PHYSIO-BIBLIOGRAPHY T-V

Taiz L., Zeiger E. (1998) – Plant Physiology, 2nd Edn. Sunderland, MA: Sinauer Associates.

Taiz L., Zeiger E., Moeller I. M., Murphy A. (2015) – Plant Physiology and Development, Sixth Edition – Topic 10.4 – Phytochrome-mediated Responses in Stomata – http://6e.plantphys.net/index.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/phytochrome-mediated-responses-in-stomata/ )

Takahashi F., Suzuki T., Osakabe Y., Betsuyaku S.,Kondo Y., Dohmae N., Fukuda H., Yamaguchi-Shinozaki K., Shinozaki K. (2018) – A small peptide modulates stomatal control via abscisic acid in long-distance signalling – Nature 556: 235–238 – https://www.nature.com/articles/s41586-018-0009-2 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-small-peptide-modulates-stomatal-control-via-aba/ )

Takahashi S., Monda K., Negi J., Konishi F., Ishikawa S., Hashimoto-Sugimoto M., Goto N., Iba K. (2015) – Natural Variation in Stomatal Responses to Environmental Changes among Arabidopsis thaliana Ecotypes – PLoS One 10: e0117449 — https://doi.org/10.1371/journal.pone.0117449 – https://journals.plos.org/plosone/article/related?id=10.1371/journal.pone.0117449 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/differences-between-ecotypes-in-intrinsic-stomatal-response-mechanisms-to-environmental-signals/

Takahashi Y., Ebisu Y., Kinoshita T., Doi M., Okuma E., Murata Y., Shimazaki K.-i (2013) – bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation – Sci. Signal. 6, ra48 – doi: 10.1126/scisignal.2003760 – https://www.ncbi.nlm.nih.gov/pubmed/23779086 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/aks-family-of-bhlh-transcription-factors-facilitates-stomatal-opening-through-transcription-of-genes/ ) 

Takahashi Y., Ebisu Y., Shimazaki K.-i. (2017) – Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors – Plant Physiol 174: 815–822 – DOI: https://doi.org/10.1104/pp.16.01825http://www.plantphysiol.org/content/174/2/815 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/aba-signaling-from-the-receptor-to-dna-in-stomata/ )

Takahashi Y., Kinoshita T., Shimazaki K.-i.. (2007) – Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA – Plant Cell Physiol. 48: 1182–1191 – doi: 10.1093/pcp/pcm093 – https://www.ncbi.nlm.nih.gov/pubmed/17634179 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/61-kda-protein-may-be-a-substrate-for-aapk-and-it-is-located-upstream-of-h2o2-and-ca2-or-on-ca2-independent-signaling-pathways-in-stomata/ )

Takai T., Ohsumi A., San-Oh Y., Laza M. R. C., Kondo M., Yamamoto T., Yano M. (2009) – Detection of a quantitative trait locus controlling carbon isotope discrimination and its contribution to stomatal conductance in japonica rice – Theoretical Applied Genetics 118: 1401–1410 – https://doi.org/10.1007/s00122-009-0990-9https://link.springer.com/article/10.1007/s00122-009-0990-9 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/detection-of-a-quantitative-trait-locus-and-its-contribution-to-stomatal-conductance/ )

Takai T., Yano M., Yamamoto T. (2010) – Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice – Field Crops Research 115: 165–170 – https://doi.org/10.1016/j.fcr.2009.10.019 –https://www.sciencedirect.com/science/article/pii/S0378429009003001 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/infrared-thermography-may-be-a-simple-method-of-evaluating-varietal-differences-in-stomatal-conductance-through-ctd/ )

Takahashi F., Suzuki T., Osakabe Y., Betsuyaku S., Kondo Y., Dohmae N., Fukuda H., Yamaguchi-Shinozaki K., Shinozaki K. (2018) – A small peptide modulates stomatal control via abscisic acid in long-distance signalling – Nature 556: 235–238 – https://www.nature.com/articles/s41586-018-0009-2 – (On our blog : https://plantstomata.wordpress.com/2019/05/31/a-small-peptide-modulates-stomatal-control-via-aba-3/ )

Takanashi S., Kosugi Y., Matsuo N., Tani M., Ohte N. (2006) – Patchy stomatal behavior in broad-leaved trees grown in different habitats – Tree Physiology 26: 1565–1578 – DOI: 10.1093/treephys/26.12.1565 – https://www.researchgate.net/publication/6629959_Patchy_stomatal_behavior_in_broad-leaved_trees_grown_in_different_habitats – (On our blog : https://plantstomata.wordpress.com/2018/12/12/patchy-stomatal-behavior-in-broad-leaved-trees-grown-in-different-habitats/

Takemiya A., Kinoshita T., Asanuma M., Shimazaki K. (2006) – Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba – Proc. Natl. Acad. Sci. USA 103: 13549–13554 – https://doi.org/10.1073/pnas.0602503103https://www.pnas.org/content/103/36/13549 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/pp1-functions-downstream-of-phototropins-and-upstream-of-the-h-atpase-in-the-blue-light-signaling-pathway-of-stomata-2/ )

Takemiya A., Shimazaki K.-i. (2010) – Phosphatidic acid inhibits blue light- induced stomatal opening via inhibition of protein phosphatase – Plant Physiol. 153: 1555–1562 – DOI: https://doi.org/10.1104/pp.110.155689 – http://www.plantphysiol.org/content/153/4/1555 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/pa-inhibits-blue-light-signaling-in-stomata-by-pp1c-inhibition-accelerating-stomatal-closure/ )

Takemiya A., Sugiyama N., Fujimoto H., Tsutsumi T., Yamauchi S., Hiyama A., Tada Y., Christie J. M., Shimazaki K.-i. (2013) – Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening – Nat Commun4: 2094  -DOI: 10.1038/ncomms3094 – https://www.ncbi.nlm.nih.gov/pubmed/23811955 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/blus1-functions-as-a-phototropin-substrate-and-primary-regulator-of-stomatal-control-2/

Takemiya A., Yamauchi S., Yano,T., Ariyoshi C., Shimazaki K. (2013) – Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. – Plant Cell Physiol. 54: 24–35. – doi: 10.1093/pcp/pcs073 – https://www.ncbi.nlm.nih.gov/pubmed/22585556 (On our blog : https://plantstomata.wordpress.com/2018/06/26/prsl1-functions-as-a-regulatory-subunit-of-pp1-and-regulates-blue-light-signaling-in-stomata-2/ )

Takeuchi Y., Kondo N. (1988) – Effect of abscisic acid on glucose metabolism in guard cells of Vicia faba L. – Plant Cell Physiology 29: 247–253 – https://doi.org/10.1093/oxfordjournals.pcp.a077488 –https://academic.oup.com/pcp/article-abstract/29/2/247/1811034 – (On our blog : https://plantstomata.wordpress.com/2019/02/10/aba-may-have-two-different-actions-on-stomatal-movement/ )

Takeuchi Y., Kondo N. (1988) – Effect of abscisic acid on cell-wall metabolism in guard cells of Vicia faba L. – Plant Cell Physiology 29: 573–580 – https://doi.org/10.1093/oxfordjournals.pcp.a077531 –https://academic.oup.com/pcp/article-abstract/29/4/573/1814810 – (On our blog : https://plantstomata.wordpress.com/2019/02/10/cell-wall-metabolism-in-the-guard-cells-may-play-a-role-in-the-regulation-of-stomatal-movement/ )

Takuya F., Tatsumi H., Sokabe M. (2008) – Mechano-sensitive channels regulate the stomatal aperture in Vicia faba – Biochemical and Biophysical Research Communications 366: 758–762 – Mechano-sensitive_channels_regulate_the.pdf –  (On our blog : https://plantstomata.wordpress.com/2017/12/14/mechano-sensitive-channels-regulate-the-stomatal-aperture/ )

Tal M. (1966) – Abnormal stomatal behavior in wilty mutants of tomato – Plant Physiol. 41: 1387-1391 – PMCID: PMC550536 – PMID: 16656409https://pdfs.semanticscholar.org/22d2/c97f4d7b27da79699f1e3224e5d0992182a0.pdf – (On our blog : https://plantstomata.wordpress.com/2019/06/04/abnormal-stomatal-behavior-in-wilty-mutants-of-tomato/ )

Tal M., Imber D. (1970) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. II. Auxin and abscisic acid like activity – Plant PhysioL. Lancaster 46: 373-376 – DOI: 10.1104/pp.46.3.373https://www.ncbi.nlm.nih.gov/pubmed/16657470 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-ii-auxin-and-abscisic-acid-like-activity/ )

Tal M., Imber D. (1971) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. III. Hormonal effects on the water status in the plant – Plant PhysioL. 47(6): 849-850 – PMCID: PMC396785 – PMID: 16657719https://www.ncbi.nlm.nih.gov/pmc/articles/PMC396785/ – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-iii-hormonal-effects-on-the-water-status-in-the-plant/ )

Tal M., Imber D. (1972) – The effect of abscisic acid on stomatal behavior in flacca, a wilty mutant of tomato, in darkness – New Phytol. 71: 81-84 – https://doi.org/10.1111/j.1469-8137.1972.tb04812.xhttps://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1972.tb04812.x – (On our blog : https://plantstomata.wordpress.com/2019/06/04/the-effect-of-aba-on-stomatal-behavior/ )

Tal M., Imber D., Erez A., Epstein E. (1979) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato: V. Effect of Abscisic Acid on Indoleacetic Acid Metabolism and Ethylene Evolution – Plant Physiol. 63(6): – DOI: 10.1104/pp.63.6.1044 – https://www.researchgate.net/publication/24854076_Abnormal_Stomatal_Behavior_and_Hormonal_Imbalance_in_flacca_a_Wilty_Mutant_of_Tomato_V_Effect_of_Abscisic_Acid_on_Indoleacetic_Acid_Metabolism_and_Ethylene_Evolution – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-v-effect-of-aba-on-indoleacetic-acid-metabolism-and-ethylene-evolution/ )

Tal M., Imber D., Itai C. (1970) – Abnormal stomatal behaviour and hormonal imbalance in flacca, a wilty mutant of tomato. I. Root effect and kinetin-like activity – Plant PhysioL. 46: 367-372 – https://doi.org/10.1104/pp.46.3.367http://www.plantphysiol.org/content/46/3/367 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/abnormal-stomatal-behaviour-i-root-effect-and-kinetin-like-activity/ )

Tal M. Nevo Y. (1973) – Abnormal stomatal behaviour and root resistance, and hormonal imbalance in three wilty mutants of tomato –  Biochem Genet 8: 291–300 – https://doi.org/10.1007/BF00486182https://link.springer.com/article/10.1007%2FBF00486182 – (On our blog : https://plantstomata.wordpress.com/2019/06/04/abnormal-stomatal-behaviour/ )

Talbott L. D. (2006) – The Blue–Green Reversibility of the Blue-Light Response of Stomata – Plant Physiology and Development, Sixth Edition (Eds. Taiz L., Zeiger E., Moeller I. M., Murphy A.,© 2015 Sinauer Associates) – http://6e.plantphys.net/essay10.04.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/blue-light-response-of-stomata/ )

Talbott L. D., Hammad J. W., Harn L. C., Nguyen V. H., Patel J., Zeiger E. (2006) – Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement – Plant Cell Physiol. 47: 332–339 – https://doi.org/10.1093/pcp/pci249 –https://academic.oup.com/pcp/article/47/3/332/1922980 – (On our blog : https://plantstomata.wordpress.com/2019/02/10/stomatal-sensitivity-to-green-light-was-observed-only-in-the-morning-coinciding-with-the-use-of-potassium-as-a-guard-cell-osmoticum/ )

Talbott L. D., Nikolova G., Ortiz A., Shmayevich I. J., Zeiger E. (2002) – Green light reversal of blue light-stimulated stomatal opening is found in a wide range of plant species – Am J Bot 89: 366-368 –  https://doi.org/10.3732/ajb.89.2.366 –https://onlinelibrary.wiley.com/doi/full/10.3732/ajb.89.2.366 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/blue-green-reversibility-of-stomatal-opening-is-a-basic-photobiological-property-of-guard-cells/

Talbott L. D., Rahveh E., Zeiger E. (2003) – Relative humidity is a key factor in the acclimation of the stomatal response to CO2 – Journal of Experimental Botany 54: 2141–2147 – https://doi.org/10.1093/jxb/erg215https://academic.oup.com/jxb/article/54/390/2141/606437 – (On our blog : https://plantstomata.wordpress.com/2019/09/10/humidity-regulation-of-stomatal-co2-sensitivity-could-function-as-a-signal-for-promoting-stomatal-opening-under-low-light-low-co2-conditions/ )

Talbott L. D., Shmayevich I. J., Chung Y., Hammad J. W., Zeiger E. (2003) – Blue Light and Phytochrome-Mediated Stomatal Opening in the npq1 and phot1 phot2Mutants of Arabidopsis – Plant Physiology 133: 1522-1529 – https://doi.org/10.1104/pp.103.029587 – http://www.plantphysiol.org/content/133/4/1522 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/blue-light-and-phytochrome-mediated-stomatal-opening/

Talbott L. D., Srivastava A., Zeiger E. (1996) – Stomata from growth-chamber-grown Vicia faba have an enhanced sensitivity to CO2 – Plant, Cell & Environment 19: 1188-1194 – https://doi.org/10.1111/j.1365-3040.1996.tb00434.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1996.tb00434.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/acclimation-to-environmental-conditions-alters-the-sensitivity-of-stomata-to-co2-2/ )

Talbott L. D., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88, 887–895. – 10.1104/pp.88.3.887 – [PMC free article] [PubMed] [Cross Ref] – https://plantstomata.wordpress.com/2017/07/19/light-quality-and-osmoregulation-in-stomata/

Talbott L. D., Zeiger, E. (1993) – Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light. – Plant Physiol. 102: 1163–1169 – DOI: https://doi.org/10.1104/pp.102.4.1163 – http://www.plantphysiol.org/content/102/4/1163 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/light-quality-modulates-alternative-mechanisms-of-osmotic-accumulation-in-stomata-2/ )

Talbott L. D., Zeiger E. (1996) – Central roles for potassium and sucrose in guard-cell osmoregulation. – Plant Physiol. 111: 1051–1057 – DOI: https://doi.org/10.1104/pp.111.4.1051 – http://www.plantphysiol.org/content/111/4/1051 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/stomatal-osmoregulation-in-intact-leaves-depends-on-at-least-two-different-osmoregulatory-pathways-k-transport-and-sucrose-metabolism/ )

Talbott L. D., Zeiger E. (1998) – The role of sucrose in guard cell osmoregulation. – J. Exp. Bot. 49: 329–337 – doi: 10.1093/jexbot/49.suppl_1.329 – https://academic.oup.com/jxb/article/49/Special_Issue/329/507976 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/sucrose-in-stomatal-osmoregulation/ )

Talbott L. D., Zhu J., Han S. W., Zeiger E. (2002) – Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum – Plant Cell Physiol 43: 639–646 – PMID: 12091717 – https://doi.org/10.1093/pcp/pcf075 – https://www.ncbi.nlm.nih.gov/pubmed/12091717 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/paphiopedilum-stomata-possess-both-a-blue-light-mediated-opening-response-a-novel-phytochrome-mediated-opening-response/

Tallman G. (1992) – The chemiosmotic model of stomatal opening revisited – Crit. Rev. Plant Sci. 11: 35–57 – https://doi.org/10.1080/07352689209382329 –https://www.tandfonline.com/doi/abs/10.1080/07352689209382329 – (On our blog : https://plantstomata.wordpress.com/2018/12/03/the-chemiosmotic-model-of-stomatal-opening-revisited/

Tallman G. (2004) – Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? – J. Exp. Bot. 55, 1963–1976. – 10.1093/jxb/erh212 –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/15310824 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/a-model-to-reconcile-proposed-cellular-mechanisms-for-guard-cell-signal-transduction-with-patterns-of-stomatal-movements-in-leaves/

Tallman G. (2006) – Guard cell protoplasts: isolation, culture, and regeneration of plants. – Methods Mol. Biol. 318: 233–252. – doi: 10.1385/1-59259-959-1:233 – In : Plant Cell Culture Protocols – http://www.springerprotocols.com/Abstract/doi/10.1385/1-59259-959-1:233 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-culture-of-guard-cell-protoplasts/ )

Tallman G., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88: 887–895. – doi: 10.1104/pp.88.3.887 – http://www.plantphysiol.org/content/88/3/887 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/osmoregulation-during-stomatal-opening-is-the-result-of-three-key-metabolic-processes-ion-transport-photosynthesis-and-sugar-metabolism/ )

Tameshige T., Ikematsu S., Torii K. U., Uchida N. (2016) – Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem – Journal of Experimental Botany 68(1) – DOI: 10.1093/jxb/erw447 – https://www.researchgate.net/publication/311664777_Stem_development_through_vascular_tissues_EPFL-ERECTA_family_signaling_that_bounces_in_and_out_of_phloem – (On our blog :https://plantstomata.wordpress.com/2018/12/04/the-history-of-erecta-research-including-studies-on-stomatal-development/ )  

Tamnanloo F., Damen H., Jangra R., Lee J. S. (2018) – MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development – Plant Physiology DOI: https://doi.org/10.1104/pp.18.00475 – http://www.plantphysiol.org/content/178/1/247 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71101 )

Tan C. S., Black T. A., Nnyamah J. U. (1977) – Characteristics of stomatal diffusion resistance in a Douglas fir forest exposed to soil water deficits – Canadian Journal of Forest Research 7: 595–604 – https://doi.org/10.1139/x77-078 –http://www.nrcresearchpress.com/doi/abs/10.1139/x77-07 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/stomatal-diffusion-resistance-in-a-douglas-fir-forest-exposed-to-soil-water-deficits/ )

Tanaka Y., Kutsuna N., Kanazawa Y., Kondo N., Hasezawa S., Sano T. (2007) – Intra-vacuolar reserves of membranes during stomatal closure: the possible role of guard cell vacuoles estimated by 3-D reconstruction – Plant and Cell Physiology 48: 1159–1169 – DOI: 10.1093/pcp/pcm085 – https://www.researchgate.net/publication/6235763_Intra-Vacuolar_Reserves_of_Membranes_During_Stomatal_Closure_The_Possible_Role_of_Guard_Cell_Vacuoles_Estimated_by_3-D_Reconstruction – (On our blog : https://plantstomata.wordpress.com/2019/02/11/stomatal-guard-cell-vacuoles-store-some-portion-of-the-excess-membrane-materials-produced-during-stomatal-closure-as-intra-vacuolar-structures/ )

Tanaka Y., Nose T., Jikumaru Y., Kamiya Y. (2013) – ABA inhibits entry into stomatal‐lineage development in Arabidopsis leaves – Plant Journ. 74(3) – https://doi.org/10.1111/tpj.12136 –https://onlinelibrary.wiley.com/doi/10.1111/tpj.12136 – (On our blog : https://plantstomata.wordpress.com/2019/03/12/aba-action-on-pavement-cell-expansion-requires-the-presence-of-stomatal%e2%80%90lineage-cells/ )

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2005) – Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis – Plant Physiol. 138: 2337–2343 – 10.1104/pp.105.063503 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/138/4/2337 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/ethylene-delays-stomatal-closure-by-inhibiting-the-aba-signaling-pathway-2/

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2006) – Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis – J. Exp. Bot. 57: 2259–2266 – 10.1093/jxb/erj193 – https://www.ncbi.nlm.nih.gov/pubmed/16798847 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/cytokinin-and-auxin-inhibit-aba-induced-stomatal-closure/ )

Tanaka Y., Sugano S. S., Shimada T., Hara-Nishimura I. (2013) – Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis – New Phytol, 198: 757–764 – doi:10.1111/nph.12186 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12186/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/increased-stomatal-density-enhanced-leaf-photosynthetic-capacity-by-modulating-gas-diffusion/

Tanaka Y., Fujii K., Shiraiwa T. (2010) – Variability of Leaf Morphology and Stomatal Conductance in Soybean [Glycine max (L.) Merr.] Cultivars – Crop Science – 50(6): 2525-2532 – doi:10.2135/cropsci2010.02.0058 –https://dl.sciencesocieties.org/publications/cs/abstracts/50/6/2525 – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomatal-conductance-in-soybean-glycine-max/ )

Tang C., Turner N. C. (1999) – The influence of alkalinity and water stress on the stomatal conductance, photosynthetic rate and growth of Lupinus angustifolius L. and Lupinus pilosus Murr. – Animal Production Science 39(4):457-464 – DOI: 10.1071/EA98132 – https://www.researchgate.net/publication/262957216_The_influence_of_alkalinity_and_water_stress_on_the_stomatal_conductance_photosynthetic_rate_and_growth_of_Lupinus_angustifolius_L_and_Lupinus_pilosus_Murr – (On our blog : https://plantstomata.wordpress.com/2019/03/28/alkalinity-water-stress-and-stomatal-conductance/ )

Tang Y., Liang N. (2000) – Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes – Tree Physiology 20: 969–976 – https://www.ncbi.nlm.nih.gov/pubmed/11303572 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/photosynthetic-induction-response-with-stomata-barely-responding-to-light-changes/ )

Tanner L. H., Smith D. L., Allan A. (2007) – Stomatal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano – Geophysical Research Letters 34(15): L15807 – http://adsabs.harvard.edu/abs/2007GeoRL..3415807T – (On our blog : https://plantstomata.wordpress.com/2019/02/06/calculations-of-pco2-based-on-stomatal-frequency-are-likely-to-be-exaggerated/ )

Tanzarella O. A., de Pace C., Filippetti A. (1984) – Stomatal frequency and size in Vicia faba L – Crop Sci. 24: 1070-1076 –

Tardieu F. (1995) – Control of stomatal conductance in droughted plants by hydraulic and chemical messages from roots. ‘Photosynthesis: from light to biosphere. Volume V. Proceedings of the 10th international photosynthesis congress, Montpellier, France’. (Ed. P Mathis ) pp. 531–536. (Kluwer Academic Publishers: Dordrecht, The Netherlands) – DOI: 10.1007/978-94-009-0173-5_1039 – https://www.researchgate.net/publication/300825577_Control_of_Stomatal_Conductance_in_Droughted_Plants_by_Hydraulic_and_Chemical_Messages_from_Roots – (On our blog : https://plantstomata.wordpress.com/2019/05/11/78376/ )

Tardieu F. (2016) – Too many partners in root–shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control? – New Phytologist 212(4): 802–804 – DOI: 10.1111/nph.14292 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14292/abstract . This article is a Commentary on Visentin et al.212: 954–963. – (On our blog : https://plantstomata.wordpress.com/2016/11/09/hydraulics-and-stomatal-control/ )

Tardieu F., Davies W. J. (1992) – Stomatal response to abscisic acid is a function of current plant water status – Plant Physiol. 98: 540-545 – https://doi.org/10.1104/pp.98.2.540 – https://www.ncbi.nlm.nih.gov/pubmed/16668674 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/epidermal-water-relations-may-act-as-a-modulator-of-the-responses-of-stomata-to-aba-2/ )

Tardieu F., Davies W. J. (1993) – Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants – Plant, Cell and Environment 16: 341–349 – https://doi.org/10.1111/j.1365-3040.1993.tb00880.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1993.tb00880.x – (On our blog : https://plantstomata.wordpress.com/2019/02/11/integration-of-hydraulic-and-chemical-signalling-in-the-control-of-stomatal-conductance/ )

Tardieu F., Katerji N., Bethenod O., Zhang J., Davies W. J. (1991) – Maize stomatal conductance in the field: Its relationship with soil and plant water potentials, mechanical constraints and ABA concentration in the xylem sap – Plant, Cell and Environment 14: 121–126 – https://doi.org/10.1111/j.1365-3040.1991.tb01378.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01378.x – (On our blog : https://plantstomata.wordpress.com/2019/02/11/maize-stomatal-conductance-in-the-field/ )

Tardieu F., Lafarge T., Simonneau T. (1996) – Stomatal control by fed or endogenous xylem ABA in sunflower: interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species – Plant Cell Environ. 19: 75–84 – https://doi.org/10.1111/j.1365-3040.1996.tb00228.x –https://prodinra.inra.fr/?locale=en#!ConsultNotice:126667 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/correlations-between-leaf-water-potential-and-stomatal-conductance-in-anisohydric-species/ )

Tardieu F., Simonneau T. (1998) – Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours – Journal of Experimental Botany 49: 419–432 – https://doi.org/10.1093/jxb/49.Special_Issue.419 –https://academic.oup.com/jxb/article/49/Special_Issue/419/508002 – (On our blog : https://plantstomata.wordpress.com/2019/02/13/variability-of-stomatal-control-under-fluctuating-soil-water-status-and-evaporative-demand/ )

Tardieu F., Zhang J., Gowing D. J. G. (1993) – Stomatal control by both [ABA] in the xylem sap and leaf water status: a test of a model for droughted or ABA-fed field-grown maize – Plant, Cell and Environment 16: 413-420 – https://doi.org/10.1111/j.1365-3040.1993.tb00887.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1993.tb00887.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/modelling-of-stomatal-behaviour-requires-consideration-of-both-chemical-and-hydraulic-aspects-of-root%e2%80%90to%e2%80%90shoot-communication/ )

Tardieu F., Zhang J., Katerji N., Bethenod O., Palmer S.., Davies W. J. (1992) – Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying – Plant, Cell and Environment 15: 193–197 – https://doi.org/10.1111/j.1365-3040.1992.tb01473.x -https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1992.tb01473.x – (On our blog : https://plantstomata.wordpress.com/2019/01/11/xylem-aba-controls-the-stomatal-conductance/ )

Tari I. (2003) – Abaxial and adaxial stomatal density, stomatal conductances and water status of bean primary leaves as affected by paclobutrazol – Biologia Plantarum 47: 215–220 – https://doi.org/10.1023/B:BIOP.0000022254.63487.16https://link.springer.com/article/10.1023/B:BIOP.0000022254.63487.16 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/paclobutrazol-amplified-the-stomatal-differentiation-and-increased-the-differences-between-the-adaxial-and-abaxial-stomatal-conductances/ )

Tarkowska J. A., Wakowska M. (1988) – The significance of the presence stomata on seedling roots – Annals of Botany 61: 305–310 – https://www.jstor.org/stable/42758371?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/12/the-possible-role-of-stomata-on-seedling-roots/

Tátrai Z. A., Sanoubar R., Pluhár Z., Mancarella S., Orsini F., Gianquinto G. (2015) – Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus – International Journal of Agronomy
2016 – ID 4165750, 8 pp. – http://dx.doi.org/10.1155/2016/4165750https://www.hindawi.com/journals/ija/2016/4165750/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63995 )

Tay A.-C., Furukawa A. (2008) – Variations in leaf stomatal density and distribution of 53 vine species in Japan – Plant Species Biology 23(1): 2-8 – https://doi.org/10.1111/j.1442-1984.2008.00201.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1442-1984.2008.00201.x – (On our blog : https://plantstomata.wordpress.com/2018/08/11/leaf-stomatal-density-and-distribution-vary-among-species-with-different-growth-life-forms-from-different-habitats/ )

Taylor A. R., Assmann S. M. (2001) – Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells – Plant Physiol. 125: 329–338 – DOI: https://doi.org/10.1104/pp.125.1.329 – http://www.plantphysiol.org/content/125/1/329 – (On our blog : https://plantstomata.wordpress.com/2018/10/28/reduced-products-of-photosynthesis-are-unlikely-to-be-critical-regulators-in-bl-stimulation-of-the-plasma-membrane-h-atpase-in-stomata/ )

Taylor G., Dobson M. C. (1989) – Photosynthetic characteristics, stomatal responses and water relations of Fagus sylvatica: impact of air quality at a site in Southern Britain – New Phytol. 113: 265-273 – https://doi.org/10.1111/j.1469-8137.1989.tb02403.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1989.tb02403.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/impact-of-air-quality-on-stomatal-responses-and-water-relations/ )

Taylor S. H., Franks P. J., Hulme S. P., Spriggs E., Christin P. A., Edwards E. J., Woodward F. I., Osborne C. P. (2012) – Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. – New Phytologist, 193(2), 387-396 – DOI: 10.1111/j.1469-8137.2011.03935.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03935.x/abstract – (On our blog :  https://wordpress.com/post/plantstomata.wordpress.com/65932 )

Teare I. D., Peterson C. J., Law A. G. (1971) – Size and frequency of leaf stomata in cultivars of Triticum aestivum and other Triticum species – Crop Science 11(2): 496-498 – doi:10.2135/cropsci1971.0011183X001100040010x – https://dl.sciencesocieties.org/publications/cs/abstracts/11/4/CS0110040496 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/size-and-frequency-of-leaf-stomata-in-cultivars-of-triticum/ )

Tena G. (2015) – Stomata signalling: A pore within a pore – Nature Plants 1 – Article number: 15133  – (Article not found)

Tena G. (2015) – Stomatal development: Securing a lineage – Dev. Cell 33 , 136-149 –http://www.nature.com/articles/nplants201571 – (https://plantstomata.wordpress.com/2016/12/16/a-lineage-in-stomatal-development/ )

Tena G. (2016) – Stomatal development: Grasses vs Arabidopsis – Nature Plants 2, Article number: 16124 – DOI: 10.1038/nplants.2016.124 –https://www.ncbi.nlm.nih.gov/pubmed/28221371 – (No abstract found)

Tena G. (2017) – Grass stomata development: MUTE communication – Nature Plants 3(4): 1751 – DOI: 10.1038/nplants.2017.51 – https://www.researchgate.net/publication/315968168_Grass_stomata_development_MUTE_communication – (On our blog : https://plantstomata.wordpress.com/2019/03/11/grass-stomata-development-mute-communication/ )

Tenhunen J. D., Beyschlag W., Lange O. L., Harley P. C. (1987) – Changes during summer drought in leaf CO2 uptake rates of macchia shrubs growing in Portugal: Limitations due to photosynthetic capacity, carboxylation efficiency, and stomatal conductance – In E. Zeiger, G. D. Farquhar, & I.R. Cowan (Eds.), Stomatal function (pp. 323–351). Stanford, CA: Stanford University Press – In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (Eds.), Plant Response to StressFunctional Analysis in Mediterranean Ecosystems. NATO ASI Ser. G, vol. 15. Springer, pp. 305e327. – https://doi.org/10.1007/978-3-642-70868-8_18https://link.springer.com/chapter/10.1007/978-3-642-70868-8_18 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/78392/ )

Tenhunen J. D., Lange O. L., Gebel J., Beyschlag W., Weber J. A. (1984) – Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber – Planta 162: 193-203 – doi: 10.1007/BF00397440. – https://www.ncbi.nlm.nih.gov/pubmed/24253090 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/midday-stomatal-closure-and-midday-depression-of-net-co2-exchange-of-leaves/ )

Tenhunen J. D., Lange O. L., Jahner D. (1982) – The control by atmospheric factors and water stress of midday stomatal closure in Arbutus enedo growing in a natural macchia –  Oecologia 55: 165-169 – https://doi.org/10.1007/BF00384483https://link.springer.com/article/10.1007%2FBF00384483#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/12/atmospheric-factors-and-water-stress-of-midday-stomatal-closure/

Teramura A. H., Tevini M., Iwanzik W. (1983) – Effects of ultraviolet-B on plants during mild water stress. I. Effects on diurnal stomatal resistance – Physiol Plant 57: 175–180 – https://doi.org/10.1111/j.1399-3054.1983.tb00896.x –https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-3054.1983.tb00896.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/effects-of-ultraviolet-b-on-diurnal-stomatal-resistance/ )

Terryn N., Brito Arias M., Engler G., Tire C., Villarroel R., Van
Montagu M., Inzé D. (1993)
– Plant Cell 5: 1761-1769 – doi: 10.1105/tpc.5.12.1761 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160402/ – (On our blog : https://plantstomata.wordpress.com/2019/01/17/the-rha1-gene-is-expressed-primarily-in-developing-stomatal-guard-cells/ )

Teskey R. O. (1995) – A field study of the effects of elevated CO2 on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees – Plant Cell Environ. 18: 565–575 –  https://doi.org/10.1111/j.1365-3040.1995.tb00556.x –https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00556.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/effects-of-elevated-co2-on-stomatal-conductance/ )

Teskey R. O., Fites J., Samuelson L., Bongarten B. C. (1986) – Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions – Tree Physiol. 2: 131-142 – https://doi.org/10.1093/treephys/2.1-2-3.131 –https://academic.oup.com/treephys/article-abstract/2/1-2-3/131/1623642?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/13/stomatal-and-nonstomatal-limitations-to-net-photosynthesis/ )

Teskey R. O., Hinckley T. M., Grier C. C. (1983) – Effect of interruption of flow path on stomatal conductance of Abies amabilis – J. Exp. Bot. 34: 1251-1259 – https://doi.org/10.1093/jxb/34.10.1251 –https://academic.oup.com/jxb/article-abstract/34/10/1251/497803?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/04/01/stomatal-closure-could-be-rapidly-induced-with-a-change-in-the-flux-of-water/ )

Tezara W., Fernandez M. D., Donoso C., Herrera A. (1998) – Seasonal changes in photosynthesis and stomatal conductance of five plant species from a semiarid ecosystem – Photosynthetica 35(3): 399-410 – Seasonal_changes_in_photosynthesis_and_s.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/seasonal-changes-in-photosynthesis-and-stomatal-conductance/ )

Thiel G., Blatt M. R .(1994) – Phosphatase antagonist okadaic acid inhibits steady-state K1 currents in guard cells of Vicia faba – Plant J. 5: 727–733 – DOI: 10.1111/j.1365-313X.1994.00727.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.1994.00727.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/phosphatase-antagonist-okadaic-acid-inhibits-steady-state-k1-currents-in-stomata/ )

Thiel G., Blatt M. R., Fricker M. D., White I. R., Millner P. (1993) – Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin‐binding protein C terminus – Proceedings of the National Academy of Sciences, USA 90: 11.493-11.497 – https://doi.org/10.1073/pnas.90.24.11493 –https://www.pnas.org/content/90/24/11493 – (On our blog : https://plantstomata.wordpress.com/2019/02/13/modulation-of-k-channels-in-stomatal-guard-cells-by-peptide-homologs/ )

Thiel G., MacRobbie E. A., Blatt M. R. (1992) – Membrane transport in stomatal guard cells: the importance of voltage control – Journal of Membrance Biology 126: 1-18 – https://doi.org/10.1007/BF00233456https://link.springer.com/article/10.1007/BF00233456 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/voltage-control-and-membrane-transport-in-stomatal-guard-cells/ )

Thiel G., Wolf A. H. (1997) – Operation of K+‐channels in stomatal movement – Trends in Plant Science 2: 339-345 – https://doi.org/10.1016/S1360-1385(97)84621-3https://www.sciencedirect.com/science/article/pii/S1360138597846213 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/k-%e2%80%90channels-in-stomatal-movement/ )

Thimann K. V., Satler S. (1979) – Relation between senescence and stomatal opening: senescence in darkness. – Proc. Natl. Acad. Sci. U.S.A. 76, 2770–2773. – doi: 10.1073/pnas.76.6.2770 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383690/ – (On our blog : https://plantstomata.wordpress.com/2018/06/28/a-parallel-between-stomatal-aperture-and-senescence-with-strong-indication-that-the-stomatal-aperture-is-the-causal-factor/ )

Thimann K. V., Satler S. O. (1979) – Relation between leaf senescence and stomatal closure: senescence in light – Proc. Natl. Acad. Sci. U.S.A. 76: 2295–2298 – doi: 10.1073/pnas.76.5.2295 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383586/ – (On our blog : https://plantstomata.wordpress.com/2018/06/28/the-effect-of-light-in-delaying-senescence-is-due-to-its-effect-on-the-stomatal-aperture/ )

Thomas D. A. (1970) – The regulation of stomatal aperture in tobacco leaf epidermal strips I. The effect of ions – Aust. J. Biol. Sci. 23: 961–979 – https://doi.org/10.1071/BI9700961http://www.publish.csiro.au/bi/BI9700961 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-effect-of-ions-on-the-regulation-of-stomatal-aperture/ )

Thomas D. S., Eamus D. (1999) – The influence of predawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations – Journal of Experimental Botany 50: 243–251 – https://doi.org/10.1093/jxb/50.331.243 –https://academic.oup.com/jxb/article/50/331/243/563005 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/hydraulic-signals-regulate-stomatal-conductance/ )

Thomas D. S., Eamus D. (2002) – Seasonal patterns of xylem sap pH, xylem [ABA], leaf water potential and stomatal conductance of 6 evergreen and deciduous Australian savanna tree species – Australian Journal of Botany 50: 229-236https://doi.org/10.1071/BT01045http://www.publish.csiro.au/bt/BT01045 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/changes-in-xylem-sap-ph-and-aba-content-do-occur-seasonally-in-the-wet-dry-tropics-of-australia-and-that-these-changes-influence-stomatal-conductance-in-evergreen-and-semi-deciduous-species/ )

Thomas D. S., Eamus D., Bell D. (1999) – Optimization theory of stomatal behaviour. II. Stomatal responses of several tree species of north Australia to changes in light, soil and atmospheric water content and temperature. – J. Exp. Bot. 50: 393–400 – https://doi.org/10.1093/jxb/50.332.393 –https://academic.oup.com/jxb/article/50/332/393/540871 – (on our blog : https://plantstomata.wordpress.com/2019/02/07/stomata-are-only-behaving-optimally-over-a-very-small-range-of-leaf-to-air-vapour-pressure-difference/ )

Thomas E. (2018) – Plants Also Absorb Mercury – The Talking Democrat April 3, 2018 – https://www.thetalkingdemocrat.com/2018/04/plants-also-absorb-mercury/ – (On our blog : https://plantstomata.wordpress.com/2018/04/04/plants-also-absorb-mercury-through-their-stomata/ )

Thompson D. S., Wilkinson S., Bacon M. A., Davies W. J. (1997) – Multiple signals and mechanisms that regulate leaf growth and stomatal behaviour during water deficit – Physiol. Plant. 100: 303–313 – https://doi.org/10.1111/j.1399-3054.1997.tb04787.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1997.tb04787.x – (On our blog : https://plantstomata.wordpress.com/2019/05/28/multiple-signals-and-mechanisms-that-regulate-stomatal-behaviour-during-water-deficit/ )

Thomson W. W., De Journett R. (1970) – Studies on the Ultrastructure of the Guard Cells of Opuntia – American Journal of Botany 57(3): 309-316 – https://www.jstor.org/stable/2485309https://www.jstor.org/stable/2485309?seq=1#page_scan_tab_contents – (On our blog : https://wordpress.com/block-editor/post/plantstomata.wordpress.com/79902 )

Thor K., Peiter, E. (2014) – Cytosolic calcium signals elicited by the pathogen- associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. – New Phytol. 204, 873–881 – doi: 10.1111/nph.13064 – Epub 2014 Sep 22 – https://www.ncbi.nlm.nih.gov/pubmed/25243759 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/cytosolic-calcium-signals-in-stomatal-guard-cells-are-of-an-oscillatory-nature/ )

Thorpe N. (1980) – Accumulation of carbon compounds in the epidermis of five species with either different photosynthetic systems or stomatal structure – Plant, Cell & Environment 3: 451-460 – https://doi.org/10.1111/1365-3040.ep11587001 –https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11587001 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/accumulation-of-carbon-compounds-in-the-epidermis-of-species-with-different-stomatal-structure/ )

Thorpe N., Brady C. J., Milthorpe F. L. (1978) – Stomatal metabolism: primary carboxylation and enzyme activities – Aust J Plant Physiol 5: 485-493 – https://doi.org/10.1071/PP9780485https://www.publish.csiro.au/FP/PP9780485 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/stomatal-metabolism/ )

Thorpe M. R., Warrit B., Landsberg J. J. (1980) – Responses of apple leaf stomata: a model for single leaves and a whole tree. Plant Cell Environ. 3: 23-27 – https://doi.org/10.1111/1365-3040.ep11580508 –https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11580508 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/responses-of-apple-leaf-stomata-a-model-for-single-leaves-and-a-whole-tree/ )

Tian M., Yu G., He N., Hou J. ( 2016) – Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors – Scientific Reports 6, Article number: 19703 (2016) – doi:10.1038/srep19703 –https://www.nature.com/articles/srep19703 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-traits-from-tropical-to-temperate-coniferous-forests/ )

Tian W., Hou C., Ren Z., Pan Y., Jia J., Zhang H., et al. (2015) – A molecular pathway for CO2 response in Arabidopsis guard cells. – Nat. Commun. 6:6057. – 10.1038/ncomms7057 – [PubMed] [Cross Ref] – https://www.nature.com/articles/ncomms7057 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/co2-response-in-guard-cells-stomata/ )Tichá I. (1982) – Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes – Photosynthetica 16: 375–471 –

Tichá I. (1982) – Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes – Photosynthetica 16(3): 375-471 – https://eurekamag.com/research/001/108/001108642.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/stomata-density-and-sizes/ )

Tichá I., Radochová B., Kadleček P. (1999) – Stomatal Morphology during Acclimatization of Tobacco Plantlets to ex vitro Conditions – Biologia Plantarum 42(3): 469-474 – DOI10.1023/A:1002450210939 –https://www.infona.pl/resource/bwmeta1.element.springer-8c213c62-bf32-37bd-9448-939744b5cf2e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/stomatal-morphology-during-acclimatization/ )

Ting I. P., Loomis W. E. (1963) – Diffusion through stomates –  Am. J. Bot. 50: 866–872 – DOI: 10.2307/2439773 – CrossRefWeb of Sciencehttp://www.plantphysiol.org/content/77/4/944Google Scholar – https://www.jstor.org/stable/2439773?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/28/stomatal-opening-will-have-no-important-effect-on-diffusion-from-or-into-a-leaf-until-the-stomates-are-essentially-closed/ )

Ting I. P., Loomis W. E. (1965) – Further studies concerning stomatal diffusion – Plant Physiol. 40: 220-228 –

Tingey D. T., Hogsett W. E. (1985) – Water-stress reduces ozone injury via a stomata1 mechanism – Environmental Pollution 77: 944-947 – DOI: https://doi.org/10.1104/pp.77.4.944 – http://www.plantphysiol.org/content/77/4/944 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/water-stress-protects-plants-from-ozone-injury-via-stomatal-aperture/ )

Tinoco-Ojanguren C., Pearcy R. W. (1992) – Dynamics of stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory Piper species acclimated to high and low light. – Oecologia 92: 222–228 – doi: 10.1007/BF00317368 – https://www.ncbi.nlm.nih.gov/pubmed/28313055 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/lightflecks-and-stomatal-behavior/ )

Tinoco-Ojanguren C., Pearcy R. W. (1993) – Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks – Oecologia 94: 388-394 – https://doi.org/10.1007/BF00317114 – https://link.springer.com/article/10.1007/BF00317114#citeas – (On our blog : https://plantstomata.wordpress.com/2018/07/05/vpd-effects-on-the-transient-stomatal-response-to-lightflecks/ )

Tinoco-Ojanguren C., Pearcy R. W. (1993) – Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. II. Stomatal versus biochemical limitations during photosynthetic induction. – Oecologia 94: 395–402 – doi: 10.1007/BF00317115 – https://www.ncbi.nlm.nih.gov/pubmed/28313677 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/stomatal-versus-biochemical-limitations-during-photosynthetic-induction/ )

Tissue D. T., Griffin K. L., Turnbull M. H., Whitehead D. (2005) – Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by Dacrydium cupressinum in New Zealand – Tree Physiol. 25(4): 447-456 – PMID: 15687093 – https://www.ncbi.nlm.nih.gov/pubmed/15687093 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/stomatal-and-non-stomatal-limitations-to-photosynthesis-in-a-temperate-rainforest/ )

Tobin R. L., Kulmatiski A. (2018) – Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park – Plos One. 13(1): e0191396 – https://doi.org/10. 1371/journal.pone.0191396 – PMID: 29373605 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191396 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/plant-identity-and-shallow-soil-moisture-are-primary-drivers-of-stomatal-conductance/ )

Toda Y., Toh S., Bourdais G., Robatzek S. Maclean D., Kinoshita T. (2018) – DeepStomata: facial recognition technology for automated stomatal aperture measurement – bioRxiv. July 2018:365098 – https://doi.org/10.1101/365098https://www.biorxiv.org/content/10.1101/365098v1.full– (On our blog : https://plantstomata.wordpress.com/2019/10/08/a-program-called-deepstomata-which-combines-stomatal-region-detection-and-pore-isolation-by-image-segmentation/ )

Toda Y., Wang Y., Takahashi A., Kawai Y., Tada Y., Yamaji N., Ma J. F., Ashikari M., Kinoshita T. (2016)Oryza sativa H + -ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice  – Plant and Cell Physiology 57(6): 1220–1230 – https://doi.org/10.1093/pcp/pcw070https://academic.oup.com/pcp/article/57/6/1220/2461109 – (On our blog : https://plantstomata.wordpress.com/2019/07/29/h-atpase-is-involved-in-bl-induced-stomatal-opening-of-dumbbell-shaped-guard-cells-in-monocotyledon-species/ )

Toh S., Inoue S., Toda Y., Yuki T., Suzuki K., Hamamoto S., Fukatsu K., Aoki S., Uchida M., Asai E., Uozumi N., Sato A., Kinoshita T. (2018) – Identification and Characterization of Compounds that Affect Stomatal Movements – Plant and Cell Physiology 59(8): 1568–1580 – https://doi.org/10.1093/pcp/pcy061 – https://academic.oup.com/pcp/article-abstract/59/8/1568/4950858?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/12/11/screening-of-chemical-libraries-to-identify-compounds-that-affect-stomatal-movements/

Tognetti R. (1997) – Stomatal numbers in holm oak (Quercus ilex L.) leaves grown in naturally and artificially CO 2 -enriched environments – https://www.academia.edu/30721351/Stomatal_numbers_in_holm_oak_Quercus_ilex_L._leaves_grown_in_naturally_and_artificially_CO_2_-enriched_environments – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-numbers-in-different-environment/ )

Tognetti R., Cherubini P., Marchi S., Raschi A. (2007) – Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy Tree Physiol. 27(12): 1741-1751 – DOI: 10.1093/treephys/27.12.1741https://www.ncbi.nlm.nih.gov/pubmed/17938105 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-conductance-and-other-leaf-traits-and-tree-rings-suggest-different-water-use-and-carbon-assimilation-strategies/ )

Tognetti R., Longobucco A., Miglietta F., Raschi A. (1998) – Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring – Plant, Cell and Environment 21: 613–622 – https://doi.org/10.1046/j.1365-3040.1998.00301.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00301.x – (On our blog : https://plantstomata.wordpress.com/2019/02/07/transpiration-and-stomatal-behaviour-of-trees-during-the-summer/ )

Tognetti R., Longobucco A., Miglietta F., Raschi A. (1999) – Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring – Tree Physiology  19: 261–270 – DOI: 10.1093/treephys/19.4-5.261 – https://www.researchgate.net/publication/10842449_Water_relations_stomatal_response_and_transpiration_of_Quercus_pubescens_trees_during_summer_in_a_Mediterranean_carbon_dioxide_spring – (On our blog : https://plantstomata.wordpress.com/2019/02/07/water-relations-stomatal-response-and-transpiration-of-trees-during-summer/ )

Toh S. Inoue S., Toda Y., Yuki T., Suzuki K., Hamamoto S. , Fukatsu K., Aoki S., Uchida M., Asai E., Uozumi N., Sato A., Kinoshita T. (2018) – Identification and Characterization of Compounds that Affect Stomatal Movements – Plant and Cell Physiology, pcy061 – https://doi.org/10.1093/pcp/pcy061 – https://academic.oup.com/pcp/advance-article-abstract/doi/10.1093/pcp/pcy061/4950858?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/04/11/compounds-that-affect-stomatal-movements/ )

Tõldsepp K., Zhang J., Takahashi Y., Sindarovska Y., Hõrak H., Ceciliato P. H. O., Koolmeister K., Wang Y.-S., Vaahtera L., Jakobson L., Yeh C.-Y., Park J., Brosche M., Kollist H., Schroeder J. I. (2018) – Mitogen‐activated protein kinases MPK4 and MPK12 are key components mediating CO2‐induced stomatal movements – The Plant Journal https://doi.org/10.1111/tpj.14087 – https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14087?af=R – (On our blog : https://plantstomata.wordpress.com/2018/09/12/mpk4-and-mpk12-act-as-key-components-of-early-stomatal-co2-signal-transduction/

Tombesi S., Nardini A., Farinelli D., Palliotti A. (2014) – Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis viniferaPhysiol Plant. 152(3): 453-464 – doi: 10.1111/ppl.12180 – Epub 2014 Apr 8 – https://www.ncbi.nlm.nih.gov/pubmed/24597791 – (On our blog : https://plantstomata.wordpress.com/2019/09/03/different-stomatal-responses-under-water-stress-conditions/ )

Tombesi S., Nardini A., Frioni T., Soccolini M., Zadra C., Farinelli D., Poni S., Palliotti A. (2015) – Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine – Scientific Reports 5, Article 12449 – https://doi.org/10.1038/srep12449 –https://www.nature.com/articles/srep12449 – (On our blog : https://plantstomata.wordpress.com/2019/04/05/stomatal-closure-is-induced-by-hydraulic-signals-and-maintained-by-aba-in-drought-stressed-grapevine/ )

Tominaga M., Kinoshita T., Shimazaki K. (2001) – Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening – Plant Cell Physiol. 42: 795–802 – https://doi.org/10.1093/pcp/pce101 -https://academic.oup.com/pcp/article/42/8/795/1828112 – (On our blog :  https://plantstomata.wordpress.com/2018/12/03/gccs-supply-atp-to-the-cytosol-under-rl-and-atp-is-utilized-by-the-plasma-membrane-h-atpase-for-h-pumping-in-stomatal-opening/

Tong L., Feng Z. W., Sudebilige-Wang Q., Geng C. M., Lu F., Wang W., Wang X. K. (2012) – Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat – Acta Ecologica Sinica 32: 2890–2899 – [In Chinese with English summary] – (Article not found)

Tong L., Wang X.-k., Sudebilige, 2, Wang Q., Geng C. M., Wang W., Song W-z., Lu F.,1, Liu H.-J., 3, Yin B.-h., 3, Sui L.-h., 4, Feng Z.-w. (2011) – Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of rice – Journal of Agro-Environmental Science 30: 1930–1938 – [In Chinese with English summary] – http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH201110005.htm – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-ozone-uptake-modeling/ )

Torii K. U. (2012) – Cell-cell-communication and stomatal patterning – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-patterning-and-differentiation/ )

Torii K. U. (2012) – Chemical signal helps plants control their “breathing” – HomeBiologyBiotechnologyJanuary 13, 2012 – https://phys.org/news/2012-01-chemical.html – (On our blog : https://plantstomata.wordpress.com/2019/02/08/chemical-signal-helps-plants-control-their-breathing/ )

Torii K. U. (2012) – Mix-and-match: ligand-receptor pairs in stomatal development and beyond – Trends Plant Sci. 17(12): 711-719 – doi: 10.1016/j.tplants.2012.06.013 – Epub 2012 Jul 21 – https://www.ncbi.nlm.nih.gov/pubmed/22819466 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/ligand-receptor-pairs-in-stomatal-development-and-beyond/ )

Torii K. U. (2015) – Stomatal differentiation: the beginning and the end. – Curr. Opin. Plant Biol. 28, 16–22. – doi: 10.1016/j.pbi.2015.08.005 – https://www.infona.pl/resource/bwmeta1.element.elsevier-cc2b73be-b5a3-3aee-a460-2d28ab3581a9 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/the-beginning-and-the-end-of-stomatal-differentiation/ )

Torii Lab (2012) – Research – Stomatal development – http://faculty.washington.edu/ktorii/stomata.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/stomatal-development-torii-lab/ )

Torralbo F., González-Moro M. B., Baroja-Fernández E., Aranjuelo I., González-Murua C. (2019) – Differential Regulation of Stomatal Conductance as a Strategy to Cope With Ammonium Fertilizer Under Ambient Versus Elevated CO2 – Front Plant Sci. 10: 597 – doi: 10.3389/fpls.2019.00597 -eCollection 2019 – https://www.ncbi.nlm.nih.gov/pubmed/31178873 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/differential-regulation-of-stomatal-conductance/ )

Torre S., Fjeld T., Gislerod H. R., Moe R. (2003) – Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity – J. Amer. Hort. Sci. 128(4): 598-602 – http://journal.ashspublications.org/content/128/4/598.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/65132/ )

Torrecillas A., Ruiz-Sanchez M. C., Leon A., Garcia A. L. (1988) – Stomatal response to leaf water potential in almond trees under drip irrigated and non irrigated conditions – Plant Soil 112: 151- 153 – https://doi.org/10.1007/BF02181765https://link.springer.com/article/10.1007/BF02181765 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-response-to-leaf-water-potential/ )

Torres‐Ruiz J. M., Diaz‐Espejo A., Morales‐Sillero A., Martín‐ Palomo M. J., Mayr S., Beikircher B., Fernandez J. E. (2013) – Shoot hydraulic characteristics, plant water status and stomatal response in olive trees under different soil water conditions – Plant Soil 373: 77–87 – https://doi.org/10.1007/s11104-013-1774-1https://link.springer.com/article/10.1007/s11104-013-1774-1 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-response-in-olive-trees-under-different-soil-water-conditions/ )

Torsethaugen G., Pell E. J., Assmann S. M. (1999) – Ozone inhibits guard cell K+ channels implicated in stomatal opening – Proceedings of the National Academy of Sciences USA 96: 13577-13582 – PMCID: PMC23990 – PMID: 10557363 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23990/ – (On our blog : https://plantstomata.wordpress.com/2019/02/12/ozone-inhibits-guard-cell-k-channels-implicated-in-stomatal-opening/ )

Tossi V., Lamattina L., Jenkins G. I., Cassia R. O. (2014) – Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism – Plant Physiol. 164: 2220–2230 – https://doi.org/10.1104/pp.113.231753http://www.plantphysiol.org/content/164/4/2220?ijkey=9cbe07ae01485281372ca65fb986d746702ec4d6&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/10/04/the-uvr8-pathway-regulates-stomatal-closure-by-a-mechanism-involving-both-h2o2-and-no-generation-in-response-to-uv-b-exposure/ )

Toum L., Torres P. S., Gallego S. M., Benavídes M. P., Vojnov A. A., Gudesblat G. E. (2016) – Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production – Front Plant Sci. 7: 1851 – doi: 10.3389/fpls.2016.01851 – eCollection 2016 – https://www.ncbi.nlm.nih.gov/pubmed/28018388 – (On lour blog : https://plantstomata.wordpress.com/2019/09/09/inhibition-of-nadph-oxidase-dependent-ros-synthesis-in-stomatal-guard-cells-plays-an-important-role-during-endophytic-colonization-by-pst-through-stomata/ )

Trafton A. (2017) – Sensors applied to plant leaves warn of water shortage – http://news.mit.edu/2017/sensors-applied-plant-leaves-warn-water-shortage-1108 – (On our blog : https://plantstomata.wordpress.com/2017/11/08/monitoring-stomatal-movements-continuously/ )

Travis A. J., Mansfield T. A. (1977) – Studies of malate formation in isolated guard cells – New Phytol 78: 541-546 – https://doi.org/10.1111/j.1469-8137.1977.tb02157.x –https://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1977.tb02157.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/carboxylation-of-phosphenolpyruvate-plays-no-major-part-in-the-formation-of-malate-in-stomata/ )

Travis A. J., Mansfield T. A. (1979) – Reversal of CO2 responses of stomata by fusicoccin -New Phytol. 83: 607-614 – Wiley Online Library |CAS |- http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1979.tb02292.x/full –https://plantstomata.wordpress.com/2017/07/16/fusicoccin-and-the-reversal-of-the-co2-responses-of-stomata/ )

Travis A. J., Mansfield T. A. (1979) – Stomatal responses to light and CO2 are dependent on KCl concentration – Plant Cell Environ. 2: 319–323 – https://doi.org/10.1111/j.1365-3040.1979.tb00086.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00086.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/stomatal-responses-to-light-and-co2-are-dependent-on-kcl-concentration/ )

Travis A. J., Mansfield T. A. (1981) – Light saturation of stomatal opening on the adaxial and abaxial epidermis of Commelina communis – J Exp Bot 32: 1169–1179 – https://doi.org/10.1093/jxb/32.6.1169 – https://academic.oup.com/jxb/article-abstract/32/6/1169/486455?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/11/stomata-on-the-abaxial-epidermis-were-considerably-more-sensitive-to-light-than-those-on-the-adaxial-epidermis/ )

Trejo C. L., Clephan A. L., Davies W. J. (1995) – How do stomata read abscisic acid signals? – Plant Physiol. 109: 803–811 – https://doi.org/10.1104/pp.109.3.803 – PMID: 12228634 PMCID: PMC161380 – https://www.ncbi.nlm.nih.gov/pubmed/12228634?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/how-do-stomata-read-aba-signal/ )

Trejo C. L., Davies W. J. (1991) – Drought-induced closure of Phaseolus vulgaris L. stomata precedes leaf water deficit and any increase in xylem ABA concentration – J. Exp. Bot. 42: 1507-1515 – PMID: 12228634 PMCID: PMC161380 – https://doi.org/10.1093/jxb/42.12.1507 –https://academic.oup.com/jxb/article-abstract/42/12/1507/603882?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/02/08/an-as-yet-unidentified-regulator-of-stomatal-behaviour/ )

Trejo C. L., Davies W. J., Ruiz L. P. (1993) –  Sensitivity of stomata to abscisic acid. An effect of the mesophyll – Plant Physiol. 102: 497–502 –  PMID: 12231838 PMCID: PMC158804 – https://www.ncbi.nlm.nih.gov/pubmed/12231838?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/an-important-role-for-aba-metabolism-in-the-regulation-of-stomatal-behavior/ )

Triboulot M. B., Fauveau M. L., Breda N., Label P., Dreyer E. (1996)  – Stomatal conductance and xylem-sap abscisic acid (ABA) in adult oak trees during a gradually imposed drought – Annals of Forest Science 53: 207–220 – DOI: 10.1051/forest:19960204 – https://www.afs-journal.org/articles/forest/abs/1996/02/AFS_0003-4312_1996_53_2-3_ART0004/AFS_0003-4312_1996_53_2-3_ART0004.html – (On our blog : https://plantstomata.wordpress.com/2018/11/01/stomatal-conductance-and-xylem-sap-aba-during-a-gradually-imposed-drought/ )

Tricker P. J., Gibbings J. G., Rodriguez Lopez C. M., Hadley P., Wilkinson M. J. (2012) – Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development -J. Exp. Bot. 63:  3799–3813 – DOI:  10.1093/jxb/ers076 –  [PMC free article][PubMed] [Cross Ref ] –  https://www.ncbi.nlm.nih.gov/pubmed/22442411 – (On our blog : https://plantstomata.wordpress.com/2019/02/08/epigenetic-regulation-of-stomatal-development/ )

Tricker P. J., Trewin H., Kull O., Clarkson G. J. J., Eensalu E., Tallis M. J., Colella A., Doncaster C. P., Sabatti M., Taylor G. (2005) – Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2 – Oecologia 143: 652–660 – DOI 10.1007/s00442-005-0025-4 – Stomatal_conductance_and_not_stomatal_de.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/altered-cuticular-development-during-canopy-closure-may-partially-explain-the-changing-response-of-stomata-to-elevated-co2/ )

Triviño M., Martín-Trillo M., Ballesteros I., Delgado D., De Marcos A., Desvoyes B., Gutiérrez C., Mena M., Fenoll C. (2013) – Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types – Plant J. 75: 808–822 – DOI:  10.1111/tpj.12244 –  [PubMed][Cross Ref –  https://www.ncbi.nlm.nih.gov/pubmed/23662679 – (On our blog : https://plantstomata.wordpress.com/2019/02/08/timely-mute-expression-is-essential-to-prevent-stomatal-fate-in-slgcs-and-to-promote-their-differentiation-as-pavement-cells-2/ )

Trueba S., Pan R., Scoffoni C., John G. P., Davis S. D., Sack L. (2019) – Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry –https://doi.org/10.1111/nph.15779 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15779?af=R – (On our blog : https://plantstomata.wordpress.com/2019/03/10/threshold-for-leaf-damage-due-to-dehydration-decline-of-stomatal-conductance/ )

Tseng T.-S., Whippo C., Hangarter R. P., Briggs, W. R. (2012) – The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. – Plant Cell 24, 1114–1126. – doi: 10.1105/tpc.111.092130 – http://www.plantcell.org/content/24/3/1114 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/specificity-of-phototropin-mediated-signal-transduction-pathways-in-stomata/ )

Tsuno Y., Sugumoto H. (1981) – The relationship between stomatal aperture using the infiltration method and photosynthetic rate in some crops – Bull. Fac. Agric. Tottori Univ. 33: 126-132 – (Article not found)

Tsuzuki T., Takahashi K., Inoue S.‐i., Okigaki Y., Tomiyama M., Hossain M. A., Shimazaki K.‐i., Murata Y., Kinoshita T. ( 2011) – Mg‐chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana – J Plant Res 124: 527– 538 – DOI: 10.1007/s10265-011-0426-x –https://www.ncbi.nlm.nih.gov/pubmed/21562844?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/the-mg-chelatase-complex-as-a-whole-affects-the-aba-signaling-pathway-for-stomatal-movements/ )

Tuba Z., Szente K., Koch J. (1994) – Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat – J. Plant Physiol. 144: 661–668 – https://doi.org/10.1016/S0176-1617(11)80657-7 –https://www.sciencedirect.com/science/article/pii/S0176161711806577 – (On our blog : https://plantstomata.wordpress.com/2019/02/12/long-term-elevated-co2-and-stomatal-conductance/ )

Tucker D. T. (2017) – Stanford study shows U.S. grasslands affected more by atmospheric dryness than precipitation – Stanford News Service – https://news.stanford.edu/press-releases/2017/03/06/u-s-grasslands-ated-dry-air-rain/ – (On our blog : https://plantstomata.wordpress.com/2018/11/27/conditions-under-which-plants-in-u-s-grasslands-open-and-close-their-stomata/

Tucker S. C. (1974) – Dedifferentiated Guard Cells in Magnoliaceous Leaves – Science 185(4149): 445-447 – DOI: 10.1126/science.185.4149.445 – http://science.sciencemag.org/content/185/4149/445 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/division-of-guard-cells-is-particularly-unusual-stomata-in-magnoliaceous-taxa/ )

Tupitsyn N. V., Zakharov V. G. (1996) – Inheritance of the stomatal length on the plate of the first leaf of shoots – Dokl. Ross. Akad. S-Kh. Nauk, 1996(2): 9–12 – (Article not found)

Turnbull M. H., Whitehead D., Tissue D. T., Schuster W. S., Brown K. J., Engel V. C., Griffin K. L. (2002) – Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability – Oecologia 130(4): 515-524 – doi: 10.1007/s00442-001-0842-z – Epub 2002 Feb 1 – https://www.ncbi.nlm.nih.gov/pubmed/28547252 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-behavior-and-photosynthetic-characteristics-in-canopies-differ-in-response-to-soil-water-availability/ )

Turner N. C. (1970) – Response of adaxial and abaxial stomata to light – New Phytologist 69: 647-653 – https://www.jstor.org/stable/2430521https://www.jstor.org/stable/2430521?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/11/response-of-adaxial-and-abaxial-stomata-to-light/ )

Turner N. C. (1972) – K+ uptake by guard cells stimulated by fusicoccin – Nature 235: 341-342 – DOI: 10.1038/235341a0 –http://adsabs.harvard.edu/abs/1972Natur.235..341T – (On our blog : https://plantstomata.wordpress.com/2019/02/12/accumulation-of-potassium-in-stomata-during-opening-in-darkness/ )

Turner N. C. (1973) – Action of fusicoccin on the potassium balance of guard cells of Phaseolus vulgaris – Amer. J. Bot. 60(7): 717-725 – DOI: 10.1002/j.1537-2197.1973.tb05978.x – https://www.researchgate.net/publication/322829146_ACTION_OF_FUSICOCCIN_ON_THE_POTASSIUM_BALANCE_OF_GUARD_CELLS_OF_PHASEOLUS_VULGARIS – (On our blog : https://plantstomata.wordpress.com/2018/11/12/action-of-fusicoccin-on-the-potassium-balance-of-stomatal-guard-cells/ )

Turner N. C. (1974) – Stomatal Behavior and Water Status of Maize, Sorghum, and Tobacco under Field Conditions II. At Low Soil Water Potential – PMCID: PMC543223 – PMID: 16658706 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC543223/ – (On our blog : https://plantstomata.wordpress.com/2019/02/13/stomatal-behavior-at-low-soil-water-potential/ )

Turner N. C. (1979) – Differences in response of adaxial and abaxial stomata to environmental variables. In “Structure, Function and Ecology of Stomata” (D. S. Sen, D. D. Chawan and R. P. Bansal, eds), pp. 229-250. Bishen Singh, Mahendra Pal Singh, Dehra Dun. – (Article not found)

Turner N. C., Begg J. E. (1973) – Stomatal behaviour and water status of maize, sorghum and tobacco under field conditions. I. At high water potential – Plant Physiol. 51: 31-36 – http://www.plantphysiol.org/content/plantphysiol/51/1/31.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/13/stomatal-behaviour-at-high-water-potential/ )

Turner N. C., Begg J. E., Tonnet M. L. (1978) – Osmotic adjustment of sorghum and sunflower crops in response to water deficits and its influence on the water potential at which stomata close – Australian Journ. Plant Physiology 5: 597-608 – https://doi.org/10.1071/PP9780597http://www.publish.csiro.au/FP/PP9780597 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/osmotic-adjustment-in-response-to-water-deficits-and-its-influence-on-the-water-potential-at-which-stomata-close/ )

Turner N. C., Graniti A. (1969) – Fusicoccin: a fungal toxin that opens stomata – Nature 223: 1070–1071 – doi: 10.1038/2231070a0https://www.nature.com/articles/2231070a0 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/fusicoccin-a-fungal-toxin-that-opens-stomata/ )

Turner N. C., Heichel G. H. (1977) – Stomatal development and seasonal changes in diffusive resistance of primary and regrowth foliage of red oak (Quercus rubra L) and red maple (Acen rabrum L). New Phytol 78: 71–81 – https://doi.org/10.1111/j.1469-8137.1977.tb01544.x – https://nph.onlinelibrary.wiley.com/doi/abs/ 10.1111/j.1469-8137.1977.tb01544.x – (On our blog : https://plantstomata.wordpress.com/2019/02/14/the-development-of-light-sensitivity-was-strongly-dependent-on-environmental-regulation-of-stomatal-metabolism/ )

Turner N. C., O’Toole J. C., Cruz R. Z., Yambao E. B., Ahmad S., Namuco O. S., Dingkuhn M. (1986) – Responses of seven diverse rice cultivars to water deficits. II. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis – Field Crop Res. 13: 273–286 – doi: 10.1016/0378-4290(86)90028-6 – https://www.sciencedirect.com/science/article/pii/0378429086900286 – (On our blog : https://plantstomata.wordpress.com/2019/02/14/osmotic-adjustment-leaf-elasticity-leaf-extension-leaf-death-stomatal-conductance-and-photosynthesis/ )

Turner N. C., Schulze E.-D., Gollan T. (1984) – The response of stomata and leaf gas exchange to vapor pressure deficits and soil water content. I. Species comparison at high soil water contents – Oecologia 63: 338-342 – https://link.springer.com/article/10.1007%2FBF00390662 – (On our blog :  https://plantstomata.wordpress.com/2017/07/16/the-response-of-stomata-to-vapor-pressure-deficits-and-soil-water-content/

Turner N. C., Schulze E.-D., Gollan T. (1985) – The responses of stomata and leaf gas exchange to vapor pressure deficits and soil water content. II. In the mesophytic herbaceous species Helianthus annuus – Oecologia 65: 348-355 -doi: 10.1007/BF00378908 – https://www.ncbi.nlm.nih.gov/pubmed/2 – (On our blog : https://plantstomata.wordpress.com/2018/12/13/soil-water-status-not-leaf-water-status-affects-the-stomatal-behaviour-and-photosynthesis/

Turner N. C., Singh D. P. (1984) – Responses of adaxial and abaxial stomata to light and water deficits in sunflower and sorghum – New Phytologist 96: 187-193 –  https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1984.tb03555.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/responses-of-adaxial-and-abaxial-stomata-to-light-and-water-deficits/ )

Turrell F. M. (1947) – Citrus leaf stomata, structure, composition, and pore size in relation to penetration of liquids – Bot. Gaz. 108: 476-483 –http://www.journals.uchicago.edu/doi/abs/10.1086/335435 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64420 )

TutorVista (2010) – Video: Structure And Working Of Stomata – https://www.youtube.com/watch?v=IlmgFYmbAUg – (On our blog : https://plantstomata.wordpress.com/2017/11/10/video-on-stomata/ )

Tuzet A., Perrier A., Leuning R. A. (2003) – A coupled model of stomatal conductance, photosynthesis and transpiration – Plant Cell Environ. 26: 1097-1116 – https://doi.org/10.1046/j.1365-3040.2003.01035.x – [Crossref], [Google Scholar] – https://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.01035.x – (On our blog : https://plantstomata.wordpress.com/2019/02/12/stomatal-conductance-cannot-be-modelled-in-isolation-but-must-be-fully-coupled-with-models-of-photosynthesis-respiration/ )

Tyree M. T. Nardini A., Salleo S., Sack L., El Omari B. (2005) – The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response? Journ. Exp. Bot. 56: 737-744 – doi:10.1093/jxb/eri045 – https://sites.lifesci.ucla.edu/eeb-sacklab/wp-content/uploads/sites/71/2016/03/TyreeetalJXB2005.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/the-irradiance-dependence-of-kl-is-more-consistent-with-an-effect-on-extravascular-and-or-vascular-tissues-rather-than-stomatal-aperture/ )

Tyree M. T., Yianoulis P. (1980) – The site of water evaporation from sub-stomatal cavities, liquid path resistance and hydroactive stomatal closure – Annals of Botany 46: 175–193 – https://doi.org/10.1093/oxfordjournals.aob.a085906 –https://academic.oup.com/aob/article-abstract/46/2/175/155121?redirectedFrom=fulltex – (On our blog : https://plantstomata.wordpress.com/2019/02/13/hydroactive-stomatal-closure/ )

Tyutereva E. , Dmitrieva V. , Shavarda A., Voitsekhovskaja O. (2017) – Stomata control is changed in chlorophyll b-free barley mutant – Functional Plant Biology (Accepted article) – http://www.publish.csiro.au/FP/justaccepted/FP17056 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-chlorophyll-b-free-barley-mutant-and-its-stomata/)

Uddling J., Hall,M., Wallin G., Karlsson P. E. (2005) – Measuring and modelling stomatal conductance and photosynthesis in mature birch in Sweden – Agricultural and Forest Meteorology 132: 115–131 – https://doi.org/10.1016/j.agrformet.2005.07.004 – https://www.sciencedirect.com/science/article/pii/S016819230500136X – (On our blog : https://plantstomata.wordpress.com/2019/02/15/two-multiplicative-models-are-more-successful-in-predicting-stomatal-conductance-than-the-combined-stomatal-photosynthesis-model/ )

Uddling J., Hogg A. J., Teclaw R. M., Mary Anne Carroll M. A., Ellsworth D. S. (2010) – Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment – Environmental Pollution 158: 2023–2031 –Stomatal_uptake_of_O3_in_aspen_and_aspen.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-uptake-of-o3/ )

Uddling J., Pleijel H. (2006) – Changes in stomatal conductance and net photosynthesis during phonological development in spring wheat: Implications for gas exchange modelling – International Journal of Biometeorology 51: 37–48 – DOI: 10.1007/s00484-006-0039-6 – https://www.ncbi.nlm.nih.gov/pubmed/16733690 – (On our blog : https://plantstomata.wordpress.com/2019/02/15/changes-in-stomatal-conductance-and-net-photosynthesis/ )

UNCED (1992) – Managing fragile ecosystems: Combating desertification and drought United Nations conference on environment and development – http://habitat.igc.org/un-proc/#unced

Ueno K., Kinoshita T., Inoue S., Emi T., Shimazaki K. (2005) – Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light – Plant Cell Physiol. 46, 955–963 – doi: 10.1093/pcp/pci104 – https://www.ncbi.nlm.nih.gov/pubmed/15821287 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/arabidopsis-guard-cell-protoplasts-can-be-useful-for-biochemical-analysis-of-stomatal-functions/ )

University of Würzburg (2018) – News about a plant hormone – Phys.Org 2018 – https://phys.org/news/2018-12-news-hormone.html – (On our blog : https://plantstomata.wordpress.com/2019/08/24/80525/ )

University of Würzburg (2019) – How plants measure their carbon dioxide uptake – https://phys.org/news/2019-08-carbon-dioxide-uptake.html – (On our blog : https://plantstomata.wordpress.com/2019/11/05/the-guard-cells-offset-the-current-photosynthetic-carbon-fixation-performance-with-the-status-of-the-water-balance-using-aba-as-the-currency/ )

Unköping University (2019) – Helping tobacco plants save water – eurekalert (AAAS) NEWS RELEASE 30-SEP-2019 – https://www.eurekalert.org/pub_releases/2019-09/lu-htp093019.php – (On our blog : https://plantstomata.wordpress.com/2019/10/04/implantable-organic-electronic-ion-pump-enables-aba-hormone-delivery-for-control-of-stomata-in-an-intact-tobacco-plant/ )

Unsworth M. H., Black V. J. (1981) – Stomatal responses to pollutants. In: Jarvis, P.G., Mansfield T. A. (Eds.), Society for Experimental Biology Seminar Series. Stomatal Physiology. Cambridge University Press, Cambridge, 187-203 – (Article not found)

Upadhyaya R. K., Soni D. K., Singh R., Dwivedi U. N., Pathre U. V., Nath, P. (2013) – SIERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth – J. Exp. Bot. 64: 3237–3247 – doi: 10.1093/jxb/ert162 – https://academic.oup.com/jxb/article/64/11/3237/485356 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/slerf36-exerts-a-negative-control-over-stomatal-density/

Upadhyaya S. K., Rand R. H., Cooke J. R. (1988) – Role of stomatal oscillations on transpiration, assimilation and water-use efficiency of plants – Ecological Modelling 41(1–2): 27-40 – https://doi.org/10.1016/0304-3800(88)90042-7 – https://www.sciencedirect.com/science/article/pii/0304380088900427 – (On our blog : https://plantstomata.wordpress.com/2018/03/12/role-of-stomatal-oscillations-on-transpiration-assimilation-and-water-use-efficiency-of-plants/

Uprety D. C., Dwivedi N., Jain V., Mohan R. (2002) – Effect of elevated carbon dioxide concentration on the stomatal parameters of rice cultivars – Photosynthetica 40: 315–319 – https://doi.org/10.1023/A:1021322513770 – https://link.springer.com/article/10.1023/A:1021322513770 – (On our blog : https://plantstomata.wordpress.com/2019/02/15/effect-of-elevated-co2-concentration-on-stomatal-parameters/ )

Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., Miura A., Nakamura Y., Mori I. C., Shinozaki K., Murata Y. (2012) – Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. – Plant Physiol. 159, 450–460. – doi: 10.1104/pp.112. 195578 – http://www.plantphysiol.org/content/159/1/450 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/pld%ce%b11-and-pld%ce%b4-cooperate-in-aba-signaling-in-stomata/ )

Urban J., Ingwers M. W., McGuire M. A., Teskey R. O. (2017) – Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra – Journal of Experimental Botany 68(7): 1757–1767 – doi:10.1093/jxb/erx052 – https://www.ncbi.nlm.nih.gov/pubmed/28338959 – (On our blog : https://plantstomata.wordpress.com/2018/01/12/higher-leaf-temperature-opens-stomata-and-decouples-net-photosynthesis-from-stomatal-conductance/ )

Urban J., Ingwers M. W., McGuire M. A., Teskey R. O. (2017) – Stomatal conductance increases with rising temperature – Plant Signal. Behav. 2017, 12, e1356534 – doi: 10.1080/15592324.2017.1356534. Epub 2017 Aug 8. – [Google Scholar] [CrossRef] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/28786730 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/stomatal-conductance-increases-with-rising-temperature/

Urton J. (2007) – ‘Speechless’ and ‘Mute’ help break the silence of the leaves – UW News Jan 18, 2007 – https://phys.org/news/2007-01-speechless-mute-silence.html – (On our blog : https://plantstomata.wordpress.com/2019/02/08/speechless-and-mute-two-genes-that-guide-land-plants-to-develop-microscopic-pores/ )

Urton J. (2015) – Plants make big decisions with microscopic cellular competition – UW News June 17, 2015 – https://www.washington.edu/news/2015/06/17/plants-make-big-decisions-with-microscopic-cellular-competition/ – (On our blog : https://plantstomata.wordpress.com/2019/02/08/a-mechanism-that-some-plant-cells-use-to-receive-complex-and-contradictory-messages-from-their-neighbors/ )

Urton J. (2018) – Stomata — the plant pores that give us life — arise thanks to a gene called MUTE, scientists report – UW News May 7, 2018 – https://www.washington.edu/news/2018/05/07/stomata-the-plant-pores-that-give-us-life-arise-thanks-to-a-gene-called-mute-scientists-report/ – (On our blog : https://plantstomata.wordpress.com/2018/05/09/stomata-and-a-gene-called-mute/ )

Vahisalu T., Kollist H., Wang Y. F., Nishimura N., Chan W. Y., Valerio G., Lamminmäki A, Brosché M, Moldau H, Desikan R., Schroeder J. I., Kangasjärvi J. (2008) – SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. – Nature 452: 487–491 – doi: 10.1093/jxb/erx052 – https://www.nature.com/articles/nature06608 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/a-vital-role-for-slac1-in-the-function-of-s-type-anion-channels-in-stomatal-signalling/ )

Vahisalu T., Puzorjova I., Brosché M., Valk E., Lepiku M., Moldau H., Pechter P., Wang Y. S., Lindgren O., Salojärvi J., Loog M., Kangasjärvi J., Kollist H. (2010) – Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1 – Plant J. 62: 442–453 – https://doi.org/10.1111/j.1365-313X.2010.04159.x – https://www.ncbi.nlm.nih.gov/pubmed/20128877 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/ozone%e2%80%90triggered-rapid-transient-decrease-rtd-in-stomatal-conductance-coincides-with-a-burst-of-ros-in-guard-cells/ )

Vaidya A. S., Helander J. D. M., Peterson F. C., Elzinga D., Dejonghe W., Kaundal A., Park S.-Y., Xing Z., Mega R., Takeuchi J., Khanderahoo B., Bishay S., Volkman B. F., Todoroki Y., Okamoto M., Cutler S. R. (2019) – Dynamic control of plant water use using designed ABA receptor agonists – Science 366(6464), eaaw8848 – DOI: 10.1126/science.aaw8848 – https://science.sciencemag.org/content/366/6464/eaaw8848 – (On our blog : https://plantstomata.wordpress.com/2019/10/25/dynamic-control-of-plant-water-use-using-designed-aba-receptor-agonists/ )

Van de Geyn S. C., Goudriaan J. (1996) – 5. The effects of elevated CO2 and temperature change on transpiration and crop water use – http://www.fao.org/docrep/W5183E/w5183e07.htm – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomata-elevated-co2-and-temperature-change-transpiration-and-crop-water-use/ )

Vandermeiren K., Black C., Lawson T., Casanova M. A., Ojanperä K. (2002) – Photosynthetic and stomatal responses of potatoes grown under elevated CO2and/or O3 – results from the European CHIP-programme – Eur. J. Agron. 17: 37-352 – https://doi.org/10.1016/S1161-0301(02)00070-9 – https://www.sciencedirect.com/science/article/abs/pii/S1161030102000709 – (On our blog : https://plantstomata.wordpress.com/2019/02/15/photosynthetic-and-stomatal-responses-of-potatoes-grown-under-elevated-co2-and-or-o3/ )

Van De Water P. K. (2016) – Pinus monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems – American Geophysical Union, Fall General Assembly 2016, abstract id. PP51A-2292 – http://adsabs.harvard.edu/abs/2016AGUFMPP51A2292V – (On our blog : https://plantstomata.wordpress.com/2018/02/05/changes-in-needle-cell-size-and-stomata-over-the-past-100-years-of-rising-co2/)

van Gardingen P. R., Jeffree C. E., Grace J. (1989) – Variation in stomatal
aperture in leaves of Avena fatua L. observed by low-temperature scanning
electron microscopy – Plant, Cell and Environment 12: 887-888 – https://doi.org/10.1111/j.1365-3040.1989.tb01968.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.1989.tb01968.x – (On our blog : https://plantstomata.wordpress.com/2019/02/15/stomatal-aperture-observed-by-low-temperature-scanning-electron-microscopy/ )

Van Hoof T. B., Kürschner W. M., Wagner F., Visscher H. (2006) – Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase – Plant Ecol 183: 237 – https://doi.org/10.1007/s11258-005-9021-3 – https://link.springer.com/article/10.1007/s11258-005-9021-3 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-response-to-the-anthropogenic-atmospheric-co2-increase/ )

Van Houtte H., Vandesteene L., Lopez-Galvis L., Lemmens L., Kissel E., Carpentier S., Feil R., Avonce N., Beeckman T., Lunn J. E., Van Dijck P. (2013) – Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. – Plant Physiol. 161, 1158–1171. – doi: 10.1104/pp.112.211391 – http://www.plantphysiol.org/content/161/3/1158 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/trehalase-plays-a-role-in-the-regulation-of-stomatal-closure-in-the-plant-drought-stress-response/ )

Vani T., Raghavendra A. S. (1989) – Tetrazolium Reduction by Guard Cells in Abaxial Epidermis of Vicia faba: Blue Light Stimulation of a Plasmalemma Redox System – Plant Physiol. (1989) 90, 59-62 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061677/pdf/plntphys00640-0069.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/21/an-nadh-dependent-flavin-mediated-electron-transport-system-operates-in-the-plasmalemma-of-stomata/ )

Vani T., Raghavendra A. S. (1994) – High mitochondrial activity but incomplete engagement of the cyanide-resistant alternative pathway in guard cell protoplasts of pea – Plant Physiol. 105: 1263–1268 – PMID: 12232282 – PMCID: PMC159457https://www.ncbi.nlm.nih.gov/pubmed/12232282 – (On our blog : https://plantstomata.wordpress.com/2019/05/13/respiratory-properties-of-stomatal-guard-cell-protoplasts-gcp/ )

Van Ieperen W. (2012) – Plant morphological and developmental responses to light quality in a horticultural context – Acta Hortic. 956: 131-139 – DOI: 10.17660/ActaHortic.2012.956.12 – https://doi.org/10.17660/ActaHortic.2012.956.12 –http://www.actahort.org/books/956/956_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/21/light-quality-in-horticulture-and-stomatal-behavior/ )

Van Kirk C. A., Raschke K. (1978) – Presence of chloride reduces malate production in epidermis during stomatal opening – Plant Physiol. 61: 361–364 – http://www.plantphysiol.org/content/plantphysiol/61/3/361.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/30/chloride-reduces-malate-production-in-epidermis-during-stomatal-opening/ )

Van Kirk C. A., Raschke K. (1978) – Release of malate from epidermal strips during stomatal closure – Plant Physiol 61: 474-475 – DOI: https://doi.org/10.1104/pp.61.3.474http://www.plantphysiol.org/content/61/3/474 – (On our blog : https://plantstomata.wordpress.com/2017/07/31/release-of-malate-during-stomatal-closure/ )

Van Kraalingen D. W. G. (1990) – Implications of non-uniform stomatal closure on gas exchange calculations – Plant Cell Environ. 13: 1001-1004 – https://doi.org/10.1111/j.1365-3040.1990.tb01993.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1990.tb01993.x – (On our blog : https://plantstomata.wordpress.com/2019/02/18/non-uniform-stomatal-closure-and-gas-exchange-calculations/ )

Van Wijk M. T., Dekker S. C., Bouten W., Bosveld F. C., Kohsiek W., Kramer K., Mohren G. M. J. (2000) – Modelling daily gas exchange of a Douglas‐fir forest: comparison of three stomatal conductance models with and without a soil water stress function – Tree Physiology 20: 115–122 – PMID: 12651479 – https://www.ncbi.nlm.nih.gov/pubmed/12651479 – (On our blog : https://plantstomata.wordpress.com/2019/02/18/three-stomatal-conductance-models/ )

Van Wittenberghe S., Adriaenssens S., Staelens J., Verheyen K., Samson R. (2012) – Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient – Trees 26: 1427–1438 – https://doi.org/10.1007/s00468-012-0714-7https://link.springer.com/article/10.1007/s00468-012-0714-7 – (On our blog : https://plantstomata.wordpress.com/2019/02/18/variability-of-stomatal-conductance-of-young-and-adult-leaves-along-a-vertical-canopy-gradient/ )

Vaseva I., Qudeimat E., Potuschak T., Du Y., Genschik P., Vandenbussche F., Van Der Straeten D. (2018) – The plant hormone ethylene restricts Arabidopsis growth via the epidermis – Proceedings of the National Academy of Sciences 115 (17) E4130-E4139; DOI:10.1073/pnas.1717649115 – http://www.pnas.org/content/115/17/E4130.full – (On our blog : https://plantstomata.wordpress.com/2018/04/25/ethylene-and-epidermis/ )  

Vassilyev A , Vassilyeva A. (1976) –  In Russian (The ultrastructure of the stomatal apparatus in gymnosperms, wIth special reference to stomatal movements) – Batanicheskij Zhurnal, Leningrad 61: 449-465 –

Vatén A. (2018) – Interplay between SPEECHLESS and cytokinin signaling regulates stomata producing asymmetric divisions – (On our blog : https://plantstomata.wordpress.com/2018/12/13/speechless-cytokinin-and-stomatal-divisions/

Vatén A., Bergmann D. C. (2012) – Mechanisms of stomatal development: an evolutionary view – Evodevo 3(1): 11 – DOI10.1186/2041-9139-3-11 – PMID: 22691547 – http://evodevojournal.biomedcentral.com/articles/10.1186/2041-9139-3-11 – (On our blog : https://plantstomata.wordpress.com/2017/01/21/stomatal-developmental-pathways-at-morphological-and-molecular-levels/) – https://wordpress.com/post/plantstomata.wordpress.com/32359 )

Vatén A., Soyars C. L., Tarr P. T., Nimchuk Z. L., Bergmann D. C. (2018) – Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage – Developmental Cell 47(1): 53-66 – DOI:https://doi.org/10.1016/j.devcel.2018.08.007 –https://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30672-5 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/cytokinin-and-speechless-regulatory-interactions-in-the-arabidopsis-stomatal-lineage/ )

Vauzia S., Chairul M., Auzar S. (2016) – Stomata characteristics and chlorophyll content in two plant species regenerating with sprout and seeds after burning at Peat Swamp Forest in Batang Alin-Indonesia – Journal of Chemical and Pharmaceutical Research  8(1): 356-361 – ISSN : 0975-7384  – http://www.jocpr.com/articles/stomata-characteristics-and-chlorophyll-content-in-two-plant-speciesregenerating-with-sprout-and-seeds-after-burning-at.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomata-in-anthocephalus-rubiaceae-and-mallotus-euphorbiaceae/ )

Vavasseur A., Lasceve G., Couchat P. (1988) – Oxygen-dependent stomatal opening in Zea mays leaves – effect of light and carbon dioxide – Physiologia Plantarum 73: 547-552 – https://doi.org/10.1111/j.1399-3054.1988.tb05439.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1988.tb05439.x – (On our blog : https://plantstomata.wordpress.com/2019/02/18/effect-of-light-and-carbon-dioxide-on-stomatal-opening/ )

Vavasseur A., Raghavendra A. S. (2005) – Guard cell metabolism and CO2 sensing. – New Phytol. 165, 665–682. – doi: 10.1111/j.1469-8137.2004. 01276.x – https://www.ncbi.nlm.nih.gov/pubmed/15720679 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/there-are-common-as-well-as-unique-steps-in-aba-and-co2-signalling-pathways-in-stomata/ )

Vaz M., Pereira J. S., Gazarini L. C., David T. S., David J. S., Rodrigues A., Maroco J., Chaves M. M. (2010) – Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber) – Tree Physiol. 30(8): 946-956 – doi: 10.1093/treephys/tpq044 – Epub 2010 Jun 22 – https://www.ncbi.nlm.nih.gov/pubmed/20571151 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-conductance-and-a-high-resilience-of-the-photosynthetic-apparatus-to-summer-drought/ )

Vega-Mas I., Marino D., Sánchez-Zabala J., González-Murua C., Estavillo J. M., González-Moro M. B. (2015) – CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance – Plant Sci. 241: 32-44 – doi: 10.1016/j.plantsci.2015.09.021 – Epub 2015 Sep 28 – https://www.ncbi.nlm.nih.gov/pubmed/26706056 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/stomatal-conductance-and-co2-enrichment-modulating-ammonium-nutrition/ )

Venora G., Calcagno F. (1991) – Study of stomatal parameters for selection of drought resistant varieties in Triticum durum DESF – Euphytica 57: 275-283 – https://doi.org/10.1007/BF00039674https://link.springer.com/article/10.1007/BF00039674 – (On our blog : https://plantstomata.wordpress.com/2019/05/25/stomatal-parameters-for-selection-of-drought-resistant-varieties/ )

Venturas M. D., Sperry J. S., Love D.M., Frehner E. H., Allred M. G., Wang Y. Anderegg W. R. L. ( 2018) – A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought – New Phytol. – Online Version of Record  – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15333?af=R – (On our blog :https://wordpress.com/post/plantstomata.wordpress.com/69686 )

Verduin J. (1949) – Diffusion through multiperforate septa. – In Photosynthesis in plants (eds J Franck, W Loomis), pp. 95–112. Ames, IA: Iowa State College Press. – Google Scholar – https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=13804&context=rtd – (On our blog : https://plantstomata.wordpress.com/2018/07/09/diffusion-through-multiperforate-septa/ )

Verma S. K., Gantait S., Jeong B. R., Hwang S. J. (2018) – Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory – Nature Scientific Reports 8, Article number: 18009 – https://www.nature.com/articles/s41598-018-36113-9 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/74654/ )

Véry A.-A., Robinson M. F., Mansfield T. A., Sanders D. (1998) – Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte – Plant J. 14: 509-521 – http://dx.doi.org/10.1046/j.1365-313X.1998.00147.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.1998.00147.x – (On our blog : https://plantstomata.wordpress.com/2019/02/18/stomatal-cation-channels-are-involved-in-na-induced-stomatal-closure-in-a-halophyte/ )

Vialet-Chabrand S. R. M., Dreyer E., Brendel O. (2013) – Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level – Plant Cell Environ 36: 1529–1546 – https://doi.org/10.1111/pce.12086 -https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12086 – (On our blog : https://plantstomata.wordpress.com/2019/01/12/a-new-dynamic-model-for-predicting-diurnal-time-courses-of-stomatal-conductance-2/ )

Vialet-Chabrand S. R. M., Hills A., Wang Y., Griffiths H., Lew V., Lawson T., Blatt M. R., Rogers S. (2017) – Global sensitivity analysis of OnGuard models identifies key hubs for transport interaction in stomatal dynamics. – Plant Physiol 174: 680–688 – http://www.plantphysiol.org/content/174/2/680 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/onguard-models-and-transport-interaction-in-stomatal-dynamics/)

Vialet-Chabrand S. R. M., Lawson T. (2019) – Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment – Journ. Exp. Bot. erz068, https://doi.org/10.1093/jxb/erz068 –https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz068/5356941 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/deriving-stomatal-conductance-from-thermal-imaging-in-a-dynamic-environment/ )

Vialet-Chabrand S. R. M., Matthews J. S. A., McAusland L., Blatt M. R., Griffiths H., Lawson T. (2017) – Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. -; Plant Physiol 174: 603–613 – http://www.plantphysiol.org/content/174/2/603 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/temporal-dynamics-of-stomatal-behavior/)

Vico G., Manzoni S., Palmroth S., Katul G. (2011) – Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes – New Phytol. 192, 640–652. doi: 10.1111/j.1469-8137.2011.03847.x –PubMed Abstract | CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03847.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-opening-and-closing-delays/ )

Vijaykant A. (2011) – Essay on Mechanism of Stomatal Transpiration – Present Articles – http://www.preservearticles.com/2011080910341/essay-on-mechanism-of-stomatal-transpiration.html – (On our blog : https://plantstomata.wordpress.com/2019/03/29/mechanism-of-stomatal-transpiration/ )

Vilagrosa A., Bellot J., Vallejo V. R., Gil-Pelegrin E. (2003) – Cavitation, stomatal conductance, and leaf dieback in seedlings of two co‐occurring Mediterranean shrubs during an intense drought – Journal of Experimental Botany, Volume 54, Issue 390, 1 September 2003, Pages 2015–2024 – https://doi.org/10.1093/jxb/erg221 –https://academic.oup.com/jxb/article/54/390/2015/606447 – (On our blog : https://plantstomata.wordpress.com/2019/03/22/cavitation-stomatal-conductance-and-leaf-dieback-in-seedlings-during-an-intense-drought/ )

Vilela B., Pagès M., Riera M. (2015) – Emerging roles of protein kinase CK2 in abscisic acid signaling. – Front. Plant Sci. 6:966. – doi: 10.3389/fpls.2015. 00966 – https://www.ncbi.nlm.nih.gov/pubmed/26579189 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/a-prominent-role-of-protein-kinase-ck2-in-aba-signaling-and-related-processes-in-stomata/ ),

Vinnakota R., Ramakrishnan A. M.,Samdani A., Venugopal M. A., Ram B. S., S. Krishnan N., Murugesan D., Sankaranarayanan K. (2016) – A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.) – Protoplasma 253(6): 1593-1597 – DOI10.1007/s00709-015-0916-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00709-015-0916-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/a-comparison-of-aquaporin-function-in-mediating-stomatal-aperture-gating/ )

Virlouvet L., Fromm M. (2015) – Physiological and transcriptional memory in guard cells during repetitive dehydration stress – New Phytol. 205: 596-607 – https://doi.org/10.1111/nph.13080https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13080 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/a-model-of-altered-aba-production-in-gcs-maintaining-a-partially-closed-stomatal-aperture-during-a-watered-recovery-period/ )

Vogel S. (2004) – Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) I. Pathways of air circulation – Plant Systematics and Evolution 249(1): 9-25 – DOI: 10.1007/s00606-004-0201-8 – https://www.researchgate.net/publication/225163142_Contributions_to_the_functional_anatomy_and_biology_of_Nelumbo_nucifera_Nelumbonaceae_I_Pathways_of_air_circulation – (On our blog : https://plantstomata.wordpress.com/2018/06/11/circulation-starts-with-the-uptake-of-gas-through-leaf-stomata-and-ends-with-its-expulsion-via-the-specialized-navel-central-plate-of-the-leaves-in-nelumbo/ )

Voleníková M., Tichá I. (2001) – Insertion profiles in stomatal density and sizes in Nicotiana tabacum L. plantlets – Biologia Plantarum 44: 161–165 – https://doi.org/10.1023/A:1017982619635https://link.springer.com/article/10.1023/A:1017982619635 – (on our blog : https://plantstomata.wordpress.com/2019/02/19/insertion-profiles-in-stomatal-density-and-sizes/ )

von Caemmerer S., Griffiths H. (2009) – Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnataPlant Cell Environ. 32(5): 567-576 – doi: 10.1111/j.1365-3040.2009.01951.x – Epub 2009 Feb 2 – https://www.ncbi.nlm.nih.gov/pubmed/19210641 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/stomatal-responses-to-co2-during-a-diel-crassulacean-acid-metabolism-cycle/ )

von Caemmerer S., Lawson T., Oxborough K., Baker N. R., Andrews T. J., Raines C. A. (2004) – Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco – Journal of Experimental Botany 55: 1157–1166 – DOI: 10.1093/jxb/erh128 –https://www.ncbi.nlm.nih.gov/pubmed/15107451 – (On our blog : https://plantstomata.wordpress.com/2019/02/19/stomatal-conductance-is-not-directly-determined-by-the-photosynthetic-capacity-of-guard-cells-or-the-leaf-mesophyll-2/ )

von Groll U., Altmann T. (2002) – Stomatal cell biology –   Current Opinion in Plant Biology 4: 555–560 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomatal-cell-biology.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/22/stomatal-cell-biology/

von Groll U., Berger D., Altmann T. (2002) – The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. – Plant Cell 14: 1527–1539 – DOI: 10.1105/tpc.001016 – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/14/7/1527.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/sdd1-and-stomatal-development/)

von Mohl H. (1856) – Welche Ursachen bewirken die Erweiterung und Verengung der Spaltöffnungen? – Bot Zeit 14: 697–704 –

Voss L. J., McAdam S. A. M., Knoblauch M., Rathje J. M., Brodribb T., Hedrich R., Roelfsema M. R. G. (2018) – Guard cells in fern stomata are connected by plasmodesmata, but control cytosolic Ca2+ levels autonomously – New Phytologist 219(1): 206-215 – https://doi.org/10.1111/nph.15153 – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15153 – (On our blog :  https://plantstomata.wordpress.com/2018/09/19/guard-cells-in-fern-stomata-control-cytosolic-ca2-levels-autonomously/ )

Vráblová M., Vrábl D., Hronková M., Kubásek J., Šantrůček J. (2017) – Stomatal function, density and pattern, and CO2 assimilation in Arabidopsis thaliana tmm1and sdd1-1 mutants – Plant Biol J, 19: 689–701. doi:10.1111/plb.12577 – http://onlinelibrary.wiley.com/doi/10.1111/plb.12577/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/stomatal-function-density-and-pattern-and-co2-assimilation/ )

Vu J. C. V., Yelenovsky G., Bauscher M. G. (1986) – CO2 exchange rate, stomatal condutance, and transpiration in attached leaves of ‘Valência’ orange – HortScience, Alexandria, 21(1): 143-144 – (Article not found)