PHYSIO-BIBLIOGRAPHY A-C

Aalto M. K., Helenius E., Kariola T., Pennanen V., Heino P., Hõrak H., Puzõrjova I., Kollist H., Palva E. T. – ERD15–an attenuator of plant ABA responses and stomatal aperture – Plant Sci. 182: 19-28 – doi: 10.1016/j.plantsci.2011.08.009 – Epub 2011 Sep 1 – PMID: 22118612 – https://pubmed.ncbi.nlm.nih.gov/22118612/ – (On our blog : https://plantstomata.wordpress.com/2021/01/27/erd15-regulates-stomatal-aperture-and-consequently-controls-plant-water-relations/ )

AAAS (2019) – Speedier stomata in optogenetically enhanced plants improve growth and conserve water – https://eurekalert.org/pub_releases/2019-03/aaft-ssi032519.php – (On our blog : https://plantstomata.wordpress.com/2019/05/22/the-increased-speed-of-stomata-improved-the-plants-water-use-efficiency-without-a-penalty-to-co2-uptake/ )

Aasamaa K., Aphalo P. J. (2016) – The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components – https://www.science.gov/topicpages/s/stomatal+opening+mechanism.html – (On our blog : https://plantstomata.wordpress.com/2019/03/29/the-acclimation-of-stomatal-opening-in-response-to-light-and-stomatal-anatomy-to-vegetational-shade/ )

Aasamaa K., Aphalo P. J. (2016) – Effect of vegetational shade and its components on stomatal responses to red, blue and green light in two deciduous tree species with different shade tolerance – Environmental and Experimental Botany 121: 94–101 – https://doi.org/10.1016/j.envexpbot.2015.01.004https://www.sciencedirect.com/science/article/abs/pii/S0098847215000131?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/05/28/the-modulation-of-stomatal-light-sensitivity-participates-in-shade-acclimation-in-shade-tolerating-but-not-in-shade-avoiding-deciduous-trees/ )

Aasamaa K., Sõber A. (2001) – Hydraulic conductance and stomatal sensitivity to changes of leaf water status in six deciduous tree species – Biol. Plant. 44: 65–73 – https://doi.org/10.1023/A:1017970304768 – https://link.springer.com/article/10.1023/A:1017970304768#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/23/hydraulic-conductance-and-stomatal-sensitivity-to-changes-of-leaf-water-status/

Aasamaa K., Sõber A. (2011) – Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. – Environ. Exp. Bot. 71(1): 72-78 – http://dx.doi.org/10.1016/j.envexpbot.2010.10.013http://www.sciencedirect.com/science/article/pii/S009884721000211X – (On our blog : https://plantstomata.wordpress.com/2015/09/05/stomatal-sensitivities-to-all-the-most-important-environmental-factors/).

Aasamaa K., Söber A. (2011) – Responses of stomatal conductance to simultaneous changes in two environmental factors – Tree Physiology 31(8): 855-864 – doi: 10.1093/treephys/tpr078 – http://treephys.oxfordjournals.org/content/31/8/855 – (On our blog : https://plantstmata.wordpress.com/2016/03/22/stomatal-conductance-and-environmental-factors/)

Aasamaa K., Söber A., Hartung W., Ninemets Ü. (2002) – Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees – Tree Physiol. 22: 267–276 – PMID: 11874723 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1031.7309&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/18/rate-of-stomatal-opening-in-relation-to-leaf-aba-concentration/ )

Aasamaa K., A. Söber A., Rahi M. (2001) –  Leaf Anatomical Characteristics Associated with Shoot Hydraulic Conductance, Stomatal Conductance and Stomatal Sensitivity to Changes of Leaf Water Status in Temperate Deciduous Trees – Australian Journal of Plant Physiology 28(8): 765-774 – https://www.researchgate.net/publication/248887614_Leaf_anatomical_characteristics_associated_with_shoot_hydraulic_conductance_and_stomatal_sensitivity_to_changes_of_leaf_water_status_in_temperate_deciduous_trees – (On our blog : https://plantstomata.wordpress.com/2016/09/13/stomatal-conductance-and-stomatal-sensitivity/)

Abak K., Comlekcioglu N., Buyukalaca S., Sari N. (1998) – Use of stomatal characteristics to estimate ploidy level ofhaploid and dihaploid pepper plants – Xth EUCARPIAMeeting on Genetics and Breeding of Capsicum annuum & Eggplant – Avignon, France. 179-182 – (?)

Abak K., Yanmaz R. (1985) – Investigation on the stomatal density in certain pepper lines and their F1 hybrids – Capsicum Newsletter 4: 22 – (?)

Abanda-Nkpwatt D., Müsch M., Tschiersch J., Boettner M., Schwab W. (2006) – Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site – J Exp Bot. 57(15): 4025-4032 – doi: 10.1093/jxb/erl173 – Epub 2006 Oct 16 – PMID: 17043084 – https://pubmed.ncbi.nlm.nih.gov/17043084/ – (On our blog : https://plantstomata.wordpress.com/2022/09/05/stomata-were-identified-as-the-main-source-of-the-methanol-emission-on-tobacco-cotyledons/ )

Abbruzzese G., Beritognolo I., Muleo R., Piazzai M., Sabatti M., Mugnozza G. S., Kuzminsky E. (2009) – Leaf Morphological Plasticity and Stomatal Conductance in Three Populus alba L. Genotypes Subjected to Salt Stress – Environmental and Experimental Botany 66: 381-388 – https://doi.org/10.1016/j.envexpbot.2009.04.008https://www.sciencedirect.com/science/article/abs/pii/S0098847209000872?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-conductance-in-three-genotypes-subjected-to-salt-stress/ )

Abdalla M., Ahmed M. A., Cai G., Wankmüller F., Schwartz N., Litig O., Javaux M., Carminati A. (2022) – Stomatal closure during water deficit is controlled by below-ground hydraulics – Annals of Botany 129(2): 161–170 – https://doi.org/10.1093/aob/mcab141https://meetingorganizer.copernicus.org/EGU22/EGU22-4367.htmlhttps://academic.oup.com/aob/article-abstract/129/2/161/6454249?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2022/02/01/stomatal-regulation-is-intimately-tied-to-root-and-soil-hydraulic-conductances/ )

Abdulrahaman A.A. (2009) – Morphological and epidermal adaptations to water stress in some ornamental plant species – Ph.D. Thesis, University of Ilorin, Ilorin, Nigeria –

Abdulrahaman A. A., Aluko T. A., Oladele F. A. (2010) – Canopy characteristics, stomatal anatomy and transpiration rate in some shade plants – Journal of Biological Sciences and Bioconservation 2: 20–36 – https://www.cenresinjournals.com/2020/03/22/canopy-characteristics-stomatal-anatomy-and-transpiration-rate-in-some-shade-plants/ – (On our blog : https://plantstomata.wordpress.com/2022/04/21/stomatal-anatomy-and-transpiration-rate-in-some-shade-plants/ )

Abdulrahaman A. A., Egbedo F. O., Oladele F. A. (2009) – Stomatal complex types, stomatal density, and the stomatal index in some species of Dioscorea – Arch. Biol. Sci., Belgrade 61(4): 847-851 – DOI:10.2298/ABS0904847Ahttps://www.academia.edu/7299771/STOMATAL_COMPLEX_TYPES_STOMATAL_DENSITY_AND_STOMATAL_INDEX_IN_SOME_SPECIES_OF_DIOSCOREA_2

Abdulrahaman A. A., Oladele F. A. (2003) – Stomatal complex types, size, density and index in some vegetable species in Nigeria – Niger. J. Bot. 16: 144-150 –

Abdulrahaman A. A., Oladele F. A. (2008) – Global warming and stomatal complex types – Ethnobotanical Leaflets 12: 553-556 – (On our blog : https://plantstomata.wordpress.com/2016/05/03/stomata-and-global-warming-2/)

AbdulRahaman A. A., Oladele F. A. (2009) – Stomatal features and humidification potentials of Borassus aethiopum, Oreodoxa regia and Cocos nucifera – Afr. J. Plant Sci. 3: 59–63 – ISSN 1996-0824 – https://www.academia.edu/7299769/Stomatal_features_and_humidification – (On our blog : https://plantstomata.wordpress.com/2019/08/09/stomatal-features-and-humidi%ef%ac%81cation-potentials/ )

Abdulrahaman A. A., Oladele F. A. (2012) – Anatomical Basis for Optimal Use of Water for Maintenance of Some Mesophytic Plants. Insight Botany 1: 28-38
DOI: 10.5567/BOTANY-IK.2011.28.38 – http://insightknowledge.co.uk/fulltext/?doi=BOTANY-IK.2011.28.38 – (On our blog : https://plantstomata.wordpress.com/2016/03/27/8634/)

Abdulrahaman A. A., Oladele F. A. (2012) – Anatomical Basis for Optimal Use of Water for Maintenance of Three Xerophytic Plants – Notulae Scientia Biologicae 4(2): 53-58 – https://doi.org/10.15835/nsb427423https://notulaebiologicae.ro/index.php/nsb/article/view/7423 – (On our blog : https://plantstomata.wordpress.com/2022/03/09/stomata-and-the-optimal-use-of-water-for-maintenance/ )

Abdulrahaman A. A., Olaniran O. M., Oladele F. A. (2017) – Growth and leaf epidermal response of three Sesamum indicum varieties to industrial effluent irrigation – Bangladesh J. Sci. Ind. Res. 52(1): 1-6 – file:///C:/Users/wille/Downloads/0.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/20/100368/ )

Abdulrahaman A. A., Olayinka B. U., Haruna M., Yussuf B. T., Aderemi M. O., Kolawole O. S., Omolokun K. T., Aluko T. A., Oladele F. A. (2013) – Cooling Effects and Humidification Potentials in Relation to Stomatal Features in Some Shade Plants – International Journal of Applied Science and Technology 3(8): 138-152 – http://www.ijastnet.com/journals/Vol_3_No_8_December_2013/17.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/10/canopy-characteristics-and-stomatal-features-of-30-shade-trees/ )

Abeyratne V. D. K., Ileperuma O. A. (2006) – Impact of ambient air pollutants on the stomatal aperture of Argyreia populifolia – Ceylon J Sci 35(1): 9–15 – https://www.researchgate.net/profile/Oliver_Ileperuma/publication/237750243_IMPACT_OF_AMBIENT_AIR_POLLUTANTS_ON_THE_STOMATAL_APERTURE_OF_ARGYREIA_POPULIFOLIA/links/0046352ce082a3da9c000000.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/02/impact-of-ambient-air-pollutants-on-the-stomatal-aperture/ )

Abhi I. R. (xxxx) – Stomata: Meaning, Types and Mechanism | Plant Physiology – http://www.biologydiscussion.com/plant-physiology-2/water-loss/stomata-meaning-types-and-mechanism-plant-physiology/39657 – (On our blog : https://plantstomata.wordpress.com/2019/05/21/stomata-physiology/ )

Abid M., Haddad M., Ben Khaled A., Mansour E., Bachar K., Lacheheb B., Ali Ferchichi A., (2016) – Water Relations and Gas Exchange in Alfalfa Leaves under Drought Conditions in Southern Tunisian Oases – Pol. J. Environ. Stud. 2016;25(3):917–924 –  https://doi.org/10.15244/pjoes/61282http://www.pjoes.com/Water-Relations-and-Gas-Exchange-in-Alfalfa-Leaves-under-Drought-Conditions-in-Southern-Tunisian-Oases,61282,0,2.html – (On our blog : https://plantstomata.wordpress.com/2020/03/14/stomatal-conductance-under-drought-conditions/ )

Abraham P. E., Yin H., Borland A. M., Weighill D., Lim S. D., Cestari De Paoli H., Engle N., Jones P. C., Agh R., Weston D. J., Wullschleger S. D., Tschaplinski T., Jacobson D., Cushman J. C., Hettich R. L., Tuskan G. A., Yang X. (2016) – Transcript, protein and metabolite temporal dynamics in the CAM plant Agave – Nature Plants 2, Article number: 16178 (2016) – Doi:10.1038/nplants.2016.178 http://www.nature.com/articles/nplants2016178 – (On our blog : https://plantstomata.wordpress.com/2016/12/07/stomatal-openingclosing-and-drought-resistance-in-cam-plants/)

Abrash E., Anleu Gil M. X., Matos J. L., Bergmann D. C. (2018) – Conservation and divergence of YODA MAPKKK function in regulation of grass epidermal patterning – Development 145: dev165860 – doi: 10.1242/dev.165860https://dev.biologists.org/content/145/14/dev165860 – (On our blog : https://plantstomata.wordpress.com/2020/08/24/yoda-genes-promote-normal-stomatal-spacing-patterns/ )

Abrash E. B., Bergmann D. C. (2009) – Asymmetric cell divisions: A view from plant development. – Dev. Cell. 16: 783–796 – – https://doi.org/10.1016/j.devcel.2009.05.014 –  – http://www.sciencedirect.com/science/article/pii/S1534580709002160 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/asymmetric-cell-division-and-generation-of-cellular-diversity-and-higher-level-patterns/)

Abrash E., Bergmann D. C. (2010) – Regional specification of stomatal production by the putative ligand CHALLAH. – Development 137: 447–455  – DOI : 10.1242/dev.040931 – http://dev.biologists.org/content/137/3/447 – (On our blog : https://plantstomata.wordpress.com/2016/03/28/chal-and-the-epfs-both-act-through-er-family-receptors-to-repress-stomatal-production/)

Abrash E. B., Davies K. A., Bergmann D. C. (2011) – Generation of Signaling Specificity in Arabidopsis by Spatially Restricted Buffering of Ligand–Receptor Interactions – Plant Cell 23: 2864-2879 – https://doi.org/10.1105/tpc.111.086637 http://www.plantcell.org/content/23/8/2864?ijkey=b48676a78d1a91dd341ea8aa9a366ff4924d49be&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2019/05/29/overlapping-roles-in-patterning-of-epidermal-stomata/ )

Abrash E., Lampard G. R. (2010) – A view from the top: new ligands controlling stomatal development in Arabidopsis – New Phytol 186: 561–564 – DOI: 10.1111/j.1469-8137.2010.03265.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03265.x/full – (On our blog : https://plantstomata.wordpress.com/2016/09/13/new-ligands-controlling-stomatal-development/)

About Hydrology (2019) – Stomatal resistance and Transpiration – http://abouthydrology.blogspot.com/2019/09/stomatal-resistance-and-transpiration.html – (On our blog : https://plantstomata.wordpress.com/2022/05/03/106259/ )

Abulfaraj A. A. (2018) – Investigating the Role of the Arabidopsis Homologue of the Human G3BP in RNA Metabolism, Cellular Stress Responses and Innate Immunity – KAUST Research Repository – https://doi.org/10.25781/KAUST-P6C13https://repository.kaust.edu.sa/handle/10754/627700 – (On our blog : https://plantstomata.wordpress.com/2022/09/17/atg3bp1-mutant-lines-show-constitutive-stomata-closure/ )

Abulfaraj A. A., Mariappan K., Bigeard J., Manickam P., Blilou I, Guo X., Al-Babili S., Pflieger D., Hirt H., Rayapuram N. (2018) – The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity – Life Science Alliance 1: e201800046 – http://dx.doi.org/10.26508/lsa.201800046https://repository.kaust.edu.sa/handle/10754/628011 – (On our blog : https://plantstomata.wordpress.com/2022/09/17/atg3bp1-mutants-restricted-pathogen-entry-into-stomates-showing-insensitivity-to-bacterial-coronatine-mediated-stomatal-reopening/ )

Acevedo-Opazo C., Jara F., Poblete C., Valdès-Gomez H., Ortega-Farias S., Fuentes S., Tisseyre B. (2009) – Preliminary model for spatial extrapolation of the vine stomatal conductance – Frutic 2009: 5-9 – Concepcion, Chile – Preliminary_model_for_spatial_extrapolat.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/model-for-spatial-extrapolation-of-the-vine-stomatal-conductance/ )

Acevedo-Siaca L. G., Dionora J., Laza R., Quick W. P., Long S. P. (2021) – Dynamics of photosynthetic induction and relaxation within the canopy of rice and two wild relatives – Food and Energy Security 10(3): e286 – https://doi.org/10.1002/fes3.286 – https://onlinelibrary.wiley.com/doi/10.1002/fes3.286 – (On our blog : https://plantstomata.wordpress.com/2021/11/22/stomatal-closing-responses-in-the-dynamics-of-photosynthetic-induction-and-relaxation/ )

Acharya B., Assmann S. (2009) – Hormone interactions in stomatal function – Plant Mol. Biol. 69: 451–462 – doi: 10.1007/s11103-008-9427-0 –  (On our blog : https://plantstomata.wordpress.com/2015/09/05/phytohormones-and-the-effects-of-their-interactions-on-stomata/)

Acharya B. R., Jeon B. W., Zhang W., Assmann S. M. (2013) – Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells – New Phytol. 200: 1049–1063 – doi: 10.1111/nph.12469  – (On our blog : https://plantstomata.wordpress.com/2016/05/03/ost1-as-a-critical-limiting-component-in-aba-regulation-of-stomatal-apertures/)

Acharya R., Padiya R. H., Patel E. D., Rudrapa H. C., Shukla V. J., Chauhan M. G. (2012) – Pharmacognostical evaluation of leaf of Bada Rasna [Nelsonia canescens (Lam.) Spreng.; Acanthaceae] – Ancient Sci Life 31: 194-197 – https://ancientscienceoflife.org/article.asp?issn=0257-7941;year=2012;volume=31;issue=4;spage=194;epage=197;aulast=Acharya;type=3 (On our blog : https://plantstomata.wordpress.com/2022/06/08/stomata-in-nelsonia-acanthaceae/ )

Ache P., Bauer H., Kollist H., Al‐Rasheid K. A. S., Lautner S., Hartung W., Hedrich R. (2010) – Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non‐invasive pressure probe measurements – The Plant Journal 62(6): 1072-1082 – DOI10.1111/j.1365313X.2010.04213.x – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-62-i-6-tpj4213 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-action-directly-feeds-back-on-leaf-turgor/)

Ache P., Becker D., Ivashikina N., Dietrich P., Roelfsema M. R., Hedrich R. (2000) – GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K1-selective, K1-sensing ion channel. – FEBS Lett 486: 93–98 – DOI: 10.1016/S0014-5793(00)02248-1 – http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(00)02248-1/full – (On our blog : https://plantstomata.wordpress.com/2017/12/02/gork-represents-the-molecular-entity-for-depolarization-induced-potassium-release-from-guard-cells/)

Ackerson R. C. (1980) – Stomatal Response of Cotton to Water Stress and Abscisic Acid as Affected by Water Stress History – Plant Physiol 65: 455-459 –  doi:http://dx.doi.org/10.1104/pp.65.3.455 – http://www.plantphysiol.org/content/65/3/455– (On our blog : https://plantstomata.wordpress.com/2016/05/05/stomatal-response-of-cotton-to-water-stress-and-aba/)

Ackerson R. C. (1981) – Osmoregulation in Cotton in Response to Water Stress – I. ALTERATIONS IN PHOTOSYNTHESIS, LEAF CONDUCTANCE, TRANSLOCATION, AND ULTRASTRUCTURE – Plant Physiology – DOI: https://doi.org/10.1104/pp.67.3.484http://www.plantphysiol.org/content/67/3/484.short – (On our blog : https://plantstomata.wordpress.com/2019/03/22/adapted-plants-maintained-photosynthesis-to-a-much-lower-leaf-water-potential-than-did-control-plants-in-part-because-of-increased-stomatal-conductance-at-low-leaf-water-potentials/ )

Ackerson R. C., Krieg D. R. (1977) – Stomatal and nonstomatal regulation of water use in cotton, corn and sorghum – Plant Physiol. 60: 850-853 – DOI: 10.1104/pp.60.6.850https://www.ncbi.nlm.nih.gov/pubmed/16660199?dopt=AbstractPlus – (On our blog : https://plantstomata.wordpress.com/2019/11/25/stomata-did-not-respond-to-bulk-leaf-water-status-during-a-large-portion-of-the-growing-season/ )

Ackerson R. C., Krieg D. R., Haring C. L., Chang N. (1977) – Effects of Plant Water Status on Stomatal Activity, Photosynthesis, and Nitrate Reductase Activity of Field Grown Cotton – Crop Science 17(1): – https://doi.org/10.2135/cropsci1977.0011183X001700010023xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1977.0011183X001700010023x – (On our blog : https://plantstomata.wordpress.com/2020/06/20/effects-of-plant-water-status-on-stomatal-activity/ )

Adamipour N., Khosh-Khui M., Salehi H., Razi H., Karami A., Moghadam A. (2020) – Role of genes and metabolites involved in polyamines synthesis pathways and nitric oxide synthase in stomatal closure on Rosa damascena Mill. under drought stress – Plant Physiol Biochem. 148: 53-61 – doi: 10.1016/j.plaphy.2019.12.03 – Epub 2020 Jan 3 – PMID: 31927272 – https://pubmed.ncbi.nlm.nih.gov/31927272/ -(On our blog : https://plantstomata.wordpress.com/2021/07/08/the-genes-involved-in-polyamines-synthesis-pathway-and-the-role-of-nitric-oxide-synthase-nos-and-h2o2-in-stomatal-closure-under-drought-stress/ )

Adamipour N., Khosh-Khui M., Salehi H., Razi H., Karami A., Moghadam A. (2020) – Regulation of stomatal aperture in response to drought stress mediating with polyamines, nitric oxide synthase and hydrogen peroxide in Rosa canina L. -Plant Signal Behav. 15(9): 1790844 – doi: 10.1080/15592324.2020.1790844 – Epub 2020 Jul 11 – PMID: 32657206 – https://pubmed.ncbi.nlm.nih.gov/32657206/ – (On our blog : https://plantstomata.wordpress.com/2021/07/08/the-role-of-genes-involved-in-polyamines-synthesis-nitric-oxide-synthase-nos-copper-amine-oxidase-activity-cuao-and-hydrogen-peroxide-h2o2-in-regulation-of-stomatal-aperture-to-drought-stress/ )

Adams A., Bingham F. T., Kaufmann M. R., Hoffman G. J., Yermanos D. M. (1978) – Responses of Stomata and Water, Osmotic, and Turgor Potentials of Jojoba to Water and Salt Stress – Agronomy Journal 70: 381-387 – https://www.ars.usda.gov/arsuserfiles/20361500/pdf_pubs/P583.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/12/stomata-water-osmotic-and-turgor-potentials-responses-to-water-and-salt-stress/ )

Addington R. N., Donovan L. A., Mitchell R. J., Vose J. M., Pecot S. D., Jack S. B., Hacke U. G., Sperry J. S., Oren R. (2006) – Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats – Plant, Cell & Environment 29(4): 535–545 – DOI: 10.1111/j.1365-3040.2005.01430.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01430.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stomatal-conductance-in-xeric-and-mesic-habitats/)

Addington R. N., Mitchell R. J., Oren R., Donovan L. A. (2004) – Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris – Tree Physiology 24: 561–569 – DOI: 10.1093/treephys/24.5.561 – https://www.ncbi.nlm.nih.gov/pubmed/14996660 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/stomatal-sensitivity-to-vapor-pressure-deficit/

Adebooye O. C., Hunsche M., Noga G., Lankes C. (2012) – Morphology and density of trichomes and stomata of Trichosanthes cucumerina (Cucurbitaceae) as affected by leaf age and salinity – Turk. J. Bot. 36: 328-335 – doi:10.3906/bot-1107-8 – http://dergipark.gov.tr/download/article-file/122286 – (On our blog : https://plantstomata.wordpress.com/2018/01/14/leaf-age-and-salinity-morphology-and-density-of-trichomes-and-stomata/ )

Adedeji O., Ajuwon O., Babawale O. (2007) – Foliar epidermal studies, organographic distribution and taxonomic importance of trichomes in the family Solanaceae – International Journal of Botany 3(3): 276-282 –

Adedeji O., Jewoola O. (2008) – Importance of leaf epidermal characters in the Asteraceae family – Notulae Botanicae Horti Agrobotanici Cluj-Napoca 36(2): 7 –

Adedipe N. O., Khatamian H., Ormrod D. P. (1973) – Stomatal regulation of ozone phytotoxicity in tomato. – Zeitschrift für Pflanzenphysiologie 68: 323-328 –

Adegbaju O. D., Otunola G. A., Afolayan A. J. (2019) – Foliar Micromorphology and Histochemical Localization of Specific
Metabolites in the Leaves of Celosia argentea L. – Not Bot Horti Agrobo 47(4): 1128-1135 – DOI:10.15835/nbha47411522file:///C:/Users/wille/Downloads/11522-Manuscript-45998-5-10-20191223.pdf – (On our blog : https://plantstomata.wordpress.com/2022/05/10/stomata-in-celosia/ )

Adrian J., Chang J., Ballenger C., Bargmann B., Alassimone J., Davies K. A., Lau S., Matos J. L., Hachez C., Lanctot A., Vatén A., Birnbaum K. D., Bergmann D. C. (2015) – Transcriptome Dynamics of the Stomatal Lineage: Birth, Amplification, and Termination of a Self-Renewing Population – Developmental Cell 33(1): 107-118 – DOI: 10.1016/j.devcel.2015.01.025 – https://www.researchgate.net/publication/274729494_Transcriptome_Dynamics_of_the_Stomatal_Lineage_Birth_Amplification_and_Termination_of_a_Self-Renewing_Population – (On our blog : https://plantstomata.wordpress.com/2017/01/21/transcriptome-dynamics-of-the-stomatal-lineage/)

Afas A., Marron N., Ceulemans R. (2006) – Clonal variation in stomatal characteristics related to biomass production under short rotation coppice culture – Environ. Exp. Bot. 58: 279 – https://doi.org/10.1016/j.envexpbot.2005.09.003https://www.sciencedirect.com/science/article/abs/pii/S0098847205001656 – (On our blog : https://plantstomata.wordpress.com/2020/02/23/stomatal-density-of-different-poplar-clones-affected-biomass-production/ )

Agaric S., Uchida H., Agata W., Kaufman P. B. (1999) – Effects of silicon on stomatal blue-light response in rice (Oryza sativa L.) – Plant Production Science 2(4): 232-234 – https://doi.org/10.1626/pps.2.232https://www.tandfonline.com/doi/pdf/10.1626/pps.2.232 – (On our blog : https://plantstomata.wordpress.com/2020/07/05/effects-of-silicon-on-stomatal-blue-light-response/ )

Agarwal P. (2017) – Insights into the regulation of stomatal density and its pattern – Ph.D. Entrance – Interview Schedule – http://dpmb.ac.in/index.php?mact=News,cntnt01,detail,0&cntnt01articleid=29&cntnt01returnid=90 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-regulation-of-stomatal-density-and-its-pattern/)

Agdaily Reporters – Redefining drought in the U.S. corn belt – Agdaily September 30, 2020 – https://www.agdaily.com/crops/redefining-drought-us-corn-belt/ – (On our blog : https://wordpress.com/block-editor/post/plantstomata.wordpress.com/86008 )

Agnew M. L., Carrow R. N. (1985) – Soil compaction and moisture stress preconditioning in Kentucky bluegrass. I. Soil aeration, water use, and root responses – Agron. J. 77: 872-878 –

Agnew M. L., Carrow R. N. (1985) – Soil compaction and Moisture stress preconditioning in Kentucky Bluegrass. II. Stomatal resistance, leaf water potential, and canopy temperature – Agron. J. 77: 878-884 – https://doi.org/10.2134/agronj1985.00021962007700060012xhttps://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj1985.00021962007700060012x – (On our blog : https://plantstomata.wordpress.com/2020/06/10/stomatal-resistance-leaf-water-potential-and-canopy-temperature/ )

Aguirre J. F., Ruiz L. P., Kohashi-Shibata J., Trejo C. L., Acosta-Gallegos J. (1999) – Morphological observations on the leaf surface of Phaseolus vulgaris L. and their possible relationship to stomatal response. – Annu. Rep. Bean Improvement Cooperative 42: 75-76 – https://naldc.nal.usda.gov/download/IND23288524/PDF – (On our blog : https://plantstomata.wordpress.com/2017/10/12/size-and-frequency-of-stomata-and-the-capacity-of-stomata-to-react-under-conditions-of-dehydration/)

Agurla S., Gahir S., Munemasa S., Murata Y., Raghavendra A. S. (2018) – Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress: Adaptation Mechanisms and Their Applications – Advances in Experimental Medicine and Biology 1081: 215-232 – DOI: 10.1007/978-981-13-1244-1_12 – In book: Survival Strategies in Extreme Cold and Desiccation – https://www.researchgate.net/publication/328068353_Mechanism_of_Stomatal_Closure_in_Plants_Exposed_to_Drought_and_Cold_Stress_Adaptation_Mechanisms_and_Their_Applications – (On our blog : https://plantstomata.wordpress.com/2019/04/22/mechanism-of-stomatal-closure-in-plants-exposed-to-drought-and-cold-stress/ )

Agurla S., Gayatri G., Raghavendra A. S. (2014) – Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens – Nitric Oxide 43: 89–96 – doi: 10.1016/j.niox.2014.07.004 – (On our blog : https://plantstomata.wordpress.com/2016/05/05/nitric-oxide-no-as-a-link-between-stomatal-closure-and-plant-innate-immunity/)

Agurla S., Gayatri G., Raghavendra A. S. (2016) – Nitric oxide (NO) measurements in stomatal guard cells – Methods Mol Biol 1424: 49–56 – https://doi.org/10.1007/978-1-4939-3600-7_5https://link.springer.com/protocol/10.1007%2F978-1-4939-3600-7_5 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/no-measurements-in-stomatal-guard-cells/ )

Agurla S., Gayatri G., Raghavendra A. S. (2017) – Signal transduction components in guard cells during stomatal closure by plant hormones and microbial elicitors – In Mechanism of Plant Hormone Signaling Under Stress (ed G. K. Pandey) – John Wiley & Sons, Inc., Hoboken, NJ, USA. – https://doi.org/10.1002/9781118889022.ch30https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118889022.ch30 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/the-modulation-of-signaling-components-in-guard-cells-during-stomatal-closure-induced-by-various-factors-including-hormones-and-microbial-elicitors/ )

Agurla S., Gayatri G., Raghavendra A. S. (2018) – Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure – Protoplasma 255: 153–162 – https://doi.org/10.1007/s00709-017-1139-3https://link.springer.com/article/10.1007%2Fs00709-017-1139-3 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/the-role-of-no-and-its-dependence-on-ros-during-stomatal-closure-by-three-major-pas/ )

Agurla S., Raghavendra A. S. (2016) – Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:1332. – doi: 10.3389/fpls.2016.01332- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/convergence-and-divergence-of-signaling-components-during-stomatal-closure/ )

Agustamia C. (2016) – Pengaruh Stomata dan Klorofil pada Ketahanan Beberapa Varietas Jagung terhadap Penyakit Bulai – Directory of Open Access Journals (Sweden) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/the-role-of-stomata-in-the-resistance-against-downy-mildew/ )

Ahedor M., Ahedor A. (2021) – Stomatal Investigations on Notorious Weeds of Oklahoma – The Annual Conference Botany 2021 – Posters – https://2021.botanyconference.org/engine/search/index.php?func=detail&aid=1409 – (On our blog : https://plantstomata.wordpress.com/2022/04/26/stomata-of-notorious-weeds-of-oklahoma/ )

Ahmad I., Jabeen N., Ziaf K., Dole J. M., Khan M. A. S., Bakhtavar M. A. (2017) – Macronutrient application affects morphological, physiological, and seed yield attributes of Calendula officinalis L. – Canadian Journal of Plant Science 97(5): 906-916 – https://doi.org/10.1139/cjps-2016-0301https://www.nrcresearchpress.com/doi/full/10.1139/cjps-2016-0301 – (On our blog : https://plantstomata.wordpress.com/2020/03/20/macronutrient-application-affects-stomatal-conductance/ )

Ahmad K., Khan M. A., Ahmad M., Zafar M., Arshad M., Ahmad F. (2009) – Taxonomic diversity of stomata in dicot flora of a district tank (NWFP) in Pakistan – African Journal of Biotechnology 8(6): 1052-1055 –

Ahmad K. J. (1964) – Cuticular studies with special reference to abnormal stomatal cells in Cestrum – J. Ind. Bot. Soc. 43: 165-177 –

Ahmad K. J. (1964) – Cuticular studies in Solanaceae – Canad. J. Bot. 42: 793—803 –

Ahmad K. J. (1979) – Stomatal features of Acanthaceae – In D. N. Sen, D. D. Chawan, R. P. Bansal (Eds.) – Structure, function and ecology of stomata (pp. 43-60) – India: Dehra Dun –

Ahmad Z., Qadir S. A. (1975) – The effects of air pollution on stomatal clogging, carbohydrate and chlorophyll contents in certain roadside plants – Pakistan Journal of Botany 7: 81-84 – ISSN: 0556-3321 – EISSN: 2070-3368https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/51916 – (On our blog : https://plantstomata.wordpress.com/2021/11/20/the-effects-of-air-pollution-on-stomatal-clogging/ )

Ahmadi A., Siosemardeh A. (2005) – Investigation on the physiological basis of grain yield and drought resistance in wheat: leaf photosynthetic rate, stomatal conductance, and non-stomatal limitations – Int. J. Agri. Biol. 7: 6-10 –

Ahmed A. M., Heikal M. M., Zidan M. A. (1980) – Effects of salinization treatments on growth and some related physiological activities of some leguminous plants – Can. J. Plant Sci. 60: 713-720 – https://www.nrcresearchpress.com/doi/pdfplus/10.4141/cjps80-099 – (On our blog : https://plantstomata.wordpress.com/2020/02/19/effects-of-salinization-treatments-while-stomatal-frequency-and-transpiration-rate-were-significantly-reduced-water-content-was-considerably-elevated/ )

Ahmed F. E., Abusam S. M. A., Ahmed E. E. A. (2010) – The bases of Blepharis sp. Adaptation to water-limited environment – Asian J. Crop Sci. 2: 12–19 – DOI: 10.3923/ajcs.2010.12.19 – http://www.scialert.net/abstract/?doi=ajcs.2010.12.19 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/stomatal-conductance-and-density-in-blepharis/ )

Ahuja I., de Vos R. C. H., Rohloff J., Stoopen G. M., Halle K. K., Ahmad S. J. N., Hoang L., Hall R. D., Bones A. M. (2016) – Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle – Scientific Reports 6, Article number: 38990 (2016) – doi:10.1038/srep38990 – (On our blog : https://plantstomata.wordpress.com/2016/12/26/the-glucosinolate-myrosinase-system-and-the-cuticle/)

Aidoo M. K., Quansah L., Galkin E., Batushansky A., Wallach R., Moshelion M., Bonfil D. J., Fait A. (2017) – A combination of stomata deregulation and a distinctive modulation of amino acid metabolism are associated with enhanced tolerance of wheat varieties to transient drought – Metabolomics 13(11): 1-13 – DOI : 10.1007/s11306-017-1267-y – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11306-017-1267-Y – (On our blog : https://plantstomata.wordpress.com/2017/10/15/drought-and-a-combination-of-stomata-deregulation-and-a-distinctive-modulation-of-amino-acid-metabolism/)

Aina D. O., Malik M. (2013) – Stomatal Complex and Transpiration Rates in some Members of Rutaceae and Myrtaceae – Asian Journal of Biological and Life Science 2(2): 170-175 – https://www.ajbls.com/sites/default/files/AsianJBiolLifeSci_2_2_170.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/03/stomatal-complexes-and-transpiration-rates/ )

Ainsworth, E.A., Rogers, A. (2007) – The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions – Plant Cell Environ. 30: 258-270 – (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01641.x/abstract) – (On our blog : https://plantstomata.wordpress.com/2016/02/04/response-of-photosynthesis-and-stomatal-conductance-to-rising-co2/)

Ajao A. A.-n., Jimoh M. A., Saheed S. A. (2017) – Studies on anatomical characters indicating C3 and C4 photosynthetic metabolism in the genus Boerhavia L. (Nyctaginaceae) – Taiwania 62(3): 265‒271 –
DOI: 10.6165/tai.2017.62.265https://taiwania.ntu.edu.tw/pdf/tai.2017.62.265.pdf – (On our blog : https://plantstomata.wordpress.com/2022/09/17/stomata-index-stomata-size-inter-stomatal-distance-stomatal-density-and-c3-and-c4-photosynthetic-metabolism/ )

Ajayan K. V., Babu R. L., Bayakka P. B. (2015) – Variability of Stomatal Index and Chlorophyll Content in four species of Solanaceae Members – Int. Res. J. Biological Sci. 4(2): 16-20 – http://www.isca.in/IJBS/Archive/v4/i2/3.ISCA-IRJBS-2014-215.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/02/variability-of-stomatal-index-and-chlorophyll-content-in-solanaceae/ )

Akbarian M. R., Tabari M., Akbarinia M., Zarafshar M., Meave J. A., Yousefzadeh H., Sattarian A. B. (2011) – Effects of elevational gradient on leaf and stomatal morphology of Caucasian alder (Alnus subcordata) in the Hyrcanian forest, Iran – Folia Oecologica 38.1.2011): 17   – http://search.proquest.com/openview/8291dfe8a8c04d77829f1d894836deb7/1?pq-origsite=gscholar&cbl=29663 – (On our blog : https://plantstomata.wordpress.com/2016/05/16/the-effect-of-altitude-on-the-whole-leaf-and-stomatal-morphology/)

Akita K., Hasezawa S. Higaki T. (2013) – Breaking of plant stomatal one-cell-spacing rule by sugar solution immersion. – PLoS ONE 8, e72456 – https://doi.org/10.1371/journal.pone.0072456 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072456 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomatal-spacing-distribution-sucrose-solution-immersion-and-stomatal-clusters/)

Akita K., Hasezawa S. Higaki T. (2018) – Cortical microtubules and fusicoccin response in clustered stomatal guard cells induced by sucrose solution immersion – Plant Signaling & Behavior 13(4): – https://doi.org/10.1080/15592324.2018.1454815 – https://www.tandfonline.com/doi/abs/10.1080/15592324.2018.1454815 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/immersion-treatment-with-sucrose-solution-perturbed-the-one-cell-spacing-of-stomata-but-not-the-cortical-microtubule-organization-required-to-open-stomatal-pores/ )

Akita K., Higaki T. (2019) – An Induction System for Clustered Stomata by Sugar Solution Immersion Treatment in Arabidopsis thaliana Seedlings – Journal of Visualized Experiments – DOI: 10.3791/58951 https://www.researchgate.net/publication/331151943_An_Induction_System_for_Clustered_Stomata_by_Sugar_Solution_Immersion_Treatment_in_Arabidopsis_thaliana_Seedlings – (On our blog : https://plantstomata.wordpress.com/2019/08/06/an-induction-system-for-clustered-stomata/ )

Akita S., Moss D. N. (1972) – Differential stomatal response between C3 and C4 species to atmospheric CO2 concentration and light – Crop Science 12: 789-793 – doi:10.2135/cropsci1972.0011183X001200060022x – https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060789 – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-response-c3-and-c4-species-co2-and-light/ )

Akter N., Okuma E., Sobahan M. A., Uraji M., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Negative regulation of methyl jasmonate-induced stomatal closure by glutathione in Arabidopsis – J. Plant Growth Regul. 32: 208–215 – 10.1007/s00344-012-9291-7  – https://link.springer.com/article/10.1007%2Fs00344-012-9291-7 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/glutathione-and-stomatal-closure-2/

Akter N., Sobahan M. A., Hossain M. A., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2010) – The involvement of intracellular glutathione in methyl jasmonate signaling in Arabidopsis guard cells – Biosci. Biotechnol. Biochem. 74: 2504–2506 – doi: 10.1271/bbb.100513 – https://www.ncbi.nlm.nih.gov/pubmed/21150111 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/the-involvement-of-intracellular-glutathione-in-methyl-jasmonate-signaling-in-stomata/

Akter N., Sobahan M. A., Uraji M., Ye W., Hossain M. A., Mori I. C., et al. (2012) – Effects of depletion of glutathione on abscisic acid- and methyl jasmonate-induced stomatal closure in Arabidopsis thaliana – Biosci. Biotechnol. Biochem. 76: 2032–2037 – doi: 10.1271/bbb.120384 – https://www.ncbi.nlm.nih.gov/pubmed/23132563 – (On our blog : https://plantstomata.wordpress.com/2018/08/14/depletion-of-gsh-enhances-aba-and-meja-induced-stomatal-closure/ )

Al Afas N., Marron N., Ceulemans R. (2006) – Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture – Environ. Exp. Bot. 58: 279-286 – http://www.sciencedirect.com/science/article/pii/S0098847205001656?np=y – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomatal-characteristics-affect-biomass-production/)

Al-Ani T. A., Bierhuizen J. F. (1971) – Stomatal resistance, transpiration, and relative water content as influenced by soil moisture stress – Acta Bot. Neerl. 20(3): 318-326 – (On our blog : https://plantstomata.wordpress.com/2017/04/18/stomatal-resistance-can-be-used-as-a-tool-by-which-the-soil-water-plant-relationship-can-be-predicted/)

Albert R., Acharya B. R., Jeon B. W., Zañudo J. G. T., Zhu M., Osman K., Assmann S. M. (2017) – A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops – PLoS Biol 15(9): e2003451 – https://doi.org/10.1371/journal.pbio.2003451https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003451&rev=2 – (On our blog : https://plantstomata.wordpress.com/2020/07/16/dynamic-model-of-aba-induced-stomatal-closure-predicts-key-feedback-loops/ )

Alcázar R., Cuevas J. C., Patron M., Altabella T., TiburcioA. F. (2006) – Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana – Physiol. Plant. 128: 448-455 –

Alder N. N., Sperry J. S. Pockman W. T. (1996) – Root and stem xylem cavitation, stomatal conductance, and leaf turgor in Acer grandidentatum across a soil moisture gradient – Oecologia 105: 293-301 – http://sperry.biology.utah.edu/publications/Alder%20et%20al.%201996%20Oecologia.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/root-and-stem-xylem-cavitation-stomatal-conductance-and-leaf-turgor-across-a-soil-moisture-gradient/ )

Alekseev S. A., Matveev N. M. (1970) – Effect of mineral nutrition and soil moisture conditions on number and status of stomata in potato leaves – Sbornik Nauchnykh Robot Molodykh Uchenykh. Chuvashskii Sel’skokhozyaistvennyi Institut, 1, 52-56 – https://eurekamag.com/research/014/440/014440906.php – (On our blog : https://plantstomata.wordpress.com/2022/02/18/effect-of-mineral-nutrition-and-soil-moisture-conditions-on-stomata/ )

Alexander N. (2022) – NSF funds Purdue researcher’s study of fundamental signals between plants and their environment – BOTANY AND PLANT PATHOLOGY, CENTER FOR PLANT BIOLOGY – https://ag.purdue.edu/stories/fundamental-signs-between-plants-and-their-environment/ – (On our blog : https://plantstomata.wordpress.com/2022/05/27/106862/ )

Alfaro H. (2021) – Research aims to increase crop drought tolerance using biotechnology – Nevada Today, Research & Innovation | September 27, 2021 – https://www.unr.edu/nevada-today/news/2021/john-cushman-grant – (On our blog : https://plantstomata.wordpress.com/2021/09/30/to-create-drought-tolerant-crops-to-aid-global-food-production-during-periods-of-intense-drought-cam-and-stomata/ )

Ali H.B., Bournet P.-E., Cannavo P., Migeon C., Chantoiseau E., Sourgnes M. (2017) – Stomatal resistance modelling using the full factorial design: application to the New Guinea Impatiens – Acta Horticulturae, International Society for Horticultural Science 88(1170): 399 – 408 – 10.17660 -ActaHortic.2017.1170.49 – hal-01705928 – https://hal-agrocampus-ouest.archives-ouvertes.fr/hal-01705928/document – (On our blog : https://plantstomata.wordpress.com/2022/05/14/the-ffd-appears-to-be-a-powerful-tool-to-simulate-satisfactorily-the-stomatal-resistance-at-different-growth-stages/ )

Aliniaeifard S. (2015) – What is the osmotic role of calcium in stomatal opening and closure? – https://www.researchgate.net/post/what_is_the_osmotic_role_of_calcium_in_stomatal_opening_and_closure – (On our blog : .https://plantstomata.wordpress.com/2019/08/18/the-osmotic-role-of-calcium-in-stomatal-opening-and-closure/ )

Aliniaeifard S., Matamoros M. P., van Meeteren U. (2014) – Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? – Physiol. Plant. 152: 688-699 – (On our blog : https://plantstomata.wordpress.com/2016/02/04/stomatal-malfunctioning/).

Aliniaeifard S., van Meeteren U. (2013) – Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? – J. Exp. Bot. 64(12): 3551-3566 – (On our blog : https://plantstomata.wordpress.com/2015/09/06/long-term-low-vapour-pressure-deficit-vpd-and-stomata/).

Aliniaeifard S., Van Meeteren U. (2014) – Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning – J. Exp. Bot. 65(22): 6529-6542 – doi: 10.1093/jxb/eru370 – http://jxb.oxfordjournals.org/content/65/22/6529.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/26/stomatal-responses-to-closing-stimuli-after-long-term-exposure-to-low-vpd/)

Aliniaeifard S., Van Meeteren U. (2016) – Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity – Sci. Hortic. 205: 84–89 – https://doi.org/10.1016/j.scienta.2016.04.025https://www.sciencedirect.com/science/article/pii/S030442381630214X?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/10/study-of-stomatal-characteristics-desiccation-response-and-control-of-vpd-during-growth-will-be-important-to-prevent-subsequent-wilting-of-leaves-of-chrysanthemum-cut-flowers/ )

Aliu S., Rusinovci I., Doko A., Salihu S., Fetahu S., Elezi F., Gashi B. (2015) – Stomatal characteristics and their relationship to heavy metals in maize ( Zea mays L.) seedlings – Journal of Food, Agriculture & Environment 13 (2): 168-171 https://www.academia.edu/20573090/Stomatal_characteristics_and_their_relationship_to_heavy_metals_in_maize_Zea_mays_L._seedlings – (On our blog : https://plantstomata.wordpress.com/2019/05/25/stomatal-characteristics-and-heavy-metals/ )

Alkama R., Kageyama M., Ramstein G. (2010) – Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: A modelling approach using the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land
surface model – Journal of Geophysical Research, American Geophysical Union, 115 (D17) – doi: 10.1029/2009JD013408hal-02930852https://hal.archives-ouvertes.fr/hal-02930852/document – (On our blog : https://plantstomata.wordpress.com/2021/12/21/a-set-of-simulations-to-test-the-impact-on-global-runoff-evolution-of-three-factors-climate-stomatal-conductance-and-vegetation-growth-all-sensitive-to-co2-increase/ )

Al Kharusi L., Sunkar R., Al-Yahyai R., Yaish M. W. (2019) – Comparative Water Relations of Two Contrasting Date Palm Genotypes under Salinity – International Journal of Agronomy 2019, Art. ID 42562013 – https://doi.org/10.1155/2019/4262013https://www.hindawi.com/journals/ija/2019/4262013/ – (On our blog : https://plantstomata.wordpress.com/2020/01/09/some-insights-into-the-salt-tolerance-mechanisms-in-the-date-palm/ )

Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. (1994) – Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells – Plant Cell 6: 319–328 – (On our blog : https://plantstomata.wordpress.com/2016/03/09/rapid-effects-of-abscisic-acid-in-commelina-stomata/)

Allahnouri M, Aghbash F. G., Pazhouhan I. (2018) – Traffic effects on leaf macro- and micro-morphological traits – FOLIA OECOLOGICA 45(2): – doi: 10.2478/foecol-2018-0010https://ife.sk/wp-content/uploads/2016/10/foecol_2018_0004.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/24/air-pollution-stress-impacts-the-stomatal-and-tree-morphological-traits/ )

Allard G., Nelson C. J., Pallardy S. G. (1991) – Shade Effects on Growth of Tall Fescue: I. Leaf Anatomy and Dry Matter Partitioning – Crop Science 31(1): 163-167 – https://doi.org/10.2135/cropsci1991.0011183X003100010037xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1991.0011183X003100010037x – (On our blog : https://plantstomata.wordpress.com/2021/05/26/shade-effects-and-stomatal-density/ )

Allaway W. G. (1973) – Accumulation of malate in guard cells of Vicia faba during stomatal opening – Planta 110: 63-70 – https://link.springer.com/article/10.1007%2FBF00386923?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/12/02/malate-accumulating-in-guard-cells-and-potassium-when-stomata-open-in-the-light/)

Allaway W. G. (1981) – Anions in stomatal operation. – In Stomatal Physiology. Edited by P. G. Jarvis and T. A. Mansfield 71-86 – Cambridge University Press, Cambridge

Allaway W. G., Hsiao T. C. (1973) – Preparation of rolled epidermis of Vicia faba so that stomata are the only viable cells: analysis of guard cell potassium by flame photometry – Aust. J. Biol. Sci. 26: 309-318 – https://doi.org/10.1071/BI9730309 – http://www.publish.csiro.au/bi/BI9730309 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomata-are-the-only-viable-cells-in-rolled-epidermis/)

Allaway W. G., Mansfield T. A. (1967) – Stomatal responses to changes in carbon dioide concentration in leaves treated with 3–(4–chlorophenyl)–1, I-dimethylurea – New Phytol. 66: 57 – DOI: 10.1111/j.1469-8137.1967.tb05986.x –  http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1967.tb05986.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomata-and-co2-in-leaves/)

Allaway W. G., Mansfield T. A.(1970) – Experiments and observations on the aftereffect of wilting on stomata of Rumex sanguineus – Canad. J. Bot. 48: 513–521 – Doi: 10.1139/b70-072 – http://www.nrcresearchpress.com/doi/abs/10.1139/b70-072 – (On our blog : https://plantstomata.wordpress.com/2016/11/13/the-aftereffect-of-wilting-on-stomata/)

Allaway W. G., Milthorpe F. L. (1976) – Structure and functioning of stomata – In TT Kozlowski, ed, Water Deficits and Plant Growth, Vol 4 – Soil Water Measurement, Plant Responses, and Breeding for Drought Resistance. Academic Press, New York 57–102 –

Allaway W. G., Setterfield G. (1972) – Ultrastructural observations of guard cells of Vicia faba and Allium porrum – Can. J. Bot. 50: 1405–1413 – DOI: 10.1139/b72-169 – http://www.nrcresearchpress.com/doi/abs/10.1139/b72-169 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/microstructures-in-stomata/)

Allègre M., Daire X., Heloir M. C., Trouvelot S., Mercier L., Adrian M. et al. (2007) – Stomatal deregulation in Plasmopara viticola-infected grapevine leaves – New Phytol. 173: 832–840 –  – https://www.ncbi.nlm.nih.gov/pubmed/17286831 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomatal-deregulation-by-plasmopara-viticola-infection/)

Allègre M., Héloir M.-C., Trouvelot S., Daire X., Pugin A., Wendehenne D., Marielle Adrian M. (2009) – Are Grapevine Stomata Involved in the Elicitor-Induced Protection Against Downy Mildew? – Molecular plant-microbe interactions 22(8): 977-986 – https://doi.org/10.1094/MPMI-22-8-0977 – https://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-22-8-0977 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/grapevine-stomata-and-the-elicitor-induced-protection-against-downy-mildew/)

Allen G. J., Amtmann A., Sanders D. (1998) – Calcium-dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles – J. Exp. Bot. 49 (Spec. Issue): 305-318 – http://www.jstor.org/stable/23695964?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/02/calcium-dependent-and-calcium-independent-k-mobilization-channels-in-stomatal-vacuoles/)

Allen G. J., Chu S. P., Harrington C. L., Schumacher K., Hoffmann T., Tang Y. Y., Grill E.,Schroeder J. I. (2001) – A defined range of guard cell calcium oscillation parameters encodes stomatal movements – Nature 411: 1053–1057 – (On our blog : https://plantstomata.wordpress.com/2016/03/07/stomatal-movements-and-guard-cell-calcium-oscillation-parameters/)

Allen G. J., Chu S. P., Schumacher K., Shimazaki C. T., Vafeados D., Kemper A., Hawke S. D.,Tallman G., Tsien R. Y., Harper J. F., Chory J., Schroeder J. I. (2000) – Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant – Science 289: 2338–2342 – DOI: 10.1126/science.289.5488.2338 https://science.sciencemag.org/content/289/5488/2338 – (On our blog : https://plantstomata.wordpress.com/2016/03/10/stimulus-specific-calcium-oscillations-are-necessary-for-stomatal-closure/).

Allen G. J., Kuchitsu K., Chu S. P. Murata Y., Schroeder J. I. (1999)Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells – Plant Cell 11: 1785–1798 – (On our blog : https://plantstomata.wordpress.com/2016/03/10/aba-induced-cytoplasmic-calcium-rises-in-stomata/).

Allen G. J., Kwak J. M., Chu S. P., Llopis J., Tsien R. Y., Harper J. F., Schroeder J. I. (1999) – Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells – Plant Journal 19: 735–738 – (On our blog : https://plantstomata.wordpress.com/2016/03/07/cameleon-calcium-indicator-in-arabidopsis-stomata/)

Allen G. J., Sanders D. (1994) – Two voltage‐gated, calcium release channels coreside in the vacuolar membrane of broad bean guard cells – The Plant Cell 6 : 685-694 – DOI: https://doi.org/10.1105/tpc.6.5.685 – http://www.plantcell.org/content/6/5/685.short – (On our blog : https://plantstomata.wordpress.com/2018/09/06/two-voltage%e2%80%90gated-calcium-release-channels-coreside-in-the-vacuolar-membrane-of-stomata/ )

Allen G. J., Sanders D. (1995) – Calcineurin, a type 2B protein phosphatase, modulates the Ca21-permeable slow vacuolar ion channel of stomatal guard cells – Plant Cell 7: 1473–1483 – doi:  [10.1105/tpc.7.9.1473] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160973/ – (On our blog : https://plantstomata.wordpress.com/2018/11/23/calcineurin-modulates-the-ca21-permeable-slow-vacuolar-ion-channel-of-stomatal-guard-cells/

Allen G. J., Sanders D. (1996) – Control of ionic currents in guard cell vacuoles by cytoplasmic and luminal calcium – Plant J. 10: 1055–1069 – (On our blog : https://plantstomata.wordpress.com/2016/03/13/ionic-currents-in-guard-cell-vacuoles/)

Allen J., Guo K., Zhang D., Ince M., Jammes F. (2019) – ABA-glucose ester hydrolyzing enzyme ATBG1 and PHYB antagonistically regulate stomatal development – PLoS ONE  14: e0218605 – DOI: 10.1371/journal.pone.0218605https://pubmed.ncbi.nlm.nih.gov/31233537/ – (On our blog : https://plantstomata.wordpress.com/2021/01/27/the-atbg1-dependent-regulation-of-aba-homeostasis-and-the-phyb-mediated-light-signaling-pathways-act-antagonistically-in-the-control-of-stomatal-development/ )

Allen M. T., Pearcy R. W.  (2000) –  Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest – Oecologia 122: 470-478 – (http://cat.inist.fr/aModele=afficheN&cpsidt=1403013) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomatal-behavior-in-a-seasonally-dry-tropical-rain-forest/)

Allen M. T., Pearcy R. W. (2000) – Stomatal versus biochemical limitations to dynamic photosynthetic performance in four tropical rainforest shrub species – Oecologia 122: 479–486 – doi: 10.1007/s004420050969https://link.springer.com/article/10.1007%2Fs004420050969 – (on our blog : https://plantstomata.wordpress.com/2019/12/25/stomatal-versus-biochemical-limitations-to-dynamic-photosynthetic-performance/ )

Allington W. B. (1946) – The relation of stomatal behaviour at the time of inoculation to the severity of infection of soybeans by Xanthomonas phaseoli var. sojense (Hedges). (Starr) Burk.) – Phytopathology 36: 385-386 – ISSN 0031-949X – https://www.cabi.org/isc/abstract/19460301544 – (On our blog : https://plantstomata.wordpress.com/2021/12/30/the-bacteria-enter-when-the-stomata-are-open/ )

Almeida B. K. (2017) – Comparison of Navel and Laminar Stomata Morphology and Stomatal Conductance in the White Water Lily, Nymphaea odorata (Nymphaeaceae) – FIU Bio Honors 77 (Undergraduate Honors Theses. 77) – http://digitalcommons.fiu.edu/bio_honors/77/ – (On our blog : https://plantstomata.wordpress.com/2018/02/05/although-navel-and-laminar-stomata-differ-morphologically-in-nymphaea-odorata-they-do-not-differ-in-stomatal-conductance/ )

Alonso R., Elvira S., Sanz M. J., Emberson L., Gimeno B. S. (2007) – Parameterization of the stomatal component of the DO3SE model for Mediterranean evergreen broadleaf species – The Scientific World 7: 119-127 – DOI: 10.1100/tsw.2007.27 – https://www.ncbi.nlm.nih.gov/pubmed/17450288 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/parameterization-of-the-stomatal-component-of-the-do3se-model-2/ )

Alonso R., Elvira S., Sanz M. J., Gerosa G., Emberson L. D., Bermejo V., Gimeno B. S. (2008) – Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes – Environmental Pollution 155: 473–480 – doi: 10.1016/j.envpol.2008.01.032 – Epub 2008 Mar 14 – https://www.ncbi.nlm.nih.gov/pubmed/18342418 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/a-parameterization-of-the-stomatal-component-of-the-do3se-model-to-estimate-ozone-fluxes/ )

Alonso-Villaverde V., Boso S., Santiago J. L., Gago P., Martinez M. C. (2011) – Variability of the stomata among ‘Albariño’ (Vitis vinifera L.) clones and its relationship with susceptibility to downy mildew – Vitis 50(1): 45–46 – https://doi.org/10.20870/oeno-one.2011.45.3.1492file:///C:/Users/wille/Downloads/4061-Article%20Text-15882-1-10-20150401%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2020/12/31/stomata-and-their-relationship-with-susceptibility-to-downy-mildew/ )

Al-Rawahy S. H., Al-Amri H., Al-Hinai A., Sherwani N. (2007) – Growth and stomatal conductance of Prosopis cineraria (Ghaff Tree) exposed to sulphur dioxide – Asian J. Plant Sci. 6: 673-677 – (http://scialert.net/abstract/?doi=ajps.2007.673.677) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomatal-conductance-and-so2/)

Al-Safadi B., Ayyoubi Z. (2006) – Tolerance of some potato mutants induced with gamma irradiation to drought in vitro – https://inis.iaea.org/search/search.aspx?orig_q=RN:37112791 – (On our blog : https://plantstomata.wordpress.com/2022/09/06/tolerance-of-some-potato-mutants-to-drought-and-a-decrease-in-stomata-number/ )

Alson T., Acevedo E. (2020) – Effects of Water Deficits on Prosopis tamarugo Growth, Water Status and Stomata Functioning – Plants 10(1): 53 – ISSN:2223-7747 – https://doi.org/10.3390/plants10010053https://www.mdpi.com/2223-7747/10/1/53 – (On our blog : https://plantstomata.wordpress.com/2022/04/12/prosopis-tamarugo-can-tolerate-intense-water-deficit-due-to-a-partial-stomatal-closing-strategy-that-allows-the-sustaining-of-co2-assimilation-in-the-condition-of-reduced-water-availability/ )

Altamura M. M., Zaghi D., Salvi G., De Lorenzo G., Bellincampi D. (1998) – Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants – Planta 204(4): 429-436 – journal ISSN :0032-0935 – https://www.infona.pl/resource/bwmeta1.element.springer-93f5681c-7c0e-3280-9c27-f5178ef57117 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/oligogalacturonides-stimulate-cell-divisions-leading-to-stoma-formation/)

Altimir N., Tuovinen J.-P., Vesala T., Kulmala M., Hari P. (2004) – Measurements of ozone removal by Scots pine shoots: calibration of a stomatal uptake model including the non-stomatal component – Atmos. Environ. 38: 2387–2398 – https://doi.org/10.1016/j.atmosenv.2003.09.077https://www.sciencedirect.com/science/article/abs/pii/S1352231004001074?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/17/analyses-of-the-relative-contribution-of-stomatal-and-non-stomatal-sinks-at-the-shoot-level-based-on-direct-measurements-of-ozone-flux-that-included-both-components/ ) 

Alvarez-Buylla E. R., Liljegren S. J., Pelaz S., Gold S. E., Burgeff C., Ditta G. S., Vergara-Silva F., Yanofsky M. F. (2000) – MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes – The Plant Journal 24: 457–466 –

Alves de Sena J.O., Zaidan H. A., Castro P. R. C. (2007) – Transpiration and stomatal resistance variations of perennial tropical crops under soil water availability conditions and water deficit – Brazilian Arch. Biol. Technol. 50: 225-230 – (On our blog : https://plantstomata.wordpress.com/2016/05/05/stomatal-resistance-variations-of-perennial-tropical-crops/)

Alvim P. de T. (1946) – A influência do umidecimento des folhas sôbre a abertura dos estômatos – Revista Ceres 7: 141-152 –

Alvim P. de T. (1949) – A actividade fotossintética das células guardas – Lilloa 19: 5-10 –

Alvim P. de T. (1949) – Studies on the mechanism of stomatal behavior – Amer. Journ. Bot. 36: 781-791 – https://www.jstor.org/stable/2438233 – (On our blog : https://plantstomata.wordpress.com/2017/04/18/38657/)

Alvim P. de T. (1951) – The influence of the green mesophyll in stomatal movement – Plant Physiol.  1951: 206-209 – (On our blog : https://plantstomata.wordpress.com/2017/04/18/green-mesophyll-and-stomatal-movement/)

Alwerdt J. L., Gibson D. J., Ebbs S. D., Wood A. J. (2006) – Intraspecific interactions in Arabidopsis thaliana and the stomatal mutants tmm1-1 and sdd1-2 – Biol Plantarum 50(2): 205–209 – https://link.springer.com/article/10.1007%2Fs10535-006-0008-2?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/12/02/intraspecific-interactions-in-stomatal-mutants-tmm1-1-and-sdd1-2/

Amador B. M., Perez J. J. R., Montiel K. G. H., Puente E. O. R., De Lucia B., Morales F. A. B., Espinoza F. H. R. (2017) – Physiological responses to salinity in Solanum lycopersicumhttp://www.pakbs.org/pjbot/papers/1497345731.pdfhttps://cibnor.repositorioinstitucional.mx/jspui/handle/1001/1923 – (On our blog : https://plantstomata.wordpress.com/2022/02/28/102873/ )

Ambreen A., Chowdhry M. A. , Khaliq I., Ahmad R., (2002) – Genetic Determination for Some Drought Related Leaf Traits in Bread Wheat – Asian Journal of Plant Sciences 1: 232-234 – DOI: 10.3923/ajps.2002.232.234https://scialert.net/abstract/?doi=ajps.2002.232.234 – (On our blog : https://plantstomata.wordpress.com/2021/12/14/stomata-and-genetic-determination-for-some-drought-related-leaf-traits/ )

Ambrose A. R., Sillett S. C., Dawson T. E. (2009) – Effects of treeheight on branch hydraulics, leaf structure and gas exchange in California redwoods – Plant, Cell & Environment  32: 743-757 –

Ambrose A. R., Sillett S. C., Koch G. W., Van Pelt R., Antoine M. E., Dawson T. E. (2010) – Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens) – Tree Physiology 30: 1260–1272 – https://doi.org/10.1093/treephys/tpq064https://academic.oup.com/treephys/article/30/10/1260/1658568 – (On our blog : https://plantstomata.wordpress.com/2021/02/07/average-treetop-sap-velocity-vs-transpiration-per-unit-leaf-area-el-and-stomatal-conductance-per-unit-leaf-area-gs-significantly-decreased-with-increasing-height/ )

Aminian R., Mohammadi S., Hoshmand S. A., Khodambashi M. (2011) – Chromosomal analysis of photosynthesis rate and stomatal conductance and their relationships with grain yield in wheat (Triticum aestivum L.) under waterstressed and well-watered conditions – Acta Physiol Plant. 33(3): 755–764 –

Aminian R., Mohammadi S., Hoshmand S. A., Khodambashi M. (2013) – The genetic analysis of stomatal frequency and size, stomatal conductance, photosynthetic rate and yield in wheat (Triticum aestivum L.) using substitution lines series – https://shigen.nig.ac.jp/ewis/article/html/82/article.html – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-frequency-stomatal-size-stomatal-conductance-photosynthetic-rate-and-yield/ )

Ammann B., van der Knaap W. O., Lang G., Gaillard M.-J., Kaltenrieder P., Rösch M., Finsinger W., Wright H. E., Tinner W. (2014) – The potential of stomata analysis in conifers to estimate presence of conifer trees: examples from the Alps – Veget. Hist. Archaeobot. 23: 249–264 – DOI : 10.1007/s00334-014-0431-9 https://doc.rero.ch/record/326013/files/334_2014_Article_431.pdf – (On our blog : https://plantstomata.wordpress.com/2021/01/11/the-decline-and-potential-local-extinction-of-a-conifer-can-sometimes-be-shown-in-the-stomata-record/ )

Amodeo G., Escobar A., Zeiger E. (1994) – A Cationic Channel in the Guard Cell Tonoplast of Allium cepa – Plant Physiol.  105(3): 999–1006 – PMCID: PMC160751 – PMID: 12232260 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160751/ – (On our blog : https://plantstomata.wordpress.com/2018/08/16/a-cationic-channel-in-the-guard-cell-tonoplast-of-stomata/ )

Amodeo G., Srivastava A., Zeiger E. (1992) – Vanadate inhibits blue light-stimulated swelling of Vicia guard cell protoplasts – Plant Physiol. 100: 1567-1570 – PMCID: PMC1075821 – PMID: 16653159 – http://www.plantphysiol.org/content/plantphysiol/100/3/1567.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/18/vanadate-inhibits-blue-light-stimulated-swelling-of-stomatal-protoplasts/ )

Amodeo G., Talbott L. D., Zeiger E. (1996) – Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation – Plant Cell Physiol. 37: 575–579 – doi: 10.1093/oxfordjournals.pcp.a028983 – https://academic.oup.com/pcp/article/37/5/575/1818430 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/use-of-potassium-and-sucrose-by-stomata/ )

Amsbury S., Hunt L., Elhaddad N., Baillie A., Lundgren M., Verhertbruggen Y., Scheller H. V., Knox J. P., Fleming A. J., Gray J. E. (2016) – Stomatal function requires pectin de-methyl-esterification of the guard cell wall – Curr Biol 26: 2899–2906 – ISSN1879-0445 – Doi : 10.1016/j.cub.2016.08.021 – https://desmarais-lab.mit.edu/publications/stomatal-function-requires-pectin-de-methyl-esterification-guard-cell-wall – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-pectin-methylesterase-gene-pme6-highly-expressed-in-guard-cells-is-required-for-stomatal-function/)

Amulya L., Kumar N. K. H., Jagannath S. (2015) – Air pollution impact on micromorphological and biochemical response of Tabernaemontana divaricata L. (Gentianales: Apocynaceae) and Hamelia patens Jacq. (Gentianales: Rubiaceae) – Braz. J. Biol. Sci. [online] 2(4): 287-294 – ISSN 2358-2731 – http://revista.rebibio.net/v2n4/v02n04a11.html – (On our blog : https://plantstomata.wordpress.com/2020/03/03/83497/ )

An G. Y., Song C. P., Huang M. J. Yang D. M., Zhou P. A., Wu C. H. (1998) – Method of recording ion channels of plasma membrane in stomatal guard cells by patch clamp – Plant Physiol. Commun. 34: 129-132 –

An G. Y., Song C. P., Zhang X., Jing Y. C., Yang D. M., Huang M. J., Wu C. H., Zhou P. A. (2000) – Effect of hydrogen peroxide on stomatal movement and K+channel on plasma membrane in Vicia faba guard cell – Acta Phytophysiol Sin 26: 458-463 –

An L., Wang J., Liu Y., Chen T., Xu S., Feng H., Wang X. (2003) – The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves – Proc. SPIE 4896, Ultraviolet Ground- and Space-based Measurements, Models, and Effects II – https://doi.org/10.1117/12.468231https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4896/0000/The-effects-of-enhanced-UV-B-radiation-on-growth-stomata/10.1117/12.468231.short?SSO=1 – (On our blog : https://plantstomata.wordpress.com/2021/02/20/the-changes-of-aba-content-and-absorbance-the-rate-of-stoma-closure-in-cucumber-leaves-were-the-adaptive-mechanism-to-enhanced-uv-b-radiation/ )

An Y., Liu L., Chen L., Wang L. (2016) – ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells – Front Plant Sci. 7(482) – doi:10.3389/fpls.2016.00482

An Z. F., Jing W., Liu Y. L., Zhang W. H. (2008) – Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba – J. Exp. Bot. 59: 815–825 – doi: 10.1093/jxb/erm370 – (On our blog : https://plantstomata.wordpress.com/2016/05/05/cuao-in-vicia-faba-guard-cells-is-an-essential-enzymatic-source-for-h2o2-production-in-aba-induced-stomatal-closure/)

Anav A., De Marco A., Proietti C., Alessandri A., Dell’Aquila A., Cionni I., Friedlingstein P., Khvorostyanov D., Menut L., Paoletti E., Sicard P., Sitch S., Vitale M. (2016) – Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests – Global Change Biol. 22: 1608–1627 – doi:10.1111/gcb.13138 – http://onlinelibrary.wiley.com/doi/10.1111/gcb.13138/abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/31/ozone-risk-assessment-and-stomatal-uptake-pody/)

Anav A., Liu Q., De Marco A., Proietti C., Savi F., Paoletti E., Piao S. (2017) – The role of plant phenology in stomatal ozone flux modeling – Glob. Change Biol. 24: 235–248 – https://doi.org/10.1111/gcb.13823 – https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13823 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/improved-estimates-of-stomatal-ozone-fluxes-require-a-better-representation-of-plant-phenology-in-the-models-used-for-o3-risk-assessment/ )

Anav A., Proietti C., Menut L., Carnicelli S., De Marco A., Paoletti E. (2018) – Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone – Atmospheric Chemistry-and Physics – https://doi.org/10.5194/acp-2017-1057 – https://www.atmos-chem-phys-discuss.net/acp-2017-1057/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/sensitivity-of-stomatal-conductance-to-soil-moisture/ )

Andayani U., Sumantri I., Pahala A., Muchtar M. (2020) – The implementation of deep learning using convolutional neural network to classify based on stomata microscopic image of Curcuma herbal plants – IOP Conf. Ser. Mater. Sci. Eng. 851:012035 – doi: 10.1088/1757-899X/851/1/012035https://iopscience.iop.org/article/10.1088/1757-899X/851/1/012035 – (On our blog : https://plantstomata.wordpress.com/2022/05/02/deep-learning-using-convolutional-neural-network-to-classify-based-on-stomata-microscopic-image/ )

Anderegg W. R. L. (2018) – Quantifying seasonal and diurnal variation of stomatal behavior in a hydraulic-based stomatal optimization model – DOI: 10.20870/jph.2018.e001https://www.researchgate.net/publication/330653531_Quantifying_seasonal_and_diurnal_variation_of_stomatal_behavior_in_a_hydraulic-based_stomatal_optimization_model – (On our blog : https://plantstomata.wordpress.com/2019/05/25/seasonal-and-diurnal-variation-of-stomatal-behavior/ )

Anderegg W. R. L., Wolf A., Arango-Velez A., Choat B., Chmura D. J., Jansen S., Kolb T., Li S., Meinzer F., Pita P., Resco de Dios V., Sperry J. S., Wolfe B. T., Pacala S. W. (2017) – Plant water potential improves prediction of empirical stomatal models – PLOS one 12(10): e0185481 – https://doi.org/10.1371/journal.pone.0185481https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185481 – (On our blog : https://plantstomata.wordpress.com/2019/05/25/plant-water-potential-improves-prediction-of-empirical-stomatal-models/

Anderegg W. R. L., Wolf A., Arango-Velez A., Choat B., Chmura D. J., Jansen S., Kolb T., Li S., Meinzer F., Pita P., Resco de Dios V., Sperry J. S., Wolfe B. T., Pacala S. W. (2018) – Woody plants optimise stomatal behaviour relative to hydraulic risk – Ecology Letters 21: 968-977 – doi: 10.1111/ele.12962http://sperry.biology.utah.edu/publications/Anderegg_et_al_2018.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/optimal-control-of-stomata-to-manage-hydraulic-risk-is-likely-to-have-significant-consequences-for-ecosystem-fluxes-during-drought/ )

Anderson B. E., Ward J. M., Schroeder J. I. (1994) – Evidence for an Extracellular Reception Site for Abscisic Acid in Commelina Guard Cells – Plant Physiol. 104(4): 1177-1183 – doi: 10.1104/pp.104.4.1177 – PMID: 12232155 – PMCID: PMC159278 – https://pubmed.ncbi.nlm.nih.gov/12232155/ – (On our blog : https://plantstomata.wordpress.com/2021/10/03/a-reception-site-for-aba-mediated-inhibition-of-stomatal-opening-is-on-the-extracellular-side-of-the-plasma-membrane-of-guard-cells/ )

Anderson C. T., Yue R. (2016) – Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis thalianaPlant Physiol. 01066.2015 –http://dx.doi.org/10.1104/pp.15.01066 – http://www.plantphysiol.org/content/early/2016/01/04/pp.15.01066 – (On our blog : https://plantstomata.wordpress.com/2016/04/24/cellulose-and-xyloglucan-in-the-walls-of-stomatal-guard-cells/)

Anderson J. E. (1977) – Transpiration and photosynthesis in saltcedar – HYDROLOGY AND WATER RESOURCES IN ARIZONA AND THE SOUTIHWEST 7: 125 -131 – https://repository.arizona.edu/bitstream/handle/10150/300992/hwr_07-125-131.pdf?sequence=1&isAllowed=y – (On our blog : https://plantstomata.wordpress.com/2021/09/26/93728/ )

Anderson V. J., Briske D. D. (1990) – Stomatal distribution, density and conductance of three perennial grasses native to the southern true prairie of Texas – The American Midland Naturalist 123(1): 152-159 – https://doi.org/10.2307/2425768https://www.jstor.org/stable/2425768?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/11/18/a-significant-positive-relationship-between-stomatal-density-and-conductance-confirming-the-functional-significance-of-stomatal-distribution-to-gas-exchange/ )

Ando E., Kinoshita T. (2018) – Red Light-Induced Phosphorylation of Plasma Membrane H+-ATPase in Stomatal Guard Cells – Plant Physiology – https://doi.org/10.1104/pp.18.00544 – http://www.plantphysiol.org/content/178/2/838 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/red-light-induced-pm-h-atpase-phosphorylation-in-guard-cells-promotes-stomatal-opening-in-whole-leaves-2/ )

Ando E., Kinoshita T. (2019) – Fluence rate dependence of red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells – Plant Signal. Behav. 14: 1561107 – doi: 10.1080/15592324.2018.1561107https://www.frontiersin.org/articles/10.3389/fpls.2020.601478/full – (On our blog : https://plantstomata.wordpress.com/2021/03/27/red-light-induced-phosphorylation-of-plasma-membrane-h-atpase-in-stomatal-guard-cells/ )

Ando E., Ohnishi M., Wang Y., Matsushita T., Watanabe A.,Hayashi Y., Fujii M., Ma J. F., Inoue S., Kinoshita T. (2013) – TWIN SISTER OF FTGIGANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis – Plant Physiol 162: 1529–1538 –  https://doi.org/10.1104/pp.113.217984 – http://www.plantphysiol.org/content/162/3/1529?ijkey=215e17cafb15c9d6315d76b6c05ce4d5f88407a4&keytype2=tf_ipsecsha – (n our blog : https://plantstomata.wordpress.com/2018/10/06/photoperiodic-flowering-components-tsf-gi-and-co-positively-affect-stomatal-opening-2/ )

Andrés Z., Pérez-Hormaeche J., Leidi E. O., Schlücking K., Steinhorst L.,  McLachlan D. H., Schumacher K., Hetherington A. M., Kudla J., Cubero B., Pardo J. M. (2014) – Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake – PNAS 111(17): E1806–E1814 –  doi: 10.1073/pnas.1320421111 – http://www.pnas.org/content/111/17/E1806 – (On our blog : https://plantstomata.wordpress.com/2017/11/29/regulation-of-stomatal-aperture-by-tonoplast-k-uptake/)

Anna (2018) – The effect of height on stomatal density – Anna’s Plants in Motion Blog – http://blogs.evergreen.edu/pim-kosann28/ – (On our blog : https://plantstomata.wordpress.com/2022/05/19/stomatal-density-on-different-tiers-of-leaves-in-mahonia-aquifolium/ )

Anonymous (2006) – Effect of elevated CO2 levels on Poplar stomata – https://cordis.europa.eu/article/id/84194-effect-of-elevated-co2-levels-on-poplar-stomata/pt – (On our blog : https://plantstomata.wordpress.com/2020/12/19/effect-of-elevated-co2-levels-on-poplar-stomata/ )

Anonymous (2014) – Difference between stomata and hydathodes (water stomata) – http://www.majordifferences.com/2014/12/difference-between-stomata-and.html – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomata-and-hydathodes-water-stomata/)

Anonymous (2016) – An amino acid controls plants’ breath – Phys.Org 2016-12-06 – http://phys.org/news/2016-12-amino-acid.html – (On our blog : https://plantstomata.wordpress.com/2016/12/07/the-role-of-calcium-in-the-opening-and-closing-of-stomata/)

Anonymous (2017) – Stomata – an ancient insight into a modern problem – University of Southampton – https://www.efolio.soton.ac.uk/blog/biol3056-2016-17/stomata-an-ancient-insight-into-a-modern-problem/ – (On our blog : https://plantstomata.wordpress.com/2022/03/02/102950/ )

Anonymous (xxxx) – Structure, Function, and Density of Stomata – http://www.kcvs.ca/site/projects/physics_files/sem/resources/stomata.html# – (On our blog : https://plantstomata.wordpress.com/2018/08/15/structure-function-and-density-of-stomata/ )

Anonymous (x) – SimSphere Workbook – Chapter 9 – Prifysgol Aberystwyth University – https://www.aber.ac.uk/en/iges/research-groups/earth-observation-laboratory/research/simsphere/workbook/chapter-9/  – (On our blog – https://plantstomata.wordpress.com/2016/04/07/about-stomatal-resistance-and-stomatal-humidity-resonse/)

Anonymous (x) – Transpiration – Water Movement through Plants – Transpiration – Factors Affecting Rates of Transpiration – Plant & Soil Sciences eLibrary (PRO) – https://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1092853841&topicorder=6 – (On our blog : https://plantstomata.wordpress.com/2018/01/07/factors-affecting-rates-of-transpiration/ )

Anonymous – Universität Würzburg (x) – Guard cell function under salt stress conditions – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/dr_rosalia_deeken/guard_cell_function_under_salt_stress_conditions/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/salt-stress-conditions-and-stomatal-function-project/)

Anonymous (2018) – Sending a canopy-wide message – Science Signal eaam9514 (2018) – https://science.sciencemag.org/content/359/6378/880.1 – (On our blog : https://plantstomata.wordpress.com/2020/09/08/sending-a-canopy-wide-message/ )

Anonymous (2019) – Stomata – What are they for ? – Nature campus – http://campusteva.tau.ac.il/eng/content/stomata-what-are-they – (On our blog : https://plantstomata.wordpress.com/2019/05/30/the-distinct-stomatal-spatial-pattern-typical-for-ferns/ )

Anonymous (2020) – Stomata and transpiration – Eurofins – https://www.eurofins-agro.com/en/stomata-and-transpiration – (On our blog : https://plantstomata.wordpress.com/2020/08/13/stomata-and-transpiration-2/ )

Anonymous (2021) – What causes opening and closing of stomata ? – http://www.embragen.com.br/wieners-circle-qvgnogr/75e6f0-what-causes-opening-and-closing-of-stomata# – (On our blog : https://plantstomata.wordpress.com/2021/02/08/opening-and-closing-of-stomata/ )

Anonymous (xxxx) – Evapotranspiration, Transpiration, Calculation – https://wiki.sustainabletechnologies.ca/wiki/Evapotranspiration – (On our blog : https://plantstomata.wordpress.com/2021/12/10/evapotranspiration-transpiration-calculation/ )

Anosheh H. P., Moucheshi A. S., Pakniyat H., Pessarakli M. (2016) – Stomatal responses to drought stress – In Parvaiz Ahmad (Ed.), Water Stress and Crop Plants: A Sustainable Approach (1: 24–40) – John Wiley & Sons, Ltd. – https://doi.org/10.1002/9781119054450.ch3https://onlinelibrary.wiley.com/doi/10.1002/9781119054450.ch3https://plantstomata.wordpress.com/2022/04/07/the-effect-of-drought-stress-on-stomatal-opening-and-its-morphological-changes-under-this-condition-are-considered/ )

Antunes W. C., de Menezes Daloso D., Pinheiro D. P., Williams T. C. R., Loureiro M. E. (2017) – Guard cell-specific down-regulation of the sucrose transporter SUT1 leads to improved water use efficiency and reveals the interplay between carbohydrate metabolism and K+ accumulation in the regulation of stomatal opening – Environmental and Experimental Botany 135: 73–85 – https://doi.org/10.1016/j.envexpbot.2016.12.004https://www.sciencedirect.com/science/article/abs/pii/S0098847216302532?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/05/28/sut1-has-an-important-role-in-stomatal-movements/ )

Antunes W. C., Provart N. J., Williams T. C., Loureiro M. E. (2012) – Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity – Plant Cell Environ. 35(4): 747-759 – PMID: 21999376 – http://www.cagef.utoronto.ca/changes-in-stomatal-function-and-water-use-efficiency-in-potato-plants-with-altered-sucrolytic-activity/ – (On our blog : https://plantstomata.wordpress.com/2017/11/25/the-important-role-that-sucrose-breakdown-may-play-in-stomatal-function/)

Aoki S., Toh S., Nakamichi N., Hayashi Y., Wang Y., Suzuki T., Tsuji H., Kinoshita T. (2019) – Regulation of stomatal opening and histone modification by photoperiod in Arabidopsis thaliana – Scientific Reports 9, Article number: 10054 – https://www.nature.com/articles/s41598-019-46440-0#author-information – (On our blog : https://plantstomata.wordpress.com/2019/07/29/photoperiod-is-an-important-environmental-cue-regulating-stomatal-opening-and-ld-conditions-enhance-light-induced-stomatal-opening/ )

Apel P. (1967) – Über rhythmisch verlaufende Änderungen in der
CO2-Aufnahme von Blättern – Ber. Dtsch. Bot. Ges. 80: 3–9 –

Aphalo P. J., Jarvis P. G. (1991) – Do stomata respond to relative humidity? – Plant, Cell and Environment  14: 127–132 – https://doi.org/10.1111/j.1365-3040.1991.tb01379.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01379.x – (On our blog : https://plantstomata.wordpress.com/2019/03/22/water-vapour-saturation-deficit-is-a-more-appropriate-variable-for-describing-stomatal-responses-to-humidity/ )

Aphalo P. J., Jarvis P. G. (1993) – The boundary layer and the apparent responses of stomatal conductance to wind speed and to the mole fractions of CO2 and water vapour in the air – Plant, Cell and Environment 16: 771–783 – (On our blog : https://plantstomata.wordpress.com/2016/03/14/7100/)

Aphalo P. J., Jarvis P. G. (1993) – An analysis of Ball’s empirical model of stomatal conductance – Annals of Botany 72: 321–327 – https://doi.org/10.1006/anbo.1993.1114 – https://www.sciencedirect.com/science/article/pii/S0305736483711145 – (On our blog : https://plantstomata.wordpress.com/2018/11/24/an-analysis-of-balls-empirical-model-of-stomatal-conductance/

Aphalo P. J., Jarvis P. G. (1993) – Separation of direct and indirect responses of stomata to light: results from a leaf inversion experiment at constant intercellular CO2 molar fraction – Journal of Experimental Botany 44: 791-800 – https://doi.org/10.1093/jxb/44.4.791 – https://academic.oup.com/jxb/article-abstract/44/4/791/523310 – (On our blog : https://plantstomata.wordpress.com/2018/11/25/direct-and-indirect-responses-of-stomata-to-light/ )

Aphalo P. J., Sánchez R. A. (1986) – Stomatal responses to light and drought stress in variegated leaves of Hedera helix – Plant Physiology 81: 768–773 – https://doi.org/10.1104/pp.81.3.768http://www.plantphysiol.org/content/81/3/768 – (On our blog : https://plantstomata.wordpress.com/2020/05/28/stomatal-responses-to-light-and-drought-stress/ )

Apple M. E., Olszyk D. M., Ormrod D. P., Lewis J., Southworth D., Tingey D.T. (2000) – Morphology and stomatal function of Douglas-fir needles exposed to climate change: elevated CO2 and temperature – International Journal of Plant Sciences 161: 127–132 – https://www.ncbi.nlm.nih.gov/pubmed/10648202 – (On our blog : https://plantstomata.wordpress.com/2019/10/24/simulated-climate-change-influences-douglas-fir-needle-structure-and-stomatal-function/ )

Apostolakos P., Galatis B. (1987) – Induction, polarity and spatial control of cytokinesis in some abnormal subsidiary cell mother cells of Zea mays – Protoplasma 140: 26-42  – https://doi.org/10.1007/BF01273253 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/particular-structural-features-established-in-guard-cell-mother-cells-affect-stomatal-morphogenesis/ ) 

Apostolakos P., Galatis B. (1998) – Probable cytoskeleton involvement in stomatal pore formation in Asplenium nidus L. – Protoplasm 203: 48–57 – DOI: 10.1007/BF01280586 – https://link.springer.com/article/10.1007%2FBF01280586 – (On our blog : https://plantstomata.wordpress.com/2018/08/25/this-stomatal-pore-formation-is-a-unique-process-which-is-probably-restricted-to-ferns/ )

Apostolakos P., Galatis B. (1999) – Microtubule and Actin Filament Organization during Stomatal Morphogenesis in the Fern Asplenium nidus. II. Guard Cells – New Phytologist 141(2): 209-223 – https://www.jstor.org/stable/2588554?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/08/15/particular-structural-features-established-in-guard-cell-mother-cells-affect-stomatal-morphogenesis/ )

Apostolakos P., Giannoutsou E., Galatis B. (2021) – Callose: a multifunctional (1, 3)-β-D-glucan involved in morphogenesis and function of angiosperm stomata – Journal of Biological Research-Thessaloniki 28(1): 17 – DOI: 10.1186/s40709-021-00150-9 – https://jbiolres.biomedcentral.com/articles/10.1186/s40709-021-00150-9 – (On our blog : https://plantstomata.wordpress.com/2021/08/09/callose-is-implicated-in-the-mechanism-of-stomatal-pore-formation-and-stomata-function/ )

Apostolakos P., Livanos P., Giannoutsou E., Panteris E., Galatis B. (2018) – The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division – Annals of Botany mcx193 – https://doi.org/10.1093/aob/mcx193 – https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcx193/4810445 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cross-talk-during-subsidiary-cell-formation-in-zea-mays-components-orchestrating-cell-polarization-and-asymmetric-division/ )

Apostolakos P., Livanos P., Galatis B. (2009) – Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L. – Cell Motility and the Cytoskeleton 66: 342–349 – doi: 10.1002/cm.20366 – https://www.ncbi.nlm.nih.gov/pubmed/19363785 – (On our blog : https://plantstomata.wordpress.com/2018/08/25/deposition-of-significant-callose-quantities-in-guard-cells-of-stomata/ )

Apostolakos P., Livanos P., Nikolakopoulou T. L., Galatis B. (2009) – The role of callose in guard-cell wall differentiation and stomatal pore formation in the fern Asplenium nidus – Ann Bot. 104(7): 1373–1387 – doi:  10.1093/aob/mcp255 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778399/– (On our blog : https://plantstomata.wordpress.com/2018/08/15/callose-in-guard-cell-wall-differentiation-and-stomatal-pore-formation/

Apostolakos P., Livanos P., Nikolakopoulou T. L., Galatis B. (2010) – Callose implication in stomatal opening and closure in the fern Asplenium nidus – New Phytologist 186(3): 623-635 – DOI : 10.1111/j.14698137.2010.03206.x – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-186-i-3-nph3206 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/callose-participates-in-stomatal-movement/)

Apostolakos P., Panteris E., Galatis B. (1997) – Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus I: Guard cell mother cell – Protoplasma 198: 93–106 – https://doi.org/10.1007/BF01282135 – https://link.springer.com/article/10.1007/BF01282135#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-morphogenesis-in-the-fern-asplenium-nidus-i-guard-cell-mother-cell/ )

Apostolakos P., Panteris E., Galatis B. (2008) – The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays – Cell Motil Cytoskeleton 65(11): 863-875 – doi: 10.1002/cm.20308 – https://www.ncbi.nlm.nih.gov/pubmed/18785264 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/phospholipases-c-and-d-in-the-asymmetric-division-of-subsidiary-cell-mother-cells/ )

Apple M. E., Olszyk D. M., Ormrod D. P., Lewis J., Southworth D., Tingey D.T. (2000) – Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature – Int J Plant Sci. 161(1): 127-132 – DOI: 10.1086/314237 – (http://www.ncbi.nlm.nih.gov/pubmed/10648202) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomata-of-douglas-fir-needles-exposed-to-climate-change/) – (https://wordpress.com/block-editor/post/plantstomata.wordpress.com/81784)

Appleby R. F., Davies W. J. (1983) – A possible evaporation site in the guard cell wall and the influence of leaf structure on the humidity response by stomata of woody plants – Oecologia 56: 30-40 –https://doi.org/10.1007/BF00378214https://link.springer.com/article/10.1007%2FBF00378214#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/10/the-influence-of-leaf-structure-on-the-humidity-response-by-stomata-of-woody-plants/)

Appleby R. F., Davies W. J. (1983) – The structure and orientation of guard cells in plants showing stomatal responses to changing vapour pressure difference – Ann. Bot. 52(4): 459-468 – https://doi.org/10.1093/oxfordjournals.aob.a086601 – https://academic.oup.com/aob/article-abstract/52/4/459/183309?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/08/15/guard-cells-and-stomatal-responses-to-changing-vapour-pressure-difference/ )

Arafa A. A., Khafagy M. A., Abo-El Kheer A. M., Fouda R. A., El-Banna M. F. (2014) – Stomatal density in the leaves of Sweet pepper plant as affected by certain bio-stimulants under salt stress conditions – J. Plant Production, Mansoura Univ. 5(4): 649-662 – https://www.researchgate.net/publication/325871601_STOMATAL_DENSITY_IN_THE_LEAVES_OF_SWEET_PEPPER_PLANT_AS_AFFECTED_BY_CERTAIN_BIO-STIMULANTS_UNDER_SALT_STRESS_CONDITIONS – (On our blog : https://plantstomata.wordpress.com/2019/08/17/increasing-salinity-levels-decreased-the-number-of-stomata-and-its-density-on-both-surfaces/ )

Aranda I., Rodriguez-Calcerrada J., Robson T. M., Cano F.J., Alté L., Sánchez-Gómez D. (2012) – Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions – For. Syst. 21:405-417 – https://revistas.inia.es/index.php/fs/article/view/2348 – (On our blog ; https://plantstomata.wordpress.com/2021/06/11/stomatal-and-non-stomatal-limitations-on-leaf-carbon-assimilation/ )

Arango-Velez A., Zwiazek J. L., Thomas B. R., Tyree M. T. (2011) – Stomatal factors and vulnerability of stem xylem to cavitation in poplars – Physiologia Plantarum 143: 154-165 – DOI: 10.1111/j.1399-3054.2011.01489.x –https://www.ncbi.nlm.nih.gov/pubmed/21623799 – (On our blog : https://plantstomata.wordpress.com/2018/11/25/stomatal-factors-and-vulnerability-of-stem-xylem-to-cavitation/

Araújo W. L., Fernie A. R., Nunes-Nesi A. (2011) – Control of stomatal aperture: a renaissance of the old guard – Plant Signal Behav. 6(9): 1305–1311 – doi: 10.4161/psb.6.9.16425 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258058/ – (On our blog : https://plantstomata.wordpress.com/2019/03/28/control-of-stomatal-aperture/ )

Araújo W. L., Nunes-Nesi A., Osorio S., Usadel B., Fuentes D., Nagy R., Balbo I., Lehmann M., Studart-Witkowski C., Tohge T., Martinoia E., Jordana X., DaMatta F. M.,  Fernie A. R. (2011) – Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. – Plant Cell 23: 600–627 – doi: 10.1105/tpc.110.081224 – http://www.plantcell.org/content/23/2/600 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/antisense-inhibition-of-the-iron-sulphur-subunit-of-succinate-dehydrogenase-and-stomatal-aperture/ )

Araus J. L., Febrero A., Vendrell P. (1996) – Epidermal conductance in different parts of durum wheat grown under Mediterranean conditions: the role of epicuticular waxes and stomata – Plant, Cell & Environment 14( 6) : 545–558 – DOI: 10.1111/j.1365-3040.1991.tb01525.xhttps://www.researchgate.net/publication/229722370_Epidermal_conductance_in_different_parts_of_durum_wheat_grown_under_Mediterranean_conditions_The_role_of_epicuticular_waxes_and_stomata – (On our blog : https://plantstomata.wordpress.com/2019/07/18/no-significant-correlation-between-ge-and-total-stomatal-density-or-between-ge-and-either-adaxial-or-abaxial-stomatal-density/ )

Archana J. S., Valon C.,  Leung J.(2011) – A brand new START: abscisic acid perception and transduction in the guard cell – Sci. Sign. 4(01):4 – DOI: 10.1126/scisignal.2002164 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/the-role-of-aba-in-stomata/)

Archibald E. E. A. (1936) – An anatomical investigation of jointed cactus (Opuntia aurantiaca, Lindley) with germination tests, and observations on the movements of the stomata – MSc Thesis Rhodes University – http://vital.seals.ac.za:8080/vital/access/manager/PdfViewer/vital:4264/SOURCEPDF1?viewPdfInternal=1 – (On our blog : https://plantstomata.wordpress.com/2021/12/21/an-anatomical-investigation-of-jointed-cactus-opuntia-aurantiaca-and-observations-on-the-movements-of-the-stomata/ )

Ardalani S., Saeidi M., Abdoli M. (2016) – Agronomic traits, photosynthesis and gas exchange variables of wheat genotypes in response to water deficit
during vegetative growth period – Environmental and Experimental Biology 14: 157–162 – http://doi.org/10.22364/eeb.14.22http://eeb.lu.lv/EEB/201612/EEB_XIV_Ardalani.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/16/water-deficit-decreased-net-photosynthetic-rate-transpiration-rate-and-stomatal-conductance/ )

Arend M., Schnitzler J.-P., Ehlting B., Hänsch R., Lange T., Rennenberg H., Himmelbach A., Grill E., Fromm J. (2009) – Expression of the Arabidopsis Mutant abi1Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars – Plant Physiology 151(4): 2110-2119 – (https://plantstomata.wordpress.com/2015/03/03/a-role-for-aba-in-regulating-stomatal-development/). (On our blog : https://plantstomata.wordpress.com/2015/03/03/a-role-for-aba-in-regulating-stomatal-development/)

Arellano V.-G. de, Wang X., Pedruzo‐Bagazgoitia X., Sikma M., Agustí‐Panareda A., Boussetta S., Balsamo G., Machado L., Biscaro T., Gentine P., Martin S., Fuentes J., Gerken T. (2020) – Interactions Between the Amazonian Rainforest and Cumuli Clouds: A Large‐Eddy Simulation, High‐Resolution ECMWF, and Observational Intercomparison Study – Journal of Advances in Modeling Earth Systems 12(7): – e2019MS001828 – ISSN 1942-2466 – https://doi.org/10.1029/2019ms001828https://eprints.whiterose.ac.uk/163877/ – (On our blog : https://plantstomata.wordpress.com/2022/01/13/the-timing-of-the-change-in-the-daylight-carbon-exchange-remains-uncertain-and-is-probably-related-to-the-stomata-closure-caused-by-the-increase-in-vapor-pressure-deficit-during-the-afternoon/ )

Arellano-Villagómez F. C., Guevara-Olvera L., Zuñiga-Mayo V. M., Cerbantez-Bueno V. E., Verdugo-Perales M., H. R., De Folter S., Acosta-García G. (2021) – Arabidopsis cysteine-rich receptor-like protein kinase CRK33 affects stomatal density and drought tolerance – https://doi.org/10.1080/15592324.2021.1905335https://www.tandfonline.com/doi/full/10.1080/15592324.2021.1905335 – (On our blog : https://plantstomata.wordpress.com/2021/07/28/a-role-for-crk33-in-stomatal-spacing/ )

Arends J. (1925) – Über den Einfluss chemischer Agenzien auf Stärkegehalt und osmotischen Wert der Spaltöffnungsschliesszellen – Planta 1: 84-115 – (On our blog : https://plantstomata.wordpress.com/2017/04/19/effect-of-chemical-substances-on-starch-and-osmotic-value-of-stomata/)

Arens T. (1968) – Radial Strukturen in den Stomata von Ouratea spectabilis (Mart.) Engl. – Protoplasma 66: 403-411 – https://link.springer.com/article/10.1007/BF01255867 – (On our blog : https://plantstomata.wordpress.com/2017/08/19/radial-structures-in-the-stomata-of-ouratea-ochnaceae-in-german/)

Armendariz A. L., Talano M. A., Villasuso A. L., Travaglia C., Racagni G. E., Reinoso H., Agostini E. (2016) – Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean – Plant Physiology and Biochemistry 103: 45-52 – DOI10.1016/j.plaphy.2016.02.041 – https://www.infona.pl/resource/bwmeta1.element.elsevier-a6914dd4-211d-3c8d-aa20-d5637f4afcf8 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/arsenic-induces-rapid-and-significant-stomatal-closure/)

Arminian A., Hoshmand S., Knox R.E. , Shiran B. (2008) – Stomatal characteristics, heritability and their relation to grain yield in a double haploid bred wheat population – In: Appels R., Eastwood R., Lagudah E., Langridge P., Mackay M., McIntyre L. and Sharp, P. (eds.) – Proc. 11th Int. Wheat Gen. Symp. 24–29 August 2008, Brisbane, Australia 2: 638–640 –

Armstrong F., Blatt M. R. (1995) – Evidence for K+ channel control in Vicia guard cells coupled by G-proteins to a 7TMS receptor mimetic – Plant J. 8: 187–198 – https://doi.org/10.1046/j.1365-313X.1995.08020187.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.08020187.x – (On our blog : https://plantstomata.wordpress.com/2018/11/23/evidence-for-k-channel-control-in-stomata-coupled-by-g-proteins-to-a-7tms-receptor-mimetic/

Arnaud D., Hwang I. (2015) – A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens – Mol. Plant. 8: 566–581 – doi: 10.1016/j.molp.2014.10.012 https://pubmed.ncbi.nlm.nih.gov/25661059/ – (On our blog : https://plantstomata.wordpress.com/2021/07/08/signaling-pathways-regulate-stomatal-defenses-to-bacterial-pathogens/ )

Arnaud D., Lee S., Takebayashi Y., Choi .D, Choi J., Sakakibara H., Hwang I. (2017) – Cytokinin-Mediated Regulation of Reactive Oxygen Species Homeostasis Modulates Stomatal Immunity in Arabidopsis – Plant Cell. 29(3): 543-559 – doi: 10.1105/tpc.16.00583 – Epub 2017 Mar 2 -PMID: 28254779 – https://pubmed.ncbi.nlm.nih.gov/28254779/ – (On our blog : https://plantstomata.wordpress.com/2020/08/15/the-ck-signaling-pathway-regulates-ros-homeostasis-in-guard-cells/ )

Arntzen C. J., Haugh M., Bobick S. (1973) – Induction of stomatal closure by Helminthosporium maydis pathotoxin – Plant Physiol. 52: 569-574 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366548/ – (On our blog : https://plantstomata.wordpress.com/2017/12/04/64468/)

Arquero O., Barranco D.., Benlloch M. (2006) – Potassium Starvation Increases Stomatal Conductance in Olive Trees – HortScience 41(2): – DOI: 10.21273/HORTSCI.41.2.433https://www.researchgate.net/publication/279480112_Potassium_Starvation_Increases_Stomatal_Conductance_in_Olive_Trees – (On our blog : https://plantstomata.wordpress.com/2019/03/28/moderate-k-deficiency-in-olives-may-impair-the-plants-ability-to-regulate-stomatal-closure/ )

Artiel H. (2020) – Stomatal Spacing in plant leaves – https://aaartiel.medium.com/stomatal-spacing-in-plant-leaves-275722714e99 – (On our blog : https://plantstomata.wordpress.com/2022/05/03/stomatal-spacing-in-the-leaf-is-directly-dependent-upon-an-individual-plants-environmental-requirements/ )

Arve L. E. et al. (2011) – Stomatal Responses to Drought Stress
and Air Humidity – Abiotic Stress in Plants – Mechanisms
and Adaptations – http://www.intechopen.comdoi:10.5772/24661

Arve L. E. (2013) – Stomatal functioning and abscisic acid (ABA) regulation in plants developed in different air humidity regimes – PhD Norwegian University of Life Sciences – (IPV).pdf (3.357Mb)http://hdl.handle.net/11250/2448449 – (On our blog : https://plantstomata.wordpress.com/2019/10/24/stomatal-functioning-and-aba-regulation-in-plants-developed-in-different-air-humidity-regimes/ )

Arve L. E., Carvalho D. R., Olsen J. E., Torre S. (2014) – ABA induces H2O2 production in guard cells, but does not close the stomata on Vicia faba leaves developed at high air humidity – Plant Signal Behav. 9(7):e29192 – doi: 10.4161/psb.29192 – https://www.ncbi.nlm.nih.gov/pubmed/25763494 – (On our blog :  https://plantstomata.wordpress.com/2018/12/02/aba-induces-h2o2-production-in-guard-cells-but-does-not-close-the-stomata/ )

Arve L. E., Kruse O. M. O., Tanino K. K., Olsen J. E., Futsaether C., Torre S. (2015) – Growth in continuous high air humidity increases the expression of CYP707A-genes and inhibits stomatal closure -Environmental and Experimental Botany 115: 11-19 – https://doi.org/10.1016/j.envexpbot.2015.02.004https://www.sciencedirect.com/science/article/abs/pii/S0098847215000234?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/06/13/continuous-high-air-humidity-increases-the-expression-of-cyp707a-genes-and-inhibits-stomatal-closure/ )

Arve L. E, Terfa M. T., Gislerød H. R., Olsen J. E., Torre S. (2013) – High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves – Plant Cell. Environ.36(2): 382-392 – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomata-and-the-aba-regulation-in-rose-leaves/)

Arve L. E., Torre S. (2015) – Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves – Funct. Plant Biol. 42: 376–386 – https://doi.org/10.1071/FP14247http://www.publish.csiro.au/fp/FP14247 – (On our blog : https://plantstomata.wordpress.com/2019/09/10/both-aba-and-ethylene-play-a-role-in-air-humidity-control-of-stomatal-movement-in-tomato/ )

Arve L. E, Torre S., Olsen J. E, Tanino K. K. (2011) – Stomatal Responses to Drought Stress and Air Humidity – in “Abiotic Stress in Plants – Mechanisms and Adaptations”, book edited by Arun Shanker and B. Venkateswarlu, ISBN 978-953-307-394-1 – (http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/stomatal-responses-to-drought-stress-and-air-humidity). – (On our blog : https://plantstomata.wordpress.com/2015/04/11/stomata-and-drought/)

Aryavand A., Ehdaie B., Tran B., Waines J. G. (2003) – Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta – Genet Resour Crop Evol 50: 175–182 – https://doi.org/10.1023/A:1022941532372https://link.springer.com/article/10.1023/A:1022941532372#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/28/stomatal-size-and-or-frequency-could-be-used-to-distinguish-tetraploid-from-hexaploid-cytotypes/ )

Arzani K., Ghasemi M., Yadollahi A., Hokmabadi H. (2013) – Study of foliar epidermal anatomy of four pistachio rootstocks under water stress – Estudio de la anatomía foliar epidermal de cuatro rizomas de pistacho bajo estrés hídrico – Idesia (Arica) versión On-line ISSN 0718-3429 – Idesia 31(1): 101-107 – IDESIA (Chile) – http://dx.doi.org/10.4067/S0718-34292013000100012  – https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-34292013000100012 – (On our blog : https://plantstomata.wordpress.com/2020/12/08/study-of-foliar-epidermal-anatomy-of-four-pistachio-rootstocks-under-water-stress/ )

Asai N., Nakajima N., Kondo N., Kamada H. (1999) – The effect of osmotic stress on the solutes in guard cells of Vicia faba L. – Plant Cell Physiol 40: 843–849 – (On our blog : https://plantstomata.wordpress.com/2016/03/16/osmotic-stress-and-stomata/)

Asai N., Nakajima N., Tamaoki M., Kamada H., Kondo N. (2000) – Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement – Plant Cell Physiol 41: 10–15 – (On our blog : https://plantstomata.wordpress.com/2016/03/18/role-of-malate-synthesis-in-stomata/)

Asher C. (2018) – Plant response to rising CO2 levels may alter rainfall patterns across tropics – Mongabay – https://news.mongabay.com/2018/06/plant-response-to-rising-co2-levels-may-alter-rainfall-patterns-across-tropics/ – (On our blog : https://plantstomata.wordpress.com/2022/05/19/as-co2-levels-in-the-atmosphere-rise-plants-respond-by-closing-their-stomata-for-longer-periods/ )

Ashmore M. (2007) – Comparison of different stomatal conductance algorithms for ozone flux modelling – Environmental Pollution – https://www.academia.edu/25420193/Comparison_of_different_stomatal_conductance_algorithms_for_ozone_flux_modelling?email_work_card=view-paper file:///C:/Users/wille/Downloads/Comparison_of_different_stomatal_conduct.pdf – (On our blog : https://plantstomata.wordpress.com/2021/06/04/different-stomatal-conductance-algorithms-for-ozone-flux-modelling/ )

Asian Scientist (2019) – Getting To The Root Of Water Flow In Plants – https://www.asianscientist.com/2019/01/in-the-lab/peptides-hormone-xylem-stomata-water-flow-plants/ – (On our blog : https://plantstomata.wordpress.com/2019/08/25/genes-encoding-the-peptide-hormone-cle9-10-are-active-in-cells-that-lead-to-the-development-of-stomata/ )

Askari S. H., De-Ville S., Hathway E. A., Stovin V. (2021) – Estimating Evapotranspiration from Commonly Occurring Urban Plant Species Using Porometry and Canopy Stomatal Conductance – Water 13: 2262 – https://doi.org/10.3390/w13162262https://www.mdpi.com/2073-4441/13/16/2262 – (On our blog : https://plantstomata.wordpress.com/2022/04/20/novel-approaches-to-both-challenges-converting-from-leaf-stomatal-conductance-to-leaf-evapotranspiration-et-and-scaling-from-leaf-et-to-canopy-et/ )

Askari-Khorsgani O., Flores F. B., Pessarakli M. (2018) – Plant signaling pathways involved in stomatal movement under drought stress conditions – Adv Plants Agric Res. 8(3): 290-297 – DOI: 10.15406/apar.2018.08.00329https://medcraveonline.com/APAR/APAR-08-00329.php – (On our blog : https://plantstomata.wordpress.com/2020/01/06/insight-in-plant-signaling-pathways-and-to-incentivize-further-studies-on-their-unknown-aspects-for-improved-stomatal-responses-under-various-environmental-conditions/ )

Ask Nature (2008-2015) – Guard cells regulate gas and moisture exchange: plants – © 2008-2015 The Biomimicry Institute. (http://www.asknature.org/strategy/8c389105f450bb568e1eed4725c4c195#.VQasDRDF-6F) – (On our blog : https://plantstomata.wordpress.com/2015/03/08/guard-cell-turgor-regulation-and-whole-plant-responses/).

Asl L. K., Dhondt S., Boudolf V., Beemster G. T., Beeckman T., Inzé D., Govaerts W., De Veylder L. (2011) – Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells – Plant Physiology 156: 2172-2183 – http://www.plantphysiol.org/content/early/2011/06/21/pp.111.181180 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/distinct-division-and-expansion-patterns-for-pavement-and-guard-cells/)

Aslam M. , Zamir M. S. I. , Anjum S. A. , Khan I., Tanveer M. (2015) – An investigation into morphological and physiological approaches to screen maize (Zea mays L.) hybrids for drought tolerance – Cereal Research Communications 43(1): 41-51 – https://doi.org/10.1556/CRC.2014.0022 – http://akademiai.com/doi/abs/10.1556/CRC.2014.0022 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/the-maize-hybrid-32-f-10-showed-a-better-stomatal-conductance-gs/)

Aslani F., Bernard F., Mirzajani F., Hadian J. (2015) – Comparison of in vitro seeds and shoot tips colchicine treatment methods on of Thymus daenensis Celak via the study of morphological features of stomata and cellular DNA content – jppf. 3 (10) :1-8 – (http://www.jispp.ir/browse.php?a_id=151&sid=1&slc_lang=en) – (On our blog : https://plantstomata.wordpress.com/2015/04/12/stomata-and-induction-of-polyploidy/).

Aslantaş R., Karakurt H. (2009) – The effects of altitude on stomata number and some vegetative growth parameters of some apple cultivars. – Research Journal of Agriculture and Biological Sciences 5: 853–857 – http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2009/853-857.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/05/the-effects-of-altitude-on-stomata-number/)

Assiry A. (2022) – Below-ground hydraulics control stomatal closure – Botany One – https://www.botany.one/2022/02/below-ground-hydraulics-control-stomatal-closure/ – (On our blog : https://plantstomata.wordpress.com/2022/03/16/104049/ )

Assis P., Martins G., Sá A., Nelson B., Sörgel M., Wolff S., Sá M., Kesselmeier J., Manzi A. O., Quesada C. A. (2019) – Sensitivity of Ball-Berry stomatal conductance model parameters to leaf age in the upper canopy of a central Amazon forest – Geophysical Research Abstracts 21: EGU2019-19096 – https://meetingorganizer.copernicus.org/EGU2019/EGU2019-19096.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/24/as-leaves-age-they-lose-the-ability-to-fully-open-and-fully-close-their-stomates/ )

Assma S. M., Lee D. M., Malkus P. (1992) – Rapid stomatal response to red light in Zea mays – Photochem. Photobiol. 56: 685–689 – https://doi.org/10.1111/j.1751-1097.1992.tb02222.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1992.tb02222.x – (On our blog : https://plantstomata.wordpress.com/2019/11/24/rapid-stomatal-response-to-red-light/ )

Assmann S.M. (1988) – Stomatal and non-stomatal limitations to carbon assimilation: an evaluation of the path-dependent method – Plant Cell Environ. 11: 577–582 – https://doi.org/10.1111/j.1365-3040.1988.tb01799.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1988.tb01799.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/stomatal-and-non-stomatal-limitations-to-carbon-assimilation/ )

Assmann S. M. (1988) – Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO2, and Low Vapor Pressure Differences – Plant Physiology 87(1): 226-231 – doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​87.​1.​226 – http://www.plantphysiol.org/content/plantphysiol/87/1/226.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/03/22/stomatal-response-to-blue-light/)

Assmann S. M. (1992) – Effects of light quality during development on the morphology and stomatal physiology of Commelina communis – Oecologia 92(2):188-195 – DOI: 10.1007/BF00317363 – https://www.researchgate.net/publication/226608952_Effects_of_light_quality_during_development_on_the_morphology_and_stomatal_physiology_of_Commelina_communis – (On our blog : https://plantstomata.wordpress.com/2016/07/26/the-specific-stomatal-response-to-blue-light-is-plastic/)

Assmann S. M. (1993) – Signal transduction in guard cells – Annual Review of Cell Biology 9: 345–375 – doi:10.1146/annurev.cb.09.110193.002021 – https://www.annualreviews.org/doi/10.1146/annurev.cb.09.110193.002021 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/signal-transduction-in-stomata/ )

Assmann S. M. (1994) – Ins and outs of guard cell ABA receptors – Plant Cell 6: 1187-1190 – https://doi.org/10.1105/tpc.6.9.1187 –  – http://www.plantcell.org/content/6/9/1187 – (On our blog : https://plantstomata.wordpress.com/2018/12/06/ins-and-outs-of-stomatal-aba-receptors/ )

Assmann S. M. (1999) – The cellular basis of guard cell sensing of rising CO2 – Plant, Cell & Environment 22: 629–637 – (On our blog : https://plantstomata.wordpress.com/2016/03/13/guard-cell-sensing-of-rising-co2-2/)

Assmann S. M. (2003) – OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells – Trends Plant Sci. 8: 151–153  – (On our blog : https://plantstomata.wordpress.com/2016/03/23/the-ost1-gene-and-stomatal-opening/)

Assmann S.M. (2010) – Abscisic acid signal transduction in stomatal responses – In Plant Hormones. Biosynthesis, Signal Transduction, Action! Ed. Davies P.J. Springer, Dordrecht, 399–426 – https://doi.org/10.1007/978-1-4020-2686-7_19 – https://link.springer.com/chapter/10.1007/978-1-4020-2686-7_19#citeas – (On our blog :  https://plantstomata.wordpress.com/2018/12/06/aba-signal-transduction-in-stomatal-responses/ )

Assmann S. M., Armstrong F. (1999) – Hormonal regulation of ion transporters: the guard cell system – In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones 337-361 – Elsevier, Amsterdam

Assmann S. M., Baskin T. I. (1998) – The function of guard cells does not require an intact array of cortical microtubules – Journal of Experimental Botany 49: 163–170 – https://doi.org/10.1093/jxb/49.319.163 – https://academic.oup.com/jxb/article/49/319/163/576443 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/intact-microtubule-arrays-are-not-invariably-required-for-stomatal-function/ )

Assmann S. M., Gershenson A. (1991) – The cinetics of stomatal responses to VPD in Vicia faba: electrophysiological and water relations models – Plant Cell 14: 455–465 – https://doi.org/10.1111/j.1365-3040.1991.tb01515.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01515.x – (On our blog : https://plantstomata.wordpress.com/2021/05/20/two-models-based-on-water-relations-gave-good-fits-of-the-data-emphasizing-the-need-for-further-study-regarding-the-metabolic-nature-of-the-guard-cell-response-to-humidity/ )

Assmann S. M., Grantz D. A. (1990) – Stomatal response to humidity in sugarcane and soybean: effect of vapour pressure difference on the kinetics of the blue light response – Plant, Cell & Environment 13: 163–169 – doi: 10.1111/j.1365-3040.1990.tb01288.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01288.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/epidermal-rather-than-bulk-leaf-water-status-mediates-the-vpd-effect-on-stomatal-kinetics/)

Assmann S. M., Grantz D. A. (1990) – The magnitude of the stomatal response to blue light : modulation by atmospheric humidity – Plant Physiol. 93(2): 701-707 – doi: 10.1104/pp.93.2.701https://pubmed.ncbi.nlm.nih.gov/16667526/ – (On our blog : https://plantstomata.wordpress.com/2021/08/23/stomatal-response-to-blue-light-2/ )

Assmann S. M., Jegla T. (2016) – Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2 – Curr. Opin. Plant Biol. 33: 157–167 – doi: 10.1016/j.pbi.2016.07.003 – http://europepmc.org/abstract/med/27518594 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/recent-insights-on-stomatal-responses-to-light-aba-and-co2/ )

Assmann S. M., Lee D. M., Markus P. (1992) – Rapid stomatal response to red-light in Zea mays – Photochem Photobiol. 56: 685–689- doi:10.1111/j.1751-1097.1992.tb02222.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1992.tb02222.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-response-to-red-light/)

Assmann S. M., Schwartz A. (1992) – Synergistic effect of light and fusicoccin on stomatal opening – Epidermal Peel and Patch Clamp Experiments – Plant Physiol. 98: 1349–1355 – doi: 10.1104/pp.98.4.1349 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080356/ – (On our blog : https://plantstomata.wordpress.com/2018/02/11/effect-of-light-and-fusicoccin-on-stomatal-opening/ )

Assmann S. M., Shimazaki K. I. (1999) – The multisensory guard cell. Stomatal responses to blue light and abscisic acid – Plant Physiol. 119(3): 809-815 (337-361 ?) – http://www.plantphysiol.org/content/119/3/809.full?ijkey=7a12ea1668efa214d91fef46a8c6bc1a4ed58734&keytype2=tf_ipsecsha -(On our blog : https://plantstomata.wordpress.com/2015/09/07/opening-of-stomata-by-blue-light-and-closure-of-stomata-by-aba/).

Assmann S. M., Simoncini L., Schroeder J. I.  (1985) – Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba – Nature 318: 285–287 – DOI: 10.1038/318285a0 – https://www.nature.com/articles/318285a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/05/blue-light-activates-electrogenic-ion-pumping-in-guard-cell-protoplasts/)

Assmann S. M., Snyder J. A., Lee Y-R. J. (2000) – ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity – Plant Cell Environ. 23(4): 387-395 – https://doi.org/10.1046/j.1365-3040.2000.00551.x – (On our blog : https://plantstomata.wordpress.com/2015/09/07/mutants-of-arabidopsis-with-a-wild-type-stomatal-response-to-humidity/)

Assmann S. M., Wang X.-Q. (2001) – From milliseconds to millions of years: guard cells and environmental responses – Curr Opin Plant Biol 4(5): 421-428 –  doi: 10.1016/s1369-5266(00)00195-3 https://pubmed.ncbi.nlm.nih.gov/11597500/ – (On our blog : https://plantstomata.wordpress.com/2021/01/20/87567/ )

Assmann S. M., Wang X.-Q. (2001) – From milliseconds to millions of years: guard cells and environmental responses – Current Opinion in Plant Biology 4: 421–428 – (On our blog : https://plantstomata.wordpress.com/2016/03/07/how-stomata-guard-cells-respond-to-abscisic-acid-and-blue-light/)

Assmann S. M., Zeiger E. (1985) – Stomatal responses to CO2 in Paphiopedilum and Phragmipedium – role of the guard cell chloroplast – Plant Physiol. 77: 461–464 – DOI: https://doi.org/10.1104/pp.77.2.461 – http://www.plantphysiol.org/content/77/2/461 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/involvement-of-guard-cell-chloroplasts-in-the-stomatal-response-to-co2/ )

Assmann S. M., Zeiger E. (1987) – Guard cell bioenergetics – In Stomatal Function,, ed. E. Zeiger, G. Farquhar, I. R. Cowan, pp. 163-194 – Stanford, CA: Stanford Univ. Press –

Assouline S., Or D. (2013) – Plant water use efficiency over geological time—evolution of leaf stomata configurations affecting plant gas exchange – PLOS ONE 8(7): e67757 – https://doi.org/10.1371/journal.pone.0067757https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/3309043 – (On our blog : https://plantstomata.wordpress.com/2022/02/04/evolution-of-leaf-stomata-configurations-affecting-plant-gas-exchange/ )

Assouline S., Or D. (2015) – Plant water use efficiency over geological time—evolution of leaf stomata configurations affecting plant gas exchange – PLOS ONE 10(4): e0127015 – (corrrection: https://doi.org/10.1371/journal.pone.0127015) – https://doi.org/10.1371/journal.pone.0067757 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067757 – (On our blog : https://plantstomata.wordpress.com/2017/12/05/evolution-of-leaf-stomata-configurations/)

Aston M. J. (1976) – Variation of stomatal diffusive resistance with ambient humidity in sunflower (Helianthus annuus) – Aust. J. Plant Physiol. 3: 489-502 – http://www.publish.csiro.au/fp/PP9760489 – (On our blog : https://plantstomata.wordpress.com/2017/02/01/stomatal-diffusive-resistance-and-ambient-humidity/)

Aston M. J. (1978) – Differences in the behaviour of adaxial and abaxial stomata of amphistomatous sunflower leaves: Inherent or environmental ? – Functional Plant Biology 5: 211-218 – DOI : 10.1071/PP9780211 – https://www.researchgate.net/publication/262994181_Differences_in_the_Behaviour_of_Adaxial_and_Abaxial_Stomata_of_Amphistomatous_Sunflower_Leaves_Inherent_or_Environmental – (On our blog : https://plantstomata.wordpress.com/2017/12/05/adaxial-and-abaxial-stomata-of-amphistomatous-sunflower-leaves/)

Atala C., Saldana A., Navarrete E. (2012) – Stomatal frequency and gas exchange differs in two Blechnum species (Pteridophyta, Blechnaceae) with contrasting ecological breadth – La frecuencia estomática e intercambio de gases difieren en dos especies de Blechnum (Pteridophyta, Blechnaceae) con distinto rango ecológico – Gayana Bot. 69(1): 161-166 – ISSN 0016-5301 – https://scielo.conicyt.cl/pdf/gbot/v69n1/art16.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/87191 )

Atchison J. M. , Head L. M., McCarthy L. P. (2000) – Stomatal parameters and atmospheric change since 7500 years before present: evidence from Eremophila deserti (Myoporaceae) leaves from the Flinders Ranges region, South Australia – Australian Journal of Botany 48(2): 223 – 232 – https://doi.org/10.1071/BT98049https://www.publish.csiro.au/bt/BT98049 – (On our blog : https://plantstomata.wordpress.com/2021/12/21/an-increase-in-stomatal-index-with-increasing-co2-particularly-over-the-last-century/ )

Atkinson C. J. (1991) – The flux and distribution of xylem sap calcium to adaxial and abaxial epidermal tissue in relation to stomatal behaviour – J Exp Bot 42: 987–993 – (On our blog : https://plantstomata.wordpress.com/2016/03/19/xylem-sap-ca-to-act-as-a-regulator-of-stomatal-behaviour/).

Atkinson C. J. (2014) – Is xylem sap calcium responsible for reducing stomatal conductance after soil liming? – Plant and Soil 382(1-2): 349 – http://link.springer.com/article/10.1007%2Fs11104-014-2180-z – (On our blog : https://plantstomata.wordpress.com/2016/03/19/calcium-and-reduction-of-stomatal-conductance/)

Atkinson C. J., Davies W. J., Mansfield T. A. (1989) – Changes in stomatal conductance in intact ageing wheat leaves in response to abscisic acid – Journal of Experimental Botany 40: 1021-1028 – https://doi.org/10.1093/jxb/40.9.1021 https://doi.org/10.1093/jxb/https://academic.oup.com/jxb/article-abstract/40/9/1021/567405?redirectedFrom=fulltext – (On our blog: https://plantstomata.wordpress.com/2019/02/04/changes-in-stomatal-conductance-in-intact-ageing-leaves-in-response-to-aba/ )

Atkinson C. J., Mansfield T. A., Davies W. J. (1990) – Does calcium in xylem sap regulate stomatal conductance? New Phytologist 116(1): 19-27 – DOI: 10.1111/j.1469-8137.1990.tb00506.x  – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1990.tb00506.x/full – (On lour blog : https://plantstomata.wordpress.com/2016/03/19/calcium-and-regulation-of-stomatal-conductance/)

Atkinson C. J., Mansfield T. A., Kean A. M., Davies W. J. (1989) – Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. – New Phytologist 111: 9–17 – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1989.tb04212.x/full – (On our blog : https://plantstomata.wordpress.com/2016/03/18/control-of-stomatal-aperture-by-calcium/)

Atkinson C. J., Mansfield T. A., McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Interactions Of Calcium With Abscisic-Acid In The Control Of Stomatal Aperture – Biochemie Und Physiologie Der Pflanzen 186: 333-339 – http://www.sciencedirect.com/science/article/pii/S0015379611802283 – (On our blog : https://plantstomata.wordpress.com/2016/03/19/ca-aba-and-stomatal-aperture/)

Atkinson C .J., Wookey P. A., Mansfield T. A. (1991) – Atmospheric pollution and the sensitivity of stomata on barley leaves to abscisic acid and carbon dioxide – New Phytologist 117: 535-541 – DOI: 10.1111/j.1469-8137.1991.tb00958.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1991.tb00958.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/11/pollution-aba-co2-and-stomata/ )

Atwell B. J. (1999) – Plants in Action – Macmillan Education AU – Ref. – 664 pp. – https://books.google.be/books/about/Plants_in_Action.html?id=chWs4ewSzpEC&redir_esc=yhttp://plantsinaction.science.uq.edu.au/edition1/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/plants-in-action-book/ )

Atwell B. J., Kriemann P. E., Turnbull C. G. N., Eamus D., Bieleski R. L., Farquhar G. (Eds.) (1999) – Stomatal structure and function – In: Plants in Action, Adaptation in Nature, Performance in Cultivation – MacMillan Education Australia, Melbourne. – http://plantsinaction.science.uq.edu.au/edition1/?q=content/15-2-1-stomatal-structure-and-function – (On our blog : https://plantstomata.wordpress.com/2015/07/19/2224/)

Au S. F. (1969) – Internal leaf surface and stomatal abundance in
arctic and alpine populations of Oxyria digyna – ECOLOGY 50:
131-134 –

Aubert B., Catsky J. (1970) – The onset of photosynthetic CO2 influx in banana leaf segments as related to stomatal diffusion resistance at different air humidities – Photosynthetica 4: 254–256 – ISSN : 0300-3604https://www.cabdirect.org/cabdirect/abstract/19710305014 – (On our blog : https://plantstomata.wordpress.com/2021/11/29/96514/ )

Aubert B., De Parcevaux S. (1969) – Résistance á la diffusion gazeuse au niveau de l’épiderme foliaire de quelques plantes fruitières tropicales et subtropicales – Fruits 24(4): 177-190 – https://revues.cirad.fr/index.php/fruits/article/view/33617 – (On our blog : https://plantstomata.wordpress.com/2022/07/06/les-valeurs-de-la-resistance-stomatique-rs-en-utilisant-la-formule-de-renner/ )

Aubert Y., Vile D., Pervent M., Aldon D., Ranty B., Simonneau T., Vavasseur A., Galaud J. (2010) – RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana – Plant & Cell Physiol. – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/rd20-participates-in-stomatal-control/ )

Aubinet M., Deltour J., De Halleux D., Nijskens J. (1989) – Stomatal regulation in greenhouse crops – Acta Horticulturae 248: 361-364 – International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation – doi: 10.1016/0168-1923(89)90005-1https://orbi.uliege.be/handle/2268/75627 – (On our blog : https://plantstomata.wordpress.com/2022/02/28/stomatal-regulation-in-greenhouse-crops/ )

Aubry S., Aresheva O., Reyna-Llorens I., Smith-Unna R. D., Hibberd J. M., Genty B. (2016) – A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra – Plant Physiol. 170: 1345–1357 – doi: 10.1104/pp.15.01203 – https://www.ncbi.nlm.nih.gov/pubmed/26818731?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-specific-transcriptome-signature-for-guard-cells-from-a-c4-plant/ )

Augé R. M., Green C. D., Stodola A. J. W., Saxton A. M., Olinick J. B., Evans R. M. (2000) –  Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in a natural habitat – New Phytol. 145: 483-500 – DOI: 10.1046/j.1469-8137.2000.00604.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2000.00604.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/05/correlations-of-stomatal-conductance-with-hydraulic-and-chemical-factors/)

Augé R. M., Moore J. L. (2002) – Stomatal response to nonhydraulic root-to-shoot communication of partial soil drying in relation to foliar dehydration tolerance – Environmental and Experimental Botany 47: 217–229 – https://doi.org/10.1016/S0098-8472(01)00129-0 – https://www.sciencedirect.com/science/article/abs/pii/S0098847201001290?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/02/04/stomatal-response-to-nonhydraulic-root-to-shoot-communication/ )

Augé R. M., Toler H. D., Moore J. L., Cho K., Saxton A. M. (2007) – Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo – J Plant Physiol 164(10): 1289-1299 – doi: 10.1016/j.jplph.2006.08.005 – Epub 2006 Dec 26 – https://pubmed.ncbi.nlm.nih.gov/17189660/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/comparing-contributions-of-soil-versus-root-colonization-to-variations-in-stomatal-behavior/ )

Augé R. M., Toler H. D., Sams C. E., Nasim G. (2008) – Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductanceMycorrhiza 18(3): 115-121 – doi: 10.1007/s00572-008-0162-9 – Epub 2008 Jan 29 – https://www.ncbi.nlm.nih.gov/pubmed/18228050 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/mycorrhiza-induced-increases-in-stomatal-conductance/ )

Augé R. M., Toler H. D., Saxton A. M. (2015) – Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysisMycorrhiza 25(1): 13-24 – doi: 10.1007/s00572-014-0585-4 – Epub 2014 May 16 – https://www.ncbi.nlm.nih.gov/pubmed/24831020 – (On our blog : https://plantstomata.wordpress.com/2019/09/09/arbuscular-mycorrhizal-symbiosis-alters-stomatal-conductance-of-host-plants-more-under-drought-than-under-amply-watered-conditions/ )

Aulik I. (xxxx) – Stomatal, cuticular water loss and photosynthetic acclimation in response to irradiance – Thesis Aarhus University – http://library.au.dk/fileadmin/www.bibliotek.au.dk/fagsider/jordbrug/Specialer/Isaac_Aulik_Thesis.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/20/the-plasticity-of-stomatal-anatomy-and-functionality/)

Auliya I., Hapsari L., Azrianingsih R. (2019) – Comparative study of leaf stomata profiles among different ploidy levels and genomic groups of bananas (Musa L.) – IOP Conference Series: Earth and Environmental Science 391conference 1 – IOP Conf. Ser.: Earth Environ. Sci. 391 012037 – https://iopscience.iop.org/article/10.1088/1755-1315/391/1/012037 – (On our blog : https://plantstomata.wordpress.com/2020/01/09/stomata-profiles-can-be-used-as-a-complementary-character-to-classify-among-different-genomic-groups-of-banana/ )

Auchincloss L., Easlon H. M., Levine D., Donovan L., Richards J. H. (2014) – Pre‐dawn stomatal opening does not substantially enhance early‐morning photosynthesis in Helianthus annuus – Plant Cell Environment 37: 1364– 1370 – https://doi.org/10.1111/pce.12241https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12241 – (On our blog : https://plantstomata.wordpress.com/2019/09/21/no-evidence-that-pre%e2%80%90dawn-stomatal-opening-enhances-early%e2%80%90morning-photosynthesis/ )

Ausma T., Mulder J., Polman T. R., van der Kooi C. J.,  De Kok L. J. (2020) – Atmospheric H2S exposure does not affect stomatal aperture in maize – Planta 252: 63 – https://doi.org/10.1007/s00425-020-03463-6https://link.springer.com/article/10.1007/s00425-020-03463-6#citeas – (On our blog : https://plantstomata.wordpress.com/2020/11/15/in-maize-h2s-is-not-a-gaseous-signal-molecule-that-controls-stomatal-aperture/ )

Avila E.L., Brown M., Pan S., Desikan R., Neill S.J., Girke T., Surpin M., Raikhel N. V. (2008) – Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells – Journal of Experimental Botany 59: 1149-1161 – https://doi.org/10.1093/jxb/ern025https://academic.oup.com/jxb/article/59/6/1149/481141 – (On our blog : https://plantstomata.wordpress.com/2019/07/09/the-loss-of-atvsr3-protein-caused-the-accumulation-of-nitric-oxide-and-hydrogen-peroxide-signalling-molecules-implicated-in-the-regulation-of-stomatal-opening-and-closing/ )

Avila R. T., Cardoso A. A., Almeida W. L. de, Costa L. C., Machado K. L. G., Barbosa M. L., Souza R. P. B. de, Oliveira L. A., Batista D. S., Martins S. C. V., Ramalho J. D. C., DaMatta F. M. (2020) – Coffee plants respond to drought and elevated [CO2] through changes in stomatal function, plant hydraulic conductance, and aquaporin expression – Environmental and Experimental Botany 177: 104148 – ISSN 0098-8472 –https://doi.org/10.1016/j.envexpbot.2020.104148https://www.sciencedirect.com/science/article/pii/S009884722030174X – (On our blog : https://plantstomata.wordpress.com/2022/04/06/elevated-co2-has-marked-implications-on-how-coffee-plants-respond-to-soil-water-deficit-through-changes-in-stomatal-function/ )

Avila-Lovera E., Santiago L. S. (2019) – The Advantages of Having Green Stems in Arid Environments – National Park Service – https://www.nps.gov/articles/the-advantages-of-having-green-stems-in-arid-environments.htm – (On our blog : https://plantstomata.wordpress.com/2021/05/26/stomata-on-green-stems/ )

Avissar R. (1993) – Observations of leaf stomatal conductance at the canopy scale: An atmospheric modeling perspective – Bound.-Layer Meteor. 64: 127–148 – DOI: 10.1007/BF00705665https://ui.adsabs.harvard.edu/abs/1993BoLMe..64..127A/abstract – (On our blog : https://plantstomata.wordpress.com/2021/09/23/leaf-stomatal-conductance-at-the-canopy-scale/ )

Avissar R., Avissar P., Mahrer Y., Bravdo B., (1985) – A model to simulate response of plant stomata to environmental conditions – Agric. For. Meteor. 34: 21–29 – DOI:10.1016/0168-1923(85)90051-6https://miami.pure.elsevier.com/en/publications/a-model-to-simulate-response-of-plant-stomata-to-environmental-co – (On our blog : https://plantstomata.wordpress.com/2021/08/20/a-semi-empirical-model-for-predicting-the-stomatal-response-to-environmental-conditions/ )

Avissar R., Pielke R. A. (1991) – The impact of plant stomatal control on mesoscale atmospheric circulations – Agric For Meteorol. 54: 353–372 –  doi: 10.1016/0168-1923(91)90013-G – https://www.sciencedirect.com/science/article/pii/016819239190013G – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-control-and-mesoscale-atmospheric-circulations/ )

Awada T., Moser L. E., Schacht W. H., Reece P. E. (2002) – Stomatal variability of native warm-season grasses from the Nebraska Sandhills – Canadian Journal of Plant Science 82: 349-355 – https://doi.org/10.4141/P01-031 –https://www.nrcresearchpress.com/doi/10.4141/P01-031 – (On our blog : https://plantstomata.wordpress.com/2019/04/17/stomatal-variability-of-native-warm-season-grasses/ )

Aylor D. E., Parlange J.-Y., Krikorian A. D. (1973) – Stomatal mechanics – Amer. J. Bot. 60: 163-171 – https://www.jstor.org/stable/2441103?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/a-model-of-stomatal-movement/)

Aylor D. E., Parlange J.-Y., Krikorian A. D. (1975) – Comment on some recent models of stomatal mechanics – Journal of Theoretical Biology 54(2): 395-397 – https://doi.org/10.1016/S0022-5193(75)80142-1https://ur.booksc.eu/book/4271417/14eec3https://www.sciencedirect.com/science/article/abs/pii/S0022519375801421?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/09/20/recent-models-of-stomatal-mechanics/ )

Ayres P. G. (1976) – Patterns of stomatal behavior, transpiration, and CO2 exchange in pea following infection by powdery mildew (Erysiphe pisi) – Journal of Experimental Botany 27: 1196-1205 –

Ayres P. G. (1981) – Responses of stomata to pathogenic microorganisms – in: Jarvis P.G. Mansfield T.A. Stomatal Physiology. Cambridge University Press, 1981: 205-221 –

Ayres P. G., Jarvis P. G., Mansfield T. A. (1981) – Stomatal Physiology – Soc Exp Biol Seminar 1981; Cambridge University Press 205-222, Series 8 –   

Azad A.K., Sawa Y., Ishikawa T., Shibata H. (2007) – Temperature-dependent stomatal movement in tulip petals controls water transpiration during flower opening and closing – Ann. Appl. Biol. 150: 81-87 – https://doi.org/10.1111/j.1744-7348.2006.00111.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1744-7348.2006.00111.x – (On our blog : https://plantstomata.wordpress.com/2020/11/15/the-stomata-of-outer-and-inner-surfaces-of-the-petal-are-involved-in-the-accumulation-and-transpiration-of-water-during-petal-opening/ )

Azevedo C. F., Bruno R. L. A., Quirino Z. G. M., Rego E. R., Gomes K. R. Nezerra A. K. D. (2012) – Effects of intercropping systems and insecticide in formation of stomata in fennel seedlings – Rev. bras. plantas med. 14 (spe) – https://doi.org/10.1590/S1516-05722012000500014https://www.scielo.br/j/rbpm/a/h3SsbZxtKdn5pCRK7SNNxdk/?lang=pt – (On our blog : https://plantstomata.wordpress.com/2022/03/09/the-intercropping-systems-and-insecticide-positively-influenced-the-development-of-stomata-in-fennel-plants/ )

Azevedo Neto A. D. de, Tarquinio Prisco J., Enéas-Filho J., Feitosa de Lacerda C., Vieira Silva J., Alves da Costa P. H., Gomes-Filho E. (2004) – Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes (Efeito do estresse salino sobre o crescimento, resposta estomática e acúmulo de solutos em diferentes genótipos de milho) – Braz. J. Plant Physiol. 16(1) – http://dx.doi.org/10.1590/S1677-04202004000100005 – http://www.scielo.br/scielo.php?pid=S1677-04202004000100005&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2017/10/03/effects-of-salt-stress-on-stomatal-response/)

Aziz R. M., Zabawi A. G., Azdawiyah A. T. S., Fazlyzan A. (2019) – Effects of haze on net photosynthetic rate, stomatal conductance and yield of Malaysian rice (Oryza sativa L.) varieties – J. Trop. Agric. and Fd. Sc. 47(1): 1 – 13 – http://ejtafs.mardi.gov.my/jtafs/47-1/haze.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/effects-of-haze-on-net-photosynthetic-rate-stomatal-conductance-and-yield/ )

Azoulay-Shemer T., Bagheri A., Wang C., Palomares A., Stephan A. B., Kunz H. H., Schroeder J. I. (2016) – Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing – Plant Physiology 171: 788–798 – https://doi.org/10.1104/pp.15.01662 – http://www.plantphysiol.org/content/171/2/788?ijkey=6d80179965eddc18728ca24d0822c2c8a86fff8d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/19/the-roles-of-starch-biosynthesis-for-high-co2-induced-stomatal-closing/ )

Azoulay-Shemer T., Palomares A., Bagheri A., Israelsson-Nordstrom M., Engineer C. B., Bargmann B. O. R., Stephan A. B., Schroeder J. I. (2015) – Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2– and ABA-induced stomatal closing – Plant J. 83: 567–581 – doi: 10.1111/tpj.12916 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.12916/abstract – (On our blog : https://plantstomata.wordpress.com/2015/06/24/the-role-of-guard-cell-photosynthesis-in-stomatal-conductance-responses/)

Azoulay-Shemer T., Schwankl N., Rog I., Moshelion M., Schroeder J. I. (2018) – Starch biosynthesis by AGPase, but not starch degradation by BAM1/3 and SEX1, is rate-limiting for CO -regulated stomatal movements under short-day conditions – FEBS Lett 592: 2739-2759 – https://plantscience.agri.huji.ac.il/publications/starch-biosynthesis-agpase-not-starch-degradation-bam13-and-sex1-rate – (On our blog : https://plantstomata.wordpress.com/2019/08/08/starch-biosynthesis-becomes-rate-limiting-for-co-induced-stomatal-closing/ )

Azuchi F., Kinose Y., Matsumura T., Kanomata T., Uehara Y., Kobayashi A., Yamaguchi M., Izuta T. (2014) – Modeling stomatal conductance and ozone uptake of Fagus crenata grown under different nitrogen loads – Environ. Pollut. 184: 481–487 – https://doi.org/10.1016/j.envpol.2013.09.025https://www.sciencedirect.com/science/article/pii/S0269749113004995?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/02/02/stomatal-closure-induced-by-o3-and-n-load-induced-soil-acidification-must-be-taken-into-account-in-developing-a-stomatal-conductance-model/ )

Babu, R. H., Savithramma, N. (2014) – Studies on stomata of some selected grass species of Poaceae and Cyperaceae – World Journal of Pharmacy and Pharmaceutical Sciences 3(7): 1268-1279 – http://isindexing.com/isi/papers/1416559462.pdfwww.wjpps.com/download/article/1404210729.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/19/stomata-in-poaceae-and-cyperaceae-2/)

Baca Cabrera J. C., Hirl R. T., Schäufele R., Macdonald A., Schnyder H. (2021) – Stomatal conductance limited the CO2 response of grassland in the last century. BMC Biol 19: 50 – https://doi.org/10.1186/s12915-021-00988-4https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-021-00988-4#citeas – (On our blog:

Baccelli I., Lombardi L., Luti S., Bernardi R., Picciarelli P., Scala A., et al. (2014) – Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, over expression of salicylic acid-and ethylene-signalling genes and camalexin biosynthesis – PLoS ONE 9:e100959 – doi: 10.1371/journal.pone.0100959https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100959 – (On our blog : https://plantstomata.wordpress.com/2020/09/10/cerato-platanin-induces-resistance-through-stomatal-perception/ )

Bachofen C., Moser B., Hoch G., Ghazoul J., Wohlgemuth T. (2017) – No carbon “bet hedging” in pine seedlings under prolonged summer drought and elevated CO2 – Journal of Ecology 106(1): 31-46 – https://doi.org/10.1111/1365-2745.12822https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2745.12822 – (On our blog : https://plantstomata.wordpress.com/2022/03/12/stomata-and-bet-hedging/ )

Bačić T., Krstin L., Roša J., Popović Z. (2013) – Epicuticular wax on stomata of damaged silver fir trees (Abies alba Mili.) – Acta Societatis Botanicorum Poloniae 74(2): 159-166 – issn: 2083-9480 – DOI: 10.5586/asbp.2005.021https://explore.openaire.eu/search/publication?articleId=doajarticles::8e47aba7f62ed4813dee69ca608190de – (On our blog : https://plantstomata.wordpress.com/2022/03/07/amorphous-wax-crusts-cover-stomatal-pores-as-well-as-the-rims-disturbing-the-normal-gas-exchange/ )

Bagheri A. (2014) – The role of Starch Metabolism and Guard Cell Photosynthesis in CO₂ Regulation of Stomatal Conductance – UC San Diego Electronic Theses and Dissertations – https://escholarship.org/uc/item/3rv3m6j3 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/co%e2%82%82-regulation-of-stomatal-conductance/)

Bagheri M., Mansouri H. (2014) – The effect of tetraploidy induction on morphology and anatomy characteristics of Cannabis sativa L. – Iranian Journal of Plant Biology 6(22): – https://ijpb.ui.ac.ir/article_18948_cfb817963b147610252c17c33020c80d.pdf – (On our blog : https://plantstomata.wordpress.com/2022/09/23/the-size-of-stomata-is-larger-in-the-tetraploid-cannabis-plant-compared-to-the-diploid-one-in-spite-of-lesser-density-of-stomata/ )

Bagic T. (1981) – Investigations of stomata of three oak species with light and scanning electron microscope – Acta Bot. Croat. 40: 85-90 – ISSN 0365—0588 – https://hrcak.srce.hr/file/233602 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/stomata-in-quercus-fagaceae-3/)

Bagic T., Krstin L., Rosa J., Popovic Z. (2005) – Epicuticular wax on stomata of damaged silver fir trees [Abies alba Mill.] – Acta Societatis Botanicorum Poloniae 74: 2 – ISSN :0001-6977 – https://www.infona.pl/resource/bwmeta1.element.agro-article-43eb1b32-0feb-4c64-af01-60ec95ee9d46 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/epicuticular-wax-on-stomata/)

Bahadur B., Rajagopal T., Ramayya N. (1971) – Studies on the structural and developmental variations and distribution of stomata in the Rubiaceae – J. Linn. Soc. Boi. 64: 295-310 –

Bahar B. (2004) – A research on relationships with stomatal conductance and the other leaf traits between grain yield and yield components in bread and durum wheat genotypes under Cukurova high- and low-land conditions – Faculty of Agriculture, University of Cukurova. Adana. PhD Thesis. pp.157.

Bahar B., Yildirim M., Barutcular C. (2009) – Relationships between stomatal conductance and yield components in spring durum wheat under mediterranean conditions – Not. Bot. Hort. Agrobot. Cluj. 37: 45-48 – https://doi.org/10.15835/nbha3723084https://www.notulaebotanicae.ro/index.php/nbha/article/view/3084https://www.researchgate.net/publication/40424151_Relationships_between_Stomatal_Conductance_and_Yield_Components_in_Spring_Durum_Wheat_under_Mediterranean_Conditions/fulltext/0f319aaa3829de22164a3b2e/Relationships-between-Stomatal-Conductance-and-Yield-Components-in-Spring-Durum-Wheat-under-Mediterranean-Conditions.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/09/relationships-between-stomatal-conductance-and-yield-components/ )

Bai T., Li C., Li C., Liang D., Ma F. (2013) – Contrasting hypoxia tolerance and adaptation in Malus species is linked to differences in stomatal behavior and photosynthesis – Physiol Plant 147(4): 514-523 – doi: 10.1111/j.1399-3054.2012.01683.x – Epub 2012 Sep 28 – https://pubmed.ncbi.nlm.nih.gov/22924708/ – (On our blog : https://plantstomata.wordpress.com/2020/11/04/contrast-in-tolerance-and-adaptation-to-stress-is-linked-to-differences-in-stomatal-behavior/ )

Baier M., Gimmler H., Hartung W. (1990) – The permeability of the guard cell plasma membrane and tonoplast. – J. Exp. Bot. 41: 351-358 – https://doi.org/10.1093/jxb/41.3.351 – https://www.jstor.org/stable/23695179?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/the-permeability-of-the-guard-cell-plasma-membrane-and-tonoplast/)

Bailey R. (2017) – Plant Stomata Function – Thought Co. – https://www.thoughtco.com/plant-stomata-function-4126012 – (On our blog : https://plantstomata.wordpress.com/2017/11/10/stomata-function/)

Bailey R. (2019) – What’s the Function of Stomata in Plant Tissue? [online] – ThoughtCo – https://www.thoughtco.com/plant-stomata-function-4126012 – (On our blog : https://plantstomata.wordpress.com/2022/05/02/different-types-of-stomata-and-how-they-open-and-close/ )

Bailey Z., Johnson M. (2019) – The Effect of Life History Strategies on Stomatal Characteristics Using Herbarium Specimens From Guadalupe Mountains National Park – Botany 2019 Ecophysiology Posters – https://2019.botanyconference.org/engine/search/index.php?func=detail&aid=534 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/predicting-changes-in-stomatal-density-in-response-to-elevated-carbon-dioxide/ )

Baillie A. L., Fleming A. J. (2019) – The developmental relationship between stomata and mesophyll airspace – New Phytologist 225(3): 1120-1126 – https://doi.org/10.1111/nph.16341https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16341 – (On our blog : https://plantstomata.wordpress.com/2019/11/27/developmental-relationship-between-stomata-and-mesophyll-airspace/ )

Bajons P., Klinger G., Schlosser V. (2005) – Determination of stomatal conductance by means of infrared thermography – Infrared Physics and Technology 46: 429–439 – https://doi.org/10.1016/j.infrared.2004.09.001https://www.sciencedirect.com/science/article/abs/pii/S1350449504001197?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/01/06/the-boundary-layer-resistances-to-heat-transfer-and-the-stomatal-resistance-the-stomatal-conductance-respectively-of-leaves-in-vivo/ )

Bak G., Lee E. J., Lee Y., Kato M., Segami S., Heven S., Maeshima M., Hwang J. U., Lee Y. (2013) – A role of phosphatidylinositol 3,5-bisphosphate in vacuolar structure change in guard cells of closing stomata. – Plant Cell 25: 2202–2216 – (On our blog : https://plantstomata.wordpress.com/2016/03/19/rapid-aba-induced-stomatal-closure-requires-ptdins35p2/)

Bak G., Lee E. J., Lee Y., Kato M., Segami S., Heven S., Maeshima M., Hwang J. U., Lee Y. (2013) – Rapid Structural Changes and Acidification of Guard Cell Vacuoles during Stomatal Closure Require Phosphatidylinositol 3,5-Bisphosphate – https://doi.org/10.1105/tpc.113.110411 – http://www.plantcell.org/content/25/6/2202/tab-article-info – (On our blog : https://plantstomata.wordpress.com/2018/12/03/rapid-aba-induced-stomatal-closure-requires-ptdins35p2-2/ )

Baker D. A., Hall J. L., MacRobbie E. A. C. (1988) – Stomatal guard cells – In Baker DA, Hall JL, eds, Solute Transport in Plant Cells and Tissues, Ed 1. Longman Press, Harlow, UK, pp 453–497 –

Baker J. M. (1970) – Effects of oils on plants – Environ. Pollut.; (United Kingdom) 1 – https://www.osti.gov/etdeweb/biblio/5809922 – (On our blog : https://plantstomata.wordpress.com/2022/09/29/oils-are-blocking-the-stomata-and-intercellular-spaces-and-reduce-the-transpiration-rate/ )

Baker N. R., Oxborough K., Lawson T., Morison J. I. L. (2001) – High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves – Journ. Experim. Bot. 52(356): 615-621 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/photosynthetic-activities-in-stomatal-guard-cells/ )

Bakker J. C. (1991) – Effects of humidity on stomatal density and its relation to leaf conductance. – Scientia Hort. 48: 205-212 – https://doi.org/10.1016/0304-4238(91)90128-L – https://www.sciencedirect.com/science/article/pii/030442389190128L – (On our blog : https://plantstomata.wordpress.com/2017/12/06/stomatal-density-and-size-as-affected-by-humidity-do-not-significantly-influence-leaf-conductance/)

Bakker J. C. (1991) – Leaf conductance of four glasshouse vegetable crops as affected by air humidity – Agricultural and Forest Meteorology 55(1–2):23–36 – https://doi.org/10.1016/0168-1923(91)90020-Qhttps://www.sciencedirect.com/science/article/abs/pii/016819239190020Q?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/02/19/leaf-conductance-as-affected-by-air-humidity/ )

Balasubramaniam S., Willis A. J. (1969) – Stomatal movements and rates of gaseous exchange in excised leaves of Vicia faba – New Phytol. 68: 663–674 – https://doi.org/10.1111/j.1469-8137.1969.tb06470.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1969.tb06470.x – (On our blog : https://plantstomata.wordpress.com/2019/02/09/stomatal-movements-and-rates-of-gaseous-exchange-in-excised-leaves/ )

Balcerowicz, M., Hoecker, U. (2014) – Auxin – a novel regulator of stomata differentiation – Trends in Plant Science 19(12): 747–749 – https://doi.org/10.1016/j.tplants.2014.10.006 – http://www.sciencedirect.com/science/article/pii/S1360138514002684 – (On our blog : https://plantstomata.wordpress.com/2015/02/07/stomata-and-auxin/)

Balcerowicz M., Ranjan A., Rupprecht L., Fiene G., Hoecker U. – Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins – Development 141(16): 3165-3176 – doi: 10.1242/dev.109181http://dev.biologists.org/content/141/16/3165 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/auxin-signalling-contributes-to-the-suppression-of-stomatal-differentiation-observed-in-dark-grown-seedlings/ )

Bald J. G. (1952) – Stomatal droplets and the penetration of leaves by plant pathogens – Amer. J. Bot. 39(2): 97-99 – (On our blog : https://plantstomata.wordpress.com/2017/05/06/stomatal-droplets-on-gladiolus-leaves-induce-the-germ-tubes-of-pleospora-to-infect-the-leaf/)

Baldocchi D. D. (1994)  – An analytical solution for coupled leaf photosynthesis and stomatal conductance models – Tree Physiology 14, 1069–1079 – https://doi.org/10.1093/treephys/14.7-8-9.1069  – https://academic.oup.com/treephys/article-abstract/14/7-8-9/1069/1727768/An-analytical-solution-for-coupled-leaf?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/02/06/coupled-leaf-photosynthesis-and-stomatal-conductance-equations/)

Baldocchi D. D., Hicks B. B., Camara P. (1987) – A canopy stomatal resistance model for gaseous deposition to vegetated surfaces – Atmos. Environ. 21: 91-101 – https://doi.org/10.1016/0004-6981(87)90274-5 –https://www.sciencedirect.com/science/article/pii/0004698187902745https://nature.berkeley.edu/biometlab/pdf/ddb%201987%20atmos%20environ.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/25/a-canopy-stomatal-resistance-model-for-gaseous-deposition/ )

Baldocchi D. D., Hutchinson B. A. (1987) – On estimating canopy photosynthesis and stomata1 conductance in a deciduous forest with clumped foliage – Tree Physiol. 2(1-2-3): 155-168 – PMID: 14975850 – https://www.ncbi.nlm.nih.gov/pubmed/14975850DOI: 10.1093/treephys/2.1-2-3.155 – (On our blog : https://plantstomata.wordpress.com/2019/04/25/estimating-canopy-photosynthesis-and-stomatal-conductance/ )

Baldocchi D. D., Luxmoore R. J., Hatfield L. (1991) – Discerning the forest from the trees: an essay on scaling canopy stomatal conductance – Agric For Meteorol 54: 197–226 – https://doi.org/10.1016/0168-1923(91)90006-C – https://www.sciencedirect.com/science/article/pii/016819239190006C – (On our blog : https://plantstomata.wordpress.com/2018/10/01/scaling-canopy-stomatal-conductance/ )

Ball C. J. (1982) – A model of stomatal control

Ball J. T. (1987) – Calculations related to gas-exchange – in Stomatal Function (eds E. Zeiger, G. Farquhar, and I. Cowan) : 445–476 (Stanford Univ. Press, 1987) –

Ball J. T. (1988) – An Analysis of Stomatal Conductance – PhD Thesis Stanford University – https://www.researchgate.net/profile/John_Ball16/publication/36285887_An_Analysis_of_Stomatal_Conductance/links/5a0c05bba6fdccc69eda9656/An-Analysis-of-Stomatal-Conductance.pdf – (On our blog : https://plantstomata.wordpress.com/2019/10/15/81620/ )

Ball J. T., Berry J. A. (1982) – The ci/cs ratio: a basis for predicting stomatal control of photosynthesis – Carnegie Institute Washington Yearbook 81: 88– 92 –

Ball J. T., Woodrow I. E., Berry J. A. (1987) – A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions – Progress in Photosynthetic Research 4: 221–228 – (On our blog : https://plantstomata.wordpress.com/2016/03/14/7119/).

Ball M. C., Farquhar G. D. (1984) – Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions – Plant Physiology 74: 1–6 – http://dx.doi.org/10.1104/pp.74.1.1 – http://www.plantphysiol.org/content/74/1/1 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/stomatal-responses-of-two-mangrove-species-to-long-term-salinity-and-humidity-conditions/)

Ball M. C., Farquhar G. D. (1984) – Photosynthetic and stomatal responses of the Grey Mangrove, Avicennia marina, to Transient Salinity Conditions – Plant Physiology 74(1): 7-11 – https://doi.org/10.1104/pp.74.1.7http://www.plantphysiol.org/content/74/1/7.short – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-responses-to-transient-salinity-conditions/)

Ballard T. (2018) – Blue and red light effects on stomatal oscillations – MSc Thesis Utah State University – https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=8511&context=etd – (On our blog : https://plantstomata.wordpress.com/2020/02/27/blue-and-red-light-effects-on-stomatal-oscillations-2/ )

Ballard T., Peak D., Mott K. (2018) – Blue and red light effects on stomatal oscillations – Functional Plant Biology 46(2): 146-151 – https://doi.org/10.1071/FP18104 – http://www.publish.csiro.au/fp/FP18104 – (On our blog : https://plantstomata.wordpress.com/2018/10/27/blue-and-red-light-effects-on-stomatal-oscillations/ )

Balmant K. M., Zhang T., Chen S. (2016) – Protein Phosphorylation and Redox Modification in Stomatal Guard Cells – Front. Physiol. 7: 26 – http://dx.doi.org/10.3389/fphys.2016.00026 – http://journal.frontiersin.org/article/10.3389/fphys.2016.00026/full – (On our blog : https://plantstomata.wordpress.com/2016/03/31/ptms-that-modify-molecular-components-in-stomata/)

Baloch M., Dunwell J., Khan N., Jatoi W., Khakhwani A., Vessar N., Gul S. (2013) – Morpho-physiological characterization of spring wheat genotypes under drought stress – International Journal of Agriculture and Biology 15: 945-950 – ISSN 1560–8530 – http://centaur.reading.ac.uk/34201/ – (On our blog : https://plantstomata.wordpress.com/2020/03/22/significant-effect-of-water-stress-on-stomata-relative-leaf-water-content-and-grain-yield-with-no-effect-on-stomatal-density/ )

Baloch M. J., Khan N. U., Jatoi W. A., Hassan G., Khakhwani A. A., Soomro Z., Veesar N. F. (2011) – Drought tolerance studies through WSSI and stomata in upland cotton – Pakistan Journal of Botany 43(5): 2479-2484 – https://www.researchgate.net/publication/288158450_Drought_tolerance_studies_through_WSSI_and_stomata_in_upland_cotton – (On our blog : https://plantstomata.wordpress.com/2022/03/10/water-stress-susceptibility-index-wssi-and-stomatal-conductance-to-determine-the-stress-tolerance-of-upland-cotton-cultivars/ )

Bange G. G. J. (1953) – On the quantitative explanation of stomatal transpiration – Acta Bot. Neerl. 2 (3): 253-297 – (On our blog : https://plantstomata.wordpress.com/2017/06/05/quantitative-explanation-of-stomatal-transpiration/)

Bannister P. (1964) – Stomatal responses of heath plants to water deficits – J. Ecol. 52: 151-158 – https://www.jstor.org/stable/2257789?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/stomatal-responses-to-water-deficits/)

Bannister P., Strong G. (1997) – Stomatal densities and frost resistances of some New Zealand Mistletoes – New Zealand Botanical Society Newsletter, 50: 11-13 –

Bao Y., Liu T., Duan L., Tong X., Ji H., Zhang L., Singh V. P. (2022)
A comparative study of three stomatal conductance models for estimating evapotranspiration in a dune ecosystem in a semi-arid region – Science of The Total Environment 802: 149937 – ISSN 0048-9697 – https://doi.org/10.1016/j.scitotenv.2021.149937
https://www.sciencedirect.com/science/article/pii/S0048969721050129 – (On our blog : https://plantstomata.wordpress.com/2022/04/20/the-ball-berry-stomatal-conductance-model-coupled-with-the-shuttleworth-wallace-sw-model-is-optimal-for-estimating-evapotranspiration-et-in-dune-ecosystems-with-sparse-vegetation/ )

Baralabai V. C., Vivekanandan M. (1996) – Foliar application of electrostatic precipitator dust on growth, stomata and leaf biochemistry in certain legume crops – Rev. Brasil. Fisiol. Veget. 8: 7–14 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.509.1318&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/09/foliar-application-of-electrostatic-precipitator-dust-on-growth-and-stomata/ )

Barbacka M. (1994) – Reconstruction of stomata in Komlopteris Barbacka and Pachypteris Brongniart and their adaptation to climate – ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI 86: 5-11 – http://publication.nhmus.hu/pdf/annHNHM/Annals_HNHM_1994_Vol_86_5.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/25/reconstruction-of-stomata-and-their-adaptation-to-climate/ )

Barber J. L., Kurt P. B., Thomas G. O., Kerstiens G., Jones K. C. (2002) – Investigation into the Importance of the Stomatal Pathway in the Exchange of PCBs between Air and Plants – Environ. Sci. Technol.  36(20): 4282-4287 – DOI:10.1021/es025623mhttps://cdn-pubs.acs.org/doi/full/10.1021/es025623m#citing – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-stomatal-effect-on-the-rate-of-exchange-of-pcbs-between-hemerocallis-leaves-and-air/ )

Barbieri G., Vallone S., Orsini F., Paradiso R., De Pascale S., Negre-Zakharov F., and A. Maggio A. (2012) – Stomatal Density and Metabolic Determinants Mediate Salt Stress Adaptation and Water Use Efficiency in Basil (Ocimum basilicum L.) – Journal of Plant Physiology 169(17): 1737-1746 – http://dx.doi.org/10.1016/j.jplph.2012.07.001 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/stomatal-density-salt-stress-adaptation-and-water-use-efficiency/)

Barbour M. M., Buckley T. N. (2007) – The stomatal response to evaporative demand persists at night in Ricinus communis plants with high nocturnal conductance – Plant, Cell and Environment 30: 711–721 – DOI: 10.1111/j.1365-3040.2007.01658.x – https://www.ncbi.nlm.nih.gov/pubmed/17470147 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-response-to-evaporative-demand-persists-at-night-in-plants-with-high-nocturnal-conductance/ )

Barbour M. M., Cernusak L. A., Whitehead D., Griffin K. L., Turnbull M. H., Tissue D. T., Farquhar G. D. (2005) – Nocturnal stomatal conductance and implications for modeling δ18O of Leaf-respired CO2 in temperate tree species – Functional Plant Biology 32: 1107-1121 – https://pdfs.semanticscholar.org/ca0a/fc8a77d69d86712f0d00fc834e51d2a20a67.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/10/significant-water-loss-through-stomata-for-all-species-at-some-time-for-some-leaves-during-the-night/ )

Barbour M. M., Fischer R. A., Sayre K. D., Farquhar G. D. (2000) – Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and yield in irrigated, field-grown wheat – Aust. J. Plant Physiol. 27: 625–637 – ISSN : 0310-7841https://www.cabdirect.org/cabdirect/abstract/20000710955 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/oxygen-isotope-ratio-of-leaf-and-grain-material-correlates-with-stomatal-conductance-and-yield/ )

Bareja B. G. (2013) – Types of Transpiration in Plants: Stomatal,
Cuticular and Lenticular – Crops Review  – http://www.cropsreview.com/types-of-transpiration.html – (On our blog : https://plantstomata.wordpress.com/2017/11/10/stomatal-cuticular-and-lenticular-transpiration/)

Barillot R., Frak E., Combes D., Durand J. L., Escobar-Gutiérez A. J. (2010) – What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration – J Exp Bot. 61(10): 2795-806 – doi: 10.1093/jxb/erq115 – https://www.ncbi.nlm.nih.gov/pubmed/20444905 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-responses-to-blue-light-could-play-a-key-role-in-photomorphogenetic-mechanisms-through-their-effect-on-transpiration/ )

Barnard D., Bauerle W. (2013) – The implications of minimum stomatal conductance on modeling water flux in forest canopies – J. Geophys. Res. Biogeosci. 118: 1322– 1333 – doi:10.1002/jgrg.20112https://agupubs.onlinelibrary.wiley.com/doi/10.1002/jgrg.20112 – (On our blog : https://plantstomata.wordpress.com/2019/10/15/the-implications-of-minimum-stomatal-conductance-on-modeling-water-flux/ )

Barnes R. W., Jordan G. J., Hill R. S., McCoull C. J. (2000) – A common boundary between distinct northern and southern morphotypes in two unrelated Tasmanian rainforest species -Australian Journal of Botany 48(4) – DOI: 10.1071/BT98044 – BT98044.pdf – BT98044.qxd https://www.researchgate.net/publication/248899503 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/encrypted-stomata-and-superficial-stomata-in-two-unrelated-tasmanian-rainforest-species/ )

Baroli I., Price G. D., Badger M. R., von Caemmerer S. (2008) – The Contribution of Photosynthesis to the Red Light Response of Stomatal Conductance – Plant Physiol. 146: 737–747 – BIOENERGETICS AND PHOTOSYNTHESIS –  DOI: https://doi.org/10.1104/pp.107.110924 – http://www.plantphysiol.org/content/146/2/737.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/the-red-light-response-of-stomatal-conductance-is-independent-of-the-concurrent-photosynthetic-rate-of-the-guard-cells/ )

Barradas V. L., Jones H. .G, Clark J. A. (1994) – Stomatal responses to changing irradiance in Phaseolus vulgaris L. – J Exp Bot 45: 931–936 – https://doi.org/10.1093/jxb/45.7.931 – https://academic.oup.com/jxb/article-abstract/45/7/931/503719 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/the-effects-of-air-temperature-leaf-air-vapour-pressure-differences-and-water-deficit-on-stomatal-responses-to-changing-irradiance/

Barradas V. L., Ramos-Vazquez A., Orozco-Segovia A. (2004) – Stomatal conductance in a tropical xerophilous shrubland at a lava substratum – Int J Biometeorol 48: 119–127 – DOI 10.1007/s00484-003-0195-xStomatal_conductance_in_a_tropical_xerop.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/stomatal-conductance-in-a-tropical-xerophilous-shrubland-at-a-lava-substratum/ )

Barragán V., Leidi E. O., Andrés Z., Rubio L., De Luca A., Fernández J. A., Cubero B., Pardo J. M. (2012) – Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis – The Plant Cell 24: 1127–1142 –https://doi.org/10.1105/tpc.111.095273 – http://www.plantcell.org/content/24/3/1127 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/tonoplast-localized-nhx-proteins-are-essential-for-active-k-uptake-at-the-tonoplast-for-turgor-regulation-and-for-stomatal-function/ )

Barral A. (2019) – Stomata feel the pressure – Nature Plants 5: 244 – DOI: 10.1038/s41477-019-0390-3https://www.nature.com/articles/s41477-019-0390-3 – (On our blog : https://plantstomata.wordpress.com/2019/03/09/stomata-feel-the-pressure/ )

Barratt G. F., Sparkes D. L., McAusland L., Murchie E. H. (2021) – Anisohydric sugar beet rapidly responds to light to optimize leaf water use efficiency utilizing numerous small stomata – AoB PLANTS 13(1), plaa067 – https://doi.org/10.1093/aobpla/plaa067, https://academic.oup.com/aobpla/article/13/1/plaa067/6015919 – (On our blog : https://plantstomata.wordpress.com/2021/07/28/sugar-beet-stomata-respond-rapidly-to-changes-in-ppfd-with-a-high-rate-and-magnitude-of-opening-under-both-non-droughted-and-droughted-conditions/ )

Barros R. S., da S.e Mota J. W., Da Matta F. M., Maestri M., (1997)
Decline of vegetative growth in Coffea arabica L. in relation to leaf temperature, water potential and stomatal conductance – Field Crops Research 54(1): 65-72 – ISSN 0378-4290 – https://doi.org/10.1016/S0378-4290(97)00045-2https://www.sciencedirect.com/science/article/abs/pii/S0378429097000452 – (On our blog : https://plantstomata.wordpress.com/2021/12/07/stomatal-conductances-were-relatively-high-and-decreased-gradually-in-parallel-with-declining-growth-rates/ )

Barrs H. D. (1971) – Cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions – Ann. Rev. Plant Physiol. 22: 223–236 – https://doi.org/10.1146/annurev.pp.22.060171.001255  – http://www.annualreviews.org/doi/abs/10.1146/annurev.pp.22.060171.001255 – (On our blog : https://plantstomata.wordpress.com/2017/12/06/cyclic-variations-in-stomatal-aperture-under-constant-environmental-conditions/)

Barrs H. D., Klepper B. (1968) – Cyclic Variations in Plant Properties under Constant Environmental Conditions – Physiologia Plantarum 21(4): 711–730 – DOI: 10.1111/j.1399-3054.1968.tb07295.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1968.tb07295.x/abstract– (On our blog : https://plantstomata.wordpress.com/2017/12/06/64517/)

Barry D. (1997) – Transpiration in barley lines with different stomata frequencies. Journal of Experimental Botany 28: 162-168 –

Bartlett M. K., Klein T., Jansen S., Choat B., Sack L. (2016) – The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought – Proceedings of the National Academy of Sciences, USA 113: 13098–13103 – doi:10.1073/pnas.1604088113
– http://www.pnas.org/content/early/2016/11/01/1604088113.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/04/plant-stomatal-hydraulic-and-wilting-responses-to-drought/)

Barton K. (2007) – Making Holes in Leaves: Promoting Cell State Transitions in Stomatal Development – The Plant Cell 19(4): 1140-1143 – http://dx.doi.org/10.1105/tpc.107.051177 – http://www.plantcell.org/content/19/4/1140.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/how-stomata-are-built/)

BASF (sponsored paper) (2018) – Take the Stress Out of Heat and Drought Stress – AGPRO May 18, 2018 – https://www.agprofessional.com/article/take-stress-out-heat-and-drought-stress – (On our blog : https://plantstomata.wordpress.com/2018/05/21/headline-amp-fungicide-and-stomata/

Bashar K. K., Tareq Md. Z., Amin Md. R., Honi U., Tahjib-Ul-Arif Md., Sadat Md. A., Hossen Q. Md. M. (2019) – Phytohormone-Mediated Stomatal Response, Escape and Quiescence Strategies in Plants under Flooding Stress – Agronomy 9(2): 43 – doi:10.3390/agronomy9020043 –https://www.mdpi.com/2073-4395/9/2/43/htm – (On our blog : https://plantstomata.wordpress.com/2019/03/12/responses-of-specific-genes-or-transcription-factors-or-reactive-oxygen-species-ros-maintain-the-equilibrium-between-stomatal-opening-and-closing/ )

Bashir L. (2022) – Stomata Density in Shade vs Sun Leaves – BIOL151: Principles of Biology II – https://info.montgomerycollege.edu/_documents/resources/writing-in-the-disciplines/layann-bashir-2021-2022.pdf – (On our blog : https://plantstomata.wordpress.com/2022/07/14/stomata-density-in-shade-vs-sun-leaves/ )

Basnayake J., Jackson P. A., Inman-Bamber N.G., Lakshmanan P. (2015) – Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity – Journal of Experimental Botany 66: 3945–3958 – https://doi.org/10.1093/jxb/erv194https://academic.oup.com/jxb/article/66/13/3945/515539 – (On our blog : https://plantstomata.wordpress.com/2020/06/23/variation-in-stomatal-conductance-and-its-genetic-correlation-with-crop-productivity/ )

Bassiouni M., Good S. P., Higgins C. W. (2017) – Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture – American Geophysical Union, Fall Meeting 2017, abstract #B13H-1840 – https://ui.adsabs.harvard.edu/abs/2017AGUFM.B13H1840B/abstract – (On our blog : https://plantstomata.wordpress.com/2022/03/07/a-novel-relation-between-plant-physiological-behavior-and-soil-water-dynamics-to-determine-the-soil-moisture-thresholds-at-which-stomata-are-open-or-closed-that-are-most-consistent-with-observed-soil/ )

Bassiouni M., Vico G. (2021) – Parsimony versus predictive and functional performance of three stomatal optimization principles in a big‐leaf framework – New Phytologist – DOI: 10.1111/nph.17392https://www.researchgate.net/publication/350945774_Parsimony_versus_predictive_and_functional_performance_of_three_stomatal_optimization_principles_in_a_big-leaf_framework – (On our blog : https://plantstomata.wordpress.com/2021/04/21/stomatal-optimization-based-on-water-use-efficiency-provided-more-information-about-ecosystem%e2%80%90scale-evapotranspiration/ )

Basu S., Ramegowda V, Kumar A., Pereira A. (2016) – Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research 2016, 5(F1000 Faculty Rev):1554 –
doi: 10.12688/f1000research.7678.1 – https://f1000research.com/articles/5-1554/v1 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/decreased-stomatal-conductance-in-response-to-drought-stress/)

Baswarsiati (1994) – Assessment on stomata and leaf trichome as resistance character in some clones of grapes toward Plasmopara viticola – J. Zuriat 5(1): 29-35 –

Bat H., Altindag F. N.,Ygit M. A., Ellialtioglu S., Comlekcioglu N. (2021) – Ploidy estimation in pepper and eggplant via stomata characteristics – Int J Agric For Life Sci 5(2): 1-18 – https://www.researchgate.net/publication/357032368_Ploidy_estimation_in_pepper_and_eggplant_via_stomata_characteristics – (On our blog : https://plantstomata.wordpress.com/2022/04/04/positive-relationships-between-stomatal-size-and-chloroplast-number-and-ploidy-level-and-negative-relationships-between-stomatal-density-and-ploidy-level/ )

Bates G.W., Rosenthal D.M., Sun J., Chattopadhyay M., Peffer E., Yang J., Ort D.R., Jones A.M. (2012) – A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose – PloS one 7, e49641 – https://doi.org/10.1371/journal.pone.0049641 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049641 – (On our blog : https://plantstomata.wordpress.com/2017/12/06/the-guard-cell-transcriptome-and-its-modulation-by-sucrose/)

Bates L. M., Hall A. E. (1981) – Stomatal closure with soil water depletion not associated with changes in bulk leaf water status – Oecologia 50: 62-65 – https://doi.org/10.1007/BF00378794 – https://link.springer.com/article/10.1007%2FBF00378794#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/25/stomatal-closure-which-results-from-soil-water-depletion-is-mediated-by-changes-in-root-water-status/

Batista Florindo J., Landini G., Almeida Filho H., Martinez Bruno O. (2015) – Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia zebrina – Journal of Physics: Conference Series 633(1): article id. 012113 – 10.1088/1742-6596/633/1/012113 – http://adsabs.harvard.edu/abs/2015JPhCS.633a2113B – (On our blog : https://plantstomata.wordpress.com/2017/07/26/a-method-for-the-analysis-of-the-stomata-distribution-patterns/)

Batke S. P, Yiotis C., Elliott-Kingston C., Holohan A., McElwain J. (2020) – Plant responses to decadal scale increments in atmospheric CO2 concentration: comparing two stomatal conductance sampling methods – Planta. 251(2): 52 – DOI: 10.1007/s00425-020-03343-z– PMID: 31950281 – https://pubmed.ncbi.nlm.nih.gov/31950281/– (On our blog : https://plantstomata.wordpress.com/2021/02/27/a-non-linear-decrease-in-gs-and-a-shifting-diurnal-stomatal-behavior-under-elevated-co2-could-affect-the-long-term-daily-water-and-carbon-budget-and-therefore-alter-soil-plant-atmospheric-processes/ )

Batool S. , Uslu V. V., Rajab H., Ahmad N., Waadt R., Geiger D., Maalgoli M., Xiang C.-B., Hedrich R., Rennenberg H., Herschbach C;, Hell R., Wirtz M. (2018) – Sulfate is Incorporated into Cysteine to Trigger ABA Production and Stomatal Closure – https://doi.org/10.1105/tpc.18.00612http://www.plantcell.org/content/30/12/2973 – (On our blog : https://plantstomata.wordpress.com/2019/01/31/sulfate-is-incorporated-into-cysteine-to-trigger-aba-production-and-stomatal-closure/ )

Batool S. , Uslu V. V., Rajab H., Herschbach C., Rennenberg H., Geiger D., Hedrich R., Hell R., Wirtz M. (2017) – Sulfate is an important trigger of abscisic acid biosynthesis and stomata closure – 25th International Symposium of the International Scientific Centre of Fertilizers Significance of Sulfur in High-Input Cropping Systems Groningen (The Netherlands), September 5-8, 2017 – https://ojs.openagrar.de/index.php/BerichteJKI/article/viewFile/8423/7746 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/sulfate-aba-biosynthesis-and-stomata-closure/)

Batos B., Bobinac M., Vilotić D. (2006) – Stomatal Variability of Common Oak (Quercus robur L.) – Trees with Summer Flowering. International Scientific 16 Conference in Occasion of 60 Year of Operation of Institute of Forestry, Belgrade, Serbia: Sustainable Use of Forest Ecosystems, The Challenge of the 21st Century, Proceedings. 219-224

Batos B., Vilotic D., Orlovic S., Miljkovic D. (2010) – Inter and Intra-Population Variation of Leaf Stomatal Traits of Quercus robur L. in Northern Serbia – Archives of Biological Sciences 62: 1125-1136 – http://dx.doi.org/10.2298/ABS1004125B – (On our blog : https://plantstomata.wordpress.com/2015/09/07/variation-of-stomatal-characteristics/)

Batthula V. (2020) – How far does stomatal activator and inhibitor signaling work in the plant epidermis? (bioRxiv) – May 22, 2020/in Plant Science Research Weekly – https://plantae.org/how-far-does-stomatal-activator-and-inhibitor-signaling-work-in-the-plant-epidermis-biorxiv/ – (On our blog : https://plantstomata.wordpress.com/2022/03/22/the-range-of-activator-inhibitor-signaling-in-stomatal-development/ )

Bauer H., Ache P., Lautner S., Fromm J., Hartung W., Al-Rasheid K. A. S., Sonnewald S., Sonnewald U., Kneitz S., Lachmann N., Mendel R. R., Bittner F., Hetherington A. M., Hedrich R. (2013) – The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis – Curr. Biol. 23(1): 53-57 – doi: 10.1016/j.cub.2012.11.022 – (On our blog : https://plantstomata.wordpress.com/2015/09/07/guard-cells-operate-the-entire-aba-biosynthesis-pathway/).

Bauer H., Ache P., Wohlfart F., Al-Rasheid K. A. S., Sonnewald S., Sonnewald U., Kneitz S., Hetherington A. M., Hedrich R. (2013) – How do stomata sense reductions in atmospheric relative humidity? – Mol Plant 6(5): 1703–1706 – DOI: 10.1093/mp/sst055 – https://www.infona.pl/resource/bwmeta1.element.elsevier-a8b9e7a5-c164-384c-9874-839ea980a69f – (On our blog : https://plantstomata.wordpress.com/2017/10/10/how-do-stomata-sense-reductions-in-atmospheric-relative-humidity/)

Bauerle W. L., Daniels A. B., Barnard D. M. (2014) – Carbon and water flux responses to physiology by environment interactions: a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters – Climate Dynamics 42(9-10): 2539-2554 –

Bauly J. M., Sealy I. M., Macdonald H., Brearley J., Dröge S., Hillmer S., Robinson D. G., Venis M. A., Blatt M. R., Lazarus C. M., Napier R. M. (2000) – Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin – Plant Physiol. 124: 1229-1238 – PMCID: PMC59221 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59221/ – (On our blog : https://plantstomata.wordpress.com/2017/12/07/overexpression-of-auxin-binding-protein-enhances-the-sensitivity-of-guard-cells-to-auxin/)

Bayramzadeh, V. (2011) – Stomatal Characteristics of Fagus orientalis Lipsky in Geographically Separated Locations in the Caspian Forests of Northern Iran – Research Journal of Environmental Sciences 5: 836-840 – http://dx.doi.org/10.3923/rjes.2011.836.840 – (On our blog : https://plantstomata.wordpress.com/2015/09/07/variations-in-stomatal-characteristics-stomatal-density-and-stomatal-pore-length-in-fagus/)

BBC (xxxx) – Video clip – Leaf structure, stomata and the absorption of carbon dioxide – Science & Plants for Schools – http://www.saps.org.uk/secondary/teaching-resources/799-video-clip-leaf-structure – (On our blog : https://plantstomata.wordpress.com/2019/07/25/stomata-and-the-absorption-of-co2/ )

Beadle C. L., Jarvis P. G., Talbot H., Neilson R. E. (1985) – Stomatal conductance and photosynthesis in a mature Scots pine forest. II. Dependence on environmental variables of single shoots – Journal of Applied Ecology 22(2): 573 – DOI: 10.2307/2403186 – https://www.researchgate.net/publication/271758336_Stomatal_Conductance_and_Photosynthesis_in_a_Mature_Scots_Pine_Forest_II_Dependence_on_Environmental_Variables_of_Single_Shoots – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-conductance-and-photosynthesis-of-current-year-shoots-of-pinus-sylvestris/

Beadle C. L., Ludlow M. M., Honeysett J. L. (1985) – CHAPTER 5 – WATER RELATIONS – Techniques in Bioproductivity and Photosynthesis (Second Edition) – Pergamon International Library of Science, Technology, Engineering and Social Studies: 50-61 – https://doi.org/10.1016/B978-0-08-031999-5.50015-7https://www.sciencedirect.com/science/article/pii/B9780080319995500157 – (On our blog : https://plantstomata.wordpress.com/2021/08/18/stomata-play-a-pivotal-role-in-controlling-the-balance-between-water-loss-and-carbon-gain/ )

Beadle C. L., Neilson R. E., Talbot H., Jarvis P. G. (1985) – Stomatal conductance and photosynthesis in a mature Scots pine forest. I. Diurnal, seasonal and spatial variation in shoots – Journal of Applied Ecology 22: 557–571 – DOI: 10.2307/2403185 – https://www.jstor.org/stable/2403185?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/26/stomatal-conductance-and-photosynthesis-in-a-mature-scots-pine-forest/

Beadle C. L., Sands R. (2004) – Stomatal conductance – in Encyclopedia of Forest Sciences, (Evans J., Youngquist J.) – eBook ISBN: 9780080548012 – Academic Press – https://www.sciencedirect.com/topics/earth-and-planetary-sciences/stomata -(On our blog : https://plantstomata.wordpress.com/2021/08/16/stomatal-conductance-of-trees-is-often-observed-to-be-quite-sensitive-to-vapor-pressure-deficit/ )

Beadle C. L., Turner N. C., Jarvis P. (1978) – Critical Water Potential for Stomatal Closure in Sitka Spruce – DOI:10.1111/J.1399-3054.1978.TB01585.Xhttps://www.semanticscholar.org/paper/Critical-Water-Potential-for-Stomatal-Closure-in-Beadle-Turner/68b04d29d258f4a8c6048602c9e3b9cbe5e42896 – (On our blog : https://plantstomata.wordpress.com/2021/09/25/bulk-leaf-turgor-is-not-a-good-index-of-the-turbor-relations-of-the-stomatal-guard-cells/ )

Beakbane A. B., Majumder P.K. (1975) – A Relationship Between Stomatal Density and Growth Potential in Apple Rootstocks – Journ. Horticult. Sci. 50(4): – https://doi.org/10.1080/00221589.1975.11514637https://www.tandfonline.com/doi/abs/10.1080/00221589.1975.11514637 – (On our blog : https://plantstomata.wordpress.com/2021/10/04/stomatal-density-and-growth-potential-in-apple-rootstocks/ )

Beard R.A., Anderson D.J., Bufford J.L., Tallman G., (2012) – Heat reduces nitric oxide production required for auxin-mediated gene expression and fate determination in tree tobacco guard cell protoplasts – Plant Physiology 159(4): 1608-1623 – DOI: 10.2307/23274742https://eurekamag.com/research/036/527/036527143.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/stomatal-guard-cell-protoplasts-and-heat/ )

Beardsel M. F., Cohen D. (1975) – Relationships between Leaf Water Status, Abscisic Acid Levels, and Stomatal Resistance in Maize and Sorghum – Plant Physiol. 56: 207–212 – http://www.plantphysiol.org/content/56/2/207 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/drought-aba-and-stomatal-resistance/)

Beasley E. W. (1942) – Effects of some chemically inert dusts upon the transpiration rate of yellow coleus plants – Plant Physiol. 17 – https://doi.org/10.1104/pp.17.1.101https://www.osti.gov/biblio/6446379-effects-some-chemically-inert-dusts-upon-transpiration-rate-yellow-coleus-plants – (On our blog : https://plantstomata.wordpress.com/2022/01/10/for-dusts-to-cause-an-increase-in-water-loss-the-dust-particles-must-be-small-and-the-dust-must-be-applied-to-the-stomata-bearing-side-of-the-leaf-when-the-stomata-are-open/ )

Beaulieu J. M., Leitch I. J., Patel S., Pendharkar A., Knight C. A. (2008) – Genome size is a strong predictor of cell size and stomatal density in angiosperms. – New Phytologist 179: 975–986 – doi: 10.1111/j.1469-8137.2008.02528.x. – Epub 2008 Jun 28 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/genome-size-cell-size-and-stomatal-density-2/)

Beck S. L., Dunlop R. W., Fossey A. (2003) – Evaluation of induced polyploidy in Acacia mearnsii through stomatal counts and guard cell measurements – South African Journal of Botany 69(4): 563-567 – https://doi.org/10.1016/S0254-6299(15)30295-7https://www.sciencedirect.com/science/article/pii/S0254629915302957 – (On our blog : https://plantstomata.wordpress.com/2020/05/23/stomatal-counts-guard-cell-measurements-and-induced-polyploidy/ )

Beck S. L., Dunlop R. W., Fossey A. (2003) – Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). – Botanical Journal of the Linnean Society 141: 177-181 – https://doi.org/10.1046/j.1095-8339.2003.00132.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1095-8339.2003.00132.x – (On our blog : https://plantstomata.wordpress.com/2020/12/19/stomatal-length-and-stomatal-frequency-are-rapid-indirect-methods-to-identify-ploidy-level-in-black-wattle/ )

Beck S. L., Fossey A., Mathura S. (2003) – Ploidy determination of black wattle (Acacia mearnsii) using stomatal chloroplast counts – Southern African Forestry Journal 198(1): 79-82 – https://doi.org/10.1080/20702620.2003.10431738https://www.tandfonline.com/doi/abs/10.1080/20702620.2003.10431738 – (On our blog : https://plantstomata.wordpress.com/2021/03/28/stomatal-chloroplast-number-and-arrangement-are-an-accurate-indirect-technique-to-distinguish-between-diploid-and-tetraploid-black-wattle/ )

Beck S. L., Visser G., Dunlop R. W. (2005) – A comparison of direct (flow cytometry) and indirect (stomatal guard cell lengths and chloroplast numbers) techniques as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild) – South African J Bot 71: 354-358 – https://doi.org/10.1016/S0254-6299(15)30109-5https://www.sciencedirect.com/science/article/pii/S0254629915301095 – (On our blog : https://plantstomata.wordpress.com/2021/03/28/stomatal-length-measurements-counts-of-chloroplast-numbers-within-the-stomatal-guard-cells-and-flow-cytometry-were-used-to-confirm-the-ploidy/ )

Becker D., Zeilinger C., Lohse G., Depta H., Hedrich R. (1993) – Identification and biochemical characterization of the plasma‐membrane proton ATPase in guard cells of Vicia faba L. – Planta 190: 44-50 – https://doi.org/10.1007/BF00195673 – https://link.springer.com/article/10.1007/BF00195673 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/characterization-of-the-plasma%e2%80%90membrane-proton-atpase-in-stomata/ )

Beckman P. M., Payne G. A. (1982) – Extrenal growth, penetration, and devlopment of Cercopsora zeae-maydis in corn leaves – Phytopathology 72(7): 810-815 – https://www.apsnet.org/publications/phytopathology/backissues/documents/1982Articles/Phyto72n07_810.PDF – (On our blog : https://plantstomata.wordpress.com/2022/02/21/stomata-and-penetration-of-cercospora-in-corn-leaves/ )

Becraft P. W. (1999) – Development of the leaf epidermis – Current Topics in Developmental Biology 451-40  – https://www.ncbi.nlm.nih.gov/pubmed/10332602?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2017/01/07/development-of-the-epidermis/)

Beeckman H., Gallin E. , Coppejans E. (1989) – Indirect gradient analysis of the Mangal formation of Gazi bay (Kenya) – Silva Gandavensis 54: – doi: https://doi.org/10.21825/sg.v54i0.909https://openjournals.ugent.be/silva/article/id/74757/ – (On our blog : https://plantstomata.wordpress.com/2022/01/29/stomatal-density-and-mangrove-zonation/ )

Beerling D. J. (1993) – Changes in the stomatal density of Betula nana leaves in response to increases in atmospheric carbon dioxide concentrations since the last glacial. – Special Papers in Palaeontology 49: 181-187 –

Beerling D. J. (1998) – Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L. trees exposed in situ for three years to elevated CO2 and temperature – Acta Oecologica 18: 697–712 – https://doi.org/10.1016/S1146-609X(97)80052-5 – http://www.sciencedirect.com/science/article/pii/S1146609X97800525 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/the-response-of-time-integrated-water-use-efficiency-uwe-and-stomatal-density-to-co2-enrichment-and-climate-change/)

Beerling D. J. (1999) –  Stomatal density and index: theory and application.  In: JONES, T. P. & ROWE, N. P. (eds.) Fossil Plants and Spores: modern techniques – Geological Society, London 251-256 –

Beerling D. J. (2015) – Gas valves, forests and global change: a commentary on Jarvis (1976) ‘The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field’ – Philosoph. Transactions B,R Soc Lond B Biol Sci., 370 Issue: 1666 – pii: 20140311 – doi: 10.1098/rstb.2014.0311 – https://www.ncbi.nlm.nih.gov/pubmed/25750234 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/microscopic-turgor-operated-gas-valves-on-leaf-surfaces-stomata-facilitate-gas-exchange-between-the-plant-and-the-atmosphere/)

Beerling D. J., Birks H. H., Woodward F. I. (1995) – Rapid late‐glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves – J. Quaternary Sci. – https://doi.org/10.1002/jqs.3390100407 – https://onlinelibrary.wiley.com/doi/full/10.1002/jqs.3390100407 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/using-the-relationship-between-leaf-stomatal-density-and-atmospheric-co2-concentration/ )

Beerling D. J., Chaloner W. (1992) – Stomatal density as an indicator of atmospheric CO2 concentration – The Holocene 2: 71-78 – DOI: 10.1177/095968369200200109http://journals.sagepub.com/doi/abs/10.1177/095968369200200109 – (On our blog : https://plantstomata.wordpress.com/2017/09/14/stomatal-density-as-an-indicator-of-atmospheric-co2-concentration/)

Beerling D. J., Chaloner W. (1993) – The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur lammas leaves – Annals of Botany 71: 231–235 – doi: 10.1006/anbo.1993.1029 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/co2-temperature-change-and-stomatal-density/)

Beerling D. J., Chaloner W. (1993) – Evolutionary responses of stomatal density to global CO2 change – Biological Journal of the Linnean Society 48(4):  – https://doi.org/10.1111/j.1095-8312.1993.tb02096.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1095-8312.1993.tb02096.x– (On our blog : https://plantstomata.wordpress.com/2018/03/30/evolutionary-responses-of-stomatal-density-to-global-co2-change/ )

Beerling D. J., Chaloner W. (1993) – Stomatal density responses of Egyptian Olea europaea L. leaves to COchange since 1327 BC – Ann Bot 71: 431–435 – doi: 10.1006/anbo.1993.1056 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/responses-of-stomatal-density-to-co2-change/)

Beerling D. J., Chaloner W. (1994) – Atmospheric CO2 changes since the last glacial maximum-evidence from the stomata1 density record of fossil leaves – Review of Palaeobotany and Palynology 81: 11-17 – https://doi.org/10.1016/0034-6667(94)90123-6 – https://www.sciencedirect.com/science/article/pii/0034666794901236 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/to-combine-the-use-of-fossil-leaves-with-the-long-term-ice-core-record-of-co2-changes/ )

Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A. and Tooley, M.J. (1993) – Stomatal Density Responds to the Glacial Cycle of Environmental Change. – Proceedings of the Royal Society B: Biological Sciences 251: 133-138
http://dx.doi.org/10.1098/rspb.1993.0019 – (On our blog : https://plantstomata.wordpress.com/2015/09/07/stomatal-density-and-environmental-change/).

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J., Woodward F. (1992) – Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and post-glacial time. – Philos. Trans. R. Soc. London B 251(1331): 133-138 – DOI: 10.1098/rspb.1993.0019 – https://www.jstor.org/stable/55890?seq=1#page_scan_tab_contents – (On our blog :  https://wordpress.com/post/plantstomata.wordpress.com/54552

Beerling D. J., Franks P. J. (2009) – Evolution of stomatal function in ‘lower’ land plants. New Phytologist 183(4): 921-925 – DOI: 10.1111/j.1469-8137.2009.02973.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.02973.x/full – (On our blog : https://plantstomata.wordpress.com/2016/12/29/stomatal-function-in-lower-land-plants/)

Beerling D. J., Kelly C. K. (1996) – Evolutionary comparative analyses of the relationship between leaf structure and function – New Phytol. 134: 35-51 – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1996.tb01144.x – (On our blog : https://plantstomata.wordpress.com/2018/12/21/no-evidence-that-the-stomatal-densities-on-upper-and-lower-leaf-surfaces-are-closely-regulated/ )

Beerling D. J., Kelly C. K. (1997) – Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data –  American Journal of Botany 84(11): 1572–1583 – https://onlinelibrary.wiley.com/doi/pdf/10.2307/2446619 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/future-changes-in-stomatal-density-as-a-possible-result-of-anthropogenically-related-co2-increases-may-be-possible/ )

Beerling D. J., McElwain J. C., Osborne C. P. (1998) – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – Journal of Experimental Botany 49(326): 1603–1607 – http://jxb.oxfordjournals.org/content/49/326/1603.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/stomatal-responses-to-changes-in-atmospheric-co2-concentrations/:

Beerling D. J., Woodward F. I. (1995) – Stomatal responses of variegated leaves to CO2 enrichment – Annals of Botany 75: 507–511 – https://doi.org/10.1006/anbo.1995.1052 – https://www.sciencedirect.com/science/article/pii/S0305736485710529 – (On our blog : https://plantstomata.wordpress.com/2017/12/07/the-magnitude-of-stomatal-density-and-index-responses-to-co2-concentrations/)

Beerling D. J., Woodward F. I. (1996) – Stomatal density responses to global environment change -In: Stanhill G. (eds) – Advances in Bioclimatology 4: 171-221 – Springer, Berlin, Heidelberg, – https://link.springer.com/chapter/10.1007/978-3-642-61132-2_4 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/stomatal-density-responses-to-global-environment-change/)

Beguerisse-Dıaz M., Hernández-Gómez M. C., Lizzul A. M., Barahona M., Desikan R. (2012) – Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells – BMC Syst Biol. 6: 146 – pmid:23176679 – https://doi.org/10.1186/1752-0509-6-146https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-146#citeas – (On our blog : https://plantstomata.wordpress.com/2020/12/10/a-distinct-role-for-two-antioxidant-mechanisms-during-stomatal-closure/ )

Behboudian M. H. (1977) – Water relations of cucumber, tomato and sweet pepper – PhD Thesis Wageningen – https://library.wur.nl/WebQuery/wurpubs/fulltext/198195https://library.wur.nl/WebQuery/wurpubs/71029 – (On our blog : https://plantstomata.wordpress.com/2021/09/19/photosynthesis-also-decreased-through-both-stomatal-closure-and-a-decrease-in-the-co2-gradient/ )

Beis A., Patakas A. (2010) – Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought – Functional Plant Biology 37: 139–146 – https://doi.org/10.1071/FP09034http://www.publish.csiro.au/fp/FP09034 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/differences-in-stomatal-responses-between-two-grapevine-varieties-subjected-to-drought/ )

Belhadj S., Derridj A., Moriana A., Gijon M. D. C., Mevy J. P., Gauquelin T. (2011) – Comparative Analysis of Stomatal Characters in Eight Wild Atlas Pistachio Populations (Pistacia atlantica Desf.; Anacardiaceae). – International Research Journal Plant Science 2:  60-69 – https://www.academia.edu/4694701/Comparative_analysis_of_stomatal_characters_in_eight_wild_atlas_pistachio_populations – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66545 )

Belin C., de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A., Giraudat J., Barbier-Brygoo H., Thomine S. (2006) – Identification of features regulating OST1 kinase activity and OST1 function in guard cells. – Plant Physiol 141: 1316–1327 –  http://dx.doi.org/10.1104/pp.106.079327 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/ost1-kinase-activity-and-ost1-function-in-stomata/)

Belin C., Thomine S., Schroeder J. I. (2010) – Water balance and the regulation of stomatal movements – In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants. Springer, The Netherlands, 283–305 – https://doi.org/10.1007/978-90-481-3112-9_14https://link.springer.com/chapter/10.1007/978-90-481-3112-9_14#citeas – (On our blog : https://plantstomata.wordpress.com/2020/07/06/water-balance-and-the-regulation-of-stomatal-movements/ )

Bell C. J. A. (1982) – Model of stomatal control – Photosynthetica 16: 486–495 –

Bellasio C., Quirk J., Buckley T. N., Beerling D. J. (2017) – A dynamic hydro-mechanical and biochemical model of stomatal conductance for C4 photosynthesis – Plant Physiology  – DOI: 10.1104/pp.17.00666 – https://www.researchgate.net/publication/318721627_A_dynamic_hydro-mechanical_and_biochemical_model_of_stomatal_conductance_for_C4_photosynthesis?discoverMore=1 – (On our blog : https://plantstomata.wordpress.com/2017/08/07/a-model-of-stomatal-conductance-for-c4-photosynthesis/)

Bellasio C., Quirk J., Buckley T. N., Beerling D. J. (2017) – A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C4 Photosynthesis – Plant Physiol. 175(1): 104-119 –  https://doi.org/10.1104/pp.17.00666http://www.plantphysiol.org/content/175/1/104 – (On our blog : https://plantstomata.wordpress.com/2019/05/15/a-dynamic-hydro-mechanical-and-biochemical-model-of-stomatal-conductance-for-c4-photosynthesis/ )

Bello Gutierrez M. A., Hawkins J. A., Rudall P. J. (2008) –Floral Morphology and Development in Quillajaceae and Surianaceae (Fabales), the Species-poor Relatives of Leguminosae and Polygalaceae – Ann. Bot. 101(9): 1433, 1491-1505 – DOI: 10.1093/aob/mcn073https://www.researchgate.net/publication/5356515_Floral_Morphology_and_Development_in_Quillajaceae_and_Surianaceae_Fabales_the_Species-poor_Relatives_of_Leguminosae_and_Polygalaceae – (On our blog : https://plantstomata.wordpress.com/2019/01/29/stomata-in-quillajaceae-and-surianaceae-fabales/ )

Ben-Asher J., Garcia y Garcia A., Flitcroft I., Hoogenboom G. (2013) – Effect of atmospheric water vapor on photosynthesis, transpiration and canopy conductance: A case study in corn – Plant Soil Environ. 59(12): 549–555 – https://www.agriculturejournals.cz/publicFiles/107155.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/26/effect-of-atmospheric-water-vapor-on-photosynthesis-and-stomata/ )

Ben-Asher J., Tsuyuki I., Bravdo B. A., Sagih M. (2006) – Irrigation of grapevines with saline water. I. Leaf area index, stomatal conductance, transpiration and photosynthesis – Agricultural Water Management 83: 13-21 – DOI 10.1016/j.agwat.2006.01.002 – http://www.sciencedirect.com/science/article/pii/S0378377406000047 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64539)

Benešová M., Holá D., Fischer L., Jedelský P. L., Hnilička F., Wilhelmová N., Rothová O., Kočová M., Procházková D., Honnerová J., Fridrichová L., Hniličková H. (2012) – The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration? – PLoS ONE 7(6): e38017 – https://doi.org/10.1371/journal.pone.0038017https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038017 – (On our blog : https://plantstomata.wordpress.com/2020/03/14/early-stomatal-closure-as-a-cause-of-lower-tolerance-to-short-term-dehydration/ )

Benlloch-Gonzalez M., Arquero O., Fournier J. M., Barranco D., Benlloch M. (2008) – K+ starvation inhibits water-stress-induced stomatal closure – Journal of Plant Physiology 165(6): 623-30 – DOI: 10.1016/j.jplph.2007.05.010https://www.researchgate.net/publication/6117592_K_starvation_inhibits_water-stress-induced_stomatal_closure – (On our blog : https://plantstomata.wordpress.com/2019/03/28/inhibition-of-the-stomatal-closure-mechanism-produced-by-moderate-potassium-starvation-is-a-widespread-plant-physiological-disorder/ )

Bennett J. M., Sinclair T. R., Muchow R. C., Costello S. R. (1987) – Dependence of Stomatal Conductance on leaf Water Potential, Turgor Potential, and Relative Water Content in Field-Grown Soybean and Maize – Crop Sci. 27: 984-999 – doi:10.2135/cropsci1987.0011183X002700050033xhttps://dl.sciencesocieties.org/publications/citation-manager?action=prev&program=zt&ids[]=cs/27/5/CS0270050984 – (On our blog : https://plantstomata.wordpress.com/2019/03/27/dependence-of-stomatal-conductance-on-leaf-water-potential-turgor-potential-and-relative-water-content/ )

Bennett K. J., Rook D. A. (1978) – Stomatal and mesophyll resistances in two clones of Pinus radiana D. Don known to differ in transpiration and survival rate – Aust. J. PLant Physiol. 5: 231-238 –

Bergamaschi H., Vieira H. J., Angelocci L. R. et al. (1991) – Efeito de variaveis micrometeorologicas e disponobilidade hidrica no solo resistencia estomatica a difasao gasoso em feijoeiro – Turrialba, San Jose 41(4): 445-451 –

Berbigier P., Bonnefond J. M., Loustau D., Ferreira M. I., David J. S., Pereira J. S. (1996) – Transpiration of a 64-year-old maritimepine stand in Portugal. 2. Evapotranspiration and canopystomatal conductance measured by an eddy covariance technique – Oecologia 107: 43–52 –

Berger D., Altmann T. (2000) – A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana – Genes & Dev 14: 1119–1131 – DOI: 10.1101/gad.14.9.1119 – http://genesdev.cshlp.org/content/14/9/1119.full.html – (On our blog : https://plantstomata.wordpress.com/2016/05/07/the-sdd1-gene-and-stomata/)

Berger F., Linstead P., Dolan L., Haseloff J. (1998) – Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermal patterning – Dev. Biol. 194: 226-234 – https://doi.org/10.1006/dbio.1997.8836 – https://www.infona.pl/resource/bwmeta1.element.elsevier-c187e580-b09f-387b-a5fb-b8534dbf46f9 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/stomata-patterning-on-the-hypocotyl/)

Bergmann Lab – Introduction to stomatal development – http://web.stanford.edu/group/bergmann/cgi-bin/bergmannlab/research – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-development-3/)

Bergmann D. C. (2003) – Integrating signals in stomatal development.- Curr. Opin. Plant Biol. 7: 1-7 – PMID: 14732438 – https://doi.org/10.1016/j.pbi.2003.10.001 – https://www.sciencedirect.com/science/article/pii/S1369526603001304 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/how-the-signals-that-regulate-stomatal-development-are-integrated/)

Bergmann D. C. (2004) – Integrating signals in stomatal development – Curr. Opin. Plant Biol. 7: 26–32 –  https://doi.org/10.1016/j.pbi.2003.10.001https://www.sciencedirect.com/science/article/abs/pii/S1369526603001304?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2016/03/28/need-for-models-that-explain-how-the-signals-that-regulate-stomatal-development/)

Bergmann D. C. (2005) – Stomatal patterning: how do cells choose their fate? – Biologist 52(3): 138-143 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.7879&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/27/how-do-we-know-whether-plants-have-an-optimal-density-of-stomata/)

Bergmann D. C. (2006) – Stomatal development: from neighbourly to global communication – Current Opinion in Plant Biol.  9(5): 478-483 – https://doi.org/10.1016/j.pbi.2006.07.001 – PMID: 16890476  – – https://www.sciencedirect.com/science/article/pii/S1369526606001099 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/from-neighbourly-to-global-communication-in-stomatal-development/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. I. Key issues in plant development – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-1.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/key-issues-in-plant-development-stomata/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. II: Stomata as a model for stem cells – https://www.ibiology.org/plant-biology/stomata/- https://www.ibiology.org/ibioseminars/dominique-bergmann-part-2.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-as-a-model-for-stem-cells/)

Bergmann D. C. (2015) – Dominique Bergmann (Stanford U / HHMI) 3: Stomata and global climate cycles – https://www.youtube.com/watch?v=eD2J3PBoERI – (On our blog : https://plantstomata.wordpress.com/2021/11/14/climate-change-and-stomata/ )

Bergmann D. C. (2016) – Feeding the world by rewiring plant ‘mouths’ – CARNEGIE INSTITUTION FOR SCIENCE – https://www.eurekalert.org/news-releases/502015 – (On our blog : https://plantstomata.wordpress.com/2022/07/04/systems-regulating-the-development-of-stomata-in-grasses-could-be-harnessed-to-improve-plant-efficiency-and-agricultural-yield/ )

Bergmann D. C. (2017) – Bergmann Lab – http://web.stanford.edu/group/bergmann/cgi-bin/bergmannlab/publications – (On our blog : https://plantstomata.wordpress.com/2017/11/01/bergmann-lab-publications/)

Bergmann D. C., Abrash E., Davies K., Liu T., MacAlister C., Matos J., Ohashi-Ito K. (2012) – Here for the long haul: Organizing principles and innovations in stomatal development – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/organizing-principles-and-innovations-in-stomatal-development/ )

Bergmann D. C., Clare D., Samuels L., Kiss J. Z. (2017) – A Celebration of Fred David Sack – Plant Physiology 174(2): – https://doi.org/10.1104/pp.16.01832 – http://www.plantphysiol.org/content/174/2/470 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/tribute-to-f-d-sack-in-special-focus-issue-on-stomata/)

Bergmann D. C., Lukowitz W., Somerville C. R. (2004) – Stomatal development and pattern controlled by a MAPKK kinase – Science 304: 1494–1497 – 10.1126/science.1096014 – (On our blog : https://plantstomata.wordpress.com/2016/05/08/mapkk-kinase-and-stomata-2/)

Bergmann D. C., Sack F. D. (2007) – Stomatal development – Annual review of plant biology 58: 163-181 – DOI:10.1146/annurev.arplant.58.032806.104023  – http://dx.doi.org/10.1146/annurev.arplant.58.032806.104023 – (On our blog : https://plantstomata.wordpress.com/2015/09/07/mechanisms-and-genes-underlying-stomatal-development-3/)

Bergonci J. I., Pereira P. G. (2002) – Comportamento do potencial da água na folha e da condutância estomática do milho em função da fração de água disponível no solo –  Leaf water potential and stomatal conductance of maize as a function of the available soil water fraction – Rev. Bras. Agromet. 10: 229-235 – ISSN 0104-1347 – http://www.sbagro.org/files/biblioteca/1333.pdf – (On our blog : https://plantstomata.wordpress.com/2021/01/06/leaf-water-potential-and-stomatal-conductance-of-maize-as-a-function-of-the-available-soil-water-fraction/ )

Beguerisse-Dıaz M., Hernández-Gómez M., Lizzul A., Barahona M., Desikan R. (2012) – Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells – BMC Syst Biol 6: 146 – https://doi.org/10.1186/1752-0509-6-146https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-146 – (On our blog : https://plantstomata.wordpress.com/2022/09/18/a-distinct-role-for-two-antioxidant-mechanisms-during-stomatal-closure-2/ )

Berkelhammer M., Alsip B., Matamala R., Cook D., Whelan M. E., Joo E., Bernacchi C., Miller J., Meyers T. (2020) – Seasonal Evolution of Canopy Stomatal Conductance for a Prairie and Maize Field in the Midwestern United States from Continuous Carbonyl Sulfide Fluxes – Geophys. Res. Lett. 47: e2019GL085652 – https://doi.org/10.1029/2019GL085652https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL085652 – (On our blog : https://plantstomata.wordpress.com/2022/04/19/seasonal-evolution-of-canopy-stomatal-conductance/ )

Bernacchi C. J., Kimball B. A., Quarles D. R., Long S. P., Ort D. R. (2007) – Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration -Plant Physiol. 143: 134–144 – PMID: 17114275 – PMCID: PMC1761983 – DOI: 10.1104/pp.106.089557https://pubmed.ncbi.nlm.nih.gov/17114275/ – (On our blog : https://plantstomata.wordpress.com/2022/04/08/decreases-in-stomatal-conductance-of-soybean-under-open-air-elevation-of-co2/ )

Bernacchi C. J., Leaky A. D. B., Heady L. E., Morgan P. B., Dohleman F. G., Mcgrath J. M., Gillespie K. M., Wittig V. E., Rogers A., Long S. P., Ort D. R. (2006) – Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions – Plant Cell Environ. 29: 2077–2090 – DOI: 10.1111/j.1365-3040.2006.01581.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01581.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/09/variation-in-photosynthesis-and-stomatal-conductance/)

Bernacka‐Wojcik I., Huerta M., Tybrandt K., Karady M., Mulla M. Y., Poxson D. J., Gabrielsson E. O., Ljung K., Simon D. T., Berggren M., Stavrinidou E. (2019) – Implantable Bioelectronics: Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant – Small 15(43) – https://doi.org/10.1002/smll.201970233https://doi.org/10.1002/smll.201902189https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201970233?af=R – (On our blog : https://plantstomata.wordpress.com/2019/11/28/implantable-organic-electronic-ion-pump-enables-aba-hormone-delivery-for-control-of-stomata/ )

Berry J. (2017) – How improved valves let grasses “breathe,” cope with climate change – https://carnegiescience.edu/news/how-improved-valves-let-grasses-%E2%80%9Cbreathe%E2%80%9D-cope-climate-change – (On our blog https://plantstomata.wordpress.com/2017/10/29/grass-stomata/)

Berry J.A., Beerling D.J., Franks P.J. (2010) – Stomata: key players in the earth system, past and present – Curr. Opin. Plant Biol. 13: 232–239 – http://dx.doi.org/10.1016/j.pbi.2010.04.013 – – (On our blog : https://plantstomata.wordpress.com/2016/11/03/26795/)

Berryman C. A., Eamus D., Duff G. A. (1994) – Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. – Journal of Experimental Botany 45, 539–546 – https://doi.org/10.1093/jxb/45.5.539 – https://academic.oup.com/jxb/article-abstract/45/5/539/434778?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-responses-to-a-range-of-variables/)

Bertolino L. T., Caine R. S., Gray J. E. (2019) – Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World – Front. Plant Sci. – https://doi.org/10.3389/fpls.2019.00225 -https://www.frontiersin.org/articles/10.3389/fpls.2019.00225/full – (On our blog : https://plantstomata.wordpress.com/2019/03/11/how-stomatal-density-and-morphology-are-involved-in-regulating-water-use-efficiency/ )

Bertoni G. (2009) – Integration of signaling pathways in stomatal development. – Plant Cell 21: 2542 – https://doi.org/10.1105/tpc.109.210910 – http://www.plantcell.org/content/21/9/2542 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/signaling-pathways-in-stomatal-development/)

Bertsch A. (1969) – Die Diffusionswiderstand der Spaltöffnungen; ein Vergleich des CO2-Gaswechsels von Blättern mit und ohne Epidermis -The diffusion resistance of stomata: a comparison between the CO2-exchange of normal and stripped leaves – Planta 87: 102-109 – https://link.springer.com/article/10.1007/BF00386969 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/the-diffusion-resistance-of-stomata/)

Bertsch A., Domes W. (1969) – CO2-Gaswechsel amphistomatischer Blätter. I. Der Einfluss unterschiedlicher Stomaverteilungen der beiden Blattepidermen auf den CO2-Transport – Planta 85: 183-193 – (On our blog : https://plantstomata.wordpress.com/2017/05/17/co2-exchange-in-amphistomatic-leaves-i-the-influence-of-the-distribution-of-stomata-on-both-leaf-surfaces-upon-co2-transport-in-german/)

Bessey C. E. (1898) – Some considerations upon the function of stomata – Science 7: 13-16 – (On our blog : https://plantstomata.wordpress.com/2017/04/28/functions-of-stomata/)

Bethke P., Drew M. (1992) – Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity – Plant Physiology 99: 219-226 – http://www.plantphysiol.org/content/plantphysiol/99/1/219.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/19/progressive-exposure-to-nacl-salinity-and-stomatal-behavior/ )

Bettarini I., Vaccari F.P., Miglietta F. (1998) – Elevated CO2 concentrations and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy – Global Change Biol 4: 17–22 – https://doi.org/10.1046/j.1365-2486.1998.00098.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.1998.00098.x – (On our blog : https://plantstomata.wordpress.com/2020/03/24/elevated-co2-concentrations-and-stomatal-density/ )

Beyer A. (1929) – Über Tropfenbildung in den Schliesszellen der Spaltöffnungen von Tradescantia zebrina – Bot. Arch. 26: – Akad. Verlagsges., 1929, 36 pp.

Beyschlag W., Eckstein J. (1998) – Stomatal patchiness, in: Behnke K.,
Esser K., Kadereit J.W., Lüttge U., Runge M. (Eds.), Progress in Botany, vol. 60, Springer-Verlag, Berlin-Heidelberg-New York, 1998, pp. 283–298 –

Beyschlag W., Eckstein J. (2001) – Towards a causal analysis of stomatal patchiness: the role of stomatal size variability and hydrological heterogeneity – Acta Oecologica 22: 161−173 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Towards-a-causal-analysis-of-stomatal-patchiness-the-role-of-stomatal-size-variability-and-hydrological-heterogeneity-1.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/30/a-mechanism-which-explains-the-occurrence-of-reproducible-patterns-of-static-i-e-stable-stomatal-patchiness-at-low-ppfd-levels/ )

Beyschlag W., Kresse F., Ryel R. H., Pfanz H. (1994) – Stomatal patchiness in conifers: experiments with Picea abies (L.) Karst. and Abies alba Mill. -Trees 8: 132–138 – https://doi.org/10.1007/BF00196637https://link.springer.com/article/10.1007%2FBF00196637 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/stomatal-patchiness-in-conifers/ )

Beyschlag W., Pfanz H. (1992) – A fast method to detect the occurrence of nonhomogenous distribution of stomatal aperture in heterobaric plant leaves. Experiments with Arbutus unedo L. during the diurnal course – Oecologia 82: 52–55 – DOI: 10.1007/BF00318533 –https://www.ncbi.nlm.nih.gov/pubmed/28313137 – (On our blog : https://plantstomata.wordpress.com/2018/11/26/a-fast-method-to-detect-the-occurrence-of-nonhomogenous-distribution-of-stomatal-aperture-in-heterobaric-plant-leaves/ )

Beyschlag W., Pfanz H., Ryel R. J. (1992) – Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. – Planta 187(4): 546-553 – doi: 10.1007/BF00199976 – PMID: 24178151 – https://www.ncbi.nlm.nih.gov/pubmed/24178151 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-patchiness-in-evergreen-sclerophylls/)

Beyschlag W., Phibbs A., Pfanz H. (1990) – The Role of Temperature and Humidity in Controlling the Diurnal Stomatal Behaviour of Arbutus unedo L. during the Dry Season : Evidence and Consequences of Stomatal Patchiness – Biochemie und Physiologie der Pflanzen 186(5–6): 265-271 – https://doi.org/10.1016/S0015-3796(11)80216-7https://www.sciencedirect.com/science/article/pii/S0015379611802167 – (On our blog : https://plantstomata.wordpress.com/2020/02/10/the-role-of-temperature-and-humidity-evidence-and-consequences-of-stomatal-patchiness/ )

Bhandari M. C., Sen D. N. (1973) – Role of epidermal cell turgor on stomatal regulation in isolated epidermal peelings of Citrullus colocynthis Linn. (Schard.) – Biochem. Physiol. Pflanzen 164: 180-187 –

Bharath P., Gahir S., Raghavendra A. S. (2021) – Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress – Front. Plant Sci., 04 March 2021 – https://doi.org/10.3389/fpls.2021.615114https://www.frontiersin.org/articles/10.3389/fpls.2021.615114/full – (On our blog : https://plantstomata.wordpress.com/2021/07/08/further-research-on-the-aba-induced-stomatal-closure-mechanism-can-help-us-design-strategies-for-plant-crop-adaptations-to-stress/ )

Bhat W. A. (2015) – Study of transient response of plant leaf using infrared imaging and effect of light on stomatal opening – BEST 2015 ,Indian Institute of Science (IISc Bangalore) – Dept. of Bioengineering and Biosciences -IIT GUWAHATI – http://www.be.iisc.ernet.in/BESTReports/WaseemBhat.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/effect-of-light-on-stomatal-opening/)

Bhatia D. S. (1975) – Physiology of Stomata, PhD. thesis, Punjab Agricultural University, Ludhiana, India 

Bhatia D. S., Jindal V., Malik C. P. (1986) – Effect of salicylic acid and tannic acid on stomatal aperture and some enzyme changes in isolated epidermal peelings of Euphorbia hirta L. – Biochemie und Physiologie der Pflanzen 181(4): 261–264 – https://doi.org/10.1016/S0015-3796(86)80091-9https://www.sciencedirect.com/science/article/pii/S0015379686800919?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/06/the-probable-role-of-phenols-in-the-stomatal-mechanism/ )

Bhatia D. S., Malik C. P. (1977) – Histochemical studies in stomatal apparatus of Phaseolus mungo LINN., Lathyrus sativus and Opuntia elatior MILL – Folia Histochem. et Cytochem. 15: 315-322 – PMID: 598772 – https://www.ncbi.nlm.nih.gov/pubmed/598772 – (On our blog : https://plantstomata.wordpress.com/2020/01/06/lysosomal-hydrolytic-enzymes-are-actively-involved-in-the-catabolic-phase-of-normal-guard-cells-metabolism-and-regulate-the-osmotic-pressure-of-the-guard-cells/ )

Bhatia D. S., Malik C. P. (1978) – Changing pattern of enzymes in the epidermal peelings with opened and closed stomata – Biochem. Physiol. Pflanzen 172: 173-176 – https://doi.org/10.1016/S0015-3796(17)30372-4https://www.sciencedirect.com/science/article/pii/S0015379617303724 – (On our blog : https://plantstomata.wordpress.com/2020/01/06/the-role-of-ap-atp-ase-phosphorylase-and-six-dehydrogenases-in-relation-to-stomatal-regulation-is-discussed/ )

Bhatia R. K., Chawan D. D., Sen D. N. (1976) – A globule-like structure in leaf epidermis and its relation to stomatal regulation in Cassia auriculata L. – Biologia plantarum 18: 273-276 – DOI: 10.1007/BF02922372https://www.bp.ueb.cas.cz/artkey/bpl-197604-0007_A-globule-like-structure-in-leaf-epidermis-and-its-relation-to-stomatal-regulation-inCassia-auricul.php?back=/magno/bpl/1976/mn4.php?secid=3 – (On our blog : https://plantstomata.wordpress.com/2021/12/30/a-globule-like-structure-in-the-leaf-epidermal-cells-of-cassia-auriculata-in-relation-to-stomatal-regulation/ )

Bhatt R. M., Rao N. K. S., Srinavasa G., Veere R. (2006) – Response of bulb Onion (Allium cepa L.) to water stress: photosynthesis, stomatal conductance and osmotic adjustment – Indian Journal of Horticulture 63(3): 20-25 –

Bhattacharya A. (2019) – Chapter 3 – Water-Use Efficiency Under Changing Climatic Conditions – 3.13.2 Stomatal Conductance – https://doi.org/10.1016/B978-0-12-816209-5.00003-9 – in Changing Climate and Resource Use Efficiency in Plants – eBook ISBN: 9780128168370 – Paperback ISBN: 9780128162095 – Academic Press – https://www.elsevier.com/books/T/A/9780128162095https://www.sciencedirect.com/science/article/pii/B9780128162095000039 – (On our blog : https://plantstomata.wordpress.com/2021/08/16/sensitivity-of-sorghum-stomatal-conductance-to-soil-water-availability-and-vapor-pressure-deficit-varies-between-genotypes/ )

Bhatti M. A., Felsot A. S., Parker R., Mink G. (1998) – Leaf photosynthesis, stomatal resistance, and growth of wine grapes (Vitis vinifera L.) after exposure to simulated chlorsulfuron drift. – J. Environ. Sci. Health – Part B: Pestic. Food Contam. Agric. Wastes 33: 67-81 – http://www.tandfonline.com/doi/abs/10.1080/03601239809373130 – (On our blog : https://plantstomata.wordpress.com/2018/02/19/exposure-to-simulated-chlorsulfuron-drift-and-stomatal-resistance/ )View Post

Bhave N. S., Veley K. M., Nadeau J. A., Lucas J. R., Bhave S. L., Sack F. D. (2009) – TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems – Planta 229: 357– 367 – (On our blog : https://plantstomata.wordpress.com/2016/05/08/too-many-mouths-and-stomatal-development/)

Bhawsar S. (2011) – Stomata and water cycle – Biotech Articles 2011-01-27 – https://www.biotecharticles.com/Biology-Article/Stomata-and-Water-Cycle-604.html – (On our blog : https://plantstomata.wordpress.com/2017/10/28/stomata-and-water-cycle/)

BHC (2004) – Modified Organism Potato Modified for Increased Stomata Density [Online] – Available at: https://bch.cbd.int/database/record.shtml?documentid=100293

Bhugra S., Mishra D., Anupama A., Chaudhury S., Lall B., Chugh A., (2018) – Automatic Quantification of Stomata for High-Throughput Plant Phenotyping – IEEE Xplore 2018 24th International Conference on Pattern Recognition (ICPR) – DOI: 10.1109/ICPR.2018.8546196https://ieeexplore.ieee.org/document/8546196/authors#authors – (On our blog : https://plantstomata.wordpress.com/2019/08/25/automatic-quantification-of-stomata/ )

Bhugra S., Mishra D., Anupama A., Chaudhury S., Lall B., Chugh A., Chinnusamy V. (2019) – Deep convolutional neural networks based framework for estimation of stomata density and structure from microscopic images – In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11134 LNCS, 412–423 –

Bialowiec A., Koziel J. A., Manczarski P. (2019) – Stomatal Conductance Measurement for Toxicity Assessment in Zero-Effluent Constructed Wetlands: Effects of Landfill Leachate on Hydrophytes – Int. J. Environ. Res. Public Health 16(3): 468 – https://doi.org/10.3390/ijerph16030468 – https://www.mdpi.com/1660-4601/16/3/468 – (On our blog : https://plantstomata.wordpress.com/2019/03/21/stomatal-conductance-measurement-for-toxicity-assessment/ )

Biam (2021) – How plants handle stress through their stomata – CEA – https://www.cea.fr/drf/english/Pages/News/Scientific-results/2021/how-plants-handle-stress-through-their-stomata.aspx – (On our blog : https://plantstomata.wordpress.com/2022/03/31/stomata-and-plant-stress/ )

Bian C., Guo X., Zhang Y., Wang L., Xu T., DeLong A., Dong J. (2020) – Protein phosphatase 2A promotes stomatal development by stabilizing SPEECHLESS in Arabidopsis – PNAS June 9, 2020 117 (23) 13127-13137 –  https://doi.org/10.1073/pnas.1912075117https://www.pnas.org/content/117/23/13127 – (On our blog : https://plantstomata.wordpress.com/2020/07/06/pp2a-may-function-to-regulate-the-phosphorylation-status-of-the-master-transcription-factor-spch-in-stomatal-development/ )

Bick I., Thiel G., Homann U. (2001) – Cytochalasin D attenuates the desensitisation of pressure‐stimulated vesicle fusion in guard cell protoplasts – European Journal of Cell Biology 80: 521– 526 – https://doi.org/10.1078/0171-9335-00189Gethttps://www.sciencedirect.com/science/article/pii/S0171933504701685?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/09/26/membrane-stretch-initiates-a-reactive-process-that-may-fortify-or-stabilise-the-plasma-membrane-of-guard-cell-protoplasts/ )

Biel A. M., Moser M., Meier I. (2019) – A role for plant KASH proteins in regulating stomatal dynamics – https://doi.org/10.1104/pp.19.01010 – http://www.plantphysiol.org/content/plantphysiol/early/2019/11/25/pp.19.01010.full.pdf – (On our blog : https://plantstomata.wordpress.com/2020/01/15/82837/ )

Biggs A. R., Davis D. D. (1980) – Stomatal responses of three birch species exposed to varying acute doses of SO2 – J. Amer. Soc. Horti. Sci. 105(4): 514-516 – https://www.researchgate.net/profile/Alan_Biggs/publication/257524454_Stomatal_response_of_three_birch_species_exposed_to_varying_acute_doses_of_SO2/links/02e7e527a5214abbd0000000.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/02/stomatal-responses-to-varying-acute-doses-of-so2/ )

Bilan M. V., Hogan C. T., Carter H. B. (1977) – Stomatal opening, transpiration, and needle moisture in loblolly pine seedlings from two Texas seed sources – Forest Sci. 23(4): 437-462 – Faculty Publications 355 –https://scholarworks.sfasu.edu/forestry/355 – (On our blog : https://plantstomata.wordpress.com/2021/09/23/stomatal-opening-transpiration-and-needle-moisture/ )

Bimova A. (1992) – Heterogeneity of stomatal density in the second wheat leaf – Biologia plantarum 34:475 – DOI: 10.1007/BF02923606https://bp.ueb.cas.cz/artkey/bpl-199205-0027_Heterogeneity-of-stomatal-density-in-the-second-wheat-leaf.php?back=/magno/bpl/1992/mn5.php?secid=7 – (On our blog : https://plantstomata.wordpress.com/2021/12/16/heterogeneity-of-stomatal-density-in-a-leaf/ )

Bingham E. T. (1968) – Stomatal Chloroplasts in Alfalfa at Four Ploidy Levels – Crop Science 8(4): 509-510 – https://doi.org/10.2135/cropsci1968.0011183X000800040036xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1968.0011183X000800040036x – (On our blog : https://plantstomata.wordpress.com/2021/03/28/technique-to-screen-for-plants-with-desired-ploidy-levels/ )

Bingham G.E. (1972) – Stomatal response in field corn (Zea mays L.) and apple (Malus sylvesterus), — Ph.D. Thesis, Cornell University, Ithaca, N.Y.

Bingham G. E., Coyne P. I. (1980) – Photosynthesis and stomatal behaviour in Ponderosa pine subjected to oxidant stress: Water stress response. In: Miller PR (ed) Effects of Air Pollutants on Mediterranean and Temperate Forest Ecosystems. Pac SW For Range Exp Sta Gen Tech Rep PSW-43, Berkeley, p 228

Binks O., Coughlin I., Mencuccini M., Meir P. (2019) – Equivalence of foliar water uptake and stomatal conductance? – Plant, Cell & Environment 43(2): – https://doi.org/10.1111/pce.13663https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13663 – (On our blog : https://plantstomata.wordpress.com/2020/01/21/conductance-to-fwu-is-theoretically-equivalent-to-stomatal-conductance/ )

Birdsall J. E., Neatby K. W. (1944) – Researches on drought resisitance in spring wheat : III. Size and frequency of stomata in varieties of Triticum vulgare and other Triticum species – Canadian Journal of Research • April 1944 • https://doi.org/10.1139/cjr44c-005https://cdnsciencepub.com/doi/10.1139/cjr44c-005 – (On our blog : https://plantstomata.wordpress.com/2022/01/05/stomatal-determinations-may-be-of-use-in-selecting-for-high-yield/ )

Biscoe P. V., Littleton E. J., Scott R. K. (1973) – Stomatal control of gas exchange in barley awns – Ann. Appl. Biol. 75: 285 –

Biscoe P. V., Unswworth M. H., Pinckney H. R. (1973) – The effects of low concentrations of sulfur dioxide on stomatal behavior in Vicia faba – New Phytologist 72: 1299-1306 – https://doi.org/10.1111/j.1469-8137.1973.tb02106.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1973.tb02106.x – (On our blog : https://plantstomata.wordpress.com/2020/03/02/effects-of-low-concentrations-of-so2-on-stomatal-behavior/ )

Bishnoi N. R., Krishnamoorthy H. N. (1992) – Effect of Waterlogging and Gibberellic Acid on Leaf Gas Exchange in Peanut (Arachis hypogaea L.) – Journal of Plant Physiology 139(4): 503-505 – https://doi.org/10.1016/S0176-1617(11)80502-X – https://www.sciencedirect.com/science/article/pii/S017616171180502X – (On our blog : https://plantstomata.wordpress.com/2018/09/14/waterlogging-gibberellic-acid-and-stomatal-diffusive-resistance/ )

Bishnoi N. R., Krishnamoorthy H. N. (1993) – Effect of gibberellic acid on stomatal diffusive resistance and photosynthesis in waterlogged peanut plants – Biologia Plantarum 35: 467-471 – https://doi.org/10.1007/BF02928528 – https://link.springer.com/article/10.1007/BF02928528 – (On our blog : https://plantstomata.wordpress.com/2018/09/14/gibberellic-acid-and-stomatal-diffusive-resistance/ )

Bkagwat S. G., Bhatia C. R. (1993) – Selection for flag leaf stomata frequency in bread wheat – Plant Breed. 110: 129–136 – https://doi.org/10.1111/j.1439-0523.1993.tb01224.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0523.1993.tb01224.x – (On our blog : https://plantstomata.wordpress.com/2020/03/10/stomatal-frequency-was-negatively-correlated-with-the-flag-leaf-blade-area/ )

Black C. R., Black V. J. (1979) – The effects of low concentrations of sulphur dioxide on stomata1 conductance and epidermal cell survival in field bean (Vicia faba L.) – Journal of Experimental Botany 30: 291-298 – https://www.jstor.org/stable/23688826?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-conductances-increased-by-exposure-to-so2/ )

Black C.R., Squire G.R. (1979) – Effects of atmospheric saturation deficit on the stomatal conductance of pearl millet (Pennisetum typhoides S. and H.) and Groundnut (Arachis hypogea L.). – J. Exp. Bot. 118: 935–45 – https://doi.org/10.1093/jxb/30.5.935 –  https://academic.oup.com/jxb/article-abstract/30/5/935/450295/Effects-of-Atmospheric-Saturation-Deficit-on-the – (On our blog : https://plantstomata.wordpress.com/2017/02/01/atmospheric-saturation-deficit-and-stomatalconductance/)

Black V. J., Unsworth M. H. (1980) – Stomatal Responses to Sulphur Dioxide and Vapour Pressure Deficit – Journal of Experimental Botany 31(2): 667–677 – https://doi.org/10.1093/jxb/31.2.667https://academic.oup.com/jxb/article-abstract/31/2/667/488780 – (On our blog : https://plantstomata.wordpress.com/2019/10/18/stomatal-responses-to-so2-and-vapour-pressure-deficit/ )

Blackman C. J., Pfautsch S., Choat B., Delzon S., Gleason S. M., Duursma R. A. (2016) – Toward an index of desiccation time to tree mortality under drought – Plant, Cell and Environment 39: 2342–2345 – doi: 10.1111/pce.12758http://www.icmbio.gov.br/parnaitatiaia/images/stories/o-que-fazemos/2019/Blackman_et_al-2016-Toward_an_index_of_dessication_time_to_tree_mortality_under_drought.pdf – (On our blog : https://plantstomata.wordpress.com/2019/12/02/to-define-species-differences-in-the-time-it-takes-plants-to-desiccate-from-stomatal-closure-to-lethal-levels-of-drought-stress/ )

Blackman P. G., Davies W. J. (1983) –  The effects of cytokinins and ABA on stomatal behaviour of maize and Commelina. – J. Exp. Bot. 34: 1619-1626 – https://doi.org/10.1093/jxb/34.12.1619 – https://academic.oup.com/jxb/article-abstract/34/12/1619/599232?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/effects-of-cytokinins-and-aba-on-stomatal-behaviour/)

Blackman P. G., Davies W. J. (1984) – Modification of the CO2 responses of maize stomata by abscisic acid and by naturally-occurring and synthetic cytokinins. – Journal of Experimental Botany 35: 174–179 – https://doi.org/10.1093/jxb/35.2.174 –  (On our blog : https://plantstomata.wordpress.com/2016/03/21/co2-aba-cytokinins-and-stomata/)

Blackman P. G., Davies W.J. (1984) – Age-related changes in stomatal response to cytokinins and abscisic acid. – Ann. Bot. 54: 121-125 – https://doi.org/10.1093/oxfordjournals.aob.a086765 – https://academic.oup.com/aob/article-abstract/54/1/121/116161?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/cytokinins-reversed-the-effect-of-aba-on-stomata/)

Blakemore, E. (2015) – Creating Drought-Tolerant Plants By Hacking Their Natural Responses – http://www.smithsonianmag.com/smart-news/scientists-can-program-plants-be-more-drought-tolerant-180954159/?no-ist – (On our blog :

Blanke M. M. (1986) – Comparative SEM study of stomata on developing quince, apple, grape and tomato fruit – Angew. Bot. 60: 209-214 –

Blanke M. M. (1990) – Stomata of the pea pod – Angew. Bot. 64: 275-279 –

Blanke M. M. (1992) – Photosynthesis of Avocado Fruit – Proc. of Second World Avocado Congress 1992: 179-189 – http://www.avocadosource.com/WAC2/WAC2_p179.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/13/stomata-and-photosynthesis/ )

Blanke M. M. (1993) – Stomata of Currant Fruits – Angew. Bot. 67: 1-2 – https://www.researchgate.net/publication/285152770_Stomata_of_currant_fruits – (On our blog : https://plantstomata.wordpress.com/2021/04/07/stomata-of-ribes-fruits/ )

Blanke M. M., Belcher A. R. (1989) – Stomata of apple leaves cultured in vitro – Plant Cell Tissue Organ Cult. 19: 85-89 – https://link.springer.com/article/10.1007/BF00037780 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomata-of-apple-leaves-cultured-in-vitro/)

Blanke M. M., Bower J. (1990) – Possible role of stomata in transpiration of avocado fruit – Acta Hort. 275: 449-450 –

Blanke M. M., Cooke D. T. (2004) – Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves – Plant Growth Regul. 42: 153–160 – https://link.springer.com/article/10.1023/B:GROW.0000017489.21970.d4 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/effects-of-flooding-and-drought-on-stomatal-activity/)

Blanke M. M., Lenz F. (1989) : Fruit photosynthesis – a review – Plant, Cell& Environment 12: 3l-46.

Blanke M. M., Leyre A. (1987) – Stomatal activity of the grape berry cv. Riesling, Müller-Thurgau and Ehrenfelser – Journ. Plant Physiol. 127(5): 451-460 – https://doi.org/10.1016/S0176-1617(87)80253-5https://www.sciencedirect.com/science/article/pii/S0176161787802535?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/07/27/stomatal-activity-of-the-grape-berry/https://plantstomata.wordpress.com/2020/07/27/stomatal-activity-of-the-grape-berry/ )

Blanke M. M., Leyre A. (1988) – Stomatal and cuticular transpiration of the cap and berry of grape – J. Plant Physiol. 132(2): 250-253 – https://doi.org/10.1016/S0176-1617(88)80170-6https://www.sciencedirect.com/science/article/pii/S0176161788801706 – (On our blog : https://plantstomata.wordpress.com/2020/07/27/stomatal-and-cuticular-transpiration-of-the-cap-and-berry-of-grape/ )

Blatt M. R. (1985) – Extracellular potassium activity in attached leaves and its relation to stomatal function. – Journal of Experimental Botany 36: 240–251 – (On our blog : https://plantstomata.wordpress.com/2016/03/21/k-and-stomata/)

Blatt M. R. (1987) Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “Electrogenic” transport revealed by current-voltage and difference-current-voltage analysis. – J. Membrane Biol. 98: 257–274 – https://link.springer.com/article/10.1007/BF01871188 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/electrical-characteristics-of-stomatal-guard-cells-the-contribution-of-atp-dependent-electrogenic-transport/)

Blatt M. R. (1987) –  Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes – Planta 170(2): 272–287 – doi: 10.1007/BF00397898https://link.springer.com/article/10.1007/BF00397898 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/electrical-characteristics-of-stomatal-guard-cells/)

Blatt M. R. (1988) – Potassium-dependent bipolar gating of potassium channels in guard cells.- J. Membrane Biol. 102:235–246 – https://doi.org/10.1007/BF01925717 – https://link.springer.com/article/10.1007/BF01925717#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/09/bipolar-gating-of-k-channels-in-guard-cells/)

Blatt M. R. (1988) – Mechanisms of fusicoccin action: a dominant role for secondary transport in a higher-plant cell – Planta 174: 187–200 – DOI: 10.1007/BF00394771 – https://www.ncbi.nlm.nih.gov/pubmed/24221475?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/30/fusicoccin-plays-a-dominant-role-for-secondary-transport-in-stomata/

Blatt M. R. (1990) – Potassium channel currents in intact stomatal guard cells: Rapid enhancement by abscisic acid – Planta 180: 445-455 – DOI 10.1007/BF00198799https://link.springer.com/article/10.1007/BF01160403 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/k-channel-currents-in-intact-stomata/)

Blatt M. R. (1991) – Ion channel gating in plants: physiological implications and integration for stomatal function. – Journal of Membrane Biology 124: 95–112 – PMID: 1662287 – https://link.springer.com/article/10.1007/BF01870455 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/7057)

Blatt M. R. (1992) – K+ channels of stomatal guard cells: Characteristics of the inward rectifier and its control by pH – J. Gen. Physiol. 99: 615–644 –  (On our blog : https://plantstomata.wordpress.com/2015/10/09/k-channels-of-stomatal-guard-cells/)

Blatt M.R. (1999) – Reassessing roles for Ca2+ in guard cell signalling – J. Exp. Bot.50: 989–999 – (On our blog : https://plantstomata.wordpress.com/2016/05/09/stomata-ca2-in-guard-cell-signalling/)

Blatt M. R. (2000) – Cellular signaling and volume control in stomatal movements in plants. – Annual Review of Cell and Developmental Biology 16: 221–241 – doi: 10.1146/annurev.cellbio.16.1.221 – (On our blog : https://plantstomata.wordpress.com/2015/09/08/understanding-of-guard-cell-signaling/)

Blatt M. R. (2000) – Ca²+ signaling and control of guard-cell volume in stomatal movements – Curr Opin Plant Biol 3: 196–204 –

Blatt M. R. (2002) – Towards understanding vesicle traffic and the guard cell model. New Phytologist 153: 405–413 – http://www.brodribblab.org.au/wp-content/uploads/2017/08/Small-Pores-with-a-Big-Impact.pdf – (On our blog : https://plantstomata.wordpress.com/2016/03/07/stomata-guard-cells-and-vesicular-trafficking/)

Blatt M. R. (2016) – Plant Physiology: Redefining the Enigma of Metabolism in Stomatal Movement – Current Biology 26(3): R107-R109 – DOI : 10.1016/j.cub.2015.12.025  – https://www.infona.pl/resource/bwmeta1.element.elsevier-68875018-026c-36e7-9b28-b94879f68d03 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/guard-cells-also-metabolise-starch-to-accelerate-opening-of-stomata/)

Blatt M. R. (xxxx) – Ca2+ signalling and ion channel regulation in guard cells – https://www.gla.ac.uk/researchinstitutes/biology/staff/michaelblatt/researchinterests/calciumsignallingandionchannelregulationinguardcells/# – (On our blog : https://plantstomata.wordpress.com/2019/04/15/ca2-signalling-and-ion-channel-regulation-in-stomatal-guard-cells/ )

Blatt M. R., Armstrong (1993) –  K+ channels of stomatal guard cells: abscisic acid evoked control of the outward rectifier mediated by cytoplasmic pH – Planta 191: 330–341 – (On our blog : https://plantstomata.wordpress.com/2016/03/13/k-channels-of-stomatal-guard-cells-2/).

Blatt M. R., Brodribb T. J., Torii K. U. (2017) – Small Pores with a Big Impact – Plant Physiology 174(2): 467–469 – DOI: https://doi.org/10.1104/pp.17.00642 – http://www.plantphysiol.org/content/174/2/467 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/focus-issue-on-stomata-the-first-dedicated-to-the-evolution-development-and-physiology-of-guard-cells/)

Blatt M. R., Clint G. M. (1989) – Mechanisms of fusicoccin action:  kinetic modification and inactivation of potassium channels in guard cells – Planta 178: 509–523 – doi: 10.1007/BF00963821 – https://link.springer.com/article/10.1007/BF00963821 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/mechanisms-of-fusicoccin-action-in-stomata/)

Blatt M. R., Garcia-Mata C., Sokolowski S. (2007) – Membrane transport and Ca2+ oscillations in guard cells. In S Mancuso, S Shabala, eds, Rhythms in Plants: Phenomenology, Mechanisms, and Adaptive Significance. Springer, Berlin, pp 115–134 – DOI: 10.1007/978-3-540-68071-0_6 – https://www.researchgate.net/publication/226682645_Membrane_Transport_and_Ca2_Oscillations_in_Guard_Cells – (On our blog : https://plantstomata.wordpress.com/2018/11/30/short-term-oscillations-in-solute-transport-are-the-norm-for-homeostatic-control-of-osmotic-content-in-stomata/ ) –

Blatt M. R., Grabov A.  (1997) – Signalling gates in abscisic acid-mediated control of guard cell ion channels –  Physiol. Plantarum 100(3): 481–490 – DOI: 10.1111/j.1399-3054.1997.tb03052.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03052.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/01/a-remarkably-complex-network-layering-positive-and-negative-controls-with-the-ion-channels-that-facilitate-ion-fluxes-for-stomatal-movement/)

Blatt M. R., Grabov A., Brearley J., Hammond-Kosack K., Jones J. D.  (1999) – K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction – Plant J 19: 453–462  – https://doi.org/10.1046/j.1365-313x.1999.00534.x -https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313x.1999.00534.x – (On our blog : https://plantstomata.wordpress.com/2018/11/27/k-channels-of-stomatal-guard-cells-3/ )

Blatt M. R., Gradmann D. (1997) – K+-sensitive gating of the K+outward rectifier in Vicia guard cells – J Membr Biol 158: 241–256 –  https://doi.org/10.1007/s002329900261 – https://link.springer.com/article/10.1007%2Fs002329900261#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/27/k-sensitive-gating-of-the-koutward-rectifier-in-stomatal-guard-cells/

Blatt M.R., Thiel G. (1994) – K+ channels of stomatal guard cells: Bimodal control of the K+inward-rectifier evoked by auxin – Plant J. 5: 55–68 – (On our blog : https://plantstomata.wordpress.com/2016/03/21/k-channels-of-stomatal-guard-cells-and-auxin/)

Blatt M. R., Thiel G., Trentham D. R. (1990) – Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,54risphosphate – Nature 346: 766-769 – doi:10.1038/346766a0 https://www.nature.com/articles/346766a0#citeas – (On our blog : https://plantstomata.wordpress.com/2019/11/13/reversible-inactivation-of-k-channels-of-stomatal-guard-cells/ )

Blatt M. R., Wang Y., Leonhardt N., Hills A. (2014) –  Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells – Journal of Plant Physiology 171(9): 770-778 – doi:10.1016/j.jplph.2013.09.014 – http://www.sciencedirect.com/science/article/pii/S017616171300401X – (On our blog : https://plantstomata.wordpress.com/2016/05/09/onguard-and-stomatal-guard-cell-physiology/)

Blatt M. R., Wang Y., Papanastiou M., Eisenach C., Karnik R., Lew V. L., Chen Z., Baetz U., Amtmann A., Hills A. (2012) – Quantitative systems modelling of the stomatal guard cell yields unexpected and emergent behaviours – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-onguard-model-and-stomatal-behavior/ )

Blom-Zandstra M., Pot C. S., Maas F. M., Schapendonk A. H.C.M. (1995) – Effects of different light treatments on the nocturnal transpiration and dynamics of stomatal closure of two Rose cultivars – Scientia Horticulturae 61: 251-262 – https://doi.org/10.1016/0304-4238(94)00751-Zhttps://www.sciencedirect.com/science/article/abs/pii/030442389400751Z?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/10/stomatal-dynamics-suggest-that-flower-quality-would-benefit-from-being-transferred-to-darkness-following-a-period-of-several-hours-of-high-light-intensity/ )

Blonquist J. M. Jr., Norman J., Bugbee B. (2009) – Automated measurement of canopy stomatal conductance based on infrared temperature – Agricultural and Forest Meteorology 149(11): 1931-1945 – DOI: 10.1016/j.agrformet.2009.06.021https://www.researchgate.net/publication/223519716_Automated_measurement_of_canopy_stomatal_conductance_based_on_infrared_temperature – (On our blog : https://plantstomata.wordpress.com/2022/01/01/canopy-stomatal-conductance-provides-a-field-scale-measurement-of-daily-and-seasonal-stomatal-response-to-prevailing-soil-water-and-atmospheric-conditions/ )

Bluhm B. (2014) – Molecular dissection of stomatal infection in Cercospora zeae-maydis – The American Phytopathological Society – 2014 APS-CPS Joint Meeting, Minneapolis, Minnesota – https://www.apsnet.org/meetings/Documents/2014_meeting_abstracts/aps2014abS41.htm – (On our blog : https://plantstomata.wordpress.com/2020/11/19/the-understanding-of-stomatal-infection-and-the-formulation-of-new-hypotheses-regarding-pathogenesis-in-c-zeae-maydis/ )

Boase M. R., Hopping M. E. (1995) – DNA dodecaploid plants detected among somaclones of Actinidia deliciosa var. deliciosa cv. Hayward – Plant Cell Reports 14(5): – https://doi.org/10.1007/bf00232036https://www.scinapse.io/papers/1971807273 – (On our blog : https://plantstomata.wordpress.com/2022/06/13/the-mean-length-of-the-stomatal-guard-cells-of-dna-dodecaploids-in-actinidia-was-significantly-greater-than-those-from-hexaploid-somaclones/ )

Bobich E. G., Barron-Gafford G.A., Rascher K. G., Murthy R. (2010) – Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2 – Tree Physiol. 30(7): 866-875 – doi: 10.1093/treephys/tpq036 – Epub 2010 May 12 – https://pubmed.ncbi.nlm.nih.gov/20462939/ – (On our blog : https://plantstomata.wordpress.com/2022/01/06/trees-in-elevated-co2-had-a-greater-stomatal-density-and-a-lower-wood-density-than-trees-in-ambient-co2-both-traits-that-may-make-the-trees-more-susceptible-to-xylem-cavitation-in-severe-drou/ )

Bobrov R. A. (1952) – Effect of smog on the anatomy of oat leaves – Phytopathology 42: 10- – https://www.osti.gov/biblio/5119824-effect-smog-anatomy-oat-leaves – (On our blog : https://plantstomata.wordpress.com/2021/12/16/damage-of-smog-depends-upon-the-stomata-as-a-portal-of-entry-for-the-harmful-elements-in-the-air/ )

Bobisut O. (1910) – Über den Funktionswechsel der Spaltöffnungen in der Gleitzone derNepenthes-Kannen – Akad. Wiss. Wien Sitzungsber., Math.-Naturwiss. Kl., Abt. 1,119: 3–10 –

Boccalandro H. E., Giordano C. V., Ploschuk E. L., Piccoli P. N., Bottini R., Casal J. J. (2012) – Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight – Plant Physiology 158: 1475–1484 – doi: 10.1104/pp.111.187237 – Epub 2011 Dec 6. – https://www.ncbi.nlm.nih.gov/pubmed/22147516 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/phototropins-but-not-cryptochromes-mediate-the-blue-light-speci%ef%ac%81c-promotion-of-stomatal-conductance/)

Boccalandro H. E., Rugnone M. L., Moreno J. E., Ploschuk E. L., Serna L., Yanovsky M. J., Casal J. J. (2009) – Phytochrome B Enhances Photosynthesis at the Expense of Water-Use Efficiency in Arabidopsis – Plant Physiology – https://doi.org/10.1104/pp.109.135509http://www.plantphysiol.org/content/150/2/1083 – (On our blog : https://plantstomata.wordpress.com/2020/04/08/a-model-where-active-phyb-promotes-stomata-differentiation-in-open-places/ )

Bodin E., Clark M., Gundry S., Mrozinski A., Toole T., Willingham T., Baghai-Riding N. L. (2015) – Stomatal density/carbon dioxide leaf peel study for three woody plant species in the Mississippi Delta – Delta State University, Department of Biological Sciences, PO Box 3262 DSU, Cleveland, MS, 38733, USA – Hall D/The Shaw Conference Centre
Date: Monday, July 27th, 2015 –http://2015.botanyconference.org/engine/search/index.php?func=detail&aid=1807 – (On our blog : https://plantstomata.wordpress.com/2021/12/07/three-tree-species-did-not-appear-to-illustrate-an-inverse-negative-relationship-between-mean-stomatal-frequency-and-historical-rise-in-co2/ )

Boegh E. (1993) – Transpiration from millet estimated by combining LAI, stomata resistance and sap flow technique – International Symposium on Precipitation and Evaporation – Bratislava, Slovakiet 20 sep. 1993 → 24 sep. 1993 – 139-145 –

Boetsch J., Chin J., Croxdale J. (1995) – Arrest of stomatal initials in Tradescantia is linked to the proximity of neighboring stomata and results in the arrested initials acquiring properties of epidermal cells – Dev Biol 168: 28-38 – (On our blog : https://plantstomata.wordpress.com/2017/02/17/arrested-stomatal-initials-and-stomatal-neighbors/).

Boetsch J., Chin J., Ling M., Croxdale J. (1996) – Elevated carbon dioxide affects the patterning of subsidiary cells in Tradescantia stomatal complexes. – Journal of Experimental Botany 47: 925–932 – https://doi.org/10.1093/jxb/47.7.925 https://academic.oup.com/jxb/article/47/7/925/580389 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/regulating-stomatal-conductance-in-response-to-elevated-co2-without-changing-the-relative-number-of-stomata/ )

Boggs J. Z., Loewy K., Bibee K., Hechel M. S. (2010) – Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana – Plant Growth Regul 60: 77–81 – DOI 10.1007/s10725-009-9427-3Phytochromes_influence_stomatal_conducta.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/phytochromes-influence-stomatal-conductance-plasticity/ )

Bolhar-Nordenkampf H. R. (1985) – CHAPTER 8 – SHOOT MORPHOLOGY AND LEAF ANATOMY IN RELATION TO PHOTOSYNTHESIS – in Techniques in Bioproductivity and Photosynthesis (Second Edition) – https://doi.org/10.1016/B978-0-08-031999-5.50018-2https://www.sciencedirect.com/science/article/pii/B9780080319995500182 – (On our blog : https://plantstomata.wordpress.com/2021/08/18/stomata-and-stomatal-aperture/ )

Bolliger R. (1959) – Entwicklung und Struktur der Epidermisaussenwand bei einigen Angiospermenblättern – J. Ultrastructure Research 3: 105-130 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/epidermis-and-cuticula-in-angiosperms-in-german/)

Bonan G. B., Williams M., Fisher R. A., Oleson K. W. (2014) – Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum – Geosci. Model Dev. 7: 2193–2222 –  doi:10.5194/gmd-7-2193-2014 – https://www.geosci-model-dev.net/7/2193/2014/gmd-7-2193-2014.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-conductance-models-3/)

Bond B. J., Kavanagh K. L. (1999) – Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential – Tree Physiol. 19: 503–510 – https://doi.org/10.1093/treephys/19.8.503 – https://academic.oup.com/treephys/article/19/8/503/1672642 – (On our blog : https://plantstomata.wordpress.com/2018/11/23/73239/ )

Bono L., Bergamaschi H., Gonçalves Rosa L. M., França S., Radin B., Santos A. O. (2001) – Alterações no padrão de resposta à luz da condutância estomática do milho causadas pelo déficit hídrico – Revista Brasileira de Agrometeorologia, Santa Maria 9(1): 27-34 – https://www.researchgate.net/publication/259752106_Alteracao_no_padrao_de_resposta_a_luz_da_condutancia_estomatica_do_milho_causadas_pelo_deficit_hidrico_ALTERATIONS_IN_THE_PATTERN_OF_STOMATAL_RESPONSES_TO_LIGHT_IN_MAIZE_CAUSED_BY_WATER_DEFICIT#fullTextFileContent – (On our blog : https://plantstomata.wordpress.com/2021/01/06/plants-under-water-stress-kept-low-stomatal-conductance-even-when-par-increased-while-non-stressed-plants-showed-higher-values-of-stomatal-conductance-at-saturing-par/ )

Bonte J., DeCormis L. (1977) – Inhibition en anaerobiose de la réaction de fermeture des stomates du Pelargonium en présence de dioxyde de soufre – Environ. Pollut. 12: 125-133 –

Bonte J., Louguet P. (1975) – Interrelations entre la pollution par le dioxyde de soufre et le mouvement des stomates chez le Pelargonium x horteum: effets de l’humidité relative et de la teneur en gaz carbonique de l’air – Physiologie Végétale 13: 527-537 –

Boorse G. Tallman G. (1997) – Cultured guard cell protoplasts of Nicotiana glauca retain the capacity for blue light-induced swelling – Plant Physiology (Rockville) 114(3 Suppl. ): 281 – https://eurekamag.com/research/030/760/030760235.php

Boorse G. Tallman G. (1999) – Guard cell protoplasts. Isolation, culture, and regeneration of plants. – Methods of Molecular Biology 111243–257 – DOI 10.1385/1-59259-583-9:243 https://www.researchgate.net/publication/13209967_Guard_Cell_Protoplasts_Isolation_Culture_and_Regeneration_of_Plants – (On our blog : https://plantstomata.wordpress.com/2017/12/11/guard-cell-protoplasts-and-adjustment-of-stomatal-dimensions/)

Bopp M., Bock G. (1961) – Die Reaktion der Schliesszellen bei einigen panaschierten Pflanzen – Ber. Deutsch. Bot. Ges. LXXIV (4) : 125-134 – (On our blog : https://plantstomata.wordpress.com/2017/04/22/effect-of-chlorophyll-content-on-stomatal-movement-in-variegated-plants-in-german/)

Bopp M., Werner O. (1993) – Abscisic acid and desiccation tolerance in mosses – Botanica Acta 106: 103–106 –

Boraphech P., Thiravetyan P. (2015) – Removal of trimethylamine (fishy odor) by C₃ and CAM plants – Environ Sci Pollut Res Int. 22(15): 11543-11557 – doi: 10.1007/s11356-015-4364-3 – Epub 2015 Apr 2 – https://pubmed.ncbi.nlm.nih.gov/25827651/ – (On our blog : https://plantstomata.wordpress.com/2022/03/07/stomata-and-removal-of-trimethylamine-by-c%e2%82%83-and-cam-plants/ )

Borel C. (1999) – Modélization de la synthèse d’ABA et du contrôle stomatique en cas de déficit hydrique chez des plantes transgéniques affectées dans la synthèse d’ABA – PhD thesis, ENSA.Montpellier France, 122 pp. – (On our blog : https://plantstomata.wordpress.com/2019/11/04/modelization-de-la-synthese-daba-et-du-controle-stomatique-en-cas-de-deficit-hydrique/)

Borel C., Audran C., Frey A., Marion-Poll A., Tardieu F., Simonneau T. (2001)N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit – Journal of Experimental Botany 52: 427–434 – https://doi.org/10.1093/jxb/52.suppl_1.427https://academic.oup.com/jxb/article/52/suppl_1/427/2897254 – (On our blog : https://plantstomata.wordpress.com/2019/11/04/nicotiana-plumbaginifolia-zeaxanthin-epoxidase-transgenic-lines-have-unaltered-baseline-aba-accumulations-in-roots-and-xylem-sap-but-contrasting-sensitivities-of-aba-accumulation-to-water-deficit/)

Borel C., Frey A., Marion-Poll A., Tardieu F., Simonneau T. (2001) – Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought ? – Plant Cell Environ. 24: 477-489 – DOI: 10.1046/j.1365-3040.2001.00698.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2001.00698.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/11/engineering-aba-biosynthesis-and-modification-of-stomatal-response-to-drought/)

Borel C., Simonneau T. (2002) – Is the ABA concentration in the sap collected by pressurizing leaves relevant for analysing drought effects on stomata? Evidence from ABA-fed leaves of transgenic plants with modified capacities to synthesize ABA – Journal of Experimental Botany 53: 287-296 – https://doi.org/10.1093/jexbot/53.367.287https://academic.oup.com/jxb/article/53/367/287/430309 – (On our blog : https://plantstomata.wordpress.com/2019/11/04/this-study-supports-the-use-of-the-leaf-pressurization-technique-for-collecting-xylem-sap-and-assessing-the-role-of-aba-on-stomata/ )

Borel C., Simonneau T., This D., Tardieu F. (1997) – Stomatal conductance and ABA concentration in the xylem sap of barley lines of contrasting genetic origins. – Australian journal of plant physiology 24 (5): 607-615 – DOI 10.1071/PP96097 – https://www.researchgate.net/publication/229422914_Stomatal_Conductance_and_ABA_Concentration_in_the_Xylem_Sap_of_Barley_Lines_of_Contrasting_Genetic_Origins – (On our blog : https://plantstomata.wordpress.com/2017/12/11/stomatal-conductance-and-aba-concentration/)

Borer C. H., Schaberg P. G., DeHayes D. H. (2005) – Acidic mist reduces foliar membrane-associated calcium and impairs stomatal responsiveness in red spruce – Tree Physiol 25(6): 673–680 –

Borges F. O. L. (1971) – Tamaño y densidad de estomas en clones cultivados y especies silvestres de Musa – Agronomía Tropical 21: 139-143 –

Borthakur D., Saikia J., Roy S. (2017) – Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency – Journ. Plant Physiol. & Breeding 7(1): 121-131 – http://breeding.tabrizu.ac.ir/article_6365.html – (On our blog : https://plantstomata.wordpress.com/2018/05/08/stomatal-density-an-important-selection-criterion/ )

Boselli M., Scienza A. (1983) – Effects of potassium fertilization on density and morphological characteristics of stomata in grapevines – Vignevini 10(1·2): 27-32 [Abstr.: Vitis 22, 263.] –

Boso S., Alonso-Villaverde V., Santiago J. L., Gago P., Berger D. M., Düggelin M., Kassemeyer H. H., Martinez M. C. (2010) – Macro- and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew – Vitis 49: 43-50 – ISSN 0042-7500 – https://www.semanticscholar.org/paper/Macro-and-microscopic-leaf-characteristics-of-six-(-Boso-Alonso-Villaverde/5a81ffd08c46a162a271ddd92faa729791b4e85b – (On our blog : https://plantstomata.wordpress.com/2019/10/24/stomatal-index-and-susceptibilities-to-grapevine-downy-mildew/ )

Boso S., Gago P., Alonso-Villaverde A. V., Santiago J. L., Martinez M. C. (2016) – Density and size of stomata in the leaves of different hybrids (Vitis sp.) and Vitis vinifera varieties – Vitis 55: 17–22 – file:///C:/Users/wille/Downloads/4678-Article%20Text-23136-1-10-20160119%20(3).pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/01/density-and-size-of-stomata-in-the-leaves-of-different-hybrids-vitis-sp/ )

Boudolf V., Barrôco R., de Almeida Engler J., Verkest A., Beeckman T., Naudts M., Inzé D., De Veylder L. (2004) – B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana – The Plant Cell 16(4): 945-955 – http://dx.doi.org/10.1105/tpc.021774 – http://www.plantcell.org/content/16/4/945.abstract – (On our blog : https://plantstomata.wordpress.com/2015/08/25/b1-type-cyclin-dependent-kinases-and-stomata-in-arabidopsis/)

Bouranis D. L., Chorianopoulou S. N., Dionias A., Sofianou G., Thanasoulas A., Liakopoulos G., Nikolopoulos D. (2012) – Comparison of the S‐, N‐or P‐deprivations’ impacts on stomatal conductance, transpiration and photosynthetic rate of young maize leaves – Amer J Plant Sci 3(8): 1058–1065 –  http://dx.doi.org/10.4236/ajps.2012.38126 – https://file.scirp.org/pdf/AJPS20120800003_47363188.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/02/s%e2%80%90-n%e2%80%90or-p%e2%80%90deprivations-impacts-on-stomatal-conductance/ ) 

Bouranis D. L., Chorianopoulou S. N., Dionias A., Sofianou G., Thanasoulas A., Liakopoulos G., Nikolopoulos D. (2012) – Comparison of the S‐, N‐ or P‐deprivations’ impacts on stomatal conductance, transpiration and photosynthetic rate of young maize leaves – Am J Plant Sci 3: 1058–1065 – http://dx.doi.org/10.4236/ajps.2012.38126 – https://file.scirp.org/pdf/AJPS20120800003_47363188.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/28/s%e2%80%90-n%e2%80%90-or-p%e2%80%90deprivations-impacts-on-stomatal-conductance/

Bouranis D. L., Dionias A., Chorianopoulou S. N., Liakopoulos G., Nikolopoulos D. (2014) – Distribution profiles and interrelations of stomatal conductance, transpiration rate and water dynamics in young maize laminas under nitrogen deprivation – Am J Plant Sci 5: 659–670 – https://doi.org/10.1080/11263504.2014.984789 –https://www.tandfonline.com/doi/abs/10.1080/11263504.2014.984789 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/distribution-profiles-and-interrelations-of-stomatal-conductance/

Bourdais G., McLachlan D. H., Rickett L. M., Zhou J., Siwoszek A., Häweker H., Hartley M., Kuhn H., Morris R. J., MacLean D., Robatzek S., (2019) – The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure – Traffic 20(2): 168-180 – https://doi.org/10.1111/tra.12625https://onlinelibrary.wiley.com/doi/full/10.1111/tra.12625 – (On our blog : https://plantstomata.wordpress.com/2019/10/08/a-valuable-image%e2%80%90based-tool-to-dissect-guard-cell-responses-and-outline-a-genetic-framework-of-stomatal-closure/ )

Bourne A. E., Creek D., Peters J. M. R., Ellsworth D. S., Choat B. (2017) – Species climate range influences hydraulic and stomatal traits in Eucalyptus species – Annals of Botany 120: 123–133 – doi: 10.1093/aob/mcx020https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737682/ – (On our blog : https://plantstomata.wordpress.com/2019/10/09/species-climate-range-influences-hydraulic-and-stomatal-traits/ )

Bourne A. E., Haigh A. M., Ellsworth D. S. (2015) – Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species – Tree Physiology 35: 266–278 – doi: 10.1093/treephys/tpv014 – Epub 2015 Mar 12 – https://www.ncbi.nlm.nih.gov/pubmed/25769338 – (On our blog : https://plantstomata.wordpress.com/2019/10/09/stomatal-sensitivity-to-vapour-pressure-deficit-relates-to-climate-of-origin/ )

Bowles A. (2019) – Review: Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement (COPB) – Curr. Opin. Plant Biol. 10.1016/j.pbi.2019.01.003. – Plant Science Research Weekly  – https://plantae.org/review-exploiting-natural-variation-and-genetic-manipulation-of-stomatal-conductance-for-crop-improvement-copb/ – (On our blog : https://plantstomata.wordpress.com/2020/06/01/natural-variation-and-genetic-manipulation-of-stomatal-conductance/ )

Bowles A. (2022) – How ancient plants ‘learnt’ to use water when they moved on to land – new research – https://theconversation.com/how-ancient-plants-learnt-to-use-water-when-they-moved-on-to-land-new-research-177009 – (On our blog : https://plantstomata.wordpress.com/2022/05/26/the-first-land-plants-had-the-genetic-tools-to-build-stomata-a-key-adaptation-for-life-on-land/ )

Bowling D. J. F. (1976) – Malate-switch hypothesis to explain the action of stomata – Nature 262: 393–394 – https://www.nature.com/articles/262393a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/malate-switch-hypothesis-to-explain-the-action-of-stomata/)

Bowling D. J. F. (1987) – Measurement of the apoplastic activity of K+ and Cl in the leaf epidermis of Commelina communis in relation to stomatal activity – Journal of Experimental Botany 38: 1351–1355 – (On our blog : https://plantstomata.wordpress.com/2016/03/21/apoplastic-activity-of-k-and-cl-and-stomata/)

Bowling D. J. F., Edwards A. (1984) – pH gradients in the stomatal complex of Tradescantia virginiana. – Journal of Experimental Botany 35 : 1641–1645 – https://doi.org/10.1093/jxb/35.11.1641 – https://academic.oup.com/jxb/article-abstract/35/11/1641/719683 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/ph-gradients-in-the-stomatal-complex/)

Bowling D. J. F., Smith G. N. (1990) – Apoplastic transport in the leaf epidermal in relation to stomatal activity – Biochem. Physiol. Pflanz. 186: 309-316 – ISSN : 0015-3796 – https://doi.org/10.1016/S0015-3796(11)80223-4 https://www.cabdirect.org/cabdirect/abstract/19912304656 – (On our blog : https://plantstomata.wordpress.com/2019/03/30/a-release-by-the-epidermal-cells-of-potassium-which-diffuses-in-the-apoplast-to-the-stomatal-guard-cells/ )

Bowman J. L. (2011) – Stomata: Active Portals for Flourishing on Land – Current Biology 21(14): 540-541 – DOI: 10.1016/j.cub.2011.06.021 – https://www.infona.pl/resource/bwmeta1.element.elsevier-30ed66d7-875e-3268-bd9f-edf4c55b60da – (On our blog : https://plantstomata.wordpress.com/2017/10/12/early-land-plants-could-actively-control-stomata/)

Boxall S. F., Kadu N., Dever L. V., Kneřová J., Waller J. L., Gould P. J. D., Hartwell J. (2020)Kalanchoë PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes – Plant Cell. 32(4): 1136-1160 – doi: 10.1105/tpc.19.00481 – Epub 2020 Feb 12 – PMID: 32051209 – PMCID: PMC7145507 – https://pubmed.ncbi.nlm.nih.gov/32051209/ – (On our blog : https://plantstomata.wordpress.com/2022/01/03/the-regulatory-patterns-of-key-guard-cell-signaling-genes-are-linked-with-the-characteristic-inverse-pattern-of-stomatal-opening-and-closing-during-cam/ )

Boyer J. S. (1965) – Effects of osmotic water stress on metabolic rates of cotton plants with open stomata – Plant Physiology 40: 229–234 – PMCID: PMC550271- PMID: 16656078 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC550271/ – (On our blog : https://plantstomata.wordpress.com/2019/04/18/osmotic-water-stress-on-metabolic-rates-of-leaves-with-open-stomata/ )

Boyer J. S. (1971) – Nonstomatal inhibition of photosynthesis in sunflower at low leaf water potentials and high light intensities – Plant Physiol. 48: 532–536 – DOI: 10.1104/pp.48.5.532http://www.plantphysiol.org/content/48/5/532https://www.ncbi.nlm.nih.gov/pubmed/16657833?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/08/24/the-degree-to-which-photosynthesis-under-high-light-was-affected-by-stomatal-and-nonstomatal-factors/ )

Boyer J. S. (1995) – Stomata and gas exchange – https://udspace.udel.edu/bitstream/handle/19716/2830/Chapter+8.+Stomata+and+Gas+Exchange.pdf?sequence=7 – (On our blog : https://plantstomata.wordpress.com/2021/04/04/stomata-and-gas-exchange/ )

Boyer J. (2015) – Why do plants with more access to water need more stomata? – [online] – Research Gate – https://www.researchgate.net/post/Why_do_plants_with_more_access_to_water_need_more_stomata

Boyle R. K. A., McAinsh M., Dodd I. C. (2016) – Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying – Physiol Plant 156(1): 84-96 – doi: 10.1111/ppl.12346 – Epub 2015 Jun 8 – https://pubmed.ncbi.nlm.nih.gov/25974219/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/stomatal-closure-in-response-to-soil-water-deficit/ )

Boza Espinoza T. E., Popp V., Kessler M. (2020) – Guard cell sizes and ploidy levels in Polylepis (Rosaceae) – Neotrop. Biodivers. 6: 178–192 – doi: 10.1080/23766808.2020.1844992https://www.tandfonline.com/doi/full/10.1080/23766808.2020.1844992 – (On our blog : https://plantstomata.wordpress.com/2021/08/31/guard-cell-sizes-and-ploidy-levels/ )

Bozoglu H., Karayel R. (2006) – Investigation of Stomata Densities in Pea (Pisum sativum L.) Lines/Cultivars – Online Journal of Biological Sciences 6 (2): 56-61 – ISSN 1608-4217 – https://thescipub.com/PDF/ojbsci.2006.56.61.pdf – (On our blog : https://plantstomata.wordpress.com/2019/07/17/stomata-densities-in-pea/ )

Bradbury D., Ennis W. B. Jr. (1952) – Stomatal closure in kidney bean plants treated with ammonium 2,4-dichlorophenoxyacetate – Amer. J. Bot. 39: 324-328 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-and-24-d/)

Bradford K. J., Hsiao T. C. (1982) – Stomatal behavior and water relations of waterlogged tomato plants – Plant Physiol. 70: 1508-1513 – doi: 10.1104/pp.70.5.1508https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065914/ – (On our blog : https://plantstomata.wordpress.com/2020/06/10/ethylene-induced-petiole-epinasty-develops-coincident-with-partial-stomatal-closure-in-waterlogged-plants/ )

Bradford K. J., Sharkey T. D., Farquhar G. D. (1983) – Gas exchange, stomatal behaviour, and d13C values of the flacca tomato mutant in relation to abscisic acid – Plant Physiol 72: 245–250 – https://doi.org/10.1104/pp.72.1.245http://www.plantphysiol.org/content/72/1/245.short – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-behavior-in-flacca-a-mutant-of-tomato/).

Brady K. (xxxx) – Challenging a Fine Balance – Dept. Biol. Univ. Washington. – (http://www.biology.washington.edu/newsletter/sum12/Keiko%20Torii.html) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/could-stomatal-patterning-be-manipulated-for-agricultural-purposes/)

Brady R. A., Goltz S. M., Powers W. L., Kanemasu E. T. (1975) – Relation of soil water potential to stomatal resistance of soybean – Agron. J. 67: 97-99 – https://doi.org/10.2134/agronj1975.00021962006700010030xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1975.00021962006700010030x – (On our blog : https://plantstomata.wordpress.com/2021/10/22/relationship-between-stomatal-resistance-and-soil-water-potential/ )

Brainerd K. E., Fuchigami L. H. (1982) – Stomatal functioning of in vitro
and greenhouse apple leaves in darkness, mannitol, ABA, and C02 –
J. Exp. Bot. 33: 388-392 – https://www.jstor.org/stable/23690368https://www.jstor.org/stable/23690368?seq=1 – (On our blog : https://plantstomata.wordpress.com/2021/03/23/stomatal-functioning-in-darkness-mannitol-aba-and-c02/ )

Branco Camargo M. A., Marenco R. A. (2012) – Growth, leaf and stomatal traits of crabwood (Carapa guianensis Aubl.) in central Amazonia – Revista Árvore 36(1): 7-16 – https://www.redalyc.org/pdf/488/48821985002.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/05/stomatal-traits-of-crabwood/ )

Brandt B., Brodsky D.E., Xue S., Negi J., Iba K., Kangasjärvi J., Ghassemian M., Stephan A. B., Hu H., Schroeder J. I. (2012) – Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action – Proc Natl Acad Sci USA 109: 10593–10598  – https://doi.org/10.1073/pnas.1116590109 – http://www.plantphysiol.org/content/178/1/441 – (On our blog : https://plantstomata.wordpress.com/2018/09/10/reconstitution-of-aba-activation-of-slac1-anion-channel-by-cpk6-and-ost1-kinases-in-stomata/

Brandt B., Munemasa S., Wang C., Nguyen D., Yong T., Yang P. G., Poretsky E., Belknap T. F., Waadt R., Alemán F., Schroeder J. I. (2015) –  Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells, eLife, 2015, 4  – http://elifesciences.org/content/4/e03599v1 – (On our blog : https://plantstomata.wordpress.com/2015/10/23/ca-aba-and-stomata/)

Braune W., Hartung W., Oelmüller R., Fischer W. (2000) – Functional Stomata in Non-photosynthetic, Non-ABA Accumulating leaves of a Gymnocladus Albino – Journal of Plant Physiology 15(5-6): 695-703 – DOI: 10.1016/S0176-1617(00)80234-5 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5f38faaf-58e6-39b6-92a1-1819611e3fe2 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/functional-stomata-giant-pores-in-non-photosynthetic-albino-leaves/)

Brearley J., Venis M. A., Blatt M. R . (1997) – The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. – Planta 203: 145–154 – (On our blog : https://plantstomata.wordpress.com/2016/03/21/co2-k-and-anion-channels-and-stomata/)

Bréda N., Cochard H., Dreyer E., Granier A. (1993) – Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress – Annals of Forest Science 50: 571–582 – DOI: 10.1051/forest:19930606 – https://www.afs-journal.org/articles/forest/abs/1993/06/AFS_0003-4312_1993_50_6_ART0006/AFS_0003-4312_1993_50_6_ART0006.html – (On our blog : https://plantstomata.wordpress.com/2018/10/10/transpiration-stomatal-conductance-and-vulnerability-to-cavitation/ )

Bréda N., Cochard H., Dreyer E., Granier A. (1993) – Water transfer in a mature oak stand (Quercus petraea): seasonal evolution and effects of a severe drought – Can J For Res 23: 1136-1143 – https://doi.org/10.1139/x93-144 – http://www.nrcresearchpress.com/doi/10.1139/x93-144 – (On our blog : https://plantstomata.wordpress.com/2018/12/01/sessile-oak-quercus-petraea-considered-as-drought-tolerant-because-of-adaptations-like-maintenance-of-significant-stomatal-conductance/

Bredmose N. B., Nielsen K. L. (2009) – Controlled atmosphere storage at high CO2 and low O2 levels affects stomatal conductance and influence root formation in Kalanchoe cuttings – Scientia Horticulturae 122(1): 91-95 – DOI: 10.1016/j.scienta.2009.03.017 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fb0f6431-3393-3d61-8300-daf3f07cc927 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/stomatal-conductance-and-high-co2-and-low-o2-levels/)

Bremer K. (2019) – Capturing the plant-water dynamics of corn – TU Delft – https://repository.tudelft.nl/islandora/object/uuid:b5dec4e7-da85-42d5-a614-80174a822ba0?collection=education – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomatal-conductance-and-leaf-water-potential-of-corn-during-the-growing-season/ )

Brennan E. (1975) – On exclusion as the mechanism of ozone resistance in virus-infected plants – Journal Series Paper No. 4432 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1975Articles/Phyto65n10_1054.PDF – (On our blog : https://plantstomata.wordpress.com/2021/10/01/93947/ )

Brennan J. (2017) – How Does CO2 Affect the Opening of Stomata? – Sciencing 2017-04-25 – https://sciencing.com/co2-affect-opening-stomata-20980.html – (On our blog : https://plantstomata.wordpress.com/2017/09/26/co2-and-the-opening-of-stomata/)

Bresta P., Nikolopoulos D., Economou G., Vahamidis P., Lyra D., Karamanos A.,  Karabourniotis G. (2011) – Modification of water entry (xylem vessels) and water exit (stomata) orchestrates long term drought acclimation of wheat leaves – Plant and Soil 347(1-2): 179-193 – DOI: 10.1007/s11104-011-0837-4 – https://www.infona.pl/resource/bwmeta1.element.springer-d529decb-208f-3557-a9c3-072cf8f9cc8a – (On our blog : https://plantstomata.wordpress.com/2017/10/08/modification-of-water-entry-xylem-vessels-and-water-exit-stomata-orchestrates-long-term-drought-acclimation/)

Brewer C. A. (1992) – Responses by stomata on leaves to microenvironmental conditions – In C. A. Goldman (Ed.), Tested Studies for Laboratory Teaching (pp. 67-75) – Proceedings of the 13th Workshop/Conference of the Association for Biology Laboratory Education (ABLE) –  191 pages – pp.68-75 –https://www.researchgate.net/profile/Carol-Brewer-2/publication/267838659_Chapter_3_Responses_by_Stomata_on_Leaves_to_Microenvironmental_Conditions/links/56f5583308ae81582bf2109f/Chapter-3-Responses-by-Stomata-on-Leaves-to-Microenvironmental-Conditions.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/21/88837/ )

Bright J., Desikan R., Hancock J. T., Weir I. S., Neill S. J. (2006) –  ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. – The Plant Journal 45: 113–122 – PMID:16367958 – http://dx.doi.org/10.1111/j.1365-313X.2005.02615.x  – (On our blog : https://plantstomata.wordpress.com/2015/09/08/strong-inter-relationship-between-aba-endogenous-h2o2-and-no-induced-stomatal-closure/)

Brillada C., Jiameng Zheng J., Rovira-Diaz E., Rojas-Pierce M., Kruger F., Askani J. C., Schumacher K. (2018) – Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants – Proceedings of the National Academy of Sciences – DOI: 10.1073/pnas.1807763115 – https://news.ncsu.edu/2018/08/hops-in-vacuole-fusion/ – (On our blog : https://plantstomata.wordpress.com/2018/08/23/vacuoles-control-the-opening-and-closing-of-stomata/ )

Brindley H. M. (1990) – Fluxes of 86Rb+ in “isolated” guard cells of Vicia faba L. – Planta 181: 432–439 – https://www.jstor.org/stable/23380579?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/11/fluxes-of-86rb-in-stomata/)

Bringmann M., Bergmann D. C. (2013) – Stomatal Patterning. – Encyclopedia of Life Sciences – DOI:10.1002/9780470015902.a0024691 – http://www.els.net/WileyCDA/ElsArticle/refId-a0020125.html – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-patterning-3/)

Bringmann M., Bergmann D. C. (2017) – Tissue-wide mechanical forces influence the polarity of stomatal stem cell in Arabidopsis – Curr. Biol. 27(6): 877-883 – http://dx.doi.org/10.1016/j.cub.2017.01.059 – https://www.infona.pl/resource/bwmeta1.element.elsevier-29084113-17b4-344d-95cd-7f91a36e79fb – (On our blog : https://plantstomata.wordpress.com/2017/10/22/mechanical-forces-influence-the-polarity-of-stomatal-stem-cells/)

Brinker M., Engelmann W., Kellmann J. W., Piechulla B. (2001) – Circadian rhythms of leaf and stomatal movements in gymnosperm species – Biol. Rhythm Res. 32(4): 471-478 – https://doi.org/10.1076/brhm.32.4.471.1329https://www.tandfonline.com/doi/abs/10.1076/brhm.32.4.471.1329 – (On our blog : https://plantstomata.wordpress.com/2020/11/30/a-circadian-clock-controls-leaf-and-stomatal-movements-in-gymnosperm-species/ )

Broadley M. R., Escobar-Gutierrez A. J., Burns A., Burns I. G. (2001) –  Nitrogen-limited growth of lettuce is associated with lower stomatal conductance – New Phytol. 152: 97–106 – https://doi.org/10.1046/j.0028-646x.2001.00240.x – https://www.jstor.org/stable/1353584?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/10/01/nitrogen-limited-growth-and-lower-stomatal-conductance/

Brock A. K., Willmann R., Kolb D., Grefen L., Lajunen H. M., Bethke G., Lee J., Nürnberger T., Gust A. A. (2010) – The Arabidopsis Mitogen-Activated Protein Kinase Phosphatase PP2C5 Affects Seed Germination, Stomatal Aperture, and Abscisic Acid-Inducible Gene Expression – Plant Physiol. 153: 1098–1111 – doi: 10.1104/pp.110.156109 – (On our blog : https://plantstomata.wordpress.com/2016/05/09/pp2c5-and-stomatal-aperture/)

Brodribb Lab Publications: https://wordpress.com/post/plantstomata.wordpress.com/64256

Brodribb T. J. (1996) – Dynamics of Changing Intercellular CO2 Concentration (ci) during Drought and Determination of Minimum Functional ci – Plant Physiology 111: 179-185 – https://doi.org/10.1104/pp.111.1.179 http://www.plantphysiol.org/content/111/1/179 – (On our blog : https://plantstomata.wordpress.com/2019/11/28/in-the-absence-of-patchy-stomatal-closure-ci-camin-gives-a-good-representation-of-the-drought-tolerance-of-foliage/ )

Brodribb T. J. (2012) – Passive valves or metabolic mouths? The evolution of stomatal physiology – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/the-ecological-atmospheric-and-physiological-implications-of-a-stomatal-evolutionary-model/ )

Brodribb T. J., Anfodillo T.  (2015) –  Transport efficiency through uniformity: Organization of veins and stomata in angiosperm leaves – New Phytologist 209(1) – DOI: 10.1111/nph.13577 – https://www.researchgate.net/publication/280585417_Transport_efficiency_through_uniformity_Organization_of_veins_and_stomata_in_angiosperm_leaves – (On our blog : https://plantstomata.wordpress.com/2018/01/20/organization-of-veins-and-stomata-in-angiosperm-leaves/ 

Brodribb T. J., Hill R. S. (1997) –  Imbricacy and stomatal wax plugs reduce maximum leaf conductance in southern hemisphere conifers. – Australian Journal of Botany 45: 657–668 – (On our blog : https://plantstomata.wordpress.com/2016/05/09/imbricacy-stomatal-wax-plugs-and-leaf-conductance/)

Brodribb T. J., Holbrook N. M. (2003) – Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. – Plant Physiology 132(4): 2166–2173 – DOI: https://doi.org/10.1104/pp.103.023879 – http://www.plantphysiol.org/content/132/4/2166 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/what-triggers-stomatal-closure-during-leaf-desiccation/)

Brodribb T. J., Holbrook N. M. (2004) – Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670 – https://doi.org/10.1111/j.1469-8137.2004.01060.xhttps://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01060.x – (On our blog : https://plantstomata.wordpress.com/2015/09/08/behaviour-of-stomata-in-pteridophytes-and-angiosperms/).

Brodribb T. J., Holbrook N. M. (2004) – Diurnal depression of leaf hydraulic conductance in a tropical tree species – Plant, Cell and Environment 27: 820-827 – (On our blog : https://plantstomata.wordpress.com/2015/09/08/diurnal-patterns-of-hydraulic-conductance-in-a-tropical-tree-species/).

Brodribb T. J., Holbrook N. M., Edwards E. J., Guttiérrez M. V. (2003) – Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees – Plant Cell Environ. 26(3): 443–450 – DOI: 10.1046/j.1365-3040.2003.00975.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.00975.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/09/stomatal-closure-leaf-turgor-and-xylem-vulnerability/)

Brodribb T. J., Jordan G.J. (2008) – Internal coordination between hydraulics and stomatal control in leaves – Plant Cell Environ. 31: 1557-1564 – http://dx.doi.org/10.1111/j.1365-3040.2008.01865.x – PMid:18684244 – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2008.01865.x – (On our blog : https://plantstomata.wordpress.com/2015/09/09/stomatal-control-in-leaves-and-hydraulics/).

Brodribb Lab – Stomatal Function and Evolution – http://www.brodribblab.org.au/research-areas/stomatal-function-and-evolution/ – (On our blog : https://plantstomata.wordpress.com/2017/01/03/stomatal-function-and-evolution-at-the-brodribb-lab/)

Brodribb T. J., McAdam S. A. M. (2011) – A Tale of Two Stomata – Science 331(6017): 509 – DOI: 10.1126/science.331.6017.509-ahttps://science.sciencemag.org/content/331/6017/509.1 – (On our blog : https://plantstomata.wordpress.com/2020/12/07/stomata-of-seed-bearing-plants-function-differently-than-those-of-spore-bearing-plants/ )

Brodribb T. J., McAdam S. A. M. (2011) – Passive origins of stomatal control in vascular plants – Science 331: 582-585 – doi: 10.1126/science.1197985 – Epub 2010 Dec 16 – PMID: 21163966 – (On our blog : https://plantstomata.wordpress.com/2015/09/09/different-behavior-of-stomata-in-early-vascular-plants-and-seed-plants/)

Brodribb T. J., McAdam S. A. M. (2012) – Fern and lycophyte guard cells do not respond to endogenous ABA – The Plant Cell 24: 1510–1521 – doi: 10.1105/tpc.112.096404https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398560/?report=reader#__ffn_sectitle – (On our blog : https://plantstomata.wordpress.com/2020/03/03/endogenous-aba-synthesized-by-ferns-and-lycophytes-plays-little-role-in-the-regulation-of-transpiration-with-stomata-passively-responsive-to-leaf-water-potential/ )

Brodribb T. J., McAdam S. A. M. (2012) – Stomatal (mis)behaviour – Tree Physiol. 31(10): 1039-1040 – doi: 10.1093/treephys/tpr100 – Epub 2011 Sep 24 – PMID: 21949027 – https://www.ncbi.nlm.nih.gov/pubmed/21949027 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-misbehaviour/ )

Brodribb T. J., McAdam S. A. M. (2013) – Abscisic acid mediates a divergence in the drought response of two conifers. – Plant Physiol. 162(3): 1370-1377 – doi: 10.1104/pp.113.217877 – Epub 2013 May 24 – PMID: 23709665 – http://www.brodribblab.org.au/wp-content/uploads/2014/05/ABA-and-drought-response-Plant-Phys-Brodribb-McAdam.pdf – (On our blog : https://plantstomata.wordpress.com/2016/02/19/two-contrasting-mechanisms-of-stomatal-regulation/).

Brodribb T. J., McAdam S. A. M. (2013) – Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling. – PLoS One 8(11): e82057 – doi: 10.1371/journal.pone.0082057 – eCollection 2013 – PMID: 24278470  – (On our blog : https://plantstomata.wordpress.com/2016/02/19/unique-responsiveness-of-angiosperm-stomata/).

Brodribb T. J., McAdam S. A. M. (2015) – Evolution in the smallest valves (stomata) guides even the biggest trees – Tree Physiol. 35(5): 451-452 – doi: 10.1093/treephys/tpv042 – PMID:-26041093 – https://academic.oup.com/treephys/article/35/5/451/1642114 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/different-ways-sister-species-respond-to-water-stress/ )

Brodribb T. J., McAdam S. A. M. (2017) – Evolution of the stomatal regulation of plant water content – Plant Physiology 174(2): 639-649 – DOI: 10.1104/pp.17.00078 – https://www.researchgate.net/publication/316111982_Evolution_of_the_stomatal_regulation_of_plant_water_content – (On our blog : https://plantstomata.wordpress.com/2017/06/25/the-function-of-early-stomata/)

Brodribb T. J., McAdam S. A. M., Carins Murphy M. R. (2017) – Xylem and Stomata, Coordinated Through Time and Space – Plant Cell and Environment 40: 872-880 – DOI: 10.1111/pce.12817 – https://www.researchgate.net/publication/306271326_Xylem_and_Stomata_Coordinated_Through_Time_and_Space – (On our blog : https://plantstomata.wordpress.com/2016/08/20/evolution-in-xylem-and-stomatal-function-and-their-interaction/)

Brodribb T. J., McAdam S. A. M., Jordan G. J., Feild T. S. (2009) – Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants – New Phytol. 183(3): 839-847 – doi: 10.1111/j.1469-8137.2009.02844.x – Epub 2009 Apr 23 – PMID: 19402882 –  – (On our blog : https://plantstomata.wordpress.com/2016/05/10/stomatal-responsiveness-to-co2-and-optimization-of-wue/)

Brodribb T. J., McAdam S. A., Jordan G. J., Martins S. C. ( 2014) – Conifer species adapt to low-rainfall climates by following one of two divergent pathways. – Proc Natl Acad Sci U S A. 111(40): 14489-14493 – doi: 10.1073/pnas.1407930111 – Epub 2014 Sep 22 – – https://www.ncbi.nlm.nih.gov/pubmed/25246559 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/the-simple-way-conifers-evolved-to-cope-with-water-shortage-a-critical-interaction-between-xylem-and-stomatal-tissues/)

Brodribb T. J., Sussmilch F., McAdam S. A. M. (2019) – From reproduction to production, stomata are the master regulators – The Plant Journal – Early View – Special Issue Article – https://doi.org/10.1111/tpj.14561https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14561 – (On our blog : https://plantstomata.wordpress.com/2019/11/21/stomata-are-the-master-regulators/)

Brogårdh T., Johnsson A. (1974) – Effects of Lithium on Stomatal Regulation – Zeitschr. Naturforsch C Biosci 29(5): 298-300 – file:///C:/Users/wille/Downloads/10.1515_znc-1974-5-622%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/04/an-action-of-lithium-on-a-much-more-rapid-oscillation-which-under-certain-circumstances-occurs-in-stomatal-regulation/ )

Brogårdh T., Johnsson A. (1975) – Effects of Magnesium, Calcium and Lanthanum Ions on Stomatal Oscillations in Avena sativa L. – Planta 124(1): 99-103 – https://www.jstor.org/stable/23371619https://www.jstor.org/stable/23371619?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/04/03/effects-of-mg-ca-and-la-ions-on-stomatal-oscillations/ )

Brookbank B. P., Patel J., Gazzarrini S., Nambara E. (2021) – Role of Basal ABA in Plant Growth and Development – Genes 12(12): 1936- 22pp. – https://doi.org/10.3390/genes12121936https://www.mdpi.com/2073-4425/12/12/1936 – (On our blog : https://plantstomata.wordpress.com/2022/01/26/aba-and-stomata/ )

Brosché M., Merilo E., Mayer F ., Pechter  P., Puzörjova I., Brader G ., Kangasjärvi J., Kollist H. (2010) – Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance – Plant Cell Environ. 33: 914-925 – DOI: 10.1111/j.1365-3040.2010.02116.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02116.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/10/the-role-of-stomata-in-regulating-o3-entry-and-damage/)

Brown A. B. (1931) – Effects of temperature on stomata ofexcised leaves of Zebrina pendulahttps://escholarship.mcgill.ca/concern/theses/8g84mq42khttps://escholarship.mcgill.ca/concern/theses/8g84mq42k?locale=en

Brown K. W., Jordan W. R., Thomas J. C. (1976) – Water stress induced alterations of the stomatal response to decreases in leaf water potential – Physiologia Plantarum 37: 1-5 – https://doi.org/10.1111/j.1399-3054.1976.tb01863.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1976.tb01863.x – (On our blog : https://plantstomata.wordpress.com/2019/12/10/water-stress-induced-alterations-of-the-stomatal-response-to-decreases-in-leaf-water-potential/ )

Brown K. W., Pratt G. W. (1965) – Stomatal inactivity in grasses -Southwest Naturalist 10(1): 48‐56 –

Brown K. W., Rosenberg N. J. (1970) – Effect of Windbreaks and Soil Water Potential on Stomatal Diffusion Resistance and Photosynthetic Rate of Sugar Beets (Beta vulgaris) – Agronomy Journal 62(1): 4-8 – https://doi.org/10.2134/agronj1970.00021962006200010002xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1970.00021962006200010002x – (On our blog : https://plantstomata.wordpress.com/2021/12/07/effect-of-windbreaks-and-soil-water-potential-on-stomatal-diffusion-resistance/ )

Brown K. W., Rosenberg N. J. (1970) – Influence of leaf age, illumination, and upper and lower surfaces on stomatal resistance of sugar beet (Beta vulgaris) leaves – Agron. J. 62: 20-24 – doi:10.2134/agronj1970.00021962006200010007x – https://dl.sciencesocieties.org/publications/aj/abstracts/62/1/AJ0620010020?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/12/influence-of-leaf-age-illumination-and-upper-and-lower-surfaces-on-stomatal-resistance/ )

Brown P. H., Outlaw W. H. (1982) – Effect of Fusicoccin on Dark 14CO2 Fixation by Vicia faba Guard Cell Protoplasts – Plant Physiol. 70(6): 1700–1703 – DOI: https://doi.org/10.1104/pp.70.6.1700 – – http://www.plantphysiol.org/content/plantphysiol/70/6/1700.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/12/effect-of-fusicoccin-on-dark-14co2-fixation-by-stomatal-protoplasts/

Brown W. V., Johnson S. C. (1962) – The fine structure of the grass guard cell – Am. J. Bot. 49: 110-115 – https://www.jstor.org/stable/2439025?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/11/13/structure-of-grass-stomata/)

Brown W. V., Pratt G. A. (1965) – Stomatal Inactivity in Grasses – The Southwestern Naturalist 10(1): 48-56 – https://www.jstor.org/stable/3669389 – (On our blog : https://plantstomata.wordpress.com/2021/12/11/differences-in-stomatal-opening-in-grasses/ )

Brownlee C. (2001) – The long and the short of stomatal density signals. -Trends Plant Sci 6:441-442. – DOI: http://dx.doi.org/10.1016/S1360-1385(01)02095-7 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/The-long-and-the-short-of-stomatal-density-signals.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/09/the-density-and-patterning-of-stomata-in-response-to-environmental-stimuli/)

Brownlee C. (2018) – Stomatal Physiology: Cereal Successes – Current Biology 28(9): R551-R553 – https://doi.org/10.1016/j.cub.2018.03.055https://www.sciencedirect.com/science/article/pii/S0960982218304135 – (On our blog : https://plantstomata.wordpress.com/2020/09/06/stomatal-physiology-cereal-successes/ )

Brüggemann L., Dietrich P., Becker D., Dreyer I., Palme K., Hedrich R. (1999) – Channel‐mediated high‐affinity K+ uptake into guard cells from Arabidopsis – Proceedings of the National Academy of Sciences USA 96: 3298-3302  -PMID: 10077678 PMCID: PMC15936 – https://www.ncbi.nlm.nih.gov/pubmed/10077678 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71187 )

Brüggemann L., Dietrich P., Dreyer I., Hedrich R. (1999) – Pronounced differences between the native K+ channels and KAT1 and KST1 alpha‐subunit homomers of guard cells – Planta 207: 370-376 – PMID: 9951733 – https://www.ncbi.nlm.nih.gov/pubmed/9951733 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/differences-between-the-native-k-channels-and-kat1-and-kst1-alpha%e2%80%90subunit-homomers-of-stomata/ )

Brugnoli E., Björkman O. (1992) – Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy – Planta 187: 335-347 – https://doi.org/10.1007/BF00195657https://link.springer.com/article/10.1007/BF00195657#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/18/influence-of-salinity-stress-on-stomatal-and-non-stomatal-components-of-photosynthesis/ )

Brugnoli E., Lauteri M. (1991) – Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes – Plant Physiology 95(2): 628-635 –  https://doi.org/10.1104/pp.95.2.628 – http://www.plantphysiol.org/content/plantphysiol/95/2/628.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/30/effects-of-salinity-on-growth-and-stomatal-conductance/)

Brun W. A. (1962) – Rhythmic stomatal opening responses in banana leaves – Physiol. Plant. 15: 623-630 – DOI: 10.1111/j.1399-3054.1962.tb08110.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1962.tb08110.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/19/rhythmic-stomatal-opening-responses/ )

Bruns H. N. (2016) – Flag Leaf Photosynthesis and Stomatal Function of Grain Sorghum as Influenced by Changing Photosynthetic Photon Flux Densities – International Journal of Agronomy 2016, Article ID 1363740, 6 pp. – http://dx.doi.org/10.1155/2016/1363740 – https://www.hindawi.com/journals/ija/2016/1363740/ – (On our blog : https://plantstomata.wordpress.com/2017/11/27/stomatal-function-of-grain-sorghum/)

Bucher S. F., Auerswald K., Grün-Wenzel C., Higgins S. I., Garcia Jorge J., Römermann C. (2017) – Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate – Flora 229: 107-115 – DOI: 10.1016/j.flora.2017.02.011 – https://www.infona.pl/resource/bwmeta1.element.elsevier-d3f42e76-ec23-32b1-9ab2-5bbdb53fa470 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/stomatal-traits-such-as-size-density-or-distribution-as-indicators/)

Bucher S. F., Auerswald K., Tautenhahn S., Geiger A., Otto J., Müller A., Römermann C. (2016) – Inter- and intraspecific variation in stomatal pore area index along elevational gradients and its relation to leaf functional traits – Plant Ecology. 217(3): 229-240 – https://www.masader.om/eds/detail?db=enr&an=114606250&isbn=13850237 – (On our blog : https://plantstomata.wordpress.com/2020/04/24/the-ecological-explanatory-power-of-the-stomatal-pore-area-index-spi-calculated-via-stomatal-size-and-density/ )

Büchsenschütz K., Marten I., Becker D., Philippar K., Ache P., Hedrich R. (2005) – Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex – Planta 222: 968– 976 – https://doi.org/10.1007/s00425-005-0038-6 https://link.springer.com/article/10.1007%2Fs00425-005-0038-6 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/differential-expression-of-k-channels-between-stomatal-guard-cells-and-subsidiary-cells/ )

Buckley C. R., Caine R. S., Gray J. E. (2020) – Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields? – Front. Plant Sci., 11 February 2020 – https://doi.org/10.3389/fpls.2019.01783https://www.frontiersin.org/articles/10.3389/fpls.2019.01783/full – (On our blog : https://plantstomata.wordpress.com/2020/03/07/can-genetic-manipulation-of-stomatal-density-protect-future-rice-yields/ )

Buckley T. N. (2005) – The control of stomata by water balance – New Phytol. 168(2): 275-292 – doi: 10.1111/j.1469-8137.2005.01543.x –  http://dx.doi.org/10.1111/j.1469-8137.2005.01543.x– (On our blog : https://plantstomata.wordpress.com/2015/08/25/stomata-and-water-balance/).

Buckley T. N. (2008) – The role of stomatal acclimation in modelling tree adaptation to high CO2 – Journal of Experimental Botany 59:1951–1961 – DOI:10.1093/jxb/erm234 – https://www.ncbi.nlm.nih.gov/pubmed/18000018 – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-acclimation-in-modelling-tree-adaptation-to-high-co2/ )

Buckley T. N. (2015) – The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves – Plant Cell Environ. 38(1): 7-22 – doi: 10.1111/pce.12372 – Epub 2014 Jun 16 – https://www.ncbi.nlm.nih.gov/pubmed/24836699?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/08/30/how-leaf-water-transport-from-xylem-to-stomata-is-influenced-by-light-absorption-temperature-and-differences-in-leaf-anatomy/ )

Buckley T. N. (2016) – Stomatal responses to humidity: has the ‘black box’ finally been opened? Commentary – Plant, Cell & Environment 39(3): 482–484 – http://buckleylab.ucdavis.edu/wp-content/uploads/sites/511/2018/01/buckley-2016-commentary-on-MacAdam-et-al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/19/black-box-of-stomatal-closure-some-mechanism-is-needed-to-amplify-guard-cell-turgor-loss-to-produce-stomatal-closure/

Buckley T. N. (2017) – Modeling stomatal conductance – Plant Physiol 174: 572–582 – DOI: https://doi.org/10.1104/pp.16.01772 – http://www.plantphysiol.org/content/174/2/572 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/models-of-stomatal-conductance-3/)

Buckley T. N. (2019) – How do stomata respond to water status? – New Phytologist 224: 21-36 – https://doi.org/10.1111/nph.15899https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15899?af=R – (On our blog : https://plantstomata.wordpress.com/2019/05/10/modelers-with-a-tractable-and-reliable-mechanistic-model-of-stomatal-responses-to-water-status/ )

Buckley T. N., Farquhar G. D., Mott K. A. (1997) – Qualitative effects of patchy stomatal conductance distribution features on gas exchange calculations. – Plant, Cell & Environment 20(7): 867–880 – DOI: 10.1046/j.1365-3040.1997.d01-128.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-128.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/patchy-stomatal-conductance-distribution-features-and-gas-exchange/)

Buckley T. N., Farquhar G. D., Mott K. A. (1999) – Carbon-water balance and patchy stomatal conductance – Oecologia 118: 132–143 – https://doi.org/10.1007/s004420050711 – https://link.springer.com/article/10.1007/s004420050711#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/19/carbon-water-balance-and-patchy-stomatal-conductance/ )

Buckley T. N., John G. P., Scoffoni C., Sack L. (2015) – How Does Leaf Anatomy Influence Water Transport outside the Xylem? – Plant Physiol. 168(4): 1616-1635 – doi: 10.1104/pp.15.00731 – Epub 2015 Jun 17 – https://www.ncbi.nlm.nih.gov/pubmed/26084922 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/the-role-of-stomata-and-anatomical-variation-in-leaf-function/ )

Buckley T. N., John G. P., Scoffoni C., Sack L. (2017) – The Sites of Evaporation within Leaves – Plant Physiology 173(3) : –  https://doi.org/10.1104/pp.16.01605 – http://www.plantphysiol.org/content/173/3/1763 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/evaporation-within-leaves-and-stomatal-and-leaf-hydraulic-conductances/)

Buckley T. N., Martorell S., Diaz‐Espejo A., Tomàs M., Medrano H. (xxxx) – Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera) – Plant, Cell & Environment 37(12): 2707-2721 – DOI: 10.1111/pce.12343 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-37-i-12-pce12343 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/is-stomatal-conductance-optimized-over-both-time-and-space-in-plant-crowns/)

Buckley T. N., Mott K. A. (2000) – Stomatal responses to non-local changes in PFD: evidence for long-distance hydraulic interactions – Plant, Cell and Environment 23: 301-309 – https://doi.org/10.1046/j.1365-3040.2000.00552.x  – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomatal-responses-to-non-local-changes-in-PFD–evidence-for-long-distance-hydraulic-interactions.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/27/stomatal-responses-to-non-local-changes/ )

Buckley T.N., Mott K.A. (2002) – Dynamics of stomatal water relations during the humidity response: implications of two hypothetical mechanisms. – Plant Cell Environ. 25: 407–419 – http://onlinelibrary.wiley.com/doi/10.1046/j.0016-8025.2001.00820.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/10/dynamics-of-stomatal-water-relations/)

Buckley T. N., Mott K. A. (2002) – Stomatal water relations and the control of hydraulic supply and demand – In: Esser K., Lüttge U., Beyschlag W., Hellwig F. (eds) Progress in Botany. Progress in Botany (Genetics — Physiology — Systematics — Ecology), Springer, Berlin, Heidelberg 63: 309–325 –  https://doi.org/10.1007/978-3-642-56276-1_12 – https://link.springer.com/chapter/10.1007/978-3-642-56276-1_12#citeas – (On our blog : https://plantstomata.wordpress.com/2018/08/27/stomatal-water-relations/

Buckley T.N., Mott K.A. (2013) – Modelling stomatal conductance in response to environmental factors – Plant Cell Environ. 36: 1691–1699 – doi:10.1111/pce.12140https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12140 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12140/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/stomatal-conductance-and-environmental-factors-2/)

Buckley T. N., Mott K. A., Farquhar G. D. (2003) – A hydromechanical and biochemical model of stomatal conductance. – Plant, Cell and Environment 26: 1767-1786 – DOI: 10.1046/j.1365-3040.2003.01094.x  – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.01094.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/01/07/models-of-stomatal-conductance-2/)

Buckley T. N., Roberts D. W. (2006) – How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?  – Tree Physiology 26: 145-157 – https://buckleylab.ucdavis.edu/wp-content/uploads/sites/511/2018/01/buckley-and-roberts-2006b-opti-SA-vs-LA.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/how-should-leaf-area-sapwood-area-and-stomatal-conductance-vary-with-tree-height-to-maximize-growth/ )

Buckley T. N., Sack L., Farquhar G. D. (2016) – Optimal plant water economy – DOI: 10.1111/pce.12823 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12823/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/20/plant-water-economy/)

Buckley T. N., Sack L., Gilbert M. E. (2011) – The role of bundle sheath extensions and life form in stomatal responses to leaf water status – Plant Physiology 156: 962–973 – https://doi.org/10.1104/pp.111.175638 –  http://www.plantphysiol.org/content/156/2/962 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/understanding-dynamic-stomatal-responses-to-water-status/ )

Buckley T. N., Schymanski S. (2014) – Stomatal optimisation in relation to atmospheric CO2 – New Phytologist 201: 372-377 – https://buckleylab.ucdavis.edu/wp-content/uploads/sites/511/2018/01/buckley-and-schymanski-2014-opti-gsw-vs-ca.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-optimisation-in-relation-to-atmospheric-co2/ )

Buckley T. N., Turnbull T. L., Adams M. A. (2012) – Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data – Plant, Cell & Environment 35: 1647–1662 – DOI: 10.1111/j.1365-3040.2012.02515.x  – https://www.ncbi.nlm.nih.gov/pubmed/22486530 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/simple-models-for-stomatal-conductance/ )

Buczek J. (1963) – On the metabolic aspects of the transpiration of leaves – Acta Societatis Botanicorum Poloniae XXXII(3): 511-530- file:///C:/Users/wille/Downloads/5742-10898-1-PB.pdf – On our blog : https://plantstomata.wordpress.com/2021/12/19/stomata-and-transpiration-5/ )

Budzan J. (1998) – Chloroplast number in stomata guard cells as a distinctive character of Galinsoga parviflora Pav. [2n-16] and Galinsoga ciliata [Rafin.] blake [2n-32] – Prace Naukowe Uniwersytetu Śląskiego w Katowicach 1998: 1696 – ISSN :0208-6336 – https://www.infona.pl/resource/bwmeta1.element.agro-article-391e655a-47b4-48e1-8683-782212781dc7 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/chloroplast-number-in-stomata-guard-cells-as-a-distinctive-character-of-galinsoga-species/)

Bugs C. A., Librelotto G. R., Mombach J. C. (2011) – A method to identify important dynamical states in Boolean models of regulatory networks: application to regulation of stomata closure by ABA in A. thaliana – BMC Genomics. 12 Suppl 4(Suppl 4): S10 – doi: 10.1186/1471-2164-12-S4-S10 – Epub 2011 Dec 22 – PMID: 22369581 – PMCID: PMC3287579 – https://pubmed.ncbi.nlm.nih.gov/22369581/ – (On our blog : https://plantstomata.wordpress.com/2022/03/07/regulation-of-stomata-closure-by-aba/ )

Büker P., Emberson L. D., Ashmore M. R., Cambridge H. M., Jacobs C. M. J., Massman W. J., Müller J., Nikolov N., Novak K., Oksanen E., Schaub M., de la Torre D. (2007) – Comparison of different stomatal conductance algorithms for ozone flux modelling – Environ. Pollut. 146: 726–735 – https://doi.org/10.1016/j.envpol.2006.04.007https://www.sciencedirect.com/science/article/abs/pii/S0269749106002764?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/05/26/comparison-of-different-stomatal-conductance-algorithms-for-ozone-%ef%ac%82ux-modelling/ )

Büker P., Morrissey T., Briolat A., Falk R., Simpson D., Tuovinen J.-P., Alonso R., Barth S., Baumgarten M., Grulke N., Karlsson P. E., King J., Lagergren F., Matyssek R., Nunn A., Ogaya R., Penuelas J., Rhea L., Schaub M., Uddling J., Werner W., Emberson L. D. (2012) – DO3SE modelling of soil moisture to determine ozone flux to forest trees – Atmos. Chem. Phys. 12: 5537–5562 – doi:10.5194/acp-12-5537-2012Comparison_of_different_stomatal_conduct.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/the-do3se-deposition-of-o3-for-stomatal-exchange-model-for-estimating-ozone-deposition-and-stomatal-flux/ )

Bunce J. A. (1985) – Effect of boundary layer conductance on the response of stomata to humidity – Plant, Cell and Environment 8: 55–57 –  https://doi.org/10.1111/j.1365-3040.1985.tb01209.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1985.tb01209.x – (On our blog : https://plantstomata.wordpress.com/2019/12/03/direct-epidermal-evaporation-controls-stomatal-guard-cell-behaviour-in-responses-of-stomata-to-vpd/ )

Bunce J. A. (1988) – Nonstomatal inhibition of photosynthesis by water stress. Reduction in photosynthesis at high transpiration rate without stomatal closure in field-grown tomato – Photosynthesis Research 18: 357-362 – https://doi.org/10.1007/BF00034840https://link.springer.com/article/10.1007%2FBF00034840#citeas – (On our blog : https://plantstomata.wordpress.com/2019/04/18/reduction-in-photosynthesis-at-high-transpiration-rate-without-stomatal-closure/ )

Bunce J. A. (1992) – Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of CO2 – Plant, Cell and Environment 15(5): 541-549 – DOI: 10.1111/j.1365-3040.1992.tb01487.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01487.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-conductance-and-elevated-concentration-of-co2/ )

Bunce J.A. (1997) – Does transpiration control stomatal responses to water vapour pressure deficit? – Plant Cell Environ. 20: 131–135 – (On our blog : https://plantstomata.wordpress.com/2016/05/12/11783/

Bunce  J. A. (1998) – Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration – Plant, Cell & Environ. 21: 115–120 – https://doi.org/10.1046/j.1365-3040.1998.00253.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00253.x – (On our blog : https://plantstomata.wordpress.com/2018/08/29/humidity-and-short-term-responses-of-stomatal-conductance/ )

Bunce J. A. (2000) – Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field – Global Change Biology 6: 371-382 – https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=40374&content=PDF – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-responses-to-light-humidity-and-temperature-at-3-co2-concentrations/ )

Bunce J. A. (2001) – Direct and acclamatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field – Global Change Biology 7: 323-331 – DOI: 10.1046/j.1365-2486.2001.00406.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.2001.00406.x – (On our blog : https://plantstomata.wordpress.com/2018/08/29/responses-of-stomatal-conductance-to-elevated-co2/ )

Bunce J. A. (2002) – Effects of humidity on short‐term responses of stomatal conductance to an increase in carbon dioxide concentration – Plant, Cell & Environment 21(1): – https://doi.org/10.1046/j.1365-3040.1998.00253.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00253.x – (On our blog : https://plantstomata.wordpress.com/2019/03/22/increase-in-co2-concentration-and-short%e2%80%90term-responses-of-stomatal-conductance/ )

Bunce J. A. (2004) – Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions – Oecologia, 140(1): 1-10 – DOI: 10.1007/s00442-003-1401-6 – https://www.ncbi.nlm.nih.gov/pubmed/14557864 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/co2-effects-on-stomatal-responses-to-the-environment/ )

Bunce J. A. (2006) – How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits? – Plant Cell Environ. 29: 1644–1650 – DOI: 10.1111/j.1365-3040.2006.01541.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01541.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/21/leaf-hydraulics-limiting-stomatal-conductance/ )

Bunce J. A. (2007) – Low carbon dioxide concentrations can reverse stomatal closure during water stress – Physiol. Plant. 130: 552–559 – doi: 10.1111/j.1399-3054.2007.00937.x – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/7062 )

Bunce J. A. (2010) – Variable responses of mesophyll conductance to substomatal carbon dioxide concentration in common bean and soybean – Photosynthetica 48: 507–512 – https://doi.org/10.1007/s11099-010-0067-7 – https://link.springer.com/article/10.1007/s11099-010-0067-7#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/11/variable-responses-of-mesophyll-conductance-to-substomatal-carbon-dioxide-concentration/

Bunce J. A. (2012) – Using New Gas Exchange Methods to Estimate Mesophyll Conductance and Non-stomatal Inhibition of Photosynthesis Caused by Water Deficits – HortScience 47(6): 687-690 – http://hortsci.ashspublications.org/content/47/6/687.full – (On our blog : https://plantstomata.wordpress.com/2018/09/23/new-gas-exchange-methods-to-estimate-mesophyll-conductance-and-non-stomatal-inhibition-of-photosynthesis/

Bunch A. (2021) – Drought surviving crops a step closer – Camden Haven Courier March 16, 2021 – https://www.camdencourier.com.au/story/7168380/drought-surviving-crops-a-step-closer/ – (On our blog : https://plantstomata.wordpress.com/2021/03/16/a-new-model-for-estimating-a-plants-gas-exchange-stomata-and-cuticle/ )

Bundy, M. G. R., Kosentka P. K., Willet A. H., Zhang L., Miller E., Shpak E. D. (2016) – A Mutation in the Catalytic Subunit of the Glycosylphosphatidylinositol Transamidase Disrupts Growth, Fertility, and Stomata Formation – Plant Physiol. 171(2): 974-985 – https://doi.org/10.1104/pp.16.00339 – http://www.plantphysiol.org/content/171/2/974 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/about-regulation-of-stomata-formation/)

Bünning E., Sagromsky H. (1948) – Die Bildung des Spaltoffnungsmusters in der Blattepidermis – 2. Naturforsch. 3b: 203-216 – https://books.google.be/books?id=RFOQBwAAQBAJ&pg=PA170&lpg=PA170&dq=Die+Bildung+des+Spaltoffnungsmusters+in+der+Blattepidermis&source=bl&ots=gL6WbLffYZ&sig=ACfU3U2QeRdfyiLf0uFFjeGeturPEFB4Yg&hl=en&sa=X&ved=2ahUKEwib8–ltrrvAhXKxqQKHSZBAbUQ6AEwBHoECAYQAw#v=onepage&q=Die%20Bildung%20des%20Spaltoffnungsmusters%20in%20der%20Blattepidermis&f=false – (On our blog : https://plantstomata.wordpress.com/2021/03/18/development-of-stomata-initials-in-the-epidermis-of-leaves/ )

Bureau IMAC (2016) – Importance of humidity for plant growth – Anthura May 2016 – https://www.anthura.nl/growing-advise/82466/?lang=en – (On our blog : https://plantstomata.wordpress.com/2018/01/24/keeping-the-stomata-open/ )

Burgerstein A. (1920) – Änderungen der Spaltöffnungsweite unter
dem Einfluss verschieder Bedingungen – Verhandl. zool. – bot. Ges. Wien. 70: 113-131 –

Burghardt M., Riederer M. (2003) – Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential – J. Environ. Biol. 54: 1941-1949 – https://doi.org/10.1093/jxb/erg195https://academic.oup.com/jxb/article/54/389/1941/534662 – (On our blog : https://plantstomata.wordpress.com/2016/05/12/cuticular-transpiration-and-stomatal-closure/ )

Burkhardt J. (2010) – Hygroscopic particles on leaves: Nutrients or desiccants? – Ecological Monographs 03/02/2010 – https://asknature.org/strategy/stomata-absorb-nutrients-from-aerosols/ – (On our blog : https://plantstomata.wordpress.com/2022/03/20/stomata-absorb-nutrients-from-aerosols/ )

Burkhardt J., Basi S., Pariyar S., Hunsche M. (2012) – Stomatal penetration by aqueous solutions—an update involving leaf surface particles –  New Phytol. 196: 774–787 – DOI10.1111/j.1469-8137.2012.04307.xhttps://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-196-i-3-nph4307 – (On our blog : https://plantstomata.wordpress.com/2021/01/28/the-stomatal-uptake-of-aqueous-solutions/ )

Burkhardt J., Eichert T. (2001) – Stomatal uptake as an important factor in foliar nutrition. In: Plant Nutrition. W.J. Horst et al. (Eds). Kluwer Academic Publisher, Dordrecht, Boston, London –

Burkhardt J., Hunsche M., Pariyar S. (2009) – Progressive wetting of initially hydrophobic plant surfaces by salts – a prerequisite for hydraulic activation of stomata? – The Proceedings of the International Plant Nutrition Colloquium XVI – https://escholarship.org/uc/item/2m09483m – (On our blog : https://plantstomata.wordpress.com/2022/01/10/crucial-influence-of-stomata-for-the-transport-of-ionic-substances-the-interaction-of-hygroscopic-salts-with-plant-water-relations-and-a-possible-mechanism-for-has-establishment/ )

Burnett E. C., Desikan R., Moser R. C., Neill S. J. (2000) – ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA – J. Exp. Bot. 51: 197–205 – doi: 10.1093/jexbot/51.343.197  – (On our blog : https://plantstomata.wordpress.com/2016/05/12/aba-ambp-kinase-and-stomata/ )

Burrows F. J., Milthorpe F. L. (1976) – Stomatal conductance in gas exchange control. In T. T. Kozlowski, ed. Water deficits and Plant Growth, Vol. 4, Acad. Press New York, pp. 103-152 –

Burschka C., Lange O. L., Hartung W.  (1985) – Effects of abscisic acid on stomatal conductance and photosynthesis in leaves of intact Arbutus unedo plants under natural conditions – Oecologia 67: 593-595 – https://doi.org/10.1007/BF00790033 – https://link.springer.com/article/10.1007%2FBF00790033#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/28/effects-of-aba-on-stomatal-conductance-under-natural-conditions/

Burschka C., Tenhunen J. D., Hartung W.  (1983) – Diurnal variations in abscisic acid content and stomatal response to applied abscisic acid in leaves of irrigated and non-irrigated Arbutus unedo plants under naturally fluctuating environmental conditions – Oecologia (Berlin) 58: 128–131 – DOI: 10.1007/BF00384552 –https://www.ncbi.nlm.nih.gov/pubmed/28310657 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/diurnal-variations-in-aba-content-and-stomatal-response-to-applied-aba-in-leaves-of-irrigated-and-non-irrigated-plants/

Busby C. H., Gunning B. E. S. (1980) – Observations on preprophase bands of microtubules in uniseriate hairs, stomatal complexes of sugar cane, and Cyperus root meristems – European Journal of Cell Biology 21: 214–223 – PMID: 7398662 – https://www.ncbi.nlm.nih.gov/pubmed/7398662 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/preprophase-bands-of-microtubules-in-stomatal-complexes/ )

Busby C. H., Gunning B. E. S. (1984) – Microtubules and morphogenesis in stomata of the water fern Azolla: an unusual mode of guard cell and pore development – Protoplasma 22: 108–119 – https://doi.org/10.1007/BF01279443 – https://link.springer.com/article/10.1007%2FBF01279443#citeas – (On our blog : https://plantstomata.wordpress.com/2018/09/04/an-unusual-mode-of-stomata-development/ )

Busch F. A. (2014) – Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain – Photosynth Res. 119(1-2): 131-140 – doi: 10.1007/s11120-013-9805-6 – Epub 2013 Mar 13 – https://pubmed.ncbi.nlm.nih.gov/23483292/ – (On our blog : https://plantstomata.wordpress.com/2022/01/03/the-red-light-response-of-stomatal-movement/ )

Busch H., Hedrich R. Raschke K. (1990) – External calcium blocks inward rectifier potassium channels in guard cell protoplasts in a voltage and concentration dependent manner (abstract No. 96) – Plant Physiol 93: S-17 –

Bush S. E., Pataki D. E., Hultine K. R., West A. G., Sperry J. S., Ehleringer J. R. (2008) – Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees – Oecologia 156: 13-20 – DOI:10.1007/s00442-008-0966-5http://sperry.biology.utah.edu/publications/bush2008.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/broad-patterns-of-stomatal-responses-to-humidity-based-on-systematic-differences-in-vulnerability-to-cavitation/ )

Büssis D., von Groll U., Fisahn J., Altmann T. (2006) – Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. – Funct Plant Biol 33: 1037–1043 – doi: 10.1071/FP06078 – (On our blog : https://plantstomata.wordpress.com/2016/05/12/stomatal-aperture-stomatal-density-and-growth-light-conditions/ )

Bussotti F., Grossoni P. (1997) – European and Mediterranean oaks (Quercus L.; Fagaceae): SEA4 characterization of the micromorphology of the abaxial leaf surface – Bot. J. Linn. Soc. 124: 183-198 – https://watermark.silverchair.com/j.1095-8339.1997.tb01789.x.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomata-in-european-and-mediterranean-oaks-quercus/ )

Butterfass T. (1958) – Die praktische Ermittelung des Ploidiegrads von Zuckerrüben durch Zahlen der SchliesszeIIen-Chloroplasten -Züchter ( Determination of the degree of polyploidy in sugar-beet by counting the chloroplasts in the guard cells) – Züchter 28 (7) : 309-3I4 – https://eurekamag.com/research/014/008/014008562.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/improved-techniques-for-making-chloroplasts-more-easily-visible/ )

Butterfass T. (1961) – Das Verhalten der Chloroplastenzahlen in den Schliesszellenpaaren von Zuckerrüben verschiedener Ploidiestufen vom Keimling bis zur blühenden Pflanze (The number of chloroplasts in the pairs of guard cells of sugar-beet of different grades of polyploidy from the seedling stage to the flowering plant) – Züchter 31: 62-71 – https://eurekamag.com/research/014/260/014260494.php – (On our blog : https://plantstomata.wordpress.com/2022/02/19/the-number-of-chloroplasts-in-the-pairs-of-guard-cells-of-sugar-beet-of-different-grades-of-polyploidy/ )

Butterfass T. (1961) – Die Chloroplasten Zahl als Merkmal – Berichte der Deutsche Botanische Gesellschaft 74(6): 217-218 –

Butterfass T. (1987) – The transverse orientation of stomata – Botanical Review, 53: 415-441 –

Buttery B. R., Gaynor J. D., Buzell R. I., Mactavish D. C., Armstrong R. J. (1992) – The effects of shading on kaempferol content and leaf characteristics of five soybean lines – Physiologia Plantarum, 86: 279–284 –  – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1992.860213.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-relationship-between-quantities-of-k9-and-stomatal-density/

Buttery B. R., Tan C. S., Buzzell R. I., Gaynor J. D., MacTavish D. C. (1993) – Stomatal numbers of soybean and response to water stress – Plant and Soil 149(2): 283–288 – https://doi.org/10.1007/BF00016619https://link.springer.com/article/10.1007/BF00016619 – (On our blog : https://plantstomata.wordpress.com/2020/04/22/plants-with-low-stomatal-frequency-are-unresponsive-to-irrigation-and-more-tolerant-of-water-stress/ )

Buttler L. K., Tibbitts T. W. (1979) : Stomatal mechanisms determining genetic resistance to ozone in Phaseolus vulgaris L. – Am. Soc. Horticult. Sci 104: 213-216 –

Buyun L. (2013) – Adaptative changes of leaf surface of tropical orchid Cattleya gaskelliana (N.E.Br. B.S. Williams) after transferring from in vitro to ex vitro conditions – Directory of Open Access Journals (Sweden) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/09/stomatal-traits-after-transferring-from-in-vitro-to-ex-vitro-conditions/ )

Caballero A., Roca E. (2018) – The importance of stomata – Stoller Blog – http://plantphysiologyblog.com/wp-content/uploads/2018/05/THE-IMPORTANCE-OF-STOMATA.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/08/the-importance-of-stomata/ )

Cabello J. V., Giacomelli J. I., Gómez M. C., Chan R. L. (2017) – The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants – J Biotechnol. 2257: 35-46 – doi: 10.1016/j.jbiotec.2016.11.017 – Epub 2016 Nov 22 – PMID: 27888122 – https://pubmed.ncbi.nlm.nih.gov/27888122/ – (On our blog : https://plantstomata.wordpress.com/2022/03/09/hahb11-transgenic-plants-closed-their-stomata-faster-and-lost-less-water-than-controls/ )

Cabral O. M. R., Roberts J., de Aguiar L. F. (1990) – Stomatal and boundary-layer conductances in an amazonian terra firme rain forest – J. Applied Ecology 27: 336-353 – DOI: 10.2307/2403590https://www.jstor.org/stable/2403590?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/10/24/stomatal-and-boundary-layer-conductances-2/ )

Cabrera J. C. B., Hirl J. C., Schäufele R., Macdonald A., Schnyder H. (2021) –  Stomatal conductance limited the CO2 response of grassland in the last century – BMC Biol 19: 50 – https://doi.org/10.1186/s12915-021-00988-4https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-021-00988-4#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/31/stomatal-conductance-limited-the-co2-response-of-grassland-in-the-last-century/ )

Cach-Pérez M. J., Andrade J. L., Cetzal-Ix W., Reyes-García C. (2016) – Environmental influence on the inter- and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula – Botanical Journal of the Linnean Society – Early View  – DOI: 10.1111/boj.12398http://onlinelibrary.wiley.com/doi/10.1111/boj.12398/abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/25/stomata-in-epiphytic-bromeliads/ )

Caglar S., Tekin H. (1999) – Farklı Pisticia anaclarına asılanan antep fıstıgı cesitlerinin stoma yogunlukları (The Stomata Density of Pistachio Cultivars on Different Pistacia Rootstocks) – Tur. J. Agri. Forest. 23: (Sup. 5): 1029-1032 –

Caglar S., Sütyemez M., Beyazıt S. (2004) – Secilmis bazı ceviz (Juglans regia) tiplerinin stoma yogunlukları (Stomatal density in some selected
walnut (Juglans regia) types) – Akdeniz Universitesi Ziraat Fakültesi Dergisi 17: 169-174 –

Cai S., Chen G., Wang Y., Huang Y., Marchant D. B., Wang Y., Yang Q., Dai F., Hills A., Franks P. J., Nevo E., Soltis D., Soltis P., Sessa E., Wolf P. G., Xue D., Zhang G. P., Pogson B. J., Blatt M. R. Chen Z.-H. (2017) – Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns – Plant Physiology · February 2017 – DOI: 10.1104/pp.16.01848 https://www.researchgate.net/publication/313950886_Evolutionary_Conservation_of_ABA_Signaling_for_Stomatal_Closure_in_Ferns?focusedCommentId=58b76d7382999cd4be08f8b7 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/aba-signaling-for-stomatal-closure-in-ferns/)

Cai S., Papanatsiou M., Blatt M. R., Chen Z.-H. ( 2017) – Speedy grass stomata: Emerging molecular and evolutionary features – Molecular Plant 10(7): 909–1018 – http://www.sciencedirect.com/science/article/pii/S1674205217301685 — https://www.researchgate.net/publication/317508978_Speedy_Grass_Stomata_Emerging_Molecular_and_Evolutionary_Features – (On our blog : https://plantstomata.wordpress.com/2017/06/12/speedy-grass-stomata/) – https://wordpress.com/post/plantstomata.wordpress.com/41088 )

Cai T., Dang Q.-L. (2002) – Effects of soil temperature on parameters of a coupled photosynthesis–stomatal conductance model – Tree Physiology 22: 819–827 – DOI: 10.1093/treephys/22.12.819 – https://www.ncbi.nlm.nih.gov/pubmed/12184971 – (On our blog : https://plantstomata.wordpress.com/2018/11/28/no-significant-relationships-between-soil-temperature-and-the-parameters-of-the-stomatal-conductance-model/

Caiazza N. A. Jr., Quinn J. A. (1980) – Leaf Morphology in Arenaria patula and Lonicera japonica Along a Pollution Gradient – Bulletin of the Torrey Botanical Club 107(1): 9-18 – https://doi.org/10.2307/2484845https://www.jstor.org/stable/2484845 – (On our blog : https://plantstomata.wordpress.com/2022/01/16/populations-of-arenaria-and-lonicera-exposed-to-the-highest-concentrations-of-pollutants-exhibited-the-lowest-stomatal-density-and-the-highest-trichome-density/ )

Caine R. S., Chater C. C., Kamisugi Y., Cuming A. C., Beerling D. J.,Gray J. E.,  Fleming A. J. (2016) – An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens – Development 2016 : doi: 10.1242/dev.135038http://dev.biologists.org/content/early/2016/06/09/dev.135038 – (On our blog : https://plantstomata.wordpress.com/2016/07/13/the-epftmmerecta-module-represents-an-ancient-stomatal-patterning-system/)

Caine R. S., Yin X., Sloan J., Harrison E. L., Mohammed U., Fulton T., Biswal A. K., Dionora J., Chater C. C., Coe R. A., Bandyopadhyay A., Murchie E. H., Swarup R., Quick W. P., Gray J. E. (2018) – Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions – New Phytol. Online Version of Record  – https://doi.org/10.1111/nph.15344 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15344 – (On our blog : https://plantstomata.wordpress.com/2018/07/26/rice-plants-with-fewer-stomata-are-drought-tolerant-and-more-conservative-in-their-water-use/ )

Caine R. S. (2019) – Making climate-ready rice – The Statesman, New Delhi | October 9, 2019 – https://www.thestatesman.com/supplements/science_supplements/making-climate-ready-rice-1502808055.html – (On our blog : https://plantstomata.wordpress.com/2019/10/11/81582/ )

Caird M. A., Richards J. H., Donovan L. A. (2007) – Night-time stomatal conductance and transpiration in C3 and C4 plants – Plant Physiol. 143(1): 4-10 – DOI: 10.1104/pp.106.092940 –  http://www.plantphysiol.org/content/plantphysiol/143/1/4.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/20/c3-and-c4-plants-nighttime-stomatal-conductance/ )

Caird M. A., Richards J. H., Hsiao T. C. (2007) – Significant transpirational water loss occurs throughout the night in field-grown tomato – Functional Plant Biology 34(3) 172-177 –https://doi.org/10.1071/FP06264https://www.publish.csiro.au/fp/fp06264 – (On our blog : https://plantstomata.wordpress.com/2022/02/01/stomatal-aperture-and-nighttime-water-loss/ )

Caiza J. C., Vargas D., Olmedo C., Arboleda M., Boada A., Acurio O.,  Debut A., Segovia-Salcedo M. C. (2018) – Morfometría y morfología de estomas y de polen como indicadores indirectos de poliploidía en especies del género Polylepis (Rosaceae) en Ecuador – Ecología Austral. 28: 175–187 – https://doi.org/10.25260/EA.18.28.1.1.528http://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/528 – (On our blog : https://plantstomata.wordpress.com/2021/09/01/morfometria-y-morfologia-de-estomas-del-genero-polylepis/ )

Calar S., Tekin H. (1999) – The stomata density of Pistachio cultivars on different Pistacia rootstocks – Tr. J. Agric. Forest. 23: 1029-1032 –

Calar S., Sutyemez M., Bayazit S. (2004) – Stomatal density in some selected walnut (Juglans regia) types – J. Fac. Agric. Akdeniz Univ. 17: 169-174 –

Calbo M. E. R., Moraes J. A. P. V. (1997) – Photosynthesis, stomatal conductance, transpiration and osmotic adjustment of buriti plants subjected to water stress – Braz. J. Plant Physiol. 9: 117-123 –

Calderón A., Sánchez-Guerrero A., Ortiz-Espín A., Martínez-Alcalá I., Camejo D., Jiménez A., Sevilla F. (2018) – Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants – Physiol Plant. 164(3):,251-267 – doi: 10.1111/ppl.12708 – Epub 2018 Jul 17 – PMID: 29446456 – https://pubmed.ncbi.nlm.nih.gov/29446456/ – (On our blog : https://plantstomata.wordpress.com/2022/09/23/under-salinity-the-mutants-presented-lower-water-loss-and-higher-stomatal-closure/ )

Caldwell R. M., Stone G. M. (1936) – Relation of stomatal function of wheat to invasion and infection of leaf rust (Puccinia triticina) – Journal of Agricultural Research 52(12): 917-932 – https://naldc.nal.usda.gov/download/IND43968845/PDF – (On our blog : https://plantstomata.wordpress.com/2022/01/26/open-or-closed-stomata-vs-invasion-and-infection-of-leaf-rust/ )

California Academy of Sciences – YouTube – Travel Deep Inside a Leaf – Annotated Version – https://youtu.be/pwymX2LxnQs – (On our blog: https://plantstomata.wordpress.com/2022/04/02/deep-inside-a-leaf/ )

Caligaris F. (2017) – Stomata And Wounds: The Constant Dilemma Of Pathogen Infection – Global Engage (blog) – Feb. 2017 – http://www.global-engage.com/agricultural-biotechnology/stomata-and-wounds-constant-dilemma-pathogen-infection/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/pathogen-infection-penetration-through-stomata-and-wounds/)

Calvin M., Benson A. A. (1948) – The Path of Carbon in Photosynthesis – Science 107: 476-480 – https://doi.org/10.1126/science.107.2784.476https://www.science.org/doi/10.1126/science.107.2784.476 – (On our blog : https://plantstomata.wordpress.com/2021/12/27/the-concept-of-the-mechanism-of-photorespiration-interaction-with-apoplastic-invertase-and-stomatal-apparatus-of-the-leaf-is-proposed/ )

Camargo M.A.B. (2009) –  Stomatal characteristics in tree species of Central Amazonia. Dissertação de Mestrado, Instituto Nacional de Pesquisas da Amazônia (INPA)/Universidade Federal do Amazonas, Manaus, Amazonas. 52 pp. [in Portuguese]

Camargo M. A. B. , Marenco R. A. (2011) – Density, Size and Distribution of Stomata in 35 Rainforest Tree Species in Central Amazonia. – Acta Amazonica 41: 205-212 (http://dx.doi.org/10.1590/S0044-59672011000200004) – (On our blog : https://plantstomata.wordpress.com/2015/10/18/stomata-in-rainforest-trees/)

Campany C. E., Tjoelker M. G., von Caemmerer S., Duursma R. A. (2016) – Coupled Response of Stomatal and Mesophyll Conductance to Light Enhances Photosynthesis of Shade Leaves under Sunflecks – Plant, Cell & Environment,  published online – DOI: 10.1111/pce.12841 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12841/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/12/stomatal-and-mesophyll-conductance/)

Campbell D. H. (1881) – On the development of the stomata of Tradescantia and Indian corn – The American Naturalist 15(10): 761-766 – https://www.jstor.org/stable/2448863?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/16/stomata-in-tradescantia-and-indian-corn/ )

Campos H., Trejo C., Pena-Valdivia C. B., Garcia-Nava R., Conde-Martinez F. V.,  Cruz-Ortega M. R. (2014) – Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: delayed restoration of photosynthesis during recovery – Environ. Exp. Bot. 98: 56–64 – doi: 10.1016/j.envexpbot.2013.10.015 – (On our blog : https://plantstomata.wordpress.com/2016/05/12/stomatal-and-non-stomatal-limitations/)

Campos M. L. (2020) – A novel regulator of stomatal immunity in tomato – Plantae September 16, 2020 – ORCID ID: 0000-0001-6235-5120 – https://plantae.org/a-novel-regulator-of-stomatal-immunity-in-tomato/ – (On our blog : https://plantstomata.wordpress.com/2021/03/25/tark1-and-important-future-avenues-for-the-development-of-pathogen-resistant-crops/ )

Camposeo S., Palasciano M., Vivaldi G. A., Godini A. (2011) – Effect of increasing climatic water deficit on some leaf and stomatal parameters of wild and cultivated almonds under Mediterranean conditions – Sci Hortic 127: 234–241 – https://doi.org/10.1016/j.scienta.2010.09.022 –https://www.sciencedirect.com/science/article/pii/S0304423810004450 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/effect-of-increasing-climatic-water-deficit-on-some-leaf-and-stomatal-parameters/ )

Cañamero R. C., Boccalandro H., Casal J., Serna L. (2006) – Use of confocal laser as light source reveals stomata-autonomous function –  PLoS ONE1:e36.10.1371/journal.pone.0000036 – https://doi.org/10.1371/journal.pone.0000036https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000036 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/the-stomata-autonomous-function-in-the-blue-light-response-and-the-implication-of-phot1-and-or-phot2-in-such-response/ )

Cândido-Sobrinho S. A., Lima V. F., Daloso D. M. (2019) – Guard cell metabolism – Book eLS – DOI: 10.1002/9780470015902.a0028343https://www.researchgate.net/publication/331912730_Guard_Cell_Metabolism – (On our blog : https://plantstomata.wordpress.com/2019/08/08/stomatal-guard-cell-metabolism/ )

Cañizares A., Sanabria M.E., Rodríguez D.A., Perozo Y. (2003) – Characteristic of the stomas index and stomatal density of leaves of Tahiti lime (Citrus latifolia Tanaka) grafted on eight citrus rootstocks – Características de los estomas, índice y densidad estomática de las hojas de lima Tahití (Citrus latifolia Tanaka) injertada sobre ocho patrones cítricos – Revista Científica UDO Agrícola 3(1): 59-64 – https://eurekamag.com/research/013/050/013050658.php – (On our blog : https://plantstomata.wordpress.com/2022/01/09/evaluation-of-stomatal-index-nest-and-stomatal-density-ie-characteristics-of-citrus-latifolia-grafted-on-citrus-rootstocks/ )

Cann A. J. (2015) – Stomatal density and aperture in non-vascular plants are non-responsive to above-ambient CO2 concentrations – Botany One – https://www.botany.one/2015/04/stomatal-density-and-aperture-in-non-vascular-plants-are-non-responsive-to-above-ambient-co2-concentrations/ – (On our blog : https://plantstomata.wordpress.com/2019/01/14/stomatal-density-and-aperture-and-above-ambient-co2-concentrations/  )

Cannavo P., Ali H.B., Chantoiseau E., Migeon C., Charpentier S., Bournet P. (2016) – Stomatal resistance of New Guinea Impatiens pot plants. Part 2: Model extension for water restriction and application to irrigation scheduling – Biosystems Engineering 149: 82-93 – DOI:10.1016/J.BIOSYSTEMSENG.2016.07.001https://www.sciencedirect.com/science/article/abs/pii/S1537511015303779?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/08/20/an-improved-stomatal-resistance-model-showed-that-reducing-irrigation-by-50-did-not-strongly-affect-plant-transpiration/ )

Cano F. J., Sánchez-Gómez D., Rodríguez-Calcerrada J., Warren C. R., Gil L., Aranda I. (2013) – Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers – Plant Cell Environ. 36(11): 1961-1980 – doi: 10.1111/pce.12103 – Epub 2013 Apr 25 – PMID: 23527762 – https://pubmed.ncbi.nlm.nih.gov/23527762/ – (On our blog : https://plantstomata.wordpress.com/2021/11/26/reduction-in-stomatal-and-mesophyll-conductances/ )

ČAŇOVÁ I., ĎURKOVIČ J., HLADKÁ D. (2008) – Stomatal and chlorophyll fluorescence characteristics in European beech cultivars during leaf development – Biol. Plant. 52: 577–581 –

Cantor B. M., Aigler B. V., Pace D. W., Reid S. B., Thompson C. Y.,
Gastaldo R. A. (2006) –
Intra- and Interspecific Variation in Stomatal Proxies for Quercus and Nyssa in the Subtropical Southeastern USA – Geological Society of America – Abstracts with Program 38(7): 487 –

Cantor B. M., Gastaldo R. A. (2007) – Historical records of stomatal indices
from Quercus and Nyssa from the southeastern USA – Geological Society of America – Abstracts with Programs 39(6): 301 –

Cao Z., Huang B., Wang Q., Xuan W., Ling T., Zhang B., Chen X., Nie L., Shen W. (2007) – Involvement of carbon monoxide produced by heme oxygenase in ABA- induced stomatal closure in Vicia faba and its proposed signal transduction pathway – Chin. Sci. Bull. 52: 2365–2373 – doi: 10.1007/s11434-007-0358-y – https://link.springer.com/article/10.1007/s11434-007-0358-y – (On our blog : https://plantstomata.wordpress.com/2018/02/21/co-produced-by-ho-is-involved-in-aba-induced-stomatal-closure/ )

Cao Z. Y., Li, W., Wang X. S. (1993) – Effect of ABA and environmental factors on the degree of stomatal opening in grape leaf in test tube – Acta Phytophysiol. Sin. 19: 371-378 –

Capellades M., Fontarneau R., Carulla C., Debergh P. (1990) – Environment influences anatomy of stomata and epidermal cells in tissue-cultured Rosa multiflora – J. Amer. Soc. Hort. Sci. 115: 141-145 – DOI: 10.21273/JASHS.115.1.141 – http://journal.ashspublications.org/content/115/1/141.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/effect-of-environment-on-stomata/)

Cardon Z. G., Berry J. A. (1992) – Effects of O2 and CO2 concentration in the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora – Plant Physiology 99: 1238–1244 – DOI: https://doi.org/10.1104/pp.99.3.1238 – http://www.plantphysiol.org/content/99/3/1238 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/both-o2-and-co2-can-serve-as-sinks-for-atp-and-nadph/ )

Cardon Z. G., Berry J. A., Woodrow I. E. (1994) – Dependence of the extent and direction of average stomatal response in Zea mays L. and Phaseolus vulgaris L. on the frequency of fluctuations in environmental stimuli – Plant Physiology 105: 1007-1013 – PMID: 12232261 – PMCID: PMC160752 – https://www.ncbi.nlm.nih.gov/pubmed/12232261 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/fluctuations-in-light-and-co2-and-their-frequency-can-be-critical-in-determining-time-averaged-stomatal-conductance-under-unstable-environmental-conditions/ )

Cardon Z. G., Mott K. A., Berry J. A. (1994) – Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated using gas-exchange techniques – Plant, Cell & Environment 17(9): 995-1007 – DOI: 10.1111/j.1365-3040.1994.tb02033.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb02033.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/dynamics-of-patchy-stomatal-movements/)

Cardoso A. A., Brodribb T. J., Kane C. N., DaMatta F. M., McAdam S. A. M. (2020) – Osmotic adjustment and hormonal regulation of stomatal responses to vapour pressure deficit in sunflower – AoB Plants 12(4):plaa025 – doi: 10.1093/aobpla/plaa025 – eCollection 2020 Aug – https://pubmed.ncbi.nlm.nih.gov/32665827/ – (On our blog : https://plantstomata.wordpress.com/2022/07/31/hormonal-regulation-of-stomatal-responses-to-vapour-pressure-deficit/ )

Cardoso A. A., McAdam S. A. M. (2019) – Misleading conclusions from exogenous ABA application: a cautionary tale about the evolution of stomatal responses to changes in leaf water status – Plant Signaling & Behavior 14(7) – https://doi.org/10.1080/15592324.2019.1610307https://www.tandfonline.com/doi/abs/10.1080/15592324.2019.1610307?af=R&journalCode=kpsb20 – (On our blog : https://plantstomata.wordpress.com/2019/08/24/stomatal-behavior-in-intact-plants-has-evolved-over-time/ )

Cardoso A. A., Randall J. M., Jordan G. J., McAdam S. A. M. (2018) – Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum – American Journal of Botany 105(12) – DOI: 10.1002/ajb2.1196 – https://www.researchgate.net/publication/329191719_Extended_differentiation_of_veins_and_stomata_is_essential_for_the_expansion_of_large_leaves_in_Rheum_rhabarbarum – (On our blog : https://plantstomata.wordpress.com/2018/12/13/extended-differentiation-of-veins-and-stomata-is-essential-for-the-expansion-of-large-leaves/ )

Cardoso A. A., Randall J. M., McAdam S. A. M. (2019) – Hydraulics regulates stomatal responses to changes in leaf water status in Athyrium filix-femina – Plant Physiology –  https://doi.org/10.1104/pp.18.01412http://www.plantphysiol.org/content/early/2018/12/11/pp.18.01412 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/functional-stomatal-responses-to-changes-in-leaf-water-status-in-ferns-are-regulated-by-leaf-hydraulics-and-not-metabolism/ )

Carignato A., Vazquez-Piqué J., Tapias R., Ruiz F., Fernandez M. (2019) – Variability and Plasticity in Cuticular Transpiration and Leaf Permeability Allow Differentiation of Eucalyptus Clones at an Early Age – Forests 11(9) – doi:10.3390/f11010009 – (On our blog : https://plantstomata.wordpress.com/2020/04/04/these-parameters-can-be-incorporated-into-genetic-selection-and-breeding-programs-especially-stomatal-control-under-moderate-water-stress/ )

Carins Murphy M. R., Dow G. J., Jordan G. J., Brodribb T. J. (2017) – Vein density is independent of epidermal cell size in Arabidopsis mutants – Functional Plant Biology – http://dx.doi.org/10.1071/FP16299 – https://www.researchgate.net/publication/312162425_Vein_density_is_independent_of_epidermal_cell_size_in_Arabidopsis_mutants – (On our blog : https://plantstomata.wordpress.com/2017/01/12/densities-of-leaf-minor-veins-and-stomata/)

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2014) – Acclimation to humidity modifies the link between leaf size and the density of veins and stomata – Plant, Cell & Environment 37: 124–131 – doi: 10.1111/pce.12136 – Epub 2013 Jun 10 – PMID: 23682831 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-37-i-1-pce12136 – (On our blog : https://plantstomata.wordpress.com/2015/01/30/stomata-during-leaf-acclimation/).

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2016) – Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade – Annals of Botany · August 2016 – DOI: 10.1093/aob/mcw167 – http://aob.oxfordjournals.org/content/early/2016/08/27/aob.mcw167.abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/03/cell-expansion-stomata-and-veins/)

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2017) – Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms – PLoS ONE 12(9): 1-18 – http://paperity.org/p/84413381/ferns-are-less-dependent-on-passive-dilution-by-cell-expansion-to-coordinate-leaf-vein–  http://en.hebut.findplus.cn/?h=articles&db=aph&an=125368852 – (On lour blog : https://plantstomata.wordpress.com/2017/09/29/passive-dilution-by-cell-expansion-to-coordinate-leaf-vein-and-stomatal-spacing/)

Carins Murphy M. R., McAdam S., Brodribb T. J. (2016) – Xylem and Stomata, Coordinated Through Time and Space – Plant Cell & Environment 2016 – DOI: 10.1111/pce.12817 – http://www.brodribblab.org.au/publication/xylem-and-stomata-coordinated-through-time-and-space/ – (On our blog : https://plantstomata.wordpress.com/2017/10/30/xylem-and-stomatal-tissues-maintain-a-safe-level-of-leaf-hydration/)

Carlson J. E., Adams C. A., Holsinger K. E. (2015) – Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub – Ann Bot 117(1): 195-207 – doi: 10.1093/aob/mcv146 – http://aob.oxfordjournals.org/content/117/1/195 – (On our blog : https://plantstomata.wordpress.com/2016/04/11/context-dependent-benefits-of-stomatal-density/)

Carlson J. E., Cristopher A. A., Kent E. H. (2016) – Intraspecific Variation in Stomatal Traits, LeafTraits, and Physiology Reflects Adaption along Aridity Gradients in A South African Shrub – Annals of Botany 117: 195-207 –

Carlson T. N. (1991) – Modeling stomlatal ressistance – Agric. Fot. Meteorol. 5: 303-388 –

Carminati A., Ahmed M. A., Zarebanadkouki M., Cai G., Lovric G., Javaux M. (2020) – Stomatal closure prevents the drop in soil water potential around roots – New Phytologist Trust 226(6): – https://doi.org/10.1111/nph.16451https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16451?af=R – (On our blog : https://plantstomata.wordpress.com/2020/07/15/stomatal-closure-prevents-the-drop-in-soil-water-potential-around-roots/ )

Carminati A., Javaux M. (2019) – Soil hydraulic constraints on transpiration – EGU General Assembly 2019 (Vienna, Austria – In: Geophysical Research Abstracts 21: 2019-5223 – (On our blog : https://plantstomata.wordpress.com/2019/06/01/soil-hydraulic-constraints-on-transpiration-and-stomata/ )

Carminati A., Javaux M. (2020) – Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought – Trends in Plant Science 25(9): 868-880 – https://doi.org/10.1016/j.tplants.2020.04.003https://www.cell.com/trends/plant-science/pdf/S1360-1385(20)30118-7.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138520301187%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2020/06/01/soil-hydraulic-conductivity-loss-is-the-primary-driver-of-stomatal-closure/ )

Carnicer J., Barbeta A., Sperlich D., Coll M., Penuelas J. (2013) – Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale – Front Plant Sci. 4: 409- – doi: 10.3389/fpls.2013.00409 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797994/ – (On our blog : https://plantstomata.wordpress.com/2019/03/19/different-responses-of-angiosperm-and-conifer-tree-growth-to-temperature-and-sensitivity-of-stomatal-conductance/ )

Carpenter R. J., McLoughlin S., Hill R. S., McNamara K. J., Jordan G. J. (2014) – Early evidence of xeromorphy in angiosperms: Stomatal encryption in a new eocene species of Banksia (Proteaceae) from Western Australia – American Journal of Botany 101(9): – https://doi.org/10.3732/ajb.1400191https://bsapubs.onlinelibrary.wiley.com/doi/full/10.3732/ajb.1400191 – (On our blog : https://plantstomata.wordpress.com/2020/05/22/stomatal-encryption-is-a-xeromorphic-trait-in-banksia/ )

Carpenter S., Smith N. (1975) – Stomatal distribution and size in southern Appalachian hardwoods – Can J Bot 53: 1153–1156 – https://doi.org/10.1139/b75-137http://www.nrcresearchpress.com/doi/10.1139/b75-137 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/stomatal-distribution-and-size-in-hardwoods/

Carr D. J., Carr S. G., Jahnke R. (1980) – Intercellular strands associated with stomata: stomatal pectic strands – Protoplasma 102: 177-182 – https://doi.org/10.1007/BF01276958 https://link.springer.com/article/10.1007/BF01276958#citeas – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-pectic-strands/ )

Carrasco M., Toledo P. A., Velázquez R., Bruno O. B. (2020) – Automatic Stomatal Segmentation Based on Delaunay-Rayleigh Frequency Distance – Plants 9: 1613 – doi:10.3390/plants9111613https://www.mdpi.com/2223-7747/9/11/1613/htm – (On our blog : https://plantstomata.wordpress.com/2021/12/06/an-optimal-threshold-level-so-that-a-high-percentage-of-stomata-can-be-detected-independent-of-the-size-and-shape-of-the-stomata/ )

Carroll J. C., Welton F. A. (1937) – Daily Periodicity of Stomata in Certain Species of Turf Grasses – Bot. Gaz. 99(2): 420-423 – https://www.jstor.org/stable/2471678?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/01/23/the-number-size-and-periodicity-of-the-stomata-of-five-species-of-grass/ )

Carroll S., Amsbury S., Durney C. H., Smith R. S., Morris R. J., Gray J. E. , Fleming A. J. (2022) – Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening – Current Biology – ISSN 0960-9822 –
https://doi.org/10.1016/j.cub.2022.05.042https://www.sciencedirect.com/science/article/pii/S0960982222008454 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/108126 )

Carson S., Gray J. E. (2008) – Influence of environmental factors on stomatal development – New Phytologist 178: 9–23 – https://doi.org/10.1111/j.1469-8137.2007.02351.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2007.02351.x – (On our blog : https://plantstomata.wordpress.com/2019/12/03/changes-in-the-environment-appear-to-act-by-modulating-the-developmental-and-patterning-pathways-to-determine-stomatal-frequency/ )

Carter G. A. (1998) – Reflectance Wavebands and Indices for Remote Estimation of Photosynthesis and Stomatal Conductance in Pine Canopies – Remote Sens. Environ. 63: 61–72 – https://doi.org/10.1016/S0034-4257(97)00110-7https://www.sciencedirect.com/science/article/abs/pii/S0034425797001107?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/05/02/stomatal-conductance-to-water-vapor-also-regressed-strongly-with-the-narrow-band-ratio/ )

Carter G. A., Smith W. K., Hadley J. L. (1988) – Stomatal conductance in three conifer species at different elevations during summer in Wyoming – Canadian Journal of Forestry Research 18: 242-246 – http://library.wrds.uwyo.edu/wrp/88-21/88-21.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/16/stomatal-conductance-at-different-elevations-during-summer/ )

Carter R., Woolfenden H., Baillie A., Amsbury S., Carroll S., Healicon E., Sovatzoglou S., Braybrook S., Gray J. E., Hobbs J., Morris R. J. , Fleming A. J. (2017) – Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells – Current Biology 27(19)2974-2983.e2 – DOI: 10.1016/j.cub.2017.08.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0b732584-2905-38fd-9987-52c0aeaa6897 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/new-insight-into-the-mechanics-of-stomatal-function/)

Cartica R. J., Quinn J. A. (1980) – Responses of Populations of Solidago sempervirens (Compositae) to Salt Spray Across a Barrier Beach – American Journal of Botany 67(8): 1236-1247 – https://doi.org/10.2307/2442366https://www.jstor.org/stable/2442366 – (On our blog : https://plantstomata.wordpress.com/2022/01/16/no-significant-differences-in-either-stomatal-or-trichome-density-were-found-among-populations-in-the-field/ )

Cartwright H. N., Humphries J. A., Smith L. G. (2009) – PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize – Science 323: 649–651 – DOI: 10.1126/science.1161686 – https://scinapse.io/papers/2067937627 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/pan1-and-an-extrinsic-signal-that-polarizes-asymmetric-smc-divisions-toward-gmcs-in-stomata/

Carvalho D. R.A., Fanourakis D., Correia M. J., Monteiro J. A., Araújo-Alves J. P. L., Vasconcelos M. W., Almeida D. P. F., Heuvelink E., Carvalho S. M. P. (2016) – Root-to-shoot ABA signaling does not contribute to genotypic variation in stomatal functioning induced by high relative air humidity – Environmental and Experimental Botany 123: 13-21 –  https://doi.org/10.1016/j.envexpbot.2015.11.001https://www.sciencedirect.com/science/article/abs/pii/S0098847215300289?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/01/10/root-to-shoot-aba-signaling-did-not-explain-variation-in-stomatal-functioning/ )

Carvalho D. R. A., Koning-Boucoiran C. F. S., Fanourakis D., Vasconcelos M. W., Carvalho S. M., Heuvelink E., Krens F. A., Maliepaard C. (2015) – QTL analysis for stomatal functioning in tetraploid Rosa × hybrida grown at high relative air humidity and its implications on postharvest longevity –  Mol. Breed. 35: 172 – https://doi.org/10.1007/s11032-015-0365-7 https://link.springer.com/article/10.1007%2Fs11032-015-0365-7 – (On our blog : https://plantstomata.wordpress.com/2020/11/15/a-first-step-toward-identifying-the-most-likely-regions-for-genes-of-interest-controlling-stomatal-functioning-in-high-rh-grown-plants/ )

Carvalho D. R. A., Torre S., Kraniotis D., Almeida D. P., Heuvelink E., Carvalho S. M. (2015) – Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity – Front Plant Sci. 6: 383 – doi: 10.3389/fpls.2015.00383 – PMID: 26074943 – PMCID: PMC4446533 – https://pubmed.ncbi.nlm.nih.gov/26074943/ – (On our blog : https://plantstomata.wordpress.com/2021/10/03/94024/ )

Carvalho D. R. A., Vasconcelos M. W., Lee S., Koning-Boucoiran C. F. S., Vreugdenhil D., Krens F. A., Heuvelink E., Carvalho S. M. P. (2016) – Gene expression and physiological responses associated to stomatal functioning in Rosa × hybrida grown at high relative air humidity – Plant Sci. 253: 154-163 – https://doi.org/10.1016/j.plantsci.2016.09.018https://www.sciencedirect.com/science/article/abs/pii/S016894521630512X – (On our blog : https://plantstomata.wordpress.com/2020/11/16/multiple-genes-form-a-highly-complex-regulatory-network-acting-together-towards-the-genotypic-tolerance-to-high-rh-and-physiological-responses-associated-to-stomatal-functioning/ )

Casado-García A., Del-Canto A., Sanz-Saez A., Pérez-López U., Bilbao-Kareaga A., Fritschi F., Miranda-Apodaca J., Muñoz-Rueda A., Sillero-Martínez A., Yoldi-Achalandabaso A., Lacuesta M., Heras J. (2020) – LabelStoma: A tool for stomata detection based on the YOLO algorithm – Comput. Electron. Agric. 178:105751 – doi: 10.1016/j.compag.2020.105751https://www.sciencedirect.com/science/article/abs/pii/S0168169920312977?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/05/02/labelstoma-an-open-source-and-simple-to-use-graphical-user-interface-that-employs-the-yolo-model-for-stomata-detection/ )

Casado-Garcia A., Heras J., Sanz-Saez A. (2019) – Google Colaboratory for Quantifying Stomata in Images – In: Moreno-Díaz R., Pichler F., Quesada-Arencibia A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science, vol 12014. Springer, Cham – https://doi.org/10.1007/978-3-030-45096-0_29https://link.springer.com/chapter/10.1007/978-3-030-45096-0_29#citeas – (On our blog : https://plantstomata.wordpress.com/2020/04/22/a-jupyter-notebook-in-google-colaboratory-that-allows-biologists-to-automatically-detect-stomata-in-their-images/ )

Case A. L., Curtis P. S., Snow A. A. (1998) – Heritable variation in stomatal responses to elevated CO2 in wild radish, Raphanus raphanistrum (Brassicaceae) – American Journal of Botany 85(2): – https://doi.org/10.2307/2446313https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.2307/2446313 – (On our blog : https://plantstomata.wordpress.com/2020/05/22/heritable-variation-for-stomatal-index-and-guard-cell-length/ )

Case S. (1994) – Leaf Stomata as Bioindicators of Environmental Change – Access Excellence – (On our blog : https://plantstomata.wordpress.com/2021/04/02/leaf-stomata-as-bioindicators-of-environmental-change/ )

Case S. (2004) – Leaf stomata as bio indicators : Stimulating Student Research   American Biology Teacher 68(2): 88-91 –  https://eric.ed.gov/?id=EJ745303 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/stomata-as-bioindicators/ )

Casnoff D. M., Green R. L., Beard J. B. (1989) – Leaf blade stomatal densities of ten warm-season perennial grasses and their evapotranspiration rates 129-131 – In: H. Takatoh (ed.). Proc. 6th Intl. Turfgrass Res. Conf., Tokyo, July 1989. Jpn. Soc. Turfgrass Sci.

Casson S. A., Franklin K. A., Gray J. E., Grierson C. S., Whitelam G. C., Hetherington A. M. (2009) – Phytochrome B and PIF4 regulate stomatal development in response to light quantity – Current Biology 19: 229–234 -(On our blog : https://plantstomata.wordpress.com/2016/05/13/phytochrome-b-and-pif4-light-quantity-and-stomatal-development/)

Casson S., Gray J. E. (2008) – Influence of environmental factors on stomatal development – New Phytol.  178: 9–23 – DOI: 10.1111/j.1469-8137.2007.02351.x  – (http://www.ncbi.nlm.nih.gov/pubmed/18266617) – (On our blog : https://plantstomata.wordpress.com/2015/09/13/changes-in-the-environment-and-stomatal-development/)

Casson S.A., Hetherington A.M. (2010) – Environmental regulation of stomatal development – Current Opinion in Plant Biology 13: 90-95 – http://dx.doi.org/10.1016/j.pbi.2009.08.005 – (On our blog : https://plantstomata.wordpress.com/2016/05/13/environmental-cues-for-stomata/)

Casson S.A., Hetherington A.M. (2014) – Phytochrome B is required for light-mediated systemic control of stomatal development – Curr. Biol. 24: 1216-1221 – https://doi.org/10.1016/j.cub.2014.03.074https://www.sciencedirect.com/science/article/pii/S0960982214003960 – (On our blog : https://plantstomata.wordpress.com/2020/07/29/phyb-acts-systemically-to-regulate-cell-fate-decisions-in-the-leaf-epidermis-stomatal-development/ )

Castorina G., Fox S., Tonelli C., Galbiati M., Conti L. (2016) – A novel role for STOMATAL CARPENTER 1 in stomata patterning – BMC Plant BiologyBMC series – open, inclusive and trusted 2016 16:172 – https://doi.org/10.1186/s12870-016-0851-z – https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0851-z – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-carpenter-1-in-stomata-patterning/)

Castro P., Puertolas J., Dodd I. C. (2019) – Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration – Environmental and Experimental Botany 159: 149– 156 – https://doi.org/10.1016/j.envexpbot.2018.12.020https://www.sciencedirect.com/science/article/abs/pii/S0098847218313844?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/11/21/shoot-to-root-aba-transport-limits-aba-accumulation-in-the-shoot-to-maintain-stomatal-opening-of-ww-plants/ )

Castro Valdecantos P., , Puertolas Simon J.., Dodd, I. C. (2019) – Stem girdling uncouples soybean stomatal conductance from leaf water potential by enhancing leaf xylem ABA concentration – Environmental and Experimental Botany 159: 146-156 – ISSN 0098-8472 – DOI: 10.1016/j.envexpbot.2018.12.020http://eprints.lancs.ac.uk/130442/ – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stem-girdling-uncouples-soybean-stomatal-conductance-from-leaf-water-potential/ )

Catsky ]., Chartier P., Djavanchir A. (1973) – Assimilation nette, utilisation de l’eau et microclimat d’un champ de mais. IV. Evolution diurne de la résistance stomatique et du déficit de saturation des feuilles ; conséquences sur la fixation du CO2 – Ann. agron. 24: 287 –

Cavender-Bares J., Sack L., Savage J. (2007) – Atmospheric and soil drought reduce nocturnal conductance in live oaks – Tree Physiology 27: 611–620 – https://www.cbs.umn.edu/sites/cbs.umn.edu/files/public/downloads/2007%20Cavender-Bares%20et%20al%20TreePhys.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/13/nocturnal-conductance-and-stomatal-refulation/ )

Çavuşoğlu K., Kılıç S., Kabar K. (2007) – Effects of pretreatments of some growth regulators on the stomata movements of barley seedlings grown under saline (NaCl) conditions – Plant Soil Environ. 53(12): 524–528 – http://www.agriculturejournals.cz/ N.publicFiles/00478.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/06/effects-of-growth-regulators-on-the-stomata-movements-under-nacl-conditions/)

CEC 09: Life Sciences Managed By UGC/CEC (2017) – Mechanism of opening and closing of stomata.mp4 – YouTube – University of Kashmir – https://www.youtube.com/watch?v=EmoBfKyc2VI – (On our blog : https://plantstomata.wordpress.com/2021/11/20/mechanism-of-opening-and-closing-of-stomata-mp4/ )

Cechin I., da Silva L. P., Ferreira E. T., Barrochelo S. C., de Melo F. PdSR., Dokkedal A. L. , Saldanha L. L. (2022) – Physiological responses of Amaranthus cruentus L. to drought stress under sufficient- and deficient-nitrogen conditions – PLoS ONE 17(7): e0270849 – https://doi.org/10.1371/journal.pone.0270849file:///C:/Users/wille/Downloads/journal.pone.0270849.pdf – (On our blog : https://plantstomata.wordpress.com/2022/07/21/six-days-of-water-stress-did-not-affect-dry-matter-but-increased-the-proline-under-high-nitrogen-and-negatively-affected-stomatal-conductance/ )

Ceciliato P. H. O., Zhang J., Liu Q., Shen X., Hu H., Liu C., Schäffner A. R.,, Schroeder J. I. (2019) – Intact leaf gas exchange provides a robust method for measuring the kinetics of stomatal conductance responses to abscisic acid and other small molecules in Arabidopsis and grasses – Plant Methods 2019 – https://doi.org/10.1186/s13007-019-0423-yhttps://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0423-y – (On our blog : https://plantstomata.wordpress.com/2019/05/31/method-for-measuring-the-kinetics-of-stomatal-conductance-responses-to-abscisic-acid/ )

Celik S. K., Tekeli G. (2017) – Salinity effects on carbon isotope discrimination of leaf and stomatal conductance of corn – Intl. J. Adv. Sci. Eng. Technol. 5: 48-51 –

Celine Z., Cecile R., Alain V., Hubert B., Rainer H., Yves P. (2012) – PHO1 Expression in Guard Cells Mediates the Stomatal Response to Abscisic Acid in Arabidopsis – Plant J. 72 (2): 199–211 – doi: 10.1111/j.1365-313X.2012.05058.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-313X.2012.05058.x – (On our blog : https://plantstomata.wordpress.com/2020/12/05/an-important-role-for-phosphate-and-the-action-of-pho1-in-the-stomatal-response-to-aba/ )

Cen W., Zhao W., Ma M., Lu S., Liu J., Cao Y., Zeng Z., Wei H., Wang S., Li R., Luo J. (2020) – The Wild Rice Locus CTS-12 Mediates ABA-Dependent Stomatal Opening Modulation to Limit Water Loss Under Severe Chilling Stress – Front. Plant Sci. 30 October 2020 – https://doi.org/10.3389/fpls.2020.575699https://www.frontiersin.org/articles/10.3389/fpls.2020.575699/full – (On our blog : https://plantstomata.wordpress.com/2022/01/20/chilling-tolerance-of-rice-was-associated-with-the-balance-of-water-uptake-and-loss-that-was-modulated-by-stomatal-movement-under-chilling-stress/ )

Cerioli S., Marocco A., Maddaloni M., Motto M., Salamini F. (1994) – Early event in maize leaf epidermis formation as revealed by cell lineage studies – Development 120: 2113- 2120 – http://dev.biologists.org/content/120/8/2113 – (On our blog : https://plantstomata.wordpress.com/2019/04/22/a-clonal-type-of-development-during-early-leaf-epidermis-formation/ )

Cernusak L. A., Goldsmith G. R., Arend M., Siegwolf R. T. W. (2019) – Effect of Vapor Pressure Deficit on Gas Exchange in Wild-Type and Abscisic Acid–Insensitive Plants – Plant Physiol. 181(4): – https://doi.org/10.1104/pp.19.00436http://www.plantphysiol.org/content/181/4/1573 – (On our blog : https://plantstomata.wordpress.com/2019/12/03/gas-exchange-responses-to-vapor-pressure-deficit-vpd-in-two-gray-poplar-lines-wild-type-and-abscisic-acid-insensitive-abi1-with-functionally-impaired-stomata/ )

Cernusak L. A., Ubierna N., Jenkins M. W., Garrity S. R., Rahn T., Powers H. H., Hanson D. T., Sevanto S., Wong S. C., McDowell N. G., FarquharG. D. (2018) – Unsaturation of vapour pressure inside leaves of two conifer species – Scientific Reports 8, Article number: 7667 – https://www.nature.com/articles/s41598-018-25838-2 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/stomatal-conductance-and-unsaturation-of-vapour-pressure-inside-leaves/ )

Cerqueira Y. M. (1992) – Efeito da deficiência de água na anatomia foliar
de cultivares de mandioca Manihot esculenta Crantz. Densidade
estomática – Sitientibus 10(1): 103-115 –

Cerutti A., Jauneau A., Auriac M.-C., Lauber E., Martinez Y., Chiarenza S., Leonhardt N., Berthomé R., Noël L. D. (2017) – Immunity at cauliflower hydathodes controls systemic infection by Xanthomonas campestris pv campestris – Plant Physiol 174: 700–716 – doi: 10.1104/pp.16.01852https://www.ncbi.nlm.nih.gov/pubmed/28184011 – (On our blog : https://plantstomata.wordpress.com/2019/04/18/arabidopsis-hydathode-pores-are-responsive-to-aba-and-light-similar-to-stomata/ )

Ceulemans R. I., Hinckley T. M., Impens I. (1989) – Stomatal response of hybrid poplar to incident light, sudden darkening and leaf excision – Physiologia Plantarum, Copenhagen 75(2): 174-182 – https://doi.org/10.1111/j.1399-3054.1989.tb06165.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1989.tb06165.x – (On our blog : https://plantstomata.wordpress.com/2018/11/29/stomatal-responses-to-incident-light-sudden-darkening-and-leaf-excision/

Ceulemans R. I., Impens I., Lemeur R., Moermans R., Samsuddin Z. (1978) – Water movement in the soil-poplar-atmosphere system. I. Comparative study of stomatal morphology and anatomy, and the influence of stomatal density and dimensions on the leaf diffusion characteristics in different poplar clones – Oecologia Plantarum 13: 1-12 –

Ceulemans R. I., Impens I., Lemeur R., Moermans R., Samsuddin Z. (1978) – Water-movement in soil-poplar-atmosphere system .2. comparative-study of transpiration regulation during water stress situations in 4 different poplar clones – Oecologia Plantarum 13(2): 139-146 – ISSN 0029-8557

Ceulemans R., Impens I., Imler R. (1988) – Stomatal conductance and stomatal behavior in Populus clones and hybrids – Canadian Journal of Botany 66(7): 1404-1414 – https://doi.org/10.1139/b88-196https://hal.archives-ouvertes.fr/hal-00884104v1/html_references – (On our blog : https://plantstomata.wordpress.com/2020/02/23/stomatal-conductance-and-stomatal-behavior-in-populus-clones-and-hybrids/ )

Ceulemans R., Impens I., Steenackers V. (1984) – Stomatal and anatomical leaf characteristics of 10 Populus clones – Canadian Journal of Botany – 1 March 1984 – https://doi.org/10.1139/b84-076https://cdnsciencepub.com/doi/10.1139/b84-076 – (On our blog : https://plantstomata.wordpress.com/2021/02/08/stomatal-and-anatomical-leaf-characteristics-of-10-populus-clones/ )

Ceulemans R. I., Van Praet L., Jiang X. N. (1995) – Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus) – New Phytologist 131: 99-107 – DOI: 10.1111/j.1469-8137.1995.tb03059.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1995.tb03059.x/full – (On our blog : https://plantstomata.wordpress.com/2018/01/03/effects-of-co2-enrichment-leaf-position-and-clone-on-stomatal-index/ )

Chabot J. F., Chabot B. (1977) – Ultrastructure of the epidermis and stomatal complex of balsam fir (Abies balsamea) – Can. J. Bot. 55: 1064-1075 – https://doi.org/10.1139/b77-125http://www.nrcresearchpress.com/doi/10.1139/b77-125 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/stomatal-complex-of-balsam-fir-abies-balsamea/ )

Chaerle L., Saibo N., Van Der Straeten D. (2005) – Tuning the pores: Towards engineering plants for improved water use efficiency – Trends Biotechnol. 23: 308–315 – DOI:https://doi.org/10.1016/j.tibtech.2005.04.005 – https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(05)00089-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0167779905000892%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/02/09/stomata-engineering-plants-for-improved-water-use-efficiency/ )

Chaffey N. (2001) – Stomata, down but not out – Trends in Plant Science 6(4): 144 – ISSN :1360-1385 – https://www.infona.pl/resource/bwmeta1.element.elsevier-05137a69-c74b-3c45-bf5d-8c8165d6e816 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/stomata-down-but-not-out/)

Chaffey N. (2016) – A fresh look at guard cell walls – AoB Blog – http://aobblog.com/2016/03/fresh-look-guard-cell-walls/ – (On our blog https://plantstomata.wordpress.com/2016/04/27/the-role-played-by-cellulose-microfibrils-within-the-walls-of-the-guard-cells-in-stomatal-opening/)

Chak R. K., Thomas T. L., Quatrano R. S., Rock C. D. (2000) – The genes ABI1 and ABI2 are involved in abscisic acid- and drought-inducible expression of the Daucus carota L. Dc3 promoter in guard cells of transgenic Arabidopsis thaliana (L.) Heynh. – Planta 210(6): 875-883 – doi: 10.1007/s004250050692https://pubmed.ncbi.nlm.nih.gov/10872217/ – (On our blog : https://plantstomata.wordpress.com/2021/04/25/dc3-gus-arabidopsis-is-a-tractable-system-in-which-to-study-tissue-specific-aba-and-drought-signalling-and-suggest-that-abi2-functions-predominantly-over-abi1-in-cor78-and-cor47-gene-expression-and-gu/ )

Chakravorty D., Trusov Y., Zhang W., Acharya B. R., Sheahan M. B., McCurdy D. W.,  Assmann S. M., Botella J. R. (2011) –  An atypical heterotrimeric G protein γ subunit is involved in guard cell K(+) channel regulation and morphological development in Arabidopsis thaliana –  Plant J. 67(5): 840-851 – DOI: 10.1111/j.1365-313X.2011.04638.x – https://www.ncbi.nlm.nih.gov/pubmed/21575088 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/a-g-protein-%ce%b3-subunit-agg3-that-modulates-morphological-development-and-aba-regulation-of-stomatal-aperture/ )

Chambers J. (2022) – In blazing heat, some plants open leaf pores — and risk death – https://www.sciencenewsforstudents.org/article/heat-wave-plants-leaf-pores-death – (On our blog : https://plantstomata.wordpress.com/2022/01/19/heat-and-stomata/ )

Chan C., Panzeri D., Okuma E., Tõldsepp K., Wang Y.-Y., Louh G.-Y., Chin T.-C., Yeh Y.-H., Yeh H.-L., Yekondi S., Huang Y.-H., Huang T.-Y., Chiou T.-J., Murata Y., Kollist H., Zimmerli L. (2020) – STRESS INDUCED FACTOR 2 Regulates Arabidopsis Stomatal Immunity Through Phosphorylation of the Anion Channel SLAC1 – https://doi.org/10.1105/tpc.19.00578https://plantae.org/a-closed-mouth-catches-no-pathogens-how-plants-sense-bacteria-and-regulate-stomata/ – (On our blog : https://plantstomata.wordpress.com/2022/03/20/a-closed-mouth-catches-no-pathogens-how-plants-sense-bacteria-and-regulate-stomata/ )

Chandler C. K., Lyrene P. M. (1982) – Relationship between guard cell length and ploidy in Vaccinium – HortScience 17: 53-54 –

Chang M., Cao J., Zhang Q., Chen W., Wu G., Wu L., Wang W., Wang X. (2022) – Improvement of stomatal resistance and photosynthesis mechanism of Noah-MP-WDDM (v1.42) in simulation of NO2 dry deposition velocity in forests – Geoscientific Model Development 15(2): 787-801 – https://doi.org/10.5194/gmd-15-787-2022https://gmd.copernicus.org/articles/15/787/2022/ – (On our blog : https://plantstomata.wordpress.com/2022/02/02/comparing-the-different-mechanisms-of-canopy-stomatal-resistance-and-leaf-nitrogen-limiting-factors/ )

Chang N.-K. (1981) – Active and passive behaviors of the guard cells for stomatal opening and closing in Heteromeres arbutifolia and Ferocactus acanthodes – Korean J. Ecology 4(3-4): 59-67 – http://koreascience.or.kr/article/JAKO198111919963918.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/30/active-and-passive-behaviors-of-stomatal-guard-cells/ )

Chaparro-Suarez I. G., Meixner F. X., Kesselmeier J. (2011) – Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture – Atmos. Environ. 45: 5742–5750 – https://doi.org/10.1016/j.atmosenv.2011.07.021https://www.sciencedirect.com/science/article/abs/pii/S1352231011007461?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/17/no-loss-of-no2-to-plant-surfaces-was-observed-under-stomatal-closure-and-species-dependent-differences-in-uptake-rates-could-be-clearly-related-to-stomatal-behavior/ )

Chapotin S. M., Razanameharizaka J. H., Holbrook N. M. (2006) – Baobab trees (Adansonia) in Madagascar use stored water to flush new leaves but not to support stomatal opening before the rainy season New Phytologist 169(3): 549-559 – https://doi.org/10.1111/j.1469-8137.2005.01618.xhttps://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2005.01618.x – (On our blog : https://plantstomata.wordpress.com/2019/09/26/baobab-trees-use-stored-water-to-flush-new-leaves-but-not-to-support-stomatal-opening/ )

Charlton W. A. (1988) – Stomata1 pattern in four species of monocotyledons – Ann Bot. 61: 611-621 –

Charlton W. (1990) – Differentiation in leaf epidermis of Chlorophytum comosum Baker – Annals of Botany 66: 567–578 – DOI 10.1093/oxfordjournals.aob.a088066 – https://www.jstor.org/stable/42758356 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-distribution-of-guard-mother-cell-formation/

Charrier G. (2022) – The hare and the tortoise: stomatal kinetics under light change in Poaceae crops – Plant Physiology 2022, kiac066 – https://doi.org/10.1093/plphys/kiac066https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiac066/6533460 – (On our blog : https://plantstomata.wordpress.com/2022/03/19/a-better-understanding-of-the-mechanisms-of-stomatal-kinetics-would-help-to-understand-whether-kclose-could-be-a-relevant-trait-for-the-selection-of-poaceae-crops/ )

Chasan R. (1995) – New openings into stomata – Plant Cell. 7: 1113-1115 – DOI: https://doi.org/10.1105/tpc.7.8.1113 http://www.plantcell.org/content/plantcell/7/8/1113.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/23/new-openings-into-stomata/) – General paper regarding studying of external signals altering cell behaviour.

Chastain D. R., Snider J. L., Collins G. D., Perry C. D., Whitaker J., Byrd S. A. (2014) – Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis – Journal of Plant Physiology 171(17): 1576–1585 – https://doi.org/10.1016/j.jplph.2014.07.014https://www.sciencedirect.com/science/article/abs/pii/S0176161714001977?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/02/19/water-deficit-primarily-limits-net-photosynthesis-by-decreasing-stomatal-conductance/ )

Chatelet D. S., Clement W. L., Sack L., Donoghue M. J., Edwards E. J. (2013) – The evolution of photosynthetic anatomy in Viburnum (Adoxaceae) – Int. J. Plant Sci. 174(9): 1277–1291 – DOI: 10.1086/673241https://donoghuelab.yale.edu/sites/default/files/chatelet_ijps2013.pdf – (On our blog : https://plantstomata.wordpress.com/2022/06/18/stomata-mesophyll-and-co2-diffusion/ )

Chater C. C., Caine R. S., Fleming A. J., Gray J. E. (2017) – Origins and evolution of stomatal development – Plant Physiology 174: 624–638 – DOI: 10.1104/pp.17.00183 – http://www.plantphysiol.org/content/174/2/624 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/the-story-of-stomatal-development-and-patterning-across-land-plant-evolution/)

Chater C. C., Caine R. S, Tomek M., Wallace S., Kamisugi Y., Cuming A. C., Lang D., MacAlister C. A., Casson S., Bergmann D. C., Decker E., Frank W., Gray J. E., Fleming A., Reski R., Beerling D. J. (2016) – Origin and function of stomata in the moss Physcomitrella patens – Nature Plants 2: 16179 – doi: 10.1038/nplants.2016.179 – PMID: 27892923 – https://www.ncbi.nlm.nih.gov/pubmed/?term=Chater+CC%2C+Caine+RS%2C+Tomek+M%2C+Wallace+S%2C+Kamisugi+Y%2C+Cuming – (On our blog : https://plantstomata.wordpress.com/2018/10/05/origin-and-function-of-stomata-in-a-moss/ )

Chater C., Covarrubias A., Acosta A. (2019) – Crop biotechnology for improving drought tolerance : targets, approaches, and outcomes – Project: Stomatal development and physiology of Phaseolushttps://www.researchgate.net/publication/336580159_Crop_biotechnology_for_improving_drought_tolerance_targets_approaches_and_outcomes – (On our blog : https://plantstomata.wordpress.com/2019/12/03/the-current-targets-for-crop-plant-improvement-under-drought-with-modifications-in-rooting-shoot-stomatal-and-photosynthetic-systems-and-finally-nutrient-transport-and-sink-strength/ )

Chater C. C., Gray J. E. (2015) – Stomatal Closure: The Old Guard Takes Up the SLAC – Current Biology 25(7): 271-273 – DOI:https://doi.org/10.1016/j.cub.2015.01.03https://www.cell.com/current-biology/fulltext/S0960-9822(15)00063-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982215000639%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2020/01/22/moss-supports-an-early-origin-for-slac-mediated-active-stomatal-control/ )

Chater C. C., Gray J. E., Beerling D. J. (2013) – Early evolutionary acquisition of stomatal control and development gene signalling networks. – Curr Opin Plant Biol 16: 638–646 – DOI: 10.1016/j.pbi.2013.06.013 – https://www.ncbi.nlm.nih.gov/pubmed/23871687 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/stomatal-responses-probably-originated-early-in-land-plant-evolution/ )

Chater C., Kamisugi Y., Movahedi M., Fleming A., Cuming A. C. Gray J. E., Beerling D. J. (2011) – Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution  Curr Biol 21: 1025-1029 – doi:10.1016/j.cub.2011.04.032 – (On our blog : https://plantstomata.wordpress.com/2015/09/13/stomatal-behavior-in-early-land-plants-and-flowering-plants/).

Chater C., Oliver J., Casson S., Gray J. E. (2014) – Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development – New Phytol. 202(2): 376-391 – doi: 10.1111/nph.12713 – Epub 2014 Mar 10 – https://www.researchgate.net/publication/260680150_Putting_the_brakes_on_Abscisic_acid_as_a_central_environmental_regulator_of_stomatal_development – (On our blog : https://plantstomata.wordpress.com/2016/04/07/aba-and-stomatal-traits/)

Chater C., Peng K., Movahedi M., Dunn J. A., Walker H. J., Liang Y.-K., McLachlan D. H., Casson S., Isner J. C., Wilson J., Neill S. J., Hedrich R., Gray J. E,  Hetherington A. M. (2015) – Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling – Current Biology 25(20): 2709–2716 –  http://dx.doi.org/10.1016/j.cub.2015.09.013 – (On our blog : https://plantstomata.wordpress.com/2016/03/13/elevated-co2-induced-responses-in-stomata/)

Chatterjee J., Thakur V., Nepomuceno R., Coe R. A., Dionora J., Elmido- Mabilangan A., Llave A. D., Reyes A. M. D., Monroy A. N., Canicosa I., Bandyopadhyay A., Jena K. K., Brar D. S., Quick W. P. (2020) – Natural Diversity in Stomatal Features of Cultivated and Wild Oryza Species – Rice 13: 58 (2020) – https://doi.org/10.1186/s12284-020-00417-0https://link.springer.com/article/10.1186/s12284-020-00417-0#citeas – (On our blog : https://plantstomata.wordpress.com/2020/11/19/stomata-are-a-potential-target-for-modifying-the-currently-low-water-use-efficiency-in-domesticated-rice/ )

Chaudhari H. K., Barrow J. R. (1975) – Identification of Cotton Haploids by Stomatal Chloroplast‐count Technique – Crop Science 15(6): 760-763 – https://doi.org/10.2135/cropsci1975.0011183X001500060006x  – https://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1975.0011183X001500060006x – (On our blog : https://plantstomata.wordpress.com/2021/03/28/identification-of-cotton-haploids-by-stomatal-chloroplast%e2%80%90count/ )

Chaves M. M., et al. (2002) – How plants cope with water stress in the field. Photosynthesis and growth – Annals of Botany 89: 907-916 –

Chaves M. M., Costa J. M., Zarrouk O., Pinheiro C., Lopes C. M., Pereira J. S. (2016) – Controlling stomatal aperture in semi-arid regions—The dilemma of saving water or being cool? – Plant Science 251: 54-64 – https://doi.org/10.1016/j.plantsci.2016.06.015https://www.sciencedirect.com/science/article/pii/S0168945216301340?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/03/07/controlling-stomatal-aperture-in-semi-arid-regions/ )

Chavez D. J., Lyrene P. M. (2009) – Production and Identification of Colchicine-derived Tetraploid Vaccinium darrowii and Its Use in Breeding – Journal of the American Society for Horticultural Science 134(3): 356-363 – https://doi.org/10.21273/JASHS.134.3.356https://journals.ashs.org/jashs/view/journals/jashs/134/3/article-p356.xml – (On our blog : https://plantstomata.wordpress.com/2022/01/05/the-crosses-between-colchicine-treated-vaccinium-darrowii-plants-and-tetraploid-highbush-blueberry-cultivars-confirmed-the-information-obtained-by-stomata-and-pollen-screening/ )

Cheeseman J. M. (1991) – PATCHY: simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies – Plant, Cell & Environment 14: 593–599 – https://doi.org/10.1111/j.1365-3040.1991.tb01530.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01530.x – (On our blog : https://plantstomata.wordpress.com/2018/04/13/the-effects-of-stomatal-patchiness-on-photosynthetic-co2-exchange-studies/ )

Cheeseman J. M., Edwards M., Meidner H. (1982) – Cell Potentials and Turgor Pressures in Epidermal Cells of Tradescantia and Commelina – Journal of Experimental Botany 33(4): 761–770 – https://doi.org/10.1093/jxb/33.4.761https://academic.oup.com/jxb/article-abstract/33/4/761/453628?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/08/08/the-fluctuations-of-%cf%88cell-were-unrelated-to-k-movement-and-thus-probably-to-stomatal-movement-as-well/ )

Chel’cova L. P. (1957) – Cytological data on the development of leaf stomata in wheat. – Dokl. Akad. Nauk SSSR (NS). 113. 1372-5. – [Seen in Napp-Zinn, K. 1974 Blatt.

Chen A. (1972) – Use of leaf resistance& for predicting irrigation scheduling – MScThesis Kansas State University, Manhattan, Kansas – file:///C:/Users/wille/Downloads/LD2668T41972C51.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/31/stomata-act-as-a-main-outlet-for-transpiration-and-reflect-the-actual-response-of-the-plant-to-the-water-status/ )

Chen C., Xiao Y.-G., Li X., Ni M. (2012) – Light-regulated stomatal aperture in Arabidopsis – Molecular Plant 5(3): 566–572 – DOI: 10.1093/mp/sss039 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1a464cb0-a4ee-35d9-bb65-f06e996eccc1 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/light-regulated-stomatal-aperture/)

Chen C.-C., Chen Y.-R. (2005) – Study on laminar hydathodes of Ficus formosana (Moraceae) I. Morphology and ultrastructure – Bot. Bull. Acad. Sin. 46(3): 205-215.

Chen C.-C., Chen Y.-R. (2006) – Study on laminar hydathodes of Ficus formosana (Moraceae) II. Morphogenesis of hydathodes. Bot. Stud. 47: 279-292 –

Chen C.-C., Chen Y.-R. (2007) – Study on laminar hydathodes of Ficus formosana (Moraceae) III. Salt injury of guttation on hydathodes – Bot. Stud. 48: 215-226 –

Chen C.-C., Chen Y.-R. (2016) – Study on the laminar hydathodes of Ficus formosana (Moraceae) IV. Coated vesicles endocytosis is one of the retrieval mechanisms of epithem during guttation – Taiwania 61(3): 194-200 –

Chen C.-C., Chen Y.-R. (2019) – Study on the laminar hydathodes of Ficus formosana (Moraceae) V.: Divergent evolution between stomata and water pores – Taiwania 64(2): 149-162 – DOI: 10.6165/tai.2019.64.149http://tai2.ntu.edu.tw/taiwania/pdf/tai.2019.64.149.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/23/divergent-evolution-between-stomata-and-water-pores/ )

Chen D., Cao Y., Li H., Kim D., Ahsan N., Thelen J., Stacey G. (2017) – Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture – Nature Communications 8, Article number: 2265  – doi:10.1038/s41467-017-02340-3 – https://www.nature.com/articles/s41467-017-02340-3 – (On our blog : https://plantstomata.wordpress.com/2018/01/02/dorn1-regulates-stomatal-closure-and-bacterial-defense/)

Chen D.-H., Acharya B., Liu W., Zhang W. (2013) –  Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks – Plants 2(4): 615 – doi:10.3390/plants2040615 – http://www.mdpi.com/2223-7747/2/4/615/pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/13/calcium-and-actin-in-stomata/)

Chen D.-H., Liu H. P., Li C. L. (2019) – Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis – Plant Mol Biol. 99(1-2): 113-122 – doi: 10.1007/s11103-018-0805-y – Epub 2018 Dec 8 – https://www.ncbi.nlm.nih.gov/pubmed/30536042 – (On our blog : https://plantstomata.wordpress.com/2019/09/08/the-role-of-cpk9-in-stomatal-guard-cells-and-the-need-of-both-cpk9-and-cpk33-for-accurate-guard-cell-function/ )

Chen G., Sun W. B., Sun H. (2009) – Morphological characteristics of leaf epidermis and size variation of leaf, flower and fruit in different ploidy levels in Buddleja macrostachya (Buddlejaceae) – J. Syst. and Evo. 47(3): 231-236 –

Chen G., Wang Y., Wang X., Yang Q., Quan X., Zeng J., Dai F., Zeng F., Wu
F., Zhang G. (2018)
– Leaf epidermis transcriptome reveals drought-Induced
hormonal signalling for stomatal regulation in wild barley – Plant Growth
Regulation 1-16 –

Chen J. W., Zhang Q., Li X. S., Cao K. F. (2010) – Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery – Tree Physiol. 30(7): 876-885 – doi: 10.1093/treephys/tpq043 – Epub 2010 Jun 1 – PMID: 20516484 – https://pubmed.ncbi.nlm.nih.gov/20516484/ – (On our blog : https://plantstomata.wordpress.com/2022/08/26/stomatal-closure-effectively-reduces-the-risk-of-xylem-dysfunction-in-water-stressed-plants-at-the-cost-of-gas-exchange/ )

Chen L., Dodd I. C., Davies W. J., Wilkinson S. (xxxx) – Ethylene limits abscisic acid‐ or soil drying‐induced stomatal closure in aged wheat leaves – Plant, Cell & Environment 36(10): 1850-1859 – DOI: 10.1111/pce.12094 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-36-i-10-pce12094 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/diminished-stomatal-responses-to-soil-moisture-deficit-in-older-leaves/)

Chen L., Guan L., Qian P., Xu F., Wu Z., Wu Y., He K., Gou X., Li J., Hou S. (2016) – NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis – Development 143: 1600–1611 – doi: 10.1242/dev.129098https://dev.biologists.org/content/143/9/1600 – (On our blog : https://plantstomata.wordpress.com/2020/05/03/nrpb3-serves-as-an-acceptor-for-signals-from-transcription-factors-involved-in-stomatal-development/ )

Chen L., Wu Z., Hou S. (2020) – SPEECHLESS Speaks Loudly in Stomatal Development – Front. Plant Sci., 21 February 2020 – https://doi.org/10.3389/fpls.2020.00114https://www.frontiersin.org/articles/10.3389/fpls.2020.00114/full – (On our blog : https://plantstomata.wordpress.com/2020/05/03/reinforcing-the-idea-that-spch-is-the-central-molecular-hub-for-stomatal-development/ )

Chen L., Zhao M., Wu Z., Chen S., Rojo E., Luo J., Li P., Zhao L., Chen Y., Deng J., Cheng B., He K., Gou X., Li J., Hou S. (2021) – RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana – New Phytol. 230: 171–189 – doi: 10.1111/nph.17004https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17004 – (On our blog : https://plantstomata.wordpress.com/2021/12/02/the-role-of-rima-and-other-rpaps-in-stomatal-development-in-arabidopsis-thaliana/ )

Chen L. Q., Li C. S., Chaloner W. G., Beerling D. J., Sun Q. G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change – Am J Bot. 88: 1309–1315 – PMID: 11454631 – https://www.ncbi.nlm.nih.gov/pubmed/11454631 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/the-potential-for-the-stomatal-characters-of-extant-and-fossil-ginkgo-leaves-to-signal-atmospheric-co2-change/ )

Chen L. Q., Cheng-Sen L., Chaloner W. G., Beerling D. J., Sun Q-G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change – Am J Bot 88:1309–1315 – https://core.ac.uk/download/pdf/245608.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/21/the-stomatal-density-and-index-of-fossil-ginkgo-leaves/)

Chen P.-Y., Ma M., Shi L.-y. (2019) – Trade-off Between Salt Secretion and Gas Exchange by Stomata in the Leaves of Glycyrrhiza uralensis – CURRENT SCIENCE 116(7): 1212-1217 – https://www.currentscience.ac.in/Volumes/116/07/1212.pdfhttps://www.currentscience.ac.in/php/forthcoming/2019/31209.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomata-of-the-upper-leaves-are-mainly-used-for-gas-exchange-stomata-of-the-lower-leaves-are-responsible-for-secreting-excessive-salt/)

Chen S., Assmann S. (2018) – Deciphering the guard cell metabolome in plant pathogen defense – https://fsrio.nal.usda.gov/fsrio/research-projects/deciphering-guard-cell-metabolome-plant-pathogen-defense – (On our blog : https://plantstomata.wordpress.com/2018/10/08/deciphering-the-stomatal-metabolome-in-plant-pathogen-defense/ )

Chen S., Jia H., Wang X., Shi C., Wang X., Ma P., Wang J., Ren M., Li J. (2020) – Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells – Mol. Plant. 13: 732–744 – doi: 10.1016/j.molp.2020.01.004https://pubmed.ncbi.nlm.nih.gov/31958520/ – (On our blog : https://plantstomata.wordpress.com/2021/07/08/a-novel-post-translational-regulatory-mechanism-of-aba-signaling-whereby-h2s-persulfidates-snrk2-6-to-promote-aba-signaling-and-aba-induced-stomatal-closure/ )

Chen T., Wu H., Wu J., Fan X., Li X., Lin Y. (2017) – Absence of OsβCA1 causes CO2 deficit and affects leaf photosynthesis and stomatal response to CO2 in rice – Plant J. – Accepted Author Manuscript – doi:10.1111/tpj.13497 http://onlinelibrary.wiley.com/doi/10.1111/tpj.13497/abstract – (On our blog https://plantstomata.wordpress.com/2017/02/01/os%CE%B2ca1-and-stomatal-response/ )

Chen W. F., Xu Z. J., Qian T. Y., Zhang L. B., Lee J. Y. (1995) – Comparative study of stomatal density and gas diffusion resistance in leaves of various types of rice – Korean J Crop Sci () 40: 125–132 – http://www.koreascience.or.kr/article/JAKO199511922906744.page – (On our blog : https://plantstomata.wordpress.com/2020/03/10/comparative-study-of-stomatal-density-and-gas-diffusion-resistance/ )

Chen W. F., Xu Z. J., Zhang L. B., Yang S. R. (1990) – Comparative studies on stomatal density and its relations to gas diffusion resistance and net photosynthetic rate in rice leaf – Chin J Rice Sci 4: 163–168 – https://www.cabdirect.org/cabdirect/abstract/19910744617 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/comparative-studies-on-stomatal-density-and-its-relations-to-gas-diffusion-resistance/ )

Chen W.-L., Yang W.-J., Lo H.-F., Yeh D.-M. (2014) – Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress – Scientia Horticutlturae 179: 364-375 – https://doi.org/10.1016/j.scienta.2014.10.003 –https://www.sciencedirect.com/science/article/pii/S0304423814005524 – (On our blog : https://plantstomata.wordpress.com/2019/04/11/line-9911-9-of-leafy-radish-was-able-to-tolerant-high-temperature-through-diminishing-both-stomatal-and-non-stomatal-limitations/ )

Chen W. Y., Liu C. H., Li Y. Y., Mi D. H. (2014) – Flag leaf vein traits in winter wheat varieties (lines) and their correlation with stomatal traits – Chin J Ecol. 33(7): 1839–1846 –

Chen Y., Li W., Turner J. A., Anderson C. T. (2021) – PECTATE LYASE LIKE12 patterns the guard cell wall to coordinate turgor pressure and wall mechanics for proper stomatal function in Arabidopsis – The Plant Cell  https://doi.org/10.1093/plcell/koab161https://pubmed.ncbi.nlm.nih.gov/34109391/ – (On our blog : https://plantstomata.wordpress.com/2021/07/21/how-wall-modifying-genes-modulate-wall-mechanics-and-cell-pressurization-to-accomplish-the-dynamic-cellular-deformations-that-underlie-stomatal-function/ )

Chen Y., Zhu W., Yan T., Chen D., Jiang L., Chen Z. H., Wu D. (2022) – Stomatal morphological variation contributes to global ecological adaptation and diversification of Brassica napus – Planta 256(4): 64 – doi: 10.1007/s00425-022-03982-4 – PMID: 36029339 – https://pubmed.ncbi.nlm.nih.gov/36029339/ – (On our blog : https://plantstomata.wordpress.com/2022/09/02/the-relation-between-stomatal-phenotypic-variation-and-ecological-adaptation-in-rapeseed/ )

Chen Y.-H., Hu L., Punta M., Bruni R., Hillerich B., Kloss B., Rost B., Love J., Siegelbaum S. A., Hendrickson W. A. (2010) – Homologue structure of the SLAC1 anion channel for closing stomata in leaves – Nature 467: 1074–1080 – doi:10.1038/nature09487 – http://www.nature.com/nature/journal/v467/n7319/full/nature09487.html – (On our blog : https://plantstomata.wordpress.com/2017/09/17/a-bacterial-homologue-of-slac1-for-closing-stomata/)

Chen Y.-L., Huang R., Xiao Y.-M., Lü P., Chen J., Wang X.-C. (2004) – Extracellular Calmodulin-Induced Stomatal Closure Is Mediated by Heterotrimeric G Protein and H2O2 – Plant Physiology 136: 4096–4103 – Extracellular_Calmodulin-Induced_Stomata.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64726)

Chen Y.-L., Zhang X. Q., Chen J., Wang X.-C. (2003) – Existence of extracellular CaM in abaxial epidermis of Vicia faba L. and its role in regulation of stomatal movements – Acta Bot Sin 45:40–46 – https://europepmc.org/abstract/cba/361042 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/endogenous-extracellular-cam-promotes-stomatal-closure-and-inhibits-stomatal-opening/ )

Chen Z., Gallie D. R. (2004) – The ascorbic acid redox state controls guard cell signaling and stomatal movement. – Plant Cell. 2004;166(1):1143–1162. [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/07/16/the-asc-redox-state-and-stomatal-movements/)

Chen Z., Liu S., Lu H., Wan X. (2019) – Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species – AoB PLANTS 11: plz058 – doi: 10.1093/aobpla/plz058 – (On our blog : https://plantstomata.wordpress.com/2022/05/10/hsm-hydraulic-safety-margin-as-well-as-ssm-stomatal-safety-margin-allow-interpreting-the-sensitivity-of-the-three-sub-canopy-species-to-drought/ )

Chen Z. C., Feng J. X., Wan X. C. (2018) – Stomatal Behaviours of Aspen (Populus tremuloides) Plants in Response to Low Root Temperature in Hydroponics – Russ J Plant Physiol 65: 512-517 – https://doi.org/10.1134/S1021443718040106 – https://link.springer.com/article/10.1134/S1021443718040106#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/11/stomatal-behaviour-in-response-to-low-root-temperature-in-hydroponics/ )

Chen Z.-H., Blatt M. R. (2010) – Membrane Transport in Guard Cells – eLS – DOI: 10.1002/9780470015902.a0021630 – http://www.els.net/WileyCDA/ElsArticle/refId-a0021630.html – (On our blog : https://plantstomata.wordpress.com/2018/01/17/membrane-transport-in-guard-cells-stomata/ )

Chen Z.-H., Chen G., Dai F., Wang Y., Hills A., Ruan Y.-L., Zhang G., Franks P. J., Nevo E., Blatt M. R. (2016) – Molecular Evolution of Grass Stomata – Trends in Plant Science  22: 124–139 – http://dx.doi.org/10.1016/j.tplants.2016.09.005 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(16)30159-5?rss=yes – (On our blog https://plantstomata.wordpress.com/2017/09/27/the-evolutionary-development-of-grass-stomata-2/)

Chen Z.-H., Eisenach C., Xu X.-Q., Hills A., Blatt M. R. (2012) – Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis – Plant Methods 8(1): 15 – https://doi.org/10.1186/1746-4811-8-15 – https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-8-15 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/a-reliable-set-of-procedures-for-voltage-clamp-analysis-of-guard-cells/ )

Chen Z.-H., Guang C., Dai F., Wang Y., Hills A., Ruan Y.-l., Zhang G. P., Franks P. J., Nevo E., Blatt M. R. (2017) – Molecular Evolution of Grass Stomata – Trends in Plant Science 22(2): 124-139Doi: 10.1016/j.tplants.2016.09.005https://www.researchgate.net/publication/309360375_Molecular_Evolution_of_Grass_Stomata – (On our blog : https://plantstomata.wordpress.com/2019/08/15/molecular-evolution-of-grass-stomata/ )

Chen Z.-H., Hills A., Bätz U., Amtmann A., Lew V. L., Blatt M. R. (2012) – Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control – Plant Physiol 159: 1235–1251 – doi:10.1104/pp.112.197350 – http://researchdirect.westernsydney.edu.au/islandora/object/uws:13280 – (On our blog : https://plantstomata.wordpress.com/2017/11/12/the-onguard-model-providing-a-framework-for-systems-analysis-of-stomatal-guard-cells/)

Chen Z.-H., Hills A., Lim C. K., Blatt M. R. (2010) – Dynamic regulation of guard cell anion channels by cytosolic free Ca2+concentration and protein phosphorylation – The Plant Journal 61: 816-825 – (On our blog : https://plantstomata.wordpress.com/2016/03/21/guard-cell-anion-channels-ca2-and-proteins/

Chen Z.-H., Wang Y., Wang J.-W., Babla M., Zhao C., Garcia-Mata C., Sani E., Differ C., Mak M., Hills A., Amtmann A., Blatt M. R. (2016) – Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis – New Phytologist 209(4): 1456–1469 – DOI: 10.1111/nph.13714 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13714/full – (On our blog : https://plantstomata.wordpress.com/2017/07/30/potassium-nutrition-and-nitrogen-metabolism-in-the-nia1nia2-mutant-affecting-stomatal-function/)

Chenu K. (2022) – Modelling shows wheat pores hold promise for yield gains – Grain Central, August 2, 2022 – https://www.graincentral.com/research/modelling-shows-wheat-pores-hold-promise-for-yield-gains/ – (On our blog : https://plantstomata.wordpress.com/2022/08/02/stomata-and-a-strategy-to-adapt-wheat-to-warmer-and-drier-growing-conditions/ )

Cheung A. Y., Wu H. M. (2015) – Stomatal patterning: SERKs put the mouths in their right place – Curr Biol 25: R838–R840 – https://doi.org/10.1016/j.cub.2015.08.049https://www.cell.com/current-biology/fulltext/S0960-9822(15)01043-X – (On our blog : https://plantstomata.wordpress.com/2018/12/06/a-key-player-serk-to-the-signal-sensing-apparatus-to-inform-where-stomata-are-to-be-formed-on-the-leaf/ )

Cheung C. (2022) – Ethanol treatment shown to bring drought relief to crops – https://www.courthousenews.com/ethanol-treatment-shown-to-bring-drought-relief-to-crops/ – (On our blog : https://plantstomata.wordpress.com/2022/08/25/ethanol-causes-the-stomata-to-close/)

Chieppa J., Brown T., Giresi P., Juenger T. E., Resco de Dios V., Tissue D. T., Aspinwall M. J. (2020) – Climate and stomatal traits drive covariation in nighttime stomatal conductance and daytime gas exchange rates in a widespread C4 grass – New Phytologist ( IF 8.512 ) – 229(4): – DOI: 10.1111/nph.16987https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.16987 – (On our blog : https://plantstomata.wordpress.com/2021/01/25/higher-gsn-was-associated-with-higher-daytime-stomatal-conductance-and-net-photosynthesis/ )

Chin A. (2022) – Redwood trees have two types of leaves, scientists find – a trait that could help them survive in a changing climate – The Conversation April 13, 2022 – https://theconversation.com/redwood-trees-have-two-types-of-leaves-scientists-find-a-trait-that-could-help-them-survive-in-a-changing-climate-179812 – (On our blog : https://plantstomata.wordpress.com/2022/04/20/unlike-the-axial-leaves-redwoods-peripheral-leaves-have-waxy-surfaces-with-lots-of-stomata-this-helped-to-explain-how-they-photosynthesize-year-round-regardless-of-the-long-wet-se/ )

Chin A. R. O., Guzmán‐Delgado P., Sillett S. C., Orozco J. , Kramer R. D., Kerhoulas L. P., Moore Z. J., Reed M., Zwieniecki M. A. (2022) – Shoot dimorphism enables Sequoia sempervirens to separate requirements for foliar water uptake and photosynthesis – American Journal of Botany – https://doi.org/10.1002/ajb2.1841https://bsapubs.onlinelibrary.wiley.com/doi/10.1002/ajb2.1841 – (On our blog : https://plantstomata.wordpress.com/2022/03/17/trees-in-wet-forests-often-have-features-that-prevent-water-films-from-covering-stomata-and-inhibiting-gas-exchange/ )

Chin J. C., Wan Y., Smith J., Croxdale J. (1995) – Linear aggregations of stomata and epidermal cells in Tradescantia leaves: evidence for their group patterning as a function of the cell cycle – Developmental Biology 167: 39–46 – DOI: 10.1006/dbio.1995.1059 – https://www.ncbi.nlm.nih.gov/pubmed/7883077 – (On our blog : https://plantstomata.wordpress.com/2017/09/15/linear-aggregations-of-stomata-and-epidermal-cells/ )

Chirinéa C. F., Pasqual M., Gomes de Araujo A., Pereira A. R., Mauro de Castro E. (2012) – Acclimatization and leaf anatomy of micropropagated fig plantlets (Aclimatização e anatomia foliar de plântulas de figo micropropagadas) – Rev. Bras. Frutic. 34(4) – https://doi.org/10.1590/S0100-29452012000400027https://www.scielo.br/j/rbf/a/gRHddqJ4pyHpthgvXPW3JJQ/?lang=en – (On our blog : https://plantstomata.wordpress.com/2022/09/23/acclimatized-plants-reduce-the-number-of-stomata-during-the-acclimatization-process/ )

Churiulin E., Kopeikin V., Übel M., Helmert J., Bettems J.-M., Tölle M. H. (2021) – Improving the stomatal resistance, photosynthesis and two big leaf algorithms for grass in the regional climate model COSMO-CLM – Biogepsciences Discuss Preprint – https://doi.org/10.5194/bg-2021-294 in review- https://bg.copernicus.org/preprints/bg-2021-294/ – (On our blog : https://plantstomata.wordpress.com/2022/01/19/changes-in-stomatal-resistance-and-photosynthesis-algorithms-can-improve-the-accuracy-of-other-parameters-of-the-cosmo-clm-model/ )

Chitrakar R., Melotto M. (2010) – Assessing stomatal response to live bacterial cells using whole leaf imaging – J Vis Exp pii: 2185 – DOI: 10.3791/2185 – https://pdfs.semanticscholar.org/ac2c/8e6737c1979297f2012b156939793aaee92a.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/06/assessing-stomatal-response-to-live-bacterial-cells-using-whole-leaf-imaging/

Chłosta I., Góralski G., Popielarska-Konieczna M. (2021) – Assessment of the Value of Stomatal Size and Density as Hallmarks of Nonaploid Kiwifruit Plants – Acta Societatis Botanicorum Poloniae 90 – DOI :10.5586/ASBP.909https://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.909 – (On our blog : https://plantstomata.wordpress.com/2021/11/24/ploidy-coincides-with-mean-stomatal-length-width-and-density/ )

Cho D., Kim S. A., Murata Y., Lee S., Jae S.-K., Nam H. G., Kwak J. M. (2009) – De‐regulated expression of the plant glutamate receptor homolog AtGLR3.1impairs long‐term Ca2+‐programmed stomatal closure – Plant Journ. 58(3): – https://doi.org/10.1111/j.1365-313X.2009.03789.x –https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-313X.2009.03789.x – (On our blog : https://plantstomata.wordpress.com/2019/02/15/de-novo-protein-synthesis-contributes-to-the-maintenance-of-long%E2%80%90term-ca2%E2%80%90programmed-stomatal-closure/ )

Cho D., Villiers F., Kroniewicz L., Lee S., Seo Y. J., Hirschi K. D., Leonhardt N.,
Kwak J. M. (2012)
– Vacuolar CAX1 and CAX3 influence auxin transport in
guard cells via regulation of apoplastic pH – Plant Physiology 160: 1293-1302 –

Cho J., Oki T. (2012) – Application of temperature, water stress, CO2 in rice growth models – Rice (N.Y.) 5: 10 –  doi:  10.1186/1939-8433-5-10 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520833/– (On our blog : https://plantstomata.wordpress.com/2018/08/29/stomata-and-application-of-temperature-water-stress-co2-in-rice-growth-models/ )

Cho R. (2022) – How climate change will affect plants – https://phys.org/news/2022-01-climate-affect.html – (On our blog : https://plantstomata.wordpress.com/2022/03/28/stomata-and-climate-change-3/ )

Cho S.-O., Wick S. M. (1989) – Microtubule orientation during stomatal differentiation in grasses – Journal of Cell Science 92: 581–594 – http://jcs.biologists.org/content/joces/92/4/581.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/05/changing-orientation-of-microtubules-during-formation-of-stomata/

Cho S.-O., Wick S. M. (1990) – Distribution and function of actin in the developing stomatal complex of winter rye (Secale cereale cv. Puma) – Protoplasma 157: 154-164 – https://doi.org/10.1007/BF01322648 – https://link.springer.com/article/10.1007%2FBF01322648#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/16/actin-in-the-developing-stomatal-complex-of-winter-rye/ )

Cho S.-O., Wick S. M. (1991) – Actin in the developing stomatal complex of winter rye: a comparison of actin antibodies and Rh-phalloidin labeling of control and CB-treated tissues – Cell Motility and Cytoskeleton 19: 25–36 – https://doi.org/10.1002/cm.970190105 – https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970190105 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/actin-in-the-developing-stomatal-complex/

Choi S.-Y., Lee K.-S. (1996) – Effect of Soil Water Potential on Stomatal Conductance and Photosynthesis of Wasabia japonica Matsum – Korean Journal of Medicinal Crop Science 4(4): 288-293 – https://www.koreascience.or.kr/article/JAKO199603042316692.j – (On our blog : https://plantstomata.wordpress.com/2020/07/05/effect-of-soil-water-potential-on-stomatal-conductance/ )

Choi Y., Lee Y., Jeon B. W., Staiger C. J., Lee Y. (2008) – Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. – Plant, Cell & Environment 31: 366–377 – DOI: 10.1111/j.1365-3040.2007.01769.x – https://www.ncbi.nlm.nih.gov/pubmed/18088331 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/ptdins3p-and-ptdins4p-regulate-actin-dynamics-in-guard-cells/ )

Chodat F. (1940) – Mesure du degré d’ouverture des stomates par la méthode de flottaison à l’acétone – C. R. Soc. Phys. & Hist. Nat.; Genève 57: 247-252 – (On our blog : https://plantstomata.wordpress.com/2017/06/08/measuring-the-aperture-of-stomata-by-keeping-them-floating-in-acetone/)

Choudhury B. J., Idso B. J. (1985) – An empirical model for stomatal resistance of field-grown wheat – Agic. For. Meteorol. 36: 65-82 –

Choudhury B. J., Monteith J. L. (1986) – Implications of stomatal response to saturation deficit for the heat balance of vegetation – Agric Forest Meteorol 36: 215–225 – https://doi.org/10.1016/0168-1923(86)90036-5 – https://www.sciencedirect.com/science/article/pii/0168192386900365 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/implications-of-stomatal-response-to-saturation-deficit-for-the-heat-balance-of-vegetation/ )

Chowdhury R., Ahamed S., Mas-ud A., Islam H., Fatamatuzzohora, Hossain F., Billah M., Hossain S., Matin M. N. (2021) – Stomatal development and genetic expression in Arabidopsis thaliana L. – Heliyon 7(8): e07889 – DOI:https://doi.org/10.1016/j.heliyon.2021.e07889https://www.cell.com/heliyon/fulltext/S2405-8440(21)01992-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844021019927%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2021/10/27/stomatal-development-and-genetic-expression/ )

Christin D. (2016) – Pembuatan Diorama Materi Pemanasan Global Kelas VII Berdasarkan Profil Kadar Klorofil dan Jumlah Stomata Tumbuh-Tumbuhan Di Jalan Panglima A’im dan Ya’m Sabran – In Bahasa. Skripsi. Fakultas Keguruan dan Ilmu Pendidikan, Universitas Tanjungpura, Pontianak.

Christmann A., Moes D., Himmelbach A., Yang Y., Tang Y., Grill E. (2006) – Integration of Abscisic Acid Signalling into Plant Responses – Plant Biology 8(3): 314–325 – DOI: 10.1055/s-2006-924120 – http://onlinelibrary.wiley.com/wol1/doi/10.1055/s-2006-924120/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/01/aba-action-enforces-a-sophisticated-regulation-at-all-levels-in-stomata/ )

Chutichudet B., Chutichudet P. (2011) – Effects of Chitosan Coating to Some Postharvest Characteristics of Hylocercus undatus (Haw) Brit. and Rose Fruit – International Journal of Agricultural Research 6(1): 82-92 – DOI: 10.3923/ijar.2011.82.92https://scialert.net/abstract/?doi=ijar.2011.82.92 – (On our blog : https://plantstomata.wordpress.com/2021/04/09/effects-of-chitosan-coating-on-stomatal-traits/ )

Cienciala E., Kucera J., Ryan M. G., Lindroth A. (1998) – Water flux in boreal forest during two hydrologically contrasting years; species specific regulation of canopy conductance and transpiration – Ann. Sci., For. 55: 47-61 – https://www.academia.edu/25545456/Water_flux_in_boreal_forest_during_two_hydrologically_contrasting_years_species_specific_regulation_of_canopy_conductance_and_transpiration?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2021/03/16/species-specific-regulation-of-canopy-conductance-and-transpiration/ )

Cienciala E., Lindroth A. (1995) – Gas-exchange and sap flow measurements of Salix viminalis trees in short rotation forest. I. Transpiration and sap flow – Trees 9: 289-291 – https://doi.org/10.1007/BF00202019https://link.springer.com/article/10.1007/BF00202019#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/13/88576/ )

Cienciala E., Lindroth A. (1995) – Gas-exchange and sap flow measurements of Salix viminalis trees in short rotation forest. II.
Diurnal and seasonal variation of stomatal response and water
use efficiency – Trees 9: 295–301 – https://doi.org/10.1007/BF00202020https://link.springer.com/article/10.1007%2FBF00202020#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/13/88581/ )

Ciha A.J., Brun W. A.  (1975) –  Stomatal size and frequency in soybeans – Crop. Sci.: 309-313 – doi:10.2135/cropsci1975.0011183X001500030008x – https://dl.sciencesocieties.org/publications/cs/abstracts/15/3/CS0150030309?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-size-and-frequency-in-glycine-max-fabaceae/ )

Çınar N., Aydinsakir K., Dinç N., Büyüktaş D., Işık M. (2016) – Effects of water stress on stomatal characteristics of peanut (Arachis hypogaea L . ) – Mediterranean Agricultural Sciences 29(2): 79-84 – https://www.cabdirect.org/cabdirect/abstract/20163276533 – (On our blog : https://plantstomata.wordpress.com/2021/09/05/when-water-stress-increased-stomata-density-epidermal-cells-number-and-stomata-index-increased-when-the-stomata-length-and-width-decreased/ )

Clark D. G., Hecht H., Curtis O. F., Shafer J. I. (1941) – Stomatal behavior in inbred and hybrid maize – Am. J. Bot. 28: 537-541 – (On our blog : https://plantstomata.wordpress.com/2017/06/13/stomatal-behavior-in-inbred-and-hybrid-maize/)

Clark G., Fraley D., Steinebrunner I., Cervantes A., Onyirimba J., Liu A., Torres J., Tang W., Kim J., Roux S. J. (2011) – Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis – Plant Physiol. 156: 1740–1753 – PMID:21636723 – https://www.ncbi.nlm.nih.gov/pubmed/21636723 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ectoapyrases-and-extracellular-nucleotides-play-key-roles-in-regulating-stomatal-functions/

Clark G., Darwin C., Mehta V., Jackobs F., Perry T., Hougaard K., Roux S. (2013) – Effects of chemical inhibitors and apyrase enzyme further document a role for apyrases and extracellular ATP in the opening and closing of stomates in Arabidopsis. – Plant Signal. Behav. 8: e26093 – DOI 10.4161/psb.26093 – https://www.ncbi.nlm.nih.gov/pubmed/23989340 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/apyrases-and-extracellular-atp-in-the-opening-and-closing-of-stomata/ )

Clark J. W., Harris B. J., Hetherington A. J., Hurtado-Castano N., Brench R. A., Casson S., Williams T. A., Gray J. E., Hetherington A. M. (2022) – The origin and evolution of stomata – Current Biology 32(11): 539-553 – 10.1016/j.cub.2022.04.040https://research-information.bris.ac.uk/en/publications/the-origin-and-evolution-of-stomata – (On our blog : https://plantstomata.wordpress.com/2022/08/18/the-role-of-stomata-in-the-earliest-land-plants-was-to-optimise-carbon-gain-per-unit-water-loss-2/)

Clarke J. M., Clarke F. R. (1996) – Considerations in design and analysis of experiments to measure stomatal conductance of wheat – Crop Science 36: 1401–1405 – https://doi.org/10.2135/cropsci1996.0011183X003600050052xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1996.0011183X003600050052x – (On our blog : https://plantstomata.wordpress.com/2020/06/23/design-and-analysis-of-experiments-to-measure-stomatal-conductance/ )

Clay K., Quinn J. A. (1978) – Density of Stomata and Their Responses to a Moisture Gradient in Danthonia sericea Populations from Dry and Wet Habitats – Bulletin of the Torrey Botanical Club 105(1): 45-49 – https://doi.org/10.2307/2484262https://www.jstor.org/stable/2484262 – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomata-and-genetic-differences-between-upland-and-wet-site-populations/ )

Clayson C., García-Ruiz I., Costea M. (2014) – Diversity, evolution, and function of stomata bearing structures in Cuscuta (dodders, Convolvulaceae): From extrafloral nectar secretion to transpiration in arid conditions – Perspectives in Plant Ecology, Evolution and Systematics 16(6): 310-321 – DOI10.1016/j.ppees.2014.08.004 – https://www.infona.pl/resource/bwmeta1.element.elsevier-48d0e5d2-3627-3cba-baed-419c7c43b05f – (On our blog : https://plantstomata.wordpress.com/2017/10/11/stomata-bearing-structures-in-cuscuta-dodders-convolvulaceae/)

Cleary A. L. (1995) – F-actin redistributions at the division site in living Tradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin –  Protoplasma 185: 152-1965 – https://doi.org/10.1007/BF01272855 – https://link.springer.com/article/10.1007%2FBF01272855#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/16/f-actin-redistributions-at-the-division-site-in-stomatal-complexes/ )

Cleary A. L. (1996) – Regulation of cell division during formation of stomatal complexes: Importance of the cytoskeleton, cell plate realignments and the cell wall. In: The Symposium of the Construction of Cytoskeletal Arrays in Plant Cells. Osaka University, Osaka, pp 13–15

Cleary A. L. (2000) – Actin in formation of stomatal complexes. – In: Staiger C., Baluska F., Volkmann D., Barlow P., eds. – Actin: a dynamic framework for multiple plant cell functions – Dordrecht, The Netherlands: Kluwer Academic Publishers, 411–426 – Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 89) – https://link.springer.com/chapter/10.1007/978-94-015-9460-8_23 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/distribution-and-function-of-actin-during-stomatogenesis/ )

Cleary A. L., Brown R. C., Lemmon B. E. (1992) – Establishment of division plane and mitosis in monoplastidic guard mother cells of Selaginella – Cell Motility and Cytoskeleton 23: 89–101 – https://doi.org/10.1002/cm.970230202 – https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970230202 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/establishment-of-division-plane-and-mitosis-in-monoplastidic-guard-mother-cells/ )

Cleary A. L., Brown R. C., Lemmon B. E. (1993) – Organisation of microtubules and actin filaments in the cortex of differentiating Selaginella guard cells – Protoplasma 177: 37–44 – https://link.springer.com/article/10.1007%2FBF01403397#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/29/organisation-of-microtubules-and-actin-filaments-in-the-cortex-of-differentiating-stomatal-guard-cells/ )

Cleary A. L., Hardham A. R. (1989) -Microtubule organization during development of stomatal complexes in Lolium rigidum – Protoplasma 149: 67–81 – https://doi.org/10.1007/BF01322979 – https://link.springer.com/article/10.1007/BF01322979#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/29/interphase-microtubules-are-nucleated-in-the-cell-cortex-in-all-cells-of-the-stomatal-complex/

Cleary A. L., Hardham A. R. (1990) – Reinstatement of microtubule arrays from cortical nucleating sites in stomatal complexes of Lolium rigidum following depolymerisation of microtubules by oryzalin and high pressure – Plant Cell Physiol. 31: 903-915 – http://pcp.oxfordjournals.org/content/31/7/903.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/22/mts-in-gcs-of-developing-stomata-are-nucleated-in-the-cell-cortex/)

Cleary A. L., Mathesius U. (1996) – Rearrangements of F-actin during stomatogenesis visualised by confocal microscopy in fixed and permeabilised Tradescantia leaf epidermis – Botanica Acta 109: 15–24 – https://doi.org/10.1111/j.1438-8677.1996.tb00865.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-8677.1996.tb00865.x – (On our blog : https://plantstomata.wordpress.com/2018/12/01/rearrangements-of-f-actin-during-stomatogenesis/

Clifford S. C., Black C. R., Roberts J. A., Stronach I. M., Singleton-Jones P. R.,Mohamed A. D., Azam-Ali S. N. (1995) – The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut (Arachis hypogaea L.) – Journal of Experimental Botany 46: 847-852 – https://doi.org/10.1093/jxb/46.7.847 – https://academic.oup.com/jxb/article-abstract/46/7/847/570200?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/22/co2-and-drought-on-stomatal-frequency/ ) .

Clifton O. E., Lombardozzi D. L., Fiore A. M., Paulot F., Horowitz L. W. (2020) – Stomatal conductance influences interannual variability and long-term changes in regional cumulative plant uptake of ozone – Environmental Research Letters 15(11): 4059 – https://iopscience.iop.org/article/10.1088/1748-9326/abc3f1 – (On our blog : https://plantstomata.wordpress.com/2021/01/24/cuo-responds-much-more-strongly-to-interannual-and-daily-variability-in-stomatal-conductance-than-in-ozone/ )

Clifton O., Paulot F., Fiore A. M., Horowitz L. W., Correa G., Baublitz C. B., Fares S., Goded Ballarin I., Goldstein A., Gruening C., Hogg A. J., Loubet B., Mammarella I., Munger J. W., Neil L., Stella P., Uddling J., Vesala T. Weng E. (2020) – Influence of dynamic ozone dry deposition on ozone pollution – JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, ISSN 2169-897X (online), 125 (8), 2020, p. e2020JD032398, JRC119124 – https://ec.europa.eu/jrc/en/publication/influence-dynamic-ozone-dry-deposition-ozone-pollution – (On our blog : https://plantstomata.wordpress.com/2020/05/20/daily-variability-in-both-stomatal-and-nonstomatal-deposition-contribute-to-daily-variability-in-ozone-pollution/ )

Clint G. M. (1985) – The investigation of stomatal ionic relations using guard cell protoplasts: osmotic relations of guard cell protoplasts in short and long-term incubation – Journal of Experimental Botany 36: 39-48 – https://eurekamag.com/research/018/171/018171553.php

Clint G. M. (1985) – The investigation of stomatal ionic relations using guard cell protoplasts. i. Methodology – Journal of Experimental Botany 36(172): 1726-1738 – DOI: 10.1093/jxb/36.11.1726https://eurekamag.com/research/006/706/006706145.php – (On our blog : https://plantstomata.wordpress.com/2021/09/21/stomatal-ionic-relations-using-guard-cell-protoplasts-i-methodology/ )

Cochard H. (2002) – Xylem embolism and drought-induced stomatal closure in maize – Planta 215466–471 – https://doi.org/10.1007/s00425-002-0766-9https://link.springer.com/article/10.1007%2Fs00425-002-0766-9 – (On our blog : https://plantstomata.wordpress.com/2020/06/01/stomatal-closure-during-drought-contains-xylem-embolism-to-a-minimum-value/ )

Cochard H., Bréda N., Granier A. (1996) – Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? – Ann. Sci. For. 53: 197–206 – DOI: 10.1051/forest:19960203 – https://www.afs-journal.org/articles/forest/abs/1996/02/AFS_0003-4312_1996_53_2-3_ART0003/AFS_0003-4312_1996_53_2-3_ART0003.html – (On our blog : https://plantstomata.wordpress.com/2018/12/01/whole-tree-hydraulic-conductance-and-water-loss-regulation-during-drought-evidence-for-stomatal-control-of-embolism/ )

Cochard H., Coll L., Le Roux X., Ameglio T. (2002) – Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut – Plant Physiol. 128: 282–290 – doi:http://dx.doi.org/10.1104/pp.010400 – http://www.plantphysiol.org/content/128/1/282 – (On our blog https://plantstomata.wordpress.com/2016/04/16/effects-of-plant-hydraulics-on-stomatal-closure-during-water-stress/ )

Cochrane T. T., Cochrane T. A. (2009) – The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. – Plant Signal Behav. 4: 240–243 – DOI 10.4161/psb.4.3.7955 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652541/ – (On our blog : https://plantstomata.wordpress.com/2018/02/22/potassium-and-the-osmotic-mechanism-of-stomata-aperture-modulation/

Cochrane T. T., Cochrane T. A. (2009) – Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation – Plant Physiology and Biochemistry 47(3): 205-209 – DOI10.1016/j.plaphy.2008.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-9a83c017-3172-3fe4-8ccb-28d82e63c4a9 – (On our blog https://plantstomata.wordpress.com/2017/10/12/stomata-aperture-modulation-is-closely-linked-to-the-osmotic-properties-of-its-guard-cell-solution-solutes/)

Cockburn W. (1979) – Relationships between Stomatal Behavior and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants – Plant Physiology 63(6): 1029-1032 – doi: 10.1104/pp.63.6.1029https://pubmed.ncbi.nlm.nih.gov/16660851/ – (On our blog : https://plantstomata.wordpress.com/2021/09/09/93063/ )

Cockburn W. (1983) – Stomatal mechanism as the basis of the evolution of CAM and C4 photosynthesis – Plant Cell Environ. 6: 275–279 – doi: 10.1111/1365-3040.ep11611925https://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11611925 – (On our blog : https://plantstomata.wordpress.com/2022/01/03/the-expression-of-aspects-of-stomatal-metabolism-in-photosynthetic-mesophyll-cells-represents-the-basis-for-the-evolution-of-the-variant-of-photosynthetic-carbon-metabolism/ )

Cockburn W., Ting I. P., Stenberg L. O. (1979) – Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants – Plant Physiol. 63: 1029–1032 – http://www.plantphysiol.org/content/plantphysiol/63/6/1029.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/23/stomatal-behavior-and-internal-co2-concentration/ )

Coe H., Gallagher M. W., Choularton T. W., Dore C. (1995) – Canopy scale measurements of stomatal and cuticular O3 uptake by Sitka spruce – Atmos. Environ. 29: 1413-1423 – https://doi.org/10.1016/1352-2310(95)00034-Vhttps://www.sciencedirect.com/science/article/abs/pii/135223109500034V?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/01/25/canopy-resistances-for-o3-were-compared-to-those-of-water-vapour-and-the-rate-of-uptake-of-o3-was-shown-to-be-up-to-three-times-that-of-stomatal-deposition/ )

Collatz G. J., Ball J. T., Grivet C., Berry J. A. (1991) – Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer – Agric. For. Meteor. 54:107–136 – doi:https://doi.org/10.1016/0168-1923(91)90002-8https://www.sciencedirect.com/science/article/pii/0168192391900028?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/05/04/physiological-and-environmental-regulation-of-stomatal-conductance/ )

Collatz G. J., Grivet C., Ball J. T., Berry J. A. (1991) – Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer – Agricultural and Forest Meteorology 54 – 107-136 – https://doi.org/10.1016/0168-1923(91)90002-8 – https://www.sciencedirect.com/science/article/pii/0168192391900028 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/regulation-of-stomatal-conductance/ )

Collatz G. J., Ribas-Carbo M., Berry J. A. (1992) – Coupled photosynthesis-stomatal conductance model for leaves of C4 plants – Aust. J. Plant Physiol. 19: 519–538 – https://doi.org/10.1071/PP9920519http://www.publish.csiro.au/fp/PP9920519 – (On our blog : https://plantstomata.wordpress.com/2019/05/16/a-coupled-photosynthesis-stomatal-conductance-model/ )

Collins J. W. M., Shpak E. D. (2014) – Novel Mutations That Affect Stomata Development in Arabidopsis thaliana – http://trace.tennessee.edu/utk_eureca/2014/artsandsciences/13/ – (On our blog : https://plantstomata.wordpress.com/2018/01/31/novel-mutations-that-affect-stomata-development/ )

Collins M. J., Fuentes S., Barlow E. W. R. (2010) – Partial rootzone drying and deficit irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric grapevines – Funct. Plant Biol.37: 128–138 – https://doi.org/10.1071/FP09175– http://www.publish.csiro.au/fp/fp09175 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/how-alternative-irrigation-strategies-affects-stomatal-response-to-atmospheric-vapour-pressure-deficit/ )

Colosanti J., Cho S.-O., Wick S., Sundaresan V. (1993) – Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with predicted division sites – Plant Cell 5: 1101–1111 – DOI: 10.1105/tpc.5.9.1101 – https://www.ncbi.nlm.nih.gov/pubmed/12271098 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71664 )

Cominelli E., Galbiati M., Albertini A., Fornara F., Conti L., Coupland G., Tonelli C. (2011) – DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter – BMC Plant Biol. 11: 162 – doi: 10.1186/1471-2229-11-162 – https://www.ncbi.nlm.nih.gov/pubmed/22088138 – (On our blog : https://plantstomata.wordpress.com/2018/09/07/new-promoter-modules-as-useful-tools-for-manipulating-gene-expression-in-stomata/ )

Cominelli E., Galbiati M.,  Tonelli C. (2010) – Transcription factors controlling stomatal movements and drought tolerance – Transcription 1: 41–45 – https://doi.org/10.4161/trns.1.1.12064 –https://www.tandfonline.com/doi/abs/10.4161/trns.1.1.12064 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/characterization-of-transcription-factors-involved-in-stomatal-movements/ )

Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N., Dellaporta S. L., Tonelli C. (2005) – A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance – Curr. Biol. 15: 1196-1200 – DOI: http://dx.doi.org/10.1016/j.cub.2005.05.048http://www.cell.com/current-biology/abstract/S0960-9822(05)00563-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982205005634%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/05/13/atmyb60-and-stomatal-movements/)

Comins H., Farquhar G. (1982) – Stomatal regulation and water economy in crassulacean acid metabolism plants: an optimization model – Journal of Theoretical Biology 99: 263-284 – DOI:10.1016/0022-5193(82)90004-2https://www.semanticscholar.org/paper/Stomatal-regulation-and-water-economy-in-acid-an-Comins-Farquhar/5fd361eefd5b634928b2f95ae1d337456ad1d3b8 – (On our blog : https://plantstomata.wordpress.com/2021/09/09/stomatal-regulation-and-water-economy/ )

Company of Biologists (2014) – Auxin keeps stomata in the dark – Development 2014 -141: e1604 – http://dev.biologists.org/content/141/16/e1604 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/aux-iaa-mutants-exhibit-excessive-stomata-production-specifically-in-dark-grown-seedlings/ )

Comstock J. P. (2002) – Hydraulic and chemical signalling in the control of stomatal conductance and transpiration – J. Exp. Bot. 53(367): 195-200 – (On our blog : https://plantstomata.wordpress.com/2015/09/14/the-control-of-stomatal-conductance-and-transpiration/).

Comstock J. P., Ehleringer J. R. (1993) – Stomatal response to humidity in common bean (Phaseolus vulgaris): Implications for maximum transpiration rate, water-use efficiency and productivity. – Australian Journal of Plant Physiology 20: 669–691 –  (On our blog : https://plantstomata.wordpress.com/2016/03/14/stomatal-response-to-humidity-in-common-bean/)

Comstock J., Mencuccini M. (1998) – Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub – Plant, Cell & Environment 21: 1029–1038 – (On our blog : https://plantstomata.wordpress.com/2015/09/14/leaf-water-potential-and-stomatal-conductance-gs/)

Condon A. G., Reynolds M. P., Rebetzke G. J., van Ginkel M., Richards R. A., Farquhar G. D. (2007) – Using stomatal aperture traits to select for high yield potential in bread wheat. In ‘Wheat production in stressed environments – Proceedings of the 7th International Wheat Conference’. (Eds HT Buck, JE Nisi, N Salomón) pp. 617–624. (Springer: Dordrecht, The Netherlands) –

Conesa M. A., Muir C. D., Molins A., Galmés J. (2020) – Stomatal anatomy coordinates leaf size with Rubisco kinetics in the Balearic Limonium – AoB PLANTS 12(1) plz050 – https://doi.org/10.1093/aobpla/plz050https://academic.oup.com/aobpla/article/12/1/plz050/5548528 – (On our blog : https://plantstomata.wordpress.com/2020/05/14/stomatal-anatomy-coordinates-leaf-size-with-rubisco-kinetics/ )

Cong X., Jing H., Lin N., Xia Z., Huang M., Jiang X. (2015) – Boron deficiency affects cell morphology and structure of young leaves of radish – Acta Physiologiae Plantarum 37(11): 1-10 – DOI10.1007/s11738-015-2004-7 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11738-015-2004-7 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/b-deficiency-severely-affects-the-rhythmic-stomatal-closing-and-opening/)

Conesa M. À, Muir C. D., Molins A., Galmés J. (2019) – Stomatal anatomy coordinates leaf size with Rubisco kinetics in the Balearic Limonium – AoB PLANTS, plz050 – https://doi.org/10.1093/aobpla/plz050https://academic.oup.com/aobpla/advance-article/doi/10.1093/aobpla/plz050/5548528 – (On our blog : https://plantstomata.wordpress.com/2020/01/23/both-selection-for-functional-coordination-stomata-and-rubisco-kinetics-and-shared-development-pathways-stomatal-density-and-leaf-area-likely-shape-patterns-of-trait-integration-between-species/ )

Conklin P. A., Strable J., Li S., Scanlon M. J. (2019) – On the mechanisms of development in monocot and eudicot leaves – New Phytol. 221(2): 706-724 – doi: 10.1111/nph.15371 – Epub 2018 Aug 14 – PMID: 30106472 – https://pubmed.ncbi.nlm.nih.gov/30106472/ – (On our blog : https://plantstomata.wordpress.com/2021/04/24/stomatal-development-in-monocot-and-eudicot-leaves/ )

Contreras-Cornejo H. A., Macías-Rodríguez L., Vergara A. G., López-Bucio J. (2015)Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis – J. Plant Growth Regul. 34: 425–432 – doi: 10.1007/s00344-014-9471-8https://link.springer.com/article/10.1007/s00344-014-9471-8 – (On our blog : https://plantstomata.wordpress.com/2021/07/08/a-novel-facet-of-trichoderma-produced-metabolites-in-stomatic-aperture-and-water-use-efficiency-of-plants/ )

Cooke J. R., De Baerdemaeker J. G., Rand R. H., Mang H. A. (1976) – A finite element shell analysis of guard cell deformations. – Trans ASAE (Am Soc Agric Eng) 19 1107–1121 – http://audiophile.tam.cornell.edu/randpdf/guardcel.pdf // https://www.researchgate.net/publication/274492871_A_Finite_Element_Shell_Analysis_of_Guard_Cell_Deformations //  – (On our blog : https://plantstomata.wordpress.com/2016/11/22/guard-cell-deformations/)

Cooke J. R., Rand R. H., Mang H. A., De Baerdemaeker J. G., Lee J. Y. (2008) – Shell analysis of elliptical guard cells in higher plants: a review. In: Abel JF, Cooke JR (eds) International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008: “Spanning Nano to Mega.” (Ithaca, NY), 723–726 –

Cooper L. W., DeNiro M. J., Keeley J. E., Taylor H. P., O’Neill- J. R., Kaplan I. R. (1991) – The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants – https://pubs.er.usgs.gov/publication/70006786 – (On our blog : https://plantstomata.wordpress.com/2022/03/13/stomatal-versus-cuticular-transpiration/ )

Cooper M. J., Digby P. J., Cooper P. J. (1972) – Effects of plant hormones on the stomata of barley : A study of the interaction between abscisic acid and kinetin – Planta 105: 43-49 – doi: 10.1007/BF00385162 – https://link.springer.com/article/10.1007/BF00385162 – (On our blog : https://plantstomata.wordpress.com/2018/02/23/interaction-between-aba-and-kinetin-in-barley-stomata/ )

Cooper R. B. (1966) – Photosynthesis and certain morphological characteristics of alfalfa as affected by potassium nutrition – PhD Thesis Virginia Polytechnic Institute, Blacksburg, Virginia – https://vtechworks.lib.vt.edu/bitstream/handle/10919/87685/LD5655.V856_1966.C585.pdf?sequence=1&isAllowed=y – (On our blog : https://plantstomata.wordpress.com/2022/01/25/potassium-and-stomata-in-alfalfa/ )

Cooper S. D., Cockburn W. (1979) – Osmotically induced water stress, potassium uptake and stomatal aperture in epidermal strips of Vicia faba L. – J. Exp. Bot. 30: 913–918 – https://doi.org/10.1093/jxb/30.5.913 –https://academic.oup.com/jxb/article-abstract/30/5/913/450281 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/osmotically-induced-water-stress-potassium-uptake-and-stomatal-aperture/ )

Copeland E. B. (1902) – The mechanism of stomata – Ann. Bot. 16 (2): 327-364 – (On our blog : https://plantstomata.wordpress.com/2017/06/18/the-mechanism-of-stomata/)

Copper M. J., Digby J., Copper P. J. (1972) – Effect of plant hormones on the stomata of barley: a study of interaction between abscisic acid and kinetin – Planta 105: 43-49 –

Cork R. J., Nelmes B. J. (1979) – Vesicles in guard-cell walls and their possible roles in the stomatal mechanism – J. Cell Sci. 38: 83-95 – (On our blog : https://plantstomata.wordpress.com/2021/09/20/vesicular-inclusions-in-stomatal-guard-cell-walls/ )

Corley R. H. V. (1973) – Midday closure of stomata in the oil palm in Malaysia – MARDI Rcs. Bull. 1(2): 1-4 – https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1078.8880&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/11/97242/ )

Cornell University – Institute of Biotechnology – Guard cells surrounding a pore in a plant leaf (picture) : Olympus BX-50 fluorescence microscope – http://www.biotech.cornell.edu/guard-cells-surrounding-pore-plant-leaf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/stomatal-guard-cells-picture/ )

Cornic G. (2000) – Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis – Trends in Plant Science 5: 187–188 – https://doi.org/10.1016/S1360-1385(00)01625-3 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(00)01625-3 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/drought-stress-photosynthesis-and-decreasing-stomatal-aperture/ )

Cornic G., Jarvis P. G. (1972) – Effects of oxygen on CO2 exchange and stomatal resistance in Sitka spruce and maize atlow irradiances – Photosynthetica 6: 225‐239 –

Cornic G., Miginiac E. (1983) – Nonstomatal inhibition of net CO2 uptake by (±) abscisic acid in Pharbitis nil – Plant Physiol. 73: 529–533 – PMCID: PMC1066501 – PMID: 16663253 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066501/ – (On our blog : https://plantstomata.wordpress.com/2018/11/30/a-substantial-part-of-the-reduction-in-leaf-net-co2-uptake-could-be-accounted-for-by-the-effect-of-aba-on-stomatal-conductance/

Cornic G., Papagiorgiou L., Louason G. (1987) – Effect of a rapid and a slow drought cycle followed by rehydration on stomatal and nonstomatal components of leaf photosynthesis in Phaseolus vulgaris L. – J. Plant Physiol. 126: 309-318 – https://doi.org/10.1016/S0176-1617(87)80015-9https://www.sciencedirect.com/science/article/abs/pii/S0176161787800159 – (On our blog : https://plantstomata.wordpress.com/2021/01/06/non-stomatal-components-of-leaf-photosynthesis-recovered-faster-than-the-stomatal-component/ )

Cornic G., Prioul L., Louason G. (1983) – Stomatal and non stomatal contribution to reductions in leaf net CO2-uptake during rapid water stress – Physiol. Plant. 58: 295-301 –

Cornish K., Lu P., Radin J. W., Turcotte E. L., Zeiger E. (1991) – Photosynthetic Rate and Stomatal Conductance are Related to Heat Tolerance in Pima Cotton – Cotton: A College of Agriculture Report – 370087-050-052.pdfhttps://repository.arizona.edu/handle/10150/208325 – (On our blog : https://plantstomata.wordpress.com/2021/11/17/95621/ )

Cornish K., Radin J. W., Turcotte E. L., Lu Z., Zeiger E. (1991) – Enhanced photosynthesis and stomatal condutance of pima cotton (Gossypium barbadense L.) bred for increased yield – Plant Physiology, Lancaster 97(2): 484-489 – https://doi.org/10.1104/pp.97.2.484 – http://www.plantphysiol.org/content/97/2/484/tab-article-info – (On our blog : https://plantstomata.wordpress.com/2018/12/01/breeding-for-increasing-yield-has-enhanced-photosynthetic-capacity-and-stomatal-conductance/

Cornish K., Zeevaart J. A. (1986) – Abscisic acid accumulation by in situ and isolated guard cells of Pisum sativum L. and Vicia faba L. in relation to water stress – Plant Physiol. 81: 1017–1021 – https://doi.org/10.1104/pp.81.4.1017 –  – http://www.plantphysiol.org/content/81/4/1017.short – (On our blog : https://plantstomata.wordpress.com/2018/02/23/aba-accumulation-in-relation-to-water-stress/

Corratgé-Faillie C., Ronzier E., Sanchez F., Prado K., Kim J.-H., Lanciano S., Leonhardt N., Lacombe B., Xiong T. C. (2017) – The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33 – FEBS Lett. 591: 1982–1992 – DOI: 10.1002/1873-3468.12687 – https://www.ncbi.nlm.nih.gov/pubmed/28543075 – (On our blog : https://plantstomata.wordpress.com/2018/12/05/stomatal-outward-potassium-channel-gork-is-regulated-by-cpk33/

Corrêa F. F., Pereira M. P., Madail R. H., Santos B. R., Barbosa S., Castro E. M., Pereira F. J. (2017) – Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae) – Braz J Biol. 77(1): 52-59 – doi: 10.1590/1519-6984.09715 – Epub 2016 Jul 4 – https://www.ncbi.nlm.nih.gov/pubmed/27382995 – (On our blog : https://plantstomata.wordpress.com/2018/09/09/leaves-from-low-density-populations-showed-higher-stomatal-density-and-index/ )

Correia M. J., Rodrigues M. L., Ferreira M. I., Pereira J. S. (1997) – Diurnal changes in the relationship between stomatal conductance and abscisic acid in the xylem sap of field grown peach trees. – J. exp. Bot. 48: 1727-1736 – http://www.jstor.org/stable/23695730 – (On our blog : https://plantstomata.wordpress.com/2018/02/23/stomatal-conductance-and-aba-in-xylem-sap/ )

Corso D., Delzon S., Lamarque L. J., Cochard H., Torres-Ruiz J/ M., King A., Brodribb T. (2020) – Neither xylem collapse, cavitation or changing leaf conductance drive stomatal closure in wheat – Plant, Cell & Environment – https://doi.org/10.1111/pce.13722https://onlinelibrary.wiley.com/doi/pdf/10.1111/pce.13722 – (On our blog : https://plantstomata.wordpress.com/2020/01/21/neither-xylem-collapse-cavitation-or-changing-leaf-conductance-drive-stomatal-closure/ )

Cosgrove D. J., Hedrich R. (1991) – Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. – Planta 186(1): 143–153 – DOI:10.1007/BF00201510 – https://www.ncbi.nlm.nih.gov/pubmed/11538499 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stretch-activated-sa-channels-influence-volume-and-turgor-regulation-of-stomata/ )

Costa G. F., Marenco R. A. (2007) – Fotossíntese, condutância estomática e potencial hídrico foliar em árvores jovens de andiroba (Carapa guianensis) – Acta Amazonica 37(2): 229-234 –

Costa J. M., Grant O.M., Chaves M.M. (2013) – Thermography to explore plant-environment interactions. J Exp Bot. 64(13): 3937-3949 – doi: 10.1093/jxb/ert029 – Epub 2013 Apr 18 – PMID: 23599272 – https://pubmed.ncbi.nlm.nih.gov/23599272/ – (On our blog : https://plantstomata.wordpress.com/2022/09/23/stomata-and-the-advantages-of-thermal-imaging-applications-to-plant-science-agriculture-and-ecology/ )

Costa J. M., Monnet F., Jannaud D., Leonhardt N., Ksas B., Reiter I. M., Pantin F., Genty B. (2015) – OPEN ALL NIGHT LONG: The Dark Side of Stomatal Control – Plant Physiology 167(2) – DOI: https://doi.org/1) –0.1104/pp.114.253369 – http://www.plantphysiol.org/content/167/2/289 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/dedicated-regulators-enforce-nighttime-stomatal-closure/)

Costa J. M., Ortuno M. F., Lopes C. M., Chaves M. M. (2012) – Grapevine cultivars exhibiting differences in stomatal response to water deficit – Funct. Pl. Biol. 39: 179–189 –  https://doi.org/10.1071/FP11156http://www.publish.csiro.au/fp/FP11156 – (On our blog : https://plantstomata.wordpress.com/2019/12/03/combined-measurements-of-canopy-temperature-and-%cf%88pd-can-aid-in-better-understanding-of-stomatal-regulation-in-different-grapevine-varieties/ )

Costa M.A.P., Almeida W. A. B., Mourao Filho F. A. A., Mendes B. M J., Rodríguez A. P. M. (2004) – Análisis estomático de híbridos somáticos en cítricos obtenidos por fusión de protoplastos – ( In English, En inglés) – Pesqui. Agrop. Bras. 39: 297-300 –

Cottele V., Forestier C., Vavasseur A. (1996) – A reassessment of the intervention of calmodulin in the regulation of stomatal movement – Physiol Plant 98: 619–628 – https://doi.org/10.1111/j.1399-3054.1996.tb05719.x –  https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1996.tb05719.x – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ca2%e2%80%90-or-a-ca2%e2%80%90cam%e2%80%90dependent-protein-kinase-plays-a-central-role-in-the-regulation-of-stomatal-movement/ )

Cotelle V., Leonhardt N. (2016) – 14-3-3 Proteins in Guard Cell Signaling – Front. Plant Sci. 6:1210. –  http://dx.doi.org/10.3389/fpls.2015.01210 – http://journal.frontiersin.org/article/10.3389/fpls.2015.01210/full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/the-roles-of-14-3-3-proteins-in-stomata/)

Cotelle V., Pierre J. N., Vavasseur A. (1999) – Potential strong regulation of guard cell phosphoenolpyruvate carboxylase through phosphorylation – J. Exp. Bot. 335:777–783 – https://www.jstor.org/stable/23696231?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/phosphorylation-and-stomatal-regulation/ )

Couot-Gastelier J. (1989) – Les microtubules des cellules stomatiques: implication dans le mouvement des stomates – Bull. Soc. bot. Fr. Actual. bot. 136: 111-112 – https://doi.org/10.1080/01811789.1989.10826944 – https://www.tandfonline.com/doi/abs/10.1080/01811789.1989.10826944 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/le-mouvement-des-stomates-in-french/ )

Couot-Gastelier J., Laffray D., Louguet P. (1984) – Étude comparée de l’ultrastructure des stomates ouverts et fermés chez le Tradescantia virginiana. – Can. J. Bot. 62: 1505–1512 – https://doi.org/10.1139/b84-200 – http://www.nrcresearchpress.com/doi/abs/10.1139/b84-200 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/ultrastructure-of-open-and-closed-stomata-in-french/ )

Couot-Gastelier J., Louguet P. (1985) – Variations ultrastructurales comparées des mitochondries dans les cellules de garde des stomates ouverts et fermés (Ultrastructural variations in mitochondria of guard cells of open and closed stomata) – C. R. Acad. Sc. Paris 301(3): 89-93 –  https://eurekamag.com/research/001/502/001502725.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/94653/ )

Couot-Gastelier J., Louguet P. (1985) – Localisation ultrastructurale de la phosphatase acide dans les cellules stomatiques de Tradescantia virginiana L – Cytobios 43: 87-95  –

Couot-Gastelier J., Louguet P. (1987) – Etude comparée de la structure foliaire et de l’ultrastructure des stomates chez deux cultivars de Pelargonium × hortorum, l’un chlorophyllien et l’autre mutant à feuilles blanches, vertes ou panachées – Can. J. Bot. 65: 340-347 –

Couot-Gastelier J., Louguet P. (1989) – Synthèse d’ A.R.N. et de protéines dans les stomates ouverts et fermés chez deux cultivars de Pelargonium × hortorum l’un chlorophyllien et l’autre mutant à feuilles blanches – Bull. Soc. bot. Fr. lettres bot. 136: 91-102 –

Couot-Gastelier J., Louguet P. (1992) – Effet de la colchicine sur les mouvements des stomates et l’ultrastructure des cellules stomatiques de Tradescantia virginiana – Bulletin Soc.  Bot. France, Lettres Botaniques 139: 345–356 –

Coursol S., Le Stunff H., Lynch D. V., Gilroy S., Assmann S. M., Spiegel S. (2005) – Arabidopsis sphingosine kinase and the effects of phytosphingosine- 1-phosphate on stomatal aperture – Plant Physiol. 137: 724–737 – doi: 10.1104/pp.104.055806 – https://www.ncbi.nlm.nih.gov/pubmed/15665242 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/arabidopsis-sphingosine-kinase-phytosphingosine-1-phosphate-and-stomatal-aperture/ )

Coursol S., Fan L.-M., Le Stunff H., Spiegel S., Gilroy S., Sarah M. Assmann S. M. (2003)– Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins – Nature 423: 651–654 –  DOI: 10.1038/nature01643  – (On our blog : https://plantstomata.wordpress.com/2016/05/16/sphingolipid-signalling-in-stomata/).

Cousins A. B., Baroli I., Badger M. R., Ivakov A., Lea P. J., Leegood R. C., et al. (2007) – The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. – Plant Physiol. 145: 1006–1017 – doi: 10.1104/pp.107.103390 – http://www.plantphysiol.org/content/145/3/1006 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/pepc-ec-4-1-1-31-c4-photosynthesis-and-stomatal-opening/ )

Cousson A. (1999) – Pharmacological study of two potential Ca2+ signalling pathways within stomatal closing in response to abscisic acid in Commelina communis L. – Plant Sci. 145: 67–74 – https://doi.org/10.1016/S0168-9452(99)00054-0 – https://www.sciencedirect.com/science/article/pii/S0168945299000540 – (On our blog : https://plantstomata.wordpress.com/2018/11/23/stomatal-closing-proceeds-from-different-ca2-signalling-pathways/

Cousson A. (2000) – Analysis of the sensing and transducing processes implicated in the stomatal responses to carbon dioxide in Commelina communis L. – Plant Cell Environ 23: 487–495 – http://onlinelibrary.wiley.com/store/10.1046/j.1365-3040.2000.00561.x/asset/j.1365-3040.2000.00561.x.pdf;jsessionid=717BBEDB1AC0BC119C4845CEB99B153E.f02t03?v=1&t=je43qgzb&s=f09851f2a5f36dfe45e1ae78583288e4b435f290 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/sensing-and-transducing-processes-implicated-in-the-stomatal-responses-to-co2/

Cousson A. (2001) – Pharmacological evidence for the implication of both cyclic GMP-dependent and -independent transduction pathways within auxin-induced stomatal opening in Commelina communis (L.). – Plant Sci. 161: 249-258 –

Cousson A. (2003) – Pharmacological evidence for a positive influence of the cyclic GMP-independent transduction on the cyclic GMP-mediated Ca2+-dependent pathway within the Arabidopsis stomatal opening in response to auxin – Plant Sci. 164: 759–767 – doi: 10.1016/S0168-9452(03)00062-1 – (On our blog : https://plantstomata.wordpress.com/2015/09/19/the-arabidopsis-stomatal-opening-in-response-to-auxin/).

Cousson A. (2003) – Two potential Ca2+-mobilising processes depend on the abscisic acid concentration and growth temperature in the Arabidopsis stomatal guard cell. – J. Plant Physiol. 160: 493–501 – doi: 10.1078/0176-1617-00904 – (On our blog : https://plantstomata.wordpress.com/2016/02/15/5559/).

Cousson A., Vavasseur A. (1998) – Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic GMP-mediated induction of stomatal opening by auxin in Commelina communis L. – Planta 206: 308-314 – https://doi.org/10.1007/s004250050405 – https://link.springer.com/article/10.1007/s004250050405#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/27/cyclic-gmp-mediated-induction-of-stomatal-opening-by-auxin/ )

Cousson A., Vavasseur A. (1998) – Two potential Ca2+-dependent transduction pathways in stomatal closing in response to abscisic acid – Plant Physiology and Biochemistry 36: 257–262 – DOI 10.1016/S0981-9428(97)86883-0 – https://www.sciencedirect.com/science/article/pii/S0981942897868830 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/stomatal-closing-in-response-to-aba-closing-signal-transduced-through-different-pathways/ )

Cowan I. R. (1972) – Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model – Planta 106: 185–219 – https://doi.org/10.1007/BF00388098 –  – https://link.springer.com/article/10.1007/BF00388098#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/26/oscillations-in-stomatal-conductance/ )

Cowan I. (1978) – Stomatal behaviour and the environment -In: Preston RD, Woolhouse HW (eds) Advances in Botanical Research 4: 117–228 – Academic Press, London – https://www.sciencedirect.com/science/article/pii/S0065229608603705 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/stomatal-behaviour-and-the-environment/ )

Cowan I. (1982) – Regulation of water use in relation to carbon gain in higher plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, eds. Encyclopedia of plant physiology. New series, Vol. 12B, Physiological plant ecology. II. Water relations and carbon assimilation. Berlin: Springer-Verlag, 589–613 –

Cowan I. R. (1994) – As to the mode of action of the guard cells in dry air. In: ED Schulze, MM Caldwell, eds. As to the Mode of Action of the Guard Cells in Dry Air. Berlin, Germany: Springer, 205– 299 – https://link.springer.com/chapter/10.1007/978-3-642-79354-7_10 – (On our blog : https://plantstomata.wordpress.com/2021/04/22/the-mode-of-action-of-the-guard-cells-in-dry-air/ )

Cowan I. R. (1995) – As to the mode of action of the Guard Cells in dry air – In Ecophysiology of Photosynthesis (eds E.D. Schulze & M.M. Caldwell) 100: 205–229 – Springer-Verlag, New York – https://link.springer.com/chapter/10.1007%2F978-3-642-79354-7_10 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-closure-in-dry-air/ )

Cowan I. R., Farquhar G. D. (1977) – Stomatal function in relation to leaf metabolism and environment – Symposium for the Society of Experimental Biology 31: 471-505 –  https://dge.carnegiescience.edu/publications/berry/AnnRev2012/_%20of%20the%20Society%20for%20Experimental%20Biology%201977%20Cowan.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-in-relation-to-leaf-metabolism-and-environment/)

Cowan I. R., Raven J. A., Hartung W., Farquhar G. D. (1982) – A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves – Functional Plant Biology 9(4): 489-498 – https://www.researchgate.net/publication/262959873_A_Possible_Role_for_Abscisic_Acid_in_Coupling_Stomatal_Conductance_and_Photosynthetic_Carbon_Metabolism_in_Leaves – (On our blog : https://plantstomata.wordpress.com/2018/02/27/aba-and-coupling-stomatal-conductance-and-photosynthetic-carbon-metabolism/

Cowan I. R., Troughton J. H. (1971) – The relative role of stomata in transpiration and assimilation – Planta 97(4): 325-336 – doi: 10.1007/BF00390212 – https://www.ncbi.nlm.nih.gov/pubmed/24493277 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/the-ways-in-which-transpiration-and-assimilation-depend-on-stomatal-aperture/ )

Coxworth B. (2017) – Leaf-zapping sensors know when plants need water – New Atlas Nov. 10, 2017 – https://newatlas.com/plant-water-leaf-sensor/52150/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/an-electrically-conductive-ink-containing-carbon-nanotubes-printed-across-a-single-stomata-to-form-an-electrical-circuit/ )

Coyne P. I., Bingham G. E. (1980) – Photosynthesis and stomatal response to light and temperature in Ponderosa pine exposed to long-term oxidant stress. In: Miller PR (ed) Effect of Air Pollutants on Mediterranean and Temperate Forest Ecosystems. Pac SW For Range Exp Sta Gen Tech Rep PSW-43, Berkeley, p 233

Coyne P. I., Bingham G. E. (1982) – Variation in photosynthesis and stomatal conductance in an ozone-stressed Ponderosa pine stand: light response – For Sci 28: 257–273 – https://doi.org/10.1093/forestscience/28.2.257 – https://www.osti.gov/biblio/5689435 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/variation-in-photosynthesis-and-stomatal-conductance-light-response-of-trees/ )

Coyne P. I., Bingham G. E. (2012) – Photosynthesis and stomatal light responses in snap beans exposed to hydrogen sulfide and ozone – J Air Pollut Control Assoc 28(11): 1119–1123 – doi:10.1080/00022470.1978.10470715https://www.tandfonline.com/doi/abs/10.1080/00022470.1978.10470715 – (On our blog : https://plantstomata.wordpress.com/2019/12/26/stomatal-light-responses-in-snap-beans-exposed-to-hydrogen-sulfide-and-ozone/ )

Craenen K., Coosemans J., Ortiz R. (1997) – The role of stomatal traits and epicutical wax in resistance to Mycosphaerella fijiensis in banana and plantain (Musa spp.) – Tropicultura 15(3): 136-140 – ISSN : 0771-3312 – https://www.musalit.org/seeMore.php?id=6059 – (On our blog : https://plantstomata.wordpress.com/2021/12/26/the-role-of-stomatal-density-stomatal-length-and-the-thickness-of-epicuticular-wax-in-resistance-to-mycosphaerella-fijiensis/ )

Craparo A. C. W., Steppe K., Van Asten P. J. A., Läderach P., Jassogne L. T. P., Grab S. W. (2017) – Application of thermography for monitoring stomatal conductance of Coffea arabica under different shading systems – Science of The Total Environment 609: 755-763 – https://doi.org/10.1016/j.scitotenv.2017.07.158https://www.sciencedirect.com/science/article/pii/S0048969717318612 – (On our blog : https://plantstomata.wordpress.com/2019/08/12/application-of-thermography-for-monitoring-stomatal-conductance/ )

Creek D., Lamarque L. J., Torres-Ruiz J. M., Parise C., Burlett R., Tissue D. T., Delzon S. (2020) – Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique – Journal of Experimental Botany 71(3): 1151–1159 – https://doi.org/10.1093/jxb/erz474https://academic.oup.com/jxb/article-abstract/71/3/1151/5602888?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2020/01/30/xylem-embolism-in-leaves-does-not-occur-with-open-stomata/ )

Creese, C., Oberbauer, S., Rundel, P., Sack, L. (2014) – Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances – New Phytologist (2014) 204: 92–104 – http://www.ncbi.nlm.nih.gov/pubmed/25077933 – (On our blog : https://plantstomata.wordpress.com/2015/09/20/coordination-of-hydraulic-and-photosynthetic-signaling-networks-modulating-fern-stomatal-responses/)

Crispim B. A., Sposito J. C. V., Mussury R. M., Seno L. O., Grisolia A. B. (2014) – Effects of atmospheric pollutants on somatic and germ cells of Tradescantia pallida (Rose) D.R. HUNT cv. purpurea – An. Acad. Bras. Ciênc. 86(4): – https://doi.org/10.1590/0001-3765201420140338  – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652014000401899 – (On our blog : https://plantstomata.wordpress.com/2020/03/02/increased-number-of-epidermal-cells-and-stomata-and-increased-stomatal-density-at-locations-with-greater-vehicular-traffic/ )

Croft P. J., Shulman M. D., Avissar R. (1993) – Cranberry Stomatal Conductivity -HORTSCIENCE 28(11): 1114-1116 – http://hortsci.ashspublications.org/content/28/11/1114.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/19/cranberries-behave-as-xeromorphic-plants-stomatal-conductivity/ )

Croker J. L., Witte W. T., Auge R. M. (1998) – Stomatal sensitivity of six temperate, deciduous tree species to non-hydraulic root-to-shoot signalling of partial soil drying – Journal of Experimental Botany 49: 761–774 – https://pubag.nal.usda.gov/catalog/1394540 – (On our blog : https://plantstomata.wordpress.com/2021/12/07/stomatal-sensitivity-to-non-hydraulic-root-signals-may-be-mechanistically-linked-to-a-limited-extent-with-other-characteristics-defining-relative-species-drought-tolerance/ )

Croxdale J. L. (1998) – Stomatal patterning in monocotyledons: Tradescantia as a model system. – Journal of Experimental Botany 49: 279–292 – DOI 10.1093/jexbot/49.suppl_1.279 – https://www.jstor.org/stable/23695962?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/27/the-current-stomatal-patterning-theories-and-understanding-it-in-the-future/ )

Croxdale J. L. (2000) – Stomatal patterning in angiosperms – Am. J. Bot. 87: 1069–1080  – (On our blog : https://plantstomata.wordpress.com/2016/08/30/a-theory-of-stomatal-patterning-on-angiosperm-leaves/)

Croxdale J. (2001) – Stomata – ENCYCLOPEDIA OF LIFE SCIENCES – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/14/stomata-7/ )

Croxdale J., Smith J., Yandell B., Johnson J. B. (1992) – Stomatal patterning in Tradescantia: an evaluation of the cell lineage theory – Dev Biol. 149(1):158-167 – PMID: 1728585 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.9831&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-patterning-and-the-cell-lineage-theory-2/ )

Cruiziat P., Cochard H., Améglio T. (2002) – Hydraulic architecture of trees: main concepts and results – Ann. For. Sci. 59: 723–752 – © INRA, EDP Sciences – DOI: 10.1051/forest:2002060https://www.academia.edu/32409353/Hydraulic_architecture_of_trees_main_concepts_and_results?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/06/hydraulic-architecture-of-trees-and-stomatal-conductance/ )

Crundwell M. E. (1988) – A review of hydrophyte evapotranspiration – Rev. Hydrobiol. Trop. 19(3-4) : 215-232 – https://horizon.documentation.ird.fr/exl -doc/pleins_textes/cahiers/hydrob-trop/25121.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/01/stomata-and-hydrophyte-evapotranspiration/ )

Cruz M. V., Mori G. M., Oh D.-H., Dassanayake m., Zucchi M. I., Oliveura R. S., Souza A. P. de (2019) – Molecular responses to freshwater limitation in the mangrove tree Avicennia germinans (Acanthaceae) – bioRxiv – https://doi.org/10.1101/731760 – Molecular Ecology – doi: 10.1111/mec.15330https://onlinelibrary.wiley.com/doi/10.1111/mec.15330 – (On our blog : https://plantstomata.wordpress.com/2022/06/04/a-major-role-of-spatial-heterogeneity-in-freshwater-availability-and-stomatal-closure-in-a-mangrove-tree/ )

Crystal V. (2019) – How Do Plants Survive in the Desert? – https://letstalkscience.ca/educational-resources/stem-in-context/how-do-plants-survive-in-desert – (On our blog : https://plantstomata.wordpress.com/2022/05/12/stomata-and-plants-survival-in-the-desert/ )

Cukrova V., Avratovscukova N. (1968) – Photosynthetic activity chlorophyll content and stomata characteristics in di ploid and poly ploid types of datura stramonium d chloroplasts chromosome number – Photosynthetica 2(4): 227-237 – https://eurekamag.com/research/025/235/025235900.php – (On our blog : https://plantstomata.wordpress.com/2022/02/19/stomata-characteristics-in-diploid-and-polyploid-types-of-datura-stramonium/ )

Cuevas E., Baeza P., Lissarrague J. R. (2006) – Variation in stomatal behaviour and gas exchange between mid-morning and mid-afternoon of north-south oriented grapevines (Vitis vinifera L. cv. Tempranillo) at different levels of soil water availability – Scientia Horticulturae 108: 173–180 –  https://doi.org/10.1016/j.scienta.2006.01.027 –  https://www.sciencedirect.com/science/article/pii/S0304423806000574 – (On our blog : https://plantstomata.wordpress.com/2018/12/01/variation-in-stomatal-behaviour-and-gas-exchange-between-mid-morning-and-mid-afternoon-at-different-levels-of-soil-water-availability/

Cui X. H., Wang X. C. (2007) – Involvement of Vicia faba L. aquaporin in regulation of stomatal movement by microfilament –  Plant Physiology Communications 43: 61–64 – https://www.researchgate.net/publication/287528824_Involvement_of_Vicia_faba_L_aquaporin_in_regulation_of_stomatal_movement_by_microfilament – (On our blog : https://plantstomata.wordpress.com/2018/09/13/aquaporin-might-be-involved-in-stomatal-movement-regulated-by-fusicoccin-and-microfilament/

Cukrova V., Avratovscukova N. (1968) – Photosynthetic activity, chlorophyll content and stomata characteristics in diploid and polyploid types of Datura stramonium L. – Photosynthetica 2 (4): 227-237 – (On our blog : https://plantstomata.wordpress.com/2017/06/22/stomata-in-datura-stramonium/)

Cullen L. E., Adams M. A., Anderson M. J., Grierson P. F. (2008) – Analyses of δ13C and δ18O in tree rings of Callitris columellaris provide evidence of a change in stomatal control of photosynthesis in response to regional changes in climate – Tree Physiology 28: 1525–1533 – (On our blog :

Cummins W. R. (1973) – The Metabolism o f Abscisic Acid in Relation to
its Reversible Action on Stomata in Leaves of Hordeum vulgare L. – Planta 114: 159- 167 –

Cummins W. R., Kende H., Raschke K. (1971) – Specifity and reversibility of the rapid stomatal response to abscisic acid – Planta 99: 347–351 – https://doi.org/10.1007/BF00385826 – https://link.springer.com/article/10.1007/BF00385826#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/28/specifity-and-reversibility-of-the-rapid-stomatal-response-to-aba/ )

Cunningham S. C. (2004) – Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia – Trees 18: 399-407 –

Currier H. R., Pickering E. R., Foy C. L. (1964) – Relation of stomatal penetration to herbicidal effects using fluorescent dye as a tracer – Weeds 12: 301-303 – DOI: 10.2307/4040760 – https://www.jstor.org/stable/4040760?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/agreement-between-degree-of-stomatal-opening-and-tracer-uptake/ )

Curtis C. C. (1908) – The Physiology of Stomata – Science 28(717): 409-411 –
DOI: 10.1126/science.28.717.409-ahttps://science.sciencemag.org/content/28/717/409.2/tab-article-info – (On our blog : https://plantstomata.wordpress.com/2020/12/02/the-physiology-of-stomata-2/ )

Curtis J. D., Lersten N. R. (1986) – Hydathode anatomy in Potentilla palustris (Rosaceae) – Nord. J. Bot. 6(6): 793-796 –

Curvetto N., Darjania L., Delmastro S. (1994) – Effect of two cAMP analogs on stomatal opening in Vicia faba: possible relationship with cytosolic calcium concentration – Plant Physiol. Biochem. 32: 365-372 –

Cvetkovska M., Dahal K., Alber N. A., Jin C., Cheung M., Vanlerberghe G. C. (2014) – Knockdown of mitochondrial alternative oxidase induces the “stress state” of signaling molecule pools in Nicotiana tabacum, with implications for stomatal function – New Phytol. 203: 449–461 – doi: 10.1111/nph.12773 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12773/full – (On our blog : https://plantstomata.wordpress.com/2018/02/26/mitochondrial-alternative-oxidase-induces-the-stress-state-of-signaling-molecule-pools-and-stomatal-function/ )

Czech K. (1869) – Ueber die Funktion der Stomata – Bot. Zeitung 27(48-49): 801-808 ; 817-823. – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/41129 )

Czékus Z., Poor P., Tari I., Ördög A. (2020) – Effects of Light and Daytime on the Regulation of Chitosan-Induced Stomatal Responses and Defence in Tomato Plants – Plants 9(1): 59 – https://doi.org/10.3390/plants9010059https://www.mdpi.com/2223-7747/9/1/59?type=check_update&version=1 – (On our blog : https://plantstomata.wordpress.com/2020/04/12/regulation-of-chitosan-induced-stomatal-responses-and-defence