent to the marginal water use efficiency, λ) is then heuristically determined via data fitting.

Here, a set of models based on different assumptions that account for soil moisture dynamics over an individual dry-down are proposed so as to provide closed analytical expressions for the carbon gain maximization problem. These novel solutions link the observed variability in λ over time, across soil moisture changes, and at different atmospheric CO2concentrations to water use strategies ranging from intensive, in which all soil water is consumed by the end of the dry-down period, to more conservative, in which water stress is avoided by reducing transpiration.


Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s