PHYSIO-BIBLIOGRAPHY T-V

T. D. – Salisbury (1943) – The Reproductive Capacity of Plants – Nature 151: 319–320 – https://doi.org/10.1038/151319a0https://www.nature.com/articles/151319a0 – (On our blog : https://plantstomata.wordpress.com/2022/01/05/99052/ )

Taft D. L. (1950) – The Effects of Habitat on Stomatal Frequency – Transactions of the Kansas Academy of Science 53(4):477-487 – https://doi.org/10.2307/3625892https://www.jstor.org/stable/3625892 – (On our blog : https://plantstomata.wordpress.com/2022/02/12/101969/ )

Tagawa T. (1936) – The influence of atmosplieric humidity upon the suction force of the plant shoot, with special reference to the stomatal aperture – Jap. Journ. Bot. 8: 85-94 –

Tagawa T. (1936) – The influence of light on the stomatal opening – Jap. Journ. Bot. 8: 95-112 –

Tagawa T. (1937) – The influence of the temperature of the culture water on the water ahsorption by the root and on the stomatal aperture – Journ. Facul. Agr., Hokkaido Imp. Univ., Sapporo 39: 271-296 – https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/12716/1/39%284%29_p271-296.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/26/stomatal-behaviour-and-changes-in-temperature/ )

Tagawa T. (1938) – Further studies on the influence of the water temperature on the water absorption and the stomatal aperture – Journal of the Faculty of Agriculture, Hokkaido Imperial University 45(1): 1-3 – https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/12735/1/45%281%29_p1-33.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/22/the-variation-of-the-stomatal-aperture-is-due-not-only-to-the-change-of-the-turgor-pressure-of-the-guard-cells-themselves-but-also-passively-to-the-variation-of-the-side-pressure-of-the-epidermal-cel/ )

Taiz L., Zeiger E. (1998) – Plant Physiology, 2nd Edn. Sunderland, MA: Sinauer Associates.

Taiz L., Zeiger E., Moeller I. M., Murphy A. (2015) – Plant Physiology and Development, Sixth Edition – Topic 10.4 – Phytochrome-mediated Responses in Stomata – http://6e.plantphys.net/index.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/phytochrome-mediated-responses-in-stomata/ )

Takagi K., Tsuboya T., Takahashi H. (1998) -Diurnal hystereses of stomatal and bulk surface conductances in relation to vapor pressure deficit in a cool-temperate wetland – Agric. For. Meteorol. 91: 177–191 –

Takahashi F., Suzuki T., Osakabe Y., Betsuyaku S., Kondo Y., Dohmae N., Fukuda H., Yamaguchi-Shinozaki K., Shinozaki K. (2018) – A small peptide modulates stomatal control via abscisic acid in long-distance signalling – Nature 556: 235–238 – https://www.nature.com/articles/s41586-018-0009-2 – (On our blog : https://plantstomata.wordpress.com/2019/05/31/a-small-peptide-modulates-stomatal-control-via-aba-3/ )

Takahashi S., Monda K., Higaki T., Hashimoto-Sugimoto M., Negi J., Hasezawa S., Iba K. (2017) – Different Effects of Phosphatidylinositol 4-Kinase (PI4K) and 3-Kinase (PI3K) Inhibitors on Stomatal Responses to Environmental Signals – Frontiers in Plant Science – 8: 677 – doi: 10.3389/fpls.2017.00677

Takahashi S., Monda K., Negi J., Konishi F., Ishikawa S., Hashimoto-Sugimoto M., Goto N., Iba K. (2015) – Natural Variation in Stomatal Responses to Environmental Changes among Arabidopsis thaliana Ecotypes – PLoS One 10: e0117449 — https://doi.org/10.1371/journal.pone.0117449 – https://journals.plos.org/plosone/article/related?id=10.1371/journal.pone.0117449 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/differences-between-ecotypes-in-intrinsic-stomatal-response-mechanisms-to-environmental-signals/

Takahashi Y., Ebisu Y., Kinoshita T., Doi M., Okuma E., Murata Y., Shimazaki K.-i (2013) – bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation – Sci. Signal. 6, ra48 – doi: 10.1126/scisignal.2003760 – https://www.ncbi.nlm.nih.gov/pubmed/23779086https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/4300409 (On our blog : https://plantstomata.wordpress.com/2018/06/27/aks-family-of-bhlh-transcription-factors-facilitates-stomatal-opening-through-transcription-of-genes/ ) 

Takahashi Y., Ebisu Y., Shimazaki K.-i. (2017) – Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors – Plant Physiol 174: 815–822 – https://doi.org/10.1104/pp.16.01825http://www.plantphysiol.org/content/174/2/815 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/aba-signaling-from-the-receptor-to-dna-in-stomata/ )

Takahashi Y., Kinoshita T., Matsumoto M., Shimazaki K.-i. (2016) – Inhibition of the Arabidopsis bHLH transcription factor by monomerization through abscisic acid-induced phosphorylation – Plant J. 87(6): 559-67 – doi: 10.1111/tpj.13217 – Epub 2016 Jul 19 – https://pubmed.ncbi.nlm.nih.gov/27227462/ – (On our blog : https://plantstomata.wordpress.com/2020/12/13/a-mechanism-that-inhibits-gene-expression-by-phosphorylation-of-a-bhlh-transcription-factor-in-stomata/ )

Takahashi Y., Kinoshita T., Shimazaki K.-i. (2007) – Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA – Plant Cell Physiol. 48: 1182–1191 – doi: 10.1093/pcp/pcm093 – https://www.ncbi.nlm.nih.gov/pubmed/17634179 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/61-kda-protein-may-be-a-substrate-for-aapk-and-it-is-located-upstream-of-h2o2-and-ca2-or-on-ca2-independent-signaling-pathways-in-stomata/ )

Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, Murata Y, Shimazaki K. (2013) – bHLH transcription factors that facilitate K+ uptake during stomatal
opening are repressed by abscisic acid through phosphorylation – Science Signaling 6: ra48 – DOI: 10.1126/scisignal.2003760https://pubmed.ncbi.nlm.nih.gov/23779086/ https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/4300409 (On our blog : https://plantstomata.wordpress.com/2020/12/13/the-aks-family-of-bhlh-transcription-factors-facilitates-stomatal-opening-through-the-transcription-of-genes-2/ )

Takahashi Y., Kinoshita T. (2015) – Stomatal function has an element of hysteresis – New Phytologist 205: 455–457 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomatal-function-has-an-element.pdf – (On our blog : https://plantstomata.wordpress.com/2020/12/13/how-does-stomatal-memory-contribute-to-the-physiological-performance-of-plants/ )

Takai T., Ohsumi A., San-Oh Y., Laza M. R. C., Kondo M., Yamamoto T., Yano M. (2009) – Detection of a quantitative trait locus controlling carbon isotope discrimination and its contribution to stomatal conductance in japonica rice – Theoretical Applied Genetics 118: 1401–1410 – https://doi.org/10.1007/s00122-009-0990-9https://link.springer.com/article/10.1007/s00122-009-0990-9 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/detection-of-a-quantitative-trait-locus-and-its-contribution-to-stomatal-conductance/ )

Takai T., Yano M., Yamamoto T. (2010) – Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice – Field Crops Research 115: 165–170 – https://doi.org/10.1016/j.fcr.2009.10.019 –https://www.sciencedirect.com/science/article/pii/S0378429009003001 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/infrared-thermography-may-be-a-simple-method-of-evaluating-varietal-differences-in-stomatal-conductance-through-ctd/ )

Takakura T., Goudriaan J., Louwerse W. (1975) – A behaviour model to simulate stomatal resistance – Agricultural Meteorology 15: 393-404 – https://edepot.wur.nl/218538 – (On our blog : https://plantstomata.wordpress.com/2021/10/15/behaviour-model-may-be-good-enough-to-account-for-the-rather-complicated-interrelations-that-govern-the-stomatal-movement/ )

Takanashi S., Kosugi Y., Matsuo N., Tani M., Ohte N. (2006) – Patchy stomatal behavior in broad-leaved trees grown in different habitats – Tree Physiology 26: 1565–1578 – DOI: 10.1093/treephys/26.12.1565 – https://www.researchgate.net/publication/6629959_Patchy_stomatal_behavior_in_broad-leaved_trees_grown_in_different_habitats – (On our blog : https://plantstomata.wordpress.com/2018/12/12/patchy-stomatal-behavior-in-broad-leaved-trees-grown-in-different-habitats/

Takaoka Y., Miyagawa S., Nakamura A., Egoshi S. Tsukiji S., Ueda M. (2020) – Hoechst-tagged Fluorescein Diacetate for the Fluorescence Imaging-based Assessment of Stomatal Dynamics in Arabidopsis thaliana – Sci Rep 10: 5333 – https://doi.org/10.1038/s41598-020-62239-whttps://www.nature.com/articles/s41598-020-62239-w#citeas – (On our blog : https://plantstomata.wordpress.com/2020/07/18/fluorescein-diacetate-for-the-fluorescence-imaging-based-assessment-of-stomatal-dynamics/ )

Sasaki T., Mori I. C, Furuichi T., Munemasa S., Toyooka K., Matsuoka K., Murata Y., Yamamoto Y. (2010) – Closing plant stomata requires a homolog of an aluminum-activated malate transporter – Science.gov (United States) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html – (On our blog : https://plantstomata.wordpress.com/2022/03/06/atalmt12-is-a-novel-class-of-anion-transporter-involved-in-stomatal-closure-2/ )

Takemiya A., Kinoshita T., Asanuma M., Shimazaki K. (2006) – Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba – Proc. Natl. Acad. Sci. USA 103: 13549–13554 – https://doi.org/10.1073/pnas.0602503103https://www.pnas.org/content/103/36/13549 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/pp1-functions-downstream-of-phototropins-and-upstream-of-the-h-atpase-in-the-blue-light-signaling-pathway-of-stomata-2/ )

Takemiya A., Shimazaki K.-i. (2010) – Phosphatidic acid inhibits blue light- induced stomatal opening via inhibition of protein phosphatase – Plant Physiol. 153: 1555–1562 – https://doi.org/10.1104/pp.110.155689 – http://www.plantphysiol.org/content/153/4/1555 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/pa-inhibits-blue-light-signaling-in-stomata-by-pp1c-inhibition-accelerating-stomatal-closure/ )

Takemiya A., Sugiyama N., Fujimoto H., Tsutsumi T., Yamauchi S., Hiyama A., Tada Y., Christie J. M., Shimazaki K.-i. (2013) – Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening – Nat Commun4: 2094  -DOI: 10.1038/ncomms3094 – https://www.ncbi.nlm.nih.gov/pubmed/23811955 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/blus1-functions-as-a-phototropin-substrate-and-primary-regulator-of-stomatal-control-2/

Takemiya A., Yamauchi S., Yano,T., Ariyoshi C., Shimazaki K. (2013) – Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening – Plant Cell Physiol. 54: 24–35 – doi: 10.1093/pcp/pcs073 – https://www.ncbi.nlm.nih.gov/pubmed/22585556 (On our blog : https://plantstomata.wordpress.com/2018/06/26/prsl1-functions-as-a-regulatory-subunit-of-pp1-and-regulates-blue-light-signaling-in-stomata-2/ )

Takenaka Y. (1943) – On polyploidy and the size of organs, in particular the size of the stomata – Jap. J. Genet 19: 21-45 – https://eurekamag.com/research/013/447/013447629.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/gigas-characteristics-and-increases-in-stomatal-dimensions-associated-with-chromosome-reduplication/ )

Takeuchi Y., Kondo N. (1988) – Effect of abscisic acid on glucose metabolism in guard cells of Vicia faba L. – Plant Cell Physiology 29: 247–253 – https://doi.org/10.1093/oxfordjournals.pcp.a077488 –https://academic.oup.com/pcp/article-abstract/29/2/247/1811034 – (On our blog : https://plantstomata.wordpress.com/2019/02/10/aba-may-have-two-different-actions-on-stomatal-movement/ )

Takeuchi Y., Kondo N. (1988) – Effect of abscisic acid on cell-wall metabolism in guard cells of Vicia faba L. – Plant Cell Physiology 29: 573–580 – https://doi.org/10.1093/oxfordjournals.pcp.a077531 –https://academic.oup.com/pcp/article-abstract/29/4/573/1814810 – (On our blog : https://plantstomata.wordpress.com/2019/02/10/cell-wall-metabolism-in-the-guard-cells-may-play-a-role-in-the-regulation-of-stomatal-movement/ )

Takuya F., Tatsumi H., Sokabe M. (2008) – Mechano-sensitive channels regulate the stomatal aperture in Vicia faba – Biochemical and Biophysical Research Communications 366: 758–762 – Mechano-sensitive_channels_regulate_the.pdf –  (On our blog : https://plantstomata.wordpress.com/2017/12/14/mechano-sensitive-channels-regulate-the-stomatal-aperture/ )

Tal M. (1966) – Abnormal stomatal behavior in wilty mutants of tomato – Plant Physiol. 41: 1387-1391 – PMCID: PMC550536 – PMID: 16656409 – https://pdfs.semanticscholar.org/22d2/c97f4d7b27da79699f1e3224e5d0992182a0.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/04/abnormal-stomatal-behavior-in-wilty-mutants-of-tomato/ )

Tal M., Eshel A., Witztum A. (1976) – Abnormal Stomatal Behaviour and Ion Imbalance in Capsicum scabrous diminutive – Journ. Exp. Bot. 27( 100): 953-960 – (On our blog : https://plantstomata.wordpress.com/2021/09/22/abnormal-stomatal-behaviour-in-capsicum-scabrous-diminutive/ )

Tal M., Imber D. (1970) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. II. Auxin and abscisic acid like activity – Plant PhysioL. Lancaster 46: 373-376 – DOI: 10.1104/pp.46.3.373https://www.ncbi.nlm.nih.gov/pubmed/16657470 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-ii-auxin-and-abscisic-acid-like-activity/ )

Tal M., Imber D. (1971) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. III. Hormonal effects on the water status in the plant – Plant PhysioL. 47(6): 849-850 – PMCID: PMC396785 – PMID: 16657719 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC396785/ – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-iii-hormonal-effects-on-the-water-status-in-the-plant/ )

Tal M., Imber D. (1972) – The effect of abscisic acid on stomatal behavior in flacca, a wilty mutant of tomato, in darkness – New Phytol. 71: 81-84 – https://doi.org/10.1111/j.1469-8137.1972.tb04812.xhttps://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1972.tb04812.x – (On our blog : https://plantstomata.wordpress.com/2019/06/04/the-effect-of-aba-on-stomatal-behavior/ )

Tal M., Imber D., Erez A., Epstein E. (1979) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato: V. Effect of Abscisic Acid on Indoleacetic Acid Metabolism and Ethylene Evolution – Plant Physiol. 63(6): – DOI: 10.1104/pp.63.6.1044https://www.researchgate.net/publication/24854076_Abnormal_Stomatal_Behavior_and_Hormonal_Imbalance_in_flacca_a_Wilty_Mutant_of_Tomato_V_Effect_of_Abscisic_Acid_on_Indoleacetic_Acid_Metabolism_and_Ethylene_Evolution – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-v-effect-of-aba-on-indoleacetic-acid-metabolism-and-ethylene-evolution/ )

Tal M., Imber D., Gardi L. (1974) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. Effect of abscisic acid and auxin on stomatal behaviour and peroxidase activity – J. Expo. Bot. 25: 51-60 –

Tal M., Imber D., Itai C. (1970) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. I. Root effect and kinetin-like activity – Plant Physiol. 46: 367-372 – https://doi.org/10.1104/pp.46.3.367http://www.plantphysiol.org/content/46/3/367 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-i-root-effect-and-kinetin-like-activity/ )

Tal M. Nevo Y. (1973) – Abnormal stomatal behaviour and root resistance, and hormonal imbalance in three wilty mutants of tomato – Biochem. Genet. 8: 291–300 – https://doi.org/10.1007/BF00486182https://link.springer.com/article/10.1007%2FBF00486182 – (On our blog : https://plantstomata.wordpress.com/2019/06/04/abnormal-stomatal-behaviour/ )

Talbott L. D. (2006) – The Blue–Green Reversibility of the Blue-Light Response of Stomata – Plant Physiology and Development, Sixth Edition (Eds. Taiz L., Zeiger E., Moeller I. M., Murphy A.,© 2015 Sinauer Associates) – http://6e.plantphys.net/essay10.04.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/blue-light-response-of-stomata/ )

Talbott L. D., Hammad J. W., Harn L. C., Nguyen V. H., Patel J., Zeiger E. (2006) – Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement – Plant Cell Physiol. 47: 332–339 – https://doi.org/10.1093/pcp/pci249 –https://academic.oup.com/pcp/article/47/3/332/1922980 – (On our blog : https://plantstomata.wordpress.com/2019/02/10/stomatal-sensitivity-to-green-light-was-observed-only-in-the-morning-coinciding-with-the-use-of-potassium-as-a-guard-cell-osmoticum/ )

Talbott L. D., Nikolova G., Ortiz A., Shmayevich I. J., Zeiger E. (2002) – Green light reversal of blue light-stimulated stomatal opening is found in a wide range of plant species – Am J Bot 89: 366-368 –  https://doi.org/10.3732/ajb.89.2.366 –https://onlinelibrary.wiley.com/doi/full/10.3732/ajb.89.2.366 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/blue-green-reversibility-of-stomatal-opening-is-a-basic-photobiological-property-of-guard-cells/

Talbott L. D., Rahveh E., Zeiger E. (2003) – Relative humidity is a key factor in the acclimation of the stomatal response to CO2 – Journal of Experimental Botany 54: 2141–2147 – https://doi.org/10.1093/jxb/erg215https://academic.oup.com/jxb/article/54/390/2141/606437 – (On our blog : https://plantstomata.wordpress.com/2019/09/10/humidity-regulation-of-stomatal-co2-sensitivity-could-function-as-a-signal-for-promoting-stomatal-opening-under-low-light-low-co2-conditions/ )

Talbott L. D., Shmayevich I. J., Chung Y., Hammad J. W., Zeiger E. (2003) – Blue Light and Phytochrome-Mediated Stomatal Opening in the npq1 and phot1 phot2Mutants of Arabidopsis – Plant Physiology 133: 1522-1529 – https://doi.org/10.1104/pp.103.029587 – http://www.plantphysiol.org/content/133/4/1522 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/blue-light-and-phytochrome-mediated-stomatal-opening/

Talbott L. D., Srivastava A., Zeiger E. (1996) – Stomata from growth-chamber-grown Vicia faba have an enhanced sensitivity to CO2 – Plant, Cell & Environment 19: 1188-1194 – https://doi.org/10.1111/j.1365-3040.1996.tb00434.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb00434.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/acclimation-to-environmental-conditions-alters-the-sensitivity-of-stomata-to-co2-2/ )

Talbott L. D., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88: 887–895 – doi: 10.1104/pp.88.3.887 – (On our blog : https://plantstomata.wordpress.com/2017/07/19/light-quality-and-osmoregulation-in-stomata/

Talbott L. D., Zeiger, E. (1993) – Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light – Plant Physiol. 102: 1163–1169 – https://doi.org/10.1104/pp.102.4.1163 – http://www.plantphysiol.org/content/102/4/1163 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/light-quality-modulates-alternative-mechanisms-of-osmotic-accumulation-in-stomata-2/ )

Talbott L. D., Zeiger E. (1996) – Central roles for potassium and sucrose in guard-cell osmoregulation – Plant Physiol. 111: 1051–1057 – https://doi.org/10.1104/pp.111.4.1051 – http://www.plantphysiol.org/content/111/4/1051 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/stomatal-osmoregulation-in-intact-leaves-depends-on-at-least-two-different-osmoregulatory-pathways-k-transport-and-sucrose-metabolism/ )

Talbott L. D., Zeiger E. (1998) – The role of sucrose in guard cell osmoregulation – J. Exp. Bot. 49: 329–337 – doi: 10.1093/jexbot/49.suppl_1.329 – https://academic.oup.com/jxb/article/49/Special_Issue/329/507976 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/sucrose-in-stomatal-osmoregulation/ )

Talbott L. D., Zhu J., Han S. W., Zeiger E. (2002) – Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum – Plant Cell Physiol 43: 639–646 – PMID: 12091717 – https://doi.org/10.1093/pcp/pcf075 – https://www.ncbi.nlm.nih.gov/pubmed/12091717 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/paphiopedilum-stomata-possess-both-a-blue-light-mediated-opening-response-a-novel-phytochrome-mediated-opening-response/

Tallman G. (1992) – The chemiosmotic model of stomatal opening revisited – Crit. Rev. Plant Sci. 11: 35–57 – https://doi.org/10.1080/07352689209382329 –https://www.tandfonline.com/doi/abs/10.1080/07352689209382329 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/the-chemiosmotic-model-of-stomatal-opening-revisited/

Tallman G. (2004) – Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? – J. Exp. Bot. 55: 1963–1976 – doi: 10.1093/jxb/erh212 – https://www.ncbi.nlm.nih.gov/pubmed/15310824 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/a-model-to-reconcile-proposed-cellular-mechanisms-for-guard-cell-signal-transduction-with-patterns-of-stomatal-movements-in-leaves/

Tallman G. (2006) – Guard cell protoplasts: isolation, culture, and regeneration of plants – Methods Mol. Biol. 318: 233–252 – doi: 10.1385/1-59259-959-1:233 – In : Plant Cell Culture Protocols – http://www.springerprotocols.com/Abstract/doi/10.1385/1-59259-959-1:233 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-culture-of-guard-cell-protoplasts/ )

Tallman G., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways – Plant Physiol. 88: 887–895 – doi: 10.1104/pp.88.3.887 – http://www.plantphysiol.org/content/88/3/887 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/osmoregulation-during-stomatal-opening-is-the-result-of-three-key-metabolic-processes-ion-transport-photosynthesis-and-sugar-metabolism/ )

Talukder M. U., Debnath P., Nasrn S., Akter S., Ali R., Islam R., Abdul-Awal S. M. (2021) – Stomatal responses at different vegetative stages of selected maize varieties of Bangladesh under water deficit condition – bioRxiv – https://doi.org/10.1101/2021.09.13.460018 https://www.biorxiv.org/content/10.1101/2021.09.13.460018v1.full – (On our blog : https://plantstomata.wordpress.com/2022/04/20/maize-variety-bhm-13-showed-maximum-drought-adaptation-capacity-compared-to-bhm-7-and-bhm-9-due-to-the-highest-percentage-of-closed-stomata-and-the-highest-percentage-of-reduction-in-aperture-ratio/ )

Tambaru E., Andi I. L., Sri S. (2013) – Peranan Morfologi dan Tipe Stomata Daun dalam Mengabsorpsi Karbon Dioksida pada Pohon Hutan Kota UNHAS Makassar. In Bahasa. Simposium Nasional Kimia Bahan Alam, XXI: 12-17 –

Tambaru E. , Samuel A. P., Sanusi D., Anwar U. (2011) – Karakter Morfologi dan Tipe Stomata Daun Beberapa Jenis Pohon Penghijauan Hutan Kota di Kota Makassar – In Bahasa. Jurnal Program Pascasarjana Universitas Hasanuddin Makassar – Retrieved from
http://pasca.unhas.ac.id/jurnal/files/3d418deec0370edfa5c12def13aa68da.pdf

Tameshige T., Ikematsu S., Torii K. U., Uchida N. (2016) – Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem – Journal of Experimental Botany 68(1) – DOI: 10.1093/jxb/erw447 – https://www.researchgate.net/publication/311664777_Stem_development_through_vascular_tissues_EPFL-ERECTA_family_signaling_that_bounces_in_and_out_of_phloem – (On our blog :https://plantstomata.wordpress.com/2018/12/04/the-history-of-erecta-research-including-studies-on-stomatal-development/

Tamm C. O., Cowling E. B. (1977) – Acid precipitation and forest vegetation – Water, Air, Soil Pollut. 7(4): 503-511 – OSTI ID:7082965 – https://www.osti.gov/etdeweb/biblio/7082965 – (On our blog : https://plantstomata.wordpress.com/2022/09/05/diffusion-of-acidic-substances-through-stomata/ )

Tamnanloo F., Damen H., Jangra R., Lee J. S. (2018) – MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development – Plant Physiology https://doi.org/10.1104/pp.18.00475 – http://www.plantphysiol.org/content/178/1/247 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71101 )

Tan C. S., Black T. A., Nnyamah J. U. (1977) – Characteristics of stomatal diffusion resistance in a Douglas fir forest exposed to soil water deficits – Canadian Journal of Forest Research 7: 595–604 – https://doi.org/10.1139/x77-078 –http://www.nrcresearchpress.com/doi/abs/10.1139/x77-07 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/stomatal-diffusion-resistance-in-a-douglas-fir-forest-exposed-to-soil-water-deficits/ )

Tan G.-Y., Dunn G. M (1973) – Relationship of Stomatal Length and Frequency and Pollen‐Grain Diameter to Ploidy Level in Bromus inermis Leyss – Crop Science 13(3): 332-334 – https://doi.org/10.2135/cropsci1973.0011183X001300030014xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1973.0011183X001300030014x – (On our blog : https://plantstomata.wordpress.com/2021/03/28/stomatal-length-and-frequency-as-indirect-methods-for-identification-of-4x-6x-and-8x-ploidy-levels/ )

Tan G.-Y., Dunn G. M (1975) – Stomatal length, frequency, and distribution in Bromus inermis Leyss – Crop Sci. 15: 283–286 –

Tanaka Y., Fujii K., Tatsuhiko S. (2010) – Variability of Leaf Morphology and Stomatal Conductance in Soybean [ (L.) Merr.] Cultivars – Crop Science 50(6): 2525-2532 – DOI: 10.2135/cropsci2010.02.0058https://www.researchgate.net/publication/255722673_Variability_of_Leaf_Morphology_and_Stomatal_Conductance_in_Soybean_L_Merr_Cultivars – (On our blog : https://plantstomata.wordpress.com/2020/06/20/variability-of-leaf-morphology-and-stomatal-conductance/ )

Tanaka Y., Kutsuna N., Kanazawa Y., Kondo N., Hasezawa S., Sano T. (2007) – Intra-vacuolar reserves of membranes during stomatal closure: the possible role of guard cell vacuoles estimated by 3-D reconstruction – Plant and Cell Physiology 48: 1159–1169 – DOI: 10.1093/pcp/pcm085https://www.researchgate.net/publication/6235763_Intra-Vacuolar_Reserves_of_Membranes_During_Stomatal_Closure_The_Possible_Role_of_Guard_Cell_Vacuoles_Estimated_by_3-D_Reconstruction – (On our blog : https://plantstomata.wordpress.com/2019/02/11/stomatal-guard-cell-vacuoles-store-some-portion-of-the-excess-membrane-materials-produced-during-stomatal-closure-as-intra-vacuolar-structures/ )

Tanaka Y., Nose T., Jikumaru Y., Kamiya Y. (2013) – ABA inhibits entry into stomatal‐lineage development in Arabidopsis leaves – Plant Journ. 74(3) – https://doi.org/10.1111/tpj.12136https://onlinelibrary.wiley.com/doi/10.1111/tpj.12136 – (On our blog : https://plantstomata.wordpress.com/2019/03/12/aba-action-on-pavement-cell-expansion-requires-the-presence-of-stomatal%e2%80%90lineage-cells/ )

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2005) – Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis – Plant Physiol. 138: 2337–2343 – doi: 10.1104/pp.105.063503 – http://www.plantphysiol.org/content/138/4/2337 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/ethylene-delays-stomatal-closure-by-inhibiting-the-aba-signaling-pathway-2/

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2006) – Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis – J. Exp. Bot. 57: 2259–2266 – doi: 10.1093/jxb/erj193https://www.ncbi.nlm.nih.gov/pubmed/16798847 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/cytokinin-and-auxin-inhibit-aba-induced-stomatal-closure/ )

Tanaka Y., Sugano S. S., Shimada T., Hara-Nishimura I. (2013) – Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis – New Phytol, 198: 757–764 – doi:10.1111/nph.12186 http://onlinelibrary.wiley.com/doi/10.1111/nph.12186/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/increased-stomatal-density-enhanced-leaf-photosynthetic-capacity-by-modulating-gas-diffusion/

Tanaka Y., Fujii K., Shiraiwa T. (2010)  Variability of Leaf Morphology and Stomatal Conductance in Soybean [Glycine max (L.) Merr.] Cultivars – Crop Science – 50(6): 2525-2532 – doi:10.2135/cropsci2010.02.0058https://dl.sciencesocieties.org/publications/cs/abstracts/50/6/2525 – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomatal-conductance-in-soybean-glycine-max/ )

Tang C., Turner N. C. (1999) – The influence of alkalinity and water stress on the stomatal conductance, photosynthetic rate and growth of Lupinus angustifolius L. and Lupinus pilosus Murr. – Animal Production Science 39(4): 457-464 – DOI: 10.1071/EA98132https://www.researchgate.net/publication/262957216_The_influence_of_alkalinity_and_water_stress_on_the_stomatal_conductance_photosynthetic_rate_and_growth_of_Lupinus_angustifolius_L_and_Lupinus_pilosus_Murr – (On our blog : https://plantstomata.wordpress.com/2019/03/28/alkalinity-water-stress-and-stomatal-conductance/ )

Tang J. W., Bolstad P. V., Ewers B. E., Desai A. R., Davis K. J., Carey E. V. (2006) – Sap flux-upscaled canopy transpiration, stomatalconductance, and water use efficiency in an old growth forestin the Great Lakes region of the United States – Journal of Geophysical Research-Biogeosciences 111: G02009 – doi:10.1029/2005JG000083

Tang Y., Liang N. (2000) – Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes – Tree Physiology 20: 969–976 – https://www.ncbi.nlm.nih.gov/pubmed/11303572 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/photosynthetic-induction-response-with-stomata-barely-responding-to-light-changes/ )

Tanner L. H., Smith D. L., Allan A. (2007) – Stomatal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano – Geophysical Research Letters 34(15): L15807 – http://adsabs.harvard.edu/abs/2007GeoRL..3415807T – (On our blog : https://plantstomata.wordpress.com/2019/02/06/calculations-of-pco2-based-on-stomatal-frequency-are-likely-to-be-exaggerated/ )

Tanugrah N. (2016) – Pembuatan Komik Pencemaran Udara Kelas VII SMP Berdasarkan Analisis Jumlah Stomata dan Kadar Klorofil Tumbuhan di Sepanjang Jalan Ahmad Yani – In Bahasa. Skripsi. Fakultas Keguruan dan Ilmu Pendidikan, Universitas Tanjungpura, Pontianak.

Tanzarella O. A., Blanco A. (1979) – Stomatal frequency and size in durum wheat – Genet. Agraria 33: 355-362 –

Tanzarella O. A., de Pace C., Filippetti A. (1984) – Stomatal frequency and size in Vicia faba L. – Crop Sci. 24: 1070-1076 – https://doi.org/10.2135/cropsci1984.0011183X002400060015xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1984.0011183X002400060015x – (On our blog : https://plantstomata.wordpress.com/2021/09/19/stomatal-frequency-can-be-altered-by-breeding-to-improve-water-use/ )

Tardieu F. (1995) – Control of stomatal conductance in droughted plants by hydraulic and chemical messages from roots. ‘Photosynthesis: from light to biosphere. Volume V. Proceedings of the 10th international photosynthesis congress, Montpellier, France’. (Ed. P Mathis ) 531–536. (Kluwer Academic Publishers: Dordrecht, The Netherlands) – DOI: 10.1007/978-94-009-0173-5_1039https://www.researchgate.net/publication/300825577_Control_of_Stomatal_Conductance_in_Droughted_Plants_by_Hydraulic_and_Chemical_Messages_from_Roots – (On our blog : https://plantstomata.wordpress.com/2019/05/11/78376/ )

Tardieu F. (2016)  Too many partners in root–shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control? – New Phytologist 212(4): 802–804 – DOI: 10.1111/nph.14292http://onlinelibrary.wiley.com/doi/10.1111/nph.14292/abstract . This article is a Commentary on Visentin et al., 212: 954–963 – (On our blog : https://plantstomata.wordpress.com/2016/11/09/hydraulics-and-stomatal-control/ )

Tardieu F., Davies W. J. (1992) – Stomatal response to abscisic acid is a function of current plant water status – Plant Physiol. 98: 540-545 – https://doi.org/10.1104/pp.98.2.540 – https://www.ncbi.nlm.nih.gov/pubmed/16668674 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/epidermal-water-relations-may-act-as-a-modulator-of-the-responses-of-stomata-to-aba-2/ )

Tardieu F., Davies W. J. (1993) – Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants – Plant, Cell and Environment 16: 341–349 – https://doi.org/10.1111/j.1365-3040.1993.tb00880.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1993.tb00880.x – (On our blog : https://plantstomata.wordpress.com/2019/02/11/integration-of-hydraulic-and-chemical-signalling-in-the-control-of-stomatal-conductance/ )

Tardieu F., Katerji N., Bethenod O., Zhang J., Davies W. J. (1991) – Maize stomatal conductance in the field: Its relationship with soil and plant water potentials, mechanical constraints and ABA concentration in the xylem sap – Plant, Cell and Environment 14: 121–126 – https://doi.org/10.1111/j.1365-3040.1991.tb01378.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01378.x – (On our blog : https://plantstomata.wordpress.com/2019/02/11/maize-stomatal-conductance-in-the-field/ )

Tardieu F., Lafarge T., Simonneau T. (1996) – Stomatal control by fed or endogenous xylem ABA in sunflower: interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species – Plant Cell Environ. 19: 75–84 – https://doi.org/10.1111/j.1365-3040.1996.tb00228.x  – https://prodinra.inra.fr/?locale=en#!ConsultNotice:126667 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/correlations-between-leaf-water-potential-and-stomatal-conductance-in-anisohydric-species/ )

Tardieu F., Simonneau T. (1998) – Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours – Journal of Experimental Botany 49: 419–432 – https://doi.org/10.1093/jxb/49.Special_Issue.419 –https://academic.oup.com/jxb/article/49/Special_Issue/419/508002 – (On our blog : https://plantstomata.wordpress.com/2019/02/13/variability-of-stomatal-control-under-fluctuating-soil-water-status-and-evaporative-demand/ )

Tardieu F., Simonneau T., Parent B. (2015) – Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: update and extension of the Tardieu-Davies model. – J. Exp. Bot. 66: 2227–2237 – doi: 10.1093/jxb/erv039https://academic.oup.com/jxb/article/66/8/2227/498302 – (On our blog : https://plantstomata.wordpress.com/2020/07/06/modelling-the-coordination-of-the-controls-of-stomatal-aperture-the-tardieu-davies-model/ )

Tardieu F., Zhang J., Gowing D. J. G. (1993) – Stomatal control by both [ABA] in the xylem sap and leaf water status: a test of a model for droughted or ABA-fed field-grown maize – Plant, Cell and Environment 16: 413-420 – https://doi.org/10.1111/j.1365-3040.1993.tb00887.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1993.tb00887.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/modelling-of-stomatal-behaviour-requires-consideration-of-both-chemical-and-hydraulic-aspects-of-root%e2%80%90to%e2%80%90shoot-communication/ )

Tardieu F., Zhang J., Katerji N., Bethenod O., Palmer S.., Davies W. J. (1992) – Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying – Plant, Cell and Environment 15: 193–197 – https://doi.org/10.1111/j.1365-3040.1992.tb01473.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1992.tb01473.x – (On our blog : https://plantstomata.wordpress.com/2019/01/11/xylem-aba-controls-the-stomatal-conductance/ )

Tari I. (2003) – Abaxial and adaxial stomatal density, stomatal conductances and water status of bean primary leaves as affected by paclobutrazol – Biologia Plantarum 47: 215–220 – https://doi.org/10.1023/B:BIOP.0000022254.63487.16https://link.springer.com/article/10.1023/B:BIOP.0000022254.63487.16 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/paclobutrazol-amplified-the-stomatal-differentiation-and-increased-the-differences-between-the-adaxial-and-abaxial-stomatal-conductances/ )

Tarkowska J. A., Wakowska M. (1988) – The significance of the presence stomata on seedling roots – Annals of Botany 61: 305–310 – https://www.jstor.org/stable/42758371?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/12/the-possible-role-of-stomata-on-seedling-roots/

Tarkowska J. A., Wierzbicka M., Grzegölka M. (1975) – Development of stomata in Hordeum vulgare L. under the influence of oleander glycosides and colchicine – Acta Societatis Botanicorum Poloniae XLIV(4): 637- 647 – file:///C:/Users/wille/Downloads/5057-10201-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/02/stomata-are-formed-with-a-changed-number-of-guard-cells-or-subsidiary-cells-a-changed-shape-orientation-and-dimension/ )

Tarutani Y., Morimoto T., Sasaki A., Yasuda M., Nakashita H., Yoshida S., Yamaguchi I., Suzuki Y. (2004) – Molecular Characterization of Two Highly Homologous Receptor-like Kinase Genes, RLK902 and RKL1, in Arabidopsis thaliana – Bioscience, Biotechnology, and Biochemistry 68(9): 1935-1941 – DOI: 10.1271/bbb.68.1935https://www.tandfonline.com/doi/abs/10.1271/bbb.68.1935 – (On our blog : https://plantstomata.wordpress.com/2022/01/15/the-rkl1-promoter-activity-was-dominant-in-the-stomata-cells/ )

Tateda C., Obara K., Abe Y., Sekine R., Nekoduka S., Hikage T., Nishihara M., Sekine K.-T., Fujisaki K. (2019) – The Host Stomatal Density Determines Resistance to Septoria gentianae in Japanese Gentian – Molecular Plant-Microbe Interactions MPMI 32(4): – ISSN:0894-0282 – e-ISSN:1943-7706 – https://doi.org/10.1094/MPMI-05-18-0114-Rhttps://apsjournals.apsnet.org/doi/full/10.1094/MPMI-05-18-0114-R – (On our blog : https://plantstomata.wordpress.com/2021/04/25/stomatal-density-on-the-adaxial-leaf-surface-is-one-of-the-major-factors-determining-the-susceptibility-of-gentian-cultivars-to-septoria-gentianae-and-to-confer-septoria-resistance/ )

Tateda C., Obara K., Abe Y., Sekine R., Nekoduka S., Hikage T., Nishihara M., Sekine K.-T., Fujisaki K. (2019) – The Host Stomatal Density Determines Resistance to Septoria gentianae in Japanese Gentian – APS – https://doi.org/10.1094/MPMI-05-18-0114-Rhttps://apsjournals.apsnet.org/doi/10.1094/MPMI-05-18-0114-R – (On our blog : https://plantstomata.wordpress.com/2021/03/25/stomatal-density-control-may-represent-an-effective-strategy-to-confer-septoria-resistance/ )

Tátrai Z. A., Sanoubar R., Pluhár Z., Mancarella S., Orsini F., Gianquinto G. (2015) – Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus – International Journal of Agronomy
2016 – ID 4165750, 8 pp. – http://dx.doi.org/10.1155/2016/4165750https://www.hindawi.com/journals/ija/2016/4165750/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63995 )

Taub D. R. (2010) – Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants – Nature Education Knowledge 3(10): 21 – https://www.nature.com/scitable/knowledge/library/effects-of-rising-atmospheric-concentrations-of-carbon-13254108/ – (On our blog : https://plantstomata.wordpress.com/2021/12/07/97001/ )

Taub D. R., Wang X. (2013) – Chapter 4.04 – Effects of Carbon Dioxide Enrichment on Plants – Reference Module in Earth Systems and Environmental Sciences – Climate Vulnerability – Understanding and Addressing Threats to Essential Resources 4: 35-50 – https://doi.org/10.1016/B978-0-12-384703-4.00404-4https://www.sciencedirect.com/science/article/pii/B9780123847034004044 – (On our blog : https://plantstomata.wordpress.com/2021/08/18/co2-and-stomatal-conductance-2/ )

Tauzend P. C., Goldstein G., Meinzer F. C. (2000) – Water utilization, plant hydraulic properties and xylem vulnerability in three contrasting coffee (Coffea arabica) cultivars – Tree Physiology 20: 159–168 – https://www.academia.edu/18598992/Water_utilization_plant_hydraulic_properties_and_xylem_vulnerability_in_three_contrasting_coffee_Coffea_arabica_cultivars?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/07/sap-flow-stomatal-conductance-gscrown-conductancegcapparent-hydraulic-conductance-of-the-soil-leaf-pathway-gt-leaf-water-potential-%cf%88l-and-xylem-vulnerability-to-loss-of-hydrau/ )

Tay A.-C., Furukawa A. (2008) – Variations in leaf stomatal density and distribution of 53 vine species in Japan – Plant Species Biology 23(1): 2-8 – https://doi.org/10.1111/j.1442-1984.2008.00201.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1442-1984.2008.00201.x – (On our blog : https://plantstomata.wordpress.com/2018/08/11/leaf-stomatal-density-and-distribution-vary-among-species-with-different-growth-life-forms-from-different-habitats/ )

Taylor A. R., Assmann S. M. (2001) – Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells – Plant Physiol. 125: 329–338 – https://doi.org/10.1104/pp.125.1.329 – http://www.plantphysiol.org/content/125/1/329 – (On our blog : https://plantstomata.wordpress.com/2018/10/28/reduced-products-of-photosynthesis-are-unlikely-to-be-critical-regulators-in-bl-stimulation-of-the-plasma-membrane-h-atpase-in-stomata/ )

Taylor G., Dobson M. C. (1989) – Photosynthetic characteristics, stomatal responses and water relations of Fagus sylvatica: impact of air quality at a site in Southern Britain – New Phytol. 113: 265-273 – https://doi.org/10.1111/j.1469-8137.1989.tb02403.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1989.tb02403.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/impact-of-air-quality-on-stomatal-responses-and-water-relations/ )

Taylor H. (1941) – A physiological study of diploid and relatred tetraploid plants – Proceedings Oklahoma Acad. Sci. for 1941: 137-138 – file:///C:/Users/wille/Downloads/3220-Article%20Text-8176-1-10-20150205%20(2).pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomata-in-diploid-and-tetraploid-plants/ )

Taylor J.E., Abram B., Boorse G., Tallman G., (1998) – Approaches to evaluating the extent to which guard cell protoplasts of Nicotiana glauca (tree tobacco) retain their characteristics when cultured under conditions that affect their survival, growth, and differentiation – Journal of Experimental Botany 49(Special issue): 377-386 – DOI: 10.1093/jxb/49.special_issue.377https://eurekamag.com/research/003/045/003045709.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/characteristics-of-stomatal-guard-cell-protoplasts/ )

Taylor J. S., Reid D. M., Pharis R. P. (1981) – Mutual Antagonism of Sulfur Dioxide and Abscisic Acid in Their Effect on Stomatal Aperture in Broad Bean (Vicia faba L.) Epidermal Strips – Plant Physiology 68(81): 1504–1507 –doi:10.1104/pp.68.6.1504

Taylor J. E., Renwick K. F., Webb A. A. R., McAinsh M. R., Furini A., Bartels D. (1995) – ABA‐regulated promoter activity in stomatal guard cells – The Plant Journal 7(1): 129-134 – DOI: 10.1046/j.1365-313x.1995.07010129.xhttps://pubmed.ncbi.nlm.nih.gov/7894503/ – (On our blog : https://plantstomata.wordpress.com/2021/04/25/aba%e2%80%90regulated-promoter-activity-in-stomata/ )

Taylor S. H., Franks P. J., Hulme S. P., Spriggs E., Christin P. A., Edwards E. J., Woodward F. I., Osborne C. P. (2012) – Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses – New Phytologist 193(2): 387-396 – DOI: 10.1111/j.1469-8137.2011.03935.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03935.x/abstract – (On our blog :  https://wordpress.com/post/plantstomata.wordpress.com/65932 )

Tazoe Y., Santrucek J. (2015) – Superimposed behaviour of gm under ABA-induced stomata closing and low CO2 – Plant, Cell and Environment 38(3): 385-387 – https://doi.org/10.1111/pce.12437https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12437 – (On our blog : https://plantstomata.wordpress.com/2020/11/09/superimposed-behaviour-of-gm-under-aba-induced-stomata-closing-and-low-co2/ )

Teare I. D., Peterson C. J., Law A. G. (1971) – Size and frequency of leaf stomata in cultivars of Triticum aestivum and other Triticum species – Crop Science 11(2): 496-498 – doi:10.2135/cropsci1971.0011183X001100040010xhttps://dl.sciencesocieties.org/publications/cs/abstracts/11/4/CS0110040496 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/size-and-frequency-of-leaf-stomata-in-cultivars-of-triticum/ )

Tee E. (2018) – Uncovering the Steps Before: Sulfate Induces ABA Biosynthesis and Stomatal Closure – The Plant Cell, The Plant Cell: In Brief  – https://plantae.org/uncovering-the-steps-before-sulfate-induces-aba-biosynthesis-and-stomatal-closure/ – (On our blog : https://plantstomata.wordpress.com/2022/05/19/sulfate-promotes-stomatal-closure-by-inducing-aba-biosynthesis-and-activating-ros/ )

Tekalign T., Hammes P. S. (2005) – Growth and productivity of potato as influenced by cultivar and reproductive growth. I. Stomatal conductance, rate of transpiration, net photosynthesis and dry matt production and allocation – Scientia Hortic. 105: 13–27 – doi: 10.1016/j.scienta.2005.01.029https://www.sciencedirect.com/science/article/abs/pii/S0304423805000464?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/05/23/fruiting-plants-have-higher-leaf-stomatal-conductance/ )

Tel-Aviv University (2021) – Exploring a mechanism that helps plants cope with water shortages – https://phys.org/news/2021-11-exploring-mechanism-cope-shortages.html – (On our blog : https://plantstomata.wordpress.com/2021/11/11/proteins-that-transport-a-small-signal-molecule-that-controls-two-vital-processes-closing-leaves-stomata-to-prevent-water-loss-and-regulating-lateral-roots-growth/ )

Temple T. J. (1986) – Stomatal conductance and transpirational responses of field-grown cotton top ozone – Plant, Cell and Environm. 9: 315-321 –

Tena G. (2015) – Stomata signalling: A pore within a pore – Nature Plants 1 – Article number: 15133  –

Tena G. (2015) – Stomatal development: Securing a lineage – Dev. Cell 33: 136-149 – http://www.nature.com/articles/nplants201571 – (https://plantstomata.wordpress.com/2016/12/16/a-lineage-in-stomatal-development/ )

Tena G. (2016) – Stomatal development: Grasses vs Arabidopsis – Nature Plants 2, Article number: 16124 – DOI: 10.1038/nplants.2016.124 –https://www.ncbi.nlm.nih.gov/pubmed/28221371 –

Tena G. (2017) – Grass stomata development: MUTE communication – Nature Plants 3(4): 1751 – DOI: 10.1038/nplants.2017.51 https://www.researchgate.net/publication/315968168_Grass_stomata_development_MUTE_communication – (On our blog : https://plantstomata.wordpress.com/2019/03/11/grass-stomata-development-mute-communication/ )

Tenhunen J. D., Beyschlag W., Lange O. L., Harley P. C. (1987) – Changes during summer drought in leaf CO2 uptake rates of macchia shrubs growing in Portugal: Limitations due to photosynthetic capacity, carboxylation efficiency, and stomatal conductance – In E. Zeiger, G. D. Farquhar, & I.R. Cowan (Eds.), Stomatal function (pp. 323–351). Stanford, CA: Stanford University Press – In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (Eds.), Plant Response to StressFunctional Analysis in Mediterranean Ecosystems. NATO ASI Ser. G, vol. 15. Springer, pp. 305e327 – https://doi.org/10.1007/978-3-642-70868-8_18https://link.springer.com/chapter/10.1007/978-3-642-70868-8_18 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/78392/ )

Tenhunen J. D., Lange O. L., Braun M. (1980) – Midday stomatal closure in Arbutus unedo leaves in a natural macchia and under simulated habitat conditions in an environmental chamber – Oecologia 47: 365-36 – https://doi.org/10.1007/BF00398530https://link.springer.com/article/10.1007/BF00398530#citeas – (On our blog : https://plantstomata.wordpress.com/2021/01/07/midday-depression-of-transpiration-rate-and-net-photosynthesis-rate-of-leaves-due-to-midday-stomatal-closure/ )

Tenhunen J. D., Lange O. L., Braun M. (1981) – Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber : II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex – Oecologia. 50(1): 5-11 – doi: 10.1007/BF00378788https://pubmed.ncbi.nlm.nih.gov/28310056/ – (On our blog : https://plantstomata.wordpress.com/2021/02/27/higher-temperature-and-lower-humidity-on-successive-days-gradually-results-in-midday-stomatal-closure/ )

Tenhunen J. D., Lange O. L., Gebel J., Beyschlag W., Weber J. A. (1984) – Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber – Planta 162: 193-203 – doi: 10.1007/BF00397440https://www.ncbi.nlm.nih.gov/pubmed/24253090 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/midday-stomatal-closure-and-midday-depression-of-net-co2-exchange-of-leaves/ )

Tenhunen J. D., Lange O. L., Jahner D. (1982) – The control by atmospheric factors and water stress of midday stomatal closure in Arbutus enedo growing in a natural macchia –  Oecologia 55: 165-169 – https://doi.org/10.1007/BF00384483https://link.springer.com/article/10.1007%2FBF00384483#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/12/atmospheric-factors-and-water-stress-of-midday-stomatal-closure/

Teramura A. H., Tevini M., Iwanzik W. (1983) – Effects of ultraviolet-B on plants during mild water stress. I. Effects on diurnal stomatal resistance – Physiol Plant 57: 175–180 – https://doi.org/10.1111/j.1399-3054.1983.tb00896.x –https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-3054.1983.tb00896.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/effects-of-ultraviolet-b-on-diurnal-stomatal-resistance/ )

Terashima I., Wong S.-C., Osmond C. B., Farquhar G. D. (1988) – Characterisation of Non-Uniform Photosynthesis Induced by Abscisic Acid in Leaves Having Different Mesophyll Anatomies – Plant and Cell Physiology 29(3): – DOI: 10.1093/oxfordjournals.pcp.a077506https://www.researchgate.net/publication/31457438_Characterisation_of_Non-Uniform_Photosynthesis_Induced_by_Abscisic_Acid_in_Leaves_Having_Different_Mesophyll_Anatomies – (On our blog : https://plantstomata.wordpress.com/2021/05/15/the-distribution-of-open-stomata-was-similar-to-the-pattern-of-starch-accumulation/ )

Terfa M. T., Olsen J. E., Torre S. (2020) – Blue Light Improves Stomatal Function and Dark-Induced Closure of Rose Leaves (Rosa x hybrida) Developed at High Air Humidity – Frontiers in Plant Science ( IF 4.402 ) DOI: 10.3389/fpls.2020.01https://www.x-mol.com/paper/1288183835631730688 – (On our blog : https://plantstomata.wordpress.com/2020/07/29/blue-light-improves-stomatal-function-and-dark-induced-closure/

Terryn N., Brito Arias M., Engler G., Tire C., Villarroel R., Van
Montagu M., Inzé D. (1993)
– Plant Cell 5: 1761-1769 – doi: 10.1105/tpc.5.12.1761 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160402/ – (On our blog : https://plantstomata.wordpress.com/2019/01/17/the-rha1-gene-is-expressed-primarily-in-developing-stomatal-guard-cells/ )

Teskey R. O. (1995) – A field study of the effects of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees – Plant Cell Environ. 18: 565–575 –  https://doi.org/10.1111/j.1365-3040.1995.tb00556.x –https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00556.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/effects-of-elevated-co2-on-stomatal-conductance/ )

Teskey R. O., Fites J., Samuelson L., Bongarten B. C. (1986) – Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions – Tree Physiol. 2: 131-142 – https://doi.org/10.1093/treephys/2.1-2-3.131 –https://academic.oup.com/treephys/article-abstract/2/1-2-3/131/1623642?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/13/stomatal-and-nonstomatal-limitations-to-net-photosynthesis/ )

Teskey R. O., Hinckley T. M., Grier C. C. (1983) – Effect of interruption of flow path on stomatal conductance of Abies amabilis – J. Exp. Bot. 34: 1251-1259 – https://doi.org/10.1093/jxb/34.10.1251https://academic.oup.com/jxb/article-abstract/34/10/1251/497803?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/04/01/stomatal-closure-could-be-rapidly-induced-with-a-change-in-the-flux-of-water/ )

Tewolde H., Dobrenz A. K., Voigt R. L. (1993) – Seasonal trends in leaf photosynthesis and stomatal conductance of drought stressed and nonstressed pearl millet as associated to vapor pressure deficit – Photosynth Res. 38(1): 41-49 – doi: 10.1007/BF00015060 – PMID: 24317829 – https://pubmed.ncbi.nlm.nih.gov/24317829/ – (On our blog : https://plantstomata.wordpress.com/2021/08/17/stomatal-conductance-as-associated-to-vapor-pressure-deficit/ )

Tezara W., Fernandez M. D., Donoso C., Herrera A. (1998) – Seasonal changes in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem – Photosynthetica 35(3): 399-410 – Seasonal_changes_in_photosynthesis_and_s.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/seasonal-changes-in-photosynthesis-and-stomatal-conductance/ )

Thetford M., Warren S. L., Blazich F. A., Thomas J. F. (1995) – Response of Forsythia x intermedia ‘Spectabilis’ to uniconazole. II. Leaf and stem anatomy, chlorophyll and, photosynthesis – J. Amer. Soc. Hort. Sci. 120(6): 983-988 – file:///C:/Users/wille/Downloads/[23279788%20-%20Journal%20of%20the%20American%20Society%20for%20Horticultural%20Science]%20Response%20of%20Forsythia%20%C3%97intermedia%20%60Spectabilis’%20to%20Uniconazole.%20II.%20Leaf%20and%20Stem%20Anatomy,%20Chlorophyll,%20and%20Photosynthesis.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/18/uniconazole-and-stomata/ )

Thiel G., Blatt M. R .(1994) – Phosphatase antagonist okadaic acid inhibits steady-state K1 currents in guard cells of Vicia faba – Plant J. 5: 727–733 – DOI: 10.1111/j.1365-313X.1994.00727.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.1994.00727.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/phosphatase-antagonist-okadaic-acid-inhibits-steady-state-k1-currents-in-stomata/ )

Thiel G., Blatt M. R., Fricker M. D., White I. R., Millner P. (1993) – Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin‐binding protein C terminus – Proceedings of the National Academy of Sciences, USA 90: 11.493-11.497 – https://doi.org/10.1073/pnas.90.24.11493 –https://www.pnas.org/content/90/24/11493 – (On our blog : https://plantstomata.wordpress.com/2019/02/13/modulation-of-k-channels-in-stomatal-guard-cells-by-peptide-homologs/ )

Thiel G., MacRobbie E. A., Blatt M. R. (1992) – Membrane transport in stomatal guard cells: the importance of voltage control – Journal of Membrance Biology 126: 1-18 – https://doi.org/10.1007/BF00233456https://link.springer.com/article/10.1007/BF00233456 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/voltage-control-and-membrane-transport-in-stomatal-guard-cells/ )

Thiel G., Wolf A. H. (1997) – Operation of K+‐channels in stomatal movement – Trends in Plant Science 2: 339-345 – https://doi.org/10.1016/S1360-1385(97)84621-3https://www.sciencedirect.com/science/article/pii/S1360138597846213 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/k-%e2%80%90channels-in-stomatal-movement/ )

Thimann K. V., Satler S. O. (1979) – Relation between leaf senescence and stomatal closure: senescence in light – Proc. Natl. Acad. Sci. U.S.A. 76: 2295–2298 – doi: 10.1073/pnas.76.5.2295 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383586/ – (On our blog : https://plantstomata.wordpress.com/2018/06/28/the-effect-of-light-in-delaying-senescence-is-due-to-its-effect-on-the-stomatal-aperture/ )

Thimann K. V., Satler S. (1979) – Relation between senescence and stomatal opening: senescence in darkness. – Proc. Natl. Acad. Sci. U.S.A. 76: 2770–2773 – doi: 10.1073/pnas.76.6.2770 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383690/ – (On our blog : https://plantstomata.wordpress.com/2018/06/28/a-parallel-between-stomatal-aperture-and-senescence-with-strong-indication-that-the-stomatal-aperture-is-the-causal-factor/ )

Thimann K. V., Tan Z.-Y. (1988) – The Dependence of Stomatal Closure on Protein Synthesis – Plant Physiol. 86: 0341-0343 – http://www.plantphysiol.org/content/plantphysiol/86/2/341.full.pdf – (On our blog : https://plantstomata.wordpress.com/2021/05/15/continued-protein-synthesis-is-necessary-to-keep-foliar-stomata-closed/ )

Thimann K. V., Tan Z.-Y., Park J. (1992) – CYCLING OF STOMATAL APERTURE IN LEAVES OF PLANTS WITH CRASSULACEAN ACID METABOLISM UNDER CONSTANT CONDITIONS – American Journal of Botany 79(1): – https://bsapubs.onlinelibrary.wiley.com/action/doSearch?AllField=Stomata&SeriesKey=15372197&startPage=2&pageSize=20 – (On our blog : https://plantstomata.wordpress.com/2022/07/05/senescence-of-these-leaves-is-modified-by-stomatal-aperture/ )

Thoday D. (1938) – Stomatal Movement and Epidermal Water-Content – Nature 141: 164 – https://doi.org/10.1038/141164b0https://www.nature.com/articles/141164b0#citeas – (On our blog : https://plantstomata.wordpress.com/2022/01/20/remarkable-sensitiveness-of-stomata-to-insolation/ )

Thomas D. A. (1970) – The regulation of stomatal aperture in tobacco leaf epidermal strips I. The effect of ions – Aust. J. Biol. Sci. 23: 961–979 – https://doi.org/10.1071/BI9700961http://www.publish.csiro.au/bi/BI9700961 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-effect-of-ions-on-the-regulation-of-stomatal-aperture/ )

Thomas D. A. (1970} -The regulation of stomatal aperture in tobacco leaf epidermal strips. II. The effect of ouabain – Aust. J. biol. Sci. 23: 981-989 –

Thomas D. A. (1971) – The regulation of stomatal aperture in tobacco leaf epidermal strips. III The effect of ATP – Aust. J. biol. Sci. 24: 689-707 – https://www.publish.csiro.au/bi/pdf/BI9710689 – (On our blog : https://plantstomata.wordpress.com/2021/10/31/the-effect-of-atp-on-stomatal-movements/ )

Thomas D. A. (1975) – Stomata. In ion transport in plant cells and tissues – Ed. D.A. Baker, Hall , J.L. North-Holland Publishing Co., U.K. –

Thomas D. S., Eamus D. (1999) – The influence of predawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations – Journal of Experimental Botany 50: 243–251 – https://doi.org/10.1093/jxb/50.331.243 –https://academic.oup.com/jxb/article/50/331/243/563005 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/hydraulic-signals-regulate-stomatal-conductance/ )

Thomas D. S., Eamus D. (2002) – Seasonal patterns of xylem sap pH, xylem [ABA], leaf water potential and stomatal conductance of 6 evergreen and deciduous Australian savanna tree species – Australian Journal of Botany 50: 229-236 https://doi.org/10.1071/BT01045http://www.publish.csiro.au/bt/BT01045 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/changes-in-xylem-sap-ph-and-aba-content-do-occur-seasonally-in-the-wet-dry-tropics-of-australia-and-that-these-changes-influence-stomatal-conductance-in-evergreen-and-semi-deciduous-species/ )

Thomas D. S., Eamus D., Bell D. (1999) – Optimization theory of stomatal behaviour I. A critical evaluation of five methods of calculation – Journal of Experimental Botany 50(332): 385–392 – (On our blog : https://plantstomata.wordpress.com/2021/09/15/five-methods-for-calculating-the-mar-ginal-unit-water-cost-of-plant-carbon-gain-%e2%88%82e-%e2%88%82a-of-leaves-of-two-australian-tropical-tree-species/ )

Thomas D. S., Eamus D., Bell D. (1999) – Optimization theory of stomatal behaviour. II. Stomatal responses of several tree species of north Australia to changes in light, soil and atmospheric water content and temperature – J. Exp. Bot. 50: 393–400 – https://doi.org/10.1093/jxb/50.332.393 –https://academic.oup.com/jxb/article/50/332/393/540871 – (on our blog : https://plantstomata.wordpress.com/2019/02/07/stomata-are-only-behaving-optimally-over-a-very-small-range-of-leaf-to-air-vapour-pressure-difference/ )

Thomas D. S., Eamus D., Shanahan S., (2000) – Studies on the influence of season, drought and xylem ABA on stomatal responses to leaf-to-air vapour pressure difference of trees of the Australian wet-dry tropics – Aust. J. Bot. 48: 50–59 –

Thomas E. (2018) – Plants Also Absorb Mercury – The Talking Democrat April 3, 2018 – https://www.thetalkingdemocrat.com/2018/04/plants-also-absorb-mercury/ – (On our blog : https://plantstomata.wordpress.com/2018/04/04/plants-also-absorb-mercury-through-their-stomata/ )

Thomas J. C., Brown K. W., Jordan W. R. (1976) – Stomatal response to leaf water potential as affected by preconditioning water stress in the field – Agron J 68: 706-708 –

Thomas R. B., Spal S. E., Smith K. R., Nippert J. B. (2013) – Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act – pnas201308115 1..6 – https://www.pnas.org/content/pnas/early/2013/08/28/1308115110.full.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/06/acid-deposition-reduced-stomatal-conductance-of-leaves-and-the-stomata-may-be-more-sensitive-to-acid-deposition-than-to-increasing-atmospheric-co2/ )

Thompson D. S., Wilkinson S., Bacon M. A., Davies W. J. (1997) – Multiple signals and mechanisms that regulate leaf growth and stomatal behaviour during water deficit – Physiol. Plant. 100: 303–313 – https://doi.org/10.1111/j.1399-3054.1997.tb04787.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1997.tb04787.x – (On our blog : https://plantstomata.wordpress.com/2019/05/28/multiple-signals-and-mechanisms-that-regulate-stomatal-behaviour-during-water-deficit/ )

Thomson A., Cox R. C., Mansfield T. A. (1988) – The response of stomata to ring‐substituted indolylacetic acids – New Phytologist 110(4): 511-515 – https://doi.org/10.1111/j.1469-8137.1988.tb00290.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1988.tb00290.x – (On our blog : https://plantstomata.wordpress.com/2021/05/10/stomata-iaa-and-ring%e2%80%90substituted-indolylacetic-acids/ )

Thomson W. W., De Journett R. (1970) – Studies on the Ultrastructure of the Guard Cells of Opuntia – American Journal of Botany 57(3): 309-316 – https://www.jstor.org/stable/2485309https://www.jstor.org/stable/2485309?seq=1#page_scan_tab_contents – (On our blog : https://wordpress.com/block-editor/post/plantstomata.wordpress.com/79902 )

Thor K., Jiang S., Michard E., e.a. (2020) – The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity – Nature 585: 569-573 – DOI: 10.1038/s41586-020-2702-1https://www.researchgate.net/publication/343896787_The_calcium-permeable_channel_OSCA13_regulates_plant_stomatal_immunity – (On our blog : https://plantstomata.wordpress.com/2020/08/31/osca1-3-regulates-plant-stomatal-immunity/ )

Kathrin Thor, Shushu Jiang, Erwan Michard, Jeoffrey George, Sönke Scherzer, Shouguang Huang, Julian Dindas, Paul Derbyshire, Nuno Leitão, Thomas A. DeFalco, Philipp Köster, Kerri Hunter, Sachie Kimura, Julien Gronnier, Lena Stransfeld, Yasuhiro Kadota, Christoph A. Bücherl, Myriam Charpentier, Michael Wrzaczek, Daniel MacLean, Giles E. D. Oldroyd, Frank L. H. Menke, M. Rob G. Roelfsema, Rainer Hedrich, José Feijó, Cyril Zipfel (2020) –  The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity – Nature 2020 – DOI: 10.1038/s41586-020-2702-1https://www.nature.com/articles/s41586-020-2702-1#citeas – (On our blog : https://plantstomata.wordpress.com/2020/09/08/osca1-3-regulates-plant-stomatal-immunity-2/ )

Thor K., Peiter, E. (2014) – Cytosolic calcium signals elicited by the pathogen- associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. – New Phytol. 204, 873–881 – doi: 10.1111/nph.13064 – Epub 2014 Sep 22 – https://www.ncbi.nlm.nih.gov/pubmed/25243759 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/cytosolic-calcium-signals-in-stomatal-guard-cells-are-of-an-oscillatory-nature/ )

Thorn G. D., Minshall W. H., (1964) – The effect of sodium dimethyldithiocarbamate on water uptake, transpiration, and stomatal opening – Canadian Journal of Botany  October 1964   https://doi.org/10.1139/b64-136https://cdnsciencepub.com/doi/abs/10.1139/b64-136 – (On our blog : https://plantstomata.wordpress.com/2021/11/19/sodium-dimethyldithiocarbamate-and-stomatal-opening/ )

Thorpe N. (1980) – Accumulation of carbon compounds in the epidermis of five species with either different photosynthetic systems or stomatal structure – Plant, Cell & Environment 3: 451-460 – https://doi.org/10.1111/1365-3040.ep11587001 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11587001 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/accumulation-of-carbon-compounds-in-the-epidermis-of-species-with-different-stomatal-structure/ )

Thorpe N., Brady C. J., Milthorpe F. L. (1978) – Stomatal metabolism: primary carboxylation and enzyme activities – Aust J Plant Physiol 5: 485-493 – https://doi.org/10.1071/PP9780485https://www.publish.csiro.au/FP/PP9780485 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/stomatal-metabolism/ )

Thorpe N. R., Warrit B., Landsberg J. J. (1980) – Responses of apple leaf stomata: a model for single leaves and a whole tree. Plant Cell Environ. 3: 23-27 – https://doi.org/10.1111/1365-3040.ep11580508 –https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11580508 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/responses-of-apple-leaf-stomata-a-model-for-single-leaves-and-a-whole-tree/ )

Thorpe N., C.M Willmer C. M., Milthorpe F. L. (1979) – Stomatal Metabolism: Carbon Dioxide Fixation and Labelling Patterns during Stomatal Movement in Commelina cyanea – Australian Journal of Plant Physiology 6(3): 409-416 – https://doi.org/10.1071/PP9790409https://www.publish.csiro.au/fp/PP9790409 – (On our blog : https://plantstomata.wordpress.com/2021/09/06/co2-fixation-and-labelling-patterns-during-stomatal-movement/ )

Thut H. F. (1939) – The Relative Humidity Gradient of Stomatal Transpiration – American Journal of Botany 26(5): 315-319 – DOI: 10.2307/2436465https://www.jstor.org/stable/2436465?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/05/20/the-relative-humidity-gradient-of-stomatal-transpiration/ )

Tian M., Yu G., He N., Hou J. ( 2016)  Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors – Scientific Reports 6, Article number: 19703 (2016) – doi:10.1038/srep19703https://www.nature.com/articles/srep19703 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-traits-from-tropical-to-temperate-coniferous-forests/ )

Tian W., Hou C., Ren Z., Pan Y., Jia J., Zhang H., et al. (2015) – A molecular pathway for CO2 response in Arabidopsis guard cells – Nat. Commun. 6:6057 – doi: 10.1038/ncomms7057 – https://www.nature.com/articles/ncomms7057 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/co2-response-in-guard-cells-stomata/ )

Tichá I. (1982) – Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes – Photosynthetica 16(3): 375-471 – https://eurekamag.com/research/001/108/001108642.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/stomata-density-and-sizes/ )

Tichá I., Radochová B., Kadleček P. (1999) – Stomatal Morphology during Acclimatization of Tobacco Plantlets to ex vitro Conditions – Biologia Plantarum 42(3): 469-474 – DOI: 10.1023/A:1002450210939 –https://www.infona.pl/resource/bwmeta1.element.springer-8c213c62-bf32-37bd-9448-939744b5cf2e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/stomatal-morphology-during-acclimatization/ )

Time A., Garrido M., Acevedo E. (2018) – Water relations and growth response to drought stress of Prosopis tamarugo Phil. A review – Journal of soil science and plant nutrition 18(2): 329-343 – https://dx.doi.org/10.4067/S0718-95162018005001103https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162018005001103&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2021/10/17/prosopis-partially-closes-its-stomata-to-decrease-water-loss-maintains-high-stomata-conductance-to-deal-with-increasing-temperature-and-atmospheric-demand/ )

Time A., Acevedo E. (2021) – Effects of Water Deficits on Prosopis
tamarugo
Growth, Water Status and Stomata Functioning – Plants 10: 53 – https://doi.org/10.3390/plants10010053file:///C:/Users/wille/Downloads/plants-10-00053-v2.pdf – (On our blog : https://plantstomata.wordpress.com/2021/02/07/prosopis-tamarugo-can-maintain-its-growth-at-low-leaf-water-potential-and-can-tolerate-intense-water-deficit-due-to-a-partial-stomatal-closing-strategy/ )

Timmy (2022) – Where Does Carbon Dioxide Enter the Plant? – https://plantcarer.com/where-does-carbon-dioxide-enter-the-plant/?utm_source=rss&utm_medium=rss&utm_campaign=where-does-carbon-dioxide-enter-the-plant – (On our blog : https://plantstomata.wordpress.com/2022/05/25/stomata-and-co2-7/ )

Ting I. P., Loomis W. E. (1963) – Diffusion through stomates –  Am. J. Bot. 50: 866–872 – DOI: 10.2307/2439773 http://www.plantphysiol.org/content/77/4/944Google Scholar – https://www.jstor.org/stable/2439773?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/28/stomatal-opening-will-have-no-important-effect-on-diffusion-from-or-into-a-leaf-until-the-stomates-are-essentially-closed/ )

Ting I. P., Loomis W. E. (1965) – Further studies concerning stomatal diffusion – Plant Physiol. 40: 220-228 –

Tingey D. T., Hogsett W. E. (1985) – Water-stress reduces ozone injury via a stomata1 mechanism – Environmental Pollution 77: 944-947 –https://doi.org/10.1104/pp.77.4.944 – http://www.plantphysiol.org/content/77/4/944 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/water-stress-protects-plants-from-ozone-injury-via-stomatal-aperture/ )

Tinoco-Ojanguren C., Pearcy R. W. (1992) – Dynamics of stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory Piper species acclimated to high and low light. – Oecologia 92: 222–228 – doi: 10.1007/BF00317368 https://www.ncbi.nlm.nih.gov/pubmed/28313055 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/lightflecks-and-stomatal-behavior/ )

Tinoco-Ojanguren C., Pearcy R. W. (1993) – Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks – Oecologia 94: 388-394 – https://doi.org/10.1007/BF00317114 – https://link.springer.com/article/10.1007/BF00317114#citeas – (On our blog : https://plantstomata.wordpress.com/2018/07/05/vpd-effects-on-the-transient-stomatal-response-to-lightflecks/ )

Tinoco-Ojanguren C., Pearcy R. W. (1993) – Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. II. Stomatal versus biochemical limitations during photosynthetic induction. – Oecologia 94: 395–402 – doi: 10.1007/BF00317115 – https://www.ncbi.nlm.nih.gov/pubmed/28313677 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/stomatal-versus-biochemical-limitations-during-photosynthetic-induction/ )

Tissera P., Ayres P. G. (1986) – Endogenous Ethylene Affects the Behaviour of Stomata in Epidermis Isolated from Rust Infected Faba Bean (Vicia faba L.) – The New Phytologist 104(1): 53-61 – https://www.jstor.org/stable/2434566 – (On our blog : https://plantstomata.wordpress.com/2021/10/30/endogenous-ethylene-is-an-effective-regulator-of-stomatal-behaviour/ )

Tissue D. T., Griffin K. L., Turnbull M. H., Whitehead D. (2005) – Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by Dacrydium cupressinum in New Zealand – Tree Physiol. 25(4): 447-456 – PMID: 15687093 – https://www.ncbi.nlm.nih.gov/pubmed/15687093 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/stomatal-and-non-stomatal-limitations-to-photosynthesis-in-a-temperate-rainforest/ )

Tiwari S. P., Kumar P., Yadav D., Chauhan D. K. (2013) – Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North-West Indian Himalayas – Turkish Journal of Botany 37: 65-73 –

Tobin R. L., Kulmatiski A. (2018) – Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park – Plos One. 13(1): e0191396 – https://doi.org/10. 1371/journal.pone.0191396 – PMID: 29373605 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191396 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/plant-identity-and-shallow-soil-moisture-are-primary-drivers-of-stomatal-conductance/ )

Toda Y., Perry G. J. P., Inoue S., Ito E., Kawakami T., Narouz M. R., Takahashi K., Aihara Y., Maeda B., Kinoshita T., Itami K., Murakami K. (2022) – Identification of stomatal-regulating molecules from de novo arylamine collection through aromatic C–H amination – Sci Rep 12: 949 – https://doi.org/10.1038/s41598-022-04947-zhttps://www.nature.com/articles/s41598-022-04947-z#citeas – (On our blog : https://plantstomata.wordpress.com/2022/02/01/the-action-of-stomata-influencing-molecules-sims-which-may-lead-to-drought-tolerance-conferring-agrochemicals-through-the-control-of-stomatal-movement/ )

Toda Y., Toh S., Bourdais G., Robatzek S. Maclean D., Kinoshita T. (2018) – DeepStomata: facial recognition technology for automated stomatal aperture measurement – bioRxiv. July 2018:365098 – https://doi.org/10.1101/365098https://www.biorxiv.org/content/10.1101/365098v1.full– (On our blog : https://plantstomata.wordpress.com/2019/10/08/a-program-called-deepstomata-which-combines-stomatal-region-detection-and-pore-isolation-by-image-segmentation/ )

Toda Y., Wang Y., Takahashi A., Kawai Y., Tada Y., Yamaji N., Ma J. F., Ashikari M., Kinoshita T. (2016)Oryza sativa H + -ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice – Plant and Cell Physiology 57(6): 1220–1230 – https://doi.org/10.1093/pcp/pcw070https://academic.oup.com/pcp/article/57/6/1220/2461109 – (On our blog : https://plantstomata.wordpress.com/2019/07/29/h-atpase-is-involved-in-bl-induced-stomatal-opening-of-dumbbell-shaped-guard-cells-in-monocotyledon-species/ )

Tognetti R. (1997)  Stomatal numbers in holm oak (Quercus ilex L.) leaves grown in naturally and artificially CO2 -enriched environments – https://www.academia.edu/30721351/Stomatal_numbers_in_holm_oak_Quercus_ilex_L._leaves_grown_in_naturally_and_artificially_CO_2_-enriched_environments – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-numbers-in-different-environment/ )

Tognetti R., Cherubini P., Marchi S., Raschi A. (2007) – Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy – Tree Physiol. 27(12): 1741-1751 – DOI: 10.1093/treephys/27.12.1741https://www.ncbi.nlm.nih.gov/pubmed/17938105 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-conductance-and-other-leaf-traits-and-tree-rings-suggest-different-water-use-and-carbon-assimilation-strategies/ )

Tognetti R., Giovannelli A., Lavini A., Morelli G., Fragnito F., d’Andria R. (2009) – Assessing environmental controls over conductances through the soil–plant–atmosphere continuum in an experimental olive tree plantation of southern Italy – Agricultural and Forest Meteorology 149: 1229–1243 – https://www.academia.edu/20711817/Assessing_environmental_controls_over_conductances_through_the_soil_plant_atmosphere_continuum_in_an_experimental_olive_tree_plantation_of_southern_Italy?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/12/14/loss-%ef%bf%bcof-hydraulic-conductance-is-an-%ef%bf%bcimportant-mechanism-for-increasing%ef%bf%bcstomatal%ef%bf%bccontrol%ef%bf%bcof%ef%bf%bctranspiration%ef%bf%bcunder%ef%bf%bcprogressive/ )

Tognetti R., Longobucco A., Miglietta F., Raschi A. (1998) – Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring – Plant, Cell and Environment 21: 613–622 – https://doi.org/10.1046/j.1365-3040.1998.00301.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00301.x – (On our blog : https://plantstomata.wordpress.com/2019/02/07/transpiration-and-stomatal-behaviour-of-trees-during-the-summer/ )

Tognetti R., Longobucco A., Miglietta F., Raschi A. (1999) – Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring – Tree Physiology  19: 261–270 – DOI: 10.1093/treephys/19.4-5.261https://www.researchgate.net/publication/10842449_Water_relations_stomatal_response_and_transpiration_of_Quercus_pubescens_trees_during_summer_in_a_Mediterranean_carbon_dioxide_spring – (On our blog : https://plantstomata.wordpress.com/2019/02/07/water-relations-stomatal-response-and-transpiration-of-trees-during-summer/ )

Toh S., Inoue S., Toda Y., Yuki T., Suzuki K., Hamamoto S., Fukatsu K., Aoki S., Uchida M., Asai E., Uozumi N., Sato A., Kinoshita T. (2018) – Identification and Characterization of Compounds that Affect Stomatal Movements – Plant and Cell Physiology 59(8): 1568–1580 – https://doi.org/10.1093/pcp/pcy061 – https://academic.oup.com/pcp/article-abstract/59/8/1568/4950858?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/12/11/screening-of-chemical-libraries-to-identify-compounds-that-affect-stomatal-movements/

Tõldsepp K., Zhang J., Takahashi Y., Sindarovska Y., Hõrak H., Ceciliato P. H. O., Koolmeister K., Wang Y.-S., Vaahtera L., Jakobson L., Yeh C.-Y., Park J., Brosche M., Kollist H., Schroeder J. I. (2018) – Mitogen‐activated protein kinases MPK4 and MPK12 are key components mediating CO2‐induced stomatal movements – The Plant Journal – https://doi.org/10.1111/tpj.14087 – https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14087?af=R – (On our blog : https://plantstomata.wordpress.com/2018/09/12/mpk4-and-mpk12-act-as-key-components-of-early-stomatal-co2-signal-transduction/

Tö¨lke E. E. A. D., Melo J. I. M. de, Carmello-Guerreiro S.M., Lacchia A. P. S. (2013) – Leaf anatomy with emphasis on separation of two species of Varronia P.Br. (Cordiaceae) of the Brazilian semi-arid region – Braz. J. Bot – DOI 10.1007/s40415-013-0022-5file:///C:/Users/wille/Downloads/Leaf%20anatomy%20with%20emphasis%20on%20separation%20of%20two%20species%20Varronia.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/21/98035/ )

Tombesi S., Nardini A., Farinelli D., Palliotti A. (2014) – Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis viniferaPhysiol Plant. 152(3): 453-464 – doi: 10.1111/ppl.12180 – Epub 2014 Apr 8 – https://www.ncbi.nlm.nih.gov/pubmed/24597791 – (On our blog : https://plantstomata.wordpress.com/2019/09/03/different-stomatal-responses-under-water-stress-conditions/ )

Tombesi S., Nardini A., Frioni T., Soccolini M., Zadra C., Farinelli D., Poni S., Palliotti A. (2015) – Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine – Scientific Reports 5, Article 12449 – https://doi.org/10.1038/srep12449 –https://www.nature.com/articles/srep12449 – (On our blog : https://plantstomata.wordpress.com/2019/04/05/stomatal-closure-is-induced-by-hydraulic-signals-and-maintained-by-aba-in-drought-stressed-grapevine/ )

Tomimatsu H., Sakata T., Fukayama H., Tang Y. (2019) – Short-term effects of high CO2 accelerate photosynthetic induction in Populus koreana × trichocarpa with always-open stomata regardless of phenotypic changes in high CO2 growth conditions – Tree Physiol. 39: 474–483 – doi: 10.1093/treephys/tpy078https://academic.oup.com/treephys/article/39/3/474/5059390 – (On our blog ;https://plantstomata.wordpress.com/2021/11/08/the-acceleration-of-photosynthetic-induction-under-high-co2-environment-was-mainly-contributed-by-a-short-term-co2-effect-rather-than-by-a-long-term-acclimation-effect-when-stomatal-limitati/ )

Tomimatsu H., Sakata T., Fukayama H., Tang Y. (2019) – Short-term effects of high CO2 accelerate photosynthetic induction in Populus koreana × trichocarpa with always-open stomata regardless of phenotypic changes in high CO2 growth conditions – Tree Physiol. 39: 474–483 – doi: 10.1093/treephys/tpy078https://academic.oup.com/treephys/article/39/3/474/5059390 – (On our blog ;https://plantstomata.wordpress.com/2021/11/08/the-acceleration-of-photosynthetic-induction-under-high-co2-environment-was-mainly-contributed-by-a-short-term-co2-effect-rather-than-by-a-long-term-acclimation-effect-when-stomatal-limitati/ )

Tomimatsu H., Sakata T., Fukayama H., Tang Y. (2019) – Short-term effects of high CO2 accelerate photosynthetic induction in Populus koreana × trichocarpa with always-open stomata regardless of phenotypic changes in high CO2 growth conditions – Tree Physiol. 39: 474–483 – doi: 10.1093/treephys/tpy078https://academic.oup.com/treephys/article/39/3/474/5059390 – (On our blog ;https://plantstomata.wordpress.com/2021/11/08/the-acceleration-of-photosynthetic-induction-under-high-co2-environment-was-mainly-contributed-by-a-short-term-co2-effect-rather-than-by-a-long-term-acclimation-effect-when-stomatal-limitati/ )

Tomimatsu H, Tang Y. (2012) – Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior – Oecologia 169: 869–878 – doi: 10.1007/s00442-012-2256-5https://pubmed.ncbi.nlm.nih.gov/22302511/ – (On our blog : https://plantstomata.wordpress.com/2021/11/08/a-high-co2-environment-can-reduce-both-biochemical-and-stomatal-limitations-of-leaf-carbon-gain-during-the-photosynthetic-induction-process/ )

Tominaga J., Kawamitsu Y. (2015) – Cuticle Affects Calculations of Internal CO2 in Leaves Closing Their Stomata – Plant and Cell Physiology 56(10): 1900–1908 – https://doi.org/10.1093/pcp/pcv109https://academic.oup.com/pcp/article/56/10/1900/2460822 – (On our blog : https://plantstomata.wordpress.com/2020/11/04/86113/ )

Tominaga J., Stinziano J. R., Hanson D. T. (2020) – Minimum conductance in leaves—cuticle, leaky stomata, or water vapor saturation? – bioRxiv – https://doi.org/10.1101/2020.05.28.120634https://www.biorxiv.org/content/10.1101/2020.05.28.120634v1 – (On our blog : https://plantstomata.wordpress.com/2020/08/13/minimum-conductance-in-leaves-cuticle-leaky-stomata-or-water-vapor-saturation/ )

Tominaga M., Kinoshita T., Shimazaki K. (2001) – Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening – Plant Cell Physiol. 42: 795–802 – https://doi.org/10.1093/pcp/pce101https://academic.oup.com/pcp/article/42/8/795/1828112 – (On our blog :  https://plantstomata.wordpress.com/2018/12/03/gccs-supply-atp-to-the-cytosol-under-rl-and-atp-is-utilized-by-the-plasma-membrane-h-atpase-for-h-pumping-in-stomatal-opening/

Tong L., Feng Z. W., Sudebilige-Wang Q., Geng C. M., Lu F., Wang W., Wang X. K. (2012) – Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat – Acta Ecologica Sinica 32: 2890–2899 – [In Chinese with English summary] –

Tong L., Wang X.-k., Sudebilige, 2, Wang Q., Geng C. M., Wang W., Song W-z., Lu F.,1, Liu H.-J., 3, Yin B.-h., 3, Sui L.-h., 4, Feng Z.-w. (2011) – Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of rice – Journal of Agro-Environmental Science 30: 1930–1938 – [In Chinese with English summary] – http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH201110005.htm – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-ozone-uptake-modeling/ )

Tonzig S., Ott-Candella (1946) – L’azione della colchicina sullo svippo degli apparati stomataci – Nueva G. Bot. Ital. (N. S.) 53: 835-847 –

Tooulakou G., Giannopoulos A., Nikolopoulos D., Bresta P., Dotsika E., Orkoula M. G., Kontoyannis C. G., Fasseas C., Liakopoulos G., Klapa M. I., Karabourniotis G. (2016) – Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions – Science.gov (United States) –https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/pigweed-amaranthusis-able-to-photosynthesize-even-under-drought-conditionswhen-stomata-are-closed-and-water-losses-are-limited-using-carbon-dioxide-from-crystal-decomposition-i/ )

Torii K. U. (2006) – Communication, fate, and decision making during stomatal development – Journal of the Society of Japanese Women Scientists 7: 12-17 –

Torii K. U. (2006) – Stomatal patterning and differentiation in plants: Emerging roles of cell-cell signaling – PNE 51: 145-154 (in Japanese) –

Torii K. U. (2007) – Giving Voice to Stomata Differentiation – Cell 128(3): 419 – https://doi.org/10.1016/j.cell.2007.01.025https://www.cell.com/cell/fulltext/S0092-8674(07)00123-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867407001237%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2022/01/30/stomata-differentiation/ )

Torii K. U. (2007) – Stomatal patterning and guard cell differentiation – In: Cell Division Control in Plants – Plant Cell Monograph (9) Eds. by D.P.S.Verma and Z. Hong. Springer-Verlag, 343-359 –

Torii K. U. (2012) – Cell-cell-communication and stomatal patterning – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-patterning-and-differentiation/ )

Torii K. U. (2012) – Chemical signal helps plants control their “breathing” – HomeBiologyBiotechnology 2012 – https://phys.org/news/2012-01-chemical.html – (On our blog : https://plantstomata.wordpress.com/2019/02/08/chemical-signal-helps-plants-control-their-breathing/ )

Torii K. U. (2012) – Mix-and-match: ligand-receptor pairs in stomatal development and beyond – Trends Plant Sci. 17(12): 711-719 – doi: 10.1016/j.tplants.2012.06.013 – Epub 2012 Jul 21 – https://www.ncbi.nlm.nih.gov/pubmed/22819466 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/ligand-receptor-pairs-in-stomatal-development-and-beyond/ )

Torii K. U. (2015) – Stomatal differentiation: the beginning and the end – Curr. Opin. Plant Biol. 28: 16–22 – doi: 10.1016/j.pbi.2015.08.005 – https://www.infona.pl/resource/bwmeta1.element.elsevier-cc2b73be-b5a3-3aee-a460-2d28ab3581a9 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/the-beginning-and-the-end-of-stomatal-differentiation/ )

Torii K. U. (2021) – Stomatal Development in the Context of Epidermal Tissues – Annals of Botany – 128: 137-148 – PMID: 33877316 – DOI: 10.1093/aob/mcab052file:///C:/Users/wille/Downloads/Stomatal_Development_in_the_Context_of_Epidermal_T.pdf – (On our blog : https://plantstomata.wordpress.com/2021/06/04/stomatal-development-in-the-context-of-epidermal-tissues/ )

Torii Lab (xxxx) – The Mechanisms of Stomatal Development – Torii Laboratory – https://www.plant-stomata.org/stomatal-development – (On our blog : https://plantstomata.wordpress.com/2022/05/01/stomatal-development-4/ )

Torii Lab (2012) – Research 1 – Stomatal development – http://faculty.washington.edu/ktorii/stomata.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/stomatal-development-torii-lab/ )

Torii Lab (2012) – Research 2 – Cell-Cell Communication and Stomatal Patterning – https://faculty.washington.edu/ktorii/stomata2.html – (On our blog : https://plantstomata.wordpress.com/2021/02/21/cell-cell-communication-and-stomatal-patterning/ )

Torii Lab (2012) – Research 3 – A Trio of ‘Key Switch’ Genes Directing Stomatal Differentiation – https://faculty.washington.edu/ktorii/index.html – (On our blog : https://plantstomata.wordpress.com/2021/02/21/88295/ )

Torii Lab (2012) – Research 4 – Peptide ligands specifying stomatal patterning – https://faculty.washington.edu/ktorii/stomata4.html – (On our blog : https://plantstomata.wordpress.com/2021/02/21/comparative-studies-of-stomatal-patterning-might-unravel-the-underlying-molecular-basis-of-the-evolution-and-diversity-of-stomatal-patterning/ )

Torii K. U., Kanaoka M. M., Pillitteri L. J., Bogenschutz N. L. (2007) – Stomatal development: Three steps for cell-type differentiation – Plant Signaling & Behavior 2: 311-313 –

Torralbo F., González-Moro M. B., Baroja-Fernández E., Aranjuelo I., González-Murua C. (2019) – Differential Regulation of Stomatal Conductance as a Strategy to Cope With Ammonium Fertilizer Under Ambient Versus Elevated CO2 – Front Plant Sci. 10: 597 – doi: 10.3389/fpls.2019.00597 -eCollection 2019 – https://www.ncbi.nlm.nih.gov/pubmed/31178873 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/differential-regulation-of-stomatal-conductance/ )

Torre S., Fjeld T., Gislerod H. R., Moe R. (2003) – Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity – J. Amer. Hort. Sci. 128(4): 598-602 – http://journal.ashspublications.org/content/128/4/598.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/65132/ )

Torrecillas A., Ruiz-Sanchez M. C., Leon A., Garcia A. L. (1988) – Stomatal response to leaf water potential in almond trees under drip irrigated and non irrigated conditions – Plant Soil 112: 151- 153 – https://doi.org/10.1007/BF02181765https://link.springer.com/article/10.1007/BF02181765 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-response-to-leaf-water-potential/ )

Torres‐Ruiz J. M., Diaz‐Espejo A., Morales‐Sillero A., Martín‐ Palomo M. J., Mayr S., Beikircher B., Fernandez J. E. (2013) – Shoot hydraulic characteristics, plant water status and stomatal response in olive trees under different soil water conditions – Plant Soil 373: 77–87 – https://doi.org/10.1007/s11104-013-1774-1https://link.springer.com/article/10.1007/s11104-013-1774-1 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-response-in-olive-trees-under-different-soil-water-conditions/ )

Torres‐Ruiz J. M., Diaz‐Espejo A., Perez-Martin A., Hernandez-Santana V. (2015) – Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions – Tree Physiol. 35(4): 415-424 – doi: 10.1093/treephys/tpu055 – Epub 2014 Jul 15 – https://pubmed.ncbi.nlm.nih.gov/25030936/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/role-of-hydraulic-and-chemical-signals-in-leaves-stems-and-roots-in-the-stomatal-behaviour/ )

Torsethaugen G. (1998) – Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants – PhD Thesis Oslo Univ. – Reference Number:SCA: 550200; PA: NW-98:005303; EDB-98:095755; SN: 98001995639 – https://www.osti.gov/etdeweb/biblio/642451 – (On our blog : https://plantstomata.wordpress.com/2022/03/09/stomatal-aspects-of-ozone-induced-reduction-of-net-photosynthesis/ )

Torsethaugen G., Pell E. J., Assmann S. M. (1999) – Ozone inhibits guard cell K+ channels implicated in stomatal opening – Proceedings of the National Academy of Sciences USA 96: 13577-13582 – PMCID: PMC23990 – PMID: 10557363 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23990/ – (On our blog : https://plantstomata.wordpress.com/2019/02/12/ozone-inhibits-guard-cell-k-channels-implicated-in-stomatal-opening/ )

Tossi V., Lamattina L., Jenkins G. I., Cassia R. O. (2014) – Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism – Plant Physiol. 164: 2220–2230 – https://doi.org/10.1104/pp.113.231753http://www.plantphysiol.org/content/164/4/2220?ijkey=9cbe07ae01485281372ca65fb986d746702ec4d6&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/10/04/the-uvr8-pathway-regulates-stomatal-closure-by-a-mechanism-involving-both-h2o2-and-no-generation-in-response-to-uv-b-exposure/ )

Toum L., Torres P. S., Gallego S. M., Benavídes M. P., Vojnov A. A., Gudesblat G. E. (2016) – Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production – Front Plant Sci. 7: 1851 – doi: 10.3389/fpls.2016.01851 – eCollection 2016 – https://www.ncbi.nlm.nih.gov/pubmed/28018388 – (On lour blog : https://plantstomata.wordpress.com/2019/09/09/inhibition-of-nadph-oxidase-dependent-ros-synthesis-in-stomatal-guard-cells-plays-an-important-role-during-endophytic-colonization-by-pst-through-stomata/ )

Trafton A. (2017) – Sensors applied to plant leaves warn of water shortage – http://news.mit.edu/2017/sensors-applied-plant-leaves-warn-water-shortage-1108 – (On our blog : https://plantstomata.wordpress.com/2017/11/08/monitoring-stomatal-movements-continuously/ )

Travis A. J., Mansfield T. A. (1977) – Studies of malate formation in isolated guard cells – New Phytol 78: 541-546 – https://doi.org/10.1111/j.1469-8137.1977.tb02157.x – https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1977.tb02157.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/carboxylation-of-phosphenolpyruvate-plays-no-major-part-in-the-formation-of-malate-in-stomata/ )

Travis A. J., Mansfield T. A. (1979) – Reversal of CO2 responses of stomata by fusicoccin – New Phytol. 83: 607-614 – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1979.tb02292.x/full –https://plantstomata.wordpress.com/2017/07/16/fusicoccin-and-the-reversal-of-the-co2-responses-of-stomata/ )

Travis A. J., Mansfield T. A. (1979) – Stomatal responses to light and CO2 are dependent on KCl concentration – Plant Cell Environ. 2: 319–323 – https://doi.org/10.1111/j.1365-3040.1979.tb00086.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00086.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-responses-to-light-and-co2-are-dependent-on-kcl-concentration/ )

Travis A. J., Mansfield T. A. (1981) – Light saturation of stomatal opening on the adaxial and abaxial epidermis of Commelina communis – J Exp Bot 32: 1169–1179 – https://doi.org/10.1093/jxb/32.6.1169https://academic.oup.com/jxb/article-abstract/32/6/1169/486455?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/11/stomata-on-the-abaxial-epidermis-were-considerably-more-sensitive-to-light-than-those-on-the-adaxial-epidermis/ )

Trejo C. L., Clephan A. L., Davies W. J. (1995) – How do stomata read abscisic acid signals? – Plant Physiol. 109: 803–811 – https://doi.org/10.1104/pp.109.3.803 – PMID: 12228634 PMCID: PMC161380 – https://www.ncbi.nlm.nih.gov/pubmed/12228634?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/how-do-stomata-read-aba-signal/ )

Trejo C. L., Davies W. J. (1991) – Drought-induced closure of Phaseolus vulgaris L. stomata precedes leaf water deficit and any increase in xylem ABA concentration – J. Exp. Bot. 42: 1507-1515 – PMID: 12228634 PMCID: PMC161380 – https://doi.org/10.1093/jxb/42.12.1507 –https://academic.oup.com/jxb/article-abstract/42/12/1507/603882?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/02/08/an-as-yet-unidentified-regulator-of-stomatal-behaviour/ )

Trejo C. L., Davies W. J., Ruiz L. P. (1993) – Sensitivity of stomata to abscisic acid. An effect of the mesophyll – Plant Physiol. 102: 497–502 –  PMID: 12231838 PMCID: PMC158804 – https://www.ncbi.nlm.nih.gov/pubmed/12231838?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/an-important-role-for-aba-metabolism-in-the-regulation-of-stomatal-behavior/ )

Triboulot M. B., Fauveau M. L., Breda N., Label P., Dreyer E. (1996)  – Stomatal conductance and xylem-sap abscisic acid (ABA) in adult oak trees during a gradually imposed drought – Annals of Forest Science 53: 207–220 – DOI: 10.1051/forest:19960204 – https://www.afs-journal.org/articles/forest/abs/1996/02/AFS_0003-4312_1996_53_2-3_ART0004/AFS_0003-4312_1996_53_2-3_ART0004.html – (On our blog : https://plantstomata.wordpress.com/2018/11/01/stomatal-conductance-and-xylem-sap-aba-during-a-gradually-imposed-drought/ )

Tricker P. J., Gibbings J. G., Rodriguez Lopez C. M., Hadley P., Wilkinson M. J. (2012) – Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development – J. Exp. Bot. 63:  3799–3813 – DOI:  10.1093/jxb/ers076 –  https://www.ncbi.nlm.nih.gov/pubmed/22442411 – (On our blog : https://plantstomata.wordpress.com/2019/02/08/epigenetic-regulation-of-stomatal-development/ )

Tricker P. J., Trewin H., Kull O., Clarkson G. J. J., Eensalu E., Tallis M. J., Colella A., Doncaster C. P., Sabatti M., Taylor G. (2005) – Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2 – Oecologia 143: 652–660 – DOI: 10.1007/s00442-005-0025-4Stomatal_conductance_and_not_stomatal_de.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/altered-cuticular-development-during-canopy-closure-may-partially-explain-the-changing-response-of-stomata-to-elevated-co2/ )

Triviño M., Martín-Trillo M., Ballesteros I., Delgado D., De Marcos A., Desvoyes B., Gutiérrez C., Mena M., Fenoll C. (2013) – Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types – Plant J. 75: 808–822 – DOI:  10.1111/tpj.12244 – https://www.ncbi.nlm.nih.gov/pubmed/23662679 – (On our blog : https://plantstomata.wordpress.com/2019/02/08/timely-mute-expression-is-essential-to-prevent-stomatal-fate-in-slgcs-and-to-promote-their-differentiation-as-pavement-cells-2/ )

Troughton J. H. (1969) – Plant water status and carbon dioxide exchange of cotton leaves – Austral J. biol. Sci. 22: 289-302 – https://www.publish.csiro.au/bi/pdf/bi9690289 – (On our blog : https://plantstomata.wordpress.com/2022/01/16/under-the-environmental-conditions-used-plant-water-status-primarily-affects-c02-exchange-by-regulating-stomatal-aperture/ )

Trueba S., Pan R., Scoffoni C., John G. P., Davis S. D., Sack L. (2019) – Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry – https://doi.org/10.1111/nph.15779 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15779?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/10/threshold-for-leaf-damage-due-to-dehydration-decline-of-stomatal-conductance/ )

Tsai H.-J., Shao K.-H., Chan M.-T., Cheng C.-O., Yeh K.-W., Oelmüller R., Wang S.-J. (2020)Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems – Plant Signaling & Behavior 15(2): – https://doi.org/10.1080/15592324.2020.1722447https://www.tandfonline.com/doi/abs/10.1080/15592324.2020.1722447?scroll=top&needAccess=true&journalCode=kpsb20 – (On our blog : https://plantstomata.wordpress.com/2020/05/14/piriformospora-indica-promotes-rice-performance-under-water-stress-by-stomata-closure/ )

Tsai M.-Y., Kuan C., Guo Z.-L., Yang H.-A., Chung K.-F., Ho C.-M. K. (2022) – Stomatal clustering in Begonia improves water use efficiency by modulating stomatal movement and leaf structure – Plant-Environment Interactions 3(4): 141-154 – https://doi.org/10.1002/pei3.10086https://onlinelibrary.wiley.com/doi/full/10.1002/pei3.10086 – (On our blog : https://plantstomata.wordpress.com/2022/09/20/tight-support-between-stomatal-development-and-environmental-adaption/ )

Tschäpe M. (1972) – Nachwirkung niedriger Temperaturen auf Stomatabewegung und CO2-Aufnahme thermophiler Pflanzen – Biochem. Physiol. Pflanzen (BPP) 163: 81–92 – https://doi.org/10.1016/S0015-3796(17)31204-0https://www.sciencedirect.com/science/article/abs/pii/S0015379617312040 – (On our blog : https://plantstomata.wordpress.com/2022/07/06/the-after-effect-cannot-be-due-to-an-increase-of-intercellular-co2-concentration-but-to-metabolic-blocks-in-the-guard-cells/ )

Tschäpe M., Peisker M. (1976) – Über die Beziehung zwischen CO2-Aufnahme und Stomataweite / Relationship between CO2 uptake and stomatal aperture – О связи между поглоще нием CO2 и размером усть иц – Die Kulturpflanze 24(1): 119-132 – doi: 10.1007/BF02070316 – https://link.springer.com/article/10.1007/BF02070316 – (On our blog : https://plantstomata.wordpress.com/2022/07/06/relationship-between-co2-uptake-and-stomatal-aperture/ )

Tschirch (1880-1882) – Über einige Beziehungen des anatomischen Baues der Assimilationsorgane zu Klima und Standort, mit spez. Berücksichtigung des Spaltöffnungsapparates – Linaea 1880-1882 –

Tseng T.-S., Whippo C., Hangarter R. P., Briggs, W. R. (2012) – The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. – Plant Cell 24: 1114–1126 – doi: 10.1105/tpc.111.092130 – http://www.plantcell.org/content/24/3/1114 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/specificity-of-phototropin-mediated-signal-transduction-pathways-in-stomata/ )

Tsuji J., Coe L. (2013) – The glabra1 mutation affects the stomatal patterning of Arabidopsis thaliana rosette leaves – Bios 84(2): 92-97 – https://www.jstor.org/stable/23595309https://www.jstor.org/stable/23595309?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/11/21/stomatal-patterning-and-trichome-developmental-processes-share-genetic-components-to-specify-cell-fate-and-identity/ )

Tsukahara H., Kozlowski T. T. (1986) – Effect of flooding and temperature regime on growth and stomatal resistance of Betula platyphylla var. japonica seedlings – Plant Soil. 92: 103-112 – https://doi.org/10.1007/BF02372271https://link.springer.com/article/10.1007%2FBF02372271#citeas – (On our blog : https://plantstomata.wordpress.com/2020/06/10/effect-of-flooding-and-temperature-regime-on-growth-and-stomatal-resistance/ )

Tsuno Y., Sugumoto H. (1981) – The relationship between stomatal aperture using the infiltration method and photosynthetic rate in some crops – Bull. Fac. Agric. Tottori Univ. 33: 126-132 –

Tsuzuki T., Takahashi K., Inoue S.‐i., Okigaki Y., Tomiyama M., Hossain M. A., Shimazaki K.‐i., Murata Y., Kinoshita T. ( 2011) – Mg‐chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana – J Plant Res 124: 527– 538 – DOI: 10.1007/s10265-011-0426-xhttps://www.ncbi.nlm.nih.gov/pubmed/21562844?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/the-mg-chelatase-complex-as-a-whole-affects-the-aba-signaling-pathway-for-stomatal-movements/ )

Tuba Z., Szente K., Koch J. (1994) – Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat – J. Plant Physiol. 144: 661–668 – https://doi.org/10.1016/S0176-1617(11)80657-7 –https://www.sciencedirect.com/science/article/pii/S0176161711806577 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/long-term-elevated-co2-and-stomatal-conductance/ )

Tucker D. T. (2017) – Stanford study shows U.S. grasslands affected more by atmospheric dryness than precipitation – Stanford News Service – https://news.stanford.edu/press-releases/2017/03/06/u-s-grasslands-ated-dry-air-rain/ – (On our blog : https://plantstomata.wordpress.com/2018/11/27/conditions-under-which-plants-in-u-s-grasslands-open-and-close-their-stomata/

Tucker S. C. (1974) – Dedifferentiated Guard Cells in Magnoliaceous Leaves – Science 185(4149): 445-447 – DOI: 10.1126/science.185.4149.445 – http://science.sciencemag.org/content/185/4149/445 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/division-of-guard-cells-is-particularly-unusual-stomata-in-magnoliaceous-taxa/ )

Tupitsyn N. V., Zakharov V. G. (1996) – Inheritance of the stomatal length on the plate of the first leaf of shoots – Dokl. Ross. Akad. S-Kh. Nauk, 1996(2): 9–12 –

Tupitsyn N. V., Zakharov V. G. (1996) – Inheritance of the stomatal length of the first leaf blade of sprouts – Russian Agricultural Sciences 3: 13-17 – https://eurekamag.com/research/002/873/002873866.php – (On our blog : https://plantstomata.wordpress.com/2022/01/13/stomatal-length-of-the-first-leaf-blade-of-wheat-seedlings/ )

Turan M. A., Katkat V., Taban N. (2007) – Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress – J. Agron. 6: 137-141 –

Turan M. A., Katkat V., Taban N. (2007) – Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean – Int. J. Agric. Res. 2: 483-488 –

Turan M. A., Turkmen N., Taban N. (2007) – Effect of NaCl on Stomatal Resistance and Proline, Chlorophyll, Na, Cl and K Concentrations of Lentil Plants – Journal of Agronomy 6: 378-381 – DOI: 10.3923/ja.2007.378.381https://scialert.net/abstract/?doi=ja.2007.378.381 – (On our blog : https://plantstomata.wordpress.com/2021/12/25/stomatal-resistance-and-concentrations-of-proline-na-and-cl-were-increased-by-treatment-with-nacl/ )

Turnbull M. H., Whitehead D., Tissue D. T., Schuster W. S., Brown K. J., Engel V. C., Griffin K. L. (2002) – Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability – Oecologia 130(4): 515-524 – doi: 10.1007/s00442-001-0842-z – Epub 2002 Feb 1 – https://www.ncbi.nlm.nih.gov/pubmed/28547252 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-behavior-and-photosynthetic-characteristics-in-canopies-differ-in-response-to-soil-water-availability/ )

Turner N. C. (1969) – Fusicoccin: a Fungal Toxin that opens Stomata – Nature 223(5210): 1070-1071 – 10.1038/2231070a0https://ui.adsabs.harvard.edu/abs/1969Natur.223.1070T/abstract – (On our blog : https://plantstomata.wordpress.com/2021/10/19/fusicoccin-opens-stomata/ )

Turner N. C. (1969) – Stomatal Resistance to Transpiration in Three Contrasting Canopies – Crop Science 9(3): – https://doi.org/10.2135/cropsci1969.0011183X000900030015xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1969.0011183X000900030015x – (On our blog : https://plantstomata.wordpress.com/2020/06/01/stomatal-resistance-to-transpiration/ )

Turner N. C. (1970) – Response of adaxial and abaxial stomata to light – New Phytologist 69: 647-653 – https://www.jstor.org/stable/2430521https://www.jstor.org/stable/2430521?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/11/response-of-adaxial-and-abaxial-stomata-to-light/ )

Turner N. C. (1972) – STOMATAL BEHAVIOR OF AVENA SATIVA TREATED WITH TWO PHYTOTOXINS, VICTORIN AND FUSICOCCIN – American Journal of Botany 59(2): – https://bsapubs.onlinelibrary.wiley.com/action/doSearch?AllField=Stomata&SeriesKey=15372197&startPage=2&pageSize=20 – (On our blog : https://plantstomata.wordpress.com/2022/07/05/victorin-and-fusicoccin-differ-in-their-effects-on-the-guard-cells/ )

Turner N. C. (1972) – Fusicoccin–a phytotoxin that opens stomata – Phytotoxins in Plant Diseases; Proceedings of the NATO Advanced Study Institute : 399-402 – https://agris.fao.org/agris-search/search.do?recordID=US201302311644

Turner N. C. (1972) – K+ uptake by guard cells stimulated by fusicoccin – Nature 235: 341-342 – DOI: 10.1038/235341a0 – http://adsabs.harvard.edu/abs/1972Natur.235..341T – (On our blog : https://plantstomata.wordpress.com/2019/02/12/accumulation-of-potassium-in-stomata-during-opening-in-darkness/ )

Turner N. C. (1973) – Action of fusicoccin on the potassium balance of guard cells of Phaseolus vulgaris – Amer. J. Bot. 60(7): 717-725 – DOI: 10.1002/j.1537-2197.1973.tb05978.x – https://www.researchgate.net/publication/322829146_ACTION_OF_FUSICOCCIN_ON_THE_POTASSIUM_BALANCE_OF_GUARD_CELLS_OF_PHASEOLUS_VULGARIS – (On our blog : https://plantstomata.wordpress.com/2018/11/12/action-of-fusicoccin-on-the-potassium-balance-of-stomatal-guard-cells/ )

Turner N. C. (1974) – Stomatal Behavior and Water Status of Maize, Sorghum, and Tobacco under Field Conditions II. At Low Soil Water Potential – PMCID: PMC543223 – PMID: 16658706 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC543223/ – (On our blog : https://plantstomata.wordpress.com/2019/02/13/stomatal-behavior-at-low-soil-water-potential/ )

Turner N. C. (1974) – Stomatal responses to light and water under field conditions – In R. Bieleski (Ed.), mechanisms of Regulation of Plant Growth, Bulletin 12: 423-432 – Royal Society of New Zealand

Turner N. C. (1975) – Concurrent comparisons of stomatal behavior, water status, and evaporation of maize in soil at high or low water potential – Plant Physiol. 55(5): 932-936 – DOI:10.1104/PP.55.5.932https://www.semanticscholar.org/paper/Concurrent-comparisons-of-stomatal-behavior%2C-water-Turner/42be46261e5ea45e16be3cb5b3fe1c21f9c22c5f – (On our blog : https://plantstomata.wordpress.com/2021/09/25/93679/ )

Turner N. C. (1979) – Differences in response of adaxial and abaxial stomata to environmental variables. In “Structure, Function and Ecology of Stomata” (D. S. Sen, D. D. Chawan and R. P. Bansal, eds), 229-250 – Bishen Singh, Mahendra Pal Singh, Dehra Dun. –

Turner N. C. (1991) – Measurement and influence of environmental and plant factors on stomatal conductance in the field – Agricultural and Forest Meteorology 54(2–4): 137-154 – https://doi.org/10.1016/0168-1923(91)90003-9https://www.sciencedirect.com/science/article/abs/pii/0168192391900039 – (On our blog : https://plantstomata.wordpress.com/2021/05/15/the-implications-of-environmental-and-plant-factors-on-the-measured-values-of-stomatal-conductance/ )

Turner N. C., Begg J. E. (1973) – Stomatal behaviour and water status of maize, sorghum and tobacco under field conditions. I. At high water potential – Plant Physiol. 51: 31-36 – http://www.plantphysiol.org/content/plantphysiol/51/1/31.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/13/stomatal-behaviour-at-high-water-potential/ )

Turner N. C., Begg J. E., Tonnet M. L. (1978) – Osmotic adjustment of sorghum and sunflower crops in response to water deficits and its influence on the water potential at which stomata close – Australian Journ. Plant Physiology 5: 597-608 – https://doi.org/10.1071/PP9780597http://www.publish.csiro.au/FP/PP9780597 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/osmotic-adjustment-in-response-to-water-deficits-and-its-influence-on-the-water-potential-at-which-stomata-close/ )

Turner N. C., Graniti A. (1969) – Fusicoccin: a fungal toxin that opens stomata – Nature 223: 1070–1071 – doi: 10.1038/2231070a0https://www.nature.com/articles/2231070a0 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/fusicoccin-a-fungal-toxin-that-opens-stomata/ )

Turner N. C., Heichel G. H. (1977) – Stomatal development and seasonal changes in diffusive resistance of primary and regrowth foliage of red oak (Quercus rubra L) and red maple (Acen rabrum L) – New Phytol 78: 71–81 – https://doi.org/10.1111/j.1469-8137.1977.tb01544.x – https://nph.onlinelibrary.wiley.com/doi/abs/  – (On our blog : https://plantstomata.wordpress.com/2019/02/14/the-development-of-light-sensitivity-was-strongly-dependent-on-environmental-regulation-of-stomatal-metabolism/ )

Turner N. C., Incoll L. D. (1972) – The vertical distribution of photosynthesis in crops of tobacco and sorghum – Journal of Applied Ecology – Published online 19 Dec 1972 – DOI: 10.2307/2402894https://www.britishecologicalsociety.org/applied-ecology-resources/document/19721702630/ – (On our blog : https://plantstomata.wordpress.com/2021/10/22/stomata-and-vertical-distribution-of-photosynthesis-in-crops/ )

Turner N. C., O’Toole J. C., Cruz R. Z., Yambao E. B., Ahmad S., Namuco O. S., Dingkuhn M. (1986) – Responses of seven diverse rice cultivars to water deficits. II. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis – Field Crop Res. 13: 273–286 – doi: 10.1016/0378-4290(86)90028-6https://www.sciencedirect.com/science/article/pii/0378429086900286 – (On our blog : https://plantstomata.wordpress.com/2019/02/14/osmotic-adjustment-leaf-elasticity-leaf-extension-leaf-death-stomatal-conductance-and-photosynthesis/ )

Turner N. C., Rich S., Tomlinson H. (1972) – Stomatal conductance, fleck injury and growth of tobacco cultivars varying in ozone tolerance – Phytopathology 62: 63-67 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1972Articles/Phyto62n01_63.PDF – (On our blog : https://plantstomata.wordpress.com/2021/11/13/stomatal-conductance-and-frequency/ )

Turner N. C., Schulze E.-D., Gollan T. (1984) – The response of stomata and leaf gas exchange to vapor pressure deficits and soil water content. I. Species comparison at high soil water contents – Oecologia 63: 338-342 – https://link.springer.com/article/10.1007%2FBF00390662 – (On our blog :  https://plantstomata.wordpress.com/2017/07/16/the-response-of-stomata-to-vapor-pressure-deficits-and-soil-water-content/

Turner N. C., Schulze E.-D., Gollan T. (1985) – The responses of stomata and leaf gas exchange to vapor pressure deficits and soil water content. II. In the mesophytic herbaceous species Helianthus annuus – Oecologia 65: 348-355 – doi: 10.1007/BF00378908 – https://www.ncbi.nlm.nih.gov/pubmed/2 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/soil-water-status-not-leaf-water-status-affects-the-stomatal-behaviour-and-photosynthesis/

Turner N. C., Singh D. P. (1984) – Responses of adaxial and abaxial stomata to light and water deficits in sunflower and sorghum – New Phytologist 96: 187-193 –  https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1984.tb03555.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/responses-of-adaxial-and-abaxial-stomata-to-light-and-water-deficits/ )

Turner N. C., Waggoner P. E. (1968) – Effects of changing stomatal widths in a red pine forest on soil water content, leaf water potential, bole diameter and growth – Plant Physiol. 43 : 973-978 –

Turrell F. M. (1947) – Citrus leaf stomata, structure, composition, and pore size in relation to penetration of liquids – Bot. Gaz. 108: 476-483 –http://www.journals.uchicago.edu/doi/abs/10.1086/335435 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64420 )

Turrell F. M., Klotz L. J. (xxxx) –  Density of Stomata and Oil Glands and Incidence of Water Spot in the Rind of Washington Navel Orange – Botanical Gazette 101(4): – https://www.journals.uchicago.edu/doi/pdf/10.1086/334920 – (On our blog : https://plantstomata.wordpress.com/2021/04/17/stomata-in-the-rind-of-washington-navel-orange/ )

Turunen M., Huttunen S. (1990) – A Review of the Response of Epicuticular Wax of Conifer Needles to Air Pollution – Journal of Environmental Quality 19(1): 35-45 – https://doi.org/10.2134/jeq1990.00472425001900010003x https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/jeq1990.00472425001900010003x – (On our blog : https://plantstomata.wordpress.com/2021/08/22/increased-or-decreased-stomatal-and-cuticular-diffusion-resistance-of-the-needles-leads-to-altered-transpiration-rates/ )

Turunen M., Huttunen S. (1991) – Effect of simulated acid rain on the epicuticular wax of Scots pine needles under northerly conditions – Canadian Journal of Botany 69(2): 412-419 – https://doi.org/10.1139/b91-057https://cdnsciencepub.com/doi/abs/10.1139/b91-057?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2021/05/17/four-types-of-deformed-stomatal-complex-namely-narrow-half-formed-occluded-and-double-sized-were-found/ )

TutorVista (2010) – Video: Structure And Working Of Stomata – https://www.youtube.com/watch?v=IlmgFYmbAUg – (On our blog : https://plantstomata.wordpress.com/2017/11/10/video-on-stomata/ )

Tuzet A., Perrier A., Leuning R. A. (2003) – A coupled model of stomatal conductance, photosynthesis and transpiration – Plant Cell Environ. 26: 1097-1116 – https://doi.org/10.1046/j.13653040.2003.01035.x – https://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.01035.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/stomatal-conductance-cannot-be-modelled-in-isolation-but-must-be-fully-coupled-with-models-of-photosynthesis-respiration/ )

Twalla J. T., Ding B., Cao G., Bao S., Li M., Chen X., Xie X., Wang J. (2021) Roles of stomata in gramineous crops growth and biomass production – CEREAL RESEARCH COMMUNICATIONS (2021) – https://doi.org/10.1007/s42976-021-00216-3https://link.springer.com/article/10.1007%2Fs42976-021-00216-3 – (On our blog : https://plantstomata.wordpress.com/2021/12/02/while-stomata-enforce-majority-of-the-essential-processes-in-crops-their-performance-remains-highly-prone-to-the-effects-of-unfavorable-environmental-conditions/ )

Tyree M. T. Nardini A., Salleo S., Sack L., El Omari B. (2005) – The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response? – Journ. Exp. Bot. 56: 737-744 – doi:10.1093/jxb/eri045https://sites.lifesci.ucla.edu/eeb-sacklab/wp-content/uploads/sites/71/2016/03/TyreeetalJXB2005.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/the-irradiance-dependence-of-kl-is-more-consistent-with-an-effect-on-extravascular-and-or-vascular-tissues-rather-than-stomatal-aperture/ )

Tyree M. T., Yianoulis P. (1980) – The site of water evaporation from sub-stomatal cavities, liquid path resistance and hydroactive stomatal closure – Annals of Botany 46: 175–193 – https://doi.org/10.1093/oxfordjournals.aob.a085906 –https://academic.oup.com/aob/article-abstract/46/2/175/155121?redirectedFrom=fulltex – (On our blog : https://plantstomata.wordpress.com/2019/02/13/hydroactive-stomatal-closure/ )

Tyutereva E. , Dmitrieva V. , Shavarda A., Voitsekhovskaja O. (2017) – Stomata control is changed in chlorophyll b-free barley mutant – Functional Plant Biology – http://www.publish.csiro.au/FP/justaccepted/FP17056 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-chlorophyll-b-free-barley-mutant-and-its-stomata/)

Uddling J., Hall,M., Wallin G., Karlsson P. E. (2005) – Measuring and modelling stomatal conductance and photosynthesis in mature birch in Sweden – Agricultural and Forest Meteorology 132: 115–131 – https://doi.org/10.1016/j.agrformet.2005.07.004 – https://www.sciencedirect.com/science/article/pii/S016819230500136X – (On our blog : https://plantstomata.wordpress.com/2019/02/15/two-multiplicative-models-are-more-successful-in-predicting-stomatal-conductance-than-the-combined-stomatal-photosynthesis-model/ )

Uddling J., Hogg A. J., Teclaw R. M., Mary Anne Carroll M. A., Ellsworth D. S. (2010)  Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment – Environmental Pollution 158: 2023–2031 –Stomatal_uptake_of_O3_in_aspen_and_aspen.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-uptake-of-o3/ )

Uddling J., Pleijel H. (2006) – Changes in stomatal conductance and net photosynthesis during phonological development in spring wheat: Implications for gas exchange modelling – International Journal of Biometeorology 51: 37–48 – DOI: 10.1007/s00484-006-0039-6 – https://www.ncbi.nlm.nih.gov/pubmed/16733690 – (On our blog : https://plantstomata.wordpress.com/2019/02/15/changes-in-stomatal-conductance-and-net-photosynthesis/ )

Udegbunam S. (2020) – Transpiration in Plants – The Best Learning Guide (2021) – Afrilcate – https://afrilcate.com/transpiration/ – (On our blog : https://plantstomata.wordpress.com/2022/03/29/plant-transpiration/ )

Ueno K., Kinoshita T., Inoue S., Emi T., Shimazaki K. (2005) – Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light – Plant Cell Physiol. 46: 955–963 – doi: 10.1093/pcp/pci104 – https://www.ncbi.nlm.nih.gov/pubmed/15821287 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/arabidopsis-guard-cell-protoplasts-can-be-useful-for-biochemical-analysis-of-stomatal-functions/ )

Ueno O., Agarie S. (2005) – Silica Deposition in Cell Walls of the Stomatal
Apparatus of Rice Leaves – Plant Prod. Sci. 8(1) : 71-73 – https://doi.org/10.1626/pps.8.71https://www.tandfonline.com/doi/abs/10.1626/pps.8.71 – (On our blog : https://plantstomata.wordpress.com/2021/01/22/structural-difference-in-the-cell-walls-of-the-stomatal-apparatus-of-leaves-between-rice-plants-grown-with-and-without-silica/ ) 3

Ugarte R. M., Escudero A., Mata D. S., Gavilán R. G. (2020) – Changes in Foliar Functional Traits of S. pyrenaicus subsp. carpetanus under the Ongoing Climate Change: A Retrospective Survey – Plants 9(3): 395 – https://doi.org/10.3390/plants9030395https://www.mdpi.com/2223-7747/9/3/395/htm – (On our blog : https://plantstomata.wordpress.com/2021/12/31/the-transition-to-smaller-densely-packed-stomata-observed-in-recent-decades-could-indicate-local-adaptive-plasticity/ )

Uhlik J. (1961) – The Cytological Evaluation of Some Pear-Sorts Cultivated
in Czechoslovakia – BIOLOGIA PLANTARUM (PRAHA) 3(3) : 205–214 – https://bp.ueb.cas.cz/pdfs/bpl/1961/03/05.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/22/the-diploid-varieties-of-pears-can-be-distinguished-from-the-triploid-varieties-by-means-of-the-stomatal-length/ )

UK Essays (2018) – Effect Of Environmental Conditions On Stomatal Size Biology Essay – Retrieved from https://www.ukessays.com/essays/biology/effect-of-environmental-conditions-on-stomatal-size-biology-essay.php?vref=1

UK Essays (2018) – Stomata Density and the Relationship to Plant Adaptions. Retrieved from https://www.ukessays.com/essays/biology/stomata-density-and-the-relationship-to-plant-adaptions.php?vref=1https://www.ukessays.com/essays/biology/stomata-density-and-the-relationship-to-plant-adaptions.php – (On our blog : https://plantstomata.wordpress.com/2022/03/20/104214/ )

UKRI (xxxx) – Reduced Stomatal Density Wheat: New Prospects for Drought and Pathogen Resistance – University of Sheffield: Molecular Biology and Biotechnology – https://gtr.ukri.org/projects?ref=BB%2FN004167%2F1 – (On our blog : https://plantstomata.wordpress.com/2020/06/20/84912/ )

Ulloa M., Cantrell R. G., Percy R. G., Zeiger E., Lu Z. (2000) – QTL analysis of stomatal conductance and relationship to Lint yield in an interspecific Cotton – J. Cotton Sci. 4: 10-18 –

Umbrasaite J., Schweighofer A., Kazanaviciute V., Magyar Z.., Ayatollahi Z., Unterwurzacher V., Choopayak C., Boniecka J., Murray J. A. H., Bogre L., Meskiene I. (2010) – MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis – PLoS ONE 5(12): e15357 – https://doi.org/10.1371/journal.pone.0015357https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015357 – (On our blog : https://plantstomata.wordpress.com/2020/12/09/ap2c3-downregulates-the-mapk-signaling-activity-to-help-maintain-the-balance-between-differentiation-of-stomata-and-pavement-cells/ )

UNCED (1992) – Managing fragile ecosystems: Combating desertification and drought United Nations conference on environment and development – http://habitat.igc.org/un-proc/#unced

Underwood W., Melotto M., He S. Y. (2007) – Role of plant stomata in bacterial invasion – Cell Microbiol. 9(7): 1621-1629 –  doi: 10.1111/j.1462-5822.2007.00938.x –  Epub 2007 Apr 5 – https://pubmed.ncbi.nlm.nih.gov/17419713/ – (On our blog : https://plantstomata.wordpress.com/2020/12/13/plant-stomata-and-bacterial-invasion/ )

University of California – Davis (2022) – “Discovery uncovers a new leaf for Redwoods: Redwood trees have 2 types of leaves, and they do totally different things” – ScienceDaily, 16 March 2022 – www.sciencedaily.com/releases/2022/03/220316132706.htm

University of Essex (Dept. Biol. Sci.) – (XXXX ) – Stomatal-based systems analysis of water use efficiency – UK Research and Innovation – https://gtr.ukri.org/project/BA273D8A-FB5A-45AC-A59F-804214C14D7B – (On our blog : https://plantstomata.wordpress.com/2020/06/01/stomatal-based-systems-analysis-of-water-use-efficiency/ )

University of Tokyo (2021) – Researchers notice pattern on surface of leaves, uncover new clue about plant evolution – ScienceDaily, 29 March 2021 – www.sciencedaily.com/releases/2021/03/210329153341.htm – (On our blog : https://plantstomata.wordpress.com/2021/03/30/89198/ )

University of Würzburg (2018) – News about a plant hormone – Phys.Org 2018 – https://phys.org/news/2018-12-news-hormone.html – (On our blog : https://plantstomata.wordpress.com/2019/08/24/80525/ )

University of Würzburg (2019) – How plants measure their carbon dioxide uptake – https://phys.org/news/2019-08-carbon-dioxide-uptake.html – (On our blog : https://plantstomata.wordpress.com/2019/11/05/the-guard-cells-offset-the-current-photosynthetic-carbon-fixation-performance-with-the-status-of-the-water-balance-using-aba-as-the-currency/ )

Unköping University (2019) – Helping tobacco plants save water – eurekalert (AAAS) NEWS RELEASE 30-SEP-2019 – https://www.eurekalert.org/pub_releases/2019-09/lu-htp093019.php – (On our blog : https://plantstomata.wordpress.com/2019/10/04/implantable-organic-electronic-ion-pump-enables-aba-hormone-delivery-for-control-of-stomata-in-an-intact-tobacco-plant/ )

Unsworth M. H., Black V. J. (1981) – Stomatal responses to pollutants – In: Jarvis, P.G., Mansfield T. A. (Eds.), Society for Experimental Biology Seminar Series. Stomatal Physiology. Cambridge University Press, Cambridge, 187-203 – 

Unsworth M. H., Biscoe P. V., Pinckney H. R. (1972) – Stomatal responses to SO2 – Nature 239: 458-459 – https://doi.org/10.1038/239458a0https://www.nature.com/articles/239458a0#citeas – (On our blog : https://plantstomata.wordpress.com/2020/03/02/effect-of-so2-on-stomatal-diffusive-resistance-in-plants/ )

Upadhyaya R. K., Soni D. K., Singh R., Dwivedi U. N., Pathre U. V., Nath, P. (2013) – SIERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth – J. Exp. Bot. 64: 3237–3247 – doi: 10.1093/jxb/ert162 – https://academic.oup.com/jxb/article/64/11/3237/485356 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/slerf36-exerts-a-negative-control-over-stomatal-density/

Upadhyaya S. K., Rand R. H., Cooke J. R. (1988) – Role of stomatal oscillations on transpiration, assimilation and water-use efficiency of plants – Ecological Modelling 41(1–2): 27-40 – https://doi.org/10.1016/0304-3800(88)90042-7 – https://www.sciencedirect.com/science/article/pii/0304380088900427 – (On our blog : https://plantstomata.wordpress.com/2018/03/12/role-of-stomatal-oscillations-on-transpiration-assimilation-and-water-use-efficiency-of-plants/

Uprety D. C., Dwivedi N., Jain V., Mohan R. (2002) – Effect of elevated carbon dioxide concentration on the stomatal parameters of rice cultivars – Photosynthetica 40: 315–319 – https://doi.org/10.1023/A:1021322513770 – https://link.springer.com/article/10.1023/A:1021322513770 – (On our blog : https://plantstomata.wordpress.com/2019/02/15/effect-of-elevated-co2-concentration-on-stomatal-parameters/ )

Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., Miura A., Nakamura Y., Mori I. C., Shinozaki K., Murata Y. (2012) – Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis – Plant Physiol. 159: 450–460 – doi: 10.1104/pp.112. 195578 – http://www.plantphysiol.org/content/159/1/450 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/pld%ce%b11-and-pld%ce%b4-cooperate-in-aba-signaling-in-stomata/ )

Urban J., Ingwers M. W., McGuire M. A., Teskey R. O. (2017) – Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra – Journal of Experimental Botany 68(7): 1757–1767 – doi:10.1093/jxb/erx052 – https://www.ncbi.nlm.nih.gov/pubmed/28338959 – (On our blog : https://plantstomata.wordpress.com/2018/01/12/higher-leaf-temperature-opens-stomata-and-decouples-net-photosynthesis-from-stomatal-conductance/ )

Urban J., Ingwers M. W., McGuire M. A., Teskey R. O. (2017) – Stomatal conductance increases with rising temperature – Plant Signal. Behav.  12: e1356534 – doi: 10.1080/15592324.2017.1356534 – Epub 2017 Aug 8 – https://www.ncbi.nlm.nih.gov/pubmed/28786730 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/stomatal-conductance-increases-with-rising-temperature/

Urban L., Jannoyer M. (2004) – Functioning and role of stomata in mango leaves. In : Proceedings of the Seventh International Mango Symposium, Recife City, Brazil, 22-27 September, 2002. Pinto A.C. De Q. (ed.), Pereira M.E.C. (ed.), Alves R.E. (ed.). ISHS-Section tropical and subtropical fruits. Wageningen : ISHS, pp. 441-446. (Acta Horticulturae, 645) ISBN 90-6605-547-2 International Mango Symposium. 7, Recife City, Brésil, 22 September 2002/27 September 2002 – http://agritrop.cirad.fr/524189/ – (On our blog : https://plantstomata.wordpress.com/2021/01/22/functioning-and-role-of-stomata/ )

Urton J. (2007) – ‘Speechless’ and ‘Mute’ help break the silence of the leaves – UW News Jan 18, 2007 – https://phys.org/news/2007-01-speechless-mute-silence.html – (On our blog : https://plantstomata.wordpress.com/2019/02/08/speechless-and-mute-two-genes-that-guide-land-plants-to-develop-microscopic-pores/ )

Urton J. (2015) – Plants make big decisions with microscopic cellular competition – UW News June 17, 2015 – https://www.washington.edu/news/2015/06/17/plants-make-big-decisions-with-microscopic-cellular-competition/ – (On our blog : https://plantstomata.wordpress.com/2019/02/08/a-mechanism-that-some-plant-cells-use-to-receive-complex-and-contradictory-messages-from-their-neighbors/ )

Urton J. (2018) – Stomata — the plant pores that give us life — arise thanks to a gene called MUTE, scientists report – UW News May 7, 2018 – https://www.washington.edu/news/2018/05/07/stomata-the-plant-pores-that-give-us-life-arise-thanks-to-a-gene-called-mute-scientists-report/ – (On our blog : https://plantstomata.wordpress.com/2018/05/09/stomata-and-a-gene-called-mute/ )

Vahisalu T., Kollist H., Wang Y. F., Nishimura N., Chan W. Y., Valerio G., Lamminmäki A, Brosché M, Moldau H, Desikan R., Schroeder J. I., Kangasjärvi J. (2008) – SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling – Nature 452: 487–491 – doi: 10.1093/jxb/erx052 – https://www.nature.com/articles/nature06608 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/a-vital-role-for-slac1-in-the-function-of-s-type-anion-channels-in-stomatal-signalling/ )

Vahisalu T., Puzorjova I., Brosché M., Valk E., Lepiku M., Moldau H., Pechter P., Wang Y. S., Lindgren O., Salojärvi J., Loog M., Kangasjärvi J., Kollist H. (2010) – Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1 – Plant J. 62: 442–453 – https://doi.org/10.1111/j.1365-313X.2010.04159.x – https://www.ncbi.nlm.nih.gov/pubmed/20128877 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/ozone%e2%80%90triggered-rapid-transient-decrease-rtd-in-stomatal-conductance-coincides-with-a-burst-of-ros-in-guard-cells/ )

Vaidya A. S., Helander J. D. M., Peterson F. C., Elzinga D., Dejonghe W., Kaundal A., Park S.-Y., Xing Z., Mega R., Takeuchi J., Khanderahoo B., Bishay S., Volkman B. F., Todoroki Y., Okamoto M., Cutler S. R. (2019) – Dynamic control of plant water use using designed ABA receptor agonists – Science 366(6464), eaaw8848 – DOI: 10.1126/science.aaw8848https://science.sciencemag.org/content/366/6464/eaaw8848 – (On our blog : https://plantstomata.wordpress.com/2019/10/25/dynamic-control-of-plant-water-use-using-designed-aba-receptor-agonists/ )

Valerio C., Costa A., Marri L., Issakidis-Bourguet E., Pupillo P., Trost
P., Sparla F. (2011)
– Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress – Journal of Experimental Botany 62: 545–555 – doi: 10.1093/jxb/erq288https://pubmed.ncbi.nlm.nih.gov/20876336/ – (On our blog : https://plantstomata.wordpress.com/2021/01/23/bam1-triggers-diurnal-starch-degradation-in-stomatal-guard-cells/ )

Valladares A. (2019) – Optogenetic manipulation of stomatal kinetics improves carbon assilimation, water use, and growth – Plant Science Research Weekly April 5, 2019 – 10.1126/science.aaw0046https://plantae.org/optogenetic-manipulation-of-stomatal-kinetics-improves-carbon-assimilation-water-use-and-growth-science/ – (On our blog : https://plantstomata.wordpress.com/2020/07/03/optogenetic-manipulation-of-stomatal-kinetics/ )

Vandegeer R. K., Zhao C., Cibils-Stewart X., Wuhrer R., hall C. R., Hartley S. E., Tissue D. T., Johnson S. N., (2020) – Silicon deposition on guard cells increases stomatal sensitivity as mediated by K+ efflux and consequently reduces stomatal conductance – Physiologia Plantarum 171(3): 358-370 – https://doi.org/10.1111/ppl.13202https://onlinelibrary.wiley.com/doi/10.1111/ppl.13202 – (On our blog : https://plantstomata.wordpress.com/2021/12/04/si-deposition-on-stomatal-guard-cells-promotes-greater-stomatal-sensitivity-as-mediated-by-guard-cell-k-efflux/ )

Van de Geyn S. C., Goudriaan J. (1996) – 5. The effects of elevated CO2 and temperature change on transpiration and crop water use – http://www.fao.org/docrep/W5183E/w5183e07.htm – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomata-elevated-co2-and-temperature-change-transpiration-and-crop-water-use/ )

Vandenhout H., Ortiz R., Vuylsteke D., Swennem R., Bai K.V. (1995) – Effect of ploidy on stomatal and other quantitative traits in plantain and banana hybrids – Euphytica 83: 117-122 –

Vandermeiren K., Black C., Lawson T., Casanova M. A., Ojanperä K. (2002) – Photosynthetic and stomatal responses of potatoes grown under elevated CO2and/or O3 – results from the European CHIP-programme – Eur. J. Agron. 17: 37-352 – https://doi.org/10.1016/S1161-0301(02)00070-9 – https://www.sciencedirect.com/science/article/abs/pii/S1161030102000709 – (On our blog : https://plantstomata.wordpress.com/2019/02/15/photosynthetic-and-stomatal-responses-of-potatoes-grown-under-elevated-co2-and-or-o3/ )

Van De Water P. K. (2016) – Pinus monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems – American Geophysical Union, Fall General Assembly 2016, abstract id. PP51A-2292 – http://adsabs.harvard.edu/abs/2016AGUFMPP51A2292V – (On our blog : https://plantstomata.wordpress.com/2018/02/05/changes-in-needle-cell-size-and-stomata-over-the-past-100-years-of-rising-co2/)

van Emmerik T. H. M. (2017) – Water stress detection using radar – PhD Delft University of Technology – https://doi.org/10.4233/uuid:46f0b6e6-5592-4b05-983b-a04c8f0f88a8https://www.narcis.nl/publication/RecordID/oai%3Atudelft.nl%3Auuid%3A46f0b6e6-5592-4b05-983b-a04c8f0f88a8/uquery/water%20AND%20stress/id/3/Language/EN – (On our blog : https://plantstomata.wordpress.com/2022/09/15/radar-remote-sensing-might-yield-valuable-insights-into-vegetation-water-content-and-transpiration-through-sstomata/ )

van Gardingen P. R., Jeffree C. E., Grace J. (1989) – Variation in stomatal aperture in leaves of Avena fatua L. observed by low-temperature scanning electron microscopy – Plant, Cell and Environment 12: 887-888 – https://doi.org/10.1111/j.1365-3040.1989.tb01968.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.1989.tb01968.x – (On our blog : https://plantstomata.wordpress.com/2019/02/15/stomatal-aperture-observed-by-low-temperature-scanning-electron-microscopy/ )

Van Hoof T. B., Kürschner W. M., Wagner F., Visscher H. (2006) – Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase – Plant Ecol 183: 237 – https://doi.org/10.1007/s11258-005-9021-3 – https://link.springer.com/article/10.1007/s11258-005-9021-3 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-response-to-the-anthropogenic-atmospheric-co2-increase/ )

VanHook A. M. (2015) – Competing for stomata – Science Signaling 8(383): 177 – DOI: 10.1126/scisignal.aac8741https://stke.sciencemag.org/content/8/383/ec177 – (On our blog : https://plantstomata.wordpress.com/2020/07/25/competing-for-stomata/ )

Van Houtte H., Vandesteene L., Lopez-Galvis L., Lemmens L., Kissel E., Carpentier S., Feil R., Avonce N., Beeckman T., Lunn J. E., Van Dijck P. (2013) – Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. – Plant Physiol. 161: 1158–1171 – doi: 10.1104/pp.112.211391 – http://www.plantphysiol.org/content/161/3/1158 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/trehalase-plays-a-role-in-the-regulation-of-stomatal-closure-in-the-plant-drought-stress-response/ )

Vani T., Raghavendra A. S. (1989) – Tetrazolium Reduction by Guard Cells in Abaxial Epidermis of Vicia faba: Blue Light Stimulation of a Plasmalemma Redox System – Plant Physiol. 90: 59-62 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061677/pdf/plntphys00640-0069.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/21/an-nadh-dependent-flavin-mediated-electron-transport-system-operates-in-the-plasmalemma-of-stomata/ )

Vani T., Raghavendra A. S. (1994) – High mitochondrial activity but incomplete engagement of the cyanide-resistant alternative pathway in guard cell protoplasts of pea – Plant Physiol. 105: 1263–1268 – PMID: 12232282 – PMCID: PMC159457 – https://www.ncbi.nlm.nih.gov/pubmed/12232282 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/respiratory-properties-of-stomatal-guard-cell-protoplasts-gcp/ )

Van Ieperen W. (2012) – Plant morphological and developmental responses to light quality in a horticultural context – Acta Hortic. 956: 131-139 – https://doi.org/10.17660/ActaHortic.2012.956.12 –http://www.actahort.org/books/956/956_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/21/light-quality-in-horticulture-and-stomatal-behavior/ )

van Iersel M. W., Seader K., Dove S. (2009) – Exogenous abscisic acid application effects on stomatal closure, water use, and shelf life of hydrangea (Hydrangea macrophylla) – J. Environ. Hort. 27: 234-238 – https://doi.org/10.24266/0738-2898-27.4.234https://meridian.allenpress.com/jeh/article/27/4/234/79837/Exogenous-Abscisic-Acid-Application-Effects-on – (On our blog : https://plantstomata.wordpress.com/2020/12/09/exogenous-aba-application-effects-on-stomatal-closure-water-use-and-shelf-life-of-hydrangea/ )

Van Kirk C. A., Raschke K. (1978) – Presence of chloride reduces malate production in epidermis during stomatal opening – Plant Physiol. 61: 361–364 – http://www.plantphysiol.org/content/plantphysiol/61/3/361.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/30/chloride-reduces-malate-production-in-epidermis-during-stomatal-opening/ )

Van Kirk C. A., Raschke K. (1978) – Release of malate from epidermal strips during stomatal closure – Plant Physiol 61: 474-475 – https://doi.org/10.1104/pp.61.3.474http://www.plantphysiol.org/content/61/3/474 – (On our blog : https://plantstomata.wordpress.com/2017/07/31/release-of-malate-during-stomatal-closure/ )

Van Kraalingen D. W. G. (1990) – Implications of non-uniform stomatal closure on gas exchange calculations – Plant Cell Environ. 13: 1001-1004 – https://doi.org/10.1111/j.1365-3040.1990.tb01993.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1990.tb01993.x – (On our blog : https://plantstomata.wordpress.com/2019/02/18/non-uniform-stomatal-closure-and-gas-exchange-calculations/ )

Van Leene J., Han C., Gadeyne A., Eeckhout D., Matthijs C., Cannoot
B., De Winne N., Persiau G., Van De Slijke E., Van de Cotte B., et
al. (2019)
– Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase – Nat Plants 5: 316–327 –

van Meeteren U., Fard S. A. N. (2016) – Stomata and Postharvest Physiology – In S. Pareek (Ed.), Postharvest Ripening Physiology of Crops (pp. 157-216) – (Innovations in Postharvest Technology Series ) – CRC Press – ISBN (Print) 9781498703802 – https://www.taylorfrancis.com/books/e/9780429160530/chapters/10.1201/b19043-14 – (On our blog : https://plantstomata.wordpress.com/2020/10/26/stomata-and-postharvest-physiology/ )

van Meeteren U., Kaiser E., Matamoros P. M., Verdonck J. C., Aliniaeifard S. (2020) – Is nitric oxide a critical key factor in ABA-induced stomatal closure? –  Journal of Experimental Botany 71(1): 399-410 – doi:10.1093/jxb/erz437https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6913703/ – (On our blog : https://plantstomata.wordpress.com/2020/01/13/an-alternative-mechanism-that-plants-use-to-reduce-stomatal-aperture-to-restrict-water-loss-under-stressful-conditions/ )

Van Wyk A. E., Robbertse P. J., Kok P. D. F. (1982) – The genus Eugenia L. (Myrtaceae) in southern Africa: the structure and taxonomic value of stomata – Botanical Journal of the Linnean Society 84: 41–56 –

Van Wijk M. T., Dekker S. C., Bouten W., Bosveld F. C., Kohsiek W., Kramer K., Mohren G. M. J. (2000) – Modelling daily gas exchange of a Douglas‐fir forest: comparison of three stomatal conductance models with and without a soil water stress function – Tree Physiology 20: 115–122 – PMID: 12651479 – https://www.ncbi.nlm.nih.gov/pubmed/12651479 – (On our blog : https://plantstomata.wordpress.com/2019/02/18/three-stomatal-conductance-models/ )

Van Wittenberghe S., Adriaenssens S., Staelens J., Verheyen K., Samson R. (2012) – Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient – Trees 26: 1427–1438 – https://doi.org/10.1007/s00468-012-0714-7https://link.springer.com/article/10.1007/s00468-012-0714-7 – (On our blog : https://plantstomata.wordpress.com/2019/02/18/variability-of-stomatal-conductance-of-young-and-adult-leaves-along-a-vertical-canopy-gradient/ )

Varvel N.A., Hilt C.J., Johnson L., Galliart M., Baer S., Maricle B. (2018) – Genetic and environmental influences on stomates of big bluestem (Andropogon gerardii) – Environmental and Experimental Botany, 155: 477-487 – https://doi.org/10.1016/j.envexpbot.2018.07.018https://www.sciencedirect.com/science/article/abs/pii/S0098847218300807 – (On our blog : https://plantstomata.wordpress.com/2021/08/19/drought-tolerant-ecotypes-have-fewer-stomates-illustrating-an-evolutionary-adaptation-to-drought-tolerance/ )

Vaseva I., Qudeimat E., Potuschak T., Du Y., Genschik P., Vandenbussche F., Van Der Straeten D. (2018) – The plant hormone ethylene restricts Arabidopsis growth via the epidermis – Proceedings of the National Academy of Sciences 115 (17) E4130-E4139 – DOI:10.1073/pnas.1717649115 – http://www.pnas.org/content/115/17/E4130.full – (On our blog : https://plantstomata.wordpress.com/2018/04/25/ethylene-and-epidermis/ )  

Vassilyev A , Vassilyeva A. (1976) –  In Russian (The ultrastructure of the stomatal apparatus in gymnosperms, wIth special reference to stomatal movements) – Batanicheskij Zhurnal, Leningrad 61: 449-465 –

Vatén A. (2018)  Interplay between SPEECHLESS and cytokinin signaling regulates stomata producing asymmetric divisions – (On our blog : https://plantstomata.wordpress.com/2018/12/13/speechless-cytokinin-and-stomatal-divisions/

Vatén A., Bergmann D. C. (2012)  Mechanisms of stomatal development: an evolutionary view – Evodevo 3(1): 11 – DOI10.1186/2041-9139-3-11 – PMID: 22691547 – http://evodevojournal.biomedcentral.com/articles/10.1186/2041-9139-3-11 – (On our blog : https://plantstomata.wordpress.com/2017/01/21/stomatal-developmental-pathways-at-morphological-and-molecular-levels/) – https://wordpress.com/post/plantstomata.wordpress.com/32359 )

Vatén A., Soyars C. L., Tarr P. T., Nimchuk Z. L., Bergmann D. C. (2018) – Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage – Developmental Cell 47(1): 53-66 – https://doi.org/10.1016/j.devcel.2018.08.007 –https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30672-5 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/cytokinin-and-speechless-regulatory-interactions-in-the-arabidopsis-stomatal-lineage/ )

Vauzia S., Chairul M., Auzar S. (2016) – Stomata characteristics and chlorophyll content in two plant species regenerating with sprout and seeds after burning at Peat Swamp Forest in Batang Alin-Indonesia – Journal of Chemical and Pharmaceutical Research  8(1): 356-361 – ISSN : 0975-7384  – http://www.jocpr.com/articles/stomata-characteristics-and-chlorophyll-content-in-two-plant-speciesregenerating-with-sprout-and-seeds-after-burning-at.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomata-in-anthocephalus-rubiaceae-and-mallotus-euphorbiaceae/ )

Vavasseur A., Garrec J. P., Laffray D. (1984) – Electronic microprobe study of variations in potassium concentration of stomatal complexes of two Commelinaceae – Physiol Vég 22: 841-849 –

Vavasseur A., Lasceve G., Couchat P. (1988) – Oxygen-dependent stomatal opening in Zea mays leaves – effect of light and carbon dioxide – Physiologia Plantarum 73: 547-552 – https://doi.org/10.1111/j.1399-3054.1988.tb05439.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1988.tb05439.x – (On our blog : https://plantstomata.wordpress.com/2019/02/18/effect-of-light-and-carbon-dioxide-on-stomatal-opening/ )

Vavasseur A., Raghavendra A. S. (2005) – Guard cell metabolism and CO2 sensing – New Phytol. 165: 665–682 – doi: 10.1111/j.1469-8137.2004. 01276.x  https://www.ncbi.nlm.nih.gov/pubmed/15720679 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/there-are-common-as-well-as-unique-steps-in-aba-and-co2-signalling-pathways-in-stomata/ )

Vavilov P. P., Firsov I. P., Solov’ev A. M. (1978) – Effect of cultivation conditions on the specific features of the stomatal apparatus in diploid, triploid and tetraploid beets – Izvestiya Timiryazevskoi Sel’skokhozyaistvennoi Akademii (2): 74-80 – https://eurekamag.com/research/005/230/005230014.php – (On our blog : https://plantstomata.wordpress.com/2022/02/19/stomata-and-preliminary-determining-ploidy-in-beets/ )

Vaz M., Pereira J. S., Gazarini L. C., David T. S., David J. S., Rodrigues A., Maroco J., Chaves M. M. (2010) – Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber) – Tree Physiol. 30(8): 946-956 – doi: 10.1093/treephys/tpq044 – Epub 2010 Jun 22 – https://www.ncbi.nlm.nih.gov/pubmed/20571151 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-conductance-and-a-high-resilience-of-the-photosynthetic-apparatus-to-summer-drought/ )

Vaz Patto M. C., Niks R. E. (2000) – Orientation of Germ Tubes of Puccinia hordei on the Hordeum chilense Leaf Surface – Acta Phytopathologica et Entomologica Hungarica 35(1-4) – ISSN 0238-1249 – https://www.narcis.nl/publication/RecordID/oai%3Alibrary.wur.nl%3Awurpubs%2F66818/uquery/PATTO/id/3/Language/EN – (On our blog : https://plantstomata.wordpress.com/2022/09/11/is-the-germ-tube-growth-of-urediospores-directed-towards-stomata/ )

Vega-Mas I., Marino D., Sánchez-Zabala J., González-Murua C., Estavillo J. M., González-Moro M. B. (2015) – CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance – Plant Sci. 241: 32-44 – doi: 10.1016/j.plantsci.2015.09.021 – Epub 2015 Sep 28 – https://www.ncbi.nlm.nih.gov/pubmed/26706056 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/stomatal-conductance-and-co2-enrichment-modulating-ammonium-nutrition/ )

Venglat S. P., Sawhney V. K. (1994) – Ectopic formation of trichomes and stomata in floral organs of Arabidopsis thaliana induced by thidiazuron – Canadian Journal of Botany 72(5): – https://cdnsciencepub.com/doi/abs/10.1139/b94-087?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2021/04/18/thidiazuron-alters-the-differentiation-processes-in-floral-organs-by-inducing-the-production-of-traits-that-are-characteristic-of-cauline-leaves-i-e-trichomes-and-stomata/ )

Venora G., Calcagno F. (1991) – Study of stomatal parameters for selection of drought resistant varieties in Triticum durum DESF – Euphytica 57: 275-283 – https://doi.org/10.1007/BF00039674https://link.springer.com/article/10.1007/BF00039674 – (On our blog : https://plantstomata.wordpress.com/2019/05/25/stomatal-parameters-for-selection-of-drought-resistant-varieties/ )

Venturas M. D., Sperry J. S., Love D.M., Frehner E. H., Allred M. G., Wang Y. Anderegg W. R. L. ( 2018) – A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought – New Phytol. – Online Version of Record  – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15333?af=R – (On our blog :https://wordpress.com/post/plantstomata.wordpress.com/69686 )

Verboven P., Pedersen O., Ho Q. T., Nicolai B. M., Colmer T. D. (2014) – The mechanism of improved aeration due to gas films on leaves of submerged rice – Plant Cell Environ. 37(10):2433-2452 – doi: 10.1111/pce.12300 – Epub 2014 Mar 20 – PMID: 24548021 – https://pubmed.ncbi.nlm.nih.gov/24548021/ – (On our blog : https://plantstomata.wordpress.com/2022/09/30/stomata-and-improved-aeration-due-to-gas-films/ )

Verduin J. (1949) – Diffusion through multiperforate septa – In Photosynthesis in plants (eds J Franck, W Loomis), pp. 95–112. Ames, IA: Iowa State College Press – https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=13804&context=rtd – (On our blog : https://plantstomata.wordpress.com/2018/07/09/diffusion-through-multiperforate-septa/ )

Verma K. K., Song X.-P., Zeng Y., Li D.-M., Guo D.-J., Rajput V. D., Chen G.-L., Barakhov A., Minkina T. M., Li Y.-R. (2020) – Characteristics of Leaf Stomata and Their Relationship with Photosynthesis in Saccharum officinarum Under Drought and Silicon Application – ACS Omega 5(37): 24145–24153 – https://doi.org/10.1021/acsomega.0c03820https://pubs.acs.org/doi/10.1021/acsomega.0c03820 – (On our blog : https://plantstomata.wordpress.com/2020/11/04/leaf-stomata-and-their-relationship-with-photosynthesis/ )

Verma S. K., Gantait S., Jeong B. R., Hwang S. J. (2018) – Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory – Nature Scientific Reports 8, Article number: 18009 – https://www.nature.com/articles/s41598-018-36113-9 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/74654/ )

Verma V., Chandra N. (2014) – Biochemical and Ultrastructural Changes in Sida cordifolia L. and Catharanthus roseus L. to Auto Pollution – Int Sch Res Notices 2014:263092 – doi: 10.1155/2014/263092 – eCollection 2014 – https://pubmed.ncbi.nlm.nih.gov/27355010/ – (On our blog : https://plantstomata.wordpress.com/2022/03/12/changes-in-stomata-due-to-car-pollution/ )

Véry A.-A., Robinson M. F., Mansfield T. A., Sanders D. (1998) – Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte – Plant J. 14: 509-521 – http://dx.doi.org/10.1046/j.1365-313X.1998.00147.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.1998.00147.x – (On our blog : https://plantstomata.wordpress.com/2019/02/18/stomatal-cation-channels-are-involved-in-na-induced-stomatal-closure-in-a-halophyte/ )

Vesala T., Ahonen T., Hari P., Krissinel E., Shokirev N. (1996) – Analysis of stomatal CO2 uptake by a three-dimensional cylindrically symmetric model – New Phytologist 132: 235–245 –

Veselova S. V., Farkhutdinov R. G., Veselov D. S., Kudoyarova G. R. (2006) – Role of Cytokinins in the Regulation of Stomatal Conductance of Wheat Seedlings under Conditions of Rapidly Changing Local Temperature – Russian Journal of Plant Physiology 53(6): 756–776 – DOI: 10.1134/S1021443706060057http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Role-of-Cytokinins-in-the-Regulation-of-Stomatal-Conductance-of-Wheat-Seedlings-under-Conditions-of-Rapidly-Changing-Local-Temperature.pdf – (On our blog : https://plantstomata.wordpress.com/2020/11/18/the-role-of-cytokinins-in-the-regulation-of-stomatal-conductance-under-conditions-of-local-thermal-treatments/ )

Vesely P., Bures P., Smarda P., Pavlicek T. (2012) – Genome size and DNA base composition of geophytes – Ann Bot 109(1): 65-75 – doi: 10.1093/aob/mcr267 – Epub 2011 Oct 21 – PMID: 22021815 – PMCID: PMC3241587 – https://pubmed.ncbi.nlm.nih.gov/22021815/ – (On our blog : https://plantstomata.wordpress.com/2022/06/18/107650/ )

Veselý P., Šmarda P., Bureš P. , Stirton C., Muasya A. M., Mucina L. , Horová L., Veselá K , Šilerová A., Šmerda J. , Knápek O.  – (2020) -Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes – Ann Bot 126(2): 323-330 – doi: 10.1093/aob/mcaa095 – PMID: 32474609 – PMCID: PMC7380457 – https://pubmed.ncbi.nlm.nih.gov/32474609/ – (On our blog : https://plantstomata.wordpress.com/2022/06/18/stomatal-parameters-and-genome-size-flow-cytometry/ )

Vialet-Chabrand S. R. M., Brendel O. (2014) – Automatic measurement of stomatal density from microphotographs – Trees 28: 1859–1865 – https://doi.org/10.1007/s00468-014-1063-5https://link.springer.com/article/10.1007%2Fs00468-014-1063-5#citeas – (On our blog : https://plantstomata.wordpress.com/2021/08/05/a-dramatically-decrease-the-time-needed-to-estimate-stomatal-density-and-spatial-distribution/ )

Vialet-Chabrand S. R. M., Dreyer E., Brendel O. (2013) – Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level – Plant Cell Environ 36: 1529–1546 – https://doi.org/10.1111/pce.12086 –https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12086 – (On our blog : https://plantstomata.wordpress.com/2019/01/12/a-new-dynamic-model-for-predicting-diurnal-time-courses-of-stomatal-conductance-2/ )

Vialet-Chabrand S. R. M., Hills A., Wang Y., Griffiths H., Lew V., Lawson T., Blatt M. R., Rogers S. (2017) – Global sensitivity analysis of OnGuard models identifies key hubs for transport interaction in stomatal dynamics – Plant Physiol 174: 680–688 – http://www.plantphysiol.org/content/174/2/680 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/onguard-models-and-transport-interaction-in-stomatal-dynamics/)

Vialet-Chabrand S. R. M., Lawson T. (2019) – Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment – Journ. Exp. Bot. erz068, https://doi.org/10.1093/jxb/erz068https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz068/5356941 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/deriving-stomatal-conductance-from-thermal-imaging-in-a-dynamic-environment/ )

Vialet-Chabrand S. R. M., Lawson T. (2020) – Thermography methods to assess stomatal behaviour in a dynamic environment – Journal of Experimental Botany 71: 2329–2338 – doi: 10.1093/jxb/erz573https://pubmed.ncbi.nlm.nih.gov/31912133/ – (On our blog : https://plantstomata.wordpress.com/2021/11/22/to-assess-stomatal-behaviour-in-a-dynamic-environment/ )

Vialet-Chabrand S. R. M., Matthews J. S. A., McAusland L., Blatt M. R., Griffiths H., Lawson T. (2017) – Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use – Plant Physiol 174: 603–613 – http://www.plantphysiol.org/content/174/2/603 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/temporal-dynamics-of-stomatal-behavior/)

VIB (2012) – Stomata development in plants unraveled – ScienceDaily, 3 April 2012 – www.sciencedaily.com/releases/2012/04/120403085743.htm – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/86487 )

Vico G., Manzoni S., Palmroth S., Katul G. (2011) – Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes – New Phytol. 192: 640–652 – doi: 10.1111/j.1469-8137.2011.03847.x  – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03847.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-opening-and-closing-delays/ )

Vico G., Manzoni S., Palmroth S., Weih M., Katul G. (2013) – A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations – Agricultural and Forest Meteorology 182–183: 191–199 – https://nicholas.duke.edu/people/faculty/katul/AFM_Vico_2013.pdf – (On our blog : https://plantstomata.wordpress.com/2020/04/08/84033/ )

Vienken J., Schnabl H., Zimmerman U., Ziegler H. (1980) – Plasmalemma ultrastructure of guard and mesophyll cell protoplasts of Vicia faba – Plant membrane transport: current conceptual issues: 453-454 – https://eurekamag.com/research/000/951/000951673.php – (On our blog : https://plantstomata.wordpress.com/2021/09/21/plasmalemma-ultrastructure-of-stomatal-guard-protoplasts/ )

Vijay P., Laxmi S., Rakesh P., Ramavatar M. (2017) – Measurement of stomatal density and Stomatal index on leaf/ Plant surfaces – Manual of ICAR sponsored training programme on “Physiological techniques to analyze the impact of climate change on crop plants” – Division of Plant Physiology, IARI, New Delhi.: 27 – 30 –

Vijaykant A. (2011) – Essay on Mechanism of Stomatal Transpiration – Present Articles – http://www.preservearticles.com/2011080910341/essay-on-mechanism-of-stomatal-transpiration.html – (On our blog : https://plantstomata.wordpress.com/2019/03/29/mechanism-of-stomatal-transpiration/ )

Vilagrosa A., Bellot J., Vallejo V. R., Gil-Pelegrin E. (2003) – Cavitation, stomatal conductance, and leaf dieback in seedlings of two co‐occurring Mediterranean shrubs during an intense drought – Journal of Experimental Botany 54(390): 2015–2024 – https://doi.org/10.1093/jxb/erg221 –https://academic.oup.com/jxb/article/54/390/2015/606447 – (On our blog : https://plantstomata.wordpress.com/2019/03/22/cavitation-stomatal-conductance-and-leaf-dieback-in-seedlings-during-an-intense-drought/ )

Vilela B., Pagès M., Riera M. (2015) – Emerging roles of protein kinase CK2 in abscisic acid signaling – Front. Plant Sci. 6:966 – doi: 10.3389/fpls.2015. 00966 – https://www.ncbi.nlm.nih.gov/pubmed/26579189 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/a-prominent-role-of-protein-kinase-ck2-in-aba-signaling-and-related-processes-in-stomata/ )

Vinnakota R., Ramakrishnan A. M.,Samdani A., Venugopal M. A., Ram B. S., S. Krishnan N., Murugesan D., Sankaranarayanan K. (2016) – A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.) – Protoplasma 253(6): 1593-1597 – DOI : 10.1007/s00709-015-0916-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00709-015-0916-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/a-comparison-of-aquaporin-function-in-mediating-stomatal-aperture-gating/ )

Virgin H. I. (2006) – Stomatal Transpiration of Some Variegated Plants and of Chlorophyll‐Deficient Mutants of Barley – Physiologia Plantarum 10(1): 170-186 – DOI: 10.1111/j.1399-3054.1957.tb07619.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1957.tb07619.x – (On our blog : https://plantstomata.wordpress.com/2021/12/11/stomatal-transpiration-of-some-variegated-plants/ )

Virlouvet L., Fromm M. (2015) – Physiological and transcriptional memory in guard cells during repetitive dehydration stress – New Phytol. 205: 596-607 – https://doi.org/10.1111/nph.13080https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13080 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/a-model-of-altered-aba-production-in-gcs-maintaining-a-partially-closed-stomatal-aperture-during-a-watered-recovery-period/ )

Vishwakarma K.,  Upadhyay N.,  Kumar N., Yadav G., Singh J.,  Mishra R. K.,  Kumar V.,  Verma R.,  Upadhyay R. G.,  Pandey M.,  Sharma S., (2017) – Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects – Front. Plant Sci., 20 February 2017 – https://doi.org/10.3389/fpls.2017.00161https://www.frontiersin.org/articles/10.3389/fpls.2017.00161/full – (On our blog : https://plantstomata.wordpress.com/2019/12/02/abas-role-is-elaborated-in-various-developmental-processes-including-seed-germination-seed-dormancy-and-closure-of-stomata/ )

Vitrack-Tamam S., Holtzman L., Dagan R., Levi S., Tadmor Y., Azizi T., Rabinovitz O., Naor A., Liran O. (2020) – Random Forest Algorithm Improves Detection of Physiological Activity Embedded within Reflectance Spectra Using Stomatal Conductance as a Test Case – Remote Sens. 12: 2213- file:///C:/Users/wille/Downloads/remotesensing-12-02213%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/05/02/classic-chemometric-analyses-in-order-to-identify-stomatal-conductance-cues-in-hyperspectral-measurements/ )

Voelker S., Brooks J. R., Meinzer F., Anderson R., Bader M., Battipaglia G., Beclin K., Beerling D., Bert D., Betancourt J., Dawson T., Domec J., Guyette R., Korner C., Leavitt S., Linder S., Marshall J., Mildner M., Ogee J., Panyushkina I., Plumpton H., Pregitzer K., Saurer M., Smith A., Siegwolf R., Stambaugh M., Talhelm A., Tardif J., Van de Water P., Ward J., Wingate L. (2016) – A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies – GLOBAL CHANGE BIOLOGY: Blackwell Publishing, Malden, MA, 22: 889-902 – https://doi.org/10.1111/gcb.13102https://onlinelibrary.wiley.com/doi/10.1111/gcb.13102 – (On our blog : https://plantstomata.wordpress.com/2022/03/09/a-broadly-conserved-pattern-of-stomatal-optimization-in-woody-angiosperms-and-gymnosperms/ )

Vogel S. (2004) – Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) I. Pathways of air circulation – Plant Systematics and Evolution 249(1): 9-25 – DOI: 10.1007/s00606-004-0201-8 – https://www.researchgate.net/publication/225163142_Contributions_to_the_functional_anatomy_and_biology_of_Nelumbo_nucifera_Nelumbonaceae_I_Pathways_of_air_circulation – (On our blog : https://plantstomata.wordpress.com/2018/06/11/circulation-starts-with-the-uptake-of-gas-through-leaf-stomata-and-ends-with-its-expulsion-via-the-specialized-navel-central-plate-of-the-leaves-in-nelumbo/ )

Voleníková M., Tichá I. (2001) – Insertion profiles in stomatal density and sizes in Nicotiana tabacum L. plantlets – Biologia Plantarum 44: 161–165 – https://doi.org/10.1023/A:1017982619635https://link.springer.com/article/10.1023/A:1017982619635 – (on our blog : https://plantstomata.wordpress.com/2019/02/19/insertion-profiles-in-stomatal-density-and-sizes/ )

Volkova L. V. (2009) – Ecophysiology of the tree fern species Dicksonia antarctica Labill and Cyathea australis (R. Br.) Domin – PhD Thesis University of Melbourne – https://rest.neptune-prod.its.unimelb.edu.au/server/api/core/bitstreams/75c282b9-34ae-50f8-9869-411ae5c77722/content – (On our blog : https://plantstomata.wordpress.com/2022/06/17/stomata-density-in-tree-ferns/ )

Vollsnes A., Vatne A. (2020) – Field work at Iškoras and input to transpiration modelling – UIO (University of Oslo), Department of Biosciences – https://www.mn.uio.no/geo/english/research/projects/emerald/events/webinar/webinar_oct-2020_vollsnes_transpiration.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/26/field-work-transpiration-modelling-and-stomatal-closure/ )

von Caemmerer S., Baker N. (2007) – The Biology of Transpiration. From Guard Cells to Globe – Plant Physiology – https://doi.org/10.1104/pp.104.900213http://www.plantphysiol.org/content/143/1/3 – (On our blog : https://plantstomata.wordpress.com/2020/04/08/from-guard-cells-to-globe/ )

von Caemmerer S., Griffiths H. (2009) – Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnataPlant Cell Environ. 32(5): 567-576 – doi: 10.1111/j.1365-3040.2009.01951.x – Epub 2009 Feb 2 – https://www.ncbi.nlm.nih.gov/pubmed/19210641 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/stomatal-responses-to-co2-during-a-diel-crassulacean-acid-metabolism-cycle/ )

von Caemmerer S., Lawson T., Oxborough K., Baker N. R., Andrews T. J., Raines C. A. (2004) – Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco – Journal of Experimental Botany 55: 1157–1166 – DOI: 10.1093/jxb/erh128 –https://www.ncbi.nlm.nih.gov/pubmed/15107451 – (On our blog : https://plantstomata.wordpress.com/2019/02/19/stomatal-conductance-is-not-directly-determined-by-the-photosynthetic-capacity-of-guard-cells-or-the-leaf-mesophyll-2/ )

von Groll U., Altmann T. (2002) – Stomatal cell biology –   Current Opinion in Plant Biology 4: 555–560 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomatal-cell-biology.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/22/stomatal-cell-biology/

von Groll U., Berger D., Altmann T. (2002) – The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development – Plant Cell 14: 1527–1539 – DOI: 10.1105/tpc.001016 – – http://www.plantcell.org/content/14/7/1527.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/sdd1-and-stomatal-development/)

von Mohl H. (1856) – Welche Ursachen bewirken die Erweiterung und Verengung der Spaltöffnungen? – Bot Zeit 14: 697–704 –

Vörding B., Kerp H. (2008) – Stomatal indices of Peltaspermum martinsii (Pteridospermopsida, Peltaspermaceae) from the Upper Permian Bletterbach Gorge and their possible applicability as CO2 proxies – Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 248(2):245-255 – DOI: 10.1127/0077-7749/2008/0248-0245https://www.researchgate.net/publication/233599968_Stomatal_indices_of_Peltaspermum_martinsii_Pteridospermopsida_Peltaspermaceae_from_the_Upper_Permian_Bletterbach_Gorge_and_their_possible_applicability_as_CO2_proxies – (On our blog : https://plantstomata.wordpress.com/2021/12/26/stomatal-indices-of-the-fossil-peltaspermum-martinsii/ )

Vos J. (1986) – Research on water relations and stomatal conductance in potatoes. 2. A comparison of three varieties differing in drought tolerance – In: Beekman AGB (ed.) Potato Research of Tomorrow, 29–35. Wageningen: Pudoc –

Vos J., Oyarzun P. J. (1987) – Photosynthesis and stomatal conductance of potato leaves–effects of leaf age, irradiance, and leaf water potential – Photosynthesis Research 11: 253–264 – doi: 10.1007/BF00055065https://link.springer.com/article/10.1007%2FBF00055065 – (On our blog : https://plantstomata.wordpress.com/2021/05/23/stomatal-conductance-declined-faster-than-photosynthetic-capacity/ )

Voss L. J., McAdam S. A. M., Knoblauch M., Rathje J. M., Brodribb T., Hedrich R., Roelfsema M. R. G. (2018) – Guard cells in fern stomata are connected by plasmodesmata, but control cytosolic Ca2+ levels autonomously – New Phytologist 219: 206–215 – doi: 10.1111/nph.15153 https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/nph.15153 – (On our blog : https://plantstomata.wordpress.com/2020/02/29/the-biophysical-mechanisms-that-control-stomatal-movements-differ-between-ferns-and-seed-plants/ )

Votrubová O., Kadeřábek J., Albrechtová J., (1992) – Distribution of stomata on the second leaf of Zea mays following root hypoxia – Biologia plantarum 34: 115-119 – DOI: 10.1007/BF02925803https://bp.ueb.cas.cz/artkey/bpl-199201-0022_Distribution-of-stomata-on-the-second-leaf-ofZea-mays-following-root-hypoxia.php?back=/magno/bpl/1992/mn1.php?secid=4 – (On our blog : https://plantstomata.wordpress.com/2021/04/09/distribution-of-stomata-following-root-hypoxia/ )

Vráblová M., Vrábl D., Hronková M., Kubásek J., Šantrůček J. (2017) – Stomatal function, density and pattern, and CO2 assimilation in Arabidopsis thaliana tmm1 and sdd1-1 mutants – Plant Biol (Stuttg). 19(5): 689-701 – doi: 10.1111/plb.12577 – Epub 2017 Jun 11 – PMID: 28453883. – https://pubmed.ncbi.nlm.nih.gov/28453883/ – (On our blog : https://plantstomata.wordpress.com/2020/12/12/increased-stomatal-density-enhanced-stomatal-conductance-in-sdd1-1-plants/ )

Vu J. C. V., Yelenosky G., Bauscher M. G. (1986) – CO2 exchange rate, stomatal conductance and transpiration in attached leaves of ‘Valencia’ orange – Hortic. Sci. 21(1): 143-144 – ISSN : 0018-5345 –