PHYSIO-BIBLIOGRAPHY A-C

AAAS (2019) – Speedier stomata in optogenetically enhanced plants improve growth and conserve water – https://eurekalert.org/pub_releases/2019-03/aaft-ssi032519.php – (On our blog : https://plantstomata.wordpress.com/2019/05/22/the-increased-speed-of-stomata-improved-the-plants-water-use-efficiency-without-a-penalty-to-co2-uptake/ )

Aasamaa K., Aphalo P. J. (2016) – The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components – https://www.science.gov/topicpages/s/stomatal+opening+mechanism.html – (On our blog : https://plantstomata.wordpress.com/2019/03/29/the-acclimation-of-stomatal-opening-in-response-to-light-and-stomatal-anatomy-to-vegetational-shade/ )

Aasamaa K., Sõber A. (2001) – Hydraulic conductance and stomatal sensitivity to changes of leaf water status in six deciduous tree species – Biol. Plant. 44: 65–73 – https://doi.org/10.1023/A:1017970304768 – https://link.springer.com/article/10.1023/A:1017970304768#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/23/hydraulic-conductance-and-stomatal-sensitivity-to-changes-of-leaf-water-status/

Aasamaa K., Sõber A. (2011) – Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. – Environ. Exp. Bot. 71(1): 72-78 – CrossRef (http://dx.doi.org/10.1016/j.envexpbot.2010.10.013) – http://www.sciencedirect.com/science/article/pii/S009884721000211X – (On our blog : https://plantstomata.wordpress.com/2015/09/05/stomatal-sensitivities-to-all-the-most-important-environmental-factors/).

Aasamaa K., Söber A. (2011) – Responses of stomatal conductance to simultaneous changes in two environmental factors – Tree Physiology, 2011, 31, 8, 855-864 – doi: 10.1093/treephys/tpr078 – http://treephys.oxfordjournals.org/content/31/8/855 – (On our blog : https://plantstmata.wordpress.com/2016/03/22/stomatal-conductance-and-environmental-factors/)

Aasamaa K., Söber A., Hartung W., Ninemets Ü. (2002) – Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees – Tree Physiol. 22: 267–276 – PMID: 11874723 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1031.7309&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/18/rate-of-stomatal-opening-in-relation-to-leaf-aba-concentration/ )

Aasamaa K., A. Söber A., Rahi M. (2001) –  Leaf Anatomical Characteristics Associated with Shoot Hydraulic Conductance, Stomatal Conductance and Stomatal Sensitivity to Changes of Leaf Water Status in Temperate Deciduous Trees – Australian Journal of Plant Physiology, Vol. 28, No. 8, 2001, pp. 765-774. – https://www.researchgate.net/publication/248887614_Leaf_anatomical_characteristics_associated_with_shoot_hydraulic_conductance_and_stomatal_sensitivity_to_changes_of_leaf_water_status_in_temperate_deciduous_trees – (On our blog : https://plantstomata.wordpress.com/2016/09/13/stomatal-conductance-and-stomatal-sensitivity/)

Abak K., Yanmaz R. (1985) – Investigation on the stomatal density in certain pepper lines and their F1 hybrids – Capsicum Newsletter 4: 22 – Google Scholar – (Article not found)

Abbruzzese G., Beritognolo I., Muleo R., Piazzai M., Sabatti M., Mugnozza G. S., Kuzminsky E. (2009) – Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress –  Environmental and Experimental Botany 66: 381–388 – http://www.academia.edu/31391598/Leaf_morphological_plasticity_and_stomatal_conductance_in_three_Populus_alba_L._genotypes_subjected_to_salt_stress – (On our blog : https://plantstomata.wordpress.com/2017/11/17/63895/)

Abdulrahaman A.A. (2009) – Morphological and epidermal adaptations to water stress in some ornamental plant species. Ph.D. Thesis, University of Ilorin, Ilorin, Nigeria. (No abstract)

Abdulrahaman A. A., Egbedo F. O., Oladele F. A. (2009) – Stomatal complex types, stomatal density, and the stomatal index in some species of Dioscorea – Arch. Biol. Sci., Belgrade 61(4): 847-851 – DOI:10.2298/ABS0904847A – https://www.academia.edu/7299771/STOMATAL_COMPLEX_TYPES_STOMATAL_DENSITY_AND_STOMATAL_INDEX_IN_SOME_SPECIES_OF_DIOSCOREA_2 – (On our blog :

Abdulrahaman A. A., Oladele F. A. (2003) – Stomatal complex types, size, density and index in some vegetable species in Nigeria – Niger. J. Bot. 16: 144-150 –

Abdulrahaman A. A., Oladele F. A. (2008) – Global warming and stomatal complex types. Ethnobotanical Leaflets, 12: 553-556 – (On our blog : https://plantstomata.wordpress.com/2016/05/03/stomata-and-global-warming-2/)

AbdulRahaman A. A., Oladele F. A. (2009) – Stomatal features and humidification potentials of Borassus aethiopum, Oreodoxa regia and Cocos nucifera – Afr. J. Plant Sci. 3: 59–63 – ISSN 1996-0824 – https://www.academia.edu/7299769/Stomatal_features_and_humidification – (On our blog : https://plantstomata.wordpress.com/2019/08/09/stomatal-features-and-humidi%ef%ac%81cation-potentials/ )

Abdulrahaman A. A., Oladele F. A. (2011) – Anatomical Basis for Optimal Use of Water for Maintenance of Some Mesophytic Plants. Insight Botany, 1: 28-38
DOI: 10.5567/BOTANY-IK.2011.28.38 – http://insightknowledge.co.uk/fulltext/?doi=BOTANY-IK.2011.28.38 – (On our blog : https://plantstomata.wordpress.com/2016/03/27/8634/)

Abhi I. R. (xxxx) – Stomata: Meaning, Types and Mechanism | Plant Physiology – http://www.biologydiscussion.com/plant-physiology-2/water-loss/stomata-meaning-types-and-mechanism-plant-physiology/39657 – (On our blog : https://plantstomata.wordpress.com/2019/05/21/stomata-physiology/ )

Abraham P. E., Yin H., Borland A. M., Weighill D., Lim S. D., Cestari De Paoli H., Engle N., Jones P. C., Agh R., Weston D. J., Wullschleger S. D., Tschaplinski T., Jacobson D., Cushman J. C., Hettich R. L., Tuskan G. A., Yang X. (2016) – Transcript, protein and metabolite temporal dynamics in the CAM plant Agave – Nature Plants 2, Article number: 16178 (2016) – doi:10.1038/nplants.2016.178 – http://www.nature.com/articles/nplants2016178 – (On our blog : https://plantstomata.wordpress.com/2016/12/07/stomatal-openingclosing-and-drought-resistance-in-cam-plants/)

Abrash E., Anleu Gil M. X., Matos J. L., Bergmann D. C. (2018) – Conservation and divergence of YODA MAPKKK function in regulation of grass epidermal patterning – Development. pii: dev.165860 – doi: 10.1242/dev.165860 – PMID: 29945871 – https://www.ncbi.nlm.nih.gov/pubmed/?term=29945871 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71752 )

Abrash E. B., Bergmann D. C. (2009) – Asymmetric cell divisions: A view from plant development. – Dev. Cell. 2009;16:783–796. – https://doi.org/10.1016/j.devcel.2009.05.014 – [PubMed] – http://www.sciencedirect.com/science/article/pii/S1534580709002160 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/asymmetric-cell-division-and-generation-of-cellular-diversity-and-higher-level-patterns/)

Abrash E., Bergmann D. C. (2010) – Regional specification of stomatal production by the putative ligand CHALLAH. – Development (2010) 137:447–455.  -10.1242/dev.040931. – http://dev.biologists.org/content/137/3/447 – (On our blog : https://plantstomata.wordpress.com/2016/03/28/chal-and-the-epfs-both-act-through-er-family-receptors-to-repress-stomatal-production/)

Abrash E. B., Davies K. A., Bergmann D. C. (2011) – Generation of Signaling Specificity in Arabidopsis by Spatially Restricted Buffering of Ligand–Receptor Interactions – Plant Cell https://doi.org/10.1105/tpc.111.086637http://www.plantcell.org/content/23/8/2864?ijkey=b48676a78d1a91dd341ea8aa9a366ff4924d49be&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/05/29/overlapping-roles-in-patterning-of-epidermal-stomata/ )

Abrash E., Lampard G. R. (2010) – A view from the top: new ligands controlling stomatal development in Arabidopsis. – New Phytol 186:561–564. – DOI: 10.1111/j.1469-8137.2010.03265.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03265.x/full – (On our blog : https://plantstomata.wordpress.com/2016/09/13/new-ligands-controlling-stomatal-development/)

Abbruzzese G., Beritognolo I., Muleo R., Piazzai M., Sabatti M., Mugnozza G. S., Kuzminsky E. (2009) – Leaf Morphological Plasticity and Stomatal Conductance in Three Populus alba L. Genotypes Subjected to Salt Stress – Environmental and Experimental Botany 66: 381-388 – https://doi.org/10.1016/j.envexpbot.2009.04.008https://www.sciencedirect.com/science/article/abs/pii/S0098847209000872?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-conductance-in-three-genotypes-subjected-to-salt-stress/ )

Acevedo-Opazo C., Jara F., Poblete C., Valdès-Gomez H., Ortega-Farias S., Fuentes S., Tisseyre B. (2009) – Preliminary model for spatial extrapolation of the vine stomatal conductance – Frutic 2009: 5-9 – Concepcion, Chile – Preliminary_model_for_spatial_extrapolat.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/model-for-spatial-extrapolation-of-the-vine-stomatal-conductance/ )

Acharya B., Assmann S. (2009) – Hormone interactions in stomatal function. Plant Mol. Biol. 69: 451–462. doi: 10.1007/s11103-008-9427-0 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/09/05/phytohormones-and-the-effects-of-their-interactions-on-stomata/)

Acharya B. R., Jeon B. W., Zhang W., Assmann S. M. (2013) – Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. – New Phytol. 200, 1049–1063. doi: 10.1111/nph.12469 – PubMed Abstract | CrossRef Full Text | Google Scholar – MedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/05/03/ost1-as-a-critical-limiting-component-in-aba-regulation-of-stomatal-apertures/)

Ache P., Bauer H., Kollist H., Al‐Rasheid K. A. S., Lautner S., Hartung W., Hedrich R. (2010) – Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non‐invasive pressure probe measurements – The Plant Journal 62(6): 1072-1082 – DOI10.1111/j.1365-313X.2010.04213.x – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-62-i-6-tpj4213 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-action-directly-feeds-back-on-leaf-turgor/)

Ache P., Becker D., Ivashikina N., Dietrich P., Roelfsema M. R., Hedrich R. (2000) – GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K1-selective, K1-sensing ion channel. – FEBS Lett 486: 93–98 – DOI: 10.1016/S0014-5793(00)02248-1 – http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(00)02248-1/full – (On our blog : https://plantstomata.wordpress.com/2017/12/02/gork-represents-the-molecular-entity-for-depolarization-induced-potassium-release-from-guard-cells/)

Ackerson R. C. (1980) – Stomatal Response of Cotton to Water Stress and Abscisic Acid as Affected by Water Stress History – Plant Physiol 65: 455-459 – doi: http://dx.doi.org/10.1104/pp.65.3.455 – http://www.plantphysiol.org/content/65/3/455– (On our blog : https://plantstomata.wordpress.com/2016/05/05/stomatal-response-of-cotton-to-water-stress-and-aba/)

Ackerson R. C. (1981) – Osmoregulation in Cotton in Response to Water Stress – I. ALTERATIONS IN PHOTOSYNTHESIS, LEAF CONDUCTANCE, TRANSLOCATION, AND ULTRASTRUCTURE – Plant Physiology – DOI: https://doi.org/10.1104/pp.67.3.484http://www.plantphysiol.org/content/67/3/484.short – (On our blog : https://plantstomata.wordpress.com/2019/03/22/adapted-plants-maintained-photosynthesis-to-a-much-lower-leaf-water-potential-than-did-control-plants-in-part-because-of-increased-stomatal-conductance-at-low-leaf-water-potentials/ )

Addington R. N., Donovan L. A., Mitchell R. J., Vose J. M., Pecot S. D., Jack S. B., Hacke U. G., Sperry J. S., Oren R. (2006) – Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats – Plant, Cell & Environment 29, Issue 4, April 2006, 535–545 – DOI: 10.1111/j.1365-3040.2005.01430.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01430.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stomatal-conductance-in-xeric-and-mesic-habitats/)

Addington R. N., Mitchell R. J., Oren R., Donovan L. A. (2004) – Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris – Tree Physiology 24: 561–569 – DOI: 10.1093/treephys/24.5.561 – https://www.ncbi.nlm.nih.gov/pubmed/14996660 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/stomatal-sensitivity-to-vapor-pressure-deficit/

Addington R. N., Mitchell R. J., Oren R., Donovan L. A. (2004) – Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. – Tree Physiol. 24(5): 561-569 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/04/stomata-and-vapor-pressure-deficit/).

Adebooye O. C., Hunsche M., Noga G., Lankes C. (2012) – Morphology and density of trichomes and stomata of Trichosanthes cucumerina (Cucurbitaceae) as affected by leaf age and salinity – Turk. J. Bot. 36: 328-335 – doi:10.3906/bot-1107-8 – http://dergipark.gov.tr/download/article-file/122286 – (On our blog : https://plantstomata.wordpress.com/2018/01/14/leaf-age-and-salinity-morphology-and-density-of-trichomes-and-stomata/ )

Adrian J., Chang J., Ballenger C., Bargmann B., Alassimone J., Davies K. A., Lau S., Matos J. L., Hachez C., Lanctot A., Vatén A., Birnbaum K. D., Bergmann D. C. (2015) – Transcriptome Dynamics of the Stomatal Lineage: Birth, Amplification, and Termination of a Self-Renewing Population – Developmental Cell 33(1):107-118 · April 2015- DOI: 10.1016/j.devcel.2015.01.025 – Source: PubMed – https://www.researchgate.net/publication/274729494_Transcriptome_Dynamics_of_the_Stomatal_Lineage_Birth_Amplification_and_Termination_of_a_Self-Renewing_Population – (On our blog : https://plantstomata.wordpress.com/2017/01/21/transcriptome-dynamics-of-the-stomatal-lineage/)

Agarwal P. (2017) – Insights into the regulation of stomatal density and its pattern – Ph.D. Entrance – Interview Schedule – http://dpmb.ac.in/index.php?mact=News,cntnt01,detail,0&cntnt01articleid=29&cntnt01returnid=90 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-regulation-of-stomatal-density-and-its-pattern/)

Aguirre J. F., Ruiz L. P., Kohashi-Shibata J., Trejo C. L., Acosta-Gallegos J. (1999) – Morphological observations on the leaf surface of Phaseolus vulgaris L. and their possible relationship to stomatal response. – Annu. Rep. Bean Improvement Cooperative, 1999; 42: 75-76 – https://naldc.nal.usda.gov/download/IND23288524/PDF – (On our blog : https://plantstomata.wordpress.com/2017/10/12/size-and-frequency-of-stomata-and-the-capacity-of-stomata-to-react-under-conditions-of-dehydration/)

Aguria S., Gahir S., Munemasa S., Murata Y., Raghavendra A. S. (2018) – Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress: Adaptation Mechanisms and Their Applications – Advances in Experimental Medicine and Biology 1081:215-232 – DOI: 10.1007/978-981-13-1244-1_12 – In book: Survival Strategies in Extreme Cold and Desiccation – https://www.researchgate.net/publication/328068353_Mechanism_of_Stomatal_Closure_in_Plants_Exposed_to_Drought_and_Cold_Stress_Adaptation_Mechanisms_and_Their_Applications – (On our blog : https://plantstomata.wordpress.com/2019/04/22/mechanism-of-stomatal-closure-in-plants-exposed-to-drought-and-cold-stress/ )

Agurla S., Gayatri G., Raghavendra A. S. (2014) – Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. – Nitric Oxide 43, 89–96. doi: 10.1016/j.niox.2014.07.004 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/05/nitric-oxide-no-as-a-link-between-stomatal-closure-and-plant-innate-immunity/)

Agurla S., Gayatri G., Raghavendra A. S. (2016) – Nitric oxide (NO) measurements in stomatal guard cells – Methods Mol Biol 1424: 49–56 – https://doi.org/10.1007/978-1-4939-3600-7_5https://link.springer.com/protocol/10.1007%2F978-1-4939-3600-7_5 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/no-measurements-in-stomatal-guard-cells/ )

Agurla S., Gayatri G., Raghavendra A. S. (2017) – Signal transduction components in guard cells during stomatal closure by plant hormones and microbial elicitors – In Mechanism of Plant Hormone Signaling Under Stress (ed G. K. Pandey) – John Wiley & Sons, Inc., Hoboken, NJ, USA. – https://doi.org/10.1002/9781118889022.ch30https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118889022.ch30 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/the-modulation-of-signaling-components-in-guard-cells-during-stomatal-closure-induced-by-various-factors-including-hormones-and-microbial-elicitors/ )

Agurla S., Gayatri G., Raghavendra A. S. (2018) – Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure – Protoplasma 255: 153–162 – https://doi.org/10.1007/s00709-017-1139-3https://link.springer.com/article/10.1007%2Fs00709-017-1139-3 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/the-role-of-no-and-its-dependence-on-ros-during-stomatal-closure-by-three-major-pas/ )

Agurla S., Raghavendra A. S. (2016) – Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:1332. – doi: 10.3389/fpls.2016.01332- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/convergence-and-divergence-of-signaling-components-during-stomatal-closure/ )

Ahmed F. E., Abusam S. M. A., Ahmed E. E. A. (2010) – The bases of Blepharis sp. Adaptation to water-limited environment – Asian J. Crop Sci. 2: 12–19 – DOI: 10.3923/ajcs.2010.12.19 – CrossRefGoogle Scholar – http://www.scialert.net/abstract/?doi=ajcs.2010.12.19 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/stomatal-conductance-and-density-in-blepharis/ )

Ahuja I., de Vos R. C. H., Rohloff J., Stoopen G. M., Halle K. K., Ahmad S. J. N., Hoang L., Hall R. D., Bones A. M. (2016) – Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle – Scientific Reports 6, Article number: 38990 (2016) – doi:10.1038/srep38990 – (https://plantstomata.wordpress.com/2016/12/26/the-glucosinolate-myrosinase-system-and-the-cuticle/)

Aidoo M. K., Quansah L., Galkin E., Batushansky A., Wallach R., Moshelion M., Bonfil D. J., Fait A. (2017) – A combination of stomata deregulation and a distinctive modulation of amino acid metabolism are associated with enhanced tolerance of wheat varieties to transient drought – Metabolomics 13(11): 1-13 – DOI10.1007/s11306-017-1267-y – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11306-017-1267-Y – (On our blog : https://plantstomata.wordpress.com/2017/10/15/drought-and-a-combination-of-stomata-deregulation-and-a-distinctive-modulation-of-amino-acid-metabolism/)

Ainsworth, E.A., Rogers, A. (2007) – The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions – Plant Cell Environ. 30: 258-270. (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01641.x/abstract) – (On our blog : https://plantstomata.wordpress.com/2016/02/04/response-of-photosynthesis-and-stomatal-conductance-to-rising-co2/).

Ajayan K. V., Babu R. L., Bayakka P. B. (2015) – Variability of Stomatal Index and Chlorophyll Content in four species of Solanaceae Members – Int. Res. J. Biological Sci. 4(2), 16-20 – http://www.isca.in/IJBS/Archive/v4/i2/3.ISCA-IRJBS-2014-215.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/02/variability-of-stomatal-index-and-chlorophyll-content-in-solanaceae/ )

Akbarian M. R., Tabari M., Akbarinia M., Zarafshar M., Meave J. A., Yousefzadeh H., Sattarian A. B. (2011) – Effects of elevational gradient on leaf and stomatal morphology of Caucasian alder (Alnus subcordata) in the Hyrcanian forest, Iran – Folia Oecologica38.1.2011): 17.  – http://search.proquest.com/openview/8291dfe8a8c04d77829f1d894836deb7/1?pq-origsite=gscholar&cbl=29663 – (On our blog : https://plantstomata.wordpress.com/2016/05/16/the-effect-of-altitude-on-the-whole-leaf-and-stomatal-morphology/)

Akita K., Hasezawa S. Higaki T. (2013) – Breaking of plant stomatal one-cell-spacing rule by sugar solution immersion. – PLoS ONE 8, e72456 – https://doi.org/10.1371/journal.pone.0072456 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072456 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomatal-spacing-distribution-sucrose-solution-immersion-and-stomatal-clusters/)

Akita K., Hasezawa S. Higaki T. (2018) – Cortical microtubules and fusicoccin response in clustered stomatal guard cells induced by sucrose solution immersion – Plant Signaling & Behavior 13(Issue 4) https://doi.org/10.1080/15592324.2018.1454815 – https://www.tandfonline.com/doi/abs/10.1080/15592324.2018.1454815 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/immersion-treatment-with-sucrose-solution-perturbed-the-one-cell-spacing-of-stomata-but-not-the-cortical-microtubule-organization-required-to-open-stomatal-pores/ )

Akita K., Higaki T. (2019) – An Induction System for Clustered Stomata by Sugar Solution Immersion Treatment in Arabidopsis thaliana Seedlings – Journal of Visualized Experiments – DOI: 10.3791/58951 https://www.researchgate.net/publication/331151943_An_Induction_System_for_Clustered_Stomata_by_Sugar_Solution_Immersion_Treatment_in_Arabidopsis_thaliana_Seedlings – (On our blog : https://plantstomata.wordpress.com/2019/08/06/an-induction-system-for-clustered-stomata/ )

Akita S., Moss D. N. (1972) – Differential stomatal response between C3 and C4 species to atmospheric CO2 concentration and light – Crop Science 12: 789-793 – doi:10.2135/cropsci1972.0011183X001200060022x – https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060789 – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-response-c3-and-c4-species-co2-and-light/ )

Akter N., Okuma E., Sobahan M. A., Uraji M., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Negative regulation of methyl jasmonate-induced stomatal closure by glutathione in Arabidopsis – J. Plant Growth Regul. 32, 208–215 – 10.1007/s00344-012-9291-7 – [Cross Ref] – https://link.springer.com/article/10.1007%2Fs00344-012-9291-7 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/glutathione-and-stomatal-closure-2/

Akter N., Sobahan M. A., Hossain M. A., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2010) – The involvement of intracellular glutathione in methyl jasmonate signaling in Arabidopsis guard cells – Biosci. Biotechnol. Biochem. 74: 2504–2506 – doi: 10.1271/bbb.100513 – https://www.ncbi.nlm.nih.gov/pubmed/21150111 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/the-involvement-of-intracellular-glutathione-in-methyl-jasmonate-signaling-in-stomata/

Akter N., Sobahan M. A., Uraji M., Ye W., Hossain M. A., Mori I. C., et al. (2012) – Effects of depletion of glutathione on abscisic acid- and methyl jasmonate-induced stomatal closure in Arabidopsis thaliana – Biosci. Biotechnol. Biochem. 76: 2032–2037 – doi: 10.1271/bbb.120384 – https://www.ncbi.nlm.nih.gov/pubmed/23132563 – (On our blog : https://plantstomata.wordpress.com/2018/08/14/depletion-of-gsh-enhances-aba-and-meja-induced-stomatal-closure/ )

Al Afas N., Marron N., Ceulemans R. (2006) – Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. – Environ. Exp. Bot. 58: 279-286. – http://www.sciencedirect.com/science/article/pii/S0098847205001656?np=y – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomatal-characteristics-affect-biomass-production/)

Al-Ani T. A., Bierhuizen J. F. (1971) – Stomatal resistance, transpiration, and relative water content as influenced by soil moisture stress – Acta Bot. Neerl. 20(3): 318-326. – (On our blog : https://plantstomata.wordpress.com/2017/04/18/stomatal-resistance-can-be-used-as-a-tool-by-which-the-soil-water-plant-relationship-can-be-predicted/)

Alder N. N., Sperry J. S. Pockman W. T. (1996) – Root and stem xylem cavitation, stomatal conductance, and leaf turgor in Acer grandidentatum across a soil moisture gradient – Oecologia 105: 293-301 – http://sperry.biology.utah.edu/publications/Alder%20et%20al.%201996%20Oecologia.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/root-and-stem-xylem-cavitation-stomatal-conductance-and-leaf-turgor-across-a-soil-moisture-gradient/ )

Aliniaeifard S. (2015) – What is the osmotic role of calcium in stomatal opening and closure? – https://www.researchgate.net/post/what_is_the_osmotic_role_of_calcium_in_stomatal_opening_and_closure – (On our blog : .https://plantstomata.wordpress.com/2019/08/18/the-osmotic-role-of-calcium-in-stomatal-opening-and-closure/ )

Aliniaeifard S., Matamoros M. P., van Meeteren U. (2014) – Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? – Physiol. Plant. 152: 688-699 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/04/stomatal-malfunctioning/).

Aliniaeifard S., van Meeteren U. (2013) – Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? – J. Exp. Bot. 64(12): 3551-3566 (CrossRef, Medline).PubMed Abstract  – (On our blog : https://plantstomata.wordpress.com/2015/09/06/long-term-low-vapour-pressure-deficit-vpd-and-stomata/).

Aliniaeifard S., Van Meeteren U. (2016) – Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning – J. Exp. Bot. 65(22): 6529-6542 -doi: 10.1093/jxb/eru370 – http://jxb.oxfordjournals.org/content/65/22/6529.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/26/stomatal-responses-to-closing-stimuli-after-long-term-exposure-to-low-vpd/)

Aliniaeifard S., Van Meeteren U. (2016) – Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity – Sci. Hortic. 205: 84–89 – https://doi.org/10.1016/j.scienta.2016.04.025https://www.sciencedirect.com/science/article/pii/S030442381630214X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/10/study-of-stomatal-characteristics-desiccation-response-and-control-of-vpd-during-growth-will-be-important-to-prevent-subsequent-wilting-of-leaves-of-chrysanthemum-cut-flowers/ )

Aliu S., Rusinovci I., Doko A., Salihu S., Fetahu S., Elezi F., Gashi B. (2015) – Stomatal characteristics and their relationship to heavy metals in maize ( Zea mays L.) seedlings – Journal of Food, Agriculture & Environment 13 (2): 168-171 – https://www.academia.edu/20573090/Stomatal_characteristics_and_their_relationship_to_heavy_metals_in_maize_Zea_mays_L._seedlings – (On our blog : https://plantstomata.wordpress.com/2019/05/25/stomatal-characteristics-and-heavy-metals/ )

Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. (1994) – Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. – Plant Cell, 6, 319–328. – CrossRef | [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/03/09/rapid-effects-of-abscisic-acid-in-commelina-stomata/).

Allaway W. G. (1973) – Accumulation of malate in guard cells of Vicia faba during stomatal opening – Planta 110: 63-70 – https://link.springer.com/article/10.1007%2FBF00386923?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/12/02/malate-accumulating-in-guard-cells-and-potassium-when-stomata-open-in-the-light/)

Allaway W. G. (1981) – Anions in stomatal operation. – In Stomatal Physiology. Edited by P. G. Jarvis and T. A. Mansfield p. 71-86. Cambridge University Press, Cambridge (Article not found)

Allaway W. G., Hsiao T. C. (1973) – Preparation of rolled epidermis of Vicia faba so that stomata are the only viable cells: analysis of guard cell potassium by flame photometry – Aust. J. Biol. Sci. 26: 309-318 – https://doi.org/10.1071/BI9730309 – http://www.publish.csiro.au/bi/BI9730309 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomata-are-the-only-viable-cells-in-rolled-epidermis/)

Allaway W. G., Mansfield T. A. (1967) – Stomatal responses to changes in carbon dioide concentration in leaves treated with 3–(4–chlorophenyl)–1, I-dimethylurea. – New Phytol., 66, 57. – DOI: 10.1111/j.1469-8137.1967.tb05986.x – Wiley Online LibraryCASWeb of Science – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1967.tb05986.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomata-and-co2-in-leaves/)

Allaway W. G., Mansfield T. A.(1970) – Experiments and observations on the aftereffect of wilting on stomata of Rumex sanguineus. – Canad. J. Bot. 48, 513–521 (1970) – Doi: 10.1139/b70-072 – http://www.nrcresearchpress.com/doi/abs/10.1139/b70-072 – (On our blog : https://plantstomata.wordpress.com/2016/11/13/the-aftereffect-of-wilting-on-stomata/)

Allaway W. G., Milthorpe F. L. (1976) – Structure and functioning of stomata – In TT Kozlowski, ed, Water Deficits and Plant Growth, Vol 4 – Soil Water Measurement, Plant Responses, and Breeding for Drought Resistance. Academic Press, New York, pp 57–102.(No abstract)

Allaway W. G., Setterfield G. (1972) – Ultrastructural observations of guard cells of Vicia faba and Allium porrum – Can. J. Bot. 50: 1405–1413 – DOI: 10.1139/b72-169 – Google Scholar – http://www.nrcresearchpress.com/doi/abs/10.1139/b72-169 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/microstructures-in-stomata/)

Allègre M., Daire X., Heloir M. C., Trouvelot S., Mercier L., Adrian M. et al. (2007) – Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. – New Phytol. 2007;173:832–840. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/17286831 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomatal-deregulation-by-plasmopara-viticola-infection/)

Allègre M., Héloir M.-C., Trouvelot S., Daire X., Pugin A., Wendehenne D., Marielle Adrian M. (2009) – Are Grapevine Stomata Involved in the Elicitor-Induced Protection Against Downy Mildew? – Molecular plant-microbe interactions 22(8): 977-986 – https://doi.org/10.1094/MPMI-22-8-0977 – https://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-22-8-0977 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/grapevine-stomata-and-the-elicitor-induced-protection-against-downy-mildew/)

Allen G. J., Amtmann A., Sanders D. (1998) – Calcium-dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles. – J. Exp. Bot. 49 (Spec. Issue): 305-318 – http://www.jstor.org/stable/23695964?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/02/calcium-dependent-and-calcium-independent-k-mobilization-channels-in-stomatal-vacuoles/)

Allen G. J., Chu S. P., Harrington C. L., Schumacher K., Hoffmann T., Tang Y. Y., Grill E.,Schroeder J. I. (2001) – A defined range of guard cell calcium oscillation parameters encodes stomatal movements. – Nature 411: 1053–1057. CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/07/stomatal-movements-and-guard-cell-calcium-oscillation-parameters/)

Allen G. J., Chu S. P., Schumacher K., Shimazaki C. T., Vafeados D., Kemper A., Hawke S. D.,Tallman G., Tsien R. Y., Harper J. F., Chory J., Schroeder J. I. (2000) – Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3mutant. – Science 289: 2338–2342. – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/10/stimulus-specific-calcium-oscillations-are-necessary-for-stomatal-closure/).

Allen G. J., Kuchitsu K., Chu S. P. Murata Y., Schroeder J. I. (1999)Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. – Plant Cell 11: 1785–1798 – CrossRef |PubMedAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/03/10/aba-induced-cytoplasmic-calcium-rises-in-stomata/).

Allen G. J., Kwak J. M., Chu S. P., Llopis J., Tsien R. Y., Harper J. F., Schroeder J. I. (1999) – Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells.Plant Journal 19: 735–738. – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/07/cameleon-calcium-indicator-in-arabidopsis-stomata/).

Allen G. J., Sanders D. (1994) – Two voltage‐gated, calcium release channels coreside in the vacuolar membrane of broad bean guard cells – The Plant Cell 6 : 685-694 – DOI: https://doi.org/10.1105/tpc.6.5.685 – http://www.plantcell.org/content/6/5/685.short – (On our blog : https://plantstomata.wordpress.com/2018/09/06/two-voltage%e2%80%90gated-calcium-release-channels-coreside-in-the-vacuolar-membrane-of-stomata/ )

Allen G. J., Sanders D. (1995) – Calcineurin, a type 2B protein phosphatase, modulates the Ca21-permeable slow vacuolar ion channel of stomatal guard cells – Plant Cell 7: 1473–1483 – doi:  [10.1105/tpc.7.9.1473] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160973/ – (On our blog : https://plantstomata.wordpress.com/2018/11/23/calcineurin-modulates-the-ca21-permeable-slow-vacuolar-ion-channel-of-stomatal-guard-cells/

Allen G. J., Sanders D. (1996) – Control of ionic currents in guard cell vacuoles by cytoplasmic and luminal calcium. – Plant J., 10, 1055–1069. – Wiley Online Library |PubMed | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/ionic-currents-in-guard-cell-vacuoles/).

Allen M. T., Pearcy R. W.  (2000) –  Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. – Oecologia, 122: 470-478. (http://cat.inist.fr/?aModele=afficheN&cpsidt=1403013). – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomatal-behavior-in-a-seasonally-dry-tropical-rain-forest/).

Almeida B. K. (2017) – Comparison of Navel and Laminar Stomata Morphology and Stomatal Conductance in the White Water Lily, Nymphaea odorata (Nymphaeaceae) – FIU Bio Honors 77 (Undergraduate Honors Theses. 77. ) – http://digitalcommons.fiu.edu/bio_honors/77/ – (On our blog : https://plantstomata.wordpress.com/2018/02/05/although-navel-and-laminar-stomata-differ-morphologically-in-nymphaea-odorata-they-do-not-differ-in-stomatal-conductance/ )

Alonso R., Elvira S., Sanz M. J., Emberson L., Gimeno B. S. (2007) – Parameterization of the stomatal component of the DO3SE model for Mediterranean evergreen broadleaf species – The Scientific World 7: 119-127 – DOI: 10.1100/tsw.2007.27 – https://www.ncbi.nlm.nih.gov/pubmed/17450288 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/parameterization-of-the-stomatal-component-of-the-do3se-model-2/ )

Alonso R., Elvira S., Sanz M. J., Gerosa G., Emberson L. D., Bermejo V., Gimeno B. S. (2008) – Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes – Environmental Pollution 155: 473–480 – doi: 10.1016/j.envpol.2008.01.032 – Epub 2008 Mar 14 – https://www.ncbi.nlm.nih.gov/pubmed/18342418 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/a-parameterization-of-the-stomatal-component-of-the-do3se-model-to-estimate-ozone-fluxes/ )

Al-Rawahy S. H., Al-Amri H., Al-Hinai A., Sherwani N. (2007) – Growth and stomatal conductance of Prosopis cineraria (Ghaff Tree) exposed to sulphur dioxide. – Asian J. Plant Sci., 6: 673-677. (http://scialert.net/abstract/?doi=ajps.2007.673.677) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomatal-conductance-and-so2/).

Altamura M. M., Zaghi D., Salvi G., De Lorenzo G., Bellincampi D. (1998) – Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants – Planta 204(4): 429-436 – journal ISSN :0032-0935 – https://www.infona.pl/resource/bwmeta1.element.springer-93f5681c-7c0e-3280-9c27-f5178ef57117 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/oligogalacturonides-stimulate-cell-divisions-leading-to-stoma-formation/)

Alves de Sena J.O., Zaidan H. A., Castro P. R. C. (2007) – Transpiration and stomatal resistance variations of perennial tropical crops under soil water availability conditions and water deficit. – Brazilian Arch. Biol. Technol., 50: 225-230 – (On our blog : https://plantstomata.wordpress.com/2016/05/05/stomatal-resistance-variations-of-perennial-tropical-crops/)

Alvim P. de T. (1946) – A influência do umidecimento des folhas sôbre a abertura dos estômatos – Revista Ceres 7: 141-152 (Article not found)

Alvim P. de T. (1949) – A actividad e fotossintética das células guardas – Lilloa 19: 5-10. (Article not found)

Alvim P. de T. (1949) – Studies on the mechanism of stomatal behavior – Amer. Journ. Bot. 36: 781-791. – (On our blog : https://plantstomata.wordpress.com/2017/04/18/38657/)

Alvim P. de T. (1951) – The influence of the green mesophyll in stomatal movement – Plant Physiol.  1951: 206-209 – (On our blog : https://plantstomata.wordpress.com/2017/04/18/green-mesophyll-and-stomatal-movement/)

Alwerdt J. L., Gibson D. J., Ebbs S. D., Wood A. J. (2006) – Intraspecific interactions in Arabidopsis thaliana and the stomatal mutants tmm1-1 and sdd1-2. – Biol Plantarum 50(2): 205–209 – https://link.springer.com/article/10.1007%2Fs10535-006-0008-2?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/12/02/intraspecific-interactions-in-stomatal-mutants-tmm1-1-and-sdd1-2/)

Aminian R., Mohammadi S., Hoshmand S. A., Khodambashi M. (xxxx) – The genetic analysis of stomatal frequency and size, stomatal conductance, photosynthetic rate and yield in wheat (Triticum aestivum L.) using substitution lines series – https://shigen.nig.ac.jp/ewis/article/html/82/article.html – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-frequency-stomatal-size-stomatal-conductance-photosynthetic-rate-and-yield/ )

Amodeo G., Escobar A., Zeiger E. (1994) – A Cationic Channel in the Guard Cell Tonoplast of Allium cepa – Plant Physiol.  105(3): 999–1006 – PMCID: PMC160751 – PMID: 12232260 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160751/ – (On our blog : https://plantstomata.wordpress.com/2018/08/16/a-cationic-channel-in-the-guard-cell-tonoplast-of-stomata/ )

Amodeo G., Srivastava A., Zeiger E. (1992) – Vanadate inhibits blue light-stimulated swelling of Vicia guard cell protoplasts – Plant Physiol. 100: 1567-1570 – PMCID: PMC1075821 – PMID: 16653159– http://www.plantphysiol.org/content/plantphysiol/100/3/1567.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/18/vanadate-inhibits-blue-light-stimulated-swelling-of-stomatal-protoplasts/ )

Amodeo G., Talbott L. D., Zeiger E. (1996) – Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation – Plant Cell Physiol. 37: 575–579 – doi: 10.1093/oxfordjournals.pcp.a028983 – https://academic.oup.com/pcp/article/37/5/575/1818430 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/use-of-potassium-and-sucrose-by-stomata/ )

Amsbury S., Hunt L., Elhaddad N., Baillie A., Lundgren M., Verhertbruggen Y., Scheller H. V., Knox J. P., Fleming A. J., Gray J. E. (2016) – Stomatal function requires pectin de-methyl-esterification of the guard cell wall. – Curr Biol 26: 2899–2906 – ISSN1879-0445 – 10.1016/j.cub.2016.08.021 – https://desmarais-lab.mit.edu/publications/stomatal-function-requires-pectin-de-methyl-esterification-guard-cell-wall – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-pectin-methylesterase-gene-pme6-highly-expressed-in-guard-cells-is-required-for-stomatal-function/)

An G. Y., Song C. P., Huang M. J. Yang D. M., Zhou P. A., Wu C. H. (1998) – Method of recording ion channels of plasma membrane in stomatal guard cells by patch clamp – Plant Physiol. Commun. 34: 129-132 – (Article not found)

An G. Y., Song C. P., Zhang X., Jing Y. C., Yang D. M., Huang M. J., Wu C. H., Zhou P. A. (2000) – Effect of hydrogen peroxide on stomatal movement and K+channel on plasma membrane in Vicia faba guard cell – Acta Phytophysiol Sin 26: 458-463 – (Article not found)

An Y., Liu L., Chen L., Wang L. (2016) – ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells – Front. Plant Sci., 11 April 2016 | http://dx.doi.org/10.3389/fpls.2016.00482 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00482/full – (On our blog : https://plantstomata.wordpress.com/2016/04/12/ala-aba-and-stomatal-movements/)

An Z. F., Jing W., Liu Y. L., Zhang W. H. (2008) – Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. – J. Exp. Bot. 59, 815–825. doi: 10.1093/jxb/erm370 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/05/cuao-in-vicia-faba-guard-cells-is-an-essential-enzymatic-source-for-h2o2-production-in-aba-induced-stomatal-closure/)

Anav A., De Marco A., Proietti C., Alessandri A., Dell’Aquila A., Cionni I., Friedlingstein P., Khvorostyanov D., Menut L., Paoletti E., Sicard P., Sitch S., Vitale M. (2016) – Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. – Global Change Biol, 22: 1608–1627. doi:10.1111/gcb.13138 – http://onlinelibrary.wiley.com/doi/10.1111/gcb.13138/abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/31/ozone-risk-assessment-and-stomatal-uptake-pody/)

Anav A., Liu Q., De Marco A., Proietti C., Savi F., Paoletti E., Piao S. (2017) – The role of plant phenology in stomatal ozone flux modeling – Glob. Change Biol. 24: 235–248 – https://doi.org/10.1111/gcb.13823 – https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13823 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/improved-estimates-of-stomatal-ozone-fluxes-require-a-better-representation-of-plant-phenology-in-the-models-used-for-o3-risk-assessment/ )

Anav A., Proietti C., Menut L., Carnicelli S., De Marco A., Paoletti E. (2018 ?) – Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone – Atmospheric Chemistry-and Physics (Accepted for review: 29 Nov 2017 ) – https://doi.org/10.5194/acp-2017-1057 – https://www.atmos-chem-phys-discuss.net/acp-2017-1057/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/sensitivity-of-stomatal-conductance-to-soil-moisture/ )

Anderegg W. R. L. (2018) – Quantifying seasonal and diurnal variation of stomatal behavior in a hydraulic-based stomatal optimization model – DOI: 10.20870/jph.2018.e001 – https://www.researchgate.net/publication/330653531_Quantifying_seasonal_and_diurnal_variation_of_stomatal_behavior_in_a_hydraulic-based_stomatal_optimization_model – (On our blog : https://plantstomata.wordpress.com/2019/05/25/seasonal-and-diurnal-variation-of-stomatal-behavior/ )

Anderegg W. R. L., Wolf A., Arango-Velez A., Choat B., Chmura D. J., Jansen S., Kolb T., Li S., Meinzer F., Pita P., Resco de Dios V., Sperry J. S., Wolfe B. T., Pacala S. W. (2017) – Plant water potential improves prediction of empirical stomatal models – PLOS one 12(10): e0185481 – https://doi.org/10.1371/journal.pone.0185481https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185481 – (On our blog : https://plantstomata.wordpress.com/2019/05/25/plant-water-potential-improves-prediction-of-empirical-stomatal-models/

Anderegg W. R. L., Wolf A., Arango-Velez A., Choat B., Chmura D. J., Jansen S., Kolb T., Li S., Meinzer F., Pita P., Resco de Dios V., Sperry J. S., Wolfe B. T., Pacala S. W. (2018) – Woody plants optimise stomatal behaviour relative to hydraulic risk – Ecology Letters 21: 968-977 – doi: 10.1111/ele.12962 – http://sperry.biology.utah.edu/publications/Anderegg_et_al_2018.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/optimal-control-of-stomata-to-manage-hydraulic-risk-is-likely-to-have-significant-consequences-for-ecosystem-fluxes-during-drought/ )

Anderson B. E., Ward J. M., Schroeder J. I. (1994) – Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. – Plant Physiology 104(4): 1177–1183 – DOI: https://doi.org/10.1104/pp.104.4.1177 – http://www.plantphysiol.org/content/104/4/1177.short – (On our blog : https://plantstomata.wordpress.com/2017/12/02/intracellular-aba-alone-does-not-suffice-to-inhibit-stomatal-opening/)

Anderson C. T., Yue R. (2016) – Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis thalianaPlant Physiology January 4, 2016 pp.01066.2015 – doi: http://dx.doi.org/10.1104/pp.15.01066 – http://www.plantphysiol.org/content/early/2016/01/04/pp.15.01066 – (On our blog : https://plantstomata.wordpress.com/2016/04/24/cellulose-and-xyloglucan-in-the-walls-of-stomatal-guard-cells/)

Ando E., Kinoshita T. (2018) – Red Light-Induced Phosphorylation of Plasma Membrane H+-ATPase in Stomatal Guard Cells – Plant Physiology – DOI: https://doi.org/10.1104/pp.18.00544 – http://www.plantphysiol.org/content/178/2/838 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/red-light-induced-pm-h-atpase-phosphorylation-in-guard-cells-promotes-stomatal-opening-in-whole-leaves-2/ )

Ando E., Ohnishi M., Wang Y., Matsushita T., Watanabe A.,Hayashi Y., Fujii M., Ma J. F., Inoue S., Kinoshita T. (2013) – TWIN SISTER OF FTGIGANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis – Plant Physiol 162: 1529–1538 – DOI: https://doi.org/10.1104/pp.113.217984 – http://www.plantphysiol.org/content/162/3/1529?ijkey=215e17cafb15c9d6315d76b6c05ce4d5f88407a4&keytype2=tf_ipsecsha – (n our blog : https://plantstomata.wordpress.com/2018/10/06/photoperiodic-flowering-components-tsf-gi-and-co-positively-affect-stomatal-opening-2/ )

Andrés Z., Pérez-Hormaeche J., Leidi E. O., Schlücking K., Steinhorst L.,  McLachlan D. H., Schumacher K., Hetherington A. M., Kudla J., Cubero B., Pardo J. M. (2014) – Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake – PNAS | Published online – PNAS 111(17): E1806–E1814 –  doi: 10.1073/pnas.1320421111 – http://www.pnas.org/content/111/17/E1806 – (On our blog : https://plantstomata.wordpress.com/2017/11/29/regulation-of-stomatal-aperture-by-tonoplast-k-uptake/)

Anonymous (2014) – Difference between stomata and hydathodes (water stomata) – http://www.majordifferences.com/2014/12/difference-between-stomata-and.html – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomata-and-hydathodes-water-stomata/)

Anonymous (2016) – An amino acid controls plants’ breath – Phys.Org 2016-12-06 – http://phys.org/news/2016-12-amino-acid.html – (On our blog : https://plantstomata.wordpress.com/2016/12/07/the-role-of-calcium-in-the-opening-and-closing-of-stomata/)

Anonymous (x) – Structure, Function, and Density of Stomata – http://www.kcvs.ca/site/projects/physics_files/sem/resources/stomata.html# – (On our blog : https://plantstomata.wordpress.com/2018/08/15/structure-function-and-density-of-stomata/ )

Anonymous (x) – SimSphere Workbook – Chapter 9 – Prifysgol Aberystwyth University – https://www.aber.ac.uk/en/iges/research-groups/earth-observation-laboratory/research/simsphere/workbook/chapter-9/  – (On our blog – https://plantstomata.wordpress.com/2016/04/07/about-stomatal-resistance-and-stomatal-humidity-resonse/)

Anonymous (x) – Transpiration – Water Movement through Plants – Transpiration – Factors Affecting Rates of Transpiration – Plant & Soil Sciences eLibrary (PRO) – https://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1092853841&topicorder=6 – (On our blog : https://plantstomata.wordpress.com/2018/01/07/factors-affecting-rates-of-transpiration/ )

Anonymous – Universität Würzburg (x) – Guard cell function under salt stress conditions – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/dr_rosalia_deeken/guard_cell_function_under_salt_stress_conditions/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/salt-stress-conditions-and-stomatal-function-project/)

Anonymous (2019) – Stomata – What are they for ? – Nature campus – http://campusteva.tau.ac.il/eng/content/stomata-what-are-they – (On our blog : https://plantstomata.wordpress.com/2019/05/30/the-distinct-stomatal-spatial-pattern-typical-for-ferns/ )

Antunes W. C., Provart N. J., Williams T. C., Loureiro M. E. (2012) – Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity – Plant Cell Environ. 35(4): 747-759 – PMID: 21999376 – http://www.cagef.utoronto.ca/changes-in-stomatal-function-and-water-use-efficiency-in-potato-plants-with-altered-sucrolytic-activity/ – (On our blog : https://plantstomata.wordpress.com/2017/11/25/the-important-role-that-sucrose-breakdown-may-play-in-stomatal-function/)

Aoki S., Toh S., Nakamichi N., Hayashi Y., Wang Y., Suzuki T., Tsuji H., Kinoshita T. (2019) – Regulation of stomatal opening and histone modification by photoperiod in Arabidopsis thaliana – Scientific Reports 9, Article number: 10054 – https://www.nature.com/articles/s41598-019-46440-0#author-information – (On our blog : https://plantstomata.wordpress.com/2019/07/29/photoperiod-is-an-important-environmental-cue-regulating-stomatal-opening-and-ld-conditions-enhance-light-induced-stomatal-opening/ )

Aphalo P. J., Jarvis P. G. (1991) – Do stomata respond to relative humidity? – Plant, Cell and Environment  14: 127–132 – https://doi.org/10.1111/j.1365-3040.1991.tb01379.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01379.x – (On our blog : https://plantstomata.wordpress.com/2019/03/22/water-vapour-saturation-deficit-is-a-more-appropriate-variable-for-describing-stomatal-responses-to-humidity/ )

Aphalo P. J., Jarvis P. G. (1993) – The boundary layer and the apparent responses of stomatal conductance to wind speed and to the mole fractions of CO2 and water vapour in the air. – Plant, Cell and Environment 16, 771–783. – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/03/14/7100/)

Aphalo P. J., Jarvis P. G. (1993) – An analysis of Ball’s empirical model of stomatal conductance – Annals of Botany 72: 321–327 – https://doi.org/10.1006/anbo.1993.1114 – https://www.sciencedirect.com/science/article/pii/S0305736483711145 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/an-analysis-of-balls-empirical-model-of-stomatal-conductance/

Aphalo P. J., Jarvis P. G. (1993) – Separation of direct and indirect responses of stomata to light: results from a leaf inversion experiment at constant intercellular CO2 molar fraction – Journal of Experimental Botany 44: 791-800 – https://doi.org/10.1093/jxb/44.4.791 – https://academic.oup.com/jxb/article-abstract/44/4/791/523310 – (On our blog : https://plantstomata.wordpress.com/2018/11/25/direct-and-indirect-responses-of-stomata-to-light/ )

Apple M. E., Olszyk D. M., Ormrod D. P., Lewis J., Southworth D., Tingey D.T. (2000) – Morphology and stomatal function of
Douglas-fir needles exposed to climate change: elevated CO2
and temperature – International Journal of Plant Sciences 161:
127–132 – https://www.ncbi.nlm.nih.gov/pubmed/10648202 – (On our blog :

Apostolakos P., Galatis B. (1987) – Induction, polarity and spatial control of cytokinesis in some abnormal subsidiary cell mother cells of Zea mays – Protoplasma 140: 26-42  – https://doi.org/10.1007/BF01273253 https://plantstomata.wordpress.com/2018/08/15/particular-structural-features-established-in-guard-cell-mother-cells-affect-stomatal-morphogenesis/ ) 

Apostolakos P., Galatis B. (1998) – Probable cytoskeleton involvement in stomatal pore formation in Asplenium nidus L. – Protoplasm 203: 48–57 – DOI: 10.1007/BF01280586 – https://link.springer.com/article/10.1007%2FBF01280586 – (On our blog : https://plantstomata.wordpress.com/2018/08/25/this-stomatal-pore-formation-is-a-unique-process-which-is-probably-restricted-to-ferns/ )

Apostolakos P., Galatis B. (1999) – Microtubule and Actin Filament Organization during Stomatal Morphogenesis in the Fern Asplenium nidus. II. Guard Cells –New Phytologist 141(2): 209-223 – https://www.jstor.org/stable/2588554?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/08/15/particular-structural-features-established-in-guard-cell-mother-cells-affect-stomatal-morphogenesis/ )

Apostolakos P., Livanos P., Giannoutsou E., Panteris E., Galatis B. (2018) – The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division – Annals of Botany, mcx193, https://doi.org/10.1093/aob/mcx193 – https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcx193/4810445 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cross-talk-during-subsidiary-cell-formation-in-zea-mays-components-orchestrating-cell-polarization-and-asymmetric-division/ )

Apostolakos P., Livanos P., Galatis B. (2009) – Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L. – Cell Motility and the Cytoskeleton 66: 342–349 – doi: 10.1002/cm.20366 – https://www.ncbi.nlm.nih.gov/pubmed/19363785 – (On our blog : https://plantstomata.wordpress.com/2018/08/25/deposition-of-significant-callose-quantities-in-guard-cells-of-stomata/ )

Apostolakos P., Livanos P., Nikolakopoulou T. L., Galatis B. (2009) – The role of callose in guard-cell wall differentiation and stomatal pore formation in the fern Asplenium nidus – Ann Bot.104(7): 1373–1387 – doi:  10.1093/aob/mcp255 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778399/– (On our blog : https://plantstomata.wordpress.com/2018/08/15/callose-in-guard-cell-wall-differentiation-and-stomatal-pore-formation/

Apostolakos P., Livanos P., Nikolakopoulou T. L., Galatis B. (xxxx) – Callose implication in stomatal opening and closure in the fern Asplenium nidus – New Phytologist 186(3):  623 – 635 – DOI10.1111/j.1469-8137.2010.03206.x – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-186-i-3-nph3206 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/callose-participates-in-stomatal-movement/)

Apostolakos P., Panteris E., Galatis B. (1997) – Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus I: Guard cell mother cell – Protoplasma 198: 93–106 – https://doi.org/10.1007/BF01282135 – https://link.springer.com/article/10.1007/BF01282135#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-morphogenesis-in-the-fern-asplenium-nidus-i-guard-cell-mother-cell/ )

Apostolakos P., Panteris E., Galatis B. (2008) – The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays – Cell Motil Cytoskeleton 65(11): 863-875 – doi: 10.1002/cm.20308 – https://www.ncbi.nlm.nih.gov/pubmed/18785264 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/phospholipases-c-and-d-in-the-asymmetric-division-of-subsidiary-cell-mother-cells/ )

Apple M. E., Olszyk D. M., Ormrod D. P., Lewis J., Southworth D., Tingey D.T. (2000) – Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature – Int J Plant Sci. 2000 Jan;161(1):127-132 – DOI: 10.1086/314237 – (http://www.ncbi.nlm.nih.gov/pubmed/10648202) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomata-of-douglas-fir-needles-exposed-to-climate-change/) – (https://wordpress.com/block-editor/post/plantstomata.wordpress.com/81784)

Appleby R. F., Davies W. J. (1983) – A possible evaporation site in the guard cell wall and the influence of leaf structure on the humidity response by stomata of woody plants – Oecologia 56: 30-40 – https://doi.org/10.1007/BF00378214https://link.springer.com/article/10.1007%2FBF00378214#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/10/the-influence-of-leaf-structure-on-the-humidity-response-by-stomata-of-woody-plants/https://plantstomata.wordpress.com/2019/01/10/the-influence-of-leaf-structure-on-the-humidity-response-by-stomata-of-woody-plants/

Appleby R. F., Davies W. J. (1983) -The structure and orientation of guard cells in plants showing stomatal responses to changing vapour pressure difference – Ann. Bot. 52(4): 459-468 – https://doi.org/10.1093/oxfordjournals.aob.a086601 – https://academic.oup.com/aob/article-abstract/52/4/459/183309?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/08/15/guard-cells-and-stomatal-responses-to-changing-vapour-pressure-difference/ )

Arafa A. A., Khafagy M. A., Abo-El Kheer A. M., Fouda R. A., El-Banna M. F. (2014) – Stomatal density in the leaves of Sweet pepper plant as affected by certain bio-stimulants under salt stress conditions – J. Plant Production, Mansoura Univ. 5(4): 649-662 – https://www.researchgate.net/publication/325871601_STOMATAL_DENSITY_IN_THE_LEAVES_OF_SWEET_PEPPER_PLANT_AS_AFFECTED_BY_CERTAIN_BIO-STIMULANTS_UNDER_SALT_STRESS_CONDITIONS – (On our blog : https://plantstomata.wordpress.com/2019/08/17/increasing-salinity-levels-decreased-the-number-of-stomata-and-its-density-on-both-surfaces/ )

Arango-Velez A., Zwiazek J. L., Thomas B. R., Tyree M. T. (2011) – Stomatal factors and vulnerability of stem xylem to cavitation in poplars – Physiologia Plantarum 143: 154-165 – DOI: 10.1111/j.1399-3054.2011.01489.x –https://www.ncbi.nlm.nih.gov/pubmed/21623799 – (On our blog : https://plantstomata.wordpress.com/2018/11/25/stomatal-factors-and-vulnerability-of-stem-xylem-to-cavitation/

Araújo W. L., Fernie A. R., Nunes-Nesi A. (2011) – Control of stomatal aperture – Plant Signal Behav. 6(9): 1305–1311 – doi: 10.4161/psb.6.9.16425 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258058/ – (On our blog : https://plantstomata.wordpress.com/2019/03/28/control-of-stomatal-aperture/ )

Araújo W. L., Nunes-Nesi A., Osorio S., Usadel B., Fuentes D., Nagy R., Balbo I., Lehmann M., Studart-Witkowski C., Tohge T., Martinoia E., Jordana X., DaMatta F. M.,  Fernie A. R. (2011) – Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. – Plant Cell 23, 600–627 – doi: 10.1105/tpc.110.081224 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantcell.org/content/23/2/600 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/antisense-inhibition-of-the-iron-sulphur-subunit-of-succinate-dehydrogenase-and-stomatal-aperture/ )

Araújo W. L., Fernie A. R., Nunes-Nesi A. (2011) – Control of stomatal aperture: a renaissance of the old guard. – Plant Signaling & Behavior 6: 1305-1311 – DOI 10.4161/psb.6.9.16425 – CrossrefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/21847028 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/the-involvement-of-environmental-signals-such-as-light-the-concentration-of-atmospheric-co2-and-endogenous-plant-hormones-in-stomatal-aperture/

Araus J. L., Febrero A., Vendrell P. (1996) – Epidermal conductance in different parts of durum wheat grown under Mediterranean conditions: the role of epicuticular waxes and stomata – Plant, Cell & Environment 14( 6) : 545–558 – DOI: 10.1111/j.1365-3040.1991.tb01525.x – https://www.researchgate.net/publication/229722370_Epidermal_conductance_in_different_parts_of_durum_wheat_grown_under_Mediterranean_conditions_The_role_of_epicuticular_waxes_and_stomata – (On our blog : https://plantstomata.wordpress.com/2019/07/18/no-significant-correlation-between-ge-and-total-stomatal-density-or-between-ge-and-either-adaxial-or-abaxial-stomatal-density/ )

Archana J. S., Valon C.,  Leung J.(2011) – A brand new START: abscisic acid perception and transduction in the guard cell – Sci. Sign. 2011:Vol. 4, Issue 201, pp. re4 – DOI: 10.1126/scisignal.2002164 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/07/the-role-of-aba-in-stomata/)

Arend M., Schnitzler J.-P., Ehlting B., Hänsch R., Lange T., Rennenberg H., Himmelbach A., Grill E., Fromm J. (2009) – Expression of the Arabidopsis Mutant abi1Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars – Plant Physiology December 2009 vol. 151 no. 4 2110-2119. (https://plantstomata.wordpress.com/2015/03/03/a-role-for-aba-in-regulating-stomatal-development/). (On our blog : https://plantstomata.wordpress.com/2015/03/03/a-role-for-aba-in-regulating-stomatal-development/).

Arends J. (1925) – Über den Einfluss chemischer Agenzien auf Stärkegehalt und osmotischen Wert der Spaltöffnungsschliesszellen – Planta 1: 84-115 – (On our blog : https://plantstomata.wordpress.com/2017/04/19/effect-of-chemical-substances-on-starch-and-osmotic-value-of-stomata/)

Arens T. (1968) – Radial Strukturen in den Stomata von Ouratea spectabilis (Mart.) Engl. – Protoplasma 66: 403-411 – https://link.springer.com/article/10.1007/BF01255867 – (On our blog : https://plantstomata.wordpress.com/2017/08/19/radial-structures-in-the-stomata-of-ouratea-ochnaceae-in-german/)

Armendariz A. L., Talano M. A., Villasuso A. L., Travaglia C., Racagni G. E., Reinoso H., Agostini E. (2016) – Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean – Plant Physiology and Biochemistry 103: 45-52 – DOI10.1016/j.plaphy.2016.02.041 – https://www.infona.pl/resource/bwmeta1.element.elsevier-a6914dd4-211d-3c8d-aa20-d5637f4afcf8 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/arsenic-induces-rapid-and-significant-stomatal-closure/)

Armstrong F., Blatt M. R. (1995) – Evidence for K+ channel control in Vicia guard cells coupled by G-proteins to a 7TMS receptor mimetic – Plant J. 8: 187–198 – https://doi.org/10.1046/j.1365-313X.1995.08020187.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.08020187.x – (On our blog : https://plantstomata.wordpress.com/2018/11/23/evidence-for-k-channel-control-in-stomata-coupled-by-g-proteins-to-a-7tms-receptor-mimetic/

Armstrong F., Leung J., Grabov A., Brearley J., Giraudat J., Blatt M.R.(1995) – Sensitivity to abscisic acid of guard cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. – Proc. Natl Acad. Sci. USA, 92, 9520–9524. – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2015/10/09/the-role-of-abi1-1-a-mutant-arabidopsis-gene-in-stomata/).

Arnaud D., Hwang, I. (2015) – A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. – Mol. Plant 8, 566–581. doi: 10.1016/j.molp.2014.10.012 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/07/pathways-to-regulate-stomatal-defenses-to-bacterial-pathogens/)

Arntzen C. J., Haugh M., Bobick S. (1973) – Induction of stomatal closure by Helminthosporium maydis pathotoxin – Plant Physiol. 52: 569-574. – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366548/ – (On our blog : https://plantstomata.wordpress.com/2017/12/04/64468/)

Arquero O., Barranco D.., Benlloch M. (2006) – Potassium Starvation Increases Stomatal Conductance in Olive Trees – HortScience 41(2): – DOI: 10.21273/HORTSCI.41.2.433 – https://www.researchgate.net/publication/279480112_Potassium_Starvation_Increases_Stomatal_Conductance_in_Olive_Trees – (On our blog : https://plantstomata.wordpress.com/2019/03/28/moderate-k-deficiency-in-olives-may-impair-the-plants-ability-to-regulate-stomatal-closure/ )

Arve L. E. (2013) – Stomatal functioning and abscisic acid (ABA) regulation in plants developed in different air humidity regimes – PhD Norwegian University of Life Sciences – (IPV).pdf (3.357Mb)http://hdl.handle.net/11250/2448449 – (On our blog : https://plantstomata.wordpress.com/2019/10/24/stomatal-functioning-and-aba-regulation-in-plants-developed-in-different-air-humidity-regimes/ )

Arve L. E., Carvalho D. R., Olsen J. E., Torre S. (2014) – ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity – Plant Signal Behav. 9(7):e29192. – doi: 10.4161/psb.29192 – https://www.ncbi.nlm.nih.gov/pubmed/25763494 – (On our blog :  https://plantstomata.wordpress.com/2018/12/02/aba-induces-h2o2-production-in-guard-cells-but-does-not-close-the-stomata/ )

Arve L. E., Kruse O. M. O., Tanino K. K., Olsen J. E., Futsaether C., Torre S. (2015) – Growth in continuous high air humidity increases the expression of CYP707A-genes and inhibits stomatal closure -Environmental and Experimental Botany 115: 11-19 – https://doi.org/10.1016/j.envexpbot.2015.02.004https://www.sciencedirect.com/science/article/abs/pii/S0098847215000234?via%3Dihub – (On our blog :

Arve L. E, Terfa M. T., Gislerød H. R., Olsen J. E., Torre S. (2013) – High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves – Plant Cell. Environ.36(2): 382-392 (CrossRef, Medline) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomata-and-the-aba-regulation-in-rose-leaves/)

Arve L. E., Torre S. (2015) – Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves – Funct. Plant Biol. 42,: 376–386 – https://doi.org/10.1071/FP14247http://www.publish.csiro.au/fp/FP14247 – (On our blog : https://plantstomata.wordpress.com/2019/09/10/both-aba-and-ethylene-play-a-role-in-air-humidity-control-of-stomatal-movement-in-tomato/ )

Arve L. E, Torre S., Olsen J. E, Tanino K. K. (2011) – Stomatal Responses to Drought Stress and Air Humidity – in “Abiotic Stress in Plants – Mechanisms and Adaptations”, book edited by Arun Shanker and B. Venkateswarlu, ISBN 978-953-307-394-1, (2011) – (http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/stomatal-responses-to-drought-stress-and-air-humidity). – (On our blog : https://plantstomata.wordpress.com/2015/04/11/stomata-and-drought/)

Asai N., Nakajima N., Kondo N., Kamada H. (1999) – The effect of osmotic stress on the solutes in guard cells of Vicia faba L. – Plant Cell Physiol 40:843–849 CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/16/osmotic-stress-and-stomata/)

Asai N., Nakajima N., Tamaoki M., Kamada H., Kondo N. (2000) – Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement. – Plant Cell Physiol 41:10–15 CrossRef PubMed – (On our blog : https://plantstomata.wordpress.com/2016/03/18/role-of-malate-synthesis-in-stomata/)

Asian Scientist (2019) – Getting To The Root Of Water Flow In Plants – https://www.asianscientist.com/2019/01/in-the-lab/peptides-hormone-xylem-stomata-water-flow-plants/ – (On our blog : https://plantstomata.wordpress.com/2019/08/25/genes-encoding-the-peptide-hormone-cle9-10-are-active-in-cells-that-lead-to-the-development-of-stomata/ )

Ask Nature (2008-2015) – Guard cells regulate gas and moisture exchange: plants – © 2008-2015 The Biomimicry Institute. (http://www.asknature.org/strategy/8c389105f450bb568e1eed4725c4c195#.VQasDRDF-6F) – (On our blog : https://plantstomata.wordpress.com/2015/03/08/guard-cell-turgor-regulation-and-whole-plant-responses/).

Asl L. K., Dhondt S., Boudolf V., Beemster G. T., Beeckman T., Inzé D., Govaerts W., De Veylder L. (2011) – Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells – Plant Physiology (2011) 156: 2172-2183 – http://www.plantphysiol.org/content/early/2011/06/21/pp.111.181180 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/distinct-division-and-expansion-patterns-for-pavement-and-guard-cells/)

Aslam M. , Zamir M. S. I. , Anjum S. A. , Khan I., Tanveer M. (2015) – An investigation into morphological and physiological approaches to screen maize (Zea mays L.) hybrids for drought tolerance – Cereal Research Communications 43(1): 41-51 (2015) – https://doi.org/10.1556/CRC.2014.0022 – http://akademiai.com/doi/abs/10.1556/CRC.2014.0022 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/the-maize-hybrid-32-f-10-showed-a-better-stomatal-conductance-gs/)

Aslani F., Bernard F., Mirzajani F., Hadian J. (2015) – Comparison of in vitro seeds and shoot tips colchicine treatment methods on of Thymus daenensis Celak via the study of morphological features of stomata and cellular DNA content – jppf. 2015; 3 (10) :1-8. (http://www.jispp.ir/browse.php?a_id=151&sid=1&slc_lang=en) – (On our blog : https://plantstomata.wordpress.com/2015/04/12/stomata-and-induction-of-polyploidy/).

Aslantaş R., Karakurt H. (2009) – The effects of altitude on stomata number and some vegetative growth parameters of some apple cultivars. – Research Journal of Agriculture and Biological Sciences 5, 853–857 – http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2009/853-857.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/05/the-effects-of-altitude-on-stomata-number/)

Assis P., Martins G., Sá A., Nelson B., Sörgel M., Wolff S., Sá M., Kesselmeier J., Manzi A. O., Quesada C. A. (2019) – Sensitivity of Ball-Berry stomatal conductance model parameters to leaf age in the upper canopy of a central Amazon forest – Geophysical Research Abstracts Vol. 21, EGU2019-19096 – https://meetingorganizer.copernicus.org/EGU2019/EGU2019-19096.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/24/as-leaves-age-they-lose-the-ability-to-fully-open-and-fully-close-their-stomates/ )

Assmann S.M. (1988) – Stomatal and non-stomatal limitations to carbon assimilation: an evaluation of the path-dependent method – Plant Cell Environ. 11: 577–582 – https://doi.org/10.1111/j.1365-3040.1988.tb01799.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1988.tb01799.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/stomatal-and-non-stomatal-limitations-to-carbon-assimilation/ )

Assmann S. M. (1988) – Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO2, and Low Vapor Pressure Differences – Plant Physiology 87(1): 226-231 – doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​87.​1.​226 – http://www.plantphysiol.org/content/plantphysiol/87/1/226.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/03/22/stomatal-response-to-blue-light/)

Assmann S. M. (1992) – Effects of light quality during development on the morphology and stomatal physiology of Commelina communis – Oecologia 92(2):188-195 · November 1992 – DOI: 10.1007/BF00317363 – https://www.researchgate.net/publication/226608952_Effects_of_light_quality_during_development_on_the_morphology_and_stomatal_physiology_of_Commelina_communis – (On our blog : https://plantstomata.wordpress.com/2016/07/26/the-specific-stomatal-response-to-blue-light-is-plastic/)

Assmann S. M. (1993) – Signal transduction in guard cells. – Annual Review of Cell Biology 9: 345–375 – doi: 10.1146/annurev.cb.09.110193.002021 – CrossRef |PubMed  – https://www.annualreviews.org/doi/10.1146/annurev.cb.09.110193.002021 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/signal-transduction-in-stomata/ )

Assmann S. M. (1994) – Ins and outs of guard cell ABA receptors – Plant Cell 6: 1187-1190 – https://doi.org/10.1105/tpc.6.9.1187 –  – http://www.plantcell.org/content/6/9/1187 – (On our blog : https://plantstomata.wordpress.com/2018/12/06/ins-and-outs-of-stomatal-aba-receptors/ )

Assmann S. M. (1999) – The cellular basis of guard cell sensing of rising CO2 – Plant, Cell & Environment 22: 629–637 – Wiley Online Library |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/guard-cell-sensing-of-rising-co2-2/)

Assmann S. M. (2003) – OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. – Trends Plant Sci. 8, 151–153. – CrossRef |PubMed |CAS – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/23/the-ost1-gene-and-stomatal-opening/)

Assmann S.M. (2010) – Abscisic acid signal transduction in stomatal responses. In Plant Hormones. Biosynthesis, Signal Transduction, Action! Ed. Davies P.J. Springer,Dordrecht, pp 399–426. Google Scholar – https://doi.org/10.1007/978-1-4020-2686-7_19 – https://link.springer.com/chapter/10.1007/978-1-4020-2686-7_19#citeas – (On our blog :  https://plantstomata.wordpress.com/2018/12/06/aba-signal-transduction-in-stomatal-responses/ )

Assmann S. M., Armstrong F. (1999) – Hormonal regulation of ion transporters: the guard cell system. – In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 337-361. Elsevier, Amsterdam 1999. (Article not found)

Assmann S. M., Baskin T. I. (1998) – The function of guard cells does not require an intact array of cortical microtubules – Journal of Experimental Botany 49: 163–170 – https://doi.org/10.1093/jxb/49.319.163 – https://academic.oup.com/jxb/article/49/319/163/576443 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/intact-microtubule-arrays-are-not-invariably-required-for-stomatal-function/ )

Assmann S. M., Grantz D. A. (1990) – Stomatal response to humidity in sugarcane and soybean: effect of vapour pressure difference on the kinetics of the blue light response. – Plant, Cell & Environment, 13: 163–169. – doi:10.1111/j.1365-3040.1990.tb01288.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01288.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/epidermal-rather-than-bulk-leaf-water-status-mediates-the-vpd-effect-on-stomatal-kinetics/)

Assmann S. M., Jegla T. (2016) – Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. – Curr. Opin. Plant Biol. 33, 157–167. – doi: 10.1016/j.pbi.2016.07.003 – http://europepmc.org/abstract/med/27518594 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/recent-insights-on-stomatal-responses-to-light-aba-and-co2/ )

Assmann S. M., Lee D. M., Markus P. (1992) – Rapid stomatal response to red-light in Zea mays. – Photochem Photobiol. 56: 685–689.- doi:10.1111/j.1751-1097.1992.tb02222.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1992.tb02222.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-response-to-red-light/)

Assmann S. M., Schwartz A. (1992) – Synergistic effect of light and fusicoccin on stomatal opening – Epidermal Peel and Patch Clamp Experiments – Plant Physiol. 98, 1349–1355. – doi: 10.1104/pp.98.4.1349 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080356/ – (On our blog : https://plantstomata.wordpress.com/2018/02/11/effect-of-light-and-fusicoccin-on-stomatal-opening/ )

Assmann S. M., Shimazaki K. I. (1999) – The multisensory guard cell. Stomatal responses to blue light and abscisic acid. – Plant Physiol. 119(3): 809-815 (337-361 ?) .- CrossRefPubMed | FREE Full Text – http://www.plantphysiol.org/content/119/3/809.full?ijkey=7a12ea1668efa214d91fef46a8c6bc1a4ed58734&keytype2=tf_ipsecsha -(On our blog : https://plantstomata.wordpress.com/2015/09/07/opening-of-stomata-by-blue-light-and-closure-of-stomata-by-aba/).

Assmann S. M., Simoncini L., Schroeder J. I.  (1985) – Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. – Nature 318: 285–287 – DOI: 10.1038/318285a0 – https://www.nature.com/articles/318285a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/05/blue-light-activates-electrogenic-ion-pumping-in-guard-cell-protoplasts/)

Assmann S. M., Snyder J. A., Lee Y-R. J. (2000) – ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. – Plant Cell Environ. 23(4): 387-395  – (CrossRef). –  Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2015/09/07/mutants-of-arabidopsis-with-a-wild-type-stomatal-response-to-humidity/)

Assmann S. M., Wang X.-Q. (2001) – From milliseconds to millions of years: guard cells and environmental responses. Current Opinion in Plant Biology 4: 421–428. – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/07/how-stomata-guard-cells-respond-to-abscisic-acid-and-blue-light/)

Assmann S. M., Zeiger E. (1985) – Stomatal responses to CO2 in Paphiopedilum and Phragmipedium – role of the guard cell chloroplast – Plant Physiol. 77: 461–464 – DOI: https://doi.org/10.1104/pp.77.2.461 – http://www.plantphysiol.org/content/77/2/461 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/involvement-of-guard-cell-chloroplasts-in-the-stomatal-response-to-co2/ )

Assmann S. M., Zeiger E. (1987) – Guard cell bioenergetics – In Stomatal Function,, ed. E. Zeiger, G. Farquhar, I. R. Cowan, pp. 163-194 – Stanford, CA: Stanford Univ. Press – (Article not found).

Assouline S., Or D. (2015) – Plant water use efficiency over geological time—evolution of leaf stomata configurations affecting plant gas exchange. – PLOS ONE 10(4): e0127015. https://doi.org/10.1371/journal.pone.0127015 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067757 – (On our blog : https://plantstomata.wordpress.com/2017/12/05/evolution-of-leaf-stomata-configurations/)

Aston M. J. (1976) – Variation of stomatal diffusive resistance with ambient humidity in sunflower (Helianthus annuus) – Aust. J. Plant Physiol. 3: 489-502. – Google Scholar – http://www.publish.csiro.au/fp/PP9760489 – (On our blog : https://plantstomata.wordpress.com/2017/02/01/stomatal-diffusive-resistance-and-ambient-humidity/)

Aston M. J. (1978) – Differences in the behaviour of adaxial and abaxial stomata of amphistomatous sunflower leaves: Inherent or environmental ? – Functional Plant Biology 5: 211-218 – DOI 10.1071/PP9780211 – https://www.researchgate.net/publication/262994181_Differences_in_the_Behaviour_of_Adaxial_and_Abaxial_Stomata_of_Amphistomatous_Sunflower_Leaves_Inherent_or_Environmental – (On our blog : https://plantstomata.wordpress.com/2017/12/05/adaxial-and-abaxial-stomata-of-amphistomatous-sunflower-leaves/)

Atkinson C. J. (1991) – The flux and distribution of xylem sap calcium to adaxial and abaxial epidermal tissue in relation to stomatal behaviour. – J Exp Bot 42: 987–993 – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/19/xylem-sap-ca-to-act-as-a-regulator-of-stomatal-behaviour/).

Atkinson C. J. (2014) – Is xylem sap calcium responsible for reducing stomatal conductance after soil liming? – Plant and Soil, 2014, 382, 1-2, 349 – http://link.springer.com/article/10.1007%2Fs11104-014-2180-z – (On our blog : https://plantstomata.wordpress.com/2016/03/19/calcium-and-reduction-of-stomatal-conductance/)

Atkinson C. J., Davies W. J., Mansfield T. A. (1989) – Changes in stomatal conductance in intact ageing wheat leaves in response to abscisic acid – Journal of Experimental Botany 40: 1021-1028 – https://doi.org/10.1093/jxb/40.9.1021 https://doi.org/10.1093/jxb/https://academic.oup.com/jxb/article-abstract/40/9/1021/567405?redirectedFrom=fulltext – (On our blog: https://plantstomata.wordpress.com/2019/02/04/changes-in-stomatal-conductance-in-intact-ageing-leaves-in-response-to-aba/ )

Atkinson C. J., Mansfield T. A., Davies W. J. (1990) – Does calcium in xylem sap regulate stomatal conductance? New Phytologist, 1990, 116, 1, 19-27 – DOI: 10.1111/j.1469-8137.1990.tb00506.x  –CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1990.tb00506.x/full – (On lour blog : https://plantstomata.wordpress.com/2016/03/19/calcium-and-regulation-of-stomatal-conductance/)

Atkinson C. J., Mansfield T. A., Kean A. M., Davies W. J. (1989) – Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. – New Phytologist 111: 9–17. – Wiley Online Library |CrossRef– http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1989.tb04212.x/full – (On our blog : https://plantstomata.wordpress.com/2016/03/18/control-of-stomatal-aperture-by-calcium/)

Atkinson C. J., Mansfield T. A., McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Interactions Of Calcium With Abscisic-Acid In The Control Of Stomatal Aperture. – Biochemie Und Physiologie Der Pflanzen 186, 333-339. – http://www.sciencedirect.com/science/article/pii/S0015379611802283 – (On our blog : https://plantstomata.wordpress.com/2016/03/19/ca-aba-and-stomatal-aperture/)

Atkinson C .J., Wookey P. A., Mansfield T. A. (1991) – Atmospheric pollution and the sensitivity of stomata on barley leaves to abscisic acid and carbon dioxide – New Phytologist 117: 535-541 – DOI: 10.1111/j.1469-8137.1991.tb00958.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1991.tb00958.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/11/pollution-aba-co2-and-stomata/ )

Atwell B. J. (1999) – Plants in Action – Macmillan Education AU, 1999 – Reference – 664 pp. – https://books.google.be/books/about/Plants_in_Action.html?id=chWs4ewSzpEC&redir_esc=yhttp://plantsinaction.science.uq.edu.au/edition1/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/plants-in-action-book/ )

Atwell B. J., Kriemann P. E., Turnbull C. G. N., Eamus D., Bieleski R. L., Farquhar G. (Eds.) – (1999) – Stomatal structure and function – In: Plants in Action, Adaptation in Nature, Performance in Cultivation – MacMillan Education Australia, Melbourne. – http://plantsinaction.science.uq.edu.au/edition1/?q=content/15-2-1-stomatal-structure-and-function – (On our blog : https://plantstomata.wordpress.com/2015/07/19/2224/)

Aubert Y., Vile D., Pervent M., Aldon D., Ranty B., Simonneau T., Vavasseur A., Galaud J. (2010) – RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana – Plant & Cell Physiol. – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/rd20-participates-in-stomatal-control/ )

Aubry S., Aresheva O., Reyna-Llorens I., Smith-Unna R. D., Hibberd J. M., Genty B. (2016) – A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra – Plant Physiol. 170: 1345–1357 – doi: 10.1104/pp.15.01203 – https://www.ncbi.nlm.nih.gov/pubmed/26818731?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-specific-transcriptome-signature-for-guard-cells-from-a-c4-plant/ )

Augé R. M., Green C. D., Stodola A. J. W., Saxton A. M., Olinick J. B., Evans R. M. (2000) –  Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in a natural habitat. – New Phytol. 145: 483-500 – DOI: 10.1046/j.1469-8137.2000.00604.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2000.00604.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/05/correlations-of-stomatal-conductance-with-hydraulic-and-chemical-factors/)

Augé R. M., Moore J. L. (2002) – Stomatal response to nonhydraulic root-to-shoot communication of partial soil drying in relation to foliar dehydration tolerance – Environmental and Experimental Botany 47: 217–229 – https://doi.org/10.1016/S0098-8472(01)00129-0 – https://www.sciencedirect.com/science/article/abs/pii/S0098847201001290?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/02/04/stomatal-response-to-nonhydraulic-root-to-shoot-communication/ )

Augé R. M., Toler H. D., Sams C. E., Nasim G. (2008) – Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductanceMycorrhiza 18(3): 115-121 – doi: 10.1007/s00572-008-0162-9 – Epub 2008 Jan 29 – https://www.ncbi.nlm.nih.gov/pubmed/18228050 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/mycorrhiza-induced-increases-in-stomatal-conductance/ )

Augé R. M., Toler H. D., Saxton A. M. (2015) – Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysisMycorrhiza 25(1): 13-24 – doi: 10.1007/s00572-014-0585-4 – Epub 2014 May 16 – https://www.ncbi.nlm.nih.gov/pubmed/24831020 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/arbuscular-mycorrhizal-symbiosis-alters-stomatal-conductance-of-host-plants-more-under-drought-than-under-amply-watered-conditions/ )

Aulik I. (    ) – Stomatal, cuticular water loss and photosynthetic acclimation in response to irradiance – Thesis Aarhus University – http://library.au.dk/fileadmin/www.bibliotek.au.dk/fagsider/jordbrug/Specialer/Isaac_Aulik_Thesis.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/20/the-plasticity-of-stomatal-anatomy-and-functionality/)

Auchincloss L., Easlon H. M., Levine D., Donovan L., Richards J. H. (2014) – Pre‐dawn stomatal opening does not substantially enhance early‐morning photosynthesis in Helianthus annuus – Plant Cell Environment, 37: 1364– 1370 – https://doi.org/10.1111/pce.12241https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12241 – (On our blog : https://plantstomata.wordpress.com/2019/09/21/no-evidence-that-pre%e2%80%90dawn-stomatal-opening-enhances-early%e2%80%90morning-photosynthesis/ )

Avila E.L., Brown M., Pan S., Desikan R., Neill S.J., Girke T., Surpin M., Raikhel N. V. (2008) – Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells – Journal of Experimental Botany 59: 1149-1161 – https://doi.org/10.1093/jxb/ern025https://academic.oup.com/jxb/article/59/6/1149/481141 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/the-loss-of-atvsr3-protein-caused-the-accumulation-of-nitric-oxide-and-hydrogen-peroxide-signalling-molecules-implicated-in-the-regulation-of-stomatal-opening-and-closing/ )

Avissar R., Pielke R. A. (1991) – The impact of plant stomatal control on mesoscale atmospheric circulations – Agric For Meteorol. 54: 353–372 –  doi: 10.1016/0168-1923(91)90013-G. – https://www.sciencedirect.com/science/article/pii/016819239190013G – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-control-and-mesoscale-atmospheric-circulations/ )

Awada T., Moser L. E., Schacht W. H., Reece P. E. (2002) – Stomatal variability of native warm-season grasses from the Nebraska Sandhills – Canadian Journal of Plant Science 82: 349-355 – https://doi.org/10.4141/P01-031 –https://www.nrcresearchpress.com/doi/10.4141/P01-031 – (On our blog : https://plantstomata.wordpress.com/2019/04/17/stomatal-variability-of-native-warm-season-grasses/ )

Aylor D. E., Parlange J.-Y;, Krikorian A. D. (1973) – Stomatal mechanics – Amer. J. Bot. 60: 163-171 – https://www.jstor.org/stable/2441103?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/a-model-of-stomatal-movement/)

Azevedo Neto A. D. de, Tarquinio Prisco J., Enéas-Filho J., Feitosa de Lacerda C., Vieira Silva J., Alves da Costa P. H., Gomes-Filho E. (2004) – Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes (Efeito do estresse salino sobre o crescimento, resposta estomática e acúmulo de solutos em diferentes genótipos de milho) – Braz. J. Plant Physiol. 16(1) – http://dx.doi.org/10.1590/S1677-04202004000100005 – http://www.scielo.br/scielo.php?pid=S1677-04202004000100005&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2017/10/03/effects-of-salt-stress-on-stomatal-response/)

Aziz R. M., Zabawi A. G., Azdawiyah A. T. S., Fazlyzan A. (2019) – Effects of haze on net photosynthetic rate, stomatal conductance
and yield of Malaysian rice (Oryza sativa L.) varieties – J. Trop. Agric. and Fd. Sc. 47(1): 1 – 13 – http://ejtafs.mardi.gov.my/jtafs/47-1/haze.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/effects-of-haze-on-net-photosynthetic-rate-stomatal-conductance-and-yield/ )

Azoulay-Shemer T., Bagheri A., Wang C., Palomares A., Stephan A. B., Kunz H. H., Schroeder J. I. (2016) – Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing – Plant Physiology 171: 788–798 – DOI: https://doi.org/10.1104/pp.15.01662 – http://www.plantphysiol.org/content/171/2/788?ijkey=6d80179965eddc18728ca24d0822c2c8a86fff8d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/19/the-roles-of-starch-biosynthesis-for-high-co2-induced-stomatal-closing/ )

Azoulay-Shemer T., Palomares A., Bagheri A., Israelsson-Nordstrom M., Engineer C. B., Bargmann B. O. R., Stephan A. B., Schroeder J. I. (2015) – Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2– and ABA-induced stomatal closing. – Plant J. 83, 567–581. doi: 10.1111/tpj.12916 – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/tpj.12916/abstract – (On our blog : https://plantstomata.wordpress.com/2015/06/24/the-role-of-guard-cell-photosynthesis-in-stomatal-conductance-responses/)

Azoulay-Shemer T., Schwankl N., Rog I., Moshelion M., Schroeder J. I. (2018) – Starch biosynthesis by AGPase, but not starch degradation by BAM1/3 and SEX1, is rate-limiting for CO -regulated stomatal movements under short-day conditions – FEBS Lett 592: 2739-2759 – https://plantscience.agri.huji.ac.il/publications/starch-biosynthesis-agpase-not-starch-degradation-bam13-and-sex1-rate – (On our blog : https://plantstomata.wordpress.com/2019/08/08/starch-biosynthesis-becomes-rate-limiting-for-co-induced-stomatal-closing/ )

Babu, R. H., Savithramma, N. (2014) – Studies on stomata of some selected grass species of Poaceae and Cyperaceae – World Journal of Pharmacy and Pharmaceutical Sciences Vol 3, Issue 7, 1268-1279, 2014. (http://isindexing.com/isi/papers/1416559462.pdf). –www.wjpps.com/download/article/1404210729.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/19/stomata-in-poaceae-and-cyperaceae-2/).

Baby S. Johnson A. J., Zachariah F. J., Hussain A. A. (2017) – Nepenthes pitchers are CO2-enriched cavities, emit CO2 to attract preys – Scientific Reports 7, Article number: 11281 (2017) | – https://www.nature.com/articles/s41598-017-11414-7 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/modified-stomata-in-nepenthes-pitchers/

Bagheri A. (2014) – The role of Starch Metabolism and Guard Cell Photosynthesis in CO₂ Regulation of Stomatal Conductance – UC San Diego Electronic Theses and Dissertations – https://escholarship.org/uc/item/3rv3m6j3 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/co%e2%82%82-regulation-of-stomatal-conductance/)

Bagic T. (1981) – Investigations of stomata of three oak species with light and scanning electron microscope – Acta Bot. Croat. 40: 85-90 – ISSN 0365—0588 – https://hrcak.srce.hr/file/233602 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/stomata-in-quercus-fagaceae-3/)

Bagic T., Krstin L., Rosa J., Popovic Z. (2005) – Epicuticular wax on stomata of damaged silver fir trees [Abies alba Mill.] – Acta Societatis Botanicorum Poloniae 74: 2 – ISSN :0001-6977 – https://www.infona.pl/resource/bwmeta1.element.agro-article-43eb1b32-0feb-4c64-af01-60ec95ee9d46 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/epicuticular-wax-on-stomata/)

Baier M., Gimmler H., Hartung W. (1990) – The permeability of the guard cell plasma membrane and tonoplast. – J. Exp. Bot. 41: 351-358 – https://doi.org/10.1093/jxb/41.3.351 – https://www.jstor.org/stable/23695179?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/the-permeability-of-the-guard-cell-plasma-membrane-and-tonoplast/)

Bailey R. (2017) – Plant Stomata Function – Thought Co. – https://www.thoughtco.com/plant-stomata-function-4126012 – (On our blog : https://plantstomata.wordpress.com/2017/11/10/stomata-function/)

Bailey, Z., Johnson M. (2019) – The Effect of Life History Strategies on Stomatal Characteristics Using Herbarium Specimens From Guadalupe Mountains National Park – Botany 2019 Ecophysiology Posters – https://2019.botanyconference.org/engine/search/index.php?func=detail&aid=534 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/predicting-changes-in-stomatal-density-in-response-to-elevated-carbon-dioxide/ )

Bak G., Lee E. J., Lee Y., Kato M., Segami S., Heven S., Maeshima M., Hwang J. U., Lee Y. (2013) – A role of phosphatidylinositol 3,5-bisphosphate in vacuolar structure change in guard cells of closing stomata. – Plant Cell 25: 2202–2216 – CrossRef PubMed PubMedCentral – (On our blog : https://plantstomata.wordpress.com/2016/03/19/rapid-aba-induced-stomatal-closure-requires-ptdins35p2/)

Bak G., Lee E. J., Lee Y., Kato M., Segami S., Heven S., Maeshima M., Hwang J. U., Lee Y. (2013) – Rapid Structural Changes and Acidification of Guard Cell Vacuoles during Stomatal Closure Require Phosphatidylinositol 3,5-Bisphosphate – DOI: https://doi.org/10.1105/tpc.113.110411 – http://www.plantcell.org/content/25/6/2202/tab-article-info – (On our blog : https://plantstomata.wordpress.com/2018/12/03/rapid-aba-induced-stomatal-closure-requires-ptdins35p2-2/ )

Baker D. A., Hall J. L., MacRobbie E. A. C. (1988) – Stomatal guard cells. In Baker DA, Hall JL, eds, Solute Transport in Plant Cells and Tissues, Ed 1. Longman Press, Harlow, UK, pp 453–497 –

Baker N. R., Oxborough K., Lawson T., Morison J. I. L. (2001) – High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves – Journ. Experim. Bot. 52(356): 615-621 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/photosynthetic-activities-in-stomatal-guard-cells/ )

Bakker J. C. (1991) – Effects of humidity on stomatal density and its relation to leaf conductance. – Scientia Hort. 48: 205-212 – https://doi.org/10.1016/0304-4238(91)90128-L – https://www.sciencedirect.com/science/article/pii/030442389190128L – (On our blog : https://plantstomata.wordpress.com/2017/12/06/stomatal-density-and-size-as-affected-by-humidity-do-not-significantly-influence-leaf-conductance/)

Balasubramaniam S., Willis A. J. (1969) – Stomatal movements and rates of gaseous exchange in excised leaves of Vicia faba – New Phytol. 68: 663–674 – https://doi.org/10.1111/j.1469-8137.1969.tb06470.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1969.tb06470.x – (On our blog : https://plantstomata.wordpress.com/2019/02/09/stomatal-movements-and-rates-of-gaseous-exchange-in-excised-leaves/ )

Balcerowicz, M., Hoecker, U. (2014) – Auxin – a novel regulator of stomata differentiation – Trends in Plant Science 19(12): 747–749 – https://doi.org/10.1016/j.tplants.2014.10.006 – http://www.sciencedirect.com/science/article/pii/S1360138514002684 – (On our blog : https://plantstomata.wordpress.com/2015/02/07/stomata-and-auxin/)

Balcerowicz M., Ranjan A., Rupprecht L., Fiene G., Hoecker U. – Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins – Development 141(16):3165-3176 – doi: 10.1242/dev.109181 – http://dev.biologists.org/content/141/16/3165 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/auxin-signalling-contributes-to-the-suppression-of-stomatal-differentiation-observed-in-dark-grown-seedlings/ )

Bald J. G. (1952) – Stomatal droplets and the penetration of leaves by plant pathogens – Amer. J. Bot. 39(2): 97-99 – (On our blog : https://plantstomata.wordpress.com/2017/05/06/stomatal-droplets-on-gladiolus-leaves-induce-the-germ-tubes-of-pleospora-to-infect-the-leaf/)

Baldocchi D. D. (1994)  – An analytical solution for coupled leaf photosynthesis and stomatal conductance models – Tree Physiology 14, 1069–1079. – DOI:https://doi.org/10.1093/treephys/14.7-8-9.1069 – CrossRef – https://academic.oup.com/treephys/article-abstract/14/7-8-9/1069/1727768/An-analytical-solution-for-coupled-leaf?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/02/06/coupled-leaf-photosynthesis-and-stomatal-conductance-equations/)

Baldocchi D. D., Hicks B. B., Camara P. (1987) – A canopy stomatal resistance model for gaseous deposition to vegetated surfaces – Atmos. Environ. 21: 91-101 – https://doi.org/10.1016/0004-6981(87)90274-5 –https://www.sciencedirect.com/science/article/pii/0004698187902745https://nature.berkeley.edu/biometlab/pdf/ddb%201987%20atmos%20environ.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/25/a-canopy-stomatal-resistance-model-for-gaseous-deposition/ )

Baldocchi D. D., Hutchinson B. A. (1987) – On estimating canopy photosynthesis and stomata1 conductance in a deciduous forest with clumped foliage – Tree Physiol. 2(1-2-3): 155-168 – PMID: 14975850 – https://www.ncbi.nlm.nih.gov/pubmed/14975850 – DOI: 10.1093/treephys/2.1-2-3.155 – (On our blog : https://plantstomata.wordpress.com/2019/04/25/estimating-canopy-photosynthesis-and-stomatal-conductance/ )

Baldocchi D. D., Luxmoore R. J., Hatfield L. (1991) – Discerning the forest from the trees: an essay on scaling canopy stomatal conductance – Agric For Meteorol 54: 197–226 – https://doi.org/10.1016/0168-1923(91)90006-C – https://www.sciencedirect.com/science/article/pii/016819239190006C – (On our blog : https://plantstomata.wordpress.com/2018/10/01/scaling-canopy-stomatal-conductance/ )

Ball J. T. (1988) – An Analysis of Stomatal Conductance – PhD Thesis Stanford University – https://www.researchgate.net/profile/John_Ball16/publication/36285887_An_Analysis_of_Stomatal_Conductance/links/5a0c05bba6fdccc69eda9656/An-Analysis-of-Stomatal-Conductance.pdf – (On our blog : https://plantstomata.wordpress.com/2019/10/15/81620/ )

Ball J. T., Woodrow I. E., Berry J. A. (1987) – A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions – Progress in Photosynthetic Research 4: 221–228 – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/14/7119/).

Ball M. C., Farquhar G. D. (1984) – Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions – Plant Physiology 74, 1–6. – doi: http://dx.doi.org/10.1104/pp.74.1.1 – CrossRefCAS – http://www.plantphysiol.org/content/74/1/1 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/stomatal-responses-of-two-mangrove-species-to-long-term-salinity-and-humidity-conditions/)

Ball M. C., Farquhar G. D. (1984) – Photosynthetic and stomatal responses of the Grey Mangrove, Avicennia marina, to Transient Salinity Conditions – Plant Physiology 74(1): 7-11 – DOI: https://doi.org/10.1104/pp.74.1.7http://www.plantphysiol.org/content/74/1/7.short – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-responses-to-transient-salinity-conditions/)

Ballard T., Peak D., Mott K. (2018) – Blue and red light effects on stomatal oscillations – Functional Plant Biology – https://doi.org/10.1071/FP18104 – http://www.publish.csiro.au/fp/FP18104 – (On our blog : https://plantstomata.wordpress.com/2018/10/27/blue-and-red-light-effects-on-stomatal-oscillations/ )

Balmant K. M., Zhang T., Chen S. (2016) – Protein Phosphorylation and Redox Modification in Stomatal Guard Cells – Front. Physiol. 7:26 – http://dx.doi.org/10.3389/fphys.2016.00026 – http://journal.frontiersin.org/article/10.3389/fphys.2016.00026/full – (On our blog : https://plantstomata.wordpress.com/2016/03/31/ptms-that-modify-molecular-components-in-stomata/)

Bange G. G. J. (1953) – On the quantitative explanation of stomatal transpiration – Acta Bot. Neerl. 2 (3): 253-297 – (On our blog : https://plantstomata.wordpress.com/2017/06/05/quantitative-explanation-of-stomatal-transpiration/)

Bannister P. (1964) – Stomatal responses of heath plants to water deficits – J. Ecol. 52: 151-158 – https://www.jstor.org/stable/2257789?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/stomatal-responses-to-water-deficits/)

Baralabai V. C., Vivekanandan M. (1996) – Rev. Brasil. Fisiol. Veget. 8: 7–14 – Foliar application of electrostatic precipitator dust on growth, stomata and leaf biochemistry in certain legume crops – Rev. Brasil. Fisiol. Veget. 8: 7–14 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.509.1318&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/09/foliar-application-of-electrostatic-precipitator-dust-on-growth-and-stomata/ )

Barbacka M. (1994) – Reconstruction of stomata in Komlopteris Barbacka and Pachypteris Brongniart and their adaptation to climate. – ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI 86: 5-11 – http://publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1994_Vol_86_5.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/25/reconstruction-of-stomata-and-their-adaptation-to-climate/ )

Barber J. L., Kurt P. B., Thomas G. O., Kerstiens G., Jones K. C. (2002) – Investigation into the Importance of the Stomatal Pathway in the Exchange of PCBs between Air and Plants – Environ. Sci. Technol.  36, 20, 4282-4287 – DOI:10.1021/es025623m –https://cdn-pubs.acs.org/doi/full/10.1021/es025623m#citing – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-stomatal-effect-on-the-rate-of-exchange-of-pcbs-between-hemerocallis-leaves-and-air/ )

Barbieri G., Vallone S., Orsini F., Paradiso R., De Pascale S., Negre-Zakharov F., and A. Maggio A. (2012) – Stomatal Density and Metabolic Determinants Mediate Salt Stress Adaptation and Water Use Efficiency in Basil (Ocimum basilicum L.) – Journal of Plant Physiology, Vol. 169, No. 17, 2012, pp. 1737-1746. – http://dx.doi.org/10.1016/j.jplph.2012.07.001 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/stomatal-density-salt-stress-adaptation-and-water-use-efficiency/)

Barbour M. M., Buckley T. N. (2007) – The stomatal response to evaporative demand persists at night in Ricinus communis plants with high nocturnal conductance – Plant, Cell and Environment 30: 711–721 – DOI: 10.1111/j.1365-3040.2007.01658.x – https://www.ncbi.nlm.nih.gov/pubmed/17470147 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-response-to-evaporative-demand-persists-at-night-in-plants-with-high-nocturnal-conductance/ )

Barbour M. M., Cernusak L. A., Whitehead D., Griffin K. L., Turnbull M. H., Tissue D. T., Farquhar G. D. (2005) – Nocturnal stomatal conductance and implications for modeling δ18O of Leaf-respired CO2 in temperate tree species – Functional Plant Biology 32: 1107-1121 – https://pdfs.semanticscholar.org/ca0a/fc8a77d69d86712f0d00fc834e51d2a20a67.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/10/significant-water-loss-through-stomata-for-all-species-at-some-time-for-some-leaves-during-the-night/ )

Barbour M. M., Fischer R. A., Sayre K. D., Farquhar G. D. (2000) – Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and yield in irrigated, field-grown wheat – Aust. J. Plant Physiol. 27: 625–637 – ISSN : 0310-7841https://www.cabdirect.org/cabdirect/abstract/20000710955 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/oxygen-isotope-ratio-of-leaf-and-grain-material-correlates-with-stomatal-conductance-and-yield/ )

Bareja B. G. (2013) – Types of Transpiration in Plants: Stomatal,
Cuticular and Lenticular – Crops Review  – http://www.cropsreview.com/types-of-transpiration.html – (On our blog : https://plantstomata.wordpress.com/2017/11/10/stomatal-cuticular-and-lenticular-transpiration/)

Barillot R., Frak E., Combes D., Durand J. L., Escobar-Gutiérez A. J. (2010) – What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration – J Exp Bot. 61(10): 2795-806. – doi: 10.1093/jxb/erq115. – https://www.ncbi.nlm.nih.gov/pubmed/20444905 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-responses-to-blue-light-could-play-a-key-role-in-photomorphogenetic-mechanisms-through-their-effect-on-transpiration/ )

Barnard D., Bauerle W. (2013) – The implications of minimum stomatal conductance on modeling water flux in forest canopies – J. Geophys. Res. Biogeosci. 118: 1322– 1333 – doi:10.1002/jgrg.20112https://agupubs.onlinelibrary.wiley.com/doi/10.1002/jgrg.20112 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/the-implications-of-minimum-stomatal-conductance-on-modeling-water-flux/ )

Barnes R. W., Jordan G. J., Hill R. S., McCoull C. J. (2000) – A common boundary between distinct northern and southern morphotypes in two unrelated Tasmanian rainforest species -Australian Journal of Botany 48(4) – DOI: 10.1071/BT98044 – BT98044.pdf – BT98044.qxd – https://www.researchgate.net/publication/248899503 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/encrypted-stomata-and-superficial-stomata-in-two-unrelated-tasmanian-rainforest-species/ )

Baroli I., Price G. D., Badger M. R., von Caemmerer S. (2008) – The Contribution of Photosynthesis to the Red Light Response of Stomatal Conductance – BIOENERGETICS AND PHOTOSYNTHESIS –  DOI: https://doi.org/10.1104/pp.107.110924 – http://www.plantphysiol.org/content/146/2/737.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/the-red-light-response-of-stomatal-conductance-is-independent-of-the-concurrent-photosynthetic-rate-of-the-guard-cells/ )

Barradas V. L., Jones H. .G, Clark J. A. (1994) – Stomatal responses to changing irradiance in Phaseolus vulgaris L. – J Exp Bot 45: 931–936 – https://doi.org/10.1093/jxb/45.7.931 – https://academic.oup.com/jxb/article-abstract/45/7/931/503719 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/the-effects-of-air-temperature-leaf-air-vapour-pressure-differences-and-water-deficit-on-stomatal-responses-to-changing-irradiance/

Barradas V. L., Ramos-Vazquez A., Orozco-Segovia A. (2004) – Stomatal conductance in a tropical xerophilous shrubland at a lava substratum – Int J Biometeorol 48:119–127 – DOI 10.1007/s00484-003-0195-x – Stomatal_conductance_in_a_tropical_xerop.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/stomatal-conductance-in-a-tropical-xerophilous-shrubland-at-a-lava-substratum/ )

Barragán V., Leidi E. O., Andrés Z., Rubio L., De Luca A., Fernández J. A., Cubero B., Pardo J. M. (2012) – Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis – The Plant Cell 24: 1127–1142 – DOI: https://doi.org/10.1105/tpc.111.095273 – http://www.plantcell.org/content/24/3/1127 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/tonoplast-localized-nhx-proteins-are-essential-for-active-k-uptake-at-the-tonoplast-for-turgor-regulation-and-for-stomatal-function/ )

Barral A. (2019) – Stomata feel the pressure – Nature Plants 5: 244 – DOI: 10.1038/s41477-019-0390-3 – https://www.nature.com/articles/s41477-019-0390-3 – (On our blog : https://plantstomata.wordpress.com/2019/03/09/stomata-feel-the-pressure/ )

Barrs H. D. (1971) – Cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions. – Ann. Rev. Plant Physiol. 22, 223–236 – https://doi.org/10.1146/annurev.pp.22.060171.001255 – Google Scholar – http://www.annualreviews.org/doi/abs/10.1146/annurev.pp.22.060171.001255 – (On our blog : https://plantstomata.wordpress.com/2017/12/06/cyclic-variations-in-stomatal-aperture-under-constant-environmental-conditions/)

Barrs H. D., Klepper B. (1968) – Cyclic Variations in Plant Properties under Constant Environmental Conditions – Physiologia Plantarum 21(4): 711–730 – DOI: 10.1111/j.1399-3054.1968.tb07295.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1968.tb07295.x/abstract– (On our blog : https://plantstomata.wordpress.com/2017/12/06/64517/)

Bartlett M. K., Klein T., Jansen S., Choat B., Sack L. (2016) – The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought – PNAS Published online before printNovember 2, 2016, – Proceedings of the National Academy of Sciences, USA 113: 13098–13103.doi:10.1073/pnas.1604088113
PNAS November 2, 2016 – http://www.pnas.org/content/early/2016/11/01/1604088113.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/04/plant-stomatal-hydraulic-and-wilting-responses-to-drought/)

Barton K. (2007) – Making Holes in Leaves: Promoting Cell State Transitions in Stomatal Development – The Plant Cell April 2007 vol. 19 no. 4 1140-1143 – doi: http://dx.doi.org/10.1105/tpc.107.051177 – http://www.plantcell.org/content/19/4/1140.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/how-stomata-are-built/)

BASF (sponsored paper) (2018) – Take the Stress Out of Heat and Drought Stress – AGPRO May 18, 2018 – https://www.agprofessional.com/article/take-stress-out-heat-and-drought-stress – (On our blog : https://plantstomata.wordpress.com/2018/05/21/headline-amp-fungicide-and-stomata/

Bashar K. K., Tareq Md. Z., Amin Md. R., Honi U., Tahjib-Ul-Arif Md., Sadat Md. A., Hossen Q. Md. M. (2019) – Phytohormone-Mediated Stomatal Response, Escape and Quiescence Strategies in Plants under Flooding Stress – Agronomy 9(2): 43 – doi:10.3390/agronomy9020043 –https://www.mdpi.com/2073-4395/9/2/43/htm – (On our blog : https://plantstomata.wordpress.com/2019/03/12/responses-of-specific-genes-or-transcription-factors-or-reactive-oxygen-species-ros-maintain-the-equilibrium-between-stomatal-opening-and-closing/ )

Basu S., Ramegowda V, Kumar A., Pereira A. (2016) – Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research 2016, 5(F1000 Faculty Rev):1554
(doi: 10.12688/f1000research.7678.1) – https://f1000research.com/articles/5-1554/v1 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/decreased-stomatal-conductance-in-response-to-drought-stress/)

Bates G.W., Rosenthal D.M., Sun J., Chattopadhyay M., Peffer E., Yang J., Ort D.R., Jones A.M. (2012) – A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. – PloS one 7, e49641 – https://doi.org/10.1371/journal.pone.0049641 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049641 – (On our blog : https://plantstomata.wordpress.com/2017/12/06/the-guard-cell-transcriptome-and-its-modulation-by-sucrose/)

Bates L. M., Hall A. E. (1981) – Stomatal closure with soil water depletion not associated with changes in bulk leaf water status – Oecologia 50: 62-65 – https://doi.org/10.1007/BF00378794 – https://link.springer.com/article/10.1007%2FBF00378794#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/25/stomatal-closure-which-results-from-soil-water-depletion-is-mediated-by-changes-in-root-water-status/

Batista Florindo J., Landini G., Almeida Filho H., Martinez Bruno O. (2015) – Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia zebrina – Journal of Physics: Conference Series, Volume 633, Issue 1, article id. 012113 (2015). – 10.1088/1742-6596/633/1/012113 – http://adsabs.harvard.edu/abs/2015JPhCS.633a2113B – (On our blog : https://plantstomata.wordpress.com/2017/07/26/a-method-for-the-analysis-of-the-stomata-distribution-patterns/)

Batool S. , Uslu V. V., Rajab H., Ahmad N., Waadt R., Geiger D., Maalgoli M., Xiang C.-B., Hedrich R., Rennenberg H., Herschbach C;, Hell R., Wirtz M. (2018) – Sulfate is Incorporated into Cysteine to Trigger ABA Production and Stomatal Closure – DOI: https://doi.org/10.1105/tpc.18.00612http://www.plantcell.org/content/30/12/2973 – (On our blog : https://plantstomata.wordpress.com/2019/01/31/sulfate-is-incorporated-into-cysteine-to-trigger-aba-production-and-stomatal-closure/ )

Batool S. , Uslu V. V., Rajab H., Herschbach C., Rennenberg H., Geiger D., Hedrich R., Hell R., Wirtz M. (2017) – Sulfate is an important trigger of abscisic acid biosynthesis and stomata closure – 25th International Symposium of the International Scientific Centre of Fertilizers Significance of Sulfur in High-Input Cropping Systems Groningen (The Netherlands), September 5-8, 2017 – https://ojs.openagrar.de/index.php/BerichteJKI/article/viewFile/8423/7746 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/sulfate-aba-biosynthesis-and-stomata-closure/)

Batos, B., Vilotic, D., Orlovic, S. and Miljkovic, D. (2010) – Inter and Intra-Population Variation of Leaf Stomatal Traits of Quercus robur L. in Northern Serbia. – Archives of Biological Sciences, 62, 1125-1136. – (http://dx.doi.org/10.2298/ABS1004125B) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/variation-of-stomatal-characteristics/).

Bauer H., Ache P., Lautner S., Fromm J., Hartung W., Al-Rasheid K. A. S., Sonnewald S., Sonnewald U., Kneitz S., Lachmann N., Mendel R. R., Bittner F., Hetherington A. M., Hedrich R. (2013) – The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. – Curr. Biol.23(1): 53-57 – doi: 10.1016/j.cub.2012.11.022(CrossRef, Medline).[PubMed]- (On our blog : https://plantstomata.wordpress.com/2015/09/07/guard-cells-operate-the-entire-aba-biosynthesis-pathway/).

Bauer H., Ache P., Wohlfart F., Al-Rasheid K. A. S., Sonnewald S., Sonnewald U., Kneitz S., Hetherington A. M., Hedrich R. (2013) – How do stomata sense reductions in atmospheric relative humidity? – Mol Plant 6(5): 1703–1706 – DOI10.1093/mp/sst055 – CrossRefPubMedGoogle Scholar – https://www.infona.pl/resource/bwmeta1.element.elsevier-a8b9e7a5-c164-384c-9874-839ea980a69f – (On our blog : https://plantstomata.wordpress.com/2017/10/10/how-do-stomata-sense-reductions-in-atmospheric-relative-humidity/)

Bauly J. M., Sealy I. M., Macdonald H., Brearley J., Dröge S., Hillmer S., Robinson D. G., Venis M. A., Blatt M. R., Lazarus C. M., Napier R. M. (2000) – Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. – Plant Physiol. 124: 1229-1238 – PMCID: PMC59221 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59221/ – (On our blog : https://plantstomata.wordpress.com/2017/12/07/overexpression-of-auxin-binding-protein-enhances-the-sensitivity-of-guard-cells-to-auxin/)

Bayramzadeh, V. (2011) – Stomatal Characteristics of Fagus orientalis Lipsky in Geographically Separated Locations in the Caspian Forests of Northern Iran. – Research Journal of Environmental Sciences, 5, 836-840  (http://dx.doi.org/10.3923/rjes.2011.836.840) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/variations-in-stomatal-characteristics-stomatal-density-and-stomatal-pore-length-in-fagus/)

BBC (xxxx) – Video clip – Leaf structure, stomata and the absorption of carbon dioxide – Science & Plants for Schools – http://www.saps.org.uk/secondary/teaching-resources/799-video-clip-leaf-structure – (On our blog : https://plantstomata.wordpress.com/2019/07/25/stomata-and-the-absorption-of-co2/ )

Beadle C. L., Jarvis P. G., Talbot H., Neilson R. E. (1985) – Stomatal conductance and photosynthesis in a mature Scots pine forest. II. Dependence on environmental variables of single shoots – Journal of Applied Ecology 22(2): 573 – DOI: 10.2307/2403186 – https://www.researchgate.net/publication/271758336_Stomatal_Conductance_and_Photosynthesis_in_a_Mature_Scots_Pine_Forest_II_Dependence_on_Environmental_Variables_of_Single_Shoots – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-conductance-and-photosynthesis-of-current-year-shoots-of-pinus-sylvestris/

Beadle C. L., Neilson R. E., Talbot H., Jarvis P. G. (1985) – Stomatal conductance and photosynthesis in a mature Scots pine forest. I. Diurnal, seasonal and spatial variation in shoots – Journal of Applied Ecology 22: 557–571 – DOI: 10.2307/2403185 – https://www.jstor.org/stable/2403185?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-conductance-and-photosynthesis-in-a-mature-scots-pine-forest/

Beardsel M. F., Cohen D. (1975) – Relationships between Leaf Water Status, Abscisic Acid Levels, and Stomatal Resistance in Maize and Sorghum. – Plant Physiol. 56, 207–212 (1975). – http://www.plantphysiol.org/content/56/2/207 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/drought-aba-and-stomatal-resistance/)

Beaulieu J. M., Leitch I. J., Patel S., Pendharkar A., Knight C. A. (2008) – Genome size is a strong predictor of cell size and stomatal density in angiosperms. – New Phytologist 179:975–986.-doi: 10.1111/j.1469-8137.2008.02528.x. Epub 2008 Jun 28. –  CrossRef, PubMed – (On our blog : https://plantstomata.wordpress.com/2016/05/07/genome-size-cell-size-and-stomatal-density-2/)

Becker D., Zeilinger C., Lohse G., Depta H., Hedrich R. (1993) – Identification and biochemical characterization of the plasma‐membrane proton ATPase in guard cells of Vicia faba L. – Planta 190: 44-50 – https://doi.org/10.1007/BF00195673 – https://link.springer.com/article/10.1007/BF00195673 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/characterization-of-the-plasma%e2%80%90membrane-proton-atpase-in-stomata/ )

Becraft P. W. (1999) – Development of the leaf epidermis. – Current Topics in Developmental Biology 451–40. – Medline – https://www.ncbi.nlm.nih.gov/pubmed/10332602?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2017/01/07/development-of-the-epidermis/)

Beerling D. J. (1993) – Changes in the stomatal density of Betula nana leaves in response to increases in atmospheric carbon dioxide concentrations since the last glacial. – Special Papers in Palaeontology 49: 181-187. (Article not found)

Beerling D. J. (1998) – Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L. trees exposed in situ for three years to elevated CO2 and temperature. – Acta Oecologica 18, 697–712 – https://doi.org/10.1016/S1146-609X(97)80052-5 – http://www.sciencedirect.com/science/article/pii/S1146609X97800525 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/the-response-of-time-integrated-water-use-efficiency-uwe-and-stomatal-density-to-co2-enrichment-and-climate-change/)

Beerling D. J. (1999) –  Stomatal density and index: theory and application.  In: JONES, T. P. & ROWE, N. P. (eds.) Fossil Plants and Spores: modern techniques. – Geological Society, London 251-256. – (Article not found)

Beerling D. J. (2015) – Gas valves, forests and global change: a commentary on Jarvis (1976) ‘The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field’ – Philosoph. Transactions B,R Soc Lond B Biol Sci., 370 Issue: 1666 – pii: 20140311. doi: 10.1098/rstb.2014.0311 – https://www.ncbi.nlm.nih.gov/pubmed/25750234 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/microscopic-turgor-operated-gas-valves-on-leaf-surfaces-stomata-facilitate-gas-exchange-between-the-plant-and-the-atmosphere/)

Beerling D. J., Birks H. H., Woodward F. I. (1995) – Rapid late‐glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves – J. Quaternary Sci. – https://doi.org/10.1002/jqs.3390100407 – https://onlinelibrary.wiley.com/doi/full/10.1002/jqs.3390100407 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/using-the-relationship-between-leaf-stomatal-density-and-atmospheric-co2-concentration/ )

Beerling D. J., Chaloner W. (1992) – Stomatal density as an indicator of atmospheric CO2 concentration – The Holocene 2: 71-78 – DOI: 10.1177/095968369200200109 –http://journals.sagepub.com/doi/abs/10.1177/095968369200200109 – (On our blog : https://plantstomata.wordpress.com/2017/09/14/stomatal-density-as-an-indicator-of-atmospheric-co2-concentration/)

Beerling D. J., Chaloner W. (1993) – The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur lammas leaves – Annals of Botany 71: 231–235 – doi: 10.1006/anbo.1993.1029| CrossRef | CAS |  – (On our blog : https://plantstomata.wordpress.com/2016/05/07/co2-temperature-change-and-stomatal-density/)

Beerling D. J., Chaloner W. (1993) – Evolutionary responses of stomatal density to global CO2 change – Biological Journal of the Linnean Society 48(4):  – https://doi.org/10.1111/j.1095-8312.1993.tb02096.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1095-8312.1993.tb02096.x– (On our blog : https://plantstomata.wordpress.com/2018/03/30/evolutionary-responses-of-stomatal-density-to-global-co2-change/ )

Beerling D. J., Chaloner W. (1993) – Stomatal density responses of Egyptian Olea europaea L. leaves to COchange since 1327 BC. – Ann Bot 71: 431–435 – doi: 10.1006/anbo.1993.1056 – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/05/07/responses-of-stomatal-density-to-co2-change/)

Beerling D. J., Chaloner W. (1994) – Atmospheric CO2 changes since the last glacial maximum-evidence from the stomata1 density record of fossil leaves – Review of Palaeobotany and Palynology 81: 1 l-17 – https://doi.org/10.1016/0034-6667(94)90123-6 – https://www.sciencedirect.com/science/article/pii/0034666794901236 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/to-combine-the-use-of-fossil-leaves-with-the-long-term-ice-core-record-of-co2-changes/ )

Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A. and Tooley, M.J. (1993) – Stomatal Density Responds to the Glacial Cycle of Environmental Change. – Proceedings of the Royal Society B: Biological Sciences, 251, 133-138.
(http://dx.doi.org/10.1098/rspb.1993.0019) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/stomatal-density-and-environmental-change/).

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J., Woodward F. (1992) – Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and post-glacial time. – Philos. Trans. R. Soc. London B, 251(1331): 133-138 – DOI: 10.1098/rspb.1993.0019 – https://www.jstor.org/stable/55890?seq=1#page_scan_tab_contents – (On our blog :  https://wordpress.com/post/plantstomata.wordpress.com/54552

Beerling D. J., Franks P. J. (2009) – Evolution of stomatal function in ‘lower’ land plants. New Phytologist 183(4): 921-925 – DOI: 10.1111/j.1469-8137.2009.02973.x – (CrossRef, Medline). – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.02973.x/full – (On our blog : https://plantstomata.wordpress.com/2016/12/29/stomatal-function-in-lower-land-plants/)

Beerling D. J., Kelly C. K. (1996) – Evolutionary comparative analyses of the relationship between leaf structure and function – New Phytol. 134: 35-51 – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1996.tb01144.x – (On our blog : https://plantstomata.wordpress.com/2018/12/21/no-evidence-that-the-stomatal-densities-on-upper-and-lower-leaf-surfaces-are-closely-regulated/ )

Beerling D. J., Kelly C. K. (1997) – Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data –  American Journal of Botany 84(11): 1572–1583 – https://onlinelibrary.wiley.com/doi/pdf/10.2307/2446619 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/future-changes-in-stomatal-density-as-a-possible-result-of-anthropogenically-related-co2-increases-may-be-possible/ )

Beerling D. J., McElwain J. C., Osborne C. P. (1998) – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – Journal of Experimental Botany, Vol. 49, No. 326, pp. 1603–1607 – http://jxb.oxfordjournals.org/content/49/326/1603.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/stomatal-responses-to-changes-in-atmospheric-co2-concentrations/)

Beerling D. J., Royer D. L. (2002) – Reading a CO2 signal from fossil stomata – New Phytologist 153: 387-397 – DOI; 10.1046/j.0028-646X.2001.00335.x – https://www.academia.edu/33539371/Reading_a_CO2_signal_from_fossil_stomata – (On our blog : https://plantstomata.wordpress.com/2017/12/08/reading-a-co2-signal-from-fossil-stomata/)

Beerling D. J., Woodward F. I. (1995) – Stomatal responses of variegated leaves to CO2 enrichment. – Annals of Botany 75: 507–511 – https://doi.org/10.1006/anbo.1995.1052 – https://www.sciencedirect.com/science/article/pii/S0305736485710529 – (On our blog : https://plantstomata.wordpress.com/2017/12/07/the-magnitude-of-stomatal-density-and-index-responses-to-co2-concentrations/)

Beerling D. J., Woodward F. I. (1996) – Stomatal density responses to global environment change -In: Stanhill G. (eds) – Advances in Bioclimatology 4: 171-221 – Springer, Berlin, Heidelberg, – https://link.springer.com/chapter/10.1007/978-3-642-61132-2_4 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/stomatal-density-responses-to-global-environment-change/)

Beis A., Patakas A. (2010) – Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought – Functional Plant Biology 37: 139–146 – https://doi.org/10.1071/FP09034http://www.publish.csiro.au/fp/FP09034 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/differences-in-stomatal-responses-between-two-grapevine-varieties-subjected-to-drought/ ) https://plantstomata.wordpress.com/2019/02/02/differences-in-stomatal-responses-between-two-grapevine-varieties-subjected-to-drought/

Belhadj S., Derridj A., Moriana A., Gijon M. D. C., Mevy J. P., Gauquelin T. (2011) – Comparative Analysis of Stomatal Characters in Eight Wild Atlas Pistachio Populations (Pistacia atlantica Desf.; Anacardiaceae). – International Research Journal Plant Science 2:  60-69 – https://www.academia.edu/4694701/Comparative_analysis_of_stomatal_characters_in_eight_wild_atlas_pistachio_populations – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66545 )

Belin C., de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A., Giraudat J., Barbier-Brygoo H., Thomine S. (2006) – Identification of features regulating OST1 kinase activity and OST1 function in guard cells. – Plant Physiol 141:1316–1327. – doi: http://dx.doi.org/10.1104/pp.106.079327 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/07/ost1-kinase-activity-and-ost1-function-in-stomata/)

Bellasio C., Quirk J., Buckley T. N., Beerling D. J. (2017) – A dynamic hydro-mechanical and biochemical model of stomatal conductance for C4 photosynthesis – Plant Physiology  – DOI: 10.1104/pp.17.00666 – https://www.researchgate.net/publication/318721627_A_dynamic_hydro-mechanical_and_biochemical_model_of_stomatal_conductance_for_C4_photosynthesis?discoverMore=1 – (On our blog : https://plantstomata.wordpress.com/2017/08/07/a-model-of-stomatal-conductance-for-c4-photosynthesis/)

Bellasio C., Quirk J., Buckley T. N., Beerling D. J. (2017) – A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C4 Photosynthesis – Plant Physiol. 175(1): 104-119 – DOI: https://doi.org/10.1104/pp.17.00666http://www.plantphysiol.org/content/175/1/104 – (On our blog : https://plantstomata.wordpress.com/2019/05/15/a-dynamic-hydro-mechanical-and-biochemical-model-of-stomatal-conductance-for-c4-photosynthesis/ )

Bello Gutierrez M. A., Hawkins J. A., Rudall P. J. (2008) –Floral Morphology and Development in Quillajaceae and Surianaceae (Fabales), the Species-poor Relatives of Leguminosae and Polygalaceae – Ann. Bot. 101(9): 1433, 1491-1505 – DOI: 10.1093/aob/mcn073 –https://www.researchgate.net/publication/5356515_Floral_Morphology_and_Development_in_Quillajaceae_and_Surianaceae_Fabales_the_Species-poor_Relatives_of_Leguminosae_and_Polygalaceae – (On our blog : https://plantstomata.wordpress.com/2019/01/29/stomata-in-quillajaceae-and-surianaceae-fabales/ )

Ben-Asher J., Tsuyuki I., Bravdo B. A., Sagih M. (2006) – Irrigation of grapevines with saline water. I. Leaf area index, stomatal conductance, transpiration and photosynthesis. – Agricultural Water Management 83: 13-21 – DOI 10.1016/j.agwat.2006.01.002 – http://www.sciencedirect.com/science/article/pii/S0378377406000047 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64539)

Benlloch-Gonzalez M., Arquero O., Fournier J. M., Barranco D., Benlloch M. (2008) – K+ starvation inhibits water-stress-induced stomatal closure – Journal of Plant Physiology 165(6): 623-30 – DOI: 10.1016/j.jplph.2007.05.010 – https://www.researchgate.net/publication/6117592_K_starvation_inhibits_water-stress-induced_stomatal_closure – (On our blog : https://plantstomata.wordpress.com/2019/03/28/inhibition-of-the-stomatal-closure-mechanism-produced-by-moderate-potassium-starvation-is-a-widespread-plant-physiological-disorder/ )

Bennett J. M., Sinclair T. R., Muchow R. C., Costello S. R. (1987) – Dependence of Stomatal Conductance on leaf Water Potential, Turgor Potential, and Relative Water Content in Field-Grown Soybean and Maize – Crop Sci. 27: 984-99 – doi:10.2135/cropsci1987.0011183X002700050033x – https://dl.sciencesocieties.org/publications/citation-manager?action=prev&program=zt&ids[]=cs/27/5/CS0270050984 – (On our blog : https://plantstomata.wordpress.com/2019/03/27/dependence-of-stomatal-conductance-on-leaf-water-potential-turgor-potential-and-relative-water-content/ )

Bennett K. J., Rook D. A. (1978) – Stomatal and mesophyll resistances in two clones of Pinus radiana D. Don known to differ in transpiration and survival rate – Aust. J. PLant Physiol. 5: 231-238 – (Article not found)

Berger D., Altmann T. (2000) – A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana – Genes & Dev 14: 1119–1131 – DOI: 10.1101/gad.14.9.1119 – Abstract/FREE Full Text – http://genesdev.cshlp.org/content/14/9/1119.full.html – (On our blog : https://plantstomata.wordpress.com/2016/05/07/the-sdd1-gene-and-stomata/)

Berger F., Linstead P., Dolan L., Haseloff J. (1998) – Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermal patterning – Dev. Biol., 1998, vol. 194: 226-234 – Google ScholarCrossRefPubMed – https://www.infona.pl/resource/bwmeta1.element.elsevier-c187e580-b09f-387b-a5fb-b8534dbf46f9 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/stomata-patterning-on-the-hypocotyl/)

Bergmann Lab – Introduction to stomatal development – http://web.stanford.edu/group/bergmann/cgi-bin/bergmannlab/research – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-development-3/)

Bergmann D. C. (2003) – Integrating signals in stomatal development.- Curr. Opin. Plant Biol. 7: 1-7. – PMID: 14732438 – https://doi.org/10.1016/j.pbi.2003.10.001 – https://www.sciencedirect.com/science/article/pii/S1369526603001304 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/how-the-signals-that-regulate-stomatal-development-are-integrated/)

Bergmann D. C. (2004) – Integrating signals in stomatal development. – Curr. Opin. Plant Biol. 7, 26–32. – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/03/28/need-for-models-that-explain-how-the-signals-that-regulate-stomatal-development/)

Bergmann D. C. (2005) – Stomatal patterning: how do cells choose their fate? – Biologist Volume 52 Number 3, July 2005: 138-143 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.7879&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/27/how-do-we-know-whether-plants-have-an-optimal-density-of-stomata/)

Bergmann D. C. (2006) – Stomatal development: from neighbourly to global communication – Current Opinion in Plant Biol.  9(5): 478-483 – https://doi.org/10.1016/j.pbi.2006.07.001 – PMID: 16890476  – Google ScholarCrossRef – https://www.sciencedirect.com/science/article/pii/S1369526606001099 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/from-neighbourly-to-global-communication-in-stomatal-development/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. I. Key issues in plant development – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-1.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/key-issues-in-plant-development-stomata/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. II: Stomata as a model for stem cells – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-2.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-as-a-model-for-stem-cells/)

Bergmann D. C. (2017) – Bergmann Lab – http://web.stanford.edu/group/bergmann/cgi-bin/bergmannlab/publications – (On our blog : https://plantstomata.wordpress.com/2017/11/01/bergmann-lab-publications/)

Bergmann D. C., Abrash E., Davies K., Liu T., MacAlister C., Matos J., Ohashi-Ito K. (2012) – Here for the long haul: Organizing principles and innovations in stomatal development – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/organizing-principles-and-innovations-in-stomatal-development/ )

Bergmann D. C., Clare D., Samuels L., Kiss J. Z. (2017) – A Celebration of Fred David Sack – Plant Physiology 174(2): – DOI: https://doi.org/10.1104/pp.16.01832 – http://www.plantphysiol.org/content/174/2/470 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/tribute-to-f-d-sack-in-special-focus-issue-on-stomata/)

Bergmann D. C., Lukowitz W., Somerville C. R. (2004) – Stomatal development and pattern controlled by a MAPKK kinase – Science 304: 1494–1497 – 10.1126/science.1096014. – Abstract/FREE Full Text – View ArticlePubMed – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/08/mapkk-kinase-and-stomata-2/)

Bergmann D. C., Sack F. D. (2007) – Stomatal development – Annual review of plant biology 58: 163-181 – DOI:10.1146/annurev.arplant.58.032806.104023  – CrossRef Medline Web of Science Google Scholar  –  http://dx.doi.org/10.1146/annurev.arplant.58.032806.104023 – (On our blog : https://plantstomata.wordpress.com/2015/09/07/mechanisms-and-genes-underlying-stomatal-development-3/)

Berkowitz G., Zhang X., Mercie R., Leng Q., Lawton M. (2000) – Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes. – Plant Cell Physiol 41: 785–790 – DOI: https://doi.org/10.1093/pcp/41.6.785 – Abstract/FREE Full Text – https://academic.oup.com/pcp/article/41/6/785/1923323/Co-Expression-of-Calcium-Dependent-Protein-Kinase – (On our blog : https://plantstomata.wordpress.com/2017/02/01/calcium-dependent-protein-kinase-with-the-inward-rectified-guard-cell-k-channel-kat1-and-stomata/)

Bernacchi C. J., Kimball B. A., Quarles D. R., Stephen P. Long S. P., –Ort D. R. (2006) – Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration – Plant Physiology January 2007 vol. 143 no. 1 134-144 – doi: http://dx.doi.org/10.1104/pp.106.089557 – http://www.plantphysiol.org/content/143/1/134 – (On our blog : https://plantstomata.wordpress.com/2016/09/06/decreases-in-stomatal-conductance-of-soybean/)

Bernacchi C. J., Leaky A. D. B., Heady L. E., Morgan P. B., Dohleman F. G., Mcgrath J. M., Gillespie K. M., Wittig V. E., Rogers A., Long S. P., Ort D. R. (2006) – Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions – Plant Cell Environ. 29: 2077–2090 – DOI: 10.1111/j.1365-3040.2006.01581.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01581.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/09/variation-in-photosynthesis-and-stomatal-conductance/)

Berry J. (2017) – How improved valves let grasses “breathe,” cope with climate change – https://carnegiescience.edu/news/how-improved-valves-let-grasses-%E2%80%9Cbreathe%E2%80%9D-cope-climate-change – (On our blog https://plantstomata.wordpress.com/2017/10/29/grass-stomata/)

Berry J.A., Beerling D.J., Franks P.J. (2010) – Stomata: key players in the earth system, past and present – Curr. Opin. Plant Biol. 13: 232–239 – CrossRefMedlineGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/11/03/26795/)

Berryman C. A., Eamus D., Duff G. A. (1994) – Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. – Journal of Experimental Botany 45, 539–546 – https://doi.org/10.1093/jxb/45.5.539 – https://academic.oup.com/jxb/article-abstract/45/5/539/434778?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-responses-to-a-range-of-variables/)

Bertolino L. T., Caine R. S., Gray J. E. (2019) – Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World – Plant Sci. – https://doi.org/10.3389/fpls.2019.00225 -https://www.frontiersin.org/articles/10.3389/fpls.2019.00225/full – (On our blog : https://plantstomata.wordpress.com/2019/03/11/how-stomatal-density-and-morphology-are-involved-in-regulating-water-use-efficiency/ )

Bertoni G. (2009) – Integration of signaling pathways in stomatal development. – Plant Cell 21: 2542 – DOI: https://doi.org/10.1105/tpc.109.210910 – http://www.plantcell.org/content/21/9/2542 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/signaling-pathways-in-stomatal-development/)

Bertsch A. (1969) – Die Diffusionswiderstand der Spaltöffnungen; ein Vergleich des CO2-Gaswechsels von Blättern mit und ohne Epidermis -The diffusion resistance of stomata: a comparison between the CO2-exchange of normal and stripped leaves – Planta 87: 102-109 – https://link.springer.com/article/10.1007/BF00386969 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/the-diffusion-resistance-of-stomata/)

Bertsch A., Domes W. (1969) – CO2-Gaswechsel amphistomatischer Blätter. I. Der Einfluss unterschiedlicher Stomaverteilungen der beiden Blattepidermen auf den CO2-Transport – Planta 85: 183-193. – (On our blog : https://plantstomata.wordpress.com/2017/05/17/co2-exchange-in-amphistomatic-leaves-i-the-influence-of-the-distribution-of-stomata-on-both-leaf-surfaces-upon-co2-transport-in-german/)

Bessey C. E. (xxxx) – Some considerations upon the function of stomata – Science 7: 13-16 – (On our blog : https://plantstomata.wordpress.com/2017/04/28/functions-of-stomata/)

Bethke P., Drew M. (1992) – Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. – Plant Physiology 99: 219-226 – http://www.plantphysiol.org/content/plantphysiol/99/1/219.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/19/progressive-exposure-to-nacl-salinity-and-stomatal-behavior/ )

Beyer A. (1929) – Über Tropfenbildung in den Schliesszellen der Spaltöffnungen von Tradescantia zebrina – Bot. Arch. 26: – Akad. Verlagsges., 1929, 36 pp.

Beyschlag W., Eckstein J. (1998) – Stomatal Patchiness – In: Behnke HD., Esser K., Kadereit J.W., Lüttge U., Runge M. (eds) Progress in Botany. Progress in Botany, vol 59: 283-298 – Springer, Berlin, Heidelberg – https://link.springer.com/chapter/10.1007/978-3-642-80446-5_10#citeas – (On our blog : https://plantstomata.wordpress.com/2017/09/30/stomatal-patchiness-2/)

Beyschlag W., Eckstein J. (2001) – Towards a Causal Analysis of Stomatal Patchiness. The Role of Stomatal Size Variability and Hydrological Heterogeneity – Acta Oecologica, Vol. 22, No. 3, 2001, pp. 161-173. – http://dx.doi.org/10.1016/S1146-609X(01)01110-9 – (On our blog : https://plantstomata.wordpress.com/2016/05/08/stomatal-patchiness/)

Beyschlag W., Kresse F., Ryel R. H., Pfanz H. (1994) – Stomatal patchiness in conifers: experiments with Picea abies (L.) Karst. and Abies alba Mill. -Trees 8: 132–138 – https://doi.org/10.1007/BF00196637https://link.springer.com/article/10.1007%2FBF00196637 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/stomatal-patchiness-in-conifers/ )

Beyschlag W., Pfanz H. (1992) – A fast method to detect the occurrence of nonhomogenous distribution of stomatal aperture in heterobaric plant leaves. Experiments with Arbutus unedo L. during the diurnal course – Oecologia 82: 52–55 – DOI: 10.1007/BF00318533 –https://www.ncbi.nlm.nih.gov/pubmed/28313137 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/a-fast-method-to-detect-the-occurrence-of-nonhomogenous-distribution-of-stomatal-aperture-in-heterobaric-plant-leaves/ )

Beyschlag W., Pfanz H., Ryel R. J. (1992) – Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. – Planta. 1992 Jul;187(4):546-53. doi: 10.1007/BF00199976. – PMID: 24178151 – https://www.ncbi.nlm.nih.gov/pubmed/24178151 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-patchiness-in-evergreen-sclerophylls/)

Bhandari M. C., Sen D. N. (1973) – Role of epidermal cell turgor on stomatal regulation in isolated epidermal peelings of Citrullus colocynthis Linn. (Schard.) – Biochem. Physiol. Pflanzen 164: 180-187 (Article not found)

Bhat W. A. (2015) – Study of transient response of plant leaf using infrared imaging and effect of light on stomatal opening – BEST 2015 ,Indian Institute of Science (IISc Bangalore) – Dept. of Bioengineering and Biosciences -IIT GUWAHATI – http://www.be.iisc.ernet.in/BESTReports/WaseemBhat.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/effect-of-light-on-stomatal-opening/)

Bhatti M. A., Felsot A. S., Parker R., Mink G. (1998) – Leaf photosynthesis, stomatal resistance, and growth of wine grapes (Vitis vinifera L.) after exposure to simulated chlorsulfuron drift. – J. Environ. Sci. Health – Part B: Pestic. Food Contam. Agric. Wastes 33: 67-81 – http://www.tandfonline.com/doi/abs/10.1080/03601239809373130 – (On our blog : https://plantstomata.wordpress.com/2018/02/19/exposure-to-simulated-chlorsulfuron-drift-and-stomatal-resistance/ )View Post

Bhave N. S., Veley K. M., Nadeau J. A., Lucas J. R., Bhave S. L., Sack F. D. (2009) – TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems. – Planta 229:357– 367. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/08/too-many-mouths-and-stomatal-development/)

Bhawsar S. (2011) – Stomata and water cycle – Biotech Articles 2011-01-27 – https://www.biotecharticles.com/Biology-Article/Stomata-and-Water-Cycle-604.html – (On our blog : https://plantstomata.wordpress.com/2017/10/28/stomata-and-water-cycle/)

BHC (2004) – Modified Organism Potato Modified for Increased Stomata Density [Online]. Available at: https://bch.cbd.int/database/record.shtml?documentid=100293

Bhugra S., Mishra D., Anupama A., Chaudhury S., Lall B., Chugh A., (2018) – Automatic Quantification of Stomata for High-Throughput Plant Phenotyping – IEEE Xplore 2018 24th International Conference on Pattern Recognition (ICPR) – DOI: 10.1109/ICPR.2018.8546196https://ieeexplore.ieee.org/document/8546196/authors#authors – (On our blog : https://plantstomata.wordpress.com/2019/08/25/automatic-quantification-of-stomata/ )

Bialowiec A., Koziel J. A., Manczarski P. (2019) – Stomatal Conductance Measurement for Toxicity Assessment in Zero-Effluent Constructed Wetlands: Effects of Landfill Leachate on Hydrophytes – Int. J. Environ. Res. Public Health201916(3), 468 – https://doi.org/10.3390/ijerph16030468 – https://www.mdpi.com/1660-4601/16/3/468 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/stomatal-conductance-measurement-for-toxicity-assessment/ )

Bick I., Thiel G., Homann U. (2001) – Cytochalasin D attenuates the desensitisation of pressure‐stimulated vesicle fusion in guard cell protoplasts – European Journal of Cell Biology 80: 521– 526 – https://doi.org/10.1078/0171-9335-00189Gethttps://www.sciencedirect.com/science/article/pii/S0171933504701685?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/26/membrane-stretch-initiates-a-reactive-process-that-may-fortify-or-stabilise-the-plasma-membrane-of-guard-cell-protoplasts/ )

Bingham G.E. (1972) – Stomatal response in field corn (Zea mays L.) and apple (Malus sylvesterus), — Ph.D. Thesis, Cornell University, Ithaca, N.Y.

Bingham G. E., Coyne P. I. (1980) – Photosynthesis and stomatal behaviour in Ponderosa pine subjected to oxidant stress: Water stress response. In: Miller PR (ed) Effects of Air Pollutants on Mediterranean and Temperate Forest Ecosystems. Pac SW For Range Exp Sta Gen Tech Rep PSW-43, Berkeley, p 228

Bishnoi N. R., Krishnamoorthy H. N. (1992) – Effect of Waterlogging and Gibberellic Acid on Leaf Gas Exchange in Peanut (Arachis hypogaea L.) – Journal of Plant Physiology 139(4): 503-505 – https://doi.org/10.1016/S0176-1617(11)80502-X – https://www.sciencedirect.com/science/article/pii/S017616171180502X – (On our blog : https://plantstomata.wordpress.com/2018/09/14/waterlogging-gibberellic-acid-and-stomatal-diffusive-resistance/ )

Bishnoi N. R., Krishnamoorthy H. N. (1993) – Effect of gibberellic acid on stomatal diffusive resistance and photosynthesis in waterlogged peanut plants – Biologia Plantarum 35: 467-471 – https://doi.org/10.1007/BF02928528 – https://link.springer.com/article/10.1007/BF02928528 – (On our blog : https://plantstomata.wordpress.com/2018/09/14/gibberellic-acid-and-stomatal-diffusive-resistance/ )

Black C. R., Black V. J. (1979) – The effects of low concentrations of sulphur dioxide on stomata1 conductance and epidermal cell survival in field bean (Vicia faba L.) – Journal of Experimental Botany 30: 291-298 – https://www.jstor.org/stable/23688826?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-conductances-increased-by-exposure-to-so2/ )

Black C.R., Squire G.R. (1979) – Effects of atmospheric saturation deficit on the stomatal conductance of pearl millet (Pennisetum typhoides S. and H.) and Groundnut (Arachis hypogea L.). – J. Exp. Bot. 118: 935–45 (1979) – DOI: https://doi.org/10.1093/jxb/30.5.935 – Google Scholar – https://academic.oup.com/jxb/article-abstract/30/5/935/450295/Effects-of-Atmospheric-Saturation-Deficit-on-the – (On our blog : https://plantstomata.wordpress.com/2017/02/01/atmospheric-saturation-deficit-and-stomatal-conductance/)

Black V. J., Unsworth M. H. (1980) – Stomatal Responses to Sulphur Dioxide and Vapour Pressure Deficit – Journal of Experimental Botany 31(2): 667–677 – https://doi.org/10.1093/jxb/31.2.667https://academic.oup.com/jxb/article-abstract/31/2/667/488780 – (On our blog : https://plantstomata.wordpress.com/2019/10/18/stomatal-responses-to-so2-and-vapour-pressure-deficit/ )

Blackman P. G., Davies W. J. (1983) –  The effects of cytokinins and ABA on stomatal behaviour of maize and Commelina. – J. Exp. Bot. 34: 1619-1626 – https://doi.org/10.1093/jxb/34.12.1619 – https://academic.oup.com/jxb/article-abstract/34/12/1619/599232?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/effects-of-cytokinins-and-aba-on-stomatal-behaviour/)

Blackman P. G., Davies W. J. (1984) – Modification of the CO2 responses of maize stomata by abscisic acid and by naturally-occurring and synthetic cytokinins. – Journal of Experimental Botany 35, 174–179 – https://doi.org/10.1093/jxb/35.2.174 – CrossRefCAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/21/co2-aba-cytokinins-and-stomata/)

Blackman P. G., Davies W.J. (1984) – Age-related changes in stomatal response to cytokinins and abscisic acid. – Ann. Bot. 54: 121-125 – https://doi.org/10.1093/oxfordjournals.aob.a086765 – https://academic.oup.com/aob/article-abstract/54/1/121/116161?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/cytokinins-reversed-the-effect-of-aba-on-stomata/)

Blakemore, E. (2015) – Creating Drought-Tolerant Plants By Hacking Their Natural Responses – http://www.smithsonianmag.com/smart-news/scientists-can-program-plants-be-more-drought-tolerant-180954159/?no-ist – (On our blog).

Blanke M. M., Belcher A. R. (1989) – Stomata of apple leaves cultured in vitro – Plant Cell Tissue Organ Cult. 19: 85-89 – https://link.springer.com/article/10.1007/BF00037780 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomata-of-apple-leaves-cultured-in-vitro/)

Blanke M. M., Cooke D. T. (2004) – Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves – Plant Growth Regul. 42: 153–160 – Google Scholar – CrossRef – https://link.springer.com/article/10.1023/B:GROW.0000017489.21970.d4 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/effects-of-flooding-and-drought-on-stomatal-activity/)

Blatt M. R. (1985) – Extracellular potassium activity in attached leaves and its relation to stomatal function. – Journal of Experimental Botany 36: 240–251. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/03/21/k-and-stomata/)

Blatt M. R. (1987) –  Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes.- Planta 170(2): 272–287 – doi: 10.1007/BF00397898. –https://link.springer.com/article/10.1007/BF00397898 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/electrical-characteristics-of-stomatal-guard-cells/)

Blatt M. R. (1987) Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “Electrogenic” transport revealed by current-voltage and difference-current-voltage analysis. – J. Membrane Biol. 98: 257–274 – https://link.springer.com/article/10.1007/BF01871188 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/electrical-characteristics-of-stomatal-guard-cells-the-contribution-of-atp-dependent-electrogenic-transport/)

Blatt M. R. (1988) – Potassium-dependent bipolar gating of potassium channels in guard cells.- J. Membrane Biol. 102:235–246 – https://doi.org/10.1007/BF01925717 – https://link.springer.com/article/10.1007/BF01925717#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/09/bipolar-gating-of-k-channels-in-guard-cells/)

Blatt M. R. (1988) – Mechanisms of fusicoccin action: a dominant role for secondary transport in a higher-plant cell – Planta 174: 187–200 – DOI: 10.1007/BF00394771 – https://www.ncbi.nlm.nih.gov/pubmed/24221475?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/30/fusicoccin-plays-a-dominant-role-for-secondary-transport-in-stomata/

Blatt M. R. (1990) – Potassium channel currents in intact stomatal guard cells: Rapid enhancement by abscisic acid. – Planta 180: 445-455 – DOI 10.1007/BF00198799 –https://link.springer.com/article/10.1007/BF01160403 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/k-channel-currents-in-intact-stomata/)

Blatt M. R. (1991) – Ion channel gating in plants: physiological implications and integration for stomatal function. – Journal of Membrane Biology 124: 95–112 – PMID: 1662287 – CrossRef |PubMed |CAS | – https://link.springer.com/article/10.1007/BF01870455 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/7057)

Blatt M. R. (1992) – K+ channels of stomatal guard cells: Characteristics of the inward rectifier and its control by pH. – J. Gen. Physiol. 99, 615–644. – CrossRefPubMedCAS | – (On our blog : https://plantstomata.wordpress.com/2015/10/09/k-channels-of-stomatal-guard-cells/)

Blatt M.R. (1999) – Reassessing roles for Ca2+ in guard cell signalling – J. Exp. Bot.50: 989–999 – CrossRefCAS | – (On our blog : https://plantstomata.wordpress.com/2016/05/09/stomata-ca2-in-guard-cell-signalling/)

Blatt M. R. (2000) – Ca2+ signalling and control of guard-cell volume in stomatal movements – Curr. Opinion Plant Biol 3: 196–204 – CrossRefMedline Google Scholar – http://dx.doi.org/10.1016/S1369-5266(00)80065-5 – http://www.sciencedirect.com/science/article/pii/S1369526600800655?np=y&npKey=e7d461eaa74355a375dec534bedb8747eb9c7dc3379a3a8515f2046bf2415553 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-signalling-and-stomatal-movements/)

Blatt M. R. (2000) – Cellular signaling and volume control in stomatal movements in plants. – Annual Review of Cell and Developmental Biology 16: 221–241 – doi: 10.1146/annurev.cellbio.16.1.221 – CrossRef |PubMed |CASMedline – (On our blog : https://plantstomata.wordpress.com/2015/09/08/understanding-of-guard-cell-signaling/).

Blatt M. R. (2002) – Towards understanding vesicle traffic and the guard cell model. New Phytologist 153: 405–413. – Wiley Online Library |CAS | – http://www.brodribblab.org.au/wp-content/uploads/2017/08/Small-Pores-with-a-Big-Impact.pdf – (On our blog : https://plantstomata.wordpress.com/2016/03/07/stomata-guard-cells-and-vesicular-trafficking/)

Blatt M. R. (2016) – Plant Physiology: Redefining the Enigma of Metabolism in Stomatal Movement – Current Biology 26(3): R107-R109 – DOI10.1016/j.cub.2015.12.025 – https://www.infona.pl/resource/bwmeta1.element.elsevier-68875018-026c-36e7-9b28-b94879f68d03 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/guard-cells-also-metabolise-starch-to-accelerate-opening-of-stomata/)

Blatt M. R. (xxxx) – Ca2+ signalling and ion channel regulation in guard cells – https://www.gla.ac.uk/researchinstitutes/biology/staff/michaelblatt/researchinterests/calciumsignallingandionchannelregulationinguardcells/# – (On our blog : https://plantstomata.wordpress.com/2019/04/15/ca2-signalling-and-ion-channel-regulation-in-stomatal-guard-cells/ )

Blatt M. R., Armstrong (1993) –  K+ channels of stomatal guard cells: abscisic acid evoked control of the outward rectifier mediated by cytoplasmic pH. – Planta, 191,330–341. – CrossRef | CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/k-channels-of-stomatal-guard-cells-2/).

Blatt M. R., Brodribb T. J., Torii K. U. (2017) – Small Pores with a Big Impact – Plant Physiology 174(2): 467–469 – DOI: https://doi.org/10.1104/pp.17.00642 – http://www.plantphysiol.org/content/174/2/467 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/focus-issue-on-stomata-the-first-dedicated-to-the-evolution-development-and-physiology-of-guard-cells/)

Blatt M. R., Clint G. M. (1989) – Mechanisms of fusicoccin action:  kinetic modification and inactivation of potassium channels in guard cells. – Planta 178: 509–523 – doi: 10.1007/BF00963821. – https://link.springer.com/article/10.1007/BF00963821 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/mechanisms-of-fusicoccin-action-in-stomata/)

Blatt M. R., Garcia-Mata C., Sokolowski S. (2007) – Membrane transport and Ca2+ oscillations in guard cells. In S Mancuso, S Shabala, eds, Rhythms in Plants: Phenomenology, Mechanisms, and Adaptive Significance. Springer, Berlin, pp 115–134 – DOI: 10.1007/978-3-540-68071-0_6 – https://www.researchgate.net/publication/226682645_Membrane_Transport_and_Ca2_Oscillations_in_Guard_Cells – (On our blog : https://plantstomata.wordpress.com/2018/11/30/short-term-oscillations-in-solute-transport-are-the-norm-for-homeostatic-control-of-osmotic-content-in-stomata/https://plantstomata.wordpress.com/2018/11/30/short-term-oscillations-in-solute-transport-are-the-norm-for-homeostatic-control-of-osmotic-content-in-stomata/

Blatt M. R., Grabov A.  (1997) – Signalling gates in abscisic acid-mediated control of guard cell ion channels –  Physiol. Plantarum Vol. 100, Issue 3 July 1997 , 481–490 – DOI: 10.1111/j.1399-3054.1997.tb03052.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03052.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/01/a-remarkably-complex-network-layering-positive-and-negative-controls-with-the-ion-channels-that-facilitate-ion-fluxes-for-stomatal-movement/)

Blatt M. R., Grabov A., Brearley J., Hammond-Kosack K., Jones J. D.  (1999) – K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction – Plant J 19: 453–462  – https://doi.org/10.1046/j.1365-313x.1999.00534.x -https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313x.1999.00534.x – (On our blog : https://plantstomata.wordpress.com/2018/11/27/k-channels-of-stomatal-guard-cells-3/ )

Blatt M. R., Gradmann D. (1997) – K+-sensitive gating of the K+outward rectifier in Vicia guard cells – J Membr Biol 158: 241–256 –  https://doi.org/10.1007/s002329900261 – https://link.springer.com/article/10.1007%2Fs002329900261#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/27/k-sensitive-gating-of-the-koutward-rectifier-in-stomatal-guard-cells/

Blatt M.R., Thiel G. (1994) – K+ channels of stomatal guard cells: Bimodal control of the K+inward-rectifier evoked by auxin. – Plant J. 5: 55–68 [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/03/21/k-channels-of-stomatal-guard-cells-and-auxin/)

Blatt M. R., Thiel G., Trentham D. R. (1990) – Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,54risphosphate. – Nature 346: 766-769 – doi:10.1038/346766a0 – https://www.nature.com/articles/346766a0#citeas – (On our blog : https://plantstomata.wordpress.com/2019/11/13/reversible-inactivation-of-k-channels-of-stomatal-guard-cells/ )

Blatt M. R., Wang Y., Leonhardt N., Hills A. (2014) –  Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells – Journal of Plant Physiology, 2014, 171, 9, 770-778 – doi:10.1016/j.jplph.2013.09.014 – http://www.sciencedirect.com/science/article/pii/S017616171300401X – (On our blog : https://plantstomata.wordpress.com/2016/05/09/onguard-and-stomatal-guard-cell-physiology/)

Blatt M. R., Wang Y., Papanastiou M., Eisenach C., Karnik R., Lew V. L., Chen Z., Baetz U., Amtmann A., Hills A. (2012) – Quantitative systems modelling of the stomatal guard cell yields unexpected and emergent behaviours – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-onguard-model-and-stomatal-behavior/ )

Boccalandro H. E., Giordano C. V., Ploschuk E. L., Piccoli P. N., Bottini R., Casal J. J.
(2012) – Phototropins but not cryptochromes mediate the blue light-specific
promotion of stomatal conductance, while both enhance photosynthesis and
transpiration under full sunlight. – Plant Physiology 158: 1475–1484 – doi: 10.1104/pp.111.187237. Epub 2011 Dec 6. – https://www.ncbi.nlm.nih.gov/pubmed/22147516 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/phototropins-but-not-cryptochromes-mediate-the-blue-light-speci%ef%ac%81c-promotion-of-stomatal-conductance/)

Boetsch J., Chin J., Croxdale J. (1995) – Arrest of stomatal initials in Tradescantia is linked to the proximity of neighboring stomata and results in the arrested initials acquiring properties of epidermal cells. Dev Biol 1995, 168:28-38. (PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2017/02/17/arrested-stomatal-initials-and-stomatal-neighbors/).

Boetsch J., Chin J., Ling M., Croxdale J. (1996) – Elevated carbon dioxide affects the patterning of subsidiary cells in Tradescantia stomatal complexes. – Journal of Experimental Botany 47: 925–932 – https://doi.org/10.1093/jxb/47.7.925 – Google Scholar https://academic.oup.com/jxb/article/47/7/925/580389 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/regulating-stomatal-conductance-in-response-to-elevated-co2-without-changing-the-relative-number-of-stomata/ )

Boggs J. Z., Loewy K., Bibee K., Hechel M. S. (2010) – Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana – Plant Growth Regul 60: 77–81 – DOI 10.1007/s10725-009-9427-3 – Phytochromes_influence_stomatal_conducta.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/phytochromes-influence-stomatal-conductance-plasticity/ )

Bolliger R. (1959) – Entwicklung und Struktur der Epidermisaussenwand bei einigen Angiospermenblättern – J. Ultrastructure Research 3: 105-130 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/epidermis-and-cuticula-in-angiosperms-in-german/)

Bonan G. B., Williams M., Fisher R. A., Oleson K. W. (2014) – Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum – Geosci. Model Dev., 7, 2193–2222, 2014 –  doi:10.5194/gmd-7-2193-2014 – https://www.geosci-model-dev.net/7/2193/2014/gmd-7-2193-2014.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-conductance-models-3/)

Bond B. J., Kavanaugh K. L. (1999) – Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential – Tree Physiol. 19: 503–510 – https://doi.org/10.1093/treephys/19.8.503 – https://academic.oup.com/treephys/article/19/8/503/1672642 – (On our blog : https://plantstomata.wordpress.com/2018/11/23/73239/

Boorse G. Tallman G. (1999) – Guard cell protoplasts. Isolation, culture, and regeneration of plants. – Methods of Molecular Biology 111243–257 – DOI 10.1385/1-59259-583-9:243 – Medline – PubMed – https://www.researchgate.net/publication/13209967_Guard_Cell_Protoplasts_Isolation_Culture_and_Regeneration_of_Plants – (On our blog : https://plantstomata.wordpress.com/2017/12/11/guard-cell-protoplasts-and-adjustment-of-stomatal-dimensions/)

Bopp M., Bock G. (1961) – Die Reaktion der Schliesszellen bei einigen panaschierten Pflanzen – Ber. Deutsch. Bot. Ges. LXXIV (4) : 125-134 – (On our blog : https://plantstomata.wordpress.com/2017/04/22/effect-of-chlorophyll-content-on-stomatal-movement-in-variegated-plants-in-german/)

Borel C. (1999) – Modélization de la synthèse d’ABA et du contrôle stomatique en cas de déficit hydrique chez des plantes transgéniques affectées dans la synthèse d’ABA – PhD thesis, ENSA.Montpellier France, 122 pp. – (On our blog : https://plantstomata.wordpress.com/2019/11/04/modelization-de-la-synthese-daba-et-du-controle-stomatique-en-cas-de-deficit-hydrique/)

Borel C., Audran C., Frey A., Marion-Poll A., Tardieu F., Simonneau T. (2001)N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit – Journal of Experimental Botany 52: 427–434 – https://doi.org/10.1093/jxb/52.suppl_1.427https://academic.oup.com/jxb/article/52/suppl_1/427/2897254 – (On our blog : https://plantstomata.wordpress.com/2019/11/04/nicotiana-plumbaginifolia-zeaxanthin-epoxidase-transgenic-lines-have-unaltered-baseline-aba-accumulations-in-roots-and-xylem-sap-but-contrasting-sensitivities-of-aba-accumulation-to-water-deficit/)

Borel C., Frey A., Marion-Poll A., Tardieu F., Simonneau T. (2001) – Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought ? – Plant Cell Environ. 24: 477-489 – DOI: 10.1046/j.1365-3040.2001.00698.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2001.00698.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/11/engineering-aba-biosynthesis-and-modification-of-stomatal-response-to-drought/)

Borel C., Simonneau T. (2002) – Is the ABA concentration in the sap collected by pressurizing leaves relevant for analysing drought effects on stomata? Evidence from ABA-fed leaves of transgenic plants with modified capacities to synthesize ABA – Journal of Experimental Botany 53: 287-296 – https://doi.org/10.1093/jexbot/53.367.287https://academic.oup.com/jxb/article/53/367/287/430309 – (On our blog : https://plantstomata.wordpress.com/2019/11/04/this-study-supports-the-use-of-the-leaf-pressurization-technique-for-collecting-xylem-sap-and-assessing-the-role-of-aba-on-stomata/ )

Borel C., Simonneau T., This D., Tardieu F. (1997) – Stomatal conductance and ABA concentration in the xylem sap of barley lines of contrasting genetic origins. – Australian journal of plant physiology 24 (5): 607-615 – DOI 10.1071/PP96097 – https://www.researchgate.net/publication/229422914_Stomatal_Conductance_and_ABA_Concentration_in_the_Xylem_Sap_of_Barley_Lines_of_Contrasting_Genetic_Origins – (On our blog : https://plantstomata.wordpress.com/2017/12/11/stomatal-conductance-and-aba-concentration/)

Borthakur D., Saikia J., Roy S. (2017) – Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency – Journ. Plant Physiol. & Breeding 7(1): 121-131 – http://breeding.tabrizu.ac.ir/article_6365.html – (On our blog : https://plantstomata.wordpress.com/2018/05/08/stomatal-density-an-important-selection-criterion/ )

Boso S., VillaVerde A. V., Santiago J., Gago P., Berger D. M., Düggelin M., Kassemeyer H. H., Martinez M. C. (2010) – Macro- and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew – Vitis 49: 43-50 – ISSN 0042-7500 – https://www.semanticscholar.org/paper/Macro-and-microscopic-leaf-characteristics-of-six-(-Boso-Alonso-Villaverde/5a81ffd08c46a162a271ddd92faa729791b4e85b – (On our blog : https://plantstomata.wordpress.com/2019/10/24/stomatal-index-and-susceptibilities-to-grapevine-downy-mildew/ )

Boudolf V., Barrôco R., de Almeida Engler J., Verkest A., Beeckman T., Naudts M., Inzé D., De Veylder L. (2004) – B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana – The Plant Cell April 2004 vol. 16 no. 4 945-955 – http://dx.doi.org/10.1105/tpc.021774 – http://www.plantcell.org/content/16/4/945.abstract – (On our blog : https://plantstomata.wordpress.com/2015/08/25/b1-type-cyclin-dependent-kinases-and-stomata-in-arabidopsis/)

Bouranis D. L., Chorianopoulou S. N., Dionias A., Sofianou G., Thanasoulas A., Liakopoulos G., Nikolopoulos D. (2012) – Comparison of the S‐, N‐or P‐deprivations’ impacts on stomatal conductance, transpiration and photosynthetic rate of young maize leaves – Amer J Plant Sci 3(8): 1058–1065 –  http://dx.doi.org/10.4236/ajps.2012.38126 – https://file.scirp.org/pdf/AJPS20120800003_47363188.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/02/s%e2%80%90-n%e2%80%90or-p%e2%80%90deprivations-impacts-on-stomatal-conductance/ ) 

Bouranis D. L., Chorianopoulou S. N., Dionias A., Sofianou G., Thanasoulas A., Liakopoulos G., Nikolopoulos D. (2012) – Comparison of the S‐, N‐ or P‐deprivations’ impacts on stomatal conductance, transpiration and photosynthetic rate of young maize leaves – Am J Plant Sci 3: 1058–1065 – http://dx.doi.org/10.4236/ajps.2012.38126 – https://file.scirp.org/pdf/AJPS20120800003_47363188.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/28/s%e2%80%90-n%e2%80%90-or-p%e2%80%90deprivations-impacts-on-stomatal-conductance/

Bouranis D. L., Dionias A., Chorianopoulou S. N., Liakopoulos G., Nikolopoulos D. (2014) – Distribution profiles and interrelations of stomatal conductance, transpiration rate and water dynamics in young maize laminas under nitrogen deprivation – Am J Plant Sci 5: 659–670 – https://doi.org/10.1080/11263504.2014.984789 –https://www.tandfonline.com/doi/abs/10.1080/11263504.2014.984789 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/distribution-profiles-and-interrelations-of-stomatal-conductance/

Bourdais G., McLachlan D. H., Rickett L. M., Zhou J., Siwoszek A., Häweker H., Hartley M., Kuhn H., Morris R. J., MacLean D., Robatzek S., (2019) – The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure – Traffic 20(2): 168-180 – https://doi.org/10.1111/tra.12625https://onlinelibrary.wiley.com/doi/full/10.1111/tra.12625 – (On our blog : https://plantstomata.wordpress.com/2019/10/08/a-valuable-image%e2%80%90based-tool-to-dissect-guard-cell-responses-and-outline-a-genetic-framework-of-stomatal-closure/ )

Bourne A. E., Creek D., Peters J. M. R., Ellsworth D. S., Choat B. (2017) – Species climate range influences hydraulic and stomatal traits in Eucalyptus species – Annals of Botany 120: 123–133 – doi: 10.1093/aob/mcx020https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737682/ – (On our blog : https://plantstomata.wordpress.com/2019/10/09/species-climate-range-influences-hydraulic-and-stomatal-traits/ )

Bourne A. E., Haigh A. M., Ellsworth D. S. (2015) – Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species – Tree Physiology 35: 266–278 – doi: 10.1093/treephys/tpv014 – Epub 2015 Mar 12 – https://www.ncbi.nlm.nih.gov/pubmed/25769338 – (On our blog : https://plantstomata.wordpress.com/2019/10/09/stomatal-sensitivity-to-vapour-pressure-deficit-relates-to-climate-of-origin/ )

Bowling D. J. F. (1976) – Malate-switch hypothesis to explain the action of stomata. – Nature 262: 393–394 – doi:10.1038/262393a0 – Google Scholar – https://www.nature.com/articles/262393a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/malate-switch-hypothesis-to-explain-the-action-of-stomata/)

Bowling D. J. F. (1987) – Measurement of the apoplastic activity of K+ and Cl in the leaf epidermis of Commelina communis in relation to stomatal activity. – Journal of Experimental Botany 38: 1351–1355. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/03/21/apoplastic-activity-of-k-and-cl-and-stomata/)

Bowling D. J. F., Edwards A. (1984) – pH gradients in the stomatal complex of Tradescantia virginiana. – Journal of Experimental Botany 35 : 1641–1645 – https://doi.org/10.1093/jxb/35.11.1641 – https://academic.oup.com/jxb/article-abstract/35/11/1641/719683 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/ph-gradients-in-the-stomatal-complex/)

Bowling D. J. F., Smith G. N. (1990) – Apoplastic transport in the leaf epidermal in relation to stomatal activity – Biochem. Physiol. Pflanz. 186: 309-316 – ISSN : 0015-3796 – https://doi.org/10.1016/S0015-3796(11)80223-4 https://www.cabdirect.org/cabdirect/abstract/19912304656 – (On our blog : https://plantstomata.wordpress.com/2019/03/30/a-release-by-the-epidermal-cells-of-potassium-which-diffuses-in-the-apoplast-to-the-stomatal-guard-cells/ )

Bowman J. L. (2011) – Stomata: Active Portals for Flourishing on Land – Current Biology 21(14): 540-541 – DOI10.1016/j.cub.2011.06.021 – https://www.infona.pl/resource/bwmeta1.element.elsevier-30ed66d7-875e-3268-bd9f-edf4c55b60da – (On our blog : https://plantstomata.wordpress.com/2017/10/12/early-land-plants-could-actively-control-stomata/)

Boyer J. S. (1965) – Effects of osmotic water stress on metabolic rates of cotton plants with open stomata – Plant Physiology 40: 229–234 – PMCID: PMC550271- PMID: 16656078 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC550271/ – (On our blog : https://plantstomata.wordpress.com/2019/04/18/osmotic-water-stress-on-metabolic-rates-of-leaves-with-open-stomata/ )

Boyer J. S. (1971) – Nonstomatal inhibition of photosynthesis in sunflower at low leaf water potentials and high light intensities – Plant Physiol. 48: 532–536 – DOI: 10.1104/pp.48.5.532http://www.plantphysiol.org/content/48/5/532https://www.ncbi.nlm.nih.gov/pubmed/16657833?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/08/24/the-degree-to-which-photosynthesis-under-high-light-was-affected-by-stomatal-and-nonstomatal-factors/ )

Bozoglu H., Karayel R. (2006) – Investigation of Stomata Densities in Pea (Pisum sativum L.) Lines/Cultivars – Online Journal of Biological Sciences 6 (2): 56-61 – ISSN 1608-4217 – https://thescipub.com/PDF/ojbsci.2006.56.61.pdf – (On our blog : https://plantstomata.wordpress.com/2019/07/17/stomata-densities-in-pea/ )

Bradbury D., Ennis W. B. Jr. (1952) – Stomatal closure in kidney bean plants treated with ammonium 2,4-dichlorophenoxyacetate – Amer. J. Bot. 39: 324-328 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-and-24-d/)

Bradford K. J., Sharkey T. D., Farquhar G. D. (1983) – Gas exchange, stomatal behaviour, and d13C values of the flacca tomato mutant in relation to abscisic acid. – Plant Physiol 72 245–250 – DOI: https://doi.org/10.1104/pp.72.1.245 –  [PMC free article] [PubMed] – http://www.plantphysiol.org/content/72/1/245.short – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-behavior-in-flacca-a-mutant-of-tomato/).

Brady K. (x) – Challenging a Fine Balance – Dept. Biol. Univ. Washington. – (http://www.biology.washington.edu/newsletter/sum12/Keiko%20Torii.html) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/could-stomatal-patterning-be-manipulated-for-agricultural-purposes/)

Brandt B., Brodsky D.E., Xue S., Negi J., Iba K., Kangasjärvi J., Ghassemian M., Stephan A. B., Hu H., Schroeder J. I. (2012) – Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action – Proc Natl Acad Sci USA 109: 10593–10598  – https://doi.org/10.1073/pnas.1116590109 – http://www.plantphysiol.org/content/178/1/441 – (On our blog : https://plantstomata.wordpress.com/2018/09/10/reconstitution-of-aba-activation-of-slac1-anion-channel-by-cpk6-and-ost1-kinases-in-stomata/

Brandt B., Munemasa S., Wang C., Nguyen D., Yong T., Yang P. G., Poretsky E., Belknap T. F., Waadt R., Alemán F., Schroeder J. I. (2015) –  Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells, eLife, 2015, 4  – http://elifesciences.org/content/4/e03599v1 – (On our blog : https://plantstomata.wordpress.com/2015/10/23/ca-aba-and-stomata/)

Braune W., Hartung W., Oelmüller R., Fischer W. (2000) – Functional Stomata in Non-photosynthetic, Non-ABA Accumulating leaves of a Gymnocladus Albino – Journal of Plant Physiology 15(5-6): 695-703 – DOI10.1016/S0176-1617(00)80234-5 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5f38faaf-58e6-39b6-92a1-1819611e3fe2 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/functional-stomata-giant-pores-in-non-photosynthetic-albino-leaves/)

Brearley J., Venis M. A., Blatt M. R . (1997) – The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. – Planta 203: 145–154 CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/21/co2-k-and-anion-channels-and-stomata/)

Bréda N., Cochard H., Dreyer E., Granier A. (1993) – Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress – Annals of Forest Science 50: 571–582 – DOI: 10.1051/forest:19930606 – https://www.afs-journal.org/articles/forest/abs/1993/06/AFS_0003-4312_1993_50_6_ART0006/AFS_0003-4312_1993_50_6_ART0006.html – (On our blog : https://plantstomata.wordpress.com/2018/10/10/transpiration-stomatal-conductance-and-vulnerability-to-cavitation/ )

Bréda N., Cochard H., Dreyer E., Granier A. (1993) – Water transfer in a mature oak stand (Quercus petraea): seasonal evolution and effects of a severe drought – Can J For Res 23: 1136-1143 – https://doi.org/10.1139/x93-144 –http://www.nrcresearchpress.com/doi/10.1139/x93-144 – (On our blog : https://plantstomata.wordpress.com/2018/12/01/sessile-oak-quercus-petraea-considered-as-drought-tolerant-because-of-adaptations-like-maintenance-of-significant-stomatal-conductance/

Bredmose N. B., Nielsen K. L. (2009) – Controlled atmosphere storage at high CO2 and low O2 levels affects stomatal conductance and influence root formation in Kalanchoe cuttings – Scientia Horticulturae 122(1): 91-95 – DOI10.1016/j.scienta.2009.03.017 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fb0f6431-3393-3d61-8300-daf3f07cc927 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/stomatal-conductance-and-high-co2-and-low-o2-levels/)

Bremer K. (2019) – Capturing the plant-water dynamics of corn – TU Delft – https://repository.tudelft.nl/islandora/object/uuid:b5dec4e7-da85-42d5-a614-80174a822ba0?collection=education – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomatal-conductance-and-leaf-water-potential-of-corn-during-the-growing-season/ )

Brennan J. (2017) – How Does CO2 Affect the Opening of Stomata? – Sciencing 2017-04-25 – https://sciencing.com/co2-affect-opening-stomata-20980.html – (On our blog : https://plantstomata.wordpress.com/2017/09/26/co2-and-the-opening-of-stomata/)Ewers B. E., Oren R. (2000) – Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiology 20: 579-589 –

Bresta P., Nikolopoulos D., Economou G., Vahamidis P., Lyra D., Karamanos A.,  Karabourniotis G. (2011) – Modification of water entry (xylem vessels) and water exit (stomata) orchestrates long term drought acclimation of wheat leaves – Plant and Soil 347(1-2): 179-193 – DOI10.1007/s11104-011-0837-4 – https://www.infona.pl/resource/bwmeta1.element.springer-d529decb-208f-3557-a9c3-072cf8f9cc8a – (On our blog : https://plantstomata.wordpress.com/2017/10/08/modification-of-water-entry-xylem-vessels-and-water-exit-stomata-orchestrates-long-term-drought-acclimation/)

Bright J., Desikan R., Hancock J. T., Weir I. S., Neill S. J. (2006) –  ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. – The Plant Journal 45: 113–122 – PMID:16367958; http://dx.doi.org/10.1111/j.1365-313X.2005.02615.x – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2015/09/08/strong-inter-relationship-between-aba-endogenous-h2o2-and-no-induced-stomatal-closure/)

Brillada C., Jiameng Zheng J., Rovira-Diaz E., Rojas-Pierce M., Kruger F., Askani J. C., Schumacher K. (2018) – Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants – Proceedings of the National Academy of Sciences – DOI: 10.1073/pnas.1807763115 – https://news.ncsu.edu/2018/08/hops-in-vacuole-fusion/ – (On our blog : https://plantstomata.wordpress.com/2018/08/23/vacuoles-control-the-opening-and-closing-of-stomata/ )

Brindley H. M. (1990) – Fluxes of 86Rb+ in “isolated” guard cells of Vicia faba L. – Planta 181: 432–439 – https://www.jstor.org/stable/23380579?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/11/fluxes-of-86rb-in-stomata/)

Bringmann M., Bergmann D. C. (2013) – Stomatal Patterning. – Encyclopedia of Life Sciences. – DOI:10.1002/9780470015902.a0024691 – http://www.els.net/WileyCDA/ElsArticle/refId-a0020125.html – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-patterning-3/)

Bringmann M., Bergmann D. C. (2017) – Tissue-wide mechanical forces influence the polarity of stomatal stem cell in Arabidopsis. – Curr. Biol. 27(6): 877-883 – http://dx.doi.org/10.1016/j.cub.2017.01.059 – https://www.infona.pl/resource/bwmeta1.element.elsevier-29084113-17b4-344d-95cd-7f91a36e79fb – (On our blog : https://plantstomata.wordpress.com/2017/10/22/mechanical-forces-influence-the-polarity-of-stomatal-stem-cells/)

Broadley M. R., Escobar-Gutierrez A. J., Burns A., Burns I. G. (2001) –  Nitrogen-limited growth of lettuce is associated with lower stomatal conductance – New Phytol. 152: 97–106 – https://doi.org/10.1046/j.0028-646x.2001.00240.x – https://www.jstor.org/stable/1353584?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/10/01/nitrogen-limited-growth-and-lower-stomatal-conductance/

Brock A. K., Willmann R., Kolb D., Grefen L., Lajunen H. M., Bethke G., Lee J., Nürnberger T., Gust A. A. (2010) – The Arabidopsis Mitogen-Activated Protein Kinase Phosphatase PP2C5 Affects Seed Germination, Stomatal Aperture, and Abscisic Acid-Inducible Gene Expression – Plant Physiol. 153, 1098–1111. doi: 10.1104/pp.110.156109 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/09/pp2c5-and-stomatal-aperture/)

Brodribb Lab Publications: https://wordpress.com/post/plantstomata.wordpress.com/64256

Brodribb T. J. (2012) – Passive valves or metabolic mouths? The evolution of stomatal physiology – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/the-ecological-atmospheric-and-physiological-implications-of-a-stomatal-evolutionary-model/ )

Brodribb T. J., Anfodillo T.  (2015) –  Transport efficiency through uniformity: Organization of veins and stomata in angiosperm leaves – New Phytologist 209(1) – DOI 10.1111/nph.13577 – https://www.researchgate.net/publication/280585417_Transport_efficiency_through_uniformity_Organization_of_veins_and_stomata_in_angiosperm_leaves – (On our blog : https://plantstomata.wordpress.com/2018/01/20/organization-of-veins-and-stomata-in-angiosperm-leaves/ 

Brodribb T. J., Hill R. S. (1997) –  Imbricacy and stomatal wax plugs reduce maximum leaf conductance in southern hemisphere conifers. – Australian Journal of Botany 45, 657–668. – | CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/05/09/imbricacy-stomatal-wax-plugs-and-leaf-conductance/)

Brodribb T. J., Holbrook N. M. (2003) – Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. – Plant Physiology 132(4): 2166–2173 – DOI: https://doi.org/10.1104/pp.103.023879 – CrossRef CAS – http://www.plantphysiol.org/content/132/4/2166 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/what-triggers-stomatal-closure-during-leaf-desiccation/)

Brodribb T. J., Holbrook N. M. (2004) – Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670 (CrossRef).- (On our blog : https://plantstomata.wordpress.com/2015/09/08/behaviour-of-stomata-in-pteridophytes-and-angiosperms/).

Brodribb T. J., Holbrook N. M. (2004) – Diurnal depression of leaf hydraulic conductance in a tropical tree species – Plan, Cell and Environment 2004;27:820-827. – CrossRef Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/09/08/diurnal-patterns-of-hydraulic-conductance-in-a-tropical-tree-species/).

Brodribb T. J., Holbrook N. M., Edwards E. J., Guttiérrez M. V. (2003) – Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees – Plant Cell Environ. 26(3): 443–450 – DOI: 10.1046/j.1365-3040.2003.00975.x- http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.00975.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/09/stomatal-closure-leaf-turgor-and-xylem-vulnerability/)

Brodribb T. J., Jordan G.J. (2008) – Internal coordination between hydraulics and stomatal control in leaves. Plant Cell Environ. 31: 1557-1564 ) – Wiley Online Library – PubMed – CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/09/stomatal-control-in-leaves-and-hydraulics/).

Brodribb Lab – Stomatal Function and Evolution – http://www.brodribblab.org.au/research-areas/stomatal-function-and-evolution/ – (On our blog : https://plantstomata.wordpress.com/2017/01/03/stomatal-function-and-evolution-at-the-brodribb-lab/)

Brodribb T. J., McAdam S. A. M. (2011) – Passive origins of stomatal control in vascular plants. Science 331: 582-585 – doi: 10.1126/science.1197985. Epub 2010 Dec 16. – PMID: 21163966 – Free Article – (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/09/different-behavior-of-stomata-in-early-vascular-plants-and-seed-plants/).

Brodribb T. J., McAdam S. A. M. (2012) – Stomatal (mis)behaviour – Tree Physiol. 31(10): 1039-1040 – doi: 10.1093/treephys/tpr100. – Epub 2011 Sep 24. – PMID: 21949027 – https://www.ncbi.nlm.nih.gov/pubmed/21949027 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-misbehaviour/ )

Brodribb T. J., McAdam S. A. M. (2013) – Abscisic acid mediates a divergence in the drought response of two conifers. – Plant Physiol. 2013 Jul;162(3):1370-7. doi: 10.1104/pp.113.217877. Epub 2013 May 24. – PMID: 23709665 – http://www.brodribblab.org.au/wp-content/uploads/2014/05/ABA-and-drought-response-Plant-Phys-Brodribb-McAdam.pdf – (On our blog : https://plantstomata.wordpress.com/2016/02/19/two-contrasting-mechanisms-of-stomatal-regulation/).

Brodribb T. J., McAdam S. A. M. (2013) – Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling. – PLoS One. 2013 Nov 20;8(11):e82057. doi: 10.1371/journal.pone.0082057. eCollection 2013. – PMID: 24278470 – Free PMC Article – (On our blog : https://plantstomata.wordpress.com/2016/02/19/unique-responsiveness-of-angiosperm-stomata/).

Brodribb T. J., McAdam S. A. M. (2015) – Evolution in the smallest valves (stomata) guides even the biggest trees – Tree Physiol. 35(5): 451-452 – doi: 10.1093/treephys/tpv042 – PMID:-26041093 – https://academic.oup.com/treephys/article/35/5/451/1642114 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/different-ways-sister-species-respond-to-water-stress/ )

Brodribb T. J., McAdam S. A. M. (2017) – Evolution of the stomatal regulation of plant water content – Plant Physiology 174(2) · April 2017 – DOI: 10.1104/pp.17.00078 – https://www.researchgate.net/publication/316111982_Evolution_of_the_stomatal_regulation_of_plant_water_content – (On our blog : https://plantstomata.wordpress.com/2017/06/25/the-function-of-early-stomata/)

Brodribb T. J., McAdam S. A. M., Carins Murphy M. R. (2017) – Xylem and Stomata, Coordinated Through Time and Space – Plant Cell and Environment 40: 872-880 – DOI: 10.1111/pce.12817 – https://www.researchgate.net/publication/306271326_Xylem_and_Stomata_Coordinated_Through_Time_and_Space – (On our blog : https://plantstomata.wordpress.com/2016/08/20/evolution-in-xylem-and-stomatal-function-and-their-interaction/)

Brodribb T. J., McAdam S. A. M., Jordan G. J., Field T. S. (2009) – Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants – New Phytol. 183(3): 839-847 – doi: 10.1111/j.1469-8137.2009.02844.x. Epub 2009 Apr 23. – PMID: 19402882 – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/10/stomatal-responsiveness-to-co2-and-optimization-of-wue/)

Brodribb T. J., McAdam S. A., Jordan G. J., Martins S. C. ( 2014) – Conifer species adapt to low-rainfall climates by following one of two divergent pathways. – Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14489-93. doi: 10.1073/pnas.1407930111. Epub 2014 Sep 22. – https://www.ncbi.nlm.nih.gov/pubmed/25246559 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/the-simple-way-conifers-evolved-to-cope-with-water-shortage-a-critical-interaction-between-xylem-and-stomatal-tissues/)Brogardh T., Johnsson A. (1975) – Effects of Magnesium, Calcium and Lanthanum Ions on Stomatal Oscillations in Avena sativa L.

Brodribb T. J., McAdam S. A., Jordan G. J., Martins S. C. ( 2014) – Conifer species adapt to low-rainfall climates by following one of two divergent pathways. – Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14489-93. doi: 10.1073/pnas.1407930111. Epub 2014 Sep 22. – https://www.ncbi.nlm.nih.gov/pubmed/25246559 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/the-simple-way-conifers-evolved-to-cope-with-water-shortage-a-critical-interaction-between-xylem-and-stomatal-tissues/)

Brogårdh T., Johnsson A. (1975) – Effects of Magnesium, Calcium and Lanthanum Ions on Stomatal Oscillations in Avena sativa L. – Planta 124(1): 99-103 – https://www.jstor.org/stable/23371619https://www.jstor.org/stable/23371619?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/04/03/effects-of-mg-ca-and-la-ions-on-stomatal-oscillations/ )

Brosché M., Merilo E., Mayer F ., Pechter  P., Puzörjova I., Brader G ., Kangasjärvi J., Kollist H. (2010) – Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. – Plant Cell Environ. 2010 Vol 33: 914-925 – DOI: 10.1111/j.1365-3040.2010.02116.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02116.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/10/the-role-of-stomata-in-regulating-o3-entry-and-damage/)

Brown K. W., Rosenberg N. J. (1970) – Influence of leaf age, illumination, and upper and lower surfaces on stomatal resistance of sugar beet (Beta vulgaris) leaves – Agron. J. 62: 20-24 – doi:10.2134/agronj1970.00021962006200010007x – https://dl.sciencesocieties.org/publications/aj/abstracts/62/1/AJ0620010020?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/12/influence-of-leaf-age-illumination-and-upper-and-lower-surfaces-on-stomatal-resistance/ )

Brown P. H., Outlaw W. H. (1982) – Effect of Fusicoccin on Dark 14CO2 Fixation by Vicia faba Guard Cell Protoplasts – Plant Physiol. 70(6): 1700–1703 – DOI: https://doi.org/10.1104/pp.70.6.1700 – [PMC free article][PubMed] – http://www.plantphysiol.org/content/plantphysiol/70/6/1700.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/12/effect-of-fusicoccin-on-dark-14co2-fixation-by-stomatal-protoplasts/

Brown W. V., Johnson S. C. (1962) – The fine structure of the grass guard cell – Am. J. Bot. 49: 110-115 – https://www.jstor.org/stable/2439025?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/11/13/structure-of-grass-stomata/)

Brownlee C. (2001) – The long and the short of stomatal density signals. -Trends Plant Sci 6:441-442. – DOI: http://dx.doi.org/10.1016/S1360-1385(01)02095-7 – CrossRefMedlineWeb of Science – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/The-long-and-the-short-of-stomatal-density-signals.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/09/the-density-and-patterning-of-stomata-in-response-to-environmental-stimuli/)

Brüggemann L., Dietrich P., Becker D., Dreyer I., Palme K., Hedrich R. (1999) – Channel‐mediated high‐affinity K+ uptake into guard cells from Arabidopsis – Proceedings of the National Academy of Sciences USA 96: 3298-3302  -PMID: 10077678 PMCID: PMC15936 – https://www.ncbi.nlm.nih.gov/pubmed/10077678 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71187 )

Brüggemann L., Dietrich P., Dreyer I., Hedrich R. (1999) – Pronounced differences between the native K+ channels and KAT1 and KST1 alpha‐subunit homomers of guard cells – Planta 207: 370-376 – PMID: 9951733 – https://www.ncbi.nlm.nih.gov/pubmed/9951733 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/differences-between-the-native-k-channels-and-kat1-and-kst1-alpha%e2%80%90subunit-homomers-of-stomata/ )

Brugnoli E., Björkman O. (1992) – Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy – Planta 187: 335-347 – https://doi.org/10.1007/BF00195657https://link.springer.com/article/10.1007/BF00195657#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/18/influence-of-salinity-stress-on-stomatal-and-non-stomatal-components-of-photosynthesis/ )

Brugnoli E., Lauteri M. (1991) – Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes – Plant Physiology 95(2): 628-635 – DOI: https://doi.org/10.1104/pp.95.2.628 – http://www.plantphysiol.org/content/plantphysiol/95/2/628.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/30/effects-of-salinity-on-growth-and-stomatal-conductance/)

Brun W. A. (1962) – Rhythmic stomatal opening responses in banana leaves – Physiol. Plant. 15: 623-630 – DOI: 10.1111/j.1399-3054.1962.tb08110.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1962.tb08110.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/19/rhythmic-stomatal-opening-responses/ )

Bruns H. N. (2016) – Flag Leaf Photosynthesis and Stomatal Function of Grain Sorghum as Influenced by Changing Photosynthetic Photon Flux Densities – International Journal of Agronomy 2016, Article ID 1363740, 6 pp. – http://dx.doi.org/10.1155/2016/1363740 – https://www.hindawi.com/journals/ija/2016/1363740/ – (On our blog : https://plantstomata.wordpress.com/2017/11/27/stomatal-function-of-grain-sorghum/)

Bucher S. F., Auerswald K., Grün-Wenzel C., Higgins S. I., Garcia Jorge J., Römermann C. (2017) – Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate – Flora 229: 107-115 – DOI10.1016/j.flora.2017.02.011 – https://www.infona.pl/resource/bwmeta1.element.elsevier-d3f42e76-ec23-32b1-9ab2-5bbdb53fa470 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/stomatal-traits-such-as-size-density-or-distribution-as-indicators/)

Büchsenschütz K., Marten I., Becker D., Philippar K., Ache P., Hedrich R. (2005) – Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex – Planta 222: 968– 976 – https://doi.org/10.1007/s00425-005-0038-6https://link.springer.com/article/10.1007%2Fs00425-005-0038-6 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/differential-expression-of-k-channels-between-stomatal-guard-cells-and-subsidiary-cells/ )

Buckley T. N. (2005) – The control of stomata by water balance. – New Phytol. 168(2): 275-292 – doi: 10.1111/j.1469-8137.2005.01543.x –  (CrossRefMedlineGoogle ScholarWiley Online Library |PubMed |CAS).- http://dx.doi.org/10.1111/j.1469-8137.2005.01543.x– (On our blog : https://plantstomata.wordpress.com/2015/08/25/stomata-and-water-balance/).

Buckley T. N. (2008) – The role of stomatal acclimation in modelling tree adaptation to high CO2. – Journal of Experimental Botany 59:1951–1961 – DOI 10.1093/jxb/erm234 – CrossRefPubMed |- CAS |- https://www.ncbi.nlm.nih.gov/pubmed/18000018 – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-acclimation-in-modelling-tree-adaptation-to-high-co2/ )

Buckley T. N. (2015) – The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves – Plant Cell Environ. 38(1): 7-22 – doi: 10.1111/pce.12372 – Epub 2014 Jun 16 – https://www.ncbi.nlm.nih.gov/pubmed/24836699?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/08/30/how-leaf-water-transport-from-xylem-to-stomata-is-influenced-by-light-absorption-temperature-and-differences-in-leaf-anatomy/ )

Buckley T. N. (2016) – Stomatal responses to humidity: has the ‘black box’ finally been opened? Commentary – Plant, Cell & Environment Volume 39, Issue 3: 482–484 – http://buckleylab.ucdavis.edu/wp-content/uploads/sites/511/2018/01/buckley-2016-commentary-on-MacAdam-et-al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/19/black-box-of-stomatal-closure-some-mechanism-is-needed-to-amplify-guard-cell-turgor-loss-to-produce-stomatal-closure/

Buckley T. N. (2017) – Modeling stomatal conductance. – Plant Physiol 174: 572–582 – DOI: https://doi.org/10.1104/pp.16.01772 – http://www.plantphysiol.org/content/174/2/572 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/models-of-stomatal-conductance-3/)

Buckley T. N. (2019) – How do stomata respond to water status? – New Phytologist https://doi.org/10.1111/nph.15899https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15899?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/10/modelers-with-a-tractable-and-reliable-mechanistic-model-of-stomatal-responses-to-water-status/ )

Buckley T. N., Farquhar G. D., Mott K. A. (1997) – Qualitative effects of patchy stomatal conductance distribution features on gas exchange calculations. – Plant, Cell & Environment 20(7): 867–880 – DOI: 10.1046/j.1365-3040.1997.d01-128.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-128.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/patchy-stomatal-conductance-distribution-features-and-gas-exchange/)

Buckley T. N., Farquhar G. D., Mott K. A. (1999) – Carbon-water balance and patchy stomatal conductance – Oecologia 118: 132–143 – https://doi.org/10.1007/s004420050711 – CrossRef – https://link.springer.com/article/10.1007/s004420050711#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/19/carbon-water-balance-and-patchy-stomatal-conductance/ )

Buckley T. N., John G. P., Scoffoni C., Sack L. (2015) – How Does Leaf Anatomy Influence Water Transport outside the Xylem? – Plant Physiol. 168(4): 1616-35 -doi: 10.1104/pp.15.00731 – Epub 2015 Jun 17 – https://www.ncbi.nlm.nih.gov/pubmed/26084922 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/the-role-of-stomata-and-anatomical-variation-in-leaf-function/ )

Buckley T. N., John G. P., Scoffoni C., Sack L. (2017) – The Sites of Evaporation within Leaves – Plant Physiology 173(3) : – DOI: https://doi.org/10.1104/pp.16.01605 – http://www.plantphysiol.org/content/173/3/1763 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/evaporation-within-leaves-and-stomatal-and-leaf-hydraulic-conductances/)

Buckley T. N., Martorell S., Diaz‐Espejo A., Tomàs M., Medrano H. (xxxx) – Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera) – Plant, Cell & Environment 37(12): 2707 – 2721 – DOI10.1111/pce.12343 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-37-i-12-pce12343 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/is-stomatal-conductance-optimized-over-both-time-and-space-in-plant-crowns/)

Buckley T. N., Mott K. A. (2000) – Stomatal responses to non-local changes in PFD: evidence for long-distance hydraulic interactions – Plant, Cell and Environment 23: 301-309 – https://doi.org/10.1046/j.1365-3040.2000.00552.x – Wiley Online Library – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomatal-responses-to-non-local-changes-in-PFD–evidence-for-long-distance-hydraulic-interactions.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/27/stomatal-responses-to-non-local-changes/ )

Buckley T.N., Mott K.A. (2002) – Dynamics of stomatal water relations during the humidity response: implications of two hypothetical mechanisms. – Plant Cell Environ. 25: 407–419. – Wiley Online Library , Google Scholar – http://onlinelibrary.wiley.com/doi/10.1046/j.0016-8025.2001.00820.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/10/dynamics-of-stomatal-water-relations/)

Buckley T. N., Mott K. A. (2002) – Stomatal water relations and the control of hydraulic supply and demand – In: Esser K., Lüttge U., Beyschlag W., Hellwig F. (eds) Progress in Botany. Progress in Botany (Genetics — Physiology — Systematics — Ecology), Springer, Berlin, Heidelberg 63: 309–325 – CrossRef – DOI: https://doi.org/10.1007/978-3-642-56276-1_12 – https://link.springer.com/chapter/10.1007/978-3-642-56276-1_12#citeas – (On our blog : https://plantstomata.wordpress.com/2018/08/27/stomatal-water-relations/

Buckley T.N., Mott K.A. (2013) – Modelling stomatal conductance in response to environmental factors – Plant Cell Environ, 36: 1691–1699. doi:10.1111/pce.12140 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12140/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/stomatal-conductance-and-environmental-factors-2/)

Buckley T. N., Mott K. A., Farquhar G. D. (2003) – A hydromechanical and biochemical model of stomatal conductance. – Plant, Cell and Environment 26: 1767-1786. – DOI: 10.1046/j.1365-3040.2003.01094.x – CrossRef  Google Scholar – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.01094.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/01/07/models-of-stomatal-conductance-2/)

Buckley T. N., Roberts D. W. (2006) – How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?  – Tree Physiology 26: 145-157 – https://buckleylab.ucdavis.edu/wp-content/uploads/sites/511/2018/01/buckley-and-roberts-2006b-opti-SA-vs-LA.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/how-should-leaf-area-sapwood-area-and-stomatal-conductance-vary-with-tree-height-to-maximize-growth/ )

Buckley T. N., Sack L., Farquhar G. D. (2016) – Optimal plant water economy – DOI: 10.1111/pce.12823 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12823/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/20/plant-water-economy/)

Buckley T. N., Sack L., Gilbert M. E. (2011) – The role of bundle sheath extensions and life form in stomatal responses to leaf water status. – Plant Physiology 156, 962–973 – DOI: https://doi.org/10.1104/pp.111.175638 –  CrossRefCAS – http://www.plantphysiol.org/content/156/2/962 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/understanding-dynamic-stomatal-responses-to-water-status/ )

Buckley T. N., Schymanski S. (2014) – Stomatal optimisation in relation to atmospheric CO2 – New Phytologist 201: 372-377 – https://buckleylab.ucdavis.edu/wp-content/uploads/sites/511/2018/01/buckley-and-schymanski-2014-opti-gsw-vs-ca.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-optimisation-in-relation-to-atmospheric-co2/ )

Buckley T. N., Turnbull T. L., Adams M. A. (2012) – Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data. – Plant, Cell & Environment 35:1647–1662 – DOI: 10.1111/j.1365-3040.2012.02515.x – Wiley Online Library – https://www.ncbi.nlm.nih.gov/pubmed/22486530 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/simple-models-for-stomatal-conductance/ )

Budzan J. (1998) – Chloroplast number in stomata guard cells as a distinctive character of Galinsoga parviflora Pav. [2n-16] and Galinsoga ciliata [Rafin.] blake [2n-32] – Prace Naukowe Uniwersytetu Śląskiego w Katowicach 1998: 1696 – ISSN :0208-6336 – https://www.infona.pl/resource/bwmeta1.element.agro-article-391e655a-47b4-48e1-8683-782212781dc7 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/chloroplast-number-in-stomata-guard-cells-as-a-distinctive-character-of-galinsoga-species/)

Büker P., Morrissey T., Briolat A., Falk R., Simpson D., Tuovinen J.-P., Alonso R., Barth S., Baumgarten M., Grulke N., Karlsson P. E., King J., Lagergren F., Matyssek R., Nunn A., Ogaya R., Penuelas J., Rhea L., Schaub M., Uddling J., Werner W., Emberson L. D. (2012) – DO3SE modelling of soil moisture to determine ozone flux to forest trees – Atmos. Chem. Phys., 12: 5537–5562 – doi:10.5194/acp-12-5537-2012 – Comparison_of_different_stomatal_conduct.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/the-do3se-deposition-of-o3-for-stomatal-exchange-model-for-estimating-ozone-deposition-and-stomatal-flux/ )

Bunce J. A. (1992) – Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of CO2 – Plant, Cell and Environment 15(5): 541-549 – DOI: 10.1111/j.1365-3040.1992.tb01487.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01487.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-conductance-and-elevated-concentration-of-co2/ )

Bunce J. A. (1988) – Nonstomatal inhibition of photosynthesis by water stress. Reduction in photosynthesis at high transpiration rate without stomatal closure in field-grown tomato – Photosynthesis Research 18: 357-362 – https://doi.org/10.1007/BF00034840https://link.springer.com/article/10.1007%2FBF00034840#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/18/reduction-in-photosynthesis-at-high-transpiration-rate-without-stomatal-closure/ )

Bunce J.A. (1997) – Does transpiration control stomatal responses to water vapour pressure deficit? – Plant Cell Environ. 20: 131–135. – CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/11783/

Bunce  J. A. (1998) – Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration – Plant, Cell & Environ. 21: 115–120 – https://doi.org/10.1046/j.1365-3040.1998.00253.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00253.x – (On our blog : https://plantstomata.wordpress.com/2018/08/29/humidity-and-short-term-responses-of-stomatal-conductance/ )

Bunce J. A. (2000) – Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field – Global Change Biology 6: 371-382 – https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=40374&content=PDF – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-responses-to-light-humidity-and-temperature-at-3-co2-concentrations/ )

Bunce J. A. (2001) – Direct and acclamatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field – Global Change Biology 7: 323-331 – DOI: 10.1046/j.1365-2486.2001.00406.x – Google Scholar CrossRef – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.2001.00406.x – (On our blog : https://plantstomata.wordpress.com/2018/08/29/responses-of-stomatal-conductance-to-elevated-co2/ )

Bunce J. A. (2002) – Effects of humidity on short‐term responses of stomatal conductance to an increase in carbon dioxide concentration – Plant, Cell & Environment 21(1): – https://doi.org/10.1046/j.1365-3040.1998.00253.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00253.x – (On our blog : https://plantstomata.wordpress.com/2019/03/22/increase-in-co2-concentration-and-short%e2%80%90term-responses-of-stomatal-conductance/ )

Bunce J. A. (2004) – Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. – Oecologia, 140(1): 1-10 – DOI: 10.1007/s00442-003-1401-6 – https://www.ncbi.nlm.nih.gov/pubmed/14557864 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/co2-effects-on-stomatal-responses-to-the-environment/ )

Bunce J. A. (2006) – How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits? – Plant Cell Environ. 29: 1644–1650 – DOI 10.1111/j.1365-3040.2006.01541.x – Google Scholar CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01541.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/21/leaf-hydraulics-limiting-stomatal-conductance/ )

Bunce J. A. (2007) – Low carbon dioxide concentrations can reverse stomatal closure during water stress. Physiol. Plant. 130, 552–559. doi: 10.1111/j.1399-3054.2007.00937.x – CrossRef Full Text | Google Scholar – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/7062 )

Bunce J. A. (2010) – Variable responses of mesophyll conductance to substomatal carbon dioxide concentration in common bean and soybean – Photosynthetica 48: 507–512 – https://doi.org/10.1007/s11099-010-0067-7 – https://link.springer.com/article/10.1007/s11099-010-0067-7#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/11/variable-responses-of-mesophyll-conductance-to-substomatal-carbon-dioxide-concentration/

Bunce J. A. (2012) – Using New Gas Exchange Methods to Estimate Mesophyll Conductance and Non-stomatal Inhibition of Photosynthesis Caused by Water Deficits – HortScience 47(6): 687-690 – http://hortsci.ashspublications.org/content/47/6/687.full – (On our blog : https://plantstomata.wordpress.com/2018/09/23/new-gas-exchange-methods-to-estimate-mesophyll-conductance-and-non-stomatal-inhibition-of-photosynthesis/

Bundy, M. G. R., Kosentka P. K., Willet A. H., Zhang L., Miller E., Shpak E. D. (2016) – A Mutation in the Catalytic Subunit of the Glycosylphosphatidylinositol Transamidase Disrupts Growth, Fertility, and Stomata Formation – Plant Physiol. Jun 2016, 171 (2) 974-985; DOI: https://doi.org/10.1104/pp.16.00339 – http://www.plantphysiol.org/content/171/2/974 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/about-regulation-of-stomata-formation/)

Bureau IMAC (2016) – Importance of humidity for plant growth – Anthura May 2016 – https://www.anthura.nl/growing-advise/82466/?lang=en – (On our blog : https://plantstomata.wordpress.com/2018/01/24/keeping-the-stomata-open/ )

Burgerstein A. (1920) – Änderungen der Spaltöffnungsweite unter
dem Einfluss verschieder Bedingungen – Verhandl. zool. – bot. Ges. Wien. 70: 113-131 –

Burghardt M., Riederer M. (2003) – Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. – J. Environ. Biol., 54: 1941-1949 – (On our blog : https://plantstomata.wordpress.com/2016/05/12/cuticular-transpiration-and-stomatal-closure/ )

Burkhardt J., Eichert T. (2001) – Stomatal uptake as an important factor in foliar nutrition. In: Plant Nutrition. W.J. Horst et al. (Eds). Kluwer Academic Publisher, Dordrecht, Boston, London. (Article not found)

Burnett E. C., Desikan R., Moser R. C., Neill S. J. (2000) – ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. – J. Exp. Bot. 51, 197–205. doi: 10.1093/jexbot/51.343.197 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/aba-ambp-kinase-and-stomata/ )

Burrows F. J., Milthorpe F. L. (1976) – Stomatal conductance in gas exchange control. In T. T. Kozlowski, ed. Water deficits and Plant Growth, Vol. 4, Acad. Press New York, pp. 103-152 – (Article not found)

Burschka C., Lange O. L., Hartung W.  (1985) – Effects of abscisic acid on stomatal conductance and photosynthesis in leaves of intact Arbutus unedo plants under natural conditions – Oecologia 67: 593-595 – https://doi.org/10.1007/BF00790033 –  -https://link.springer.com/article/10.1007%2FBF00790033#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/28/effects-of-aba-on-stomatal-conductance-under-natural-conditions/

Burschka C., Tenhunen J. D., Hartung W.  (1983) – Diurnal variations in abscisic acid content and stomatal response to applied abscisic acid in leaves of irrigated and non-irrigated Arbutus unedo plants under naturally fluctuating environmental conditions – Oecologia (Berlin) 58: 128–131 – DOI: 10.1007/BF00384552 –https://www.ncbi.nlm.nih.gov/pubmed/28310657 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/diurnal-variations-in-aba-content-and-stomatal-response-to-applied-aba-in-leaves-of-irrigated-and-non-irrigated-plants/

Busby C. H., Gunning B. E. S. (1980) – Observations on preprophase bands of microtubules in uniseriate hairs, stomatal complexes of sugar cane, and Cyperus root meristems – European Journal of Cell Biology 21: 214–223 – PMID: 7398662 – https://www.ncbi.nlm.nih.gov/pubmed/7398662 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/preprophase-bands-of-microtubules-in-stomatal-complexes/ )

Busby C. H., Gunning B. E. S. (1984) – Microtubules and morphogenesis in stomata of the water fern Azolla: an unusual mode of guard cell and pore development – Protoplasma 22: 108–119 – https://doi.org/10.1007/BF01279443 – https://link.springer.com/article/10.1007%2FBF01279443#citeas – (On our blog : https://plantstomata.wordpress.com/2018/09/04/an-unusual-mode-of-stomata-development/ )

Busch F. (2013) – Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain – Photosynthesis Research 119(1-2):131-40 –  doi: 10.1007/s11120-013-9805-6. – CrossRef – https://www.ncbi.nlm.nih.gov/pubmed/23483292 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-current-knowledge-of-the-red-light-response-of-stomata/ )

Busch H., Hedrich R. Raschke K. (1990) – External calcium blocks inward rectifier potassium channels in guard cell protoplasts in a voltage and concentration dependent manner (abstract No. 96) – Plant Physiol 93: S-17 –

Bush S. E., Pataki D. E., Hultine K. R., West A. G., Sperry J. S., Ehleringer J. R. (2008) – Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees – Oecologia 156: 13-20 – DOI 10.1007/s00442-008-0966-5 – http://sperry.biology.utah.edu/publications/bush2008.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/broad-patterns-of-stomatal-responses-to-humidity-based-on-systematic-differences-in-vulnerability-to-cavitation/ )

Büssis D., von Groll U., Fisahn J., Altmann T. (2006) – Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. – Funct Plant Biol 33: 1037–1043. – doi: 10.1071/FP06078 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/stomatal-aperture-stomatal-density-and-growth-light-conditions/ )

Bussotti F., Grossoni P. (1997) – European and Mediterranean oaks (Quercus L.; Fagaceae): SEA4 characterization of the micromorphology of the abaxial leaf surface – Bot. J. Linn. Soc. 124: 183-198 – https://watermark.silverchair.com/j.1095-8339.1997.tb01789.x.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomata-in-european-and-mediterranean-oaks-quercus/ )

Butterfass T. (1961) – Das Verhalten der Chloroplastenzahlen in den Schliesszellenpaaren von Zuckerrüben verschiedener Ploidiestufen vom Keimling bis zur blühenden Pflanze – Züchter 31: 62-71. (Article not found)

Buttery B. R., Gaynor J. D., Buzell R. I., Mactavish D. C., Armstrong R. J. (1992) – The effects of shading on kaempferol content and leaf characteristics of five soybean lines – Physiologia Plantarum, 86: 279–284 –  doi:10.1034/j.1399-3054.1992.860213.x – CrossRef Google Scholar – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1992.860213.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-relationship-between-quantities-of-k9-and-stomatal-density/

Caballero A., Roca E. (2018) – The importance of stomata – Stoller Blog – http://plantphysiologyblog.com/wp-content/uploads/2018/05/THE-IMPORTANCE-OF-STOMATA.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/08/the-importance-of-stomata/ )

Cabral O. M. R., Roberts J., de Aguiar L. F. (1990) – Stomatal and boundary-layer conductances in an amazonian terra firme rain forest – J. Applied Ecology 27: 336-353 – DOI: 10.2307/2403590 – https://www.jstor.org/stable/2403590?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/10/24/stomatal-and-boundary-layer-conductances-2/ )

Cach-Pérez M. J., Andrade J. L., Cetzal-Ix W., Reyes-García C. (2016) – Environmental influence on the inter- and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula – Botanical Journal of the Linnean Society – Early View (Online Version of Record published before inclusion in an issue) – DOI: 10.1111/boj.12398 – http://onlinelibrary.wiley.com/doi/10.1111/boj.12398/abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/25/stomata-in-epiphytic-bromeliads/ )

Caglar S., Sütyemez M., Beyazıt S. (2004) – Secilmis bazı ceviz (Juglans regia) tiplerinin stoma yogunlukları (Stomatal density in some selected
walnut (Juglans regia) types) – Akdeniz Universitesi Ziraat Fakültesi Dergisi 17: 169-174 – (Article not found)

Caglar S., H. Tekin H. (1999) – Farklı Pisticia anaclarına asılanan antep fıstıgı cesitlerinin stoma yogunlukları (The Stomata Density of Pistachio Cultivars on Different Pistacia Rootstocks) – Tur. J. Agri. Forest. 23: (Sup. 5): 1029-1032 – (Article not found)

Cai S., Chen G., Wang Y., Huang Y., Marchant D. B., Wang Y., Yang Q., Dai F., Hills A., Franks P. J., Nevo E., Soltis D., Soltis P., Sessa E., Wolf P. G., Xue D., Zhang G. P., Pogson B. J., Blatt M. R. Chen Z.-H. (2017) – Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns – Plant Physiology · February 2017 – DOI: 10.1104/pp.16.01848 – https://www.researchgate.net/publication/313950886_Evolutionary_Conservation_of_ABA_Signaling_for_Stomatal_Closure_in_Ferns?focusedCommentId=58b76d7382999cd4be08f8b7 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/aba-signaling-for-stomatal-closure-in-ferns/)

Cai S., Papanatsiou M., Blatt M. R., Chen Z.-H. ( 2017) – Speedy grass stomata: Emerging molecular and evolutionary features – Molecular Plant 10(7): 909–1018 – http://www.sciencedirect.com/science/article/pii/S1674205217301685 — https://www.researchgate.net/publication/317508978_Speedy_Grass_Stomata_Emerging_Molecular_and_Evolutionary_Features – (On our blog : https://plantstomata.wordpress.com/2017/06/12/speedy-grass-stomata/) – https://wordpress.com/post/plantstomata.wordpress.com/41088 )

Cai T., Dang Q.-L. (2002) – Effects of soil temperature on parameters of a coupled photosynthesis–stomatal conductance model – Tree Physiology 22: 819–827 – DOI: 10.1093/treephys/22.12.819 – https://www.ncbi.nlm.nih.gov/pubmed/12184971 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/no-significant-relationships-between-soil-temperature-and-the-parameters-of-the-stomatal-conductance-model/

Caine R. S., Chater C. C., Kamisugi Y., Cuming A. C., Beerling D. J.,Gray J. E.,  Fleming A. J. (2016) – An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens – Development 2016 : doi: 10.1242/dev.135038 – http://dev.biologists.org/content/early/2016/06/09/dev.135038 – (On our blog : https://plantstomata.wordpress.com/2016/07/13/the-epftmmerecta-module-represents-an-ancient-stomatal-patterning-system/)

Caine R. S., Yin X., Sloan J., Harrison E. L., Mohammed U., Fulton T., Biswal A. K., Dionora J., Chater C. C., Coe R. A., Bandyopadhyay A., Murchie E. H., Swarup R., Quick W. P., Gray J. E. (2018) – Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions – New Phytol. Online Version of Record  – https://doi.org/10.1111/nph.15344 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15344 – (On our blog : https://plantstomata.wordpress.com/2018/07/26/rice-plants-with-fewer-stomata-are-drought-tolerant-and-more-conservative-in-their-water-use/ )

Caine R. S. (2019) – Making climate-ready rice – The Statesman, New Delhi | October 9, 2019 – https://www.thestatesman.com/supplements/science_supplements/making-climate-ready-rice-1502808055.html – (On our blog : https://plantstomata.wordpress.com/2019/10/11/81582/ )

Caird M. A., Richards J. H., Donovan L. A. (2007) – Night-time stomatal conductance and transpiration in C3 and C4 plants. – Plant Physiol. 143(1): 4 – 10 – DOI 10.1104/pp.106.092940 – http://www.plantphysiol.org/content/plantphysiol/143/1/4.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/20/c3-and-c4-plants-nighttime-stomatal-conductance/ )

Calar S., Tekin H. (1999) – The stomata density of Pistachio cultivars on different Pistacia rootstocks – Tr. J. Agric. Forest. 23: 1029-1032 –

Calar S., Sutyemez M., Bayazit S. (2004) – Stomatal density in some selected walnut (Juglans regia) types – J. Fac. Agric. Akdeniz Univ. 17: 169-174 –

Caligaris F. (2017) – Stomata And Wounds: The Constant Dilemma Of Pathogen Infection – Global Engage (blog) – Feb. 2017 – http://www.global-engage.com/agricultural-biotechnology/stomata-and-wounds-constant-dilemma-pathogen-infection/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/pathogen-infection-penetration-through-stomata-and-wounds/)

Camargo M.A.B. (2009) –  Stomatal characteristics in tree species of Central Amazonia. Dissertação de Mestrado, Instituto Nacional de Pesquisas da Amazônia (INPA)/Universidade Federal do Amazonas, Manaus, Amazonas. 52 pp. [in Portuguese]

Camargo M. A. B. , Marenco R. A. (2011) – Density, Size and Distribution of Stomata in 35 Rainforest Tree Species in Central Amazonia. – Acta Amazonica, 41, 205-212. (http://dx.doi.org/10.1590/S0044-59672011000200004) – (On our blog : https://plantstomata.wordpress.com/2015/10/18/stomata-in-rainforest-trees/).

Campany C. E., Tjoelker M. G., von Caemmerer S., Duursma R. A. (2016) – Coupled Response of Stomatal and Mesophyll Conductance to Light Enhances Photosynthesis of Shade Leaves under Sunflecks – Plant, Cell & Environment, Accepted, unedited articles published online – DOI: 10.1111/pce.12841 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12841/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/12/stomatal-and-mesophyll-conductance/)

Campbell D. H. (1881) – On the development of the stomata of Tradescantia and Indian corn – The American Naturalist 15(10): 761-766 – https://www.jstor.org/stable/2448863?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/16/stomata-in-tradescantia-and-indian-corn/ )

Campos H., Trejo C., Pena-Valdivia C. B., Garcia-Nava R., Conde-Martinez F. V.,  Cruz-Ortega M. R. (2014) – Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: delayed restoration of photosynthesis during recovery. – Environ. Exp. Bot. 98, 56–64. doi: 10.1016/j.envexpbot.2013.10.015 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/stomatal-and-non-stomatal-limitations/)

Camposeo S., Palasciano M., Vivaldi G. A., Godini A. (2011) – Effect of increasing climatic water deficit on some leaf and stomatal parameters of wild and cultivated almonds under Mediterranean conditions – Sci Hortic 127: 234–241 – https://doi.org/10.1016/j.scienta.2010.09.022 –https://www.sciencedirect.com/science/article/pii/S0304423810004450 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/effect-of-increasing-climatic-water-deficit-on-some-leaf-and-stomatal-parameters/ )

Cañamero R. C., Boccalandro H., Casal J., Serna L. (2006) – Use of confocal laser as light source reveals stomata-autonomous function –  PLoS ONE1:e36.10.1371/journal.pone.0000036 – https://doi.org/10.1371/journal.pone.0000036https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000036 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/the-stomata-autonomous-function-in-the-blue-light-response-and-the-implication-of-phot1-and-or-phot2-in-such-response/ )

Cândido-Sobrinho S. A., Lima V. F., Daloso D. M. (2019) – Guard cell metabolism – Book eLS – DOI: 10.1002/9780470015902.a0028343 https://www.researchgate.net/publication/331912730_Guard_Cell_Metabolism – (On our blog :

Cann A. J. (2015) – Stomatal density and aperture in non-vascular plants are non-responsive to above-ambient CO2 concentrations – Botany One – https://www.botany.one/2015/04/stomatal-density-and-aperture-in-non-vascular-plants-are-non-responsive-to-above-ambient-co2-concentrations/ – (On our blog : https://plantstomata.wordpress.com/2019/01/14/stomatal-density-and-aperture-and-above-ambient-co2-concentrations/  )

Cao Z., Huang B., Wang Q., Xuan W., Ling T., Zhang B., Chen X., Nie L., Shen W. (2007) – Involvement of carbon monoxide produced by heme oxygenase in ABA- induced stomatal closure in Vicia faba and its proposed signal transduction pathway. – Chin. Sci. Bull. 52, 2365–2373 – doi: 10.1007/s11434-007-0358-y – https://link.springer.com/article/10.1007/s11434-007-0358-y – (On our blog : https://plantstomata.wordpress.com/2018/02/21/co-produced-by-ho-is-involved-in-aba-induced-stomatal-closure/ )

Capellades M., Fontarneau R., Carulla C., Debergh P. (1990) – Environment influences anatomy of stomata and epidermal cells in tissue-cultured Rosa multiflora – J. Amer. Soc. Hort. Sci. 115: 141-145 – http://journal.ashspublications.org/content/115/1/141.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/effect-of-environment-on-stomata/)

Cardon Z. G., Berry J. A. (1992) – Effects of O2 and CO2 concentration in the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. – Plant Physiology 99, 1238–1244 – DOI: https://doi.org/10.1104/pp.99.3.1238 – CrossRef | PubMed| – http://www.plantphysiol.org/content/99/3/1238 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/both-o2-and-co2-can-serve-as-sinks-for-atp-and-nadph/ )

Cardon Z. G., Berry J. A., Woodrow I. E. (1994) – Dependence of the extent and direction of average stomatal response in Zea mays L. and Phaseolus vulgaris L. on the frequency of fluctuations in environmental stimuli – Plant Physiology 105: 1007-1013 – PMID: 12232261 – PMCID: PMC160752 – https://www.ncbi.nlm.nih.gov/pubmed/12232261 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/fluctuations-in-light-and-co2-and-their-frequency-can-be-critical-in-determining-time-averaged-stomatal-conductance-under-unstable-environmental-conditions/ )

Cardon Z. G., Mott K. A., Berry J. A. (1994) – Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated using gas-exchange techniques – Plant, Cell &Environment 17(9): 995-1007 – DOI: 10.1111/j.1365-3040.1994.tb02033.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb02033.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/dynamics-of-patchy-stomatal-movements/)

Cardoso A. A., McAdam S. A. M. (2019) – Misleading conclusions from exogenous ABA application: a cautionary tale about the evolution of stomatal responses to changes in leaf water status – Plant Signaling & Behavior 14(7) – https://doi.org/10.1080/15592324.2019.1610307https://www.tandfonline.com/doi/abs/10.1080/15592324.2019.1610307?af=R&journalCode=kpsb20 – (On our blog : https://plantstomata.wordpress.com/2019/08/24/stomatal-behavior-in-intact-plants-has-evolved-over-time/ )

Cardoso A. A., Randall J. M., Jordan G. J., McAdam S. A. M. (2018) – Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum – American Journal of Botany 105(12) – DOI: 10.1002/ajb2.1196 – https://www.researchgate.net/publication/329191719_Extended_differentiation_of_veins_and_stomata_is_essential_for_the_expansion_of_large_leaves_in_Rheum_rhabarbarum – (On our blog : https://plantstomata.wordpress.com/2018/12/13/extended-differentiation-of-veins-and-stomata-is-essential-for-the-expansion-of-large-leaves/ )

Cardoso A. A., Randall J. M., McAdam S. A. M. (2019) – Hydraulics regulates stomatal responses to changes in leaf water status in Athyrium filix-femina – Plant Physiology –  DOI: https://doi.org/10.1104/pp.18.01412http://www.plantphysiol.org/content/early/2018/12/11/pp.18.01412 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/functional-stomatal-responses-to-changes-in-leaf-water-status-in-ferns-are-regulated-by-leaf-hydraulics-and-not-metabolism/ )

Carins Murphy M. R., Dow G. J., Jordan G. J., Brodribb T. J. (2017) – Vein density is independent of epidermal cell size in Arabidopsis mutants – Functional Plant Biology – http://dx.doi.org/10.1071/FP16299 – published online 9 January 2017 – https://www.researchgate.net/publication/312162425_Vein_density_is_independent_of_epidermal_cell_size_in_Arabidopsis_mutants – (On our blog : https://plantstomata.wordpress.com/2017/01/12/densities-of-leaf-minor-veins-and-stomata/)

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2014) – Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. – Plant, Cell & Environment 37, 124–131. – doi: 10.1111/pce.12136. Epub 2013 Jun 10. – PMID: 23682831 – (CrossRef | CAS | – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-37-i-1-pce12136 – (On our blog : https://plantstomata.wordpress.com/2015/01/30/stomata-during-leaf-acclimation/).

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2016) – Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade – Annals of Botany · August 2016 – Annals of Botany · August 2016 – DOI: 10.1093/aob/mcw167 – http://aob.oxfordjournals.org/content/early/2016/08/27/aob.mcw167.abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/03/cell-expansion-stomata-and-veins/)

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2017) – Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms – PLoS ONE 12(9): 1-18 – http://paperity.org/p/84413381/ferns-are-less-dependent-on-passive-dilution-by-cell-expansion-to-coordinate-leaf-vein–  http://en.hebut.findplus.cn/?h=articles&db=aph&an=125368852 – (On lour blog : https://plantstomata.wordpress.com/2017/09/29/passive-dilution-by-cell-expansion-to-coordinate-leaf-vein-and-stomatal-spacing/)

Carins Murphy M. R., McAdam S., Brodribb T. J. (2016) – Xylem and Stomata, Coordinated Through Time and Space – Plant Cell & Environment 2016 – DOI: 10.1111/pce.12817 – http://www.brodribblab.org.au/publication/xylem-and-stomata-coordinated-through-time-and-space/ – (On our blog : https://plantstomata.wordpress.com/2017/10/30/xylem-and-stomatal-tissues-maintain-a-safe-level-of-leaf-hydration/)

Carlson J. E., Adams C. A., Holsinger K. E. (2015) – Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub – Ann Bot (2016) 117 (1): 195-207.doi: 10.1093/aob/mcv146 – http://aob.oxfordjournals.org/content/117/1/195 – (On our blog : https://plantstomata.wordpress.com/2016/04/11/context-dependent-benefits-of-stomatal-density/)

Carminati A., Javaux M. (2019) – Soil hydraulic constraints on transpiration – EGU General Assembly 2019 (Vienna, Austria – In: Geophysical Research Abstracts 21: 2019-5223 – (On our blog : https://plantstomata.wordpress.com/2019/06/01/soil-hydraulic-constraints-on-transpiration-and-stomata/ )

Carnicer J., Barbeta A., Sperlich D., Coll M., Penuelas J. (2013) – Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale – Front Plant Sci. 2013; 4: 409- – doi: 10.3389/fpls.2013.00409 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797994/ – (On our blog : https://plantstomata.wordpress.com/2019/03/19/different-responses-of-angiosperm-and-conifer-tree-growth-to-temperature-and-sensitivity-of-stomatal-conductance/ )

Carpenter S., Smith N. (1975) – Stomatal distribution and size in southern Appalachian hardwoods – Can J Bot 53: 1153–1156 – https://doi.org/10.1139/b75-137 -http://www.nrcresearchpress.com/doi/10.1139/b75-137 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/stomatal-distribution-and-size-in-hardwoods/

Carr D. J., Carr S. G., Jahnke R. (1980) – Intercellular strands associated with stomata: stomatal pectic strands – Protoplasma 102: 177-182 – https://doi.org/10.1007/BF01276958 https://link.springer.com/article/10.1007/BF01276958#citeas – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-pectic-strands/ )

Carter R., Woolfenden H., Baillie A., Amsbury S., Carroll S., Healicon E., Sovatzoglou S., Braybrook S., Gray J. E., Hobbs J., Morris R. J. , Fleming A. J. (2017) – Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells – Current Biology 27(19)2974-2983.e2 – DOI10.1016/j.cub.2017.08.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0b732584-2905-38fd-9987-52c0aeaa6897 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/new-insight-into-the-mechanics-of-stomatal-function/)

Cartwright H. N., Humphries J. A. , Smith L. G. (2009) – PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize – Science 323: 649–651 – DOI | 10.1126/science.1161686 – https://scinapse.io/papers/2067937627 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/pan1-and-an-extrinsic-signal-that-polarizes-asymmetric-smc-divisions-toward-gmcs-in-stomata/

Case S. (2004) – Leaf stomata as bio indicators : Stimulating Student Research   American Biology Teacher 68(2): 88-91 –  https://eric.ed.gov/?id=EJ745303 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/stomata-as-bioindicators/ )

Casson S. A., Franklin K. A., Gray J. E., Grierson C. S., Whitelam G. C., Hetherington A. M. (2009) – Phytochrome B and PIF4 regulate stomatal development in response to light quantity. – Current Biology 19: 229–234 – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/13/phytochrome-b-and-pif4-light-quantity-and-stomatal-development/)

Casson S., Gray J. E. (2008) – Influence of environmental factors on stomatal development. – New Phytol.  178: 9–23 – DOI: 10.1111/j.1469-8137.2007.02351.x  –  CrossRefGoogleScholar – (http://www.ncbi.nlm.nih.gov/pubmed/18266617) – (On our blog : https://plantstomata.wordpress.com/2015/09/13/changes-in-the-environment-and-stomatal-development/).

Casson S.A., Hetherington A.M. (2010) – Environmental regulation of stomatal development. – Current Opinion in Plant Biology 13, 90-95. – http://dx.doi.org/10.1016/j.pbi.2009.08.005 – (On our blog : https://plantstomata.wordpress.com/2016/05/13/environmental-cues-for-stomata/)

Castorina G., Fox S., Tonelli C., Galbiati M., Conti L. (2016) – A novel role for STOMATAL CARPENTER 1 in stomata patterning – BMC Plant BiologyBMC series – open, inclusive and trusted 2016 16:172 – https://doi.org/10.1186/s12870-016-0851-z – https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0851-z – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-carpenter-1-in-stomata-patterning/)

Castro Valdecantos P., , Puertolas Simon J.., Dodd, I. C. (2019) – Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration – Environmental and Experimental Botany 159: 146-156 – ISSN 0098-8472 – DOI: 10.1016/j.envexpbot.2018.12.020 – http://eprints.lancs.ac.uk/130442/ – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stem-girdling-uncouples-soybean-stomatal-conductance-from-leaf-water-potential/ )

Catsky ]., Chartier P., Djavanchir A. (1973) – Assimilation nette, utilisation de l’eau et microclimat d’un champ de mais. IV. Evolution diurne de la résistance stomatique et du déficit de saturation des feuilles ; conséquences sur la fixation du CO2 – Ann. agron. 24, 287 –

Çavuşoğlu K., Kılıç S., Kabar K. (2007) – Effects of pretreatments of some growth regulators on the stomata movements of barley seedlings grown under saline (NaCl) conditions – Plant Soil Environ. 53(12): 524–528 – http://www.agriculturejournals.cz/ N.publicFiles/00478.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/06/effects-of-growth-regulators-on-the-stomata-movements-under-nacl-conditions/)

Ceciliato P. H. O., Zhang J., Liu Q., Shen X., Hu H., Liu C., Schäffner A. R.,, Schroeder J. I. (2019) – Intact leaf gas exchange provides a robust method for measuring the kinetics of stomatal conductance responses to abscisic acid and other small molecules in Arabidopsis and grasses – Plant Methods 2019 – https://doi.org/10.1186/s13007-019-0423-yhttps://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0423-y – (On our blog : https://plantstomata.wordpress.com/2019/05/31/method-for-measuring-the-kinetics-of-stomatal-conductance-responses-to-abscisic-acid/ )

Cerioli S., Marocco A., Maddaloni M., Motto M., Salamini F. (1994) – Early event in maize leaf epidermis formation as revealed by cell lineage studies – Development 120: 2113- 2120 – http://dev.biologists.org/content/120/8/2113 – (On our blog : https://plantstomata.wordpress.com/2019/04/22/a-clonal-type-of-development-during-early-leaf-epidermis-formation/ )

Cernusak L. A., Ubierna N., Jenkins M. W., Garrity S. R., Rahn T., Powers H. H., Hanson D. T., Sevanto S., Wong S. C., McDowell N. G., FarquharG. D. (2018) – Unsaturation of vapour pressure inside leaves of two conifer species – Scientific Reports 8, Article number: 7667 – https://www.nature.com/articles/s41598-018-25838-2 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/stomatal-conductance-and-unsaturation-of-vapour-pressure-inside-leaves/ )

Cerutti A., Jauneau A., Auriac M.-C., Lauber E., Martinez Y., Chiarenza S., Leonhardt N., Berthomé R., Noël L. D. (2017) – Immunity at cauliflower hydathodes controls systemic infection by Xanthomonas campestris pv campestris – Plant Physiol 174: 700–716 – doi: 10.1104/pp.16.01852. – https://www.ncbi.nlm.nih.gov/pubmed/28184011 – (On our blog : https://plantstomata.wordpress.com/2019/04/18/arabidopsis-hydathode-pores-are-responsive-to-aba-and-light-similar-to-stomata/ )

Ceulemans R. I., Hinckley T. M., Impens I. (1989) – Stomatal response of hybrid poplar to incident light, sudden darkening and leaf excision – Physiologia Plantarum, Copenhagen 75(2): 174-182 – https://doi.org/10.1111/j.1399-3054.1989.tb06165.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1989.tb06165.x – (On our blog : https://plantstomata.wordpress.com/2018/11/29/stomatal-responses-to-incident-light-sudden-darkening-and-leaf-excision/

Ceulemans R. I., Impens I., Lemeur R., Moermans R., Samsuddin Z. (1978) – Water movement in the soil-poplar-atmosphere system. I. Comparative study of stomatal morphology and anatomy, and the influence of stomatal density and dimensions on the leaf diffusion characteristics in different poplar clones – Oecologia Plantarum 13: 1-12 – (Article not found)

Ceulemans R. I., Impens I., Lemeur R., Moermans R., Samsuddin Z. (1978) – Water-movement in soil-poplar-atmosphere system .2. comparative-study of transpiration regulation during water stress situations in 4 different poplar clones – Oecologia Plantarum 13(2): 139-146 – ISSN 0029-8557

Ceulemans R. I., Van Praet L., Jiang X. N. (1995) – Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus) – New Phytologist 131: 99-107 – Google Scholar CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1995.tb03059.x/full – (On our blog : https://plantstomata.wordpress.com/2018/01/03/effects-of-co2-enrichment-leaf-position-and-clone-on-stomatal-index/ )

Chabot J. F., Chabot B. (1977) – Ultrastructure of the epidermis and stomatal complex of balsam fir (Abies balsamea) – Can. J. Bot. 55:1064-1075 – https://doi.org/10.1139/b77-125http://www.nrcresearchpress.com/doi/10.1139/b77-125 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/stomatal-complex-of-balsam-fir-abies-balsamea/ )

Chaerle L., Saibo N., Van Der Straeten D. (2005) – Tuning the pores: Towards engineering plants for improved water use efficiency – Trends Biotechnol. 23: 308–315 – DOI:https://doi.org/10.1016/j.tibtech.2005.04.005 – https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(05)00089-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0167779905000892%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/02/09/stomata-engineering-plants-for-improved-water-use-efficiency/ )

Chaffey N. (2001) – Stomata, down but not out – Trends in Plant Science 6(4): 144 – ISSN :1360-1385 – https://www.infona.pl/resource/bwmeta1.element.elsevier-05137a69-c74b-3c45-bf5d-8c8165d6e816 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/stomata-down-but-not-out/)

Chaffey N. (2016) – A fresh look at guard cell walls – AoB Blog http://aobblog.com/2016/03/fresh-look-guard-cell-walls/ – (On our blog https://plantstomata.wordpress.com/2016/04/27/the-role-played-by-cellulose-microfibrils-within-the-walls-of-the-guard-cells-in-stomatal-opening/)

Chakravorty D., Trusov Y., Zhang W., Acharya B. R., Sheahan M. B., McCurdy D. W.,  Assmann S. M., Botella J. R. (2011) –  An atypical heterotrimeric G protein γ subunit is involved in guard cell K(+) channel regulation and morphological development in Arabidopsis thaliana –  Plant J. 67(5): 840-851 – DOI: 10.1111/j.1365-313X.2011.04638.x – https://www.ncbi.nlm.nih.gov/pubmed/21575088 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/a-g-protein-%ce%b3-subunit-agg3-that-modulates-morphological-development-and-aba-regulation-of-stomatal-aperture/ )

Chapotin S. M., Razanameharizaka J. H., Holbrook N. M. (2006) – Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy seasonNew Phytologist 169(3): 549-559 – https://doi.org/10.1111/j.1469-8137.2005.01618.xhttps://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2005.01618.x – (On our blog : https://plantstomata.wordpress.com/2019/09/26/baobab-trees-use-stored-water-to-flush-new-leaves-but-not-to-support-stomatal-opening/ )

Charlton W. (1990) – Differentiation in leaf epidermis of Chlorophytum comosum Baker – Annals of Botany 66: 567–578 – DOI 10.1093/oxfordjournals.aob.a088066 – Abstract/FREE Full Text – https://www.jstor.org/stable/42758356 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-distribution-of-guard-mother-cell-formation/

Chasan R. (1995) – New openings into stomata. – Plant Cell. 7: 1113-1115 – DOI: https://doi.org/10.1105/tpc.7.8.1113 http://www.plantcell.org/content/plantcell/7/8/1113.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/23/new-openings-into-stomata/) – General paper regarding studying of external signals altering cell behaviour.

Chater C. C., Caine R. S., Fleming A. J., Gray J. E. (2017) – Origin and evolution of stomatal development. – Plant Physiology 174: 624–638 – DOI: 10.1104/pp.17.00183 – http://www.plantphysiol.org/content/174/2/624 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/the-story-of-stomatal-development-and-patterning-across-land-plant-evolution/)

Chater C. C., Caine R. S, Tomek M., Wallace S., Kamisugi Y., Cuming A. C., Lang D., MacAlister C. A., Casson S., Bergmann D. C., Decker E., Frank W., Gray J. E., Fleming A., Reski R., Beerling D. J. (2016) – Origin and function of stomata in the moss Physcomitrella patens – Nature Plants 2: 16179 – doi: 10.1038/nplants.2016.179 – PMID: 27892923 – https://www.ncbi.nlm.nih.gov/pubmed/?term=Chater+CC%2C+Caine+RS%2C+Tomek+M%2C+Wallace+S%2C+Kamisugi+Y%2C+Cuming – (On our blog : https://plantstomata.wordpress.com/2018/10/05/origin-and-function-of-stomata-in-a-moss/ )

Chater C. C., Gray J. E., Beerling D. J. (2013) – Early evolutionary acquisition of stomatal control and development gene signalling networks. – Curr Opin Plant Biol 16: 638–646 – DOI 10.1016/j.pbi.2013.06.013 – https://www.ncbi.nlm.nih.gov/pubmed/23871687 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/stomatal-responses-probably-originated-early-in-land-plant-evolution/ )

Chater C., Kamisugi Y., Movahedi M., Fleming A., Cuming A. C. Gray J. E., Beerling D. J. (2011) – Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. – Curr Biol 2011, 21:1025-1029.  -10.1016/j.cub.2011.04.032.(PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/09/13/stomatal-behavior-in-early-land-plants-and-flowering-plants/).

Chater C., Oliver J., Casson S., Gray J. E. (2014) – Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. – New Phytol. 2014 Apr;202(2):376-391. doi: 10.1111/nph.12713. Epub 2014 Mar 10. – https://www.researchgate.net/publication/260680150_Putting_the_brakes_on_Abscisic_acid_as_a_central_environmental_regulator_of_stomatal_development – (On our blog : https://plantstomata.wordpress.com/2016/04/07/aba-and-stomatal-traits/)

Chater C., Peng K., Movahedi M., Dunn J. A., Walker H. J., Liang Y.-K., McLachlan D. H., Casson S., Isner J. C., Wilson J., Neill S. J., Hedrich R., Gray J. E,  Hetherington A. M. (2015) – Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling – Current Biology Volume 25, Issue 20, 2709–2716 – DOI: http://dx.doi.org/10.1016/j.cub.2015.09.013 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/13/elevated-co2-induced-responses-in-stomata/)

Cheeseman J. M. (1991) – PATCHY: simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. – Plant, Cell & Environment 14: 593–599 – https://doi.org/10.1111/j.1365-3040.1991.tb01530.x – Wiley Online Library – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01530.x – (On our blog : https://plantstomata.wordpress.com/2018/04/13/the-effects-of-stomatal-patchiness-on-photosynthetic-co2-exchange-studies/ )

Chel’cova L. P. (1957) – Cytological data on the development of leaf stomata in wheat. – Dokl. Akad. Nauk SSSR (NS). 113. 1372-5. – [Seen in Napp-Zinn, K. 1974 Blatt.

Chen C., Xiao Y.-G., Li X., Ni M. (2012) – Light-regulated stomatal aperture in Arabidopsis – Molecular Plant 5(3): 566–572 – DOI10.1093/mp/sss039 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1a464cb0-a4ee-35d9-bb65-f06e996eccc1 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/light-regulated-stomatal-aperture/)

Chen C.-C., Chen Y.-R. (2005) – Study on laminar hydathodes of Ficus formosana (Moraceae) I. Morphology and ultrastructure. Bot. Bull. Acad. Sin. 46(3): 205-215.

Chen C.-C., Chen Y.-R. (2006) – Study on laminar hydathodes of Ficus formosana (Moraceae) II. Morphogenesis of hydathodes. Bot. Stud. 47: 279-292.

Chen C.-C., Chen Y.-R. (2007) – Study on laminar hydathodes of Ficus formosana (Moraceae) III. Salt injury of guttation on hydathodes. Bot. Stud. 48: 215-226.

Chen C.-C., Chen Y.-R. (2016) – Study on the laminar hydathodes of Ficus formosana (Moraceae) IV. Coated vesicles endocytosis is one of the retrieval mechanisms of epithem during guttation. Taiwania 61(3): 194-200.

Chen C.-C., Chen Y.-R. (2019) – Study on the laminar hydathodes of Ficus formosana (Moraceae) V.: Divergent evolution between stomata and water pores – Taiwania 64(2): 149-162, 2019 – DOI: 10.6165/tai.2019.64.149 – http://tai2.ntu.edu.tw/taiwania/pdf/tai.2019.64.149.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/23/divergent-evolution-between-stomata-and-water-pores/ )

Chen D., Cao Y., Li H., Kim D., Ahsan N., Thelen J., Stacey G. (2017) – Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture – Nature Communications 8, Article number: 2265 (2017) – doi:10.1038/s41467-017-02340-3 – https://www.nature.com/articles/s41467-017-02340-3 – (On our blog : https://plantstomata.wordpress.com/2018/01/02/dorn1-regulates-stomatal-closure-and-bacterial-defense/)

Chen D.-H., Acharya B., Liu W., Zhang W. (2013) –  Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks – Plants, 2013, 2, 4, 615 – doi:10.3390/plants2040615 – http://www.mdpi.com/2223-7747/2/4/615/pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/13/calcium-and-actin-in-stomata/)

Chen D.-H., Liu H. P., Li C. L. (2019) – Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis – Plant Mol Biol. 99(1-2): 113-122 – doi: 10.1007/s11103-018-0805-y – Epub 2018 Dec 8 – https://www.ncbi.nlm.nih.gov/pubmed/30536042 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/the-role-of-cpk9-in-stomatal-guard-cells-and-the-need-of-both-cpk9-and-cpk33-for-accurate-guard-cell-function/ )

Chen L., Dodd I. C., Davies W. J., Wilkinson S. (xxxx) – Ethylene limits abscisic acid‐ or soil drying‐induced stomatal closure in aged wheat leaves – Plant, Cell & Environment 36(10): 1850 – 1859 – DOI10.1111/pce.12094 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-36-i-10-pce12094 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/diminished-stomatal-responses-to-soil-moisture-deficit-in-older-leaves/)

Chen L. C., Li C. S., Chaloner W. G., Beerling D. J., Sun Q. G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change – Am J Bot. 88: 1309–1315 – PMID: 11454631 – https://www.ncbi.nlm.nih.gov/pubmed/11454631 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/the-potential-for-the-stomatal-characters-of-extant-and-fossil-ginkgo-leaves-to-signal-atmospheric-co2-change/ )

Chen L.Q., Cheng-Sen L., Chaloner W. G., Beerling D. J., Sun Q-G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. – Am J Bot 88:1309–1315. – https://core.ac.uk/download/pdf/245608.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/21/the-stomatal-density-and-index-of-fossil-ginkgo-leaves/)

Chen P.-y., Ma M., Shi L.-y. (xxxx) – Trade-off Between Salt Secretion and Gas Exchange by Stomata in the Leaves of Glycyrrhiza uralensis – Unedited – https://www.currentscience.ac.in/php/forthcoming/2019/31209.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomata-of-the-upper-leaves-are-mainly-used-for-gas-exchange-stomata-of-the-lower-leaves-are-responsible-for-secreting-excessive-salt/ )

Chen S., Assmann S. (2018) – Deciphering the guard cell metabolome in plant pathogen defense – https://fsrio.nal.usda.gov/fsrio/research-projects/deciphering-guard-cell-metabolome-plant-pathogen-defense – (On our blog : https://plantstomata.wordpress.com/2018/10/08/deciphering-the-stomatal-metabolome-in-plant-pathogen-defense/ )

Chen T., Wu H., Wu J., Fan X., Li X., Lin Y. (2017) – Absence of OsβCA1 causes CO2 deficit and affects leaf photosynthesis and stomatal response to CO2 in rice – Plant J. – Accepted Author Manuscript. doi:10.1111/tpj.13497 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13497/abstract – (On our blog https://plantstomata.wordpress.com/2017/02/01/os%CE%B2ca1-and-stomatal-response/ )

Chen W.-L., Yang W.-J., Lo H.-F., Yeh D.-M. (2014) – Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress – Scientia Horticutlturae 179: 364-375 – https://doi.org/10.1016/j.scienta.2014.10.003 –https://www.sciencedirect.com/science/article/pii/S0304423814005524 – (On our blog : https://plantstomata.wordpress.com/2019/04/11/line-9911-9-of-leafy-radish-was-able-to-tolerant-high-temperature-through-diminishing-both-stomatal-and-non-stomatal-limitations/ )

Chen Y.-H., Hu L., Punta M., Bruni R., Hillerich B., Kloss B., Rost B., Love J., Siegelbaum S. A., Hendrickson W. A. (2010) – Homologue structure of the SLAC1 anion channel for closing stomata in leaves – Nature 467, 1074–1080 (28 October 2010) – doi:10.1038/nature09487 – http://www.nature.com/nature/journal/v467/n7319/full/nature09487.html – (On our blog : https://plantstomata.wordpress.com/2017/09/17/a-bacterial-homologue-of-slac1-for-closing-stomata/)

Chen Y.-L., Huang R., Xiao Y.-M., Lü P., Chen J., Wang X.-C. (2004) – Extracellular Calmodulin-Induced Stomatal Closure Is Mediated by Heterotrimeric G Protein and H2O2 – Plant Physiology 136: 4096–4103 – Extracellular_Calmodulin-Induced_Stomata.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64726)

Chen Y.-L., Zhang X. Q., Chen J., Wang X.-C. (2003) – Existence of extracellular CaM in abaxial epidermis of Vicia faba L. and its role in regulation of stomatal movements – Acta Bot Sin 45:40–46 – https://europepmc.org/abstract/cba/361042 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/endogenous-extracellular-cam-promotes-stomatal-closure-and-inhibits-stomatal-opening/ )

Chen Z., Gallie D. R. (2004) – The ascorbic acid redox state controls guard cell signaling and stomatal movement. – Plant Cell. 2004;166(1):1143–1162. [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/07/16/the-asc-redox-state-and-stomatal-movements/)

Chen Z. C., Feng J. X., Wan X. C. (2018) – Stomatal Behaviours of Aspen (Populus tremuloides) Plants in Response to Low Root Temperature in Hydroponics – Russ J Plant Physiol 65: 512-517 – https://doi.org/10.1134/S1021443718040106 – https://link.springer.com/article/10.1134/S1021443718040106#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/11/stomatal-behaviour-in-response-to-low-root-temperature-in-hydroponics/ )

Chen Z.-H., Blatt M. R. (2010) – Membrane Transport in Guard Cells – eLS. -DOI: 10.1002/9780470015902.a0021630 – http://www.els.net/WileyCDA/ElsArticle/refId-a0021630.html – (On our blog : https://plantstomata.wordpress.com/2018/01/17/membrane-transport-in-guard-cells-stomata/ )

Chen Z.-H., Chen G., Dai F., Wang Y., Hills A., Ruan Y.-L., Zhang G., Franks P. J., Nevo E., Blatt M. R. (2016) – Molecular Evolution of Grass Stomata – Trends in Plant Science  22: 124–139 – http://dx.doi.org/10.1016/j.tplants.2016.09.005 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(16)30159-5?rss=yes – (On our blog https://plantstomata.wordpress.com/2017/09/27/the-evolutionary-development-of-grass-stomata-2/)

Chen Z.-H., Eisenach C., Xu X.-Q., Hills A., Blatt M. R. (2012) – Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis – Plant Methods 8(1): 15 – https://doi.org/10.1186/1746-4811-8-15 – https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-8-15 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/a-reliable-set-of-procedures-for-voltage-clamp-analysis-of-guard-cells/ )

Chen Z.-H., Guang C., Dai F., Wang Y., Hills A., Ruan Y.-l., Zhang G. P., Franks P. J., Nevo E., Blatt M. R. (2017) – Molecular Evolution of Grass Stomata – Trends in Plant Science 22(2): 124-139Doi: 10.1016/j.tplants.2016.09.005 – https://www.researchgate.net/publication/309360375_Molecular_Evolution_of_Grass_Stomata – (On our blog : https://plantstomata.wordpress.com/2019/08/15/molecular-evolution-of-grass-stomata/ )

Chen Z.-H., Hills A., Bätz U., Amtmann A., Lew V. L., Blatt M. R. (2012) – Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. – Plant Physiol 159: 1235–1251 – doi:10.1104/pp.112.197350 – CrossRefCAS – http://researchdirect.westernsydney.edu.au/islandora/object/uws:13280 – (On our blog : https://plantstomata.wordpress.com/2017/11/12/the-onguard-model-providing-a-framework-for-systems-analysis-of-stomatal-guard-cells/)

Chen Z.-H., Hills A., Lim C. K., Blatt M. R. (2010) – Dynamic regulation of guard cell anion channels by cytosolic free Ca2+concentration and protein phosphorylation – The Plant Journal, 2010, 61, 5, 816-825 – Wiley Online Library, CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/21/guard-cell-anion-channels-ca2-and-proteins/

Chen Z.-H., Wang Y. W.-W., Babla M., Zhao C., Garcia-Mata C., Sani E., Differ C., Mak M., Hills A., Amtmann A., Blatt M. R. (2015) – Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis – New Phytologist 209(4): 1456–1469 – DOI: 10.1111/nph.13714 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13714/full – (On our blog : https://plantstomata.wordpress.com/2017/07/30/potassium-nutrition-and-nitrogen-metabolism-in-the-nia1nia2-mutant-affecting-stomatal-function/)

Cheung A. Y., Wu H. M. (2015) – Stomatal patterning: SERKs put the mouths in their right place – Curr Biol 25: R838–R840 – https://doi.org/10.1016/j.cub.2015.08.049 -https://www.cell.com/current-biology/fulltext/S0960-9822(15)01043-X – (On our blog : https://plantstomata.wordpress.com/2018/12/06/a-key-player-serk-to-the-signal-sensing-apparatus-to-inform-where-stomata-are-to-be-formed-on-the-leaf/ )  

Chin J. C., Wan Y., Smith J., Croxdale J. (1995) – Linear aggregations of stomata and epidermal cells in Tradescantia leaves: evidence for their group patterning as a function of the cell cycle – Developmental Biology 167: 39–46 – DOI: 10.1006/dbio.1995.1059 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/7883077 – (On our blog : https://plantstomata.wordpress.com/2017/09/15/linear-aggregations-of-stomata-and-epidermal-cells/ )

Chitrakar R., Melotto M. (2010) – Assessing stomatal response to live bacterial cells using whole leaf imaging – J Vis Exp pii: 2185 – DOI: 10.3791/2185 – https://pdfs.semanticscholar.org/ac2c/8e6737c1979297f2012b156939793aaee92a.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/06/assessing-stomatal-response-to-live-bacterial-cells-using-whole-leaf-imaging/

Cho D., Kim S. A., Murata Y., Lee S., Jae S.-K., Nam H. G., Kwak J. M. (2009) – De‐regulated expression of the plant glutamate receptor homolog AtGLR3.1impairs long‐term Ca2+‐programmed stomatal closure – Plant Journ. 58(3): – https://doi.org/10.1111/j.1365-313X.2009.03789.x –https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-313X.2009.03789.x – (On our blog : https://plantstomata.wordpress.com/2019/02/15/de-novo-protein-synthesis-contributes-to-the-maintenance-of-long%E2%80%90term-ca2%E2%80%90programmed-stomatal-closure/ )

Cho J., Oki T. (2012) – Application of temperature, water stress, CO2 in rice growth models – Rice (N Y). 2012; 5: 10 –  doi:  10.1186/1939-8433-5-10 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520833/– (On our blog : https://plantstomata.wordpress.com/2018/08/29/stomata-and-application-of-temperature-water-stress-co2-in-rice-growth-models/

Cho S.-O., Wick S. M. (1989) – Microtubule orientation during stomatal differentiation in grasses –  Journal of Cell Science 92: 581–594 – http://jcs.biologists.org/content/joces/92/4/581.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/05/changing-orientation-of-microtubules-during-formation-of-stomata/

Cho S.-O., Wick S. M. (1990) – Distribution and function of actin in the developing stomatal complex of winter rye (Secale cereale cv. Puma) – Protoplasma 157: 154-164 – https://doi.org/10.1007/BF01322648 – https://link.springer.com/article/10.1007%2FBF01322648#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/16/actin-in-the-developing-stomatal-complex-of-winter-rye/ )

Cho S.-O., Wick S. M. (1991) – Actin in the developing stomatal complex of winter rye: a comparison of actin antibodies and Rh-phalloidin labeling of control and CB-treated tissues – Cell Motility and Cytoskeleton 19: 25–36 – https://doi.org/10.1002/cm.970190105 – https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970190105 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/actin-in-the-developing-stomatal-complex/

Choi Y., Lee Y., Jeon B. W., Staiger C. J., Lee Y. (2008) – Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. – Plant, Cell & Environment 31: 366–377 – DOI: 10.1111/j.1365-3040.2007.01769.x– | CrossRef | CAS | – https://www.ncbi.nlm.nih.gov/pubmed/18088331 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/ptdins3p-and-ptdins4p-regulate-actin-dynamics-in-guard-cells/ )

Chodat F. (1940) – Mesure du degré d’ouverture des stomates par la méthode de flottaison à l’acétone – C. R. Soc. Phys. & Hist. Nat.; Genève 57: 247-252 – (On our blog : https://plantstomata.wordpress.com/2017/06/08/measuring-the-aperture-of-stomata-by-keeping-them-floating-in-acetone/)

Choudhury B. J., Monteith J. L. (1986) – Implications of stomatal response to saturation deficit for the heat balance of vegetation – Agric Forest Meteorol 36: 215–225 – https://doi.org/10.1016/0168-1923(86)90036-5 – https://www.sciencedirect.com/science/article/pii/0168192386900365 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/implications-of-stomatal-response-to-saturation-deficit-for-the-heat-balance-of-vegetation/ )

Christmann A., Moes D., Himmelbach A., Yang Y., Tang Y., Grill E. (2006) – Integration of Abscisic Acid Signalling into Plant Responses – Plant Biology Volume 8, Issue 3, pages 314–325 – DOI: 10.1055/s-2006-924120 – http://onlinelibrary.wiley.com/wol1/doi/10.1055/s-2006-924120/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/01/aba-action-enforces-a-sophisticated-regulation-at-all-levels-in-stomata/ )

Ciha A.J., Brun W. A.  (1975) –  Stomatal size and frequency in soybeans. – Crop. Sci., pp: 309-313. – doi:10.2135/cropsci1975.0011183X001500030008x – https://dl.sciencesocieties.org/publications/cs/abstracts/15/3/CS0150030309?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-size-and-frequency-in-glycine-max-fabaceae/ )

Clark D. G., Hecht H., Curtis O. F., Shafer J. I. (1941) – Stomatal behavior in inbred and hybrid maize – Am. J. Bot. 28: 537-541 – (On our blog : https://plantstomata.wordpress.com/2017/06/13/stomatal-behavior-in-inbred-and-hybrid-maize/)

Clark G., Fraley D., Steinebrunner I., Cervantes A., Onyirimba J., Liu A., Torres J., Tang W., Kim J., Roux S. J. (2011) – Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis – Plant Physiol. 156: 1740–1753 – PMID:21636723; http://dx.doi.org/10.1104/pp.111.174466 – %5BPMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/21636723 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ectoapyrases-and-extracellular-nucleotides-play-key-roles-in-regulating-stomatal-functions/

Clark G., Darwin C., Mehta V., Jackobs F., Perry T., Hougaard K., Roux S. (2013) – Effects of chemical inhibitors and apyrase enzyme further document a role for apyrases and extracellular ATP in the opening and closing of stomates in Arabidopsis. – Plant Signal. Behav. 8: e26093 – DOI 10.4161/psb.26093 – PubMed – PubMed Central – https://www.ncbi.nlm.nih.gov/pubmed/23989340 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/apyrases-and-extracellular-atp-in-the-opening-and-closing-of-stomata/ )

Clayson C., García-Ruiz I., Costea M. (2014) – Diversity, evolution, and function of stomata bearing structures in Cuscuta (dodders, Convolvulaceae): From extrafloral nectar secretion to transpiration in arid conditions – Perspectives in Plant Ecology, Evolution and Systematics 16(6): 310-321 – DOI10.1016/j.ppees.2014.08.004 – https://www.infona.pl/resource/bwmeta1.element.elsevier-48d0e5d2-3627-3cba-baed-419c7c43b05f – (On our blog : https://plantstomata.wordpress.com/2017/10/11/stomata-bearing-structures-in-cuscuta-dodders-convolvulaceae/)

Cleary A. L. (1995) – F-actin redistributions at the division site in living Tradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin –  Protoplasma 185: 152-1965 –  https://doi.org/10.1007/BF01272855 – https://link.springer.com/article/10.1007%2FBF01272855#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/16/f-actin-redistributions-at-the-division-site-in-stomatal-complexes/ )

Cleary A. L. (1996) – Regulation of cell division during formation of stomatal complexes: Importance of the cytoskeleton, cell plate realignments and the cell wall. In: The Symposium of the Construction of Cytoskeletal Arrays in Plant Cells. Osaka University, Osaka, pp 13–15 (Article not found)

Cleary A. L. (2000) – Actin in formation of stomatal complexes. – In: Staiger C., Baluska F., Volkmann D., Barlow P., eds. – Actin: a dynamic framework for multiple plant cell functions – Dordrecht, The Netherlands: Kluwer Academic Publishers, 411–426 – Google Scholar – CrossRef – Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 89) – https://link.springer.com/chapter/10.1007/978-94-015-9460-8_23 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/distribution-and-function-of-actin-during-stomatogenesis/ )

Cleary A. L., Brown R. C., Lemmon B. E. (1992) – Establishment of division plane and mitosis in monoplastidic guard mother cells of Selaginella – Cell Motility and Cytoskeleton 23: 89–101 – https://doi.org/10.1002/cm.970230202 – https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970230202 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/establishment-of-division-plane-and-mitosis-in-monoplastidic-guard-mother-cells/ )

Cleary A. L., Brown R. C., Lemmon B. E. (1993) – Organisation of microtubules and actin filaments in the cortex of differentiating Selaginella guard cells – Protoplasma 177: 37–44 –  – https://link.springer.com/article/10.1007%2FBF01403397#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/29/organisation-of-microtubules-and-actin-filaments-in-the-cortex-of-differentiating-stomatal-guard-cells/ )

Cleary A. L., Hardham A. R. (1989) -Microtubule organization during development of stomatal complexes in Lolium rigidum – Protoplasma 149: 67–81 – https://doi.org/10.1007/BF01322979 – https://link.springer.com/article/10.1007/BF01322979#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/29/interphase-microtubules-are-nucleated-in-the-cell-cortex-in-all-cells-of-the-stomatal-complex/

Cleary A. L., Hardham A. R. (1990) – Reinstatement of microtubule arrays from cortical nucleating sites in stomatal complexes of Lolium rigidum following depolymerisation of microtubules by oryzalin and high pressure – Plant Cell Physiol. 31: 903-915 – http://pcp.oxfordjournals.org/content/31/7/903.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/22/mts-in-gcs-of-developing-stomata-are-nucleated-in-the-cell-cortex/)

Cleary A. L., Mathesius U. (1996) – Rearrangements of F-actin during stomatogenesis visualised by confocal microscopy in fixed and permeabilised Tradescantia leaf epidermis – Botanica Acta 109: 15–24 – https://doi.org/10.1111/j.1438-8677.1996.tb00865.x -https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-8677.1996.tb00865.x – (On our blog : https://plantstomata.wordpress.com/2018/12/01/rearrangements-of-f-actin-during-stomatogenesis/

Clifford S. C., Black C. R., Roberts J. A., Stronach I. M., Singleton-Jones P. R.,Mohamed A. D., Azam-Ali S. N. (1995) – The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut (Arachis hypogaea L.) – Journal of Experimental Botany 46: 847-852 – https://doi.org/10.1093/jxb/46.7.847- Abstract/FREE Full Text – https://academic.oup.com/jxb/article-abstract/46/7/847/570200?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/22/co2-and-drought-on-stomatal-frequency/

Cochard H., Bréda N., Granier A. (1996) – Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? – Ann. Sci. For. 53: 197–206 – DOI: 10.1051/forest:19960203 – https://www.afs-journal.org/articles/forest/abs/1996/02/AFS_0003-4312_1996_53_2-3_ART0003/AFS_0003-4312_1996_53_2-3_ART0003.html – (On our blog : https://plantstomata.wordpress.com/2018/12/01/whole-tree-hydraulic-conductance-and-water-loss-regulation-during-drought-evidence-for-stomatal-control-of-embolism/ )

Cochard H., Coll L., Le Roux X., Ameglio T. (2002) – Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. – Plant Physiol. 128:282–290.- doi: http://dx.doi.org/10.1104/pp.010400 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/128/1/282 – (On our blog https://plantstomata.wordpress.com/2016/04/16/effects-of-plant-hydraulics-on-stomatal-closure-during-water-stress/ )

Cochrane T. T., Cochrane T. A. (2009) – The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. – Plant Signal Behav. 4: 240–243 – DOI 10.4161/psb.4.3.7955 – CrossRef PubMed PubMedCentral Google Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652541/ – (On our blog : https://plantstomata.wordpress.com/2018/02/22/potassium-and-the-osmotic-mechanism-of-stomata-aperture-modulation/

Cochrane T. T., Cochrane T. A. (2009) – Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation – Plant Physiology and Biochemistry 47(3) : 205-209 – DOI10.1016/j.plaphy.2008.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-9a83c017-3172-3fe4-8ccb-28d82e63c4a9 – (On our blog https://plantstomata.wordpress.com/2017/10/12/stomata-aperture-modulation-is-closely-linked-to-the-osmotic-properties-of-its-guard-cell-solution-solutes/)

Cockburn W., Ting I. P., Stenberg L. O. (1979) – Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. – Plant Physiol. 63: 1029–1032 – CrossRefPubMedGoogle Scholar – http://www.plantphysiol.org/content/plantphysiol/63/6/1029.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/23/stomatal-behavior-and-internal-co2-concentration/ )

Coe H., Gallagher M. W., Choularton T. W., Dore C. (1995) – Canopy scale measurements of stomatal and cuticular O3 uptake by Sitka spruce Atmos. Environ. 29: 1413-1423 –

Collatz G. J., Grivet C., Ball J. T., Berry J. A. (1991) – Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer – Agricultural and Forest Meteorology 54 – 107-136 – https://doi.org/10.1016/0168-1923(91)90002-8 – https://www.sciencedirect.com/science/article/pii/0168192391900028 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/regulation-of-stomatal-conductance/ )

Collatz G. J., Ribas-Carbo M., Berry J. A. (1992) – Coupled photosynthesis-stomatal conductance model for leaves of C4 plants – Aust. J. Plant Physiol. 19: 519–538 – https://doi.org/10.1071/PP9920519http://www.publish.csiro.au/fp/PP9920519 – (On our blog : https://plantstomata.wordpress.com/2019/05/16/a-coupled-photosynthesis-stomatal-conductance-model/ )

Collins J. W. M., Shpak E. D. (2014) – Novel Mutations That Affect Stomata Development in Arabidopsis thaliana – http://trace.tennessee.edu/utk_eureca/2014/artsandsciences/13/ – (On our blog : https://plantstomata.wordpress.com/2018/01/31/novel-mutations-that-affect-stomata-development/ )

Collins M. J., Fuentes S., Barlow E. W. R. (2010) – Partial rootzone drying and deficit irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric grapevines – Funct. Plant Biol.37: 128–138 – https://doi.org/10.1071/FP09175Google Scholar CrossRef – http://www.publish.csiro.au/fp/fp09175 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/how-alternative-irrigation-strategies-affects-stomatal-response-to-atmospheric-vapour-pressure-deficit/ )

Colosanti J., Cho S.-O., Wick S., Sundaresan V. (1993) – Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with predicted division sites – Plant Cell 5: 1101–1111 – DOI: 10.1105/tpc.5.9.1101 – https://www.ncbi.nlm.nih.gov/pubmed/12271098 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71664 )

Cominelli E., Galbiati M., Albertini A., Fornara F., Conti L., Coupland G., Tonelli C. (2011) – DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter – BMC Plant Biol. 2011 Nov 16;11:162. doi: 10.1186/1471-2229-11-162 – https://www.ncbi.nlm.nih.gov/pubmed/22088138 – (On our blog : https://plantstomata.wordpress.com/2018/09/07/new-promoter-modules-as-useful-tools-for-manipulating-gene-expression-in-stomata/ )

Cominelli E., Galbiati M.,  Tonelli C. (2010) – Transcription factors controlling stomatal movements and drought tolerance – Transcription 1: 41–45 – https://doi.org/10.4161/trns.1.1.12064 –https://www.tandfonline.com/doi/abs/10.4161/trns.1.1.12064 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/characterization-of-transcription-factors-involved-in-stomatal-movements/ )

Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N., Dellaporta S. L., Tonelli C. (2005) – A guard-cell-specific myb transcription factor regulates stomatal movements and plant drought tolerance.-  Curr. Biol., 15: 1196-1200 -DOI: http://dx.doi.org/10.1016/j.cub.2005.05.048http://www.cell.com/current-biology/abstract/S0960-9822(05)00563-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982205005634%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/05/13/atmyb60-and-stomatal-movements/)

Company of Biologists (2014) – Auxin keeps stomata in the dark – Development 2014 -141: e1604 – http://dev.biologists.org/content/141/16/e1604 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/aux-iaa-mutants-exhibit-excessive-stomata-production-specifically-in-dark-grown-seedlings/ )

Comstock J. P. (2002) – Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. – J. Exp. Bot. 53(367): 195-200 –  (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/14/the-control-of-stomatal-conductance-and-transpiration/).

Comstock J. P., Ehleringer J. R. (1993) – Stomatal response to humidity in common bean (Phaseolus vulgaris): Implications for maximum transpiration rate, water-use efficiency and productivity. – Australian Journal of Plant Physiology 20, 669–691. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/03/14/stomatal-response-to-humidity-in-common-bean/)

Comstock J., Mencuccini M. (1998) – Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub. – Plant, Cell & Environment 21: 1029–1038. – Wiley Online Library |PubMed | – (On our blog : https://plantstomata.wordpress.com/2015/09/14/leaf-water-potential-and-stomatal-conductance-gs/)

Cong X., Jing H., Lin N., Xia Z., Huang M., Jiang X. (2015) – Boron deficiency affects cell morphology and structure of young leaves of radish – Acta Physiologiae Plantarum 37(11): 1-10 – DOI10.1007/s11738-015-2004-7 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11738-015-2004-7 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/b-deficiency-severely-affects-the-rhythmic-stomatal-closing-and-opening/)

Coyne P. I., Bingham G. E. (1980) – Photosynthesis and stomatal response to light and temperature in Ponderosa pine exposed to long-term oxidant stress. In: Miller PR (ed) Effect of Air Pollutants on Mediterranean and Temperate Forest Ecosystems. Pac SW For Range Exp Sta Gen Tech Rep PSW-43, Berkeley, p 233

Cooke J. R., De Baerdemaeker J. G., Rand R. H., Mang H. A. (1976) – A finite element shell analysis of guard cell deformations. – Trans ASAE (Am Soc Agric Eng) 19 1107–1121. – http://audiophile.tam.cornell.edu/randpdf/guardcel.pdf // https://www.researchgate.net/publication/274492871_A_Finite_Element_Shell_Analysis_of_Guard_Cell_Deformations //  – (On our blog : https://plantstomata.wordpress.com/2016/11/22/guard-cell-deformations/)

Cooper M. J., Digby P. J., Cooper P. J. (1972) – Effects of plant hormones on the stomata of barley : A study of the interaction between abscisic acid and kinetin – Planta 105: 43-49 –  doi: 10.1007/BF00385162. – https://link.springer.com/article/10.1007/BF00385162 – (On our blog : https://plantstomata.wordpress.com/2018/02/23/interaction-between-aba-and-kinetin-in-barley-stomata/ )

Cooper S. D., Cockburn W. (1979) – Osmotically induced water stress, potassium uptake and stomatal aperture in epidermal strips of Vicia faba L. – J. Exp. Bot. 30: 913–918 – https://doi.org/10.1093/jxb/30.5.913 –https://academic.oup.com/jxb/article-abstract/30/5/913/450281 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/osmotically-induced-water-stress-potassium-uptake-and-stomatal-aperture/ )

Copeland E. B. (1902) – The mechanism of stomata – Ann. Bot. 16 (2): 327-364 – (On our blog : https://plantstomata.wordpress.com/2017/06/18/the-mechanism-of-stomata/)

Cornell University – Institute of Biotechnology – Guard cells surrounding a pore in a plant leaf (picture) : Olympus BX-50 fluorescence microscope – http://www.biotech.cornell.edu/guard-cells-surrounding-pore-plant-leaf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/stomatal-guard-cells-picture/ )

Cornic G. (2000) – Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis – Trends in Plant Science 5: 187–188 – DOI:https://doi.org/10.1016/S1360-1385(00)01625-3 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(00)01625-3 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/drought-stress-photosynthesis-and-decreasing-stomatal-aperture/ )

Cornic G., Miginiac E. (1983) – Nonstomatal inhibition of net CO2 uptake by (±) abscisic acid in Pharbitis nil – Plant –  Physiol. 73: 529–533 – PMCID: PMC1066501 – PMID: 16663253 -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066501/ – (On our blog : https://plantstomata.wordpress.com/2018/11/30/a-substantial-part-of-the-reduction-in-leaf-net-co2-uptake-could-be-accounted-for-by-the-effect-of-aba-on-stomatal-conductance/

Cornic G., Papagiorgiou L., Louason G. (1987) – Effect of a rapid and a slow drought cycle followed by rehydration on stomatal and nonstomatal components of leaf photosynthesis in Phaseolus vulgaris L. J. Plant Physiol. 126: 309-318 –

Cornic G., Prioul L., Louason G. (1983) – Stomatal and non stomatal contribution to reductions in leaf net CO2-uptake during rapid water
stress – Physiol. Plant. 58: 295-301 –

Cornish K., Radin J. W., Turcotte E. L., Lu Z., Zeiger E. (1991) – Enhanced photosynthesis and stomatal condutance of pima cotton (Gossypium barbadense L.) bred for increased yield – Plant Physiology, Lancaster 97(2): 484-489 – DOI: https://doi.org/10.1104/pp.97.2.484 – http://www.plantphysiol.org/content/97/2/484/tab-article-info – (On our blog : https://plantstomata.wordpress.com/2018/12/01/breeding-for-increasing-yield-has-enhanced-photosynthetic-capacity-and-stomatal-conductance/

Cornish K., Zeevaart J. A. (1986) – Abscisic acid accumulation by in situ and isolated guard cells of Pisum sativum L. and Vicia faba L. in relation to water stress. – Plant Physiol. 81: 1017–1021. – DOI: https://doi.org/10.1104/pp.81.4.1017 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/81/4/1017.short – (On our blog : https://plantstomata.wordpress.com/2018/02/23/aba-accumulation-in-relation-to-water-stress/

Corratgé-Faillie C., Ronzier E., Sanchez F., Prado K., Kim J.-H., Lanciano S., Leonhardt N., Lacombe B., Xiong T. C. (2017) – The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33 – FEBS Lett. 591: 1982–1992 – [Google Scholar] [CrossRef] [PubMed] – DOI: 10.1002/1873-3468.12687 –https://www.ncbi.nlm.nih.gov/pubmed/28543075 – (On our blog : https://plantstomata.wordpress.com/2018/12/05/stomatal-outward-potassium-channel-gork-is-regulated-by-cpk33/https://plantstomata.wordpress.com/2018/12/05/stomatal-outward-potassium-channel-gork-is-regulated-by-cpk33/

Corrêa F. F., Pereira M. P., Madail R. H., Santos B. R., Barbosa S., Castro E. M., Pereira F. J. (2017) – Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae) – Braz J Biol. 77(1): 52-59. -doi: 10.1590/1519-6984.09715 – Epub 2016 Jul 4 – https://www.ncbi.nlm.nih.gov/pubmed/27382995 – (On our blog : https://plantstomata.wordpress.com/2018/09/09/leaves-from-low-density-populations-showed-higher-stomatal-density-and-index/ )

Correia M. J., Rodrigues M. L., Ferreira M. I., Pereira J. S. (1997) – Diurnal changes in the relationship between stomatal conductance and abscisic acid in the xylem sap of field grown peach trees. – J. exp. Bot. 48: 1727-1736 – http://www.jstor.org/stable/23695730 – (On our blog : https://plantstomata.wordpress.com/2018/02/23/stomatal-conductance-and-aba-in-xylem-sap/ )

Cosgrove D. J., Hedrich R. (1991) – Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. – Planta 186(1): 143–153 – DOI:10.1007/BF00201510 – https://www.ncbi.nlm.nih.gov/pubmed/11538499 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stretch-activated-sa-channels-influence-volume-and-turgor-regulation-of-stomata/ )

Costa J. M., Monnet F., Jannaud D., Leonhardt N., Ksas B., Reiter I. M., Pantin F., Genty B. (2015) – OPEN ALL NIGHT LONG: The Dark Side of Stomatal Control – Plant Physiology 167(2) – DOI: https://doi.org/1) –0.1104/pp.114.253369 – http://www.plantphysiol.org/content/167/2/289 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/dedicated-regulators-enforce-nighttime-stomatal-closure/)

Cottele V., Forestier C., Vavasseur A. (1996) – A reassessment of the intervention of calmodulin in the regulation of stomatal movement – Physiol Plant 98: 619–628 – https://doi.org/10.1111/j.1399-3054.1996.tb05719.x –  https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1996.tb05719.x – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ca2%e2%80%90-or-a-ca2%e2%80%90cam%e2%80%90dependent-protein-kinase-plays-a-central-role-in-the-regulation-of-stomatal-movement/ )

Cotelle V., Leonhardt N. (2016) – 14-3-3 Proteins in Guard Cell Signaling – Front. Plant Sci. 6:1210. –  http://dx.doi.org/10.3389/fpls.2015.01210 – http://journal.frontiersin.org/article/10.3389/fpls.2015.01210/full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/the-roles-of-14-3-3-proteins-in-stomata/)

Cotelle V., Pierre J. N., Vavasseur A. (1999) – Potential strong regulation of guard cell phosphoenolpyruvate carboxylase through phosphorylation – J. Exp. Bot. 335:777–783 – https://www.jstor.org/stable/23696231?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/phosphorylation-and-stomatal-regulation/ )

Couot-Gastelier J. (1989) – Les microtubules des cellules stomatiques: implication dans le mouvement des stomates – Bull. Soc. bot. Fr. Actual. bot, 136: 111-112 – https://doi.org/10.1080/01811789.1989.10826944 – https://www.tandfonline.com/doi/abs/10.1080/01811789.1989.10826944 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/le-mouvement-des-stomates-in-french/ )

Couot-Gastelier J., Laffray D., Louguet P. (1984) – Étude comparée de l’ultrastructure des stomates ouverts et fermés chez le Tradescantia virginiana. – Can. J. Bot. 62: 1505–1512 – https://doi.org/10.1139/b84-200 – Google Scholar – http://www.nrcresearchpress.com/doi/abs/10.1139/b84-200 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/ultrastructure-of-open-and-closed-stomata-in-french/ )

Couot-Gastelier J., Louguet P. (1985) – Variations ultrastructurales comparées des mitochondries dans les cellules de garde des stomates ouverts et fermés – C. R. Acad. Sc. Paris, 301: 89-93 

Couot-Gastelier J., Louguet P. (1985) – Localisation ultrastructurale de la phosphatase acide dans les cellules stomatiques de Tradescantia virginiana L – Cytobios, 43: 87-95 

Couot-Gastelier J., Louguet P. (1987) – Etude comparée de la structure foliaire et de l’ultrastructure des stomates chez deux cultivars de Pelargonium × hortorum, l’un chlorophyllien et l’autre mutant à feuilles blanches, vertes ou panachées – Can. J. Bot, 65: 340-347 

Couot-Gastelier J., Louguet P. (1989) – Synthèse d’ A.R.N. et de protéines dans les stomates ouverts et fermés chez deux cultivars de Pelargonium × hortorum l’un chlorophyllien et l’autre mutant à feuilles blanches – Bull. Soc. bot. Fr. lettres bot, 136: 91-102 

Couot-Gastelier J., Louguet P. (1992) – Effet de la colchicine sur les mouvements des stomates et l’ultrastructure des cellules stomatiques de Tradescantia virginiana – Bulletin Soc.  Bot. France, Lettres Botaniques 139: 345–356 –

Coursol S., Le Stunff H., Lynch D. V., Gilroy S., Assmann S. M., Spiegel S. (2005) – Arabidopsis sphingosine kinase and the effects of phytosphingosine- 1-phosphate on stomatal aperture. – Plant Physiol. 137: 724–737 – doi: 10.1104/pp.104.055806 – https://www.ncbi.nlm.nih.gov/pubmed/15665242 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/arabidopsis-sphingosine-kinase-phytosphingosine-1-phosphate-and-stomatal-aperture/ )

Coursol S., Fan L.-M., Le Stunff H., Spiegel S., Gilroy S., Sarah M. Assmann S. M. (2003)– Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins – Nature 423: 651–654 –  DOI: 10.1038/nature01643  – CrossRef Medline PubMed Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/16/sphingolipid-signalling-in-stomata/).

Cousins A. B., Baroli I., Badger M. R., Ivakov A., Lea P. J., Leegood R. C., et al. (2007) – The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. – Plant Physiol. 145: 1006–1017 – doi: 10.1104/pp.107.103390 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/145/3/1006 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/pepc-ec-4-1-1-31-c4-photosynthesis-and-stomatal-opening/ )

Cousson A. (1999) – Pharmacological study of two potential Ca2+ signalling pathways within stomatal closing in response to abscisic acid in Commelina communis L. – Plant Sci. 145: 67–74 – https://doi.org/10.1016/S0168-9452(99)00054-0 – https://www.sciencedirect.com/science/article/pii/S0168945299000540 – (On our blog : https://plantstomata.wordpress.com/2018/11/23/stomatal-closing-proceeds-from-different-ca2-signalling-pathways/

Cousson A. (2000) – Analysis of the sensing and transducing processes implicated in the stomatal responses to carbon dioxide in Commelina communis L. – Plant Cell Environ 23: 487–495 – CrossRef Google Scholar – http://onlinelibrary.wiley.com/store/10.1046/j.1365-3040.2000.00561.x/asset/j.1365-3040.2000.00561.x.pdf;jsessionid=717BBEDB1AC0BC119C4845CEB99B153E.f02t03?v=1&t=je43qgzb&s=f09851f2a5f36dfe45e1ae78583288e4b435f290 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/sensing-and-transducing-processes-implicated-in-the-stomatal-responses-to-co2/

Cousson A. (2001) – Pharmacological evidence for the implication of both cyclic GMP-dependent and -independent transduction pathways within auxin-induced stomatal opening in Commelina communis (L.). – Plant Sci. 161: 249-258 – (Article not found)

Cousson A. (2003) – Pharmacological evidence for a positive influence of the cyclic GMP-independent transduction on the cyclic GMP-mediated Ca2+-dependent pathway within the Arabidopsis stomatal opening in response to auxin – Plant Sci. 164, 759–767. – doi: 10.1016/S0168-9452(03)00062-1 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/09/19/the-arabidopsis-stomatal-opening-in-response-to-auxin/).

Cousson A. (2003) – Two potential Ca2+-mobilising processes depend on the abscisic acid concentration and growth temperature in the Arabidopsis stomatal guard cell. – J. Plant Physiol.160, 493–501. doi: 10.1078/0176-1617-00904 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/02/15/5559/).

Cousson A., Vavasseur A. (1998) – Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic GMP-mediated induction of stomatal opening by auxin in Commelina communis L. – Planta 206: 308-314 – https://doi.org/10.1007/s004250050405 – https://link.springer.com/article/10.1007/s004250050405#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/27/cyclic-gmp-mediated-induction-of-stomatal-opening-by-auxin/ )

Cousson A., Vavasseur A. (1998) – Two potential Ca2+-dependent transduction pathways in stomatal closing in response to abscisic acid. – Plant Physiology and Biochemistry 36: 257–262 – DOI 10.1016/S0981-9428(97)86883-0 – https://www.sciencedirect.com/science/article/pii/S0981942897868830 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/stomatal-closing-in-response-to-aba-closing-signal-transduced-through-different-pathways/ )

Coxworth B. (2017) – Leaf-zapping sensors know when plants need water – New Atlas Nov. 10, 2017 – https://newatlas.com/plant-water-leaf-sensor/52150/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/an-electrically-conductive-ink-containing-carbon-nanotubes-printed-across-a-single-stomata-to-form-an-electrical-circuit/ )

Cowan I. R. (1972) – Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. – Planta 106, 185–219 – https://doi.org/10.1007/BF00388098 – CrossRef – https://link.springer.com/article/10.1007/BF00388098#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/26/oscillations-in-stomatal-conductance/ )

Cowan I. (1977) – Stomatal behaviour and the environment -In: Preston RD, Woolhouse HW (eds) Advances in Botanical Research, vol 4: 117–228 – Academic Press, London,  – Google Scholar – https://www.sciencedirect.com/science/article/pii/S0065229608603705 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/stomatal-behaviour-and-the-environment/ )

Cowan I. R. (1995) – As to the mode of action of the Guard Cells in dry air – In Ecophysiology of Photosynthesis (eds E.D. Schulze & M.M. Caldwell), 100: 205–229. – Springer-Verlag, New York – https://link.springer.com/chapter/10.1007%2F978-3-642-79354-7_10 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-closure-in-dry-air/ )

Cowan I. R., Farquhar G. D. (1977) – Stomatal function in relation to leaf metabolism and environment. – Symposium for the Society of Experimental Biology 31: 471-505. – PubMed CAS – https://dge.carnegiescience.edu/publications/berry/AnnRev2012/_%20of%20the%20Society%20for%20Experimental%20Biology%201977%20Cowan.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-in-relation-to-leaf-metabolism-and-environment/)

Cowan I. R., Raven J. A., Hartung W., Farquhar G. D. (1982) – A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves – Functional Plant Biology 9(4): 489-498 – https://www.researchgate.net/publication/262959873_A_Possible_Role_for_Abscisic_Acid_in_Coupling_Stomatal_Conductance_and_Photosynthetic_Carbon_Metabolism_in_Leaves – (On our blog : https://plantstomata.wordpress.com/2018/02/27/aba-and-coupling-stomatal-conductance-and-photosynthetic-carbon-metabolism/

Cowan I. R., Troughton J. H. (1971) – The relative role of stomata in transpiration and assimilation – Planta 97(4): 325-336 – doi: 10.1007/BF00390212 – https://www.ncbi.nlm.nih.gov/pubmed/24493277 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/the-ways-in-which-transpiration-and-assimilation-depend-on-stomatal-aperture/ )

Coyne P. I., Bingham G. E. (1982) – Variation in photosynthesis and stomatal conductance in an ozone-stressed Ponderosa pine stand: light response – For Sci 28: 257–273 – https://doi.org/10.1093/forestscience/28.2.257 – https://www.osti.gov/biblio/5689435 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/variation-in-photosynthesis-and-stomatal-conductance-light-response-of-trees/ )

Craparo A. C. W., Steppe K., Van Asten P. J. A., Läderach P., Jassogne L. T. P., Grab S. W. (2017) – Application of thermography for monitoring stomatal conductance of Coffea arabica under different shading systems – Science of The Total Environment 609: 755-763 – https://doi.org/10.1016/j.scitotenv.2017.07.158https://www.sciencedirect.com/science/article/pii/S0048969717318612 – (On our blog : https://plantstomata.wordpress.com/2019/08/12/application-of-thermography-for-monitoring-stomatal-conductance/ )

Creese, C., Oberbauer, S., Rundel, P., Sack, L. (2014) – Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances – New Phytologist (2014) 204: 92–104. (http://www.ncbi.nlm.nih.gov/pubmed/25077933) – (On our blog : https://plantstomata.wordpress.com/2015/09/20/coordination-of-hydraulic-and-photosynthetic-signaling-networks-modulating-fern-stomatal-responses/).

Croft P. J., Shulman M. D., Avissar R. (1993) – Cranberry Stomatal Conductivity -HORTSCIENCE 28(11): 1114-1116 – http://hortsci.ashspublications.org/content/28/11/1114.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/19/cranberries-behave-as-xeromorphic-plants-stomatal-conductivity/ )

Croxdale J. L. (1998) – Stomatal patterning in monocotyledons: Tradescantia as a model system. – Journal of Experimental Botany 49: 279–292 – DOI 10.1093/jexbot/49.suppl_1.279 – CrossRefWeb of ScienceGoogle Scholar – https://www.jstor.org/stable/23695962?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/27/the-current-stomatal-patterning-theories-and-understanding-it-in-the-future/ )

Croxdale J. L. (2000) – Stomatal patterning in angiosperms. – Am. J. Bot. 87, 1069–1080. – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/08/30/a-theory-of-stomatal-patterning-on-angiosperm-leaves/)

Croxdale J., Smith J., Yandell B., Johnson J. B. (1992) – Stomatal patterning in Tradescantia: an evaluation of the cell lineage theory. – Dev Biol. 149(1):158-167. – PMID: 1728585 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.9831&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-patterning-and-the-cell-lineage-theory-2/ )

Cuevas E., Baeza P., Lissarrague J. R. (2006) – Variation in stomatal behaviour and gas exchange between mid-morning and mid-afternoon of north-south oriented grapevines (Vitis vinifera L. cv. Tempranillo) at different levels of soil water availability – Scientia Horticulturae 108: 173–180 –  https://doi.org/10.1016/j.scienta.2006.01.027–  https://www.sciencedirect.com/science/article/pii/S0304423806000574 – (On our blog : https://plantstomata.wordpress.com/2018/12/01/variation-in-stomatal-behaviour-and-gas-exchange-between-mid-morning-and-mid-afternoon-at-different-levels-of-soil-water-availability/

Cui X. H., Wang X. C. (2007) – Involvement of Vicia faba L. aquaporin in regulation of stomatal movement by microfilament –  Plant Physiology Communications 43: 61–64 – https://www.researchgate.net/publication/287528824_Involvement_of_Vicia_faba_L_aquaporin_in_regulation_of_stomatal_movement_by_microfilament – (On our blog : https://plantstomata.wordpress.com/2018/09/13/aquaporin-might-be-involved-in-stomatal-movement-regulated-by-fusicoccin-and-microfilament/

Cukrova V., Avratovscukova N. (1968) – Photosynthetic activity, chlorophyll content and stomata characteristics in diploid and polyploid types of Datura stramonium L. – Photosynthetica 2 (4): 227-237 – (On our blog : https://plantstomata.wordpress.com/2017/06/22/stomata-in-datura-stramonium/)

Cummins W. R., Kende H., Raschke K. (1971) – Specifity and reversibility of the rapid stomatal response to abscisic acid – Planta 99: 347–351 – https://doi.org/10.1007/BF00385826 – https://link.springer.com/article/10.1007/BF00385826#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/28/specifity-and-reversibility-of-the-rapid-stomatal-response-to-aba/

Currier H. R., Pickering E. R., Foy C. L. (1964) – Relation of stomatal penetration to herbicidal effects using fluorescent dye as a tracer – Weeds 12: 301-303 – DOI: 10.2307/4040760 – https://www.jstor.org/stable/4040760?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/agreement-between-degree-of-stomatal-opening-and-tracer-uptake/ )

Curtis J. D., Lersten N. R. (1986) – Hydathode anatomy in Potentilla palustris (Rosaceae) – Nord. J. Bot. 6(6): 793-796 –

Curvetto N., Darjania L., Delmastro S. (1994) – Effect of two cAMP analogs on stomatal opening in Vicia faba: possible relationship with cytosolic calcium concentration – Plant Physiol. Biochem. 32: 365-372 – (No abstract available)

Cvetkovska M., Dahal K., Alber N. A., Jin C., Cheung M., Vanlerberghe G. C. (2014) – Knockdown of mitochondrial alternative oxidase induces the “stress state” of signaling molecule pools in Nicotiana tabacum, with implications for stomatal function. – New Phytol. 203, 449–461 – doi: 10.1111/nph.12773 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12773/full – (On our blog : https://plantstomata.wordpress.com/2018/02/26/mitochondrial-alternative-oxidase-induces-the-stress-state-of-signaling-molecule-pools-and-stomatal-function/ )

Czech K. (1869) – Ueber die Funktion der Stomata – Bot. Zeitung 27(48-49): 801-808 ; 817-823. – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/41129 )