PHYSIO- BIBLIOGRAPHY P-S

Pääkkönen E., Holopainen T., Kärenlampi L. (1997) – Differences in growth, leaf senescence and injury, and stomatal density in birch (Betula pendula Roth.) in relation to ambient levels of ozone in Finland -Environ. Pollut. 96: 117-127 – https://doi.org/10.1016/S0269-7491(97)00034-1https://www.sciencedirect.com/science/article/abs/pii/S0269749197000341 – (On our blog : https://plantstomata.wordpress.com/2022/02/04/stomatal-density-in-birch-in-relation-to-ambient-levels-of-ozone/ )

Pääkkönen E., Paasisalo S., Holopainen T., Kärenlampi L. (1993) – Growth and stomatal responses of birch (Betula pendula Roth.) clones to ozone in open-air and chamber fumigations – New Phytologist 125: 615-623 – https://doi.org/10.1111/j.1469-8137.1993.tb03911.x – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1993.tb03911.x – (On our blog : https://plantstomata.wordpress.com/2018/12/22/elevated-o3-concentrations-increased-diffusive-resistance-to-water-vapour-but-increased-the-stomatal-density/ )

Pääkkönen E., Vahala J., Pohjola M., Holopainen T., Kärenlampi L. (1998) – Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress – Plant Cell Environ. 21: 671–684 – https://doi.org/10.1046/j.1365-3040.1998.00303.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1998.00303.x – (On our blog : https://plantstomata.wordpress.com/2018/10/15/water-stress-and-physiological-stomatal-and-ultrastructural-ozone-responses/ )

Pääkkönen E., Holopainen T., Kärenlampi L. (1997) – Differences in growth, leaf senescence and injury, and stomatal density in birch (Betula pendula Roth) in relation to ambient levels of ozone in Finland – Environmental Pollution 96: 117-127 – https://doi.org/10.1016/S0269-7491(97)00034-1 –https://www.sciencedirect.com/science/article/pii/S0269749197000341 – (On our blog : https://plantstomata.wordpress.com/2018/12/22/differences-in-growth-leaf-senescence-and-injury-and-stomatal-density-in-relation-to-levels-of-ozone/ )

Pachepsky L. B., Lu Z., Reddy V. R. (2000) – Analysis of abaxial and adaxial stomatal regulation in leaves of Pima cotton (Gossypium barbadense L.) using the 2DLEAF, two-dimensional model of leaf gas exchange – Biotronics 29: 79-95 – https://eurekamag.com/research/003/358/003358537.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/abaxial-and-adaxial-stomatal-regulation-using-the-2dleaf-two-dimensional-model-of-leaf-gas-exchange/ )

Padmanaban S. Chanroj S. Kwak J. M., Li X., Ward J. M., Sze H. (2007) – Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells – Plant Physiol. 144: 82–93 – https://doi.org/10.1104/pp.106.092155 – http://www.plantphysiol.org/content/144/1/82?ijkey=2215735f35ce47a423879d755585d22cb4d27a9b&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/10/10/one-chx-protein-plays-a-critical-role-in-osmoregulation-through-k-fluxes-and-possibly-ph-modulation-of-an-active-endomembrane-system-in-stomata/ )

Padoan D., Mossad A., Chiancone B., Germana M. A., Khan P. S. S. V. (2013) – Ploidy levels in Citrus clementina affects leaf morphology, stomatal density and water content – Theoretical and Experimental Plant Physiology 25(4): 283-290 – http://dx.doi.org/10.1590/S2197-00252013000400006– http://www.scielo.br/pdf/txpp/v25n4/06.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/increase-in-ploidy-level-caused-an-effect-on-stomatal-characteristics/ )

Paembonan S. A., Larengkeng S. H., S Millang S. (2021) – The dynamics of physiological properties of ebony (Diospyros celebica bakh) based on crown position and altitude – FSSAT 2021 – Conference Management System – https://confgate.net/2021/fssat/kfz/abstract/J3hWZsex4 – (On our blog : https://plantstomata.wordpress.com/2021/11/29/stomata-and-the-dynamics-of-physiological-properties-based-on-crown-position-and-altitude/ )

Paiva E. A. S. (2017) – How does the nectar of stomata-free nectaries cross the cuticle? – Acta Bot. Bras. 31(3) Belo Horizonte July/Sept. 2017 – http://dx.doi.org/10.1590/0102-33062016abb0444 – http://www.scielo.br/scielo.php?pid=S0102-33062017000300525&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2017/10/30/nectar-release-in-stomata-free-nectaries/ )

Paiva E. A., Lemos-Filho J. P., Oliveira D. M. (2006) – Imbition of Swietenia macrophylla (Meliaceae) seeds: The role of stomata – Ann. Bot. 98: 213-217 – doi:  10.1093/aob/mcl090 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803541/ – (On our blog : https://plantstomata.wordpress.com/2017/02/04/permanently-opened-stomata-in-the-seed-coat-play-a-significant-role-in-seed-imbibition/ )

Pal A., Kulshreshta K., Ahmad K. J., Behl H. M. (2002) – Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? – Flora – Morphology, Distribution, Functional Ecology of Plants 97(1): 47-55 – https://doi.org/10.1078/0367-2530-00014https://www.sciencedirect.com/science/article/pii/S0367253004700067 – (On our blog : https://plantstomata.wordpress.com/2019/07/18/leaf-surface-characters-stomata-and-plant-resistance-to-auto-exhaust-pollution/ )

Pal A., Kulshreshta K., Ahmad K. J., Yunus M. (2002) – Changes in leaf surface structures of two avenue tree species caused by auto exhaust pollution – Journal of Environmental Biology 21(1): 15-21 – https://www.cabdirect.org/cabdirect/abstract/20013041309 – (On our blog :

Palad M. S., Aminah (2021) – Response to State Stomata to the Use of Microbes as Potential Biofertilizers in the Rehabilitation of Cocoa Trees Without Logging – Proceedings of the International Conference on Engineering, Technology and Social Science (ICONETOS 2020) – https://doi.org/10.2991/assehr.k.210421.064 – https://www.atlantis-press.com/proceedings/iconetos-20/125955727 – (On our blog : https://plantstomata.wordpress.com/2021/07/28/stomata-and-the-use-of-microbes-as-potential-biofertilizers-in-the-rehabilitation-of-cocoa-trees/ )

Palasciano M., Camposeo S., Godini A. (2005) – Stomatal size and
frequency in wild (A. webbii) and cultivated (A. communis) almonds – Options Mediterraneennes, Serie A 63: 305-310 – https://www.researchgate.net/publication/266890946_Stomatal_size_and_frequency_in_wild_A_webbii_and_cultivated_A_communis_almonds – (On our blog : https://plantstomata.wordpress.com/2022/05/05/the-only-evident-difference-between-the-cultivated-and-wild-almonds-concerned-the-leaf-area-stomata-frequency-and-size-were-independent-of-other-characteristics/ )

Palevitz B. A. (1981) – The structure and development of stomatal cells. In: Stomatal Physiology (Jarvis, P. G.,Mansfield, T. A., eds.), 1–23 – Cambridge Univ. Press – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA1&ots=rqSI3Dzsz3&sig=PTjN4t7pZEm1PZRcWbKHP1QJM9Q&redir_esc=y#v=onepage&q&f=false – (On our blog: https://plantstomata.wordpress.com/2018/11/29/structure-and-development-of-stomatal-cells-2/

Palevitz B. A. (1981) – Microtubules and possible microtubule nucleation centers in the cortex of stomatal cells as visualized by high voltage electron microscopy – Protoplasma 107: 115–125 – https://doi.org/10.1007/BF01275612https://link.springer.com/article/10.1007%2FBF01275612#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/10/microtubules-and-possible-microtubule-nucleation-centers-in-the-cortex-of-stomatal-cells/ )

Palevitz B. A. (1982) – The stomatal complex as a model of cytoskeletal participation in cell differentiation – in C.W. Lloyd (Ed.), The cytoskeleton in plant growth and development –  Academic Press, London : 346-376

Palevitz B. A. (1986) – Division plane determination in guard mother cells of Allium: video-lapse analysis of nuclear movements and phragmoplast rotation in the cortex – Developmental Biology 117: 644–654 – https://doi.org/10.1016/0012-1606(86)90333-7 –https://www.sciencedirect.com/science/article/pii/0012160686903337 – (On our blog : https://plantstomata.wordpress.com/2018/12/22/division-plane-determination-in-stomatal-guard-mother-cells/ )

Palevitz B. A., Hepler P. K. (1974) – The control of the plane of division during stomatal differentiation in Allium. I. Spindle reorientation – Chromosoma 46: 297-326 – https://doi.org/10.1007/BF00284884https://link.springer.com/article/10.1007/BF00284884#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/spindle-reorientation-during-stomatal-differentiation-2/ )

Palevitz B. A., Hepler P. K. (1974) – The control of the plane of division during stomatal differentiation in Allium. II. Drug studies – Chromosoma 46: 327–341 – https://doi.org/10.1007/BF00284885https://link.springer.com/article/10.1007%2FBF00284885#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/14/the-control-of-the-plane-of-division-during-stomatal-differentiation/ )

Palevitz B. A., Hepler P. K. (1976) – Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: The role of microtubules and ion accumulation – Planta 132: 71 – https://doi.org/10.1007/BF00390333 – https://link.springer.com/article/10.1007/BF00390333#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/18/the-role-of-microtubules-and-ion-accumulation-in-stomata/ )

Palevitz B. A., Hepler P. K. (1985) – Changes in the coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow – Planta 164: 473–479 – doi:10.1007/BF00395962 – http://link.springer.com/article/10.1007%2FBF00395962 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/dye-coupling-of-stomatal-cells/ )

Palevitz B. A., Hodge L. D. (1984) – The endoplasmic reticulum in the cortex of developing guard cells: coordinate studies with chlorotetracycline and osmium ferricyanide – Dev Biol. 101(1): 147-159 – PMID: 6198223 – https://www.ncbi.nlm.nih.gov/pubmed/6198223 – (On our blog : https://plantstomata.wordpress.com/2018/08/16/the-endoplasmic-reticulum-becomes-asymmetrically-distributed-in-young-guard-cells-of-stomata/ )

Palevitz B. A., Mullinax B. J. (1989) – Developmental changes in the arrangement of cortical microtubules in stomatal cells of oat (Avena sativa L.) – Cell Motility and Cytoskeleton 13: 170–180 – https://doi.org/10.1002/cm.970130305https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970130305 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/changes-in-the-arrangement-of-cortical-microtubules-in-stomatal-cells/ )

Palevitz B. A., O’Kane D. J. (1981) – Epifluorescence and video analysis of vacuole motility and development in stomatal cells of Allium – Science 214: 443–445 – https://www.jstor.org/stable/1687396?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/08/18/epifluorescence-vacuole-motility-and-development-in-stomatal-cells/ )

Palevitz B. A., O’Kane D. J., Kobres R. E., Raikhel N. V. (1981) – The vacuole system in stomatal cells of Allium – Vacuole movements and changes in morphology in differentiating cells as revealed by epifluorescence, video and electron microscopy – Protoplasma 109: 23-55 – https://doi.org/10.1007/BF01287629 – https://link.springer.com/article/10.1007/BF01287629 – (On our blog : https://plantstomata.wordpress.com/2018/08/16/vacuoles-in-stomata-of-allium/ )

Paling E. I., Humphries G., McCardle I., Thomson G. (2001) – The effects of iron ore dust on langroves in Western Australia: Lack of evidence for stomatal damage – Wetlands Ecology and Management 9: 363-370 – https://www.oieau.org/eaudoc/system/files/documents/34/173557/173557_doc.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/15/stomatal-damage-by-iron-ore-dust-on-mangroves/ )

Pallaghy C. K. (1968) – Electrophysiological studies in guard cells of tobacco – Planta 80: 147–153 – https://doi.org/10.1007/BF00385590https://link.springer.com/article/10.1007/BF00385590#citeas – (On our blog : https://plantstomata.wordpress.com/2019/06/27/electrophysiological-studies-in-stomata/ )

Pallaghy C. K. (1970) – The effect of Ca++ on the ion specificity of stomatal opening in epidermal strips of Vicia faba – Z. Pflanzenphysiol. Bd. 62: 58-62 –

Pallaghy C. K. (1971) – Stomatal movement and potassium transport in epidermal strips of Zea mays: the effect of CO2 – Planta 101: 287–295 – doi: 10.1007/Bf00398115 — https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=24488473&dopt=abstractplus – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomatal-movement-potassium-transport-and-co2/ )

Pallaghy C. K. (1972) – Localization of thallium in stomata is independent of transpiration – Aust. J. biol. Sci. 25: 415-417 – https://www.publish.csiro.au/bi/pdf/BI9720415 – (On our blog : https://plantstomata.wordpress.com/2021/11/18/localization-of-thallium-in-stomata/ )

Pallaghy C. K., Fischer R. A. ( 1974) – Metabolic aspects of stomatal opening and ion accumulation by guard cells in Vicia faba – Z. f. Pflanzenphysiol. 71: 332–344 – https://doi.org/10.1016/S0044-328X(74)80040-1http://www.sciencedirect.com/science/article/pii/S0044328X74800401 – https://plantstomata.wordpress.com/2017/12/18/metabolic-aspects-of-stomatal-opening-and-ion-accumulation/ )

Pallaghy C. K., Raschke K. ( 1972) – No stomatal response to ethylene – Plant Physiol. 49: 275-278 – PMID: 16657942 – PMCID: PMC365946 – DOI: 10.1104/pp.49.2.275https://pubmed.ncbi.nlm.nih.gov/16657942/ – (On our blog : https://plantstomata.wordpress.com/2022/12/22/no-stomatal-response-to-ethylene/ )

Pallardy S.G., Čermák J., Ewers F. W., Kaufmann M. R., Parker W. C., Sperry J. S. (1995) – Chapter 9 – Water Transport Dynamics in Trees and Stands – in Resource Physiology of Conifers -Acquisition, Allocation, and UtilizationPhysiological Ecology: 301-389 – https://doi.org/10.1016/B978-0-08-092591-2.50014-5https://www.sciencedirect.com/science/article/pii/B9780080925912500145 – (On our blog : https://plantstomata.wordpress.com/2021/08/18/stomatal-responses-to-humidity-9/ )

Pallardy S.G., Kozlowski T. T. (1979) – Frequency and length of stomata of 21 Populus clones – Canadian Journal of Botany 57: 2519-2523 –  https://doi.org/10.1139/b79-298 –http://www.nrcresearchpress.com/doi/abs/10.1139/b79-298 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/frequency-and-length-of-stomata-in-populus-clones/ )

Pallardy S.G., Kozlowski T. T. (1979) – Stomatal Response of Populus Clones to Light Intensity and Vapor Pressure Deficit – Plant Physiology 64: 112-114 – doi: 10.1104/pp.64.1.112 – PMID: 16660896 – PMCID: PMC543035 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC543035/ – (On our blog: https://plantstomata.wordpress.com/2022/12/23/111227/ )

Pallas J. E. (1994) – Guard cell starch retention and accumulation in the dark – Bot. Gaz. 125: 102-107 – https://doi.org/10.1086/336253https://www.journals.uchicago.edu/doi/abs/10.1086/336253?journalCode=botanicalgazette – (On our blog : https://plantstomata.wordpress.com/2018/11/10/stomatal-guard-cells-have-a-very-pronounced-ability-to-retain-starch-for-prolonged-periods-in-darkness/

Pallas J. E. (1965) – Transpiration and stomatal opening with changes in carbon-dioxide content of the air – Science 147: 171-173 – DOI: 10.1126/science.147.3654.171https://ui.adsabs.harvard.edu/abs/1965Sci…147..171P/abstract – (On our blog : https://plantstomata.wordpress.com/2021/11/18/increasing-the-co2-content-of-air-causes-the-stomata-to-close/ )

Pallas J. E. (1966) – Mechanisms of Guard Cell Action – The Quarterly Review of Biology 41(4): 365-383 – https://doi.org/10.1086/405157 – PMID: 5341597 – http://www.journals.uchicago.edu/doi/abs/10.1086/405157?journalCode=qrb – (On our blog : https://plantstomata.wordpress.com/2018/01/19/biochemical-changes-involved-in-opening-and-closing-of-stomata/ )

Pallas J. E., Kays S. J. (1982) – Inhibition of photosynthesis by ethylene-a stomatal effect – Plant Physiol. 70: 598–601 – doi: 10.1104/pp.70.2.598 –  http://www.plantphysiol.org/content/70/2/598 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/ethylene-influenced-the-conductance-of-abaxial-stomata/ )

Pallas J. E. Michel B. E., Harris D. G. (1967) – Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials – Plant Physiol 42(1): 76-88 – doi: 10.1104/pp.42.1.76 https://pubmed.ncbi.nlm.nih.gov/16656488/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/stomatal-activity-of-cotton-plants-under-varying-water-potentials/ )

Pallas J. E., Mollenhauer H. H. (1972) – Physiological implications of Vicia faba and Nicotiana tabacum guard-cell ultrastructure – American Journal of Botany 59: 504–514 – https://doi.org/10.1002/j.1537-2197.1972.tb10124.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1537-2197.1972.tb10124.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/physiological-implications-of-stomatal-guard-cell-ultrastructure/ )

Pallas J. E., Mollenhauer H. H. (1972) – Electron Microscopic Evidence for Plasmodesmata in Dicotyledonous Guard Cells – Science 175(4027): 1275-1276 – https://doi.org/10.1126/science.175.4027.1275 –https://app.dimensions.ai/details/publication/pub.1062504533 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/plasmodesmata-appear-functional-in-the-mechanism-of-stomatal-movements/ )

Pallas J. E., Wright B. G. (1973) – Organic acid changes in the epidermis of Vicia faba and their implication in stomatal movement – Plant Physiol 51: 588-590 – https://doi.org/10.1104/pp.51.3.588http://www.plantphysiol.org/content/51/3/588 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/organic-acid-production-in-the-epidermis-is-associated-with-stomatal-opening-2/ )

Palmer B. (2016) – Stomatal Differences in Western Aspen and Linkage to Drought Tolerance – Thesis Utah State University – https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1545&context=honors – (On our blog : https://plantstomata.wordpress.com/2021/09/29/93864/ )

Palmer L. (2019) – A Glucose Transporter Promotes Stomatal Conductance and Photosynthesis – The Plant Cell, The Plant Cell: In a Nutshell  May 3, 2019 – https://plantae.org/research/a-glucose-transporter-promotes-stomatal-conductance-and-photosynthesis/?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plantae_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/06/14/glucose-transporter-cst1-promotes-stomatal-conductance-and-photosynthesis/ )

Palmer L. (2020) – Keep cool and open up: temperature-induced stomatal opening – Plant Physiology: News and Views – https://plantae.org/keep-cool-and-open-up-temperature-induced-stomatal-opening/ – (On our blog : https://plantstomata.wordpress.com/2020/05/12/temperature-induced-stomatal-opening/ )

Palmer L. (2020) – No Entry: SIF2 Closes Stomatal “Doors” to Bacteria by Making Guard Cells SLAC(1) – July 6, 2020/in Research, The Plant Cell, The Plant Cell: In Brief  – https://plantae.org/no-entry-sif2-closes-stomatal-doors-to-bacteria-by-making-guard-cells-slac1/ – (On our blog : https://plantstomata.wordpress.com/2020/12/29/sif2-closes-stomatal-doors-to-bacteria-by-making-guard-cells-slac1/ )

Pan L., George-Jaeggli B., Borrell A., Jordan D., Koller F., Al-Salman Y., Ghannoum O., Cano F. (2021) – Coordination of stomata and vein patterns with leaf width underpins water use efficiency in a C4 crop – Plant, Cell & Environment – DOI: 10.22541/au.162009415.55042548/v1https://www.authorea.com/users/411707/articles/520644-coordination-of-stomata-and-vein-patterns-with-leaf-width-underpins-water-use-efficiency-in-a-c4-crop?commit=d81fe99412f3e10538af53abd1e7db69d510defc – (On our blog : https://plantstomata.wordpress.com/2021/12/02/important-role-playing-by-lw-in-shaping-iwue-through-modification-of-vein-and-stomatal-traits-and-by-regulating-stomatal-aperture/ )

Panawala L. (2017) – Difference Between Guard Cells and Subsidiary Cells – I-PEDIAA – https://www.researchgate.net/publication/316617168_Difference_Between_Guard_Cells_and_Subsidiary_Cells – (On our blog : https://plantstomata.wordpress.com/2019/05/04/stomatal-guard-cells-and-subsidiary-cells/ )

Panchal S., Chitrakar R., Thompson B. K., Obulareddy N., Roy D., Hambright W. S., Melotto M. (2016) – Regulation of Stomatal Defense by Air Relative Humidity – Plant Physiology 172(3): – DOI: https://doi.org/10.1104/pp.16.00696 –http://www.plantphysiol.org/content/172/3/2021 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/high-humidity-suppressing-stomatal-defense-and-linked-to-hormone-signaling/ )

Panchal S., Melotto M. (2017) – Stomate-based defense and environmental cues – Plant Signal. Behav. 12: 2021–2032 – https://doi.org/10.1080/15592324.2017.1362517https://www.tandfonline.com/doi/full/10.1080/15592324.2017.1362517 – (On our blog : https://plantstomata.wordpress.com/2020/04/12/stomate-based-defense-and-environmental-cues/ )

Panchal S., Roy D., Chitrakar R., Price L., Breitbach Z. S., Armstrong D. W., Melotto M. (2016) – Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night – Frontiers in plant science 7: 880 – https://doi.org/10.3389/fpls.2016.00880https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914978/?tool=pmcentrez – (On our blog : https://plantstomata.wordpress.com/2022/03/08/pst-dc3000-activates-virulence-factors-at-the-pre-invasive-phase-of-its-life-cycle-to-infect-plants-even-when-environmental-conditions-such-as-darkness-favor-stomatal-immunity/ )

Panda D., Mahakhud A., Mohanty B., Mishra S. S., Barik J. (2018) – Genotypic variation of photosynthetic gas exchange and stomatal traits in some traditional rice (Oryza sativa L.) landraces from Koraput, India for crop improvement – Physiology and Molecular Biology of Plants 24(5): 973–983 – DOI: 10.1007/s12298-018-0542-3 – https://europepmc.org/article/PMC/6103955 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/the-traditional-landraces-of-rice-had-superior-pn-and-stomatal-efficiency-compared-to-the-high-yielding-variety-under-prevailing-environmental-condition/ )

Pandey N., Archana (2009) – Boron-stress induced changes in water status and stomatal morphology in Zea maysL. and Catharanthus roseus L. – Indian Journal of Plant Physiology 14(3): 310-314  – ISSN : 0019-5502 – http://agris.fao.org/agris-search/search.do?recordID=IN2010001027 – (On our blog : https://plantstomata.wordpress.com/2017/11/18/reduced-stomatal-size-increased-stomatal-index-and-stomatal-opening-at-deficient-and-toxic-supply-of-boron/ )

Pandey R., Chacko P., Choudhary M. L. Prasad K. V., Pal M. (2007) – Higher than optimum temperature under CO2 enrichment influences stomata anatomical characters in rose (Rosa hybrida) – Scientia Horticulturae 113: 74–81 – https://doi.org/10.1016/j.scienta.2007.01.021 – https://www.sciencedirect.com/science/article/pii/S0304423807000532 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/an-important-database-on-stomatal-anatomy-for-two-important-microclimates/ )

Pandey S., Wang X.-Q., Coursol S. A., Assmann S. M. (2002) – Preparation and applications of Arabidopsis thaliana guard cell protoplasts – New Phytologist 153: 517–526 – DOI: 10.1046/j.0028-646X.2001.00329.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00329.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/how-to-elucidate-electrophysiological-biochemical-and-molecular-genetic-pathways-of-stomata-function/ )

Pandey S., Zhang W., Assmann, S. M. (2007) – Roles of ion channels and transporters in guard cell signal transduction – FEBS Lett. 581: 2325–2336 – doi: 10.1016/j.febslet.2007.04.008 – https://www.sciencedirect.com/science/article/pii/S0014579307003833 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/stomatal-movement-is-facilitated-by-the-activity-of-ion-channels-and-ion-transporters/ )

Panek J. A., Goldstein A. H. (2001) – Response of stomatal conduc-tance to drought in ponderosa pine: implications for carbon andozone uptake – Tree Physiol. 21: 337–344 – https://doi.org/10.1093/treephys/21.5.337https://academic.oup.com/treephys/article/21/5/337/1650243 – (On our blog : https://plantstomata.wordpress.com/2022/12/23/111234/ )

Pangle R. E., Limousin J.-M., Plaut J. A., Yepez E.A., Hudson P. J., Boutz A. L., Gehres N., Pockman W. T., Nate G. McDowell N. G. (2015) – Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland – Ecology and Evolution 5(8): 1618–1638 – https://www.academia.edu/13963898/Prolonged_experimental_drought_reduces_plant_hydraulic_conductance_and_transpiration_and_increases_mortality_in_a_pi%C3%B1on_juniper_woodland?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/30/%ef%bf%bcdiffering-%ef%bf%bcstomatal-%ef%bf%bcresponses-%ef%bf%bcand-mortality-patterns-during-drought/ )

Panja B., De D. K. (2001) – Studies on stomatal frequency and its relationship with leaf biomass and rhizome yield of turmeric (Curcuma longa L.) genotypes – JournaI of Spices and Aromatic Crops 10(2) : 127-134 – file:///C:/Users/wille/Downloads/editorjosac,+Journal+editor,+503-1005-1-SM%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/17/stomatal-frequency-and-its-relationship-with-leaf-biomass-and-rhizome-yield/ )

Panter P. E., Seifert J., Dale M., Pridgeon A. J., Hulme R., Ramsay N., Contera S., Knight H. (2023) – Cell wall fucosylation in Arabidopsis influences control of leaf water loss and alters stomatal development and mechanical properties – Journal of Experimental Botany 2023: erad039 – https://doi.org/10.1093/jxb/erad039https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erad039/7009203 – (On our blog : https://plantstomata.wordpress.com/2023/03/30/reduced-fucosylation-in-stomatal-guard-cell-walls-might-limit-stomatal-closure-through-altering-mechanical-properties/ )

Panteris E., Achiati T., Daras G., Rigas S. (2018) – Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis – Molecules 23(6). pii: E1365 – doi: 10.3390/molecules23061365 – https://www.ncbi.nlm.nih.gov/pubmed/29882773 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/stomatal-complex-development-depends-on-cell-wall-mechanical-properties/ )

Panteris E., Apostolakos P., Galatis B. (2006) – Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position – Cell Motil Cytoskeleton 63(11): 696-709 – PMID: 16986138 – DOI: 10.1002/cm.20155 – https://www.ncbi.nlm.nih.gov/pubmed/16986138 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/cytoskeletal-asymmetry-in-stomatal-subsidiary-cell-mother-cells/ )

Panteris E., Galatis B., Quader H., Apostolakos P. (2007)  Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum – Cell Motility and the Cytoskeleton 64: 531-548 –https://www.academia.edu/27006952/Cortical_actin_filament_organization_in_developing_and_functioning_stomatal_complexes_of_Zea_mays_and_Triticum_turgidum – (On our blog : https://plantstomata.wordpress.com/2017/12/18/cortical-actin-filament-organization-in-developing-and-functioning-stomatal-complexes/ )

Pantin F., Blatt M. R. (2018) – Stomatal Response to Humidity: Blurring the Boundary between Active and Passive Movement – Plant Physiol. 176 (1): 485-488 – https://doi.org/10.1104/pp.17.01699 – http://www.plantphysiol.org/content/176/1/485 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-response-to-humidity/

Pantin F., Monnet F., Jannaud D., Costa J.M., Renaud J., Muller B., Simonneau T., Genty B. (2013) – The dual effect of abscisic acid on stomata – New Phytol 197: 65–72 – DOI: 10.1111/nph.12013 – https://www.ncbi.nlm.nih.gov/pubmed/23106390 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/aba-promotes-stomatal-closure-in-a-dual-way-a-biochemical-effect-on-guard-cells-and-a-hydraulic-effect/

Pantin F., Renaud J., Barbier F. F., Vavasseur A., Le Thiec D., Rose C., Bariac T., Casson S. A., McLachlan D. H., Hetherington A. M., Muller B., Simonneau T. (2013) – Developmental Priming of Stomatal Sensitivity to Abscisic Acid by Leaf Microclimate – Current Biology – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/stomatal-sensitivity-to-aba-is-acquired-during-leaf-development-by-exposure-to-an-increasingly-dryer-atmosphere/

Pantoja 0., Willmer C. M . (1988) – Redox activity and peroxidase activity associated with the plasma membrane of guard cell protoplasts – Planta 174: 44-50 -DOI: 10.1007/BF00394872 – https://www.ncbi.nlm.nih.gov/pubmed/24221416 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/redox-activity-and-peroxidase-activity-associated-with-the-plasma-membrane-of-stomatal-guard-cell-protoplasts/ )

Paoletti E. (2005) – Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo – Environ. Pollut. 134: 439–445 – https://doi.org/10.1016/j.envpol.2004.09.011https://www.sciencedirect.com/science/article/pii/S0269749104003835 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/ozone-slows-stomatal-response-to-light-and-leaf-wounding/ )

Paoletti E., Gellini R. (1993) –  Stomatal density variation in beech and holm oak leaves collected over the last 200 years – Acta Oecologica 14: 173-178 – http://cat.inist.fr/?aModele=afficheN&cpsidt=3800365 – (On our blog : https://plantstomata.wordpress.com/2017/09/07/stomatal-density-reduced-over-the-last-200-years/ )

Paoletti E., Grulke N. E. (2005) – Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses – Environmental Pollution 137: 483–493 – https://doi.org/10.1016/j.envpol.2005.01.035https://www.sciencedirect.com/science/article/pii/S0269749105001223 – (On our blog : https://plantstomata.wordpress.com/2018/11/14/does-living-in-elevated-co2-ameliorate-tree-response-to-ozone/ )

Paoletti E., Grulke N. E. (2010) – Ozone exposure and stomatal sluggishness in different plant physiognomic classes – Environ. Pollut. 158: 2664–2671 – DOI: 10.1016/j.envpol.2010.04.024 – https://www.ncbi.nlm.nih.gov/pubmed/20537773 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/sluggish-stomatal-responses-are-suggested-to-be-both-an-effect-of-o3-exposure-and-a-reason-of-increased-o3-sensitivity-in-plants/ )

Paoletti E., Nali C., Lorenzini G. (2007) – Early responses to acute ozone exposure in two Fagus sylvatica clones differing in xeromorphic adaptations: photosynthetic and stomatal processes, membrane and epicuticular characteristics – Environ Monit Assess 128: 93–108 – https://doi.org/10.1007/s10661-006-9418-zhttps://link.springer.com/article/10.1007%2Fs10661-006-9418-z#citeas – (On our blog : https://plantstomata.wordpress.com/2019/10/15/stomatal-density-and-the-structural-damage-to-stomata-resulting-from-o3-exposure-did-not-affect-gas-exchange/ )

Paoletti E., Nourrisson G., Garrec J. P., Raschi A. (1998) – Modifications of the leaf surface structures of Quercus ilex L. in open, naturally CO2 enriched environments – Plant, Cell Environ. 21: 1071–1075 – https://doi.org/10.1046/j.1365-3040.1998.00358.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00358.x – (On our blog : https://plantstomata.wordpress.com/2022/12/23/at-higher-concentrations-co2-seemed-to-exert-no-more-impact-on-stomatal-frequency/ )

Paoletti E., Raddi P., La Scala S. (1998) – Relationships between transpiration, stomatal damage and leaf wettability in declining beech trees – Chemosphere 36: 907–912 – https://doi.org/10.1016/S0045-6535(97)10146-1https://www.sciencedirect.com/science/article/pii/S0045653597101461?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/10/15/transpiration-stomatal-damage-and-leaf-wettability/ )

Papacek M., Christmann A., Grill E. (2019) – Increased water use efficiency and water productivity of arabidopsis by abscisic acid receptors from Populus canescens – Annals of Botany 124(4): 581–589 – https://doi.org/10.1093/aob/mcy225https://academic.oup.com/aob/article/124/4/581/5281413 – (On our blog : https://plantstomata.wordpress.com/2019/11/02/the-use-of-poplar-aba-receptors-for-improving-wue/ )

Papanatsiou M. (2014) – Stomatal Clustering and Hydrogen Sulfide: Unraveling novel aspects of stomatal behavior – PhD Thesis Institute of Molecular, Cellular and Systems Biology College of Medical, Veterinary and Life Sciences, University of Glasgow – https://theses.gla.ac.uk/6514/1/2014PapanatsiouPhD.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/03/an-adaptive-role-for-stomatal-clustering-under-water-limited-habitats-and-a-potential-use-of-h2s-as-a-tool-to-minimize-transpirational-water-loss/ )

Papanatsiou M. (2019) – BLINKing stomata: an optogenetic approach to improve plant growth and water use – Botany One July 19, 2019 – https://www.botany.one/2019/07/blinking-stomata-an-optogenetic-approach-to-improve-plant-growth-and-water-use/ – (On our blog : https://plantstomata.wordpress.com/2019/08/23/blinking-stomata/ )

Papanatsiou M., Amtmann A., Blatt M. R. (2016)  Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir – Plant Physiology 172(1) – https://doi.org/10.1104/pp.16.00850 – http://www.plantphysiol.org/content/172/1/254 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/stomatal-spacing-safeguards-stomatal-dynamics/ )

Papanatsiou M., Amtmann A., Blatt M. R. (2017) – Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency – J Exp Bot. 68(9): 2309–2315 – doi:  10.1093/jxb/erx072 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447881/ – (On our blog : https://plantstomata.wordpress.com/2018/03/19/is-stomatal-clustering-altering-guard-cell-dynamics-and-gas-exchange/

Papanatsiou M., Petersen J., Henderson L., Wang Y., Christie J. M., Blatt M. R. (2019) – Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth – Science 363(6434): 1456-1459 – DOI: 10.1126/science.aaw0046 http://science.sciencemag.org/content/363/6434/1456 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/the-potential-of-enhancing-stomatal-kinetics-to-improve-water-use-efficiency-without-penalty-in-carbon-fixation/ )

Papanatsiou M., Scuffi D., Blatt M. R., Garcia-Mata C. (2015)  Hydrogen Sulfide Regulates Inward-Rectifying K+Channels in Conjunction with Stomatal Closure – Plant Physiology 168(1): 29-35 – https://doi.org/10.1104/pp.114.256057 –http://www.plantphysiol.org/content/168/1/29 – https://plantstomata.wordpress.com/2017/11/06/h2s-closes-stomata/ )

Papazian S., Khaling E., Bonnet C., Lassueur S., Reymond P., Moritz T., Blande J. D., Albrectsen B. R. (2016) – Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure – Plant Physiology 172(3) – https://doi.org/10.1104/pp.16.01318 – http://www.plantphysiol.org/content/172/3/2057 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/central-metabolic-responses-and-stomatal-closure/ )

Pappas T., McManus P., Vanderveer P., Croxdale J. (1988)  Characterization of stomatal development in Dianthus chinensis – Canadian Journal of Botany 66(1): 142-149 – https://doi.org/10.1139/b88-022 –http://www.nrcresearchpress.com/doi/abs/10.1139/b88-022 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-development-in-dianthus-chinensis-2/ )

Paradiso R., de Visser P. H. B., Arena C., Marcelis L. F. M. (2020) – Light response of photosynthesis and stomatal conductance of rose leaves in the canopy profile: the effect of lighting on the adaxial and the abaxial sides –  Functional plant biology 47(7): 639-650 – doi: 10.1071/FP19352https://www.publish.csiro.au/fp/FP19352 – (On our blog : https://plantstomata.wordpress.com/2022/03/28/in-all-the-leaf-positions-light-absorption-stomatal-conductance-and-photosynthesis-were-higher-when-leaves-were-lighted-from-the-adaxial-compared-with-the-abaxial-side/ )

Pariyar S., Chang S. C., Zinsmeister D., Zhou H., Grantz D. A., Hunsche M., Burkhardt J. (2017) – Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest – Oecologia. 184(3): 609-621 – doi: 10.1007/s00442-017-3894-4 – Epub 2017 Jun 14 – PMID: 28616633 – https://pubmed.ncbi.nlm.nih.gov/28616633/ – (On our blog : https://plantstomata.wordpress.com/2022/09/11/the-effect-of-surface-tension-on-gas-penetration-to-stomata/ )

Park G. E., Kim K. W., Lee D. K., Hyun J. O. (2013) – Adaptive phenotypic plasticity of Siberian elm in response to drought stress: increased stomatal pore depth – Microsc Microanal. 19 Suppl 5(Suppl 2):178-181 – doi: 10.1017/S1431927613012610 – PMID: 23920201 -PMCID: PMC4214281 – https://pubmed.ncbi.nlm.nih.gov/23920201/ – (On our blog : https://plantstomata.wordpress.com/2023/01/12/focused-ion-beam-field-emission-electron-microscopy-supports-the-increased-stomatal-pore-depth-with-the-increasing-drought-stress-gradient/ )

Park G. E., Lee D. K., Kim K. W., Batkhuu N.-O.,  Tsogtbaatar J., Zhu J.-J., Jin Y., Pil Sun Park P. S., Hyun J. O., Kim H. S. (2016)  Morphological Characteristics and Water-Use Efficiency of Siberian Elm Trees (Ulmus pumila L.) within Arid Regions of Northeast Asia – Forests 7: 280-299 – doi:10.3390/f7110280 – www.mdpi.com/1999-4907/7/11/280/pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/stomatal-traits-and-aridity-gradients/ )

Park K. Y., Jung J. Y., Park J., Hwang J. U., Kim Y. W., Hwang I., Lee Y. (2003) – A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells – Plant Physiol. 132: 92–98 – doi: 10.1104/pp.102.016964 – https://www.ncbi.nlm.nih.gov/pubmed/12746515 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/a-role-for-pi3p-in-aba-induced-ros-generation-and-stomatal-closing-2/ )

Park S. W., Kim J. S., Kug J. S. (2020) – The intensification of Arctic warming as a result of CO2 physiological forcing – Nat Commun 11: 2098 –https://doi.org/10.1038/s41467-020-15924-3 https://www.nature.com/articles/s41467-020-15924-3#citeas – (On our blog : https://plantstomata.wordpress.com/2021/02/10/stomatal-closure-is-one-of-the-main-physiological-responses-to-increasing-co2-concentration/ )

Park S. Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T. F., Alfred S. E., Bonetta D., Finkelstein R., Provart N. J., Desveaux D., Rodriguez P. L., McCourt P., Zhu J. K., Schroeder J. I., Volkman B. F., Cutler S. R. (2009) – Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins – Science 324(5930): 1068-1071 – doi: 10.1126/science.1173041 – Epub 2009 Apr 30 – https://www.ncbi.nlm.nih.gov/pubmed/19407142?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/aba-inhibits-type-2c-protein-phosphatases-via-the-pyr-pyl-family-in-stomata/ )

Parkhurst D. F. (1978) –  The adaptive significance of stomatal occurrence on one or both surfaces of leaves – Journal of Ecology 66: 367-383 – DOI: 10.2307/2259142 – https://www.jstor.org/stable/2259142?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/07/the-adaptive-significance-of-hypostomatous-and-amphistomatous-leaves/ )

Parkinson K. J., Penman H. L. (1970) – A possible source of error in estimation of stomatal resistance – Journal of Experimental Botany 21(2): 405-409 – https://doi.org/10.1093/jxb/21.2.405https://academic.oup.com/jxb/article-abstract/21/2/405/441695?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/12/05/error-in-estimation-of-stomatal-resistance/ )

Parlange J.-Y., Waggoner P. E. (1970) – Stomatal dimensions and resistance to diffusion – Plant Physiology 46: 337–342 -PMID: 16657461 – PMCID: PMC396590 – https://www.ncbi.nlm.nih.gov/pubmed/16657461 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/stomatal-dimensions-and-resistance-to-diffusion-2/ )

Parlati A., Valkov V. T., D’Apuzzo E., Martins Alves L., Petrozza A., Summerer S., Costa A., Cellini F., Vavasseur A., Chiurazzi M. (2017) – Ectopic Expression of PII Induces Stomatal Closure in Lotus japonicus – Front. Plant Sci. – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/ectopic-expression-of-pii-induces-stomatal-closure/ )

Parvathi K., Raghavendra A. S. (1995) – Bioenergetic processes in guard cells related to stomatal function – Physiol. Plant. 93: 146–154 – https://doi.org/10.1034/j.1399-3054.1995.930121.xhttps://eurekamag.com/pdf/002/002570353.pdf – (In our blog : https://plantstomata.wordpress.com/2018/11/14/bioenergetic-processes-in-guard-cells-related-to-stomatal-function/ )

Paschalidis K. A., Toumi I., Moschou P. N., Roubelakis-Angelakis K. A. (2010) – ABA-dependent amine oxidases-derived H2O2 affects stomata conductance – Plant Signal Behav. 5: 1153–1156 – https://doi.org/10.4161/psb.5.9.12679https://www.tandfonline.com/doi/full/10.4161/psb.5.9.12679 – (On our blog : https://plantstomata.wordpress.com/2023/03/10/amine-oxidases-are-producing-h2o2-which-signals-stomata-closure/ )

Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) (2012) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – Publisher: The International Maize and Wheat Improvement Center, CIMMYT – https://www.researchgate.net/publication/268743172_Physiological_Breeding_II_A_Field_Guide_to_Wheat_Phenotyping – (On our blog : https://plantstomata.wordpress.com/2018/01/30/66106/ )

Passalia M. G. (2009) – Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina – Palaeogeography, Palaeoclimatology, Palaeoecology 273: 17-24 –https://doi.org/10.1016/j.palaeo.2008.11.010 – https://www.sciencedirect.com/science/article/pii/S0031018208006342 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/cretaceous-pco2-estimation-from-stomatal-frequency-analysis/ )

Pataki D. E., Oren R. (2003) – Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest – Adv. Water Res. 26: 1267–1278 – https://doi.org/10.1016/j.advwatres.2003.08.001 – https://www.sciencedirect.com/science/article/pii/S0309170803001179 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/species-differences-in-stomatal-control-of-water-loss-at-the-canopy-scale/ )

Pataki D. E., Oren R., Katul G., Sigmon J. T. (1998) -Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions – Tree Physiology 18: 307–315 – PMID: 12651370 – https://www.ess.uci.edu/~dpataki/reprints/18-307.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/19/stomatal-conductance-under-varying-atmospheric-and-soil-water-conditions/ )

Pataki D. E., Oren R., Phillips N. (1998) – Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area – J. Exp. Bot. 49: 871–878 – https://www.ncbi.nlm.nih.gov/pubmed/12651370 – (On our blog : https://plantstomata.wordpress.com/2018/11/17/responses-of-sap-flux-and-stomatal-conductance-to-stepwise-reductions-in-leaf-area/ )

Pataki D. E., Oren R., Smith W. K.(2000) – Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought –  Ecology 81: 2557–2566 – DOI: 10.2307/177474 – https://www.jstor.org/stable/177474?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/16/sap-flux-of-co-occurring-species-and-stomatal-movements-during-seasonal-soil-drought/ )

Pataki D.E., Oren R., Tissue D. T. (1998) – Elevated carbon dioxide does not affect average canopy stomata1 conductance of Pinus taeda L. – Oecologia 117: 47-52 – https://doi.org/10.1007/s004420050630https://link.springer.com/article/10.1007/s004420050630#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/elevated-co2-does-not-affect-average-canopy-stomatal-conductance-2/ )

Patané C. (2011) – Leaf area index, leaf transpiration and stomatal conductance as affected by soil water deficit and vpd in processing tomato in semi arid mediterranean climate – J Agron Crop Sci 197: 165–176 – https://doi.org/10.1111/j.1439-037X.2010.00454.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1439-037X.2010.00454.x – (On our blog : https://plantstomata.wordpress.com/2018/11/16/mechanisms-regulating-stomatal-opening/ )

Patel I., Gorim L. Y., Tanino K., Vandenberg A. (2021) – Diversity in Surface Microstructures of Trichomes, Epidermal Cells, and Stomata in Lentil Germplasm – Front Plant Sci.12: 697692 – doi: 10.3389/fpls.2021.697692 – PMID: 34322146 – PMCID: PMC8311464 – https://pubmed.ncbi.nlm.nih.gov/34322146/ – (On our blog : https://plantstomata.wordpress.com/2021/08/14/diversity-in-surface-microstructures-of-trichomes-epidermal-cells-and-stomata-in-lentil-germplasm/ )

Patel J. D. (1978)  How should we interpret and distinguish subsidiary cells? – Bot J Linn Soc. 77: 65-72 – DOI: 10.1111/j.1095-8339.1978.tb01373.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.1978.tb01373.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-concept-of-subsidiary-cells-of-stomata/ )

Patel J. D., Raju E. C., Fotedar R. L., Kothari H., Shah J. J. (1975) Structure and histochemistry of stomata and epidermal cells in five species of Polypodiaceae – Ann. Bot. 38: 611-619 – DOI: 10.1093/oxfordjournals.aob.a084973https://www.jstor.org/stable/42753379?seq=1#page_scan_tab_contents – https://plantstomata.wordpress.com/2017/12/18/structure-and-histochemistry-of-stomata-in-ferns/ )

Paterson N. W., Weyers J. D. B., A’Brook R. (1988)  The effect of pH on stomatal sensitivity to abscisic acid – Plant Cell Environ. 11: 83-89 – DOI: 10.1111/1365-3040.ep11604886 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11604886/full  – (On our blog : https://plantstomata.wordpress.com/2017/02/07/ph-and-stomatal-sensitivity-to-abscisic-acid/ )

Paterson N. W., Weyers J. D. B., Herdman L. (1988) – Relative control potential of abscisic acid, carbon dioxide and light in responses of Phaseolus vulgaris stomata – Physiol Plant. 111(3): 412-418 – PMID: 11240927 –https://www.ncbi.nlm.nih.gov/pubmed/11240927 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/relative-control-potential-of-aba-co2-and-light-in-responses-of-stomata/ )

Paterson N. W., Weyers J. D. B., Schildknecht H. (1987)  The Effects of a Turgorin on Stomatal Movement and Transpiration in Commelina communis L. – Journal of Plant Physiology 128(4–5): 491–495 – DOI 10.1016/S0176-1617(87)80136-0http://www.sciencedirect.com/science/article/pii/S0176161787801360 – (On our blog : https://plantstomata.wordpress.com/2017/12/14/the-effects-of-a-turgorin-on-stomatal-movement/ )

Pathak R. K., Pandey D., Pandey V. S. (1976) – Stomatal distribution as an index for predicting the growth potential of apple stocks – J. Hort. Sci. 51: 429-431 – https://doi.org/10.1080/00221589.1976.11514709https://www.tandfonline.com/doi/abs/10.1080/00221589.1976.11514709?journalCode=thsb19 – (On our blog ; https://plantstomata.wordpress.com/2021/06/23/stomatal-distribution-and-the-growth-potential-of-apple-stocks/ )

Pathare V. (2021) – Stomata: adjusting and responding to environmental changes – Invited Seminar at CES on 22 February 2021 – Indian Institute of Science / Center for Ecological Sciences – https://ces.iisc.ac.in/?q=node/1009 – (On our blog : https://plantstomata.wordpress.com/2023/03/10/stomata-are-of-central-importance-in-attempts-to-accurately-predict-plant-and-ecosystem-responses-to-climate-change-and-develop-climate-resilient-crops/ )

Pathare V. S., Koteyeva N., Cousins A. B. (2020) – Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C4 grasses – New Phytologist 225: 169-182 – doi: 10.1111/nph.16106 – Epub 2019 Sep 4 – PMID: 31400232 – https://pubmed.ncbi.nlm.nih.gov/31400232/ – (On our blog : https://plantstomata.wordpress.com/2022/12/23/increased-adaxial-stomatal-density-is-associated-with-greater-mesophyll-surface-area/ )

Patlak C. S. (1959) – A contribution to the study of diffusion of neutral particles through pores – Bull. Math. Biophys. 21: 129-140 –

Patonnier M. P., Peltier J. P., Marigo G. ( 1999) – Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata –  Journal of experimental botany 50(336): 1223-1229 – https://agris.fao.org/agris-search/search.do?recordID=US201302933542 – (On our blog : https://plantstomata.wordpress.com/2021/03/11/malate-is-involved-in-the-stomatal-closure-of-ash-leaves-under-drying-conditions/ )

Patra A. D., Nasrullah N., Sisworo E. L. (2004) – Capability of Several Plant Species in Absorbing Gas Pollutant (NO2) – KEMAMPUAN BERBAGAI jENIS T ANAMAN MENYERAP GAS PENCEMAR UDARA (NO2) – Risalah Seminar Ilmiah Peneli/ian daD Pengembangan Aplikasi Is%p daD Radiasi, 2004 – https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/069/44069204.pdf?r=1&r=1 – (On our blog : https://plantstomata.wordpress.com/2022/03/07/the-higher-the-stomata-density-the-thinner-the-leaves-and-the-lower-the-leave-specific-density-the-higher-the-capacity-of-plants-to-absorb-no2/ )

Pattison R. (2015) – Guard cells: Finding a MATE – Nature Plants 1, Article number: 15010 – DOI: 10.1038/nplants.2015.10  – PMID: 27246767 – Nature Commun. 6: 6057 (2015)https://www.nature.com/articles/nplants201510 – (On our blog : https://plantstomata.wordpress.com/2022/12/23/increasing-co2-in-the-atmosphere-can-influence-stomatal-aperture-and-gas-exchange-in-plants/ )

Patton R. F., Spear R. N. (1978) – Scanning electron microscopy of infection of Scotch pine needles by scirrhia acicola – Phytopathology 68: 1700-1704 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1978Articles/Phyto68n12_1700.PDF – (On our blog : https://plantstomata.wordpress.com/2022/01/16/infection-of-scotch-pine-needles-by-scirrhia-acicola-through-individual-stomata/ )

Patton R. F., Spear R. N. (1980) – Stomatal influences on white pine blister rust infection – Phytopathol. Mediterr. 19: 1-7 – http://www.jstor.org/stable/42684473 – (On our blog : https://plantstomata.wordpress.com/2022/12/23/failure-of-germ-tubes-to-penetrate-stomata/ )

Patto M. V., Rubiales D., Martin A., Hernandez P., Lindhout P., Niks R., Stam P. (2003) – QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density – Theor Appl Genet. 106(7): 1283–1292 – https://doi.org/10.1007/s00122-003-1195-2https://link.springer.com/article/10.1007/s00122-003-1195-2 – (On our blog : https://plantstomata.wordpress.com/2022/12/24/lack-of-association-of-the-avoidance-of-leaf-rust-in-hordeum-chilense-with-stomata-density-2/ )

Paudel I., Gerbi H., Zisovich A., Sapir G., Klein T. (2021) – Intraspecific plasticity in hydraulic and stomatal regulation under drought is linked to aridity at the seed source in a wild pear species – Tree Physiol. 41(6): 960-973 – doi: 10.1093/treephys/tpaa159 – PMID: 33215204 – https://pubmed.ncbi.nlm.nih.gov/33215204/ – (On our blog : https://plantstomata.wordpress.com/2023/01/12/intraspecific-plasticity-in-hydraulic-and-stomatal-regulation-under-drought-is-linked-to-aridity/ )

Paudel I., Halpern M., Wagner Y., Raveh E., Yermiyahu U., Hoch G., Klein T. (2018) – Elevated CO2, compensates for drought effects in lemon saplings via stomatal down regulation, increased soil moisture, and increased wood carbon storage – Environ. Exp. Bot. 148: 117–127 – https://doi.org/10.1016/j.envexpbot.2018.01.004https://www.sciencedirect.com/science/article/abs/pii/S0098847218300285?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/elevated-co2-compensates-for-drought-effects-via-stomatal-down-regulation/ )

Paul N. K. (1992) – Variation in morpho-physiological characters in forage rape Brassica napus l. 2. stomatal characters – Genetica Polonica 33(1): 45-50 – https://eurekamag.com/research/007/994/007994593.php – (On our blog : https://plantstomata.wordpress.com/2021/09/12/variation-in-stomatal-characters/ )

Paul N. K., Mondal R. K. (2007) – Stomatal Frequency and Distribution in Mustard (Brassica juncea L.) in Relation to Soil Moisture – Bangladesh Journal of Scientific and Industrial Research 42(3) – DOI: 10.3329/bjsir.v42i3.675https://www.researchgate.net/publication/242533587_Stomatal_Frequency_and_Distribution_in_Mustard_Brassica_juncea_L_in_Relation_to_Soil_Moisture – (On our blog : https://plantstomata.wordpress.com/2021/09/12/stomatal-frequency-and-distribution-in-relation-to-soil-moisture/ )

Pautov A. A., Bauer S. M., Ivanova O. V., Krylova E. G., Yakovleva O., Sapach Y. O., Pautova I. (2019) – Influence of stomatal rings on movements of guard cells – Trees 33: 1459–1474 – ISSN : 0931-1890 – DOI : 10.1007/s00468-019-01873-y –https://www.cabdirect.org/cabdirect/abstract/20193489146 – (On our blog : https://plantstomata.wordpress.com/2022/06/18/the-role-of-the-stomatal-rings-in-guard-cell-mechanicss/ )

Pautov A. A., Bauer S. M., Ivanova O. V., Krylova E. G., Yakovleva O., Sapach Y. O., Pautova I. (2021) – Stomatal rings: structure, functions and origin – Botanical Journal of the Linnean Society 195: 357–379 – (On our blog : https://plantstomata.wordpress.com/2022/04/14/stomatal-rings/ )

Pautov A.Bauer S.Ivanova O.Krylova E.Sapach Y.Gussarova G. (2017) – Role of the outer stomatal ledges in the mechanics of guard cell movements – Trees. 31: 125-135 – https://doi.org/10.1007/s00468-016-1462-xhttps://link.springer.com/article/10.1007/s00468-016-1462-x#citeas – (On our blog : https://plantstomata.wordpress.com/2023/03/08/outer-ledges-prevent-wide-opening-of-the-stomatal-pore-and-their-rising-above-the-surface-of-leaf-epidermis/ )

Pautov A. A., Bauer S. M., Ivanova O. V., Sapach Y. O., Krylova E. G. (2018) – Stomatal movements in laurophyllous plants – AIP Conference Proceedings  1959, Issue 1 – doi: 10.1063/1.5034746https://aip.scitation.org/doi/abs/10.1063/1.5034746 – (On our blog : https://plantstomata.wordpress.com/2019/11/29/the-influence-of-the-outer-tangential-wall-geometry-of-the-guard-cells-on-stomatal-movements-is-estimated-by-means-of-the-finite-element-method-in-the-ansys-software/ )

Pautov A. A., Yakovleva O. V., SapachY. O. (2008) – Structure and functions of peristomatic rings in the epidermis of the leaf of flowering plants – Proceedings of the XII Cong. of the RBO «Fundamental and Applied Problems of Botany at the Beginning of the 21st Century» 1: 67-69 –

Pavol E. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14(1): 29–42 – doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 – (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/ )

Pavol E. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41 – ISSN 0001-7124 – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/ )

Pawar A. (2016) – Impact of urban air pollution on epidermal traits of Amaranthus viridis growing along the road side – Journal of Pure and Applied Science & Technology 6(1): 7-10 – ISSN: 2249-9970 (Online) – 2231-4202 (Print) – https://nlss.org.in/wp-content/uploads/2016/02/JPAST-Jan-16-Paper-2-p-7-101.pdf – (On our blog : https://plantstomata.wordpress.com/2022/12/24/decline-in-stomatal-frequency-dimensions-of-stomata-and-stomatal-index-in-stressed-area-leaf-samples/ )

Pawar S., Gadakh S. (2018) – Behavior of Sorghum Cultivars under Decreasing Levels of Soil Moisture Condition – International Journal of Current Microbiology and Applied Sciences 7(09): 1906-1913 – https://doi.org/10.20546/ijcmas.2018.709.231https://www.ijcmas.com/7-9-2018/Sujata%20Pawar%20and%20Sharad%20Gadakh.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/14/stomatal-conductance-under-decreasing-levels-of-soil-moisture-condition/ )

Payne W. W. (1979) – Stomatal patterns in embryophytes: Their evolution, ontogeny and interpretation – Taxon 28: 117-132 – https://doi.org/10.2307/1219566https://onlinelibrary.wiley.com/doi/abs/10.2307/1219566 – (On our blog : https://plantstomata.wordpress.com/2021/03/18/a-new-ontogenetic-system-of-classification-of-stomata/ )

Pazourek J. (1969) – Anatomical gradients of stomatal apparatus in leaves of Hordeum distichon L. – Adv. Front. Plant Sci. 23: 9-18 –

Pazourek J. (1970) – The effect of light intensity on stomatal frequency in leaves of Iris hollandica Hort var. wedgwood – Biol. Plant. (Prague) 12: 208-215 – (On our blog : https://plantstomata.wordpress.com/2017/09/08/the-effect-of-light-intensity-on-stomatal-frequency/ )

Pazourek J. (1973) – The density of stomata in leaves of different
ecotypes of Phragmites communis – Folia. Geobot. Phytotaxon. 8: 15–21 – https://eurekamag.com/research/061/337/061337407.phphttp://www.jstor.org/stable/4179718 – (On our blog : https://plantstomata.wordpress.com/2022/12/24/stomatal-density-inleaves-of-phragmites/ )

Peak D., Mott K. A. (2011) – A new, vapour-phase mechanism for stomatal responses to humidity and temperature – Plant Cell Environ 34: 162–178 – DOI: 10.1111/j.1365-3040.2010.02234.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02234.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/02/a-new-mechanism-for-stomatal-responses-to-humidity-and-temperature-2/ )

Peak D., Hogan M. T., Mott K. A. (2023) – Stomatal patchiness and cellular computing – PNAS 120(14): e2220270120 – https://doi.org/10.1073/pnas.2220270120https://www.pnas.org/doi/abs/10.1073/pnas.2220270120 – (On our blog : https://plantstomata.wordpress.com/2023/03/29/the-stomatal-balancing-act-is-described-by-a-set-of-dynamical-equations-whose-form-is-identical-to-that-of-the-equations-describing-the-currents-and-voltages-in-a-two-layer-adaptive-cellula/ )

Peak D., Mott K. A. (2011) – Leafy Social Network: USU Scientists Study How Stomata Communicate – Utah State Today – University News (Nov.23, 2011) –http://www.usu.edu/ust/index.cfm?article=50552 – (On our blog : https://plantstomata.wordpress.com/2017/02/15/how-stomata-communicate-2/ )

Pearce D. W., Millard S., Bray D. F., Rood S. B. (2006) – Stomatal characteristics of riparian poplar species in a semi-arid environment – Tree Physiology 26: 211-218 – http://dx.doi.org/10.1093/treephys/26.2.211 – https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/26.2.211 – (On our blog : https://plantstomata.wordpress.com/2017/02/07/stomatal-density-stomatal-conductance-and-climatic-conditions/ )

Pearcy R. W., Seemann J. R. (1990) – Photosynthetic induction state of leaves in a soybean canopy in relation to light regulation of ribulose-1-5-bisphosphate carboxylase and stomatal conductance – Plant Physiol. 94: 628–633 – doi: 10.1104/pp.94.2.628http://www.plantphysiol.org/content/94/2/628 – (On our blog : https://plantstomata.wordpress.com/2019/12/25/induction-state-is-an-important-limitation-to-the-ability-of-leaves-to-respond-to-light-transients-that-occur-during-sunflecks-and-the-regulation-of-and-stomatal-conductance/ )

Pearson C. J. (1973) – Daily changes in stomatal aperture and in carbohydrates and malate within epidermis and mesophyll of leaves of Commelina cyanea and Vicia faba – Aust. J. Biol. Sci. 26: 1035–1044 – https://doi.org/10.1071/BI9731035 – – http://www.publish.csiro.au/BI/BI9731035 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/daily-changes-in-stomatal-aperture/

Pearson C. J. (1975) – Fluxes of potassium and changes in malate within epidermis ofCommelina cyanea and their relationship with stomatal aperture – Austral. J. Plant Physiol. 2: 85-89 – https://doi.org/10.1071/PP9750085https://www.publish.csiro.au/fp/PP9750085 – (On our blog : https://plantstomata.wordpress.com/2022/12/15/fluxes-of-potassium-and-changes-in-malate-and-their-relationship-with-stomatal-aperture/ )

Pearson C. J., Milthorpe F. L. (1974) – Structure, carbon dioxide fixation and metabolism of stomata – Aust. J. Plant Physiol. 1: 221–236 – https://doi.org/10.1071/PP9740221http://www.publish.csiro.au/fp/PP9740221 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/structure-co2-fixation-and-metabolism-of-stomata/

Pearson D. (2011) – Understanding the Abscisic Acid Pathway Using Guard Cell Specific Genes and the Anti-Aging Drug Spermidine – The University of Maryland McNair Scholars Undergraduate Research Journal 3: 174-193 – http://hdl.handle.net/1903/12468 – https://drum.lib.umd.edu/handle/1903/12468 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/63317/ )

Pearson M., Davies W. J., Mansfield T. A. (1995) – Asymmetric responses of adaxial and abaxial stomata to elevated CO2: impacts on control of gas exchange by leaves – Plant Cell Environ 18: 837–843 – https://doi.org/10.1111/j.1365-3040.1995.tb00592.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1995.tb00592.x – (On our blog : https://plantstomata.wordpress.com/2020/03/10/asymmetric-responses-of-adaxial-and-abaxial-stomata-to-elevated-co2/ )

Pearson M., Mansfield T. A. (1993) – Interacting effects of ozone and water stress on the stomata1 resistance of beech (Fagus sylvatica L.) – New Phytologist 123: 351-358 – https://doi.org/10.1111/j.1469-8137.1993.tb03745.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1993.tb03745.x – (On our blog : https://plantstomata.wordpress.com/2018/06/11/effects-of-ozone-and-water-stress-on-the-stomatal-resistance/ )

Peaslee D. E., Moss D. N. (1966) – Stomatal conductivities in K-deficient leaves of maize (Zea mays L.) – Crop Sci. 8: 427-430 – https://doi.org/10.2135/cropsci1968.0011183X000800040010xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1968.0011183X000800040010x – (On our blog : https://plantstomata.wordpress.com/2020/06/10/stomatal-conductivities-in-k-deficient-leaves/ )

Peat H. J., Fitter A. H. (1994) – A comparative study of the distribution and density of stomata in the British flora – Biological Journal of the Linnean Society, 52: 377-393 – DOI: 10.1111/j.1095-8312.1994.tb00999.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1994.tb00999.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/hypostomaty-amphistomaty-epistomaty-and-stomata-density/ )

Pedersen O., Jorgensen L. B., Sand-Jensen K. (1997) – Through-flow of water in leaves of a submerged plant is influenced by the apical opening – Planta 202(1): 43-50 – https://doi.org/10.1007/s004250050101https://link.springer.com/article/10.1007/s004250050101#citeas – (On our blog : https://plantstomata.wordpress.com/2022/12/24/a-matrix-of-microorganisms-develops-in-the-older-leaves-and-probably-restricts-water-flow-by-clogging-the-hydathodes/ )

Peel J. R., Mandujano Sanchez M. C., Lopez Portillo J., Golubov J. (2017) – Stomatal density, leaf area and plant size variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) along a salinity gradient in the Mexican Caribbean – Revista Biologia Tropical 66(2): – https://doi.org/10.15517/rbt.v65i2.24372 – https://revistas.ucr.ac.cr/index.php/rbt/article/view/24372 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/stomatal-density-is-inversely-related-to-leaf-area-and-salinity-may-increase-stomatal-density-by-causing-reduction-of-leaf-size/ )

Pei D., Hua D., Deng J., Wang Z., Song C., Wang Y., Qi J., Kollist H., Yang S., Guo Y., Gong Z. (2022) – Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis – Plant Cell koac106 – doi: 10.1093/plcell/koac106 – Online ahead of print – https://pubmed.ncbi.nlm.nih.gov/35404404/ – (On our blog : https://plantstomata.wordpress.com/2022/05/28/a-crucial-role-of-aha2-in-cytoplasmic-alkalinization-and-aba-induced-stomatal-closure-during-the-plants-response-to-drought-stress/ )

Pei Z. M., Baizabal-Aguirre V. M., Allen G. J., Schroeder J. I. (1998) – A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells – Proc. Natl. Acad. Sci. U.S.A. 95: 6548–6553 – doi: 10.1073/pnas.95.11.6548 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27872/ – (On our blog : https://plantstomata.wordpress.com/2017/02/18/a-k-channel-currentcytosolic-ca2-and-stomatal-movements/ )

Pei Z.-M., Ghassemian M., Kwak C., McCourt P., Schroeder J. I. (1998) – Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. – Science 282: 287–290 – DOI: 10.1126/science.282.5387.287 – http://science.sciencemag.org/content/282/5387/287.full – (On our blog : https://plantstomata.wordpress.com/2018/06/14/farnesyltransferase-in-aba-regulation-of-stomatal-anion-channels/ )

Pei Z. M., Kuchitsu K. (2005) – Early ABA signaling events in guard cells – Journal of Plant Growth Regulation 24: 296–307 – DOI: 10.1007/s00344-005-0095-x – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Early-ABA-Signaling-Events-in-Guard-Cells.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/19/an-overview-of-the-cellular-and-molecular-mechanisms-underlying-aba-evoked-signaling-events-in-stomata/

Pei Z. M., Kuchitsu K., Ward J. M., Schwarz M., Schroeder J. I. (1997) – Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants – Plant Cell 9: 409–423 – doi: 10.1105/tpc.9.3.409 – http://www.plantcell.org/content/9/3/409 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/aba-signaling-pathways-and-roles-for-abi1-abi2-and-protein-kinases-and-phosphatases-in-stomata/ )

Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J., Grill E., Schroeder J. I. (2000) – Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells – Nature 406: 731–734 – doi: 10.1038/35021067 – https://www.nature.com/articles/35021067 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/aba-induced-h2o2-production-and-the-h2o-2-activated-ca2-channels-are-important-mechanisms-for-aba-induced-stomatal-closing/ )

Pei Z. M., Ward J. M., Harper J. F., Schroeder J. I. (1996) – A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK – EMBO J. 15: 6564–6574 – PMID: 8978683 – PMCID: PMC452481 – https://www.ncbi.nlm.nih.gov/pubmed/8978683 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/vcl-channels-may-provide-a-previously-unidentified-pathway-for-anion-uptake-into-vacuoles-required-for-stomatal-opening/ )

Pei Z. M., Ward J. M.,  Schroeder J. I. (1999) – Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles – Plant Physiology 121: 977-986 – https://doi.org/10.1104/pp.121.3.977 – http://www.plantphysiol.org/content/121/3/977 – (On our blog : https://plantstomata.wordpress.com/2018/11/19/vacuolar-ion-channels-in-guard-cells-play-important-roles-during-stomatal-movement-and-are-regulated-by-many-factors/ )

Peisker M. (1973) – CO2-Aufnahme, Transpiration und Blatttemperatur unter dem Einfluss von Anderungen der Stomataweite – Kulturpflanze 21: 97-109 –

Peiter E., Maathuis F. J., Mills L. N., Knight H., Pelloux J., Hetherington A. M., et al. (2005) – The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement – Nature 434: 404–408 – doi: 10.1038/nature03381 – https://www.nature.com/articles/nature03381 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/stomatal-movement-a-critical-role-of-intracellular-ca2-release-channels-in-the-physiological-processes-of-plants/ )

Peksen E., Peksen A., Gulumser A. (2014) – Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions – Int. J. Curr. Microbiol. App. Sci 3 (2): 626–634 – https://www.researchgate.net/publication/260316270_Leaf_and_stomata_characteristics_and_tolerance_of_cowpea_cultivars_to_drought_stress_based_on_drought_tolerance_indices_under_rainfed_and_irrigated_conditions – (On our blog : https://plantstomata.wordpress.com/2018/11/20/stomata-characteristics-under-rainfed-and-irrigated-conditions/ )

Peligrino G. P. G., Wayan R. G. R., Escoton J. D. (2011) – Comparison of leaf stomata density of Rhoeo spathacea from polluted and non-polluted site in Cebu – BS Thesis Cebu University – http://www.herdin.ph/index.php/component/herdin/?view=research&cid=45629 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-density-in-leaves-from-a-polluted-and-a-non-polluted-site-in-cebu/ )

Pemadasa M. A. (1979) – Stomatal Responses to Two Herbicidal Auxins – Journal of Experimental Botany 30(2): 267–274 – https://doi.org/10.1093/jxb/30.2.267https://academic.oup.com/jxb/article-abstract/30/2/267/437390?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/08/28/naa-and-noxa-partly-supress-photoactive-stomatal-opening-by-arresting-starch-hydrolysis-and-potassium-accumulation-in-the-guard-cells-and-partly-by-disturbing-the-intercellular-co2-concentration/ )

Pemadasa M. A. (1979) – Movements of abaxial and adaxial stomata – New Phytologist 82: 69-80 – https://www.jstor.org/stable/2485077https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1979.tb07561.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/movements-of-abaxial-and-adaxial-stomata-2/ )

Pemadasa M. A. (1981) – Abaxial and adaxial stomatal behaviour and responses to fusicoccin on isolated epidermis of Commelina communis – New Phytologist 89: 373-384 – https://doi.org/10.1111/j.1469-8137.1981.tb02318.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1981.tb02318.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/abaxial-and-adaxial-stomatal-behaviour-and-responses-to-fusicoccin/ )

Pemadasa M. A. (1981) – Photocontrol of stomatal movements – Biol. Reviews 56(4): 551–588 – DOI: 10.1111/j.1469-185X.1981.tb00359.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1981.tb00359.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/light-and-stomatal-movements/

Pemadasa M. A. (1982) – Differential abaxial and adaxial stomatal responses to indole-3-acetic acid in Commelina communis – New Phytologist 90: 209-219 – https://doi.org/10.1111/j.1469-8137.1982.tb03253.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1982.tb03253.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/a-hormonal-basis-for-the-differential-adaxial-and-abaxial-stomatal-opening/ )

Pemadasa M. A. (1982) – Abaxial and adaxial stomatal responses to light of different wavelengths and to phenylacetic acid on isolated epidermis of Commelina communis L. –  J Exp Bot 33: 92–99 – https://doi.org/10.1093/jxb/33.1.92 – https://academic.oup.com/jxb/article-abstract/33/1/92/461798?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/11/stomatal-responses-to-light-of-different-wavelengths-and-to-paa/ )

Pemadasa M. A. (1982) – Effects of phenylacetic acid on abaxial and adaxial stomatal movements and its interaction with abscisic acid – New Phytol. 92: 21–30 – https://doi.org/10.1111/j.1469-8137.1982.tb03359.xhttps://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1982.tb03359.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/paa-and-abaxial-and-adaxial-stomatal-movements/ )

Pemadasa M. A., Jeyaseelan K. (1976) – Some Effects of Sodium Azide on Stomatal Closure in Stachytarpheta indica – Annals of Botany 40(3): 655–658 – https://doi.org/10.1093/oxfordjournals.aob.a085178https://academic.oup.com/aob/article-abstract/40/3/655/168095?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2021/10/08/effects-of-sodium-azide-on-stomatal-closure/ )

Pemadasa M. A., Koralege S. (1977) – Stomatal responses to 2,4-dinitrophenol – New Phytologist 78(3): 573-578 – https://doi.org/10.1111/j.1469-8137.1977.tb02160.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1977.tb02160.x – (On our blog : https://plantstomata.wordpress.com/2019/01/11/the-effect-of-24%E2%80%90dnp-on-stomatal-movement/ )

Peña-Rojas K., Aranda X., Fleck I. (2004) – Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought – Tree Physiol. 24(7): 813-822 DOI: 10.1093/treephys/24.7.813https://www.ncbi.nlm.nih.gov/pubmed/15123453 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-limitation-to-co2-assimilation-and-down-regulation-of-photosynthesis-in-response-to-slowly-imposed-drought/ )

Penfield S., Clements S., Bailey K. J., Gilday A. D., Leegood R. C., Gray J. E., Graham I. A. (2012) – Expression and manipulation of PHOSPHOENOLPYRUVATE CARBOXYKINASE 1 identifies a role for malate metabolism in stomatal closure – Plant J. 69: 679–688 – doi: 10.1111/j.1365-313X.2011.04822.x – https://www.ncbi.nlm.nih.gov/pubmed/22007864 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/malate-metabolism-is-important-during-dark-induced-stomatal-closure-and-pepck-is-involved/

Peng P., Li R., Chen Z.-H., Wang Y. (2022) – Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants – Front. Plant Sci., 14 October 2022 – https://doi.org/10.3389/fpls.2022.1031891https://www.frontiersin.org/articles/10.3389/fpls.2022.1031891/full – (On our blog : https://plantstomata.wordpress.com/2023/01/16/stomata-can-function-as-important-modulators-of-plant-response-to-stress-combination/ )

Peng S., Pang G., Xu J., Zhang Z. (2009) – Improvement of stomatal conductance models of rice under water saving irrigation treatment – Nongye Gongcheng Xuebao/Transactions of the CSAE 25: 19–23. [in Chinese with English abstract] – https://www.researchgate.net/publication/288543709_Improvement_of_stomatal_conductance_models_of_rice_under_water_saving_irrigation_treatment – (On our blog : https://plantstomata.wordpress.com/2018/11/16/improvement-of-stomatal-conductance-models/ )

Peng Z., Weyers J. D. B. (1994)  Stomatal sensitivity to abscisic acid following water deficit stress – Journal of Experimental Botany 45: 835–845 – https://doi.org/10.1093/jxb/45.6.835 – https://academic.oup.com/jxb/article-abstract/45/6/835/509011?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-sensitivity-to-aba-following-water-deficit-stress/ )

Penman H. L. (1942) – Theory of porometers used in the study of stomatal movements in leaves – Proceedings of the Royal Society of London Series B Biological Sciences – 130(861): 416- – https://repository.rothamsted.ac.uk/item/8w2z6/theory-of-porometers-used-in-the-study-of-stomatal-movements-in-leaves – (On our blog : https://plantstomata.wordpress.com/2021/12/05/porometer-theory-used-in-study-of-stomatal-movements/ )

Penning de Vries F. W. T. (1972) – A model for simulating trapspiration of leaves with special attention to stomatal functioning – J. Appl. Ecol. 9: 57-77 – https://edepot.wur.nl/218534 – (On our blog : https://plantstomata.wordpress.com/2021/11/10/a-model-of-stomatal-functioning/ )

Pennisi G., Orsini F., Blasioli S., CelliniA., Crepaldi A., Braschi I., Spinelli F., Nicola S., Fernandez J. A., Stanghellini C., Gianquinto G., Marcelis L. F. M. (2019) – Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting –  Scientific Reports 9: 14127 – doi:10.1038/s41598-019-50783-zhttps://www.nature.com/articles/s41598-019-50783-z#citeas – (On our blog : https://plantstomata.wordpress.com/2019/12/09/the-transpiration-decrease-was-accompanied-by-lower-stomatal-conductance-which-was-associated-to-lower-stomatal-density-despite-an-increased-stomatal-size/)

Penny M. G., Bowling D. J. F. (1974) –  A study of potassium gradients in the epidermis of intact leaves of Commelina communis L. in relation to stomatal opening – Planta 119: 17–25 – DOI: 10.1007/BF00390818 – https://www.ncbi.nlm.nih.gov/pubmed/24442405?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/potassium-transport-both-into-and-out-of-the-stomata-is-an-active-process/ )

Penny M. G., Bowling D. J. F. (1975) – Direct Determination of pH in
the Stomatal Complex of Commelina – Planta 122: 209-212 – DOI: 10.1007/BF00388660https://pubmed.ncbi.nlm.nih.gov/24435970/ – (On our blog : https://plantstomata.wordpress.com/2021/10/02/ph-of-the-stomatal-guard-cells-increases-during-stomatal-opening/ )

Penny M. G., Kelday L. S., Bowling D. J. F. (1976) – Active chloride transport in the leaf epidermis of Commelina communis in relation to stomatal activity – Planta 130: 291-294 – DOI: 10.1007/BF00387835 – https://www.ncbi.nlm.nih.gov/pubmed/24424642 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/active-chloride-transport-in-relation-to-stomatal-activity/

Penuelas J., Matamala R. (1990) – Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during then last three centuries of CO2 increase – J. Exp. Bot. 41: 1119–1124 – https://doi.org/10.1093/jxb/41.9.1119 – https://academic.oup.com/jxb/article-abstract/41/9/1119/594478?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/11/20/changes-in-stomatal-density-and-specific-leaf-area-during-the-last-three-centuries-of-co2-increase/

Pepin S., Livingston N. J. (1997) – Rates of stomatal opening in conifer seedlings in relation to air temperature and daily carbon gain – Plant, Cell & Environment 20: 1462–1472 – https://doi.org/10.1046/j.1365-3040.1997.d01-40.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1997.d01-40.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/rates-of-stomatal-opening-in-relation-to-air-temperature-and-daily-carbon-gain/ )

Percy K. E., Riding R. T. (1978) – The epicuticular waxes of Pinus strobus subjected to air pollutants – Canadian Journal of Forest Research  https://doi.org/10.1139/x78-069https://cdnsciencepub.com/doi/abs/10.1139/x78-069?journalCode=cjfr – (On our blog : https://plantstomata.wordpress.com/2022/02/25/on-needles-subjected-to-air-pollutants-stomatal-occlusion-was-prominent/ )

Percy R. G., Lu Z., Radin J. W., Turcotte E. L., Zeiger E. (1996) – Inheritance of stomatal conductance in cotton (Gossypium barbadense L.) – Physiol. Plant. 96: 389–394 –

Pereira J. S., Tenhunen J. D., Lange O. L. (1987) – Stomatal control of photosynthesis of Eucalyptus globulus Labill. Trees under field conditions in Portugal – Journal of Experimental Botany 38: 1678–1688 – https://doi.org/10.1093/jxb/38.10.1678 – https://academic.oup.com/jxb/article-abstract/38/10/1678/508177?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/12/22/stomata-were-more-closed-in-the-afternoon-than-in-the-morning/ )

Pereira de Souza R., Vasconcelos Ribeiro R., Caruso Machado E., Ferraz de Oliveira R., Gomes da Silveira J. A. (2005) Photosynthetic responses of young cashew plants to varying environmental conditions – Pesq. agropec. bras. vol.40 no.8 Brasília Aug. 2005 –http://dx.doi.org/10.1590/S0100-204X2005000800002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2005000800002&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/02/15/stomata-and-varying-environmental-conditions-2/ )

Perera L. K. R. R., De Silva D. L. R., Mansfield T. A. (1997) – Avoidance of sodium accumulation by the stomatal guard cells of the halophyte Aster tripolium – Journal of Experimental Botany 48: 707–711 – https://doi.org/10.1093/jxb/48.3.707https://academic.oup.com/jxb/article/48/3/707/447764 – (On our blog : https://plantstomata.wordpress.com/2019/10/19/the-acquisition-by-the-stomatal-guard-cells-of-some-ability-to-restrict-the-intake-of-sodium-ions-may-be-an-important-component-of-sodium-driven-regulation-of-transpiration-and-hence-of-salinity-tole/ )

Perera L. K. R. R., Mansfield T. A., Malloch A. J. C. (1994)  Stomatal responses to sodium ions in Aster tripolium: a new hypothesis to explain salinity regulation in above-ground tissues – Plant, Cell & Environment 17(3): 335–340 – DOI: 10.1111/j.1365-3040.1994.tb00300.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00300.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-responses-to-sodium-ions/ )

Perez M. T. Q. (2008) – Design of a microscopy-based screening method
for stomatal development genes in Arabidopsis thalianaMSc. Thesis Eastern Michigan University – Master’s Theses and Doctoral Dissertations. 155 – http://commons.emich.edu/theses/155https://commons.emich.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1154&context=theses – (On our blog : https://plantstomata.wordpress.com/2022/02/13/a-basis-for-future-studies-in-stomatal-functional-genetics/ )

Perez S.C.J.G.A., Moraes J.A.P.V. (1991) – Determinações de potencial hídrico, condutância estomática e potencial osmótico em espécies dos estratos arbóreo, arbustivo e herbáceo de um cerradão – Revista Brasileira de Fisiologia Vegetal 3(1): 27-37 –

Pérez-Bueno M. L., Illescas-Miranda J., Martín-Forero A. F., de Marcos A., Barón M., Fenoll C., Mena M. (2022) – An extremely low stomatal density mutant overcomes cooling limitations at supra-optimal temperature by adjusting stomatal size and leaf thickness – Front Plant Sci. 13: 919299 – doi: 10.3389/fpls.2022.919299 – PMID: 35937324 – PMCID: PMC9355609 – https://pubmed.ncbi.nlm.nih.gov/35937324/ – (On our blog : https://plantstomata.wordpress.com/2022/09/02/how-the-effect-of-very-low-stomatal-numbers-can-be-counteracted-by-a-combination-of-larger-stomata-and-thinner-leaves/ )

Pérez-López U., Mena-Petite A., Mu-oz-Rueda A. (2012) – Interaction between salinity and elevated CO2: a physiological approach – Progress in Botany 73, Part III: Physiology, eds U. Lüttge, W. Beyschlag, B. Büdel, and D. Francis (Heidelberg: Springer), 97–126 –

Pérez-López U., Robredo A., Lacuesta M., Mena-Petite A., Mu-oz-Rueda A. (2012) – Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare – Photosyn. Res. 111: 269–283 – doi: 10.1007/s11120-012-9721-1https://link.springer.com/article/10.1007/s11120-012-9721-1 – (On our blog : https://plantstomata.wordpress.com/2020/09/02/elevated-co2-reduces-stomatal-and-metabolic-limitations-on-photosynthesis/ )

Perez‐Martin A., Michelazzo C., Torres‐Ruiz J. M., Flexas J., Fernandez J. E., Sebastiani L., Diaz‐Espejo A. (2014) – Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins – J. Exp. Bot. 10.1093/jxb/eru160 – https://www.academia.edu/12980878/Regulation_of_photosynthesis_and_stomatal_and_mesophyll_conductance_under_water_stress_and_recovery_in_olive_trees_correlation_with_gene_expression_of_carbonic_anhydrase_and_aquaporins – (On our blog : https://plantstomata.wordpress.com/2019/05/09/78284/ )

Perks M. P., Irvine J., Grace J. (2002) – Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought – Tree Physiol 22: 877–883 – PMID: 12184977 – https://www.ncbi.nlm.nih.gov/pubmed/12184977?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/canopy-stomatal-conductance-and-xylem-sap-aba-during-a-gradually-imposed-drought/ )

Perraki A., DeFalco T. A., Derbyshire P. , Avila J., Séré D., Sklenar J., Qi X., Stransfeld L., Schwessingern B., Kadota Y., Macho A. P.,  Jiang S., Couto D., Torii K. U., Menke F. L. H., Cyril Zipfel C. (2018) – Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling – Nature 561: 248–252 – https://doi.org/10.1038/s41586-018-0471-x – (On our blog : https://plantstomata.wordpress.com/2023/03/13/a-phosphocode-based-dichotomy-of-bak1-function-in-plant-signalling/ )

Perrone R., Salmeri C., Brullo S., Colombo P., de Castro O. (2015) – What do leaf anatomy and micro-morphology tell us about the psammophilous Pancratium maritimum L. (Amaryllidaceae) in response to sand dune conditions? – Flora 213: 20–31 – https://doi.org/10.1016/j.flora.2015.03.001https://www.sciencedirect.com/science/article/abs/pii/S0367253015000213 – (On our blog : https://plantstomata.wordpress.com/2022/12/24/the-most-sensitive-morpho-anatomical-traits-are-leaf-outline-and-venation-leaf-thickness-stomata-distribution-and-size/ )

Perry S. W., Krieg D. R., Hutmacher R. B. (1983) – Photosynthetic Rate Control in Cotton – Photorespiration – Plant Physiol 73(3): PMC1066526 – PMID: 16663278 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066526/ – (On our blog : https://plantstomata.wordpress.com/2018/12/16/photorespiration-in-cotton/ )

Perwati L. K. (2009) – Analisis Derajat Ploidi dan Pengaruhnya Terhadap Variasi
Ukuran Stomata dan Spora pada Adiantum raddianum – BIOMA 11(2): 39-44 – ISSN: 1410-8801 – file:///C:/Users/wille/Downloads/3360-7222-1-SM.pdf – (On our blog : https://plantstomata.wordpress.com/2022/06/13/the-higher-level-the-ploidy-the-lower-the-index-stomata-but-the-bigger-the-stomata/ )

Peschel S., Beyer M., Knoche M. (2003) Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting – Scientia Horticulturae 97: 265–278 – Surface_characteristics_of_sweet_cherry.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/the-number-distribution-size-and-function-of-stomata-and-wettability-of-the-sweet-cherry/ )

Pesacreta T. C., Hasenstein K. H. (1999) – The internal cuticle of Cirsium horridulum (Asteraceae) leaves – American Journal of Botany 86(7): – https://bsapubs.onlinelibrary.wiley.com/action/doSearch?AllField=Stomata&SeriesKey=15372197&startPage=2&pageSize=20 – (On our blog : https://plantstomata.wordpress.com/2022/07/05/the-internal-cuticle-and-stomatal-pores/ )

Pesek F. (1960) – Lenticels as indicators of atmospheric smoke pollution (Lenticely jako indikatory kourovych zplodin v ovzdusi) – Sbornik Ceskoslovenske Akademie Zemedelskych Ved. Rada D. Lesnictvi  6(5): 365-374 – https://www.cabdirect.org/cabdirect/abstract/19600601966 – (On our blog : https://plantstomata.wordpress.com/2022/09/05/lenticels-and-stomata-as-indicators-of-atmospheric-smoke-pollution/ )

Peters R. L., Speich M., Pappas C., Kahmen A., von Arx G., Graf Pannatier E., Steppe K., Treydte K., Stritih A., Fonti P. (2018) – Contrasting stomatal sensitivity to temperature and soil drought in mature alpine conifers – Plant, Cell & Environment – https://doi.org/10.1111/pce.13500 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13500?af=R – (On our blog : https://plantstomata.wordpress.com/2018/12/14/contrasting-stomatal-sensitivity-to-temperature-and-soil-drought/ )

Peters W. (2018) – Reaction of plants to drought can be seen in the composition of the atmosphere – https://phys.org/news/2018-08-reaction-drought-composition-atmosphere.html – (On our blog : https://plantstomata.wordpress.com/2022/04/25/reaction-of-plants-to-drought/ )

Peterson C. A., Fetcher N., McGraw J. B., Bennington C. C. (2012) – Clinal variation in stomatal characteristics of an Arctic sedge, Eriophorum vaginatum (Cyperaceae) – American Journal of Botany 99(9): – https://bsapubs.onlinelibrary.wiley.com/action/doSearch?AllField=Stomata&SeriesKey=15372197&pageSize=20&startPage=1 – (On our blog : https://plantstomata.wordpress.com/2022/07/04/a-climatic-cline-for-stomatal-density-size-and-conductance/ )

Peterson G. W. (1969) – Growth of germ tubes of Dothistroma pini conidia positively directed toward stomata of Austrian and ponderosa pine needles – Phytopathology 59: 1044 –

Peterson G. W., Walla J. A. (1978) – Development of Dothistroma pini Upon and Within Needles of Austrian and Ponderosa Pines in Eastern Nebraska – Phytopathology 68: 1422-1430 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1978Articles/Phyto68n10_1422.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/15/95479/ )

Peterson K. M., Rychel A. L., Torii K. U. (2010) – Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development – The Plant Cell 22(2) : 296-306 – https://doi.org/10.1105/tpc.109.072777 – http://www.plantcell.org/content/22/2/296 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/evolution-and-diversity-of-stomatal-development/

Peterson K. M., Shyu C., Burr C. A., Horst R. J., Kanaoka M. M., Omae M., Sato Y., Torii K. U. (2013) – Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis – Development. 140(9): 1924-1935 – doi: 10.1242/dev.090209 – Epub 2013 Mar 20 – https://www.ncbi.nlm.nih.gov/pubmed/23515473 – (On our blog : https://wordpress.com/block-editor/post/plantstomata.wordpress.com/81398 )

Peterson R. F. (1931) – Stomatal Behavior in Relation to the Breeding of Wheat for Resistance to Stem Rust – Scientific Agriculture  https://doi.org/10.4141/sa-1931-0130

Peterson R. L., Firminger M. S,, Dobrindt L. A. (1975) – Nature of the guard cell wall in leaf stomata of three Ophioglossum species – Can J Bot. 53: 1698–1711 – https://doi.org/10.1139/b75-199 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-199?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/components-of-the-guard-cell-wall-in-stomata/ )

Peterson R. L., Hambleton S. (1978) – Guard cell ontogeny in leaf stomata of the fern Ophioglossum petiolatum – Canadian Journal of Botany 56: 2836–2852 – https://doi.org/10.1139/b78-340 – http://www.nrcresearchpress.com/doi/abs/10.1139/b78-340?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/stomatal-ontogeny-in-the-fern-ophioglossum-petiolatum-filicopsida/

Petrie P. R., Trought M. C. T., Howell G. S. (2000) – Influence of leaf ageing, leaf area and crop load on photosynthesis, stomatal conductance and senescence of grapevine (Vitis vinifera L. cv. Pinot noir) leaves – Vitis 39: 31–36 – file:///C:/Users/wille/Downloads/renate,+Journal+manager,+4601-17844-1-CE.pdf – (On our blog : https://plantstomata.wordpress.com/2022/12/25/influence-of-leaf-ageing-leaf-area-and-crop-load-on-stomatal-conductance/ )

Petrík P., Petek A., Konôpková A., Bosela M., Fleischer P., Frýdl J., Kurjak D. (2020) – Stomatal and Leaf Morphology Response of European Beech (Fagus sylvatica L.) Provenances Transferred to Contrasting Climatic Conditions – Forests 11: 1359 – doi:10.3390/f11121359file:///C:/Users/wille/Downloads/forests-11-01359-v2.pdf – (On our blog : https://plantstomata.wordpress.com/2022/05/15/provenances-transferred-to-drier-and-warmer-conditions-acclimated-through-a-decrease-in-stomatal-density-the-length-of-guard-cells-potential-conductance-index-leaf-size-and-leaf-dry-weight/ )

Petrova Y. (2012) – The effect of light intensity on the stomatal density of lavender, Lavandula angustifolia – Young Scientists Journal 2012(12): 89-93 – https://www.ysjournal.com/wp-content/uploads/Issue12/The-effect-of-light-intensity-on-the-stomatal-density-of-lavender-Lavandula-angustifolia.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/04/a-positive-correlation-between-stomatal-density-and-the-light-intensity/ )

Petrovska D., Musalevski A. (1970) – Determining the degree of polyploidy in sugar beet by the number of chloroplasts in the stomata – Zborn. zemjod. Inst. Skopje (Rec. agric. Inst. Skopje) 6: 27-31 – https://eurekamag.com/research/014/415/014415223.php – (On our blog : https://plantstomata.wordpress.com/2022/01/07/15-chloroplasts-in-the-diploid-individuals-and-approximately-25-in-the-tetraploids-of-both-varieties/ )

Pezeshki S. R., Chambers J. L. (1985) – Stomatal and photosynthetic response of sweet gum (Liquidambar styraciflua) to flooding – Can. J. For. Res. 15: 371-375 – https://doi.org/10.1139/x85-059 – http://www.nrcresearchpress.com/doi/abs/10.1139/x85-059?journalCode=cjfr – (On our blog : https://plantstomata.wordpress.com/2018/11/21/stomatal-response-to-flooding/

Pezeshki S. R., Chambers J. L. (1986) – Stomatal and photosynthetic response of drought-stressed cherrybark oak (Quercus falcata var. pagodaefolia) and sweetgum (Liquidambar styraciflua) – Can J Forest Res 16: 841–846 – https://doi.org/10.1139/x86-148 – http://www.nrcresearchpress.com/doi/abs/10.1139/x86-148 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/the-effects-of-water-stress-on-stomatal-conductance-and-net-photosynthesis/

Pezeshki S. R., Hinckley T. M. (1982) – The stomatal response of red alder and black cottonwood to changing water status – Can. J. For. Res. 12: 760-771 – https://doi.org/10.1139/x82-115 – http://www.nrcresearchpress.com/doi/10.1139/x82-115 – (On our blog : https://plantstomata.wordpress.com/2018/11/22/stomatal-response-to-changing-water-status/

Pharmawati M., Billington T., Gehring C. A. (1998) – Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent – Cell. Mol. Life Sci. 54: 272–276 – doi: 10.1007/s000180050149  – http://link.springer.com/article/10.1007%2Fs000180050149 – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomata-responses-to-kinetin-and-natriuretic-peptides/ )

Pickard W. F. (1981)  How does the shape of the substomatal chamber affect transpirational water loss? – Mathematical Biosciences 56: 111–127 – https://doi.org/10.1016/0025-5564(81)90030-4https://www.sciencedirect.com/science/article/abs/pii/0025556481900304 – (On our blog : https://plantstomata.wordpress.com/2022/12/25/the-typical-substomatal-chamber-is-larger-than-necessary-to-minimize-the-water-loss/ )

Pickard W. F. (1981) – Lumped circuit approximations for flux in systems governed by the laplace equation: The stoma of zero thickness –
Chemical Engineering Science 36(1): 191-197 – ISSN 0009-2509 – https://doi.org/10.1016/0009-2509(81)80063-2
https://www.sciencedirect.com/science/article/pii/0009250981800632 – (On our blog : https://plantstomata.wordpress.com/2022/12/25/the-stoma-of-zero-thickness/ )

Pickard W. F. (1982) – The water mass transfer coefficient of an elliptical stoma -Mathematical Biosciences 60(1): 73-87 -ISSN 0025-5564 – https://doi.org/10.1016/0025-5564(82)90032-3
https://www.sciencedirect.com/science/article/pii/0025556482900323 – (On our blog : https://plantstomata.wordpress.com/2022/12/25/the-water-mass-transfer-coefficient-of-an-elliptical-stoma/ )

Pickard W. F. (1982) – Why is the substomatal chamber as large as it is? – Plant Physiology 69: 971–974 –

Pickard W. F. (1982) – Distribution of evaporation in the sub-stomatal chamber, the possibility of transpiration-linked pore narrowing, and the pathway of water near the site of evaporation – Ann. Bot. 49: 545–548. –https://eurekamag.com/research/000/859/000859348.php – (On our blog : https://plantstomata.wordpress.com/2017/02/16/evaporation-through-the-chamber-wall-adjacent-to-the-inner-aperture-of-the-stomatal-pore/ )

Pickett-Heaps J. D. (1969) – Preprophase microtubules and stomatal differentiaton. Some effects of centrifugation on symmetrical and asymmetrical cell division – Journal of Ultrastructure Research 27: 24–44 – https://doi.org/10.1016/S0022-5320(69)90018-5 – https://www.sciencedirect.com/science/article/pii/S0022532069900185 – (On our blog : https://plantstomata.wordpress.com/2018/11/22/preprophase-microtubules-and-stomatal-differentiaton/

Pickett-Heaps J. D. (1969) – Preprophase microtubules and stomatal differentiation in Commelina cyanea – Aust. J. Biol. Sci. 22: 374–391 – DOI: 10.1071/BI9690375 – http://trove.nla.gov.au/work/180661045?q&versionId=196693521 – (On our blog :  https://plantstomata.wordpress.com/2017/09/09/preprophase-microtubules-and-stomatal-differentiation/

Pickett-Heaps J. D., Northcote D. H. (1966) – Cell division in the formation of the stomatal complex of the young leaves of wheat – Journal of Cell Science 1: 121–128 – PMID: 5929805 – https://doi.org/10.1242/jcs.1.1.121https://pdfs.semanticscholar.org/1bec/57bc1965d498da04bbf1603ba6a54532a7f8.pdfhttps://journals.biologists.com/jcs/article/1/1/121/22904/Cell-Division-in-the-Formation-of-the-Stomatal – (On our blog : https://plantstomata.wordpress.com/2017/09/09/microtubules-in-the-cell-division-in-the-formation-of-the-stomatal-complex/

Pieruschka R., Berry J. A. (2009) – Stomatal conductance based on energy balance – Comparative Biochemistry and Physiology, Part A 153 (2009) S174–S183 – doi:10.1016/j.cbpa.2009.04.382Stomatal_conductance_based_on_energy_bal.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/stomatal-conductance-based-on-energy-balance/ )

Pieruschka R., Huber G., Berry J. A. (2009) Control of transpiration by radiation – PNAS 107(30): 13372–13377 – doi: 10.1073/pnas.0913177107 – http://www.pnas.org/content/107/30/13372.abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-regulation-of-leaf-and-canopy-transpiration-by-the-radiation-load/ )

Pietragalla J., Pask A. (2012) – Stomatal conductance – In: Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – CIIMMYT – Chapter 2 – http://www.plantstress.com/methods/Stomatal%20conductance%20measurement%20(wheat%20example%20-%20from%20CIMMYT).PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomatal-conductance/ )

Pignon C. P., Fernandes S. B., Valluru R., Bandillo N., Lozano R., Buckler E., Gore M. A., Long S. P., Brown P. J., Leakey A. D. B. (2021) – Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes – bioRxiv 2021.05.06.442962 – doi: https://doi.org/10.1101/2021.05.06.442962https://www.biorxiv.org/content/10.1101/2021.05.06.442962v1 – (On our blog : https://plantstomata.wordpress.com/2021/07/07/rapid-phenotyping-revealed-heritable-stomatal-responses-to-a-decrease-in-light-gwas-twas-was-used-to-identify-candidate-genes-influencing-traits-important-to-wue/ )

Pillitteri L. J., Bogenschutz N. L., Torii K. U. (2008) – The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis – Plant Cell Physiol 49: 934–943 – https://doi.org/10.1093/pcp/pcn067  – https://academic.oup.com/pcp/article/49/6/934/1811933/The-bHLH-Protein-MUTE-Controls-Differentiation-of?ijkey=a82b0b2306ff4bfe69c873557ad45343c29fd352&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/02/16/the-bhlh-protein-mute-stomata-and-the-hydathode-pore/ )

Pillitteri L. J., Dong J. (2013) – Stomatal Development in Arabidopsis – The Arabidopsis Book 11: e0162 – doi:  10.1199/tab.0162 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711358/ – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomatal-development-2/ )

Pillitteri L. J., Peterson K. M., Horst R., Torii K. U. (2011) – Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis – Plant Cell 23: 3260–3275 – https://doi.org/10.1105/tpc.111.088583 – http://www.plantcell.org/content/23/9/3260 – (On our blog : https://plantstomata.wordpress.com/2018/11/21/molecular-constituents-of-stomatal-stem-cells-2/

Pillitteri L. J., Sloan D. B., Bogenschutz N. L., Torii K. U. (2007) – Termination of asymmetric cell division and differentiation of stomata – Nature 445: 501–505 – – http://www.nature.com/nature/journal/v445/n7127/full/nature05467.html – (On our blog : https://plantstomata.wordpress.com/2016/08/22/stomata-the-roles-of-bhlhs-in-cell-type-differentiation/)

Pillitteri L. J, Torii K. U. (2007) – Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development – Bioessays 29: 861–870 – DOI: 10.1002/bies.20625 – https://www.ncbi.nlm.nih.gov/pubmed/17691100 – (On our blog : https://plantstomata.wordpress.com/2018/11/21/three-bhlh-proteins-direct-cell-fate-decisions-during-stomatal-development/

Pillitteri L. J, Torii K. U. (2012) – Mechanisms of stomatal development – Annual Review of Plant Biology 63: 591–614 – doi:10.1146/annurev-arplant-042811-105451 –  http://www.annualreviews.org/doi/10.1146/annurev-arplant-042811-105451 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/mechanisms-of-stomatal-development/ )

Pilon C., Snider J. L., Sobolev V., Chastain D. R., Sorensen R. B., Meeks C. D., Massa A. N., Walk T., Singh B., Earl H. J. (2018) – Assessing stomatal and non-stomatal limitations to carbon assimilation under progressive drought in peanut (Arachis hypogaea L.). – J Plant Physiol. 231: 124-134 – doi: 10.1016/j.jplph.2018.09.007 – Epub 2018 Sep 20 – PMID: 30261481 – https://pubmed.ncbi.nlm.nih.gov/30261481/ – (On our blog : https://plantstomata.wordpress.com/2021/08/17/declines-in-an-were-largely-due-to-non-stomatal-diffusional-and-metabolic-limitations/ )

Pilot G., Lacombe B., Gaymard F., Chérel I., Boucherez J., Thibaud J. B., Sentenac H. (2001) – Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2 – J. Biol. Chem. 276: 3215–3221 – doi: 10.1074/jbc.M007303200 – http://www.jbc.org/content/276/5/3215.full – (On our blog : https://plantstomata.wordpress.com/2018/01/19/expression-of-the-twin-channel-subunits-kat1-and-kat2-in-stomata/ )

Piovani P., Leonardi S., Magnani F., Menozzi P. (2011) – Variability of stomatal conductance in a small and isolated population of silver fir (Abies alba Mill.) – Tree Physiology 31: 500-507 – doi: 10 1093/treephys/tpr029Variability_of_stomatal_conductance_in_a.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/variability-of-stomatal-conductance/ )

Pipitsunthonsan P., Sopharat J., Sirisuk P., Chongcheawchamnan M. (2018) – Leaf Sensor for Stomata Transpiration Monitoring Using Temperature and Humidity – 21st International Symposium on Wireless Personal Multimedia Communications (WPMC) – Chiang Rai, Thailand 252-255 – DOI: 10.1109/WPMC.2018.8713096https://ieeexplore.ieee.org/document/8713096/authors#authors – (On our blog : https://plantstomata.wordpress.com/2020/05/04/a-sensor-for-stomatal-transpiration-detection/ )

Pirasteh-Anosheh H., Saed-Moucheshi A., Pakniyat H., Pessarakli M. (2016) – Stomatal responses to drought stress – Book: Water Stress and Crop Plants 24-40 – DOI: 10.1002/9781119054450.ch3 – https://www.researchgate.net/publication/304479897_Stomatal_responses_to_drought_stress – (On our blog : https://plantstomata.wordpress.com/2018/11/22/effect-of-drought-stress-on-stomatal-opening/ )

Pisek A., Knapp H., Ditterstorfer J. (1970) – Maximale Öffnungsweite und Bau der Stomata mit Angaben über ihre Größe und Zahl – Maximal Opening Width and Morphology of Stomata,with Dates of their Size and Number – Flora 159: 459–479 – https://doi.org/10.1016/S0367-2530(17)31052-6https://www.sciencedirect.com/science/article/abs/pii/S0367253017310526 – (On our blog : https://plantstomata.wordpress.com/2022/12/25/maximal-opening-width-and-morphology-of-stomata/ )

Pisek A., Winkler E. (1953) – Die Schliessbewegung der Stomata bei ökologisch verschiedenen Pflanzentypen in Abhängigkeit vom Wassersättigungszustand der Blätter und vom Licht – Planta 42: 253-278 – https://doi.org/10.1007/BF01938572https://link.springer.com/article/10.1007/BF01938572 – (On our blog : https://plantstomata.wordpress.com/2022/12/25/die-schliessbewegung-der-stomata-bei-okologisch-verschiedenen-pflanzentypen/ )

Pita P., Rodríguez-Calcerrada J., Medel D., Gil L. (2018) – Further insights into the components of resistance to Ophiostoma novo-ulmi in Ulmus minor: hydraulic conductance, stomatal sensitivity and bark dehydration – Tree Physiol. 38(2): 252-262 – doi: 10.1093/treephys/tpx123 – PMID: 29040781 – https://pubmed.ncbi.nlm.nih.gov/29040781/ – (On our blog: https://plantstomata.wordpress.com/2023/01/12/higher-hydraulic-constraints-to-sap-flow-in-resistant-clones-may-determine-higher-stomatal-sensitivity-to-vpd/ )

Pitaloka M. K., Harrison E. L., Hepworth C., Wanchana S., Toojinda T., Phetluan W., Brench R. A., Narawatthana S., Apichart Vanavichit A., Gray J. E., Caine R. S., Arikit S., (2021) – Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry – Front Plant Sci. 12: 677839 –  doi: 10.3389/fpls.2021.677839 – PMCID: PMC8213340 – PMID: 34149777 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213340/ – (On our blog : https://plantstomata.wordpress.com/2021/11/19/stomatal-mega-papillae-as-a-novel-rice-trait-that-influences-gas-exchange-stomatal-dynamics-and-defense-against-stomatal-pathogens/ )

Pitman J. I. (1996) – Ecophysiology of tropical dry evergreen forest, Thailand: Measured and modelled stomatal conductance of Hopea ferrea, a dominant canopy emergent – Journal of Applied Ecology 33: 1366–1378 – DOI: 10.2307/2404777 – https://www.jstor.org/stable/2404777?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/22/measured-and-modelled-stomatal-conductance/

Pivovaroff A. L., Cook V. M. W., Santiago L. S. (2018) – Stomatal behavior and stem xylem traits are coordinated for woody plant species under exceptional drought conditions – Plant, Cell & Environment 41(11):2617-2626 – https://doi.org/10.1111/pce.13367 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13367?af=R – (On our blog : https://plantstomata.wordpress.com/2018/06/28/the-stomatal-and-xylem-hydraulic-safety-strategies-of-woody-species/ )

Place B. K., Delaria E. R., Cohen R. C. (2022) – Leaf stomatal uptake of Alkyl Nitrates – Environ. Sci. Technol. Lett. 9(2): 186–190 – https://doi.org/10.1021/acs.estlett.1c00793https://pubs.acs.org/doi/pdf/10.1021/acs.estlett.1c00793 – (On our blog : https://plantstomata.wordpress.com/2022/03/16/comparison-of-measured-deposition-rates-of-mbn-and-ehn-with-their-photochemical-losses-and-conclusion-that-the-stomatal-uptake-of-these-compounds-could-be-an-important-loss-process-for-these-rono2/ )

Place B. K., Delaria E. R., Liu A. X., Cohen R. C. (2020) – Leaf Stomatal Control over Acyl Peroxynitrate Dry Deposition to Trees – ACS Earth and Space Chemistry 4: 2162–2170 – https://doi.org/10.1021/acsearthspacechem.0c00152https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00152 – (On our blog : https://plantstomata.wordpress.com/2022/12/26/the-uptake-of-acyl-peroxynitrates-by-leaf-stomata-can-be-a-dominant-loss-process-in-areas-of-high-tree-cover-and-moderate-temperature/ )

Plackett A. R. G., Emms D. M., Kelly S., Hetherington A. M., Jane A. Langdale J. A. (2021) – Conditional Stomatal Closure in a Fern Shares Molecular Features with Flowering Plant Active Stomatal Responses – Current Biology 2021 – DOI: 10.1101/2021.03.06.434194 – https://www.biorxiv.org/content/10.1101/2021.03.06.434194v1https://www.sciencedaily.com/releases/2021/08/210826111639.htm – (On our blog : https://plantstomata.wordpress.com/2021/08/31/conditional-stomatal-closure-in-a-fern/ )

Plesch G., Ehrhardt T., Mueller-Roeber B. (2001) – Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression – Plant J. 28: 455–464 – https://doi.org/10.1046/j.1365-313X.2001.01166.x – https://www.ncbi.nlm.nih.gov/pubmed/11737782 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/taaag-elements-are-target-sites-for-trans-acting-dof-proteins-controlling-stomatal-specific-gene-expression/ )

Plumbe A. M., Willmer C. M. (1986)  Phytoalexins, water-stress and stomata – New Phytologist 102(3): 375–384 – DOI: 10.1111/j.1469-8137.1986.tb00815.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1986.tb00815.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/the-effects-of-the-phytoalexins-on-stomatal-responses/ )

Poffenroth M., Green D. B., Tallman G. (1992) – Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light: analysis by high performance liquid chromatography – Plant Physiol. 98: 1460–1471 – doi: 10.1104/pp.98.4.1460 – http://www.plantphysiol.org/content/98/4/1460 – (https://plantstomata.wordpress.com/2017/02/27/soluble-sugars-can-contribute-significantly-to-the-osmoregulation-of-stomatal-cells/ )

Pompelli M. F., Martins S. C. V., Celin E. F., Ventrella M. C., DaMatta F. M. (2010) – What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? – Braz. J. Biol. 70(4): 1083-1088 – http://www.scielo.br/pdf/bjb/v70n4/a25v70n4.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/24/influence-of-ordinary-epidermal-cells-and-stomata-on-the-leaf-plasticity-of-coffee/ )

Pons T. L., Welschen R. A. M., (2003) – Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning – Tree Physiol. 23(14): 937-947 – DOI: 10.1093/treephys/23.14.937 – https://pubmed.ncbi.nlm.nih.gov/12952780/ – (On our blog : https://plantstomata.wordpress.com/2021/02/27/a-decrease-in-stomatal-conductance-in-response-to-an-increase-in-leaf-to-air-vapor-pressure-difference-deltaw-was-the-principal-reason-for-the-decrease-in-net-photosynthesis/ )

Pont J. W. (1936) – Enkele stomata indek bepalings van grasse in verband met die groeiplek – South African Journal of Science 600: –

Poole I., Kürschner W.M. (1999) – Stomatal density and index: the practice. See Jones & Rowe 257–265 – https://plantstomata.wordpress.com/2017/12/11/stomatal-density-and-index-the-practice/ )

Poole I., Lawson T., Weyers J. D. B. , Raven J.A. (2000) – Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa – New Phytologist 145(3): 511-521 – https://doi.org/10.1046/j.1469-8137.2000.00589.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.2000.00589.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/effect-of-elevated-co2-on-the-stomatal-distribution/ )

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (1996)  Variations in stomatal density and index: implications for palaeoclimatic reconstructions – Plant, Cell and Environment 19: 705–712 – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00405.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/high-level-of-variation-in-stomatal-characters-occurs-both-within-and-between-leaves-of-a-tree/ )

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (2000)  Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa – New Phytol. 145: 511–521 – Effect_of_elevated_CO2_on_the_stomatal_d.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-development-distribution-and-conductance-under-elevated-co2-concentration/ )

Poole R. J. (1993) – Cellular signaling machinery: conservation from plant stomata to lymphocytes – PNAS 90(8): 3125-3126 – https://doi.org/10.1073/pnas.90.8.3125https://www.pnas.org/content/90/8/3125 – (On our blog : https://plantstomata.wordpress.com/2021/04/06/conservation-from-plant-stomata-to-lymphocytes/ )

Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011)  Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress – Plant Biol. 13: 105–114 – doi: 10.1111/j.1438-8677.2010.00344.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.2010.00344.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/salicylic-acid-treatment-via-the-rooting-medium-interferes-with-stomatal-response/ )

Poor P., Tari I. (2011) – Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid – Functional Plant Biology 39(12): 1028-1037 – https://doi.org/10.1071/FP12187https://www.publish.csiro.au/fp/fp12187 – (On our blog : https://plantstomata.wordpress.com/2020/04/08/regulation-of-stomatal-movement-and-photosynthetic-activity-in-stomata-by-salicylic-acid/ )

Popielarska-Konieczna M., Kleszcz I. (2015) – Preliminary studies on plants regenerated from endosperm-derived callus of Kiwifruit (Actinidia deliciosa var. deliciosa) – Modern Phytomorphology 7: 55-57 – https://ruj.uj.edu.pl/xmlui/bitstream/handle/item/21127/popielarska-konieczna_kleszcz_preliminary_studies_on_plants_2015.pdf?sequence=1&isAllowed=y – (On our blog : https://plantstomata.wordpress.com/2020/04/30/for-plants-which-represent-3c-dna-level-stomata-density-was-higher-than-for-plantlets-showing-2c-dna-content/ )

Poposka H., Simikj S. M., Stojanova M., Mukaetov D. (2015) – Influence of foliar fertilizing on stomata parameters in maize leaf (Zea mays L.) – Int. J. Agri. & Agri. R. 7(4): 68-74 – ISSN: 2223-7054 (Print) 2225-3610 (Online) – https://pdfs.semanticscholar.org/32a9/2fdcebbe1dbbbacf83f6e74114b74d6b82a5.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/09/influence-of-foliar-fertilizing-on-stomata-parameters/ )

Pornsiriwong W., Estavillo G. M., Chan K. X., Tee E. E., Ganguly D., Crisp P. A., Phua S. Y., Zhao C., Qiu J., Park J., Yong M. T., Nisar N., Yadav A. K., Schwessinger B., Rathjen J., Cazzonelli C. I., Wilson P. B., Gilliham M., Chen Z.-H., Pogson B. J. (2017) – A chloroplast retrograde signal, 3’-phosphoadenosine 5’-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination – eLife 6: e23361 – DOI: 10.7554/eLife.23361 –https://elifesciences.org/articles/23361 – (On our blog : https://plantstomata.wordpress.com/2019/01/16/sal1-pap-retrograde-pathway-interacts-with-aba-signaling-to-regulate-stomatal-closure/ )

Porsch O. (1905) – Der Spaltöffnungsapparat im Lichte der Phylogenie. Ein Beitrag zur “phylogenetischen Pflanzenhistologie” – Jena : G. Fischer – https://doi.org/10.5962/bhl.title.153215https://www.biodiversitylibrary.org/bibliography/153215 – (On our blog : https://plantstomata.wordpress.com/2022/01/03/der-spaltoffnungsapparat-im-lichte-der-phylogenie/ )

Poschenrieder C., Gunsé B., Barceló J. (1989) – Influence of cadmium on water relations, stomatal resistance, and abscisic Acid content in expanding bean leaves – Plant Physiol. 90(4): 1365-1371 – doi: 10.1104/pp.90.4.1365 -PMID: 16666937 – PMCID: PMC1061897 – https://pubmed.ncbi.nlm.nih.gov/16666937/ – (On our blog : https://plantstomata.wordpress.com/2023/01/01/influence-of-cadmium-on-water-relations-stomatal-resistance-and-aba-content/ )

Pospíšilová J. (1996)  Effect of air humidity on the development of functional stomatal apparatus – Biologia Plantarum 38: 197–204 – doi:10.1007/BF02873846 – https://link.springer.com/article/10.1007%2FBF02873846?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/02/27/air-humidity-on-the-development-of-stomata/ )

Pospíšilová J. (2003) – Participation of phytohormones in the stomatal regulation of gas exchange during water stress – Biol. Plant. 46: 491–506 – https://doi.org/10.1023/A:1024894923865https://link.springer.com/article/10.1023/A:1024894923865 – (On our blog :  https://plantstomata.wordpress.com/2019/05/27/phytohormones-in-the-stomatal-regulation-of-gas-exchange-during-water-stress/ )

Pospíšilová J., Dodd I. C. (2004) – Role of plant growth regulators in stomatal limitation to photosynthesis during water stress – Handbook of Photosynthesis (Second Edition; Revised and Expanded), New York : Marcel Dekker: 811-825 – http://www.ueb.cas.cz/en/content/role-plant-growth-regulators-stomatal-limitation-photosynthesis-during-water-stress – (On our blog : https://plantstomata.wordpress.com/2020/02/24/role-of-plant-growth-regulators-in-stomatal-limitation/ )

Pospíšilová J., Šantrůček J. (1994)  Stomatal patchiness – Biologia Plantarum 36(4): 481-510  – doi:10.1007/BF02921169 –  http://link.springer.com/article/10.1007%2FBF02921169. – (On our blog : https://plantstomata.wordpress.com/2017/02/27/small-groups-of-stomata-on-a-single-leaf-blade-stomatal-patchiness/ )

Pospíšilová J., Šantrůček J. (1997)  Stomatal patchiness: effects on photosynthesis – In: Handbook of Photosynthesis (ed. M. Pessarakli): 427-44 – Marcel Dekker, New York –

Pospisilová J., Solarova J. (1980) – Environmental and biological control of diffusive conductances of adaxial and abaxial leaf epidermes – Photosynthetica 14: 90–127 – https://www.cabdirect.org/cabdirect/abstract/19800704742 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/the-behaviour-of-stomata-on-the-adaxial-and-abaxial-epidermis/ )

Postiglione A. E., Muday G. K. (2020) – The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling – Front Plant Sci. 11: 968 – doi:10.3389/fpls.2020.00968 – PMID: 32695131 – PMCID: PMC7338657 – https://pubmed.ncbi.nlm.nih.gov/32695131/ – (On our blog : https://plantstomata.wordpress.com/2022/03/30/understanding-the-mechanisms-of-ros-production-and-homeostasis-and-the-role-of-ros-in-stomatal-guard-cell-signaling-can-provide-a-better-understanding-of-plant-response-to-stress/ )

Postiglione A. E., Muday G. K. (2022) – Abscisic Acid Increases Hydrogen Peroxide in Multiple Subcellular Compartments to Drive Stomatal Closure – bioRxiv – https://doi.org/10.1101/2022.01.11.475946https://www.biorxiv.org/content/10.1101/2022.01.11.475946v1.full.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/02/elevated-h2o2-after-aba-treatment-in-subcellular-compartments-is-necessary-and-sufficient-to-drive-stomatal-closure/ )

Postiglione A. E., Muday G. K. (2022) – Abscisic Acid Increases Hydrogen Peroxide in mitochondria to facilitate stomatal closure – Plant Physiology: kiac601 – https://doi.org/10.1093/plphys/kiac601https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiac601/6961288 – (On our blog : https://plantstomata.wordpress.com/2023/04/01/aba-elevates-h2o2-accumulation-in-guard-cell-mitochondria-to-promote-stomatal-closure/ )

Pou A., Flexas J., del Mar Asina M., Bota J., Carambula C., de Herralde F., Galmés J., Lovisolo C., Jiménez M., Ribas-Carbó M., Rusjan D., Secchi F., Tomàs M., Zsófi Z., Medrano H. (2008) – Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris) – Physiologia Plantarum 134: 313–323 – https://doi.org/10.1111/j.1399-3054.2008.01138.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2008.01138.x – (On our blog : https://plantstomata.wordpress.com/2018/11/22/adjustments-of-water-use-efficiency-by-stomatal-regulation-during-drought-and-recovery/ )

Pou A., Medrano H., Flexas J., Tyerman S. D. (2013) – A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering – Plant, Cell &Environ 36: 828–843 – doi: 10.1111/pce.12019. Epub 2012 Nov 1 – Epub 2012 Nov 1 – PMID: 23046275 –https://pubmed.ncbi.nlm.nih.gov/23046275/ – (On our blog : https://plantstomata.wordpress.com/2022/12/26/a-putative-role-for-tip-and-pip-aquaporins-in-dynamics-of-leaf-hydraulic-and-stomatal-conductances/ )

Poudel M. S. (2013) – Responses of air humidity and light quality on growth and stomata function of greenhouse grown Rosa × hybrida – Department of Plant and Environmental Sciences (IPM), Norwegian University of Life Sciences, Ås, Norway  – –https://brage.bibsys.no/xmlui/bitstream/handle/11250/189591/madhu%20sudhan%20thesis.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2018/01/10/light-quality-can-be-used-a-tool-to-improve-the-stomata-function-under-high-rh/ )

Poudel P., Kataoka I., Mochioka R. (2007) – Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes – Plant Cell Tissue and Organ Culture 92(2): 147-153 – DOI: 10.1007/s11240-007-9317-1https://www.researchgate.net/publication/225104137_Effect_of_red-_and_blue-light-emitting_diodes_on_growth_and_morphogenesis_of_grapes – (On our blog : https://plantstomata.wordpress.com/2019/04/10/red-and-blue-light-emitting-diodes-and-stomata/ )

Poudyala D., Khatria L., Uptmoora R. (2015) – An Introgression of Solanum habrochaites in the Rootstock Improves Stomatal Regulation and Leaf Area Development of Grafted Tomatoes under Drought and Low Root-Zone-Temperatures – Adv Crop Sci Tech 3(3): 175 – DOI: 10.4172/2329-8863.1000175https://www.omicsonline.org/open-access/an-introgression-of-solanum-habrochaites-in-the-rootstock-improvesstomatal-regulation-and-leaf-area-development-of-grafted-tomatoe-2329-8863-1000175.php?aid=77965 – (On our blog : https://plantstomata.wordpress.com/2020/06/08/stomatal-regulation-and-leaf-area-development-of-grafted-tomatoes-under-drought-and-low-root-zone-temperatures/ )

Poulter B., Frank D. (2015) – Rising CO2 levels are changing how fast forests cycle water – The Conversation  – http://theconversation.com/rising-co2-levels-are-changing-how-fast-forests-cycle-water-40746 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/stomata-and-rising-co2-levels/ )

Pourkhabbaz A., Rastin N., Olbrich A., Langenfeld-heyser R., Polle A. (2010) – Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L. – Bull Environ Contam Toxicol. 85(3): 251–255 – doi: 10.1007/s00128-010-0047-4https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929435/#!po=61.1111 – (On our blog : https://plantstomata.wordpress.com/2020/03/01/leaf-size-and-stomata-density-were-lower-at-the-urban-site-but-the-stomata-were-not-occluded/ )

Powles J. E., Buckley T. N., Nicotra A. B., Farquhar G. D. (2006) – Dynamics of stomatal water relations following leaf excision – Plant, Cell and Environment 29: 981–992 – doi: 10.1111/j.1365-3040.2005.01491.x – http://biology-assets.anu.edu.au/CMS/FileUploads/file/Farquhar/229PowleslfexcisionPCE2006.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/27/leaf-excision-and-dynamics-of-stomatal-water-relations/ )

Poyatos R., Llorens P., Pinol J., Rubio C. (2008) – Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate – Ann. For. Sci. 65: 306 – INRA, EDP Sciences, 2008 – DOI: 10.1051/ forest:2008003https://www.academia.edu/6673072/Response_of_Scots_pine_Pinus_sylvestris_L_and_pubescent_oak_Quercus_pubescens_Willd_to_soil_and_atmospheric_water_deficits_under_Mediterranean_mountain_climate?email_work_card=view-paper – (On our bmlog :

Pradeep T., Jambhale N. D. (2000) – Ploidy level variations for stomata, chloroplast number, pollen size and sterility in ber (Zizhyphus mauritiana Lamk) – Indian Journal of Genetics & Plant Breeding 60(4): 519-525 – https://www.cabdirect.org/cabdirect/abstract/20003011597 – (On our blog : https://plantstomata.wordpress.com/2022/02/08/ploidy-level-variations-for-stomata/ )

Prado S. A., Cabrera-Bosquet L., Grau A., Coupel-Ledru A., Millet E. J., Welcker C., Tardieu F. (2018) – Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand – Plant, Cell & Environment 41: 314–326 – DOI: 10.1111/pce.13083https://pubmed.ncbi.nlm.nih.gov/29044609/ – (On our blog : https://plantstomata.wordpress.com/2021/01/06/approach-contributing-to-genetic-analysis-and-prediction-of-stomatal-control-in-diverse-environments/ )

Prakash J. (2019) – Dust Deposition Due to Anthropogenic Activities Induces Epidermal Changes in Leaves of Cassia Fistula Growing Near the Road Side of Rewa City – International Journal of Recent Scientific Research 10(06)(F): 33094-33097 – doi: 10.24327/ijrsr.2019.1006.3604https://www.recentscientific.com/sites/default/files/13797-A-2019.pdf – (On our blog : https://plantstomata.wordpress.com/2022/05/14/stomatal-adaptations-to-survive-under-stressed-conditions-of-air-pollution/ )

Prakash P. T., Banan D., Paul R. E., Feldman M. J., Xie D., Freyfogle L., Baxter I., Leakey A. D. B. (2021) – Correlation and co-localization of QTL for stomatal density, canopy temperature and productivity with and without drought stress in Setaria – Journal of Experimental Botany erab166 – https://doi.org/10.1093/jxb/erab166https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erab166/6249543 – (On our blog : https://plantstomata.wordpress.com/2021/05/01/multiple-qtls-were-identified-for-stomatal-density/ )

Praksh G., Kumar V. (1995) – Stomatal study on defence organs by conservation facsimile method – J. Indian Bot. Soc.74: 263-268 –

Prasad M. B. N. V., Rekha A. (1996) – Genetic analysis of stomatal density and leaf area in acid lime (Citrus aurantifolia Swing.) – Indian J. Genet. 56(1): 21-26 – https://www.isgpb.org/documents/archive/ijgpb-56-1-006.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/14/stomatal-density-in-acid-lime/ )

Prasad T., Sashidhar V. R., Chari M., Rao S., Devendra R., Kumar M. U. (1985) – Regulation of water loss under moisture stress in sunflower genotypes: stomatal sensitivity in relation to stomatal frequency, diffusive resistances and transpiration rate, at different canopy positions – The Journal of Agricultural Science 105: 673-678 – https://www.semanticscholar.org/paper/Regulation-of-water-loss-under-moisture-stress-in-Prasad-Sashidhar/6be0f130696e785a9107777e6d1e43476adda976#paper-header – (On our blog : https://plantstomata.wordpress.com/2021/09/05/stomatal-sensitivity-in-relation-to-stomatal-frequency-diffusive-resistances-and-transpiration-rate-at-different-canopy-positions/ )

Prasch C. M., Ott K. V., Bauer H., Ache P., Hedrich R. Sonnewald U. (2015) – ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells – Journal of Experimental Botany 66(19): 6059–6067 – doi:10.1093/jxb/erv323https://pdfs.semanticscholar.org/cc94/ca6e1936e6e7c30c204aaa4dda0c54f16b6c.pdf?_ga=2.118481921.980830136.1611395627-828366126.1607691538 – (On our blog : https://plantstomata.wordpress.com/2021/01/23/regulation-of-stomata-specific-starch-turnover-is-important-for-adapting-stomata-opening-to-environmental-needs/ )

Prats E., Carver T. L. W., Gay A. P., Mur L. A. J. (2007) – Enemy at the Gates, Interaction-Specific Stomatal Responses to Pathogenic Challenge – Plant Signaling & Behavior 2(4): 275-277 – https://doi.org/10.4161/psb.2.4.4153https://www.tandfonline.com/doi/full/10.4161/psb.2.4.4153 – (On our blog : https://plantstomata.wordpress.com/2020/12/20/stomata-become-locked-open-following-powdery-mildew-attack-and-locked-shut-following-rust-attack/ )

Prats E., Gay A. P., Mur L. A. J., Thomas B. J., Carver T. L. W. (2006) – Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis – J Exp Bot 57: 2211-2226 – DOI: 10.1093/jxb/erj186https://pubmed.ncbi.nlm.nih.gov/16793847/ – (On our blog : https://plantstomata.wordpress.com/2020/12/20/the-influence-of-epidermal-cell-death-was-localized-and-only-affected-stomata-within-one-or-two-cells-distance/ )

Prats E., Gay A. P., Roberts P. C., Thomas B. J., Sanderson R., Paveley N., Lyngkjaer M. F., Carver T. L., Mur L. A. J. (2010)Blumeria graminis interactions with barley conditioned by different single R genes demonstrate a temporal and spatial relationship between stomatal dysfunction and cell death – Phytopathology 100(1): 21-32 – doi: 10.1094/PHYTO-100-1-0021 – PMID: 19968546 – https://pubmed.ncbi.nlm.nih.gov/19968546/ – (On our blog : https://plantstomata.wordpress.com/2020/12/20/data-link-stomatal-lock-up-to-hr-associated-cell-death-and-has-implications-for-strategies-for-selecting-disease-resistant-genotypes/ )

Prats K. A., Brodersen C. R., Ashton M. S. (2019) – Influence of dry season on Quercus suber L. leaf traits in the Iberian Peninsula – American Journal of Botany 106(5) – https://doi.org/10.1002/ajb2.1280https://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/ajb2.1280?af=R – (On our blog : https://plantstomata.wordpress.com/2019/10/09/influence-of-dry-season-on-stomatal-traits/ )

Predovich S. (2012) – Stomata Density of Orchids and Cloud Forest Humidity – Oregon Undergraduate Research Journal – 3.1 (2012) ISSN: 2160-617X (online) – DOI: 10.5399/uo/ourj.3.1.2386 – 2386-5866-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/25/orchids-closed-their-stomata-in-drier-conditions-in-order-to-reduce-water-loss-and-desiccation/ )

Price A. H., Cairns J. E., Horton P., Jones H. G., Griffiths H. (2002) – Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses – J Exp Bot 53: 989–1004 – https://doi.org/10.1093/jexbot/53.371.989 –https://academic.oup.com/jxb/article/53/371/989/509255 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/linking-drought-resistance-mechanisms-to-drought-avoidance-new-opportunities-to-integrate-stomatal-and-mesophyll-responses/ )

Price A. H, Young E. M., Tomos A. D. (1997)  – Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa) – New Phytologist 137: 83–91 – https://doi.org/10.1046/j.1469-8137.1997.00818.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.1997.00818.x – (On our blog : https://plantstomata.wordpress.com/2019/02/06/quantitative-trait-loci-associated-with-stomatal-conductance/ )

Price D. T., Black T. A., Kelliher F. M. (1986) – Effects of salal understory removal on photosynthetic rate and stomatal conductance of young Douglas-fir trees – Canadian Journal of Forest Research 16(1): 90-97 – https://doi.org/10.1139/x86-015https://www.nrcresearchpress.com/doi/10.1139/x86-015 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/tree-growth-response-to-salal-removal-was-due-to-higher-soil-water-potential-which-increased-stomatal-conductance/ )

Priddy S. (2016) – Stomata: Tree Breath – The Blog – http://www.kibi.org/stomata-tree-breath/ – (On our blog : https://plantstomata.wordpress.com/2018/01/11/video-the-earth-has-lungs-watch-them-breathe/ )

Pridgeon A. J. (2021) – Investigating Stomatal Responses to Darkness – PhD Thesis School of Biological Sciences, Bristol Doctoral College – https://research-information.bris.ac.uk/en/studentTheses/investigating-stomatal-responses-to-darkness – (On our blog : https://plantstomata.wordpress.com/2022/05/28/a-role-for-pkg-in-dark-induced-stomatal-closure-furthermore-suggesting-a-role-for-cgmp-signalling-in-this-process/ )

Pridgeon A. J., Hetherington A. M. (2021) – ABA signalling and metabolism are not essential for dark-induced stomatal closure but affect response speed – Sci Rep 115751 – https://doi.org/10.1038/s41598-021-84911-5https://www.nature.com/articles/s41598-021-84911-5#citeas – (On our blog : https://plantstomata.wordpress.com/2021/05/11/the-role-of-aba-signalling-and-metabolic-pathways-as-potential-targets-for-enhancing-stomatal-movement-kinetics/ )

Prieto J. A., Lebon E., Ojeda H. (2010) – Stomatal behavior of different grapevine cultivars in responses to soil water status and air water vapor pressure deficit – Journal International des Sciences de la Vigne et du Vin 44: 9–20 –

Prino S., Spanna F., Cassardo C. (2009) – Verification of the stomatal conductance of Nebbiolo grapevine – Journal of Chongqing University (English Edition) [ISSN 1671-8224] – 8(1): 17-24 – http://hdl.handle.net/2318/96184https://iris.unito.it/retrieve/handle/2318/96184/15282/2009_Verification_of_the_stomatal_conductance_of_Nebbiolo_grapevine.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/24/verification-of-the-stomatal-conductance/ )

Prior L. D., Eamus D., Duff G. A. (1997) – Seasonal and diurnal patterns of carbon assimilation, stomatal conductance and leaf water potential in Eucalyptus tetrodonta saplings in a wet–dry savanna in northern Australia – Aust. J. Bot. 42: 26–32 – https://doi.org/10.1071/BT9601http://www.publish.csiro.au/bt/BT96017 – (On our blog : https://plantstomata.wordpress.com/2019/03/24/seasonal-and-diurnal-patterns-of-carbon-assimilation-stomatal-conductance-and-leaf-water-potential-in-a-wet-dry-savanna/ )

Prior L. D., Eamus D., Duff G. A. (1997) – Seasonal trends in carbon assimilation, stomatal conductance, pre-dawn leaf water potential and growth in Terminalia ferdinandiana, a deciduous tree of northern Australian Savannas – Aust. J. Bot. 45(1): 53–69 – doi: 10.1071/BT96065https://www.publish.csiro.au/bt/BT96065 (On our blog : https://plantstomata.wordpress.com/2021/04/16/seasonal-trends-in-assimilation-could-be-attributed-primarily-to-stomatal-closure-but-diurnal-differences-could-not/ )

Prioul J. L., Cornic G., Jones H. G. (1984) – Discussion of stomatal and nonstomatal components in leaf photosynthesis decline under stress conditions. In Sybesma, ed, Advances in Photosynthesis Research IV. Martinus Nijhoff/ W. Junk, The Hague, 375-378 –

Prodhan M. Y., Issak M., Nakamura T., Munemasa S., Nakamura Y., Murata Y. (2017) – Chitosan signaling in guard cells requires endogenous salicylic acid – Biosci. Biotechnol. Biochem. 81: 1536–1541 – https://doi.org/10.1080/09168451.2017.1332979https://www.tandfonline.com/doi/full/10.1080/09168451.2017.1332979 – (On our blog : https://plantstomata.wordpress.com/2020/04/12/endogenous-sa-is-a-crucial-element-in-cht-induced-stomatal-closure/ )

Prodhan Y., Munemasa S., Nahar N.-E- N., Nakamura Y., Murata Y. (2018) – Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca2+/CPK-Dependent Pathway – Plant Physiology – https://doi.org/10.1104/pp.18.00321 – http://www.plantphysiol.org/content/178/1/441 – (On our blog : https://plantstomata.wordpress.com/2018/09/10/guard-cell-salicylic-acid-signaling-is-integrated-into-aba-signaling-in-stomata/ )

Prokic L., Jovanovic Z., McAinsh M. R., Vucinic Z., Stikic R. (2006) – Species- dependent changes in stomatal sensitivity to abscisic acid mediated by external pH – J. Exp. Bot. 57: 675–683 – doi: 10.1093/jxb/erj057 – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erj057 – (On our blog : https://plantstomata.wordpress.com/2017/03/01/species-and-stomatal-sensitivity-to-aba/ )

Prytz G., Futsaether C. M., Johnsson A. (2003) – Thermography studies of the spatial and temporal variability in stomatal conductance of Avena leaves during stable and oscillatory transpiration – New Phytologist 158(2): – https://doi.org/10.1046/j.1469-8137.2003.00741.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.1469-8137.2003.00741.x – (On our blog : https://plantstomata.wordpress.com/2019/04/03/spatial-and-temporal-variability-in-stomatal-conductance-during-stable-and-oscillatory-transpiration/ )

Przywara L., Pandey K. K., Sanders P. M. (1988) – Length of stomata as an indicator of ploidy level in Actinidia deliciosa – New Zealand Journal of Botany 26(2): 179-182 – DOI: 10.1080/0028825X.1988.10410110https://www.researchgate.net/publication/254280214_Length_of_stomata_as_an_indicator_of_ploidy_level_in_Actinidia_deliciosa – (On our blog : https://plantstomata.wordpress.com/2019/03/30/measurement-of-stomata-length-is-a-rapid-technique-for-identifying-ploidy-level-in-kiwifruit/ )

Pudjiwati E. H., Kuswanto K., Bassuki N., Sugiharto A. N. (2013) – Path analysis of some leaf characters related to downy mildew resistance in maize – Agrivita 35(2): 167 – https://agrivita.ub.ac.id/index.php/agrivita/article/view/222/545 – (On our blog : https://plantstomata.wordpress.com/2022/09/06/effective-selection-criteria-for-resistance-to-downy-mildew-are-trichome-density-and-stomata-density/ )

Puli M. R., Raghavendra A. S. (2012) – Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cells in abaxial epidermis of Pisum sativum – J. Exp. Bot. 63:  1349–1356 – doi: 10.1093/jxb/err364 – https://www.ncbi.nlm.nih.gov/pubmed/22131162 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/pyrabactin-to-examine-the-aba-related-signal-transduction-components-in-stomatal-guard-cells/ )

Punthakey J. F., McFarland M. J., Worthington J. W. (1984) – Stomatal responses to leaf water potentials of drip irrigated peach (Prunus persica) – Trans. ASAE 27: 1442-1450 – doi: 10.13031/2013.32985https://elibrary.asabe.org/abstract.asp?aid=32985 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-responses-to-leaf-water-potentials/ )

Puli M. R., Rajsheel P., Aswani V., Agurla S., Kuchitsu K., Raghavendra A. S. (2016) – Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum – Planta 244: 831–841 – doi: 10.1007/s00425-016-2545-z https://www.ncbi.nlm.nih.gov/pubmed/27233507 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/stomatal-closure-induced-by-phyto-s1p-and-s1p-depends-on-rise-in-ph-as-well-as-no-of-guard-cells/ )

Purcell C., Batke S., Yiotis C., Caballero R., Soh W. K., Murray M., McElwain J. C. (2018) – Increasing stomatal conductance in response to rising atmospheric CO2 – Annals of Botany 121(6): 1137-1149 – https://doi.org/10.1093/aob/mcx208 – https://doi.org/10.1093/aob/mcy023 -, https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcx208/4823760?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-conductance-and-rising-atmospheric-co2/ )

Purohit S., Kumar G. P., Laloraya M., Laloraya M. M. (1994) – Involvement of superoxide radical in signal transduction regulation stomatal movements – Biochem Biophys Res Commun 205: 30–37 – DOI: 10.1006/bbrc.1994.2625 – https://www.ncbi.nlm.nih.gov/pubmed/7999040?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/05/stomatal-movements-regulated-by-blue-light-activated-redox-reactions/ )

Putarjunan A., Ruble J., Srivastava A., Zhao C., Rychel A. L., Hofstetter A. K., Tang X., Zhu J.-K., Tama F., Zheng N., Torii K. U. (2019) – Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP Kinases to SPEECHLESS – bioRxiv – https://doi.org/10.1101/587154 – // Nature Plants, DOI: 10.1038/s41477-019-0440-xhttps://www.biorxiv.org/content/10.1101/587154v1 // https://en.nagoya-u.ac.jp/research/activities/news/2019/08/speechless-scream-and-stomata-1.html – (On our blog : https://plantstomata.wordpress.com/2019/04/05/bipartite-anchoring-of-scream-enforces-stomatal-initiation-by-coupling-map-kinases-to-speechless/ )

Putarjunan A., Torii K. U. (2016) – Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals – Develop, Growth & Diff 58: 341-354 – PMID: 27125444 – DOI: 10.1111/dgd.12282https://pubmed.ncbi.nlm.nih.gov/27125444/ – (On our blog : https://plantstomata.wordpress.com/2022/01/30/signaling-components-that-function-to-precisely-regulate-key-cell-state-transition-events-in-the-stomatal-as-well-as-myogenic-cell-lineages/ )

Putarjunan A., Torii K. U. (2020) – Heat Shocking the Jedi Master: HSP90’s Role in Regulating Stomatal Cell Fate – Molecular Plant 13(4): 536-538 – https://doi.org/10.1016/j.molp.2020.03.001https://www.cell.com/molecular-plant/fulltext/S1674-2052(20)30063-0 – (On our blog : https://plantstomata.wordpress.com/2022/01/12/stomata-and-temperature-fluctuations/ )

Putra E.T.S., Zakaria W., Abdullah N.A.P., Saleh G. B. (2012) – Stomatal Morphology, Conductance and Transpiration of Musa sp. cv. Rastali in Relation to Magnesium, Boron and Silicon Availability – American Journal of Plant Physiology 7( 2): 84-96 – DOI: 10.3923/ajpp.2012.84.9 – http://docsdrive.com/pdfs/academicjournals/ajpp/2012/84-96.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/06/linear-relationships-between-stomatal-width-stomatal-conductance-and-transpiration-rate/ )

Pyakurel A., Wang J. (2014)  Leaf Morphological and Stomatal Variations in Paper Birch Populations along Environmental Gradients in Canada – American Journal of Plant Sciences 5: 1508-1520 – doi: 10.4236/ajps.2014.511166 – http://www.scirp.org/journal/PaperInformation.aspx?PaperID=45954#.VR6cL5OUe6E – (On our blog : https://plantstomata.wordpress.com/2017/03/01/35120/ )

Przywara L., Pandey K. K., Sanders P. M. (1988) – Length of stomata as an
indicator of ploidy level in Actinidia deliciosa – New Zealand Journal
of Botany 26: 179-182; –

Quero J. L., Sterck F. J., Martínez-Vilalta J., Villar R. (2011) – Water-use strategies of six co-existing Mediterranean woody species during a summer drought – Oecologia 166(1): 45-57 – doi: 10.1007/s00442-011-1922-3https://pubmed.ncbi.nlm.nih.gov/21290148/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/102964 )

Qi H. Y., Liu Y., Liu H. T. (2009) – Effect of water deficit on stomatal characteristics and ultrastructure of chloroplast in tomato leaves – Acta Botanica Boreali-Occidentalia Sinica 29(1): 9-15 – https://www.cabdirect.org/cabdirect/abstract/20093059522 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/effect-of-water-deficit-on-stomatal-characteristics-and-ultrastructure-of-chloroplast/ )

Qi J., Song C.-P., Wang B., Zhou J., Kangasjarvi J., Zhu J.-K., Gong Z. (2018) – Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack – Journal of Integrative Plant Biology 60(9): 805-826 – ISSN 1672-9072 – https://doi.org/10.1111/jipb.12654https://researchportal.helsinki.fi/en/publications/reactive-oxygen-species-signaling-and-stomatal-movement-in-plant- (On our blog : https://plantstomata.wordpress.com/2020/04/08/stomatal-movement-in-plant-responses-to-drought-stress-and-pathogen-attack/ )

Qi S.-L., Lin Q.-F., Feng X.-J., Han H.-L., Liu J., Zhang L., Wu S., Le J., Blumwald E., Hua X.-J. (2019) – IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis – Plant Biotechnology Journal 17: 1446–1457 – doi: 10.1111/pbi.13070http://www.klpmp.net/Uploads/Picture/2019-07-02/5d1aa974221aa.pdf – (On our blog : https://plantstomata.wordpress.com/2019/11/29/idd16-negatively-regulates-stomatal-initiation-via-trans-repression-of-spch/ )

Qi X., Han S.-K., Dang J. H., Garrick J. M., Ito M., Hofstetter A. K., Torii K. U. (2017) – Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling – Plant Biology, Developmental Biology – https://doi.org/10.7554/eLife.24102.001https://elifesciences.org/articles/24102 – (On our blog : https://plantstomata.wordpress.com/2020/09/10/self-inhibition-as-a-mechanism-for-ensuring-proper-stomatal-development/ )

Qi X., Torii K. U. (2018) – Hormonal and environmental signals guiding stomatal development – BMC Biology 16: 21 – https://doi.org/10.1186/s12915-018-0488-5 – https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0488-5 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71422 )

Qi X., Yoshinari A., Bai P., Maes M., Zeng S. M., Torii K. U. (2020) – The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate – Plant Biology – DOI: 10.7554/eLife.58097https://elifesciences.org/articles/58097 – (On our blog : https://plantstomata.wordpress.com/2021/02/03/multiple-related-yet-unique-peptides-specify-stomatal-cell-fate/ )

Qi Y., Chen L., Zhou W., An Y., Luo T., Wu Z., Wang Y., Xi Y., Yan L., Hou S. (2020)RSD1 Is Essential for Stomatal Patterning and Files in Rice – Front. Plant Sci., 30 November 2020 – https://doi.org/10.3389/fpls.2020.600021https://www.frontiersin.org/articles/10.3389/fpls.2020.600021/full – (On our blog : https://plantstomata.wordpress.com/2021/01/22/ossdd1-and-rsd1-are-both-required-for-inhibiting-ectopic-asymmetric-cell-divisions-acds-and-clustered-stomata/ )

Qi Z., Pi E., Zhang X., Möller M., Jiang B., Lu H. (2017) – Ontogenesis of D-type stomata and cork-warts on the leaf epidermis of Camellia japonica (Theaceae) and functional assessment – Flora 228: 24-30 – https://doi.org/10.1016/j.flora.2017.01.010 – https://www.sciencedirect.com/science/article/pii/S0367253017310174 – (On our blog : https://plantstomata.wordpress.com/2018/08/28/d-type-stomata-and-cork-warts-are-responsible-for-air-exchange-and-water-evaporation/

Qian D., Zhang Z., He J., Zhang P., Ou X., Li T., Niu L., Nan Q., Niu Y., He W., An L., Jiang K., Xiang Y. (2019) – Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress – Journal of Experimental Botany 70(2): 435–446 – https://doi.org/10.1093/jxb/ery385https://academic.oup.com/jxb/article/70/2/435/5205811?login=true – (On our blog : https://plantstomata.wordpress.com/2021/12/04/adf5-participates-in-drought-stress-by-regulating-stomatal-closure/ )

Qian P., Han B., Forestier E., Hu Z., Gao N., Lu W., Schaller H., Li J., Hou S. (2013) – Sterols are required for cell-fate commitment and maintenance of the stomatal lineage in Arabidopsis – Plant J. 74(6): 1029-1044 – doi: 10.1111/tpj.12190 – Epub 2013 Apr 27 – https://pubmed.ncbi.nlm.nih.gov/23551583/ – (On our blog : https://plantstomata.wordpress.com/2022/04/20/sterols-are-required-to-properly-restrict-cell-proliferation-asymmetric-fate-specification-cell-fate-commitment-and-maintenance-in-the-stomatal-lineage-cells/ )

Qian P., Song W., Yokoo T., Minobe A., Wang G., Ishida T., Sawa S., Chai J., Kakimoto T. (2018) – The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors – Nature Plants 4: 1071-1081 – https://www.nature.com/articles/s41477-018-0317-4 – (On our blog : https://plantstomata.wordpress.com/2018/12/10/the-cle9-10-secretory-peptide-regulates-stomatal-and-vascular-development-through-distinct-receptors/ ) See also : https://www.nature.com/articles/s41477-018-0347-y.

Qiang W. Y., Wang X. I., Chen T., Feng H. Y., An L. Z., Wang G. (2003) – Variations of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian mountains – Trees 17: 258–262 – https://doi.org/10.1007/s00468-002-0235-xhttps://link.springer.com/article/10.1007/s00468-002-0235-x#citeas – (On our blog : https://plantstomata.wordpress.com/2022/12/26/the-influence-of-altitude-on-plant-physiological-ecology-and-the-relationship-of-stomatal-density-with-%ce%b413c-value-or-atmospheric-co2-concentration/ )

Qin L., Tang L.-h., Xu J.-s., Zhang X.-h., Zhu Y., Zhang C.-r., Liu X.-l., Wang M.-h., Li F., Sun F., Su M., Zhai Y.-j., Chen Y.-h. (2021) – Molecular basis for the R-type anion channel QUAC1 activity in guard cells – bioRxiv – https://doi.org/10.1101/2021.09.09.459598https://www.biorxiv.org/content/10.1101/2021.09.09.459598v1 – (On our blog : https://plantstomata.wordpress.com/2022/03/30/the-molecular-basis-for-a-novel-class-of-anion-channels-and-insights-into-the-gating-and-modulation-of-the-r-type-anion-channel-in-stomatal-guard-cells/ )

Qin X., Rotino L. (1995) – Chloroplast number in guard cellsas ploidy indicator of in vitro-grown androgenic pepper plantlets – Plant Cell Tissue Org Cult 41(2): 145–149 – https://doi.org/10.1007/BF00051583https://link.springer.com/article/10.1007/BF00051583#citeas – (On our blog : https://plantstomata.wordpress.com/2022/12/26/chloroplast-numbers-in-stomatal-guard-cells-as-ploidy-indicator/ )

Qin X.-M., Bian M.-D., Yang Z.-M., Shi W.-L. (2015) – Tyrosine phosphorylation mediates starch metabolism in guard cell of Vicia faba – Published Online: 2015-06-23 – https://doi.org/10.1515/biolog-2015-0068 – https://www.degruyter.com/view/j/biolog.2015.70.issue-5/biolog-2015-0068/biolog-2015-0068.xml – (On our blog : https://plantstomata.wordpress.com/2018/01/19/tyrosine-phosphorylation-may-modulate-starch-degradation-in-guard-cells-and-regulate-the-stomatal-movement/ )

Qiu Q., Li Z., Hu W., Wu L. (1999) – A study on the stomata mutation of peanut leaves and its relationship with drought resistance – International Nuclear Information System (INIS) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html – (On our blog : https://plantstomata.wordpress.com/2022/03/06/irradiation-was-able-to-cause-peanut-leaf-stomata-to-mutate/ )

Qiu D.-L., Lin P., Guo S. Z. (2007) – Effects of salinity on leaf characteristics and CO2/H2O exchange of Kandelia candel (L.) Druce seedlings – Journ. Forest Science 53(1): 13-19 – https://www.agriculturejournals.cz/publicFiles/00034.pdf – (On our blog : https://plantstomata.wordpress.com/2021/02/20/net-photosynthetic-rate-pn-stomatal-conductance-cs-and-transpiration-rate-tr-were-reduced-with-the-increase-of-salinity/ )

Qu M., Hamdani S., Bunce J. A. (2016) – The physiology and genetics of stomatal adjustment under fluctuating and stressed environments, Applied Photosynthesis – New Progress, Mohammad Mahdi Najafpour, IntechOpen – DOI: 10.5772/62223 https://www.intechopen.com/books/applied-photosynthesis-new-progress/the-physiology-and-genetics-of-stomatal-adjustment-under-fluctuating-and-stressed-environments – (On our blog : https://plantstomata.wordpress.com/2019/04/15/stomatal-adjustment-under-fluctuating-and-stressed-environments/ )

Qu M., Hamdani S., Li W., Wang S., Tang J., Chen Z., Song Q., Li M., Zhao H., Chang T., Zhu X. (2016) – Rapid stomatal response to fluctuating light: an under-explored mechanism to improve drought tolerance in rice – Funct. Plant Biol. 43: 727–738 – https://doi.org/10.1071/FP15348http://www.publish.csiro.au/fp/FP15348 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/stomatal-dynamics-under-fluctuating-light-is-closely-related-to-drought-resistance-2/ )

Qu X., Cao B., Kang J., Wang X., Han X., Jiang W., Shi X., Zhang L., Cui L., Hu Z., Zhang Y., Wang G. (2019) – Fine-Tuning Stomatal Movement Through Small Signaling Peptides – Front. Plant Sci. – https://doi.org/10.3389/fpls.2019.00069 –https://www.frontiersin.org/articles/10.3389/fpls.2019.00069/full – (On our blog : https://plantstomata.wordpress.com/2019/02/09/future-challenges-to-decipher-peptide-signaling-pathways-in-guard-cells/ )

Qu X., Peterson K. M., Torii K. U. (2017) – Stomatal development in time: the past and the future – Curr. Opin. Genet. Dev. 45: 1–9 – DOI: 10.1016/j.gde.2017.02.001 – https://www.sciencedirect.com/science/article/pii/S0959437X16302118 – (On our blog  : https://plantstomata.wordpress.com/2018/12/14/the-past-and-the-future-of-stomatal-development-2/)

Qu Y., An Z., Zhuang B.$, Jing W., Zhang Q., Zhang W. (2014) – Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis – J. Plant Res. 127: 533–544 – https://doi.org/10.1007/s10265-014-0633-3https://link.springer.com/article/10.1007%2Fs10265-014-0633-3#citeas – (On our blog : https://plantstomata.wordpress.com/2019/07/09/cuao-and-pld-act-independently-in-aba-induced-stomatal-closure/ )

Qu Y., Song P., Hu Y., Jin X., Jia Q., Zhang X., . . . Zhang Q. (2018) – Regulation ofstomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis – Plant Growth Regulation 84(3): 467-479 – doi:10.1007/s10725-017-0353-5https://link.springer.com/article/10.1007/s10725-017-0353-5 – (On our blog : https://plantstomata.wordpress.com/2022/12/27/a-balanced-reorganization-of-microtubules-fulfills-fundamental-functions-to-enable-the-fast-change-of-stomata-in-plant-adaptive-responses/ )

Quarrie S. A., Jones H. G. (1979) – Genotypic variation in leaf water potential, stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress – Ann. Bot. 44: 323-332 – https://doi.org/10.1093/oxfordjournals.aob.a085736https://academic.oup.com/aob/article-abstract/44/3/323/154206?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2021/08/27/genotypic-variation-in-leaf-water-potential-stomatal-conductance-and-abscisic-acid-concentration/ )

Xue C., Li S., Hu D. (2022) – Stomatal dynamics: a modeling study revisiting miscellaneous experimental phenomena – Authorea November 15, 2022 – DOI: 10.22541/au.166852604.48579873/v1https://www.authorea.com/users/522640/articles/595029-stomatal-dynamics-a-modeling-study-revisiting-miscellaneous-experimental-phenomena?commit=336225717c17e7bd5c3704cf240dbc5410c50fd0 – (On our blog : https://plantstomata.wordpress.com/2023/01/22/model-to-reproduce-different-experimental-phenomena-semi-and-stomatal-responses-to-environment-conditions/ )

Queiroz C. R. A. dos Anjos, Feliciano N. D., Andrade R. De, Morais S. A. L. De, Pavani L. C. (2020) – Intermittent water deficit in soil and micromorphology of the Ora-pro-nóbis leaf epidermis – Horticulture International Journal 4(6): 242-246 – DOI: 10.15406/hij.2020.04.00190https://medcraveonline.com/HIJ/HIJ-04-00190.pdf – (On our blog : https://plantstomata.wordpress.com/2022/04/18/to-quantify-the-epidermal-and-stomatal-cells-on-leaves-of-ora-pro-nobis-plants-pereskia-aculeata-mill-subjected-to-growing-intermittent-water-deficits-in-soil/ )

Quijada M. (1987) – Determinacion de la limitacion estomatico relativa de la fotosintesis durante el stress hidrico en Jatropha gossypifolia L. (Euphorbiaceae) – Tesis de Maestria, Universidad Central de Venezuela, Caracas –

Quiñones M. A., Lu Z., Zeiger E. (1992) – Pigment content and responses to light quality in isolated adaxial and abaxial stomata from cotton Gossypium barbadense L. leaves – Plant Physiology 99(1 Suppl.): 27 – https://eurekamag.com/research/032/827/032827223.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/pigment-content-and-responses-to-light-quality-in-isolated-adaxial-and-abaxial-stomata/ )

Quiñones M. A., Lu Z., Zeiger E. (1996) – Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism – PNAS 93(5): 2224-2228 – https://doi.org/10.1073/pnas.93.5.2224https://www.pnas.org/content/93/5/2224.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Proc_Natl_Acad_Sci_U_S_A_TrendMD_1 (On our blog : https://plantstomata.wordpress.com/2018/12/11/the-stomatal-guard-cell-and-coleoptile-chloroplasts-specialize-in-sensory-transduction/ )  

Quintana J. M., Harrison H. C., Palta J. P., Nianhuis J., Kmiecik K., Miglioranza E. (2001) – Stomatal Density and Calcium Concentration of Six Snap Bean Cultivars – J. AMER. SOC. HORT. SCI. 126(1):110–114 – file:///C:/Users/wille/Downloads/[23279788%20-%20Journal%20of%20the%20American%20Society%20for%20Horticultural%20Science]%20Stomatal%20Density%20and%20Calcium%20Concentration%20of%20Six%20Snap%20Bean%20Cultivars.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/07/97010/ )

Raczka B., Duarte H. F., Koven C. D., Ricciuto D., Thornton P. E., Lin J. C., Bowling D. R. (2016) – An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5) – Biogeosciences 13(18): 5183-5204 – https://doi.org/10.5194/bg-13-5183-2016 – https://www.biogeosciences.net/13/5183/2016/ – (On our blog : https://plantstomata.wordpress.com/2017/11/24/isotope-observations-can-provide-important-information-related-to-stomatal-function/ )

Radin J. W. (1981) – Water relations of cotton plants under nitrogen deficiency – III. Stomatal conductance, photosynthesis, and abscisic acid accumulation during drought – Plant Physiol 67: 115-119 – PMID: 16661608 – PMCID: PMC425632 -https://www.ncbi.nlm.nih.gov/pubmed/16661608 –  (On our blog : https://plantstomata.wordpress.com/2018/11/30/stomatal-conductance-photosynthesis-and-aba-accumulation-during-drought/

Radin J. W.  (1984) – Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants – Plant Physiol 76:392–394 -doi: http://dx.doi.org/10.1104/pp.76.2.392 – PubMedCentralPubMedCrossRef – http://www.plantphysiol.org/content/76/2/392 – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-aba-and-cytokinins/ )

Radin J. W., Ackerson R. C. (1981) – Water relations of cotton plants under nitrogen deficiency. – III. Stomatal Conductance, Photosynthesis, and Abscisic Acid Accumulation during Drought – Plant Physiol. 67: 115-119 – https://www.jstor.org/stable/4266597?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-conductance-photosynthesis-and-aba-accumulation-during-drought-2/ )

Radin J. W., Hendrix D. L. (1988) – The apoplastic pool of abscisic acid in cotton leaves in relation to stomatal closure – Planta 174: 180–186 – https://doi.org/10.1007/BF00394770https://link.springer.com/article/10.1007/BF00394770 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/the-apoplastic-pool-of-aba-in-relation-to-stomatal-closure-2/ )

Radin J. W., Lu Z., Percy R. G., Zeiger E. (1994) – Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation – Proc. Natl. Acad. Sci. U.S.A. 91: 7217–7221 –  https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=11607487 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/genetic-variability-for-stomatal-conductance-and-temperature/ )

Radin J. W., Mauney J. R., Guinn G. (1985) – Effects of N Fertility on Plant Water Relations and Stomatal Responses to Water Stress in Irrigated Cotton – Crop Science 25: 110-114 – https://pubag.nal.usda.gov/download/15086/PDF – (On our blog : https://plantstomata.wordpress.com/2021/08/25/n-fertility-plant-water-relations-and-stomatal-responses/ )

Radin J. W., Parker L. L. (1979) – Water relations of cotton plants under nitrogen deficiency. I. Dependence upon leaf structure – Plant Physiol 64: 495-498 – PMID: 16660996 PMCID: PMC543121 – https://www.ncbi.nlm.nih.gov/pubmed/16660996 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/in-n-deficient-plants-leaf-areas-and-leaf-epidermal-cells-are-smaller-than-at-the-same-nodes-in-high-n-plants/ )

Radin J. W., Parker L. L. (1979) – Water relations of cotton plants under nitrogen deficiency. – II. Environmental interactions on stomata – Plant Physiol 64: 499- 501 – https://www.jstor.org/stable/4265937?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-behavior-may-impart-a-stress-avoidance-type-of-drought-resistance-to-n-deficient-plants/ )

Radin J. W., Parker L. L., Guinn G. (1982) – Water relations of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid – Plant Physiol 70: 1066–1070 – PMCID: PMC1065826 – PMID: 16662614 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065826/ – (On our blog : https://plantstomata.wordpress.com/2018/11/22/environmental-control-of-aba-accumulation-and-stomatal-sensitivity-to-aba-2/

Radoglou K. M., Aphalo P. J., Jarvis P. G. (1992) – Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. – Annals of Botany 70,257–264. –http://aob.oxfordjournals.org/content/70/3/257.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-conductance-elevated-co2-and-nutrient-supply/ )

Raghavendra A. S. (1981) – Energy supply for stomatal opening in epidermal strips of Commelina benghalensis – Plant Physiol 67: 385-387 – DOI: https://doi.org/10.1104/pp.67.2.385http://www.plantphysiol.org/content/67/2/385 – (On our blog : https://plantstomata.wordpress.com/2021/03/17/oxidative-phosphorylation-is-a-basic-source-of-energy-for-stomatal-opening-2/ )

Raghavendra A. S. (1990) – Blue light effects on stomata are mediated by the guard cell plasma membrane redox system distinct from the proton translocating ATPase – Plant Cell Environ. 13: 105–110 – https://doi.org/10.1111/j.1365-3040.1990.tb01282.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1990.tb01282.x – (On our blog : https://plantstomata.wordpress.com/2018/12/23/blue-light-effects-on-stomata-are-mediated-by-the-guard-cell-plasma-membrane-redox-system/ )

Raghavendra A.S., Bhaskar Reddy K. (1987) – Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate – Plant Physiol. 83: 732-734, 1987. –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1056439/ – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-proline-aba-g-substances-and-methyl-jasmonate/ )

Raghavendra A. S., Das V. S. R. (1972) – Control of stomatal opening by cyclic photophosphorylation – Curr. Sci. 41: 150-151 –

Raghavendra A. S., Gonugunta V. K., Christmann A., Grill E. (2010) – ABA perception and signaling. – Trends Plant Sci. 15: 395–401 – doi: 10.1016/j.tplants.2010.04.006 – https://www.ncbi.nlm.nih.gov/pubmed/20493758 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/aba-perception-and-signaling/ )

Raghavendra A. S., Murata Y. eds. (2017) – Editorial: Signal Transduction in Stomatal Guard Cells – Front. Plant Sci. 8: 114 – doi: 10.3389/fpls.2017.00114 – 9782889451678.PDF – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/247 )

Raghavendra A. S., Rao I. M., Das V. S. R. (1976) – Characterization of abscisic acid inhibition of stomatal opening in isolated epidermal strips – Plant Sci. Lett. 6: 111–115 – doi: 10.1016/0304-4211(76)90144-9 –  http://www.sciencedirect.com/science/article/pii/0304421176901449?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2017/03/03/aba-inhibition-of-stomatal-opening-in-isolated-epidermal-strips/ )

Raghavendra A. S., Rao I. M., Das V. S. R. (1976) – Shrinkage of guard cell chloroplasts in relation to stomatal opening in Commelina benghalensis – Ann. Bot. 40: 899-901 – https://doi.org/10.1093/oxfordjournals.aob.a085207https://academic.oup.com/aob/article-abstract/40/4/899/129615 – (On our blog : https://plantstomata.wordpress.com/2022/12/27/shrinkage-of-stomatal-guard-cell-chloroplasts-in-relation-to-stomatal-opening/ )

Raghavendra A. S., Rao I. M., Das V. S. R. (1976) – Replacibility of potassium by sodium for stomatal opening in epidermal strips of Commelina benghalensis – Z. Pflanzenphysiol. 80: 36-42 – https://doi.org/10.1016/S0044-328X(76)80048-7https://www.sciencedirect.com/science/article/abs/pii/S0044328X76800487 – (On our blog : https://plantstomata.wordpress.com/2022/12/27/sodium-could-meet-the-requirement-of-potassium-for-stomatal-opening/ )

Raghavendra A. S., Reddy K. B. (1987) – Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate – Plant Physiology 83: 732–734 – doi: 10.1104/pp.83.4.732https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1056439/ – (On our blog : https://plantstomata.wordpress.com/2021/03/17/action-of-proline-on-stomata-differs-from-that-of-aba-g-substances-or-methyl-jasmonate/ )

Raghavendra A. S., Vani T. (1989) – Respiration in Guard Cells, Pattern and Possible Role in Stomatal Function – Journal of Plant Physiology 135(1): 3-8 – https://doi.org/10.1016/S0176-1617(89)80215-9  – https://www.sciencedirect.com/science/article/pii/S0176161789802159 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/the-literature-on-the-respiratory-properties-of-stomata/ )

Raghavendra A. S., Vavasseur A. (2016) – Stomatal opening – Annual Review of Plant Biology – 67: 1-23 –

Raharjo H. P., Haryanti S., Budihastuti R. (2015) – Pengaruh Tingkat Kepadatan Lalu Lintas dan Waktu Pengamatan yang Bebeda Terhadap
Ukuran dan Jumlah Stomata Daun Glodokan (Polyalthia longifolia .Sonn) – Jurnal Biologi. 4(1): 73-84 –

Rahayu P., Ainur R., Muizzudin (2015) – Perbedaan Anatomi Jaringan Stomata Berbagai Daun Genus Allamanda – In Bahasa. Prosiding Seminar Nasional Pendidikan Biologi. Universitas Muhammadiah, Malang

Rahman A., Rahman M., Shimanto M., Kibria M., Islam M. (2022) – Stomatal size and density trade-off varies with leaf phenology and species shade tolerance in a South Asian moist tropical forest – Functional Plant Biology 49(3): 307-318 –https://doi.org/10.1071/FP21159 – CSIRO 2022 – https://www.publish.csiro.au/FP/justaccepted/FP21159 – (On our blog : https://plantstomata.wordpress.com/2022/02/03/leaf-phenology-and-species-shade-tolerance-need-to-be-considered-while-estimating-gas-exchange-through-the-stomata-in-tropical-moist-forests/ )

Rahman H. U. (2005) – Genetic analysis of stomatal conductance in upland cotton (Gossypium hirsutum L.) under contrasting temperature regimes – The Journal of Agricultural Science 143(2-3): 161-168 – doi:10.1017/S0021859605005186https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/genetic-analysis-of-stomatal-conductance-in-upland-cotton-gossypium-hirsutum-l-under-contrasting-temperature-regimes/E3479F35844D08B724F27D8AB18E3B42 – (On our blog : https://plantstomata.wordpress.com/2022/01/02/genetic-analysis-of-stomatal-conductance/ )

Rahman I. U., Afzal A., Calixto E. S., Iqbal Z., Abdalla M., Alsamadany H., Parvez R., Romman M., Ali N., Sakhi S., Shah M. (2021) – Species-specific and altitude-related variations in stomatal features of Berberis lycium Royle and B. parkeriana C.K. Schneid – Botany Letters – DOI: 10.1080/23818107.2021.1947371https://www.tandfonline.com/doi/abs/10.1080/23818107.2021.1947371?src=&journalCode=tabg21 – (On our blog : https://plantstomata.wordpress.com/2021/09/29/significant-variability-in-the-size-and-type-of-epidermal-cells-and-stomata-on-both-sides-of-the-understory-plants-leaves/ )

Rahman R., Salamah U., Fadila M. A., Wibowo R. H. (2023) – The response of Dundubia manifera sound effects to changes in stomata density and stomata index of water spinach as information on the rate of photosynthesis – E3S Web of Conf. 373, 2023ISEPROLOCAL 2022 – The 3rd International Seminar on Promoting Local Resources for Sustainable Agriculture and Development – https://doi.org/10.1051/e3sconf/202337303021https://www.e3s-conferences.org/articles/e3sconf/abs/2023/10/e3sconf_iseprolocal2023_03021/e3sconf_iseprolocal2023_03021.html – (On our blog : https://plantstomata.wordpress.com/2023/03/24/stomata-have-a-very-good-impact-on-plants-such-as-increasing-the-rate-of-photosynthesis-plant-immune-systems-surviving-climate-change-and-increasing-crop-yields/ )

Rahnama A., James R. A., Poustini K., Munns R. (2010) – Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil – Functional Plant Biology 37: 255–263 – DOI: 10.1071/FP09148 – https://www.researchgate.net/publication/222102737_Stomatal_conductance_as_a_screen_for_osmotic_stress_tolerance_in_durum_wheat_growing_in_saline_soil – (On our blog : https://plantstomata.wordpress.com/2018/12/24/stomatal-conductance-as-a-screen-for-osmotic-stress-tolerance/ )

Rahnama A., Poustini K., Tavakkol-Afshari R., Tavakoli A. (2010) – Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress – Int J Biol Life Sci 6: 216–221 – https://rms.scu.ac.ir/Files/Articles/Journals/Abstract/v6-4-36-2010.PDF20111285151390.PDF – (On our blog : https://plantstomata.wordpress.com/2019/06/13/growth-and-stomatal-responses-in-tolerance-to-salt-stress/ )

Rai P., Mishra R. M. (2013) – Effect of urban air pollution on epidermal traits of road side tree species, Pongamia pinnata (L.) Merr. – IOSR Journal of Environmental Science, Toxicology and Food Technology 04-07 – DOI:10.6084/M9.FIGSHARE.1183419 – Corpus ID: 73641027 – https://www.semanticscholar.org/paper/Effect-of-urban-air-pollution-on-epidermal-traits-Rai/448e2b39f17b616106526bdc155025a4f7f29926 – (On our blog : https://plantstomata.wordpress.com/2022/12/27/the-length-and-width-of-stomatal-guard-cells-and-epidermal-cells-reduced-considerably-in-leaves-of-polluted-sites/ )

Rai V., Sanagala R., Sinha A. K. (2019) – Stomatal development and patterning are regulated by environmentally responsive transcription factors in monocots and dicots – International Journal of Molecular Sciences 20(14): 3418 –

Rai V. K., Sharma S. S., Sharma S. (1986) – Reversal of ABA-Induced Stomatal Closure by Phenolic Compounds – Journal of Experimental Botany 37(174): 129-134 – https://www.jstor.org/stable/23688640?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/02/25/stomata-respond-variably-to-the-individual-phenolic-compound/ )

Raissig Lab – Stomatal Biology (xxxx) – Form, Development and Function of Plant Stomata – https://raissiglab.org/ – (On our blog : https://plantstomata.wordpress.com/2019/03/21/form-development-and-function-of-plant-stomata/ )

Raissig Lab – Stomatal Biology (xxxx) – Form(ation) and function of plant stomata – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/formation-and-function-of-plant-stomata/ )

Raissig Lab – Stomatal Biology (xxxx) – Development and function of grass subsidiary cells – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/development-and-function-of-grass-stomatal-subsidiary-cells/ )

Raissig Lab – Stomatal Biology (xxxx) – Epidermal development of grass leaves in time and space – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/epidermal-development-and-stomata-of-grass-leaves/ )

Raissig Lab – Stomatal Biology (xxxx) – Stomatal development and physiology in C4 and CAM plants – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/stomatal-development-and-physiology-in-c4-and-cam-plants/ )

Raissig Lab – Stomatal Biology (xxxx) – Form, Development and Function of Plant Stomatahttps://raissiglab.org/ – (On our blog : https://plantstomata.wordpress.com/2019/08/13/developmental-cytological-and-physiological-aspects-of-different-stomatal-morphologies/ )

Raissig M. T., Abrash E., Bettadapur A., Vogel J. P., Bergmann D. C. (2016) – Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity – Proc Natl Acad Sci USA 113: 8326–8331 – Abstract/FREE Full TextGoogle Scholar  http://www.pnas.org/content/113/29/8326 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/the-stomatal-transcription-factor-module-is-a-prime-target-for-breeding-or-genome-modification-to-improve-plant-productivity/ )

Raissig M. T., Bergmann D. C. (2017) – The recipe for especially efficient stomata – VIDEO – Eurekalert AAAS – http://dx.doi.org/10.1126/science.aal3254 – https://www.eurekalert.org/multimedia/pub/135451.php – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-recipe-for-especially-efficient-stomata-video/ )

Raissig M. T., Matos J. L., Anleu Gil M. X., Kornfeld A., Bettadapur A., Abrash E., Allison H. R., Badgley G., Vogel J. P., Berry J. A., Bergmann D. C. (2017) – Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. – Science 355(6330):1215-1218 – doi:10.1126/science.aal3254 – http://science.sciencemag.org/content/355/6330/1215 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/an-ortholog-of-the-stomatal-regulator-atmute-defines-the-stomatal-precursor-fate/ )

Rajab H., Khan M. S., Malagoli M., Hell R., Wirtz M. (2019) – Sulfate-Induced Stomata Closure Requires the Canonical ABA Signal Transduction Machinery –  Plants 8: 21- – https://doi.org/10.3390/plants8010021 – https://www.mdpi.com/2223-7747/8/1/21 (On our blog : https://plantstomata.wordpress.com/2019/01/16/hypothesis-that-sulfate-and-sulfide-induce-stomatal-closure-by-stimulating-cysteine-synthesis-to-trigger-aba-production/ )

Rajagopal T., Ramayya N., Bahadur B. (1972) – The development of organically variable stomata in two species of Turnera L. – J. Indian bot. Soc. 51: 201-208 – http://210.212.232.211:8080/jspui/bitstream/123456789/5396/1/CMFRI-%20142%20article%2027.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/17/organically-variable-stomata/ )

Rajagopal V. (1981) – The influence of exogenous proline on the stomatal resistance in Vicia faba – Physiologia Plantarum 52: 292-296 – https://doi.org/10.1111/j.1399-3054.1981.tb08508.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1981.tb08508.x – (On our blog : https://plantstomata.wordpress.com/2021/03/17/relationship-between-endogenous-proline-which-increased-markedly-due-to-exogenous-supply-and-stomatal-resistance-2/ )

Rajagopal V., Patil K. D., Sumathykuttyamma B. (1986) – Abnormal Stomatal Opening in Coconut Palms Affected with Root (Wilt) Disease – Journal of Experimental Botany Vol. 37, No. 182 (September 1986), pp. 1398-1405 – https://www.jstor.org/stable/23691597?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/28/stomatal-regulation-is-significantly-impaired-in-diseased-palms/ )

Rajendra B. R., Mujeeb K. A., Bates L. S. (1978) – Relationships between 2X hordeum sp., 2X Secale sp. and 2X, 4X, 6X triticum spp. for stomatal frequency, size and distribution – Environ. Exp. Bot., 18: 33-37. –http://journals2.scholarsportal.info/details?uri=/00988472/v18i0001/33_rb2hs2fsfsad.xml – (https://plantstomata.wordpress.com/2016/12/03/stomatal-frequency-size-and-distribution/ )

Rajmohan A. (2014) – Comparing stomatal densities in sun and shade – BIOC52 – https://www.scribd.com/document/248523446/Comparing-stomatal-densities-in-sun-and-shade – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-densities-in-sun-and-shade/ )

Rajput V. D., Yaning C., Ayup M., Minkina T., Sushkova S., Mandzhieva S. (2017) – Physiological and hydrological changes in Populus euphratica seedlings under salinity stress – Acta Ecologica Sinica 37(4): 229-235 – https://doi.org/10.1016/j.chnaes.2017.02.005https://www.sciencedirect.com/science/article/abs/pii/S1872203216301111?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/04/15/the-effect-of-salinity-stress-on-stomatal-aperture-density-and-conductance/ )

Raju E. C., Patel J. D., Shah J. J. (1975) – An uncommon wall thickening of guard cells – Ann. Bot. 39: 125-127 – https://www.jstor.org/stable/42752234 – (On our blog : https://plantstomata.wordpress.com/2022/12/27/a-wall-thickening-at-the-polar-end-of-stomatal-guard-cells/ )

Rakocevic M., Vasconcelos Ribeiro R., Ribeiro Marchiori P. E., Ferreira Filizola H., Reis Batista E. (2018) – Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment – Annals of Botany, 12(5): 1065–1078 – https://doi.org/10.1093/aob/mcy011 – https://academic.oup.com/aob/article/121/5/1065/4856813 – (On our blog : https://plantstomata.wordpress.com/2018/04/22/increased-air-co2-stimulated-stomatal-conductance-and-leaf-photosynthesis/ )

Ram H., Kaur A., Gandass N., Katoch M., Roy S., Kushwaha N. K., Soni P., (2020) – Stomatal Adaptive Response in Plants Under Drought Stress – In : Plant Stress Biology (Book) – Apple Academic Press 17 pp. – https://www.taylorfrancis.com/chapters/edit/10.1201/9781003055358-8/stomatal-adaptive-response-plants-drought-stress-hasthi-ram-amandeep-kaur-nishu-gandass-megha-katoch-shweta-roy-nirbhay-kumar-kushwaha-praveen-soni

Rama Das V. S., Raghavendra A. S. (1978) – Control of stomatal opening by pyruvate metabolism in light – Indian journal of Experimental Biology 12: 425-428 – eBook ISBN9781003055358 –

Rama Das V. S., Raghavendra A. S. (1982) – Stomata: The physiology and biochemistry of their regulation in leaves – Curr. Sci. 51: 586-593 – https://www.jstor.org/stable/24085464?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/01/physiology-and-biochemistry-of-stomatal-regulation/

Ramakrishnan S., Ray-Mukherjee J. (2022) – Contextualizing Stomata – Reson 27: 579–597 – https://doi.org/10.1007/s12045-022-1350-1https://link.springer.com/article/10.1007/s12045-022-1350-1#citeas – (On our blog : https://plantstomata.wordpress.com/2022/04/24/form-function-evolution-and-the-role-of-stomata-in-a-changing-world/ )

Ramírez-Godina F., Robledo-Torres V., Foroughbakhch-Pournavab R., Benavides-Mendoza A., Alvarado-Vazquez M. A. (2013) – Viabilidad de polen, densidad y tamaño de estomas en autotetraploides y diploides de Physalis ixocarpa – Botanical Sciences 91: 11-18 – http://www.scielo.org.mx/pdf/bs/v91n1/v91n1a2.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/01/ploidy-and-stomatal-characteristics/ )

Ramos L. J., Nayaranan K. R., McMillan R. T. Jr. (1992) – Association of stomatal frequency and morphology in Lycopersicon species with resistance to Xanthomonas campestris pv. vesicatoria – Plant Pathology 41(2): 157–164 –  Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.1992.tb02334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/correlations-between-stomatal-traits-and-the-number-of-bacterial-lesions/ )

Ramos L. J., Volin R. B. (1987) – Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria – Florida Agricultural Experiment Stations Journal Series No. 7355 – Phytopathology 77(9): 1311-1317 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Articles/Phyto77n09_1311.PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/06/role-of-stomatal-opening-and-frequency-on-infection-by-xanthomonas/ )

Rampe H. L., Umboh S. D., Siahaan R., Maabuat P. V. (2019) – Anatomical characteristics of stomata, mesophyll and petiole of six varieties sweet potatoes (Ipomoea batatas L.) after organic fertilizer induction – IOP Conf. Series: Materials Science and Engineering 567 (2019) 012044 – doi:10.1088/1757-899X/567/1/012044 – https://iopscience.iop.org/article/10.1088/1757-899X/567/1/012044/pdf – (On our blog : https://plantstomata.wordpress.com/2019/11/08/stomata-in-ipomoea-batatas/ )

Ran J.-H., Shen T.-T., Liu W.-J., Wang X.-Q. (2013) – Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants – PLoS ONE 8, e78997 (2013). –https://www.ncbi.nlm.nih.gov/pubmed/24244399 – (https://plantstomata.wordpress.com/2016/12/03/the-bhlh-genes-involved-in-stomatal-development/ )

Ran L., Pleim J., Song C., Band L., Walker J., Binkowski F. (2017) – A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM – JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES. American Geophysical Union, Washington, DC. 122(3): 1930-1952 –  https://doi.org/10.1002/2016JD025583https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&direntryid=335442&showcriteria=2&fed_org_id=111&timstype=journal&datebeginpublishedpresented=03/01/2012&dateendpublishedpresented=03/01/2017&sortby=pubdateyear – (On our blog : https://plantstomata.wordpress.com/2021/12/16/a-photosynthesis-based-two-leaf-canopy-stomatal-conductance-model/ )

Rana H. S., Chadha T. R. (1990) – Relationship between stomatal density and vigour in clones of some Prunus species – Proceedings of XXIII International Hort. Cong. Firenze (Italy) – Abst. of Contributed Papers No. 1232 –

Ranawana S. R. W. M. C. J. K., Siddique K. H. M.,Palta J. A., Stefanova K., Bramley H. (2021) – Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat – Functional Plant Biology – https://doi.org/10.1071/FP20392https://www.publish.csiro.au/fp/FP20392 – (On our blog : https://plantstomata.wordpress.com/2021/07/15/stomata-coordinate-with-plant-hydraulics-to-regulate-tr-response-to-vpd-in-wheat/ )

Rand R. H., Storti D. W., Upadhyaya S. K., Cooke J. R. (1982) – Dynamics of coupled stomatal oscillators – Journal of Mathematical Biology 15: 131–149 – https://doi.org/10.1007/BF00275070 – https://link.springer.com/article/10.1007%2FBF00275070#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/27/dynamics-of-coupled-stomatal-oscillators/ )

Rand R. H., Upadhyaya S. K., Cooke J. R., Storti D. W. (1981) – Hopf bifurcation in a stomatal oscillator – Journal of Mathematical Biology 12, 1–11. – doi:10.1007/BF00275199 – CrossRef – https://link.springer.com/article/10.1007%2FBF00275199 – (https://plantstomata.wordpress.com/2017/03/03/hopf-bifurcation-in-a-stomatal-oscillator/ )

Randerson J., Ralph J., Cicerone C. M. (2018) – Amazon set to dry as trees narrow stomata – https://physicsworld.com/a/amazon-set-to-dry-as-trees-narrow-stomata/ – (On our blog : https://plantstomata.wordpress.com/2020/08/02/amazon-set-to-dry-as-trees-narrow-stomata/ )

Ranjbaran M., Solhtalab M., Datta A. K. (2020) – Mechanistic modeling of light-induced chemotactic infiltration of bacteria into leaf stomata – PLoS Comput Biol. 16(5):e1007841 – doi: 10.1371/journal.pcbi.1007841 – eCollection 2020 May – https://www.ncbi.nlm.nih.gov/pubmed/32384085 – (On our blog : https://plantstomata.wordpress.com/2020/05/12/light-induced-chemotactic-infiltration-of-bacteria-into-leaf-stomata/ )

Rao D. G., Vanaja M., Hebbar K. B., Venkateswarlu B. (1996) – Control of stomatal function by xylem exudates from stressed plants without a decrease in the leaf water potential: possible role for root signals ? – Proc. Indian natn. Sci. Acad. B62(4): 297-302 –http://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol62B_1996_4_Art08.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/control-of-stomatal-function-by-xylem-exudates/ )

Rao I. M., Anderson L. E. (1983) – Light and stomatal metabolism: I. Possible involvement of light modulation of enzymes in stomatal movement – Plant Physiol. 71: 451– 455 – PMID: 16662847 PMCID: PMC1066058 – http://www.plantphysiol.org/content/plantphysiol/71/3/451.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/01/light-modulation-of-enzymes-may-play-a-significant-role-in-the-mechanism-of-stomatal-movement/ )

Rao I. M., Anderson L. E. (1983) – Light and stomatal metabolism: II. Effects of Sulfite and Arsenite on Stomatal Opening and Light Modulation of Enzymes in Epidermis – Plant Physiol. 71(3): 456–459 – PMID: 16662848 – PMCID: PMC1066059 – DOI: 10.1104/pp.71.3.456https://pubmed.ncbi.nlm.nih.gov/16662848/ – (On our blog : https://plantstomata.wordpress.com/2022/12/27/the-inhibition-of-stomatal-opening-by-sulfite-or-arsenite-in-light-might-result-from-the-inhibition-of-light-modulation-of-key-enzymes-in-stomatal-guard-cells/ )

Rao I. M., Amundson R. G., Alscher-Herman R., Anderson L. E. (1983) Light and Stomatal Metabolism : II. – Effects of SO2 on Stomatal Metabolism in Pisum sativum L. – Plant Physiology 72(2): 573–577 – doi:10.1104/pp.72.2.573https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066276/ – (On our blog : https://plantstomata.wordpress.com/2022/12/27/effects-of-so2-on-stomatal-metabolism/ )

Rao I. M., Swamy P. M., Das V. S. R. (1977) – The Reversal of Scotoactive Stomatal Behavior in some Woody Weeds by Paraquat and 2,4,5-T – Weed Science 25(6): 469-472 –https://doi.org/10.1017/S0043174500033920https://www.cambridge.org/core/journals/weed-science/article/abs/reversal-of-scotoactive-stomatal-behavior-in-some-woody-weeds-by-paraquat-and-245t/490E1C364EB179E65712DFA7C3998691 – (On our blog : https://plantstomata.wordpress.com/2021/12/17/herbicide-induced-desiccation-is-the-consequence-of-inhibition-of-stomatal-scotoactive-behavior-and-increased-water-loss/ )

Rao N., Inamdar J. (1980) – Action of growth substances on the cotyledonary and hypocotyledonary stomata of Brassica juncea L – Histochemistry developmental and structural anatomy of angiosperms a symposium: 20-228 – https://eurekamag.com/research/014/946/014946154.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/action-of-growth-substances-on-the-cotyledonary-and-hypocotyledonary-stomata/ )

Rao N. K. S. (1985) – The effects of antitranspirants on leaf water status, stomatal resistance and yield in tomato – Journal of Horticultural Science 60(1): 89-92 – https://www.tandfonline.com/doi/abs/10.1080/14620316.1985.11515605 – (On our blog : https://plantstomata.wordpress.com/2021/08/19/stomatal-diffusive-resistance-significantly-increased-with-antitranspirants/ )

Rao T. S., Bhatia R. Y., Prabhakar M. (1992) – Dermotype Studies on Different Brands of Cigarettes as an aid to Criminal Investigation – Journal of Forensic Medicine Adli Tıp Dergisi 8(1-4): 137-146 – https://jag.journalagent.com/adlitip/pdfs/ADLITIP_1992-137-146.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/30/stomata-in-tobacco-leaves/ )

Rascher U., Bobich E. G., Lin G. H., Walter A., Morris T., Naumann M., Nichol C. J., Pierce D., Bil K., Kudeyarov V., Berry J. A. (2004) – Functional diversity of photosynthesis during drought in a model tropical rainforest – the contributions of leaf area, photosynthetic electron transport and stomatal conductance to reduction in net ecosystem carbon exchange – Plant Cell Environ. 27: 1239–1256 –

Raschke K. (1965) – Die Stomata als Glieder eines schwingungsfähigen CO2‐Regelsystems Experimenteller Nachweis an Zea mays L. – Zeitschrift für Naturforschung 20b, 1261–1270. – https://www.degruyter.com/downloadpdf/j/znb.1965.20.issue-12/znb-1965-1219/znb-1965-1219.xml – (https://plantstomata.wordpress.com/2016/12/03/stomata-a-regulatory-system-stabilizing-the-co2-concentration-within-the-intercellular-spaces-of-leaves/ )

Raschke K. (1966) – Die Reaktionen des CO2-Regelsystems in den Schließzellen von Zea mays auf weißes Licht – The responses of the CO2-control system in the stomates of Zea mays to white light – Planta 68: 111–140 – https://doi.org/10.1007/BF00385621https://link.springer.com/article/10.1007/BF00385621#citeas – (On our blog : https://plantstomata.wordpress.com/2021/11/16/the-responses-of-the-co2-control-system-to-white-light-in-the-stomates/ )

Raschke K. (1970) – Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays – Planta 91: 336–363 – doi: 10.1007/Bf00387507 https://www.jstor.org/stable/23368819?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/15/stomatal-aperture-and-co2/ )

Raschke K. (1970) – Leaf hydraulic system: rapid epidermal and stomatal responses to changes in water supply – Science 167: 189–191 – DOI: 10.1126/science.167.3915.189http://science.sciencemag.org/content/167/3915/189 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/rapid-epidermal-and-stomatal-responses-to-changes-in-water-supply/ )

Raschke K. (1970) – Stomatal responses to pressure changes and interruptions in the water supply of detached leaves of Zea mays L. – Plant Physiol. 45: 415-423 – https://doi.org/10.1104/pp.45.4.415 – http://www.plantphysiol.org/content/45/4/415 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-responses-to-pressure-changes-and-interruptions-in-the-water-supply/ )

Raschke K. (1972) – Saturation kinetics of the velocity of stomatal closing in response to CO2 – Plant Physiol. 49: 229–234 –

Raschke K. (1974) – Abscisic acid sensitises stomata to CO2 in leaves of Xanthium strumarium L. In Plant Growth Substances. Tokyo 1973. Hirokawa Pub. Co., Tokyo.

Raschke K. (1975) – Stomatal action – Ann. Rev. Plant Physiol. 26: 309-340 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.26.060175.001521 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-action-2/ )

Raschke K. (1975) – Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. – Planta 125: 243-259 – DOI: 10.1007/BF00385601 – https://www.ncbi.nlm.nih.gov/pubmed/24435438 – (On our blog : https://plantstomata.wordpress.com/2018/12/25/the-simultaneous-requirement-of-co2-and-aba-for-stomatal-closure-leads-to-the-inference-that-aba-inhibits-the-expulsion-of-h-from-guard-cells/ )

Raschke K. (1976) – How stomata resolve the dilemma of opposing priorities – Phil Trans R Soc Lond 273: 551–560 – DOI: 10.1098/rstb.1976.0031 –  http://rstb.royalsocietypublishing.org/content/273/927/551 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-opposing-priorities/ )

Raschke K. (1976) – Tranfer of ions and products of photosynthesis to guard cells. In Transport and transfer processes in plants. M. J. F. Wardlaw & Passiouril J, B. –
Academic Press, New York, San Francisco & London –

Raschke K. (1979) – Movements of stomata – in: Encyclopedia of Plant Physiology, New Series, 7. (Eds. HAUPT, W., and FEINLElB, M. E.) pp. 383-441. Springer-Verlag, Berlin 1979.

Raschke K. (1987) – Action of abscisic acid on guard cells – In : Stomatal Function (eds. E. Zeiger, G. D. Farquhar & I. R. Cowan : 253-279) – Stanford University Press, Stanford, California.

Raschke K. (2003) – Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate – Planta 217:651–657 – doi:10.1007/s00425-003-1034-3 –  https://link.springer.com/article/10.1007%2Fs00425-003-1034-3 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/alternation-of-anion-conductance-in-stomata/ )

Raschke K., Dickerson M. (1973) – Changes in shape and volume of guard cells during stomatal movement – Plant Res 1972: 149–153 –

Raschke K., Dittrich P. (1977) –  (14C) Carbon dioxide fixation by isolated leaf epidermes with stomata closed or open – Planta 134: 69-75 – https://doi.org/10.1007/BF00390097https://link.springer.com/article/10.1007/BF00390097#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/12/14c-carbon-dioxide-fixation-by-isolated-leaf-epidermes-with-stomata-closed-or-open/

Raschke K., Fellows M. P. (1971) – Stomatal movement in Zea mays: Shuttle of potassium and chloride between guard cells and subsidiary cells – Planta 101: 296-316 –  https://doi.org/10.1007/BF00398116 – https://link.springer.com/article/10.1007/BF00398116#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/16/shuttle-of-potassium-and-chloride-between-stomatal-guard-cells-and-subsidiary-cells/ )

Raschke K., Firn R. D., Pierce M. (1975) – Stomatal Closure in Response to Xanthoxin and Abscisic Acid – Planta 125: 149-160 – PMID: 24435339 – DOI: 10.1007/BF00388701https://pubmed.ncbi.nlm.nih.gov/24435339/ – (On our blog : https://plantstomata.wordpress.com/2022/12/22/stomatal-closure-in-response-to-xanthoxin-and-aba/ )

Raschke K., Hanebuth W. F., Farquhar G. D. (1978) – Relationship between stomatal conductance and light intensity in leaves of Zea mays L., derived from experiments using the mesophyll as shade – Planta 139: 73-77 – https://doi.org/10.1007/BF00390813https://link.springer.com/article/10.1007/BF00390813 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/relationship-between-stomatal-conductance-and-light-intensity-derived-from-experiments-using-the-mesophyll-as-shade/ )

Raschke K., Hedrich R. (1985) – Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves – Planta 163105–118 – https://doi.org/10.1007/BF00395904https://link.springer.com/article/10.1007/BF00395904#citeas – (On our blog : https://plantstomata.wordpress.com/2021/01/23/simultaneous-and-independent-effects-of-aba-on-stomata-2/ )

Raschke K., Hedrich R. (1989) – Patch-clamp measurements on isolated guard cell protoplasts and vacuoles – Methods in Enzymol. 174: 312–330 – https://doi.org/10.1016/0076-6879(89)74025-8 –https://www.sciencedirect.com/science/article/pii/0076687989740258 – (On our blog : https://plantstomata.wordpress.com/2018/12/27/patch-clamp-measurements-on-isolated-stomatal-protoplasts/ )

Raschke K., Hedrich R., Reckmann U., Schroeder J. I. (1988) – Exploring biophysical and biochemical components of the osmotic motor that drives stomatal movement – Botanica Acta 101: 283-294 – https://doi.org/10.1111/j.1438-8677.1988.tb00046.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-8677.1988.tb00046.x – (On our blog : https://plantstomata.wordpress.com/2019/06/14/the-osmotic-motor-that-drives-stomatal-movement/ )

Raschke K., Humble G. D. (1973) – No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions – Planta 115: 47–57 – https://doi.org/10.1007/BF00388604https://link.springer.com/article/10.1007/BF00388604 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/no-uptake-of-anions-required-by-opening-stomata/ )

Raschke K., Kühl U. (1969) – Stomatal responses to changes in atmospheric humidity and water supply: Experiments with leaf sections of Zea mays in CO2-free air – Planta 87: 36-43 –

Raschke K., Patzke J., Daley P.F., Berry J.A. (1990) – Spatial and temporal heterogeneities of photosynthesis detected through analysis of chlorophyll-fluorescence images of leaves, in: Baltscheffsky M. (Ed.), Current Research in Photosynthesis, Kluwer Academic Publishers, Boston, 1990, pp. 573–578

Raschke K., Pierce M. (1973) – Uptake of sodium and chloride by guard cells of Vicia faba – Plant Res. Lab., Mich. State Univ.:146-149 –

Raschke K., Pierce M., Popiela C. C. (1976) – Abscisic acid content and stomatal sensitivity to CO2 in leaves of Xanthium strumarium L. after pretreatments in warm and cold growth chambers – Plant Physiol 57: 115-121 – https://doi.org/10.1104/pp.57.1.115http://www.plantphysiol.org/content/57/1/115 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/abscisic-acid-content-and-stomatal-sensitivity-to-co2-in-leaves/ )

Raschke K., Resemann A. (1986) -The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity – Planta (1986) 168: 546-558 – https://doi.org/10.1007/BF00392275https://link.springer.com/article/10.1007/BF00392275#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/28/a-reversible-reduction-of-photosynthetic-capacity-is-the-result-of-a-co-evolution-with-the-development-of-a-strong-stomatal-sensitivity-to-changes-in-humidity/ )  

Raschke K., Shabahang M., Wolf R. (2003) – The slow and the quick anion conductances in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2 – Planta 217(4): 639-50 – DOI 10.1007/s00425-003-1033-4  – https://www.ncbi.nlm.nih.gov/pubmed/12712336 – (On our blog : https://plantstomata.wordpress.com/2017/03/06/anion-conductances-in-stomata/

Raschke K., Schnabl H. (1978) – Availability of chloride affects the balance between potassium chloride and potassium malate in guard cells of Vicia faba L. – Plant Physiol. 62: 84–87 – DOI: https://doi.org/10.1104/pp.62.1.84http://www.plantphysiol.org/content/62/1/84.short – (On our blog : https://plantstomata.wordpress.com/2019/04/04/availability-of-chloride-affects-the-balance-between-kcl-and-potassium-malate-in-guard-cells/ )

Raschke K., Zeevaart J. A. D. (1976) – Abscisic acid content, transpiration, and stomatal conductance as related to leaf age in plants of Xanthium strumarium L. – Plant Physiol 58: 169-174 – 

Raskin I., Ladyman J. A. R. (1988) – Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata – Planta 1988;173:73-78. – doi:10.1007/BF00394490 – CrossRefMedlineWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF00394490 – (On our blog : https://plantstomata.wordpress.com/2016/12/03/aba-insensitive-stomata/ )

Rasmussen H. (1986) –  Epidermal cell differentiation during leaf
development in Anemarrhena asphodeloides – Canadian Journal
of Botany 64: 1277-1285 –

Rasmussen H. (1986) – Pattern formation and cell interactions in epidermal development of Anemarrhena asphodeloides (Liliaceae) – Nordic Journal of Botany 6:467–477.- DOI: 10.1111/j.1756-1051.1986.tb00903.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1756-1051.1986.tb00903.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/a-characteristic-pattern-of-stomata/ )

Rasouli F. (2020) – Stomata operation in halophytes –  PhD thesis, University of Tasmania – https://eprints.utas.edu.au/35904/ – (On our blog : https://plantstomata.wordpress.com/2021/12/02/halophytes-are-superior-to-glycophytes-under-saline-conditions-through-faster-stomatal-responses-to-environmental-factors/ )

Rathaiah Y. (1975) – Infection of Sugarbeet by Cercospora beticolain Relation to Stomatal Condition – Phytopathology 66: 737-740. –https://www.apsnet.org/publications/phytopathology/backissues/Documents/1976Articles/Phyto66n06_737.PDF – (On our blog : https://plantstomata.wordpress.com/2016/12/27/cercospora-beticola-penetrates-sugarbeet-through-stomata/ )

Ratnawati (2001) – Evidence of the morphological range, transition and evolution of stomatal protection mechanisms in some selected Proteaceae – MSc Thesis University of Tasmania – https://eprints.utas.edu.au/21328/1/whole_Ratnawati2003_thesis.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/14/97449/ )

Raven J. A. (1993) – The evolution of vascular plants in relation to quantitative function of dead water-conducting cells and stomata – Biol. Rev. 68: 337–363 – DOI: 10.1111/j.1469-185X.1993.tb00735.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1993.tb00735.x/abstracthttps://plantstomata.wordpress.com/2017/09/10/quantitative-functioning-of-dead-water-conducting-cells-and-stomata/ )

Raven  J. A. (2002) – Selection Pressures on Stomatal Evolution – New Phytologist, 153: 371-386 – DOI: 10.1046/j.0028-646X.2001.00334.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomatal-evolution-2/ )

Raven J. A. (2014) – Speedy small stomata ? – Journal of Experimental Botany 65(6): 1415–1424 – https://doi.org/10.1093/jxb/eru032 – https://academic.oup.com/jxb/article/65/6/1415/588799 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/faster-opening-and-closing-of-smaller-than-of-larger-stomata/ )

Raven J. A., Ramden H. J. (1989) – Similarity of stomatal index in the C4 plant
Salsola kali L. in material collected in 1943 and in 1987: Relevance to
changes in atmospheric CO2 content – Transactions of the Botanical Society
Edinburgh 45: 223–233 –

Rawson H. M., Craven C. L. (1975) – Stomatal Development During Leaf Expansion in Tobacco and Sunflower – Australian Journal of Botany 23(2) – DOI: 10.1071/BT9750253 – https://www.researchgate.net/publication/248898229_Stomatal_Development_During_Leaf_Expansion_in_Tobacco_and_Sunflower – (On our blog : https://plantstomata.wordpress.com/2018/09/17/stomatal-development-during-leaf-expansion/  )

Ray J. D., Sinclair T. R. (1997) – Stomatal closure of maize hybrids in response to drying soil – Crop Sci. 37: 803–807 – doi:10.2135/cropsci1997.0011183X003700030018xhttps://acsess.onlinelibrary.wiley.com/doi/10.2135/cropsci1997.0011183X003700030018x – (On our blog : https://plantstomata.wordpress.com/2022/03/05/genotypic-differences-exist-for-stomatal-responses-to-a-drying-soil/ )

Razzaq A., Shahid S., Akram M., Ashraf M., Iqbal S., Hussain A., Zia M. A., Qadri S., Saher N., Shahzad F., Shah A. N., Rehman A.-u, Jacobsen S.-E. (2021) – Stomatal State Identification and Classification in Quinoa Microscopic Imprints through Deep Learning – Complexity 2021-ID 9938013 – https://doi.org/10.1155/2021/9938013https://www.hindawi.com/journals/complexity/2021/9938013/ – (On our blog : https://plantstomata.wordpress.com/2022/03/23/an-automatic-system-for-stomata-state-identification-and-counting-in-quinoa-leaf-images-through-the-transformed-learning-neural-network-model-single-shot-detector-approach-2/ )

Rea A. C. (2020) – No Entry: SIF2 Closes Stomatal “Doors” to Bacteria by Making Guard Cells SLAC(1) – The Plant Cell – https://doi.org/10.1105/tpc.20.00404http://www.plantcell.org/content/32/7/2069 – (On our blog : https://plantstomata.wordpress.com/2020/07/16/85200/ )

Rebecca M. A., Laza C., Kondo M., Ideta O., Barlaan E., Imbe T. (2010) – Quantitative trait loci for stomatal density and size in lowland rice – Euphytica 172: 149–158 – doi: 10.1007/s10681-009-0011-8 https://link.springer.com/article/10.1007%2Fs10681-009-0011-8 – (On our blog : https://plantstomata.wordpress.com/2020/03/10/quantitative-trait-loci-for-stomatal-density-and-size/ )

Rebetzke G. J.,  Rattey A. R., Farquhar G. D., Richards R. A., Condon A. G. (2013) – Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat – Functional Plant Biology 40: 14–33 – https://doi.org/10.1071/FP12184https://www.publish.csiro.au/fp/FP12184 – (On our blog : https://plantstomata.wordpress.com/2020/06/23/genomic-regions-for-canopy-temperature-and-their-genetic-association-with-stomatal-conductance/ )

Reckmann U., Scheibe R., Raschke K. (1990) – Rubisco activity in guard cells compared with the solute requirement for stomatal opening – Plant Physiol. 92: 246–253 – 10.1104/pp.92.1.246 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/plantphysiol/92/1/246.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/14/rubisco-activity-in-stomata/

Reddy A. R., Das V. S. R. (1986) – Stomatal movement and sucrose uptake by guard cell protoplasts of Commelina benghalensis L. – Plant Cell Physiol 27: 1565–1570 – https://doi.org/10.1093/oxfordjournals.pcp.a077257https://academic.oup.com/pcp/article-abstract/27/8/1565/1840083?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/07/17/stomatal-movement-and-sucrose-uptake-by-guard-cell-protoplasts/ )

Reddy C. K. K., Jain S. K., Kumar M. B. A., Krishnan S. G.,
Singh A. K., Hussain Z. (2019)
– Genetic Variation of Stomatal Traits in Four
Tomato Hybrids and their Parental Lines – Int.J.Curr.Microbiol.App.Sci. 8(01): 1190-1195 – doi: https://doi.org/10.20546/ijcmas.2019.801.125https://www.ijcmas.com/8-1-2019/Chennem%20Kiran%20Kumar%20Reddy,%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/21/genetic-variation-of-stomatal-traits/ )

Reddy K. B., Rao K. R., Raghavendra A. S. (1983) – Stomatal metabolism in abaxial and adaxial epidermis of Commelina benghalensis: variation in proton efflux and adenosine triphosphates activity – Z. Pflanzenphysiol 111: 401-412 –

Redmann R. E. (1985) – Adaptation of grasses to water stress – leaf rolling and stomate distribution – Annals of the Missouri Botanical Garden 72(4): 833–842 –  http://www.jstor.org/stable/2399225?origin=crossref&seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomata-and-water-stress/ )

Reed J. E., Smith W. K. (2012) – Stomatal Frequency, Distribution, and Needle
Hydrophobicity in Cloud Forest Spruce and Fir, Southern Appalachian Mountains – RURALS: Review of Undergraduate Research in Agricultural and Life Sciences 7(1): Article 3 – Available at: https://digitalcommons.unl.edu/rurals/vol7/iss1/3 : (On our blog : https://plantstomata.wordpress.com/2022/01/09/stomatal-distribution-patterns-and-surface-water-repulsion-from-needles-were-measured-to-evaluate-the-potential-importance-of-these-traits-for-growth-in-a-cloud-dominated-habitat/ )

Reed K. L. (1972) – A Computer Simulation Model of Seasonal Transpiration in Douglas-fir Based on a Model of Stomatal Resistance – PhD Thesis Oregon State University – file:///C:/Users/wille/Downloads/ReedKennethLee1971.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/12/99615/ )

Rees A. R. (1958) – Field Observations of Midday Closure of Stomata in the Oil Palm, Elaeis guineensis Jacq. – Nature 182: 735–736 – https://doi.org/10.1038/182735a0https://www.jstor.org/stable/23686590 – (On our blog : https://plantstomata.wordpress.com/2021/12/08/midday-closure-of-stomata-2/ )

Reference (2019) – What Causes the Stomata to Open and Close? – [online] –https://www.reference.com/science/causes-stomata-open-close-72fc8cfa52ffb4cc

Reginato M. A., Reinoso H., Llanes A. S., Luna M. V. (2013) – Stomatal Abundance and Distribution in Prosopis strombulifera Plants Growing under Different Iso-Osmotic Salt Treatments – American Journal of Plant Sciences 4 (12C): 80-90 – doi: 10.4236/ajps.2013.412A3010https://m.scirp.org/papers/41195 – (On our blog : https://plantstomata.wordpress.com/2020/02/19/stomatal-abundance-and-distribution-in-plants-growing-under-different-iso-osmotic-salt-treatments/ )

Reich P. B. (1984) – Loss of stomatal function in ageing hybrid poplar leaves – Annals of Botany 53:  691-698 –  https://doi.org/10.1093/oxfordjournals.aob.a086734 –https://academic.oup.com/aob/article-abstract/53/5/691/157588?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/12/27/a-loss-of-stomatal-control-with-increasing-leaf-age/ )

Reich P. B. (1984) – Oscillations in stomatal conductance of hybrid poplar leaves in the light and dark – Plant Physiology 61: 541-548 – 10.1111/j.1399-3054.1984.tb05167.x –https://experts.umn.edu/en/publications/oscillations-in-stomatal-conductance-of-hybrid-poplar-leaves-in-t – (On our blog : https://plantstomata.wordpress.com/2019/04/07/oscillations-in-stomatal-conductance-in-the-light-and-dark-2/ )

Reich P. B. (1984) – Leaf stomatal density and diffusive conductance in three amphistomatous hybrid poplar cultivars – New Phytol. 98: 231–239 – https://doi.org/10.1111/j.1469-8137.1984.tb02733.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1984.tb02733.x – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-density-and-diffusive-conductance/ )

Reich P. B., Borchert R. (1988) – Changes with leaf age in stomatal function and water status of several tropical tree species – Biotropica 20(1): 60-69 –https://experts.umn.edu/en/publications/changes-with-leaf-age-in-stomatal-function-and-water-status-of-se – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-water-status-change-with-leaf-age/ )

Reich P. B., Hobbie S. E.,  Lee T. D. Pastore M. A. (2018) – Unexpected reversal of C3 versus Cgrass response to elevated CO2 during a 20-year field experiment – Science  360(6386): 317-320 – DOI: 10.1126/science.aas9313 – http://science.sciencemag.org/content/360/6386/317 – (On our blog : https://plantstomata.wordpress.com/2018/04/25/effect-of-rising-co2-levels-on-c3-and-c4-plants/

Reid C. D., Maherali H., Johson H. B., Smith S. D., Wullschleger S. D., Jackson R. B. (2003) – On the relationship between stomatal characters and atmospheric CO2 – Geophys. Res. Lett. 30: 1–4 – doi:10.1029/2003GL017775https://jacksonlab.stanford.edu/sites/default/files/grl03_0.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/28/stomatal-characters-and-atmospheric-co2-2/ )

Reid L. (2019) – Receptors behind leaf adaptation to long-term change – Nature Middle East 2019-08-26 – doi:10.1038/nmiddleeast.2019.116https://www.natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2019.116 – (On our blog : https://plantstomata.wordpress.com/2020/09/02/stomata-and-leaf-responses-to-long-term-environmental-changes/ )

Reid L. (2021) – Remote controlled plant pore closure limits water loss – doi:10.1038/nmiddleeast.2021.65https://www.natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2021.65 – (On our blog : https://plantstomata.wordpress.com/2021/07/27/anion-channels-are-key-players-in-stomatal-closure/ )

Reiling K., Davison A. W. (1995) – Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago major L. – New Phytol. 129: 587–594 – https://doi.org/10.1111/j.1469-8137.1995.tb03026.x –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1995.tb03026.x – (On our blog : https://plantstomata.wordpress.com/2018/12/28/ozone-and-stomatal-conductance/ )

Ren F., Zhang Y., Liu X., Zhang Y., Liu Y., Zhang F. (2021) – Identification of Plant Stomata Based on YOLO v5 Deep Learning Model – CSAI 2021: 2021 5th International Conference on Computer Science and Artificial Intelligence 78-83 – https://doi.org/10.1145/3507548.3507560https://dl.acm.org/doi/abs/10.1145/3507548.3507560 – (On our blog : https://plantstomata.wordpress.com/2023/02/13/the-measurement-of-stomatal-parameters/ )

Ren H., Wei K., Jia W., Davies W. J., Zhang J. (2007) – Modulation of Root Signals in Relation to Stomatal Sensitivity to Root‐sourced Abscisic Acid in Drought‐affected Plants – Journal of Integrative Plant Biology 49(10): – https://doi.org/10.1111/j.1672-9072.2007.00549.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1672-9072.2007.00549.x – (On our blog : https://plantstomata.wordpress.com/2019/02/02/stomatal-sensitivity-to-root%e2%80%90sourced-aba-in-drought%e2%80%90affected-plants/ )

Ren Y., Lu Q., Wu B., Li Y. H., Xin Z. M., Yao B. (2014) – Response of leaf of Nitraria tangutorum Bobr stomata characteristics to artificial simulation of rainfall – Acta Ecologica Sinica 34: 6101-6106 –


[ 任昱, 卢琦, 吴波, 李永华, 辛智鸣, 姚斌 (2014). 白刺叶片气孔特征对人工模拟降雨的响应. 生态学报, 34,6101-6106.]

Renard C., Demessemacker W. (1983) – Effects of wind velocity on stomatal conductance and consequences of leaf rolling on water uptake in tall fescue – Biologia Plantarum 25(6): 408–411 – https://doi.org/10.1007/BF02903136https://link.springer.com/article/10.1007/BF02903136#citeas – (On our blog : https://plantstomata.wordpress.com/2019/08/12/effects-of-wind-velocity-on-stomatal-conductance/ )

Renninger H. J., Carlo N., Clark K. L., Schäfer K. V. (2014) – Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem – Tree Physiol. 34(2): 159-173 – doi: 10.1093/treephys/tpt122 – Epub 2014 Jan 31 – https://www.ncbi.nlm.nih.gov/pubmed/24488856 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-control-stomatal-conductance-and-physiological-strategies-in-a-water-and-nutrient-limited-ecosystem/ )

Renninger H. J., Carlo N., Clark K. L., Schäfer K. V. (2015) – Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forestFront Plant Sci. 6:297 – doi: 10.3389/fpls.2015.00297 – eCollection 2015 – https://www.ncbi.nlm.nih.gov/pubmed/25999966 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-responses-to-environmental-drivers/ )

Renninger H. J., Stewart L. F., Rousseau R. J. (2021) – Water Use, Efficiency, and Stomatal Sensitivity in Eastern Cottonwood and Hybrid Poplar Varietals on Contrasting Sites in the Southeastern United States – Front. For. Glob. Change 14 July 2021 – https://doi.org/10.3389/ffgc.2021.704799https://www.frontiersin.org/articles/10.3389/ffgc.2021.704799/full – (On our blog : https://plantstomata.wordpress.com/2022/01/24/efficient-water-use-and-stomatal-sensitivity-under-a-range-of-soil-and-atmospheric-moisture-stress-factors/ )

Renquist A., Breen P., Martin L. W. (1982) – Stomatal behavior and leaf water status of strawberry in different growth environments – Scientia Horticulturae, 18: 101-110 – DOI:10.1016/0304-4238(82)90123-6https://www.semanticscholar.org/paper/Stomatal-behavior-and-leaf-water-status-of-in-Renquist-Breen/5b99f1dd9860acbf87c9d5aa1f48cb5f7f46cb8f – (On our blog : https://plantstomata.wordpress.com/2021/09/25/stomatal-behavior-in-different-growth-environments/ )

Resco de Dios V., Chowdhury F. I., Granda E., Yao Y., Tissue D. T. (2019) – Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants – New Phytol. 1696-1706 – doi:10.1111/nph.15881 – https://nph.onlinelibrary.wiley.com/doi/epdf/10.1111/nph.15881 – (On our blog : https://plantstomata.wordpress.com/2019/09/20/the-potential-functions-of-nocturnal-stomatal-conductance-2/ )

Resco de Dios V., Loik M. E., Smith R. A., Aspinwali M. J., Tissue D. T. (2015) – Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth – Plant Cell and Environment 39: 3-11 – https://doi.org/10.1111/pce.12598https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12598 – (On our blog : https://plantstomata.wordpress.com/2019/09/21/how-nocturnal-stomatal-conductance-enhanced-carbon-assimilation-and-growth/ )

Resco de Dios V., Loik M. E., Smith R. A., Tissue D. T. (2019) – Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis – Forests 9: 319- – doi:10.3390/f9060319 forests-09-00319-v2.pdf – (On our blog : https://plantstomata.wordpress.com/2019/09/20/effects-of-a-heat-wave-on-nocturnal-stomatal-conductance/ )

Resco de Dios V., Roy J., Ferrio J. P., Alday J. G., Landais D., Milcu A., Gessler A. (2015) – Processes driving nocturnal transpiration and implications for estimating
land evapotranspiration – Scientific Reports 5: 10975 –

Resco de Dios V., Turnbull M. H., Barbour M. M., Ontedhu J., Ghannoum O., Tissue D. T. (2013) – Soil phosphorous and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis – Tree Physiol. 33: 1206–1215 – https://doi.org/10.1093/treephys/tpt091https://academic.oup.com/treephys/article/33/11/1206/1708550 – (On our blog : https://plantstomata.wordpress.com/2019/09/21/soil-p-and-endogenous-rhythms-exert-a-larger-impact-than-co2-or-temperature-on-nocturnal-stomatal-conductance/ )

Resemann A., Raschke K. (1984) – Midday depression in stomatal and photosynthetic activity of leaves of Arbutus unedo are caused by large water-vapor pressure differences between leaf and air – Plant Physiol 75: Suppl. 66 –

Retallack G. J. (2001) – A 300-million year record of atmospheric carbon dioxide for fossil plant cuticles – Nature 411: 287-290 –

Retallack G. J., Giselle D. Conde G. D. (2020) – Flooding Induced by Rising Atmospheric Carbon Dioxide – GSA Today 30 – https://doi.org/10.1130/GSATG427.1https://bpb-us-e1.wpmucdn.com/blogs.uoregon.edu/dist/d/3735/files/2020/08/Retallack-and-Conde-2020-flooding-CO2.pdf – (On our blog : https://plantstomata.wordpress.com/2023/03/11/113795/ )

Reyenga T. W., Karstens W. K. H. (1964) – Changes in the epidermal pattern of the sepals of Hydrangea macrophylla (Thunb.) D. C., “Otaksa” in their successive growth phases, formation of new stomata, disintegration of old stomata – Acta Botanica Neerlandica 13: 340-351 – file:///C:/Users/wille/Downloads/ABN1964013003002.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/12/newly-formed-stomata-cause-a-considerable-increase-in-the-stomatal-frequency-and-in-the-stomata-index/ )

Reynolds-Henne C. E., Langenegger A., Mani J., Schenk N., Zumsteg A., Feller U. (2010) – Interactions between temperature, drought and stomatal opening in legumes – Environmental and Experimental Botany 68: 37–43 – https://boris.unibe.ch/5379/1/2010_JExpBot_68_37.pdf – (On our blog : https://plantstomata.wordpress.com/2020/02/25/interactions-between-temperature-drought-and-stomatal-opening/ )

Rhine J. B. (1924) – Clogging of Stomata of Conifers in Relation to Smoke Injury and Distribution – Botanical Gazette Vol. 78, No. 2 (Oct., 1924), pp. 226-232 –https://www.jstor.org/stable/2469885?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/30/smoke-injury-and-clogging-of-stomata/ )

Rho H.,Van Epps V., Wegley N.,Doty S. I.,Kim S.-H. (2018) – Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice – Front Plant Sci. 9: 188 –   – doi:  10.3389/fpls.2018.00188 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840156/ – (On our blog : https://plantstomata.wordpress.com/2018/07/30/the-physiological-mechanisms-of-plant-endophyte-interactions-involving-plant-water-relations-and-stomatal-functions/ )

Ribeiro M. R. 1, Trindade R. dos S. 2, Souza I. R. P. de 2, Carneiro A. A. 2, Azevedo T. C. de 2, Guimarães L. J. M. 2, Chaves S. F. da S. 1, L. A. dos S. Dias 1 (2022) – Are stomatal area and stomatal density reliable traits for identification of doubled haploids in maize ? – Crop Breeding and Applied Biotechnology22(2): e42222226 – https://doi.org/10.1590/1984 -70332022v22n2a16 – https://www.scielo.br/j/cbab/a/RbLWDRG7RhVB4FhgDT8V95y/?format=pdf&lang=en – (On our blog : https://plantstomata.wordpress.com/2022/11/29/stomata-and-identification-of-doubled-haploids-in-maize/ )

Říčánek M., Vicherková M. (1992) – Stomatal responses to ABA and IAA in isolated epidermal strips of Vicia faba L. – Biol. Plant. 34: 259–265 – DOI: 10.1007/BF02925879 – https://www.researchgate.net/publication/226240582_Stomatal_responses_to_ABA_and_IAA_in_isolated_epidermal_strips_ofVicia_faba_L – (On our blog : https://plantstomata.wordpress.com/2019/05/28/stomatal-responses-to-aba-and-iaa/ )

Ricciardi L. (1984) – Plant breeding for resistance to drought II. Relationships between stomatal and agronomic traits in Vicia faba L. genotypes – Agric. Meditteranea 119: 424-434 – (Article not found)

Ricciardi L. (1989) – Plant breeding for resistance to drought. I: Stomatal traits in genotypes of Vicia faba L. – Agric. Mediter. 119: 297-308 –

Ricciardi L., Filippetti A., Torre F. (1986) – Plant breeding for drought stress: 1. Stomatal variability in Vicia faba L. – Gene. Agraria 40: 470-470 –

Ricciardi L., Steduto P. (1988) – Leaf water potential and stomatal resistance variations in Vicia faba L. – Fabis Newslett. 20: 21-24 –

Rich M. K., Delaux P.-M. (2020) – Plant Evolution: When Arabidopsis Is More Ancestral Than Marchantia – Current Biology 30(11): 642-644 – https://doi.org/10.1016/j.cub.2020.04.077https://www.cell.com/current-biology/fulltext/S0960-9822(20)30593-5 – (On our blog : https://plantstomata.wordpress.com/2023/02/27/113451/ )

Rich S., (1963) – The role of stomata in plant disease – In: New Haven Conn. Agr. Exp. Sta. Bull 664-665 – in I. Zelitch (ed.) – “Stomata and Water Relations in Plants” 102-114 –

Rich S., Turner N. C. (1968) – Ozone damage to tobacco leaves related to stomatal conductivity through the lower surface – Phytopathology 58: 1064 (Abstr.)

Rich S., Turner N. C. (1972) – Importance of moisture on stomatal behavior of plants subjected to ozone – J. of the Air Pollution Control Association 22: 718-721 – https://doi.org/10.1080/00022470.1972.10469706https://www.tandfonline.com/doi/abs/10.1080/00022470.1972.10469706 – (On our blog : https://plantstomata.wordpress.com/2021/10/19/moisture-and-stomatal-behavior-of-plants-subjected-to-ozone/ )

Richards J. (2016) – New study of water-saving plants advances efforts to develop drought-resistant crops – EurekAlert 2016-12-05 –https://www.eurekalert.org/pub_releases/2016-12/drnl-nso120516.php – (https://plantstomata.wordpress.com/2016/12/07/29113/ )

Richardson C. J., Dinger B. E., Harris W. F. (1973) – The Use of
Stomatal Resistance, Photopigments, Nitrogen, Water Potential, and Radiation to Estimate Net Photosynthesis in Liriodendron tulipifera L. —
A Physiological Index – PhD Thesis OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830 – https://www.osti.gov/servlets/purl/4524949 – (On our blog : https://plantstomata.wordpress.com/2021/10/30/the-use-of-stomatal-resistance-to-estimate-net-photosynthesis/ )

Richardson F., Brodribb T. J., Jordan G. J. (2017) – Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand – Tree Physiology 37: 869–878 doi:10.1093/treephys/tpx073 – http://www.brodribblab.org.au/wp-content/uploads/2017/08/Amphistomatic-leaf-surfaces-independently-regulate-gas-exchange-in-response-to-variations-in-evaporative-demand.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/amphistomatic-leaf-surfaces-independently-regulate-gas-exchange/ )

Richardson F., Jordan G. J., Brodribb T. J. (2020) –  Leaf hydraulic conductance is linked to leaf symmetry in bifacial, amphistomatic leaves of sunflower – J Exp Bot 71(9): 2808-2816 – doi: 10.1093/jxb/eraa035https://pubmed.ncbi.nlm.nih.gov/31970417/ – (On our blog : https://plantstomata.wordpress.com/2021/03/29/is-amphistomaty-associated-with-higher-hydraulic-efficiency-compared-with-hypostomatic-leaves/ )

Richardson L. G., Torii K. U. (2013) – Take a deep breath: peptide signalling in stomatal patterning and differentiation – J Exp Bot. 64(17): 5243-5251 – doi: 10.1093/jxb/ert246 – Epub 2013 Aug 30 – https://www.ncbi.nlm.nih.gov/pubmed/23997204 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/to-understand-the-molecular-mechanisms-involved-in-cell-cell-communication-during-stomatal-development/ )

Richardson M. D., Hoveland C. S., Bacon C. W. (1993) – Photosynthesis and stomatal conductance of symbiotic arid nonsymbiotic tall fescue – Crop Science 33: 145– 149 – doi:10.2135/cropsci1993.0011183X003300010026x – https://dl.sciencesocieties.org/publications/cs/abstracts/33/1/CS0330010145 – (On our blog : https://plantstomata.wordpress.com/2019/09/26/photosynthesis-and-stomatal-conductance-of-symbiotic-arid-nonsymbiotic-tall-fescue/ )

Ridolfi M., Garrec J.-P. (2000) – Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves – Ann. For. Sci. 57(3): 209 – 218 – DOI: 10.1051/forest:2000112 – https://www.afs-journal.org/articles/forest/abs/2000/03/f0302/f0302.html – (On our blog : https://plantstomata.wordpress.com/2017/11/24/excess-al-associated-to-low-ca-and-mg-nutrition-lead-to-a-strong-stomatal-dysfonction/ )

Ridolfi M., Garrec J.-P. , Louguet P., Laffay D. (1994) – Effects of potassium and calcium deficiencies on stomatal functioning in intact leaves of Vicia faba L. – Can J
Bot 72: 1835-1842 –

Ridolfi M., Fauveau M. L., Label P., Garrec J. P., Dreyer E.. (1996) – Responses to water stress in an ABA-unresponsive hybrid poplar, Populus koreana × trichocarpa cv. Peace. I. Stomatal function. – New Phytol. 134: 445–454 – https://doi.org/10.1111/j.1469-8137.1996.tb04361.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1996.tb04361.x – (On our blog : https://plantstomata.wordpress.com/2018/06/14/drought-control-of-stomatal-conductance-is-aba%e2%80%90independent-and-could-involve-calcium-ions/

Ridolfi M., Roupsard O., Garrec J. P., Dreyer E. (1996) – Effects of a calcium deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution – Annales des Sciences Forestières > 1996 > 53 > 2-3 > 325-335 – ISSN :0003-4312 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0234dd50-d101-38e8-8422-f8dd781d8c17 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/effects-of-a-calcium-deficiency-on-stomatal-conductance/ )

Rienmüller F., Beyhl D., Lautner S., Fromm J., Al-Rasheid K. A. S., Ache P., et al. (2010) – Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels – Plant Cell Physiol. 51: 1548–1554 – doi: 10.1093/pcp/pcq102 – https://www.ncbi.nlm.nih.gov/pubmed/20630987 – (On our blog : https://plantstomata.wordpress.com/2018/06/14/stomatal-specific-calcium-sensitivity-of-high-density-and-activity-sv-tpc1-channels/ )

Ríos-Rojas L., Morales-Moraga D., Alcalde J. A., Gurovich L. A. (2015) – Use of plant woody species electrical potential for irrigation scheduling – Plant Signal Behav. 10(2): e976487 – doi: 10.4161/15592324.2014.976487https://pubmed.ncbi.nlm.nih.gov/25826257/ – (On our blog : https://plantstomata.wordpress.com/2022/03/09/stomata-and-electrical-potential-for-irrigation-scheduling/ )

Ripley B. S., Gilbert M. E., Ibrahim D. G., Osborne C. P. (2007) – Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata – Journal of Experimental Botany 58: 1351–1363 – doi:10.1093/jxb/erl302 – https://www.ncbi.nlm.nih.gov/pubmed/17322550 – (On our blog : https://plantstomata.wordpress.com/2018/12/28/stomatal-and-metabolic-limitations-in-c3-and-c4-subspecies/ )

Ripullone F., Guerrieri M. R., Nole A., Magnani F., Borghetti M. (2007) – Stomatal conductance and leaf water potential responses
to hydraulic conductance variation in Pinus pinaster seedlings – Trees – DOI 10.1007/s00468-007-0130-6 – Stomatal_conductance_and_leaf_water_pote.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/stomatal-conductance-and-leaf-water-potential-responses-to-hydraulic-conductance-variation/ )

Rischbeck P., Cardellach P., Mistele B., Schmidhalter U. (2017) – Thermal phenotyping of stomatal sensitivity in spring barley – Journal of Agronomy and Crop Science 203: 483–493 – https://doi.org/10.1111/jac.12223https://onlinelibrary.wiley.com/doi/abs/10.1111/jac.12223 – (On our blog : https://plantstomata.wordpress.com/2021/01/06/stomatal-sensitivity-negatively-impacts-agricultural-production-under-well%e2%80%90watered-conditions-but-maintains-productivity-under-conditions-of-terminal-drought/ )

Ritte G., Raschke K. (2003) – Metabolite export of isolated guard cell chloroplasts of Vicia faba – New Phytologist 159: 195–202 – https://doi.org/10.1046/j.1469-8137.2003.00789.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.1469-8137.2003.00789.x – (On our blog : https://plantstomata.wordpress.com/2018/12/28/metabolites-released-by-illuminated-stomatal-chloroplasts-originated-predominantly-from-starch-breakdown/ )

Ritte G., Rosenfeld J., Rohrig K., Raschke K. (1999) – Rates of sugar uptake by guard cell protoplasts of Pisum sativum L. – Related to the solute requirement for stomatal opening – Plant Physiol 121: 647–656 – doi: 10.1104/pp.121.2.647 – http://www.plantphysiol.org/content/121/2/647 – (On our blog : https://plantstomata.wordpress.com/2018/12/28/rates-of-sugar-uptake-by-stomatal-guard-cell-protoplasts/ )

Ritter A, Regalado C. M. (2017) – Tree stomata conductance estimates of a wax myrtle-tree heath (fayal-brezal) cloud forest as affected by fog – Agricultural and Forest Meteorology 247: 116-130 – ISSN: 0168-1923 – doi: 10.1016/j.agrformet.2017.07.021 – Web of Science Id : WOS:000416186700011https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/4307652 – (On our blog : https://plantstomata.wordpress.com/2022/02/28/tree-stomata-conductance-estimates-as-affected-by-fog/ )

Rivera P., Villaseñor J. L., Terrazas T. (2017) – Meso- or xeromorphic? Foliar characters of Asteraceae in a xeric scrub of Mexico – Bot Stud 58: 12 – https://doi.org/10.1186/s40529-017-0166-xhttps://as-botanicalstudies.springeropen.com/articles/10.1186/s40529-017-0166-x#citeas – (On our blog : https://plantstomata.wordpress.com/2022/06/18/epidermal-and-stomatal-traits-of-asteraceae-leaves-in-a-xeric-scrub-of-mexico/ )

Roark B., Quisenberry J. E. (1977) – Environmental and genetic components of stomatal behaviour in two genotypes of upland cotton – Plant Physiol. 59: 354-356 –

Robaina-Estévez S., Daloso D. M., Zhang Y., Fernie A. R., Nikoloski Z. (2017) – Resolving the central metabolism of Arabidopsis guard cells – Scientific Reports 7, Nt.: 8307 – doi:10.1038/s41598-017-07132-9 – https://www.nature.com/articles/s41598-017-07132-9 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/55316)

Robatzek S., Lozano-Duran R., Bourdais G., Zhou J. (2012) – Guarding the gates: Stomatal responses to pathogens – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomatal-responses-to-pathogens/ )

Roberntz P., Stockfors J. (1998) – Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees – Tree Physiology 18: 233–241 –

Roberts C., Sahgal P., Merritt F., Perlman B.,Tallman G., (1995) – Temperature and Abscisic Acid Can Be Used to Regulate Survival, Growth, and Differentiation of Cultured Guard Cell Protoplasts of Tree Tobacco – Plant Physiology 109(4): 1411-1420 – DOI: 10.2307/4276945https://eurekamag.com/research/002/976/002976099.php – (On our blog : https://plantstomata.wordpress.com/2021/10/22/effects-of-temperature-and-aba-on-stomatal-cultures-guard-cell-protoplasts/ )

Roberts C., Sahgal P., Tallman G., (1994) – Effects of temperature and abscisic acid on survival and differentiation of cultured guard cell protoplasts of Nicotiana glauca – Plant Physiology (Rockville) 105(1 Suppl. ): 121 – https://eurekamag.com/research/031/186/031186033.php

Roberts J ., Cabral O. M. R., de Aguiar L. F. (1990) – Stomatal and
boundary-layer conductances in an Amazonian terra firme rain
forest – Journal of Applied Ecology 27: 336-353 –

Roberts J., Wallace J. S., Pitman R. M. (1984) – Factors Affecting Stomatal Conductance of Bracken Below a Forest Canopy – Journal of Applied Ecology 21(2): 643-655 – DOI: 10.2307/2403435 – https://www.jstor.org/stable/2403435?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/21/factors-affecting-stomatal-conductance-below-a-forest-canopy/ )

Robertson B. C., He T., Li C. (2021) – The Genetic Control of Stomatal Development in Barley: New Solutions for Enhanced Water-Use Efficiency in Drought-Prone Environments – Agronomy 11(8): 1670 – https://doi.org/10.3390/agronomy11081670https://www.mdpi.com/2073-4395/11/8/1670 – (On our blog : https://plantstomata.wordpress.com/2023/03/12/improved-understanding-of-the-genetic-regulation-of-stomatal-development-in-the-grasses-provides-significant-promise-to-improve-cereal-adaptivity-in-drought-prone-environments-whilst-maximising-yield/ )

Robertson R. N. (1936) – The stomatal apparatus: The path of the gas supply in plants – 8610-22442-1-SM.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/22/stomata-and-gas-supply-in-plants/ )

Robinett T. W., Kolassa J., Zhao M., Liu Y., Shiklomanov A. N., Konings A. G. (2022) – B12E-1114 – Use of an environmental filtering parameterization of stomatal conductance in the Catchment-CN land surface model – AGU Fall Meeting – https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1097081 – (On our blog : https://plantstomata.wordpress.com/2023/01/30/a-method-for-sub-pft-parameterization-of-stomatal-traits-in-lsms-to-predict-vegetation-response-to-a-changing-climate/ )

Robinson J. M. (1994) – Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization – Plant, Cell & Environment 17: 345-354 –

Robinson M. F., Heath J., Mansfield T. A. (1998) – Disturbances in stomatal behaviour caused by air pollutants – Journal of Experimental Botany 49: 461-470 – https://doi.org/10.1093/jxb/49.Special_Issue.461https://academic.oup.com/jxb/article/49/Special_Issue/461/508011 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/air-pollutants-and-stomatal-behaviour/ )

Robinson M. F., Véry A.-A., Sanders D., Mansfield T. A. (1997) – How Can Stomata Contribute to Salt Tolerance?  – Annals of Botany 80(4): 387–393 –  https://doi.org/10.1006/anbo.1996.0435https://academic.oup.com/aob/article/80/4/387/2587680 – (On our blog : https://plantstomata.wordpress.com/2021/03/18/two-alternative-adaptations-that-occur-in-the-stomata-of-halophytes/ )

Robinson N., Preiss J. (1985) – Biochemical phenomena associated with stomatal function. – Physiol. Plantarum 64: 141-146 – https://doi.org/10.1111/j.1399-3054.1985.tb02327.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1985.tb02327.x – (On our blog : https://plantstomata.wordpress.com/2018/06/14/stomatal-function-and-biochemical-phenomena/ )

Robredo A., Pérez-Lopez U., Sainz de la Maza H., Gonzalez-Moro B., Lacuesta M., Mena-Petite A., Alberto Munoz-Rueda A. (2007) – Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis – Environmental and Experimental Botany 59 : 252–263 – Elevated_CO2_alleviates_the_impact_of_dr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/co2-drought-and-improvement-of-water-status-by-lowering-stomatal-conductance/ )

Roccío A., Elvira S., Sanz M. J., Emberson L., Gimeno B. S. (2007) – Parameterization of the Stomatal Component of the DO3SE Model for Mediterranean Evergreen Broadleaf Species – The Scientific World Journal 7: 119-127 – doi:10.1100/tsw.2007.27 – https://www.ncbi.nlm.nih.gov/pubmed/17450288 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/parameterization-of-the-stomatal-component-of-the-do3se-model/ )

Rocha-Uriartt L., Marques Corta G., Gehlen G., Droste A., Schmitt J. L. (2014) – Morphometric differences of Microgramma squamulosa (Kaulf.) de la Sota (Polypodiaceae) leaves in environments with distinct atmospheric air quality – Anais da Academia Brasileira de Ciências 86(3):1137-46. – DOI: 10.1590/0001-3765201420130094 ·Source: PubMed – https://www.ncbi.nlm.nih.gov/pubmed/25014917 – (https://plantstomata.wordpress.com/2017/01/16/stomata-of-a-fern-in-environments-with-distinct-atmospheric-air-quality/ )

Roche D. (2015) – Stomatal conductance is essential for higher yield potential of C3 crops. – Crit. Rev. Plant Sci. 34, 429–453. – doi: 10.1080/07https://www.ncbi.nlm.nih.gov/pubmed/16101906352689.2015.10 23677 – https://www.tandfonline.com/doi/abs/10.1080/07352689.2015.1023677 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/stomatal-conductance-and-c3-crops/ )

Rochette P., Pattey E., Desjardins R. L., Dwyer L. M., Stewart D. W., Dube P. A. (1991) – Estimation of maize ( Zea mays L.) canopy conductance by scaling up leaf stomatal conductance – Agricultural and Forest Meteorology 54: 241–261 – https://doi.org/10.1016/0168-1923(91)90008-E –https://www.sciencedirect.com/science/article/pii/016819239190008E – (On our blog : https://plantstomata.wordpress.com/2018/12/28/estimation-of-canopy-conductance-by-scaling-up-leaf-stomatal-conductance/ )

Rockwell F. E., Holbrook N. M. (2017) – Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective – Plant Physiology – DOI: https://doi.org/10.1104/pp.17.00303http://www.plantphysiol.org/content/174/4/1996 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/leaf-hydraulic-architecture-and-stomatal-conductance/ )

Rodolfi M., Barbanti  L., Cristiana Giordano C., Massimiliano Rinaldi M., Andrea Fabbri A., Luca Pretti L., Riccardo Casolari R., Deborah Beghé D., Raffaella Petruccelli R., Tommaso Ganino, (2021) – The Effect of Different Organic Foliar Fertilization on Physiological and Chemical Characters in Hop (Humulus lupulus L., cv Cascade) Leaves and Cones – MDPI 11(15) – doi: 10.3390/app11156778  – https://www.mdpi.com/2076-3417/11/15/6778/htm – (On our blog : https://plantstomata.wordpress.com/2022/06/08/density-of-the-stomata-number-of-stomata-per-square-mm-and-stomatal-functionality-ratio-pd-ed/ )

Rodrigues M. (2023) – Small shrubs may have played a large role in decarbonizing the ancient atmosphere – Eos: 104 –  https://doi.org/10.1029/2023EO230041https://eos.org/articles/small-shrubs-may-have-played-a-large-role-in-decarbonizing-the-ancient-atmosphere – (On our blog : https://plantstomata.wordpress.com/2023/02/13/stomata-and-small-plants-in-shaping-ancient-environments/ )

Rodrigues M. L., Santos T. P., Rodrigues A. P., de Souza C. R., Lopes C. M., Maroco J. P., Pereira J. S., Chaves M. M. (2008) – Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation – Functional Plant Biology 35(7): 565-579 – https://doi.org/10.1071/FP08004http://www.publish.csiro.au/fp/FP08004 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/hydraulic-feedback-and-feed-forward-root-to-shoot-chemical-signalling-mechanisms-might-be-involved-in-the-control-of-stomata/ )

Rodrigues O., Reshetnyak G., Grondin A., Leonhardt N., Verdoucq L., Maurel C., Shan L., He P. (2020) – Stomatal movements in response to stress, a story of channels – Presentation at Conference: 12th Japan-US Seminar in Plant Biology “Remodeling of the plant-microbe environment during disease, defense and mutualism”, Early Career Symposium (Cornell University, USA)

Rodrigues O., Reshetnyak G., Grondin A., Saijo Y., Leonhardt N., Maurel C., Verdoucq L. (2017) – Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure – Proceedings of the National Academy of Sciences 114(34): 9200-9205 –doi:10.1073/pnas.1704754114

Rodrigues O., Reshetnyak G., Grondin A., Saijo Y., Leonhardt N., Maurel C., Verdoucq L. (2017) – Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure – PNAS 114(34): 9200-9205 – https://doi.org/10.1073/pnas.1704754114https://www.pnas.org/content/114/34/9200 – (On our blog : https://plantstomata.wordpress.com/2019/08/16/a-signaling-role-of-plasma-membrane-aquaporins-in-stomatal-guard-cells/ )

Rodrigues O., Shan L. (2022) – Stomata in a state of emergency: H2O2 is the target locked – Trends in Plant Science 27(3): 274-286 – ISSN:1360-1385 – https://pubag.nal.usda.gov/catalog/7553231https://doi.org/10.1016/j.tplants.2021.10.002https://www.cell.com/trends/plant-science/fulltext/S1360-1385(21)00277-6?rss=yes&utm_source=dlvr.it&utm_medium=twitter – (On our blog : https://plantstomata.wordpress.com/2022/01/29/h2o2-and-stomata/ )

Rodrigues Oblessuc P., Vaz Bisneta M., Melotto M. (2019) – Common and unique Arabidopsis proteins involved in stomatal susceptibility to Salmonella enterica and Pseudomonas syringae – FEMS Microbiology Letters 366(16): fnz197 – https://doi.org/10.1093/femsle/fnz197https://academic.oup.com/femsle/article/366/16/fnz197/5570581?login=true – (On our blog : https://plantstomata.wordpress.com/2021/01/03/exo70h4-and-sce1-are-involved-in-bacterial-specific-responses-while-bbe8-stp1-and-lsu2-may-be-required-for-stomatal-response-to-a-broad-range-of-bacteria/ )

Rodrigues S. P., Picoli E. A. de T., Oliveira D. C. de, Carneiro R. G. da S., Isaias R. M. dos S. (2014) – The effects of in vitro culture on the leaf anatomy of Jatropha curcas L. (Euphorbiaceae) – EFEITOS DA CULTURA IN VITRO NA ANATOMIA FOLIAR DE Jatropha curcas L. (Euphorbiaceae) – Biosci. J., Uberlândia 30(6): 1933-1941 – https://docs.bvsalud.org/biblioref/2018/11/948541/the-effects-of-in-vitro-culture-on-the-leaf-anatomy-of-jatropha_OmkpFzc.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/15/99881/ )

Rodrigues W. P., Silva J. R., Ferreira L. S., Machado Filho J. A., Figueiredo F. A. M. M. A., Ferraz T. M., Bernado W. P., Bezerra L. B. S., de Abreu D. P., Cespom L., Ramalho J. C., Campostrini E. (2018) –  Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures – Crop and Pasture Science 69(3): 317-325 – https://doi.org/10.1071/CP17044https://bioone.org/journals/Crop-and-Pasture-Science/volume-69/issue-3/CP17044/Stomatal-and-photochemical-limitations-of-photosynthesis-in-coffee-iCoffea-i/10.1071/CP17044.short – (On our blog : https://plantstomata.wordpress.com/2020/07/03/stomatal-and-photochemical-limitations-of-photosynthesis/ )

Rodriguez J. L., Davies W. J. (1982) – The effects of temperature and ABA on stomata of Zea mays L. – J. Exp. Bot. 33, 977–987. – doi: 10.1093/jxb/33. 5.977 – https://academic.oup.com/jxb/article-abstract/33/5/977/566674?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/06/15/effects-of-temperature-and-aba-on-stomata/ )

Rodriguez-Dominguez C. M., Brodribb T. J. (2020) – Declining root water transport drives stomatal closure in olive under moderate water stress –  New Phytologist 225: 126–134 – DOI: 10.1111/nph.16177 – Epub 2019 Sep 21 – https://pubmed.ncbi.nlm.nih.gov/31498457/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/declining-root-water-transport-drives-stomatal-closure/ )

Rodriguez-Dominguez C. M., Buckley T. N., Egea G., de Cires A., Hernandez-Santana V., Martorell S., Diaz-Espejo A. (2016) – Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor – Plant, Cell and Environment 39: 2014–2026 – https://doi.org/10.1111/pce.12774  – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12774 – (On our blog : https://plantstomata.wordpress.com/2018/12/28/reduced-stomatal-conductance-during-soil-drought-may-result-from-effects-of-leaf-turgor-on-stomata/ )

Rodríguez Domínguez C. M., Duddek P., Burlett R., Cochard H., Delzon S., Mantova M., Torres R., José M., Trueba S., Bourbia I., Brodribb T. J., Mutez A. A. (2021) – Connecting the dots between root, xylem and stomata – XXIV Reunión de la Sociedad Española de Biología de Plantas y XVII Congreso Hispano-Luso de Biología de Plantas. Book of abstracts: 238-239 – http://hdl.handle.net/10261/250960https://digital.csic.es/handle/10261/250960 – (On our blog : https://plantstomata.wordpress.com/2022/04/28/the-loss-of-contact-between-roots-and-soil-and-probably-other-root-cortex-modifications-triggered-stomatal-closure-and-transpiration-reduction/ )

Rodriguez-Dominguez C. M., Hernandez-Santana V., Buckley T. N., Fernandez J. E., Diaz-Espejo A. (2019) – Sensitivity of leaf turgor to air vapour pressure deficit correlates with maximum stomatal conductance – Agricultural and Forest Meteorology 272: 156-165 – DOI: 10.1016/j.agrformet.2019.04.006https://www.researchgate.net/publication/332672563_Sensitivity_of_olive_leaf_turgor_to_air_vapour_pressure_deficit_correlates_with_diurnal_maximum_stomatal_conductance – (On our blog : https://plantstomata.wordpress.com/2020/09/02/sensitivity-of-leaf-turgor-to-air-vapour-pressure-deficit-correlates-with-maximum-stomatal-conductance/ )

Rodriguez-Gamir J., Ancillo G., González-Mas M. C., Primo-Millo E., Iglesias D. J., Forner-Giner M. A. (2011) – Root signalling and modulation of stomatal closure in flooded citrus seedlings – Plant Physiol Biochem 49(6): 636-645 – doi: 10.1016/j.plaphy.2011.03.003 – Epub 2011 Mar 12 – https://pubmed.ncbi.nlm.nih.gov/21459591/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/root-signalling-and-modulation-of-stomatal-closure/ )

Rodriguez-Gamir J., Xue J., Clearwater M. J., Meason Dean F., Clinton P. W., Domec J.-C. (2018) – Aquaporin regulaton in roots controls plant hydraulic conductance, stomatal conductance and leaf water potential in Pinus radiata under water stress – Plant, Cell & Environment – https://doi.org/10.1111/pce.13460 – Accepted, unedited article published online and citable – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13460?af=R – (On our blog : https://plantstomata.wordpress.com/2018/10/13/higher-kplant%e2%80%90l-is-associated-with-water-stress-resistance-by-sustaining-a-less-negative-%cf%88leaf-and-delaying-stomatal-closure/ )

Rodríguez Rodríguez S., Ortega E., Silva Pupo J. J. (2017) – Effect of flooding on stomatal density and stomatal length in six sugarcane genotypes – Int. J. Advanc. Res. (IJAR) 5(6): 709-718 – DOI: 10.21474/IJAR01/4469https://www.journalijar.com/article/18035/effect–of–flooding–on–stomatal–density–and–stomatal–length–in–six–sugarcane–genotypes/ – (On our blog : https://plantstomata.wordpress.com/2021/12/12/oxygen-deficiency-in-flooding-soil-induces-morphologic-changes-in-the-stomatal-density-and-length/ )

Roedhy Poerwanto R. B., and E. S. D. Efendi, Andria Agusta E. S. D. A. (1920) – Agronomical and Physiological Characters of Kaffir Lime (Citrus HystrixDC) Seedling under Artificial Shading and Pruning – Emirates Journal of Food and Agriculture 31(3): 222-230 – https://doi.org/10.9755/ejfa.2019.v31.i3.1920 – https://ejfa.me/index.php/journal/article/view/1920 – (On our blog : https://plantstomata.wordpress.com/2022/03/05/stomatal-conductance-under-artificial-shading-and-pruning/ )

Roelfsema M. R. G. (2017) – Evolution of stomatal movements – https://www.biozentrum.uni-wuerzburg.de/en/bot1/research/privdoz-dr-rob-roelfsema/evolution-of-stomatal-movements/ – (On our blog : https://plantstomata.wordpress.com/2022/03/22/stomatal-movements-evolution/ )

Roelfsema M. R. G., Hanstein S., Felle H. H., Hedrich R. (2002) – CO2 provides an intermediate link in the red light response of guard cells – Plant J. 32: 65–75 – https://doi.org/10.1046/j.1365-313X.2002.01403.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2002.01403.x – (On our blog : https://plantstomata.wordpress.com/2018/12/28/in-intact-leaves-the-red-light-response-of-stomatal-guard-cells-is-mediated-through-a-decrease-of-the-intercellular-co2-concentration/ )

Roelfsema M. R. G., Hedrich R. (2002) – Studying guard cells in the intact plant: modulation of stomatal movement by apoplastic factors – New Phytol. 153, 425–431 – doi: 10.1046/j.1469-8137.2002.00344.x – https://doi.org/10.1046/j.0028-646X.2001 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.0028-646X.2001.Documedoc.doc.x – (On our blog : https://plantstomata.wordpress.com/2018/12/29/modulation-of-stomatal-movement-by-apoplastic-factors-2/ )

Roelfsema M. R. G., Hedrich R. (2005) – In the light of stomatal opening: new insights into ‘the Watergate’ – New Phytol. 167: 665–691 – doi: 10.1111/j.1469- 8137.2005.01460.x – https://www.ncbi.nlm.nih.gov/pubmed/16101906 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/new-insights-in-stomatal-opening/ )

Roelfsema M. R. G., Hedrich R. (2009) – Stomata – eLS – https://doi.org/10.1002/9780470015902.a0002075.pub2 – https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470015902.a0002075.pub2 – (On our blog : https://plantstomata.wordpress.com/2018/08/02/stomata-5/ )

Roelfsema M. R. G., Hedrich R. (2010) – Making sense out of Ca2+signals: their role in regulating stomatal movements – Plant Cell Environ. 33, 305–321 – doi: 10.1111/j.1365-3040.2009.02075.x – Epub 2009 Nov 11 – https://www.ncbi.nlm.nih.gov/pubmed/19906147 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/ca2signals-their-role-in-regulating-stomatal-movements/ )

Roelfsema M. R. G., Hedrich R. (2016) – In the light of stomatal opening: new insights into ‘the Watergate’ – New Phytologist 208(4): 935-937 –

Roelfsema M. R. G., Hedrich R., Geiger D. (2012) – – Anion channels: master switches of stress responses – Trends Plant Sci. 17(4): 221-229 – doi: 10.1016/j.tplants.2012.01.009 – https://www.ncbi.nlm.nih.gov/pubmed/22381565?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/12/03/anion-channels-serve-a-general-function-as-master-switches-of-stress-responses-e-g-in-stomata/ )

Roelfsema M. R. G., Kollist H. (2013) – Tiny pores with a global impact – New Phyto 197: 11–15 – https://doi.org/10.1111/nph.12050https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.12050 – (On our blog : https://plantstomata.wordpress.com/2021/03/31/stomata-are-not-only-of-crucial-importance-for-plant-growth-and-agriculture-but-also-have-a-major-impact-on-our-climate/ )

Roelfsema M. R. G., Konrad K. R., Marten H., Psaras G. K., Hartung W., Hedrich R.. (2006) – Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid –  Plant, Cell & Environment 29: 1595–1605 – DOI: 10.1111/j.1365-3040.2006.01536.x – CrossRefMedlineGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01536.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-function-of-stomata-in-albino-leaf-patches/ )

Roelfsema M. R. G., Levchenko V., Hedrich R. (2004) – ABA depolarizes guard cells in intact plants through a transient activation of R- and S-type anion channels. – Plant Journal 37: 578–588. – doi:10.1111/j.1365-313X.2003.01985.x pmid:14756768 – CrossRefMedlineWeb of ScienceGoogle Scholar  – https://www.ncbi.nlm.nih.gov/pubmed/14756768 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/aba-depolarizes-guard-cells-in-intact-plants/ )

Roelfsema M. R. G., Prins H. B. A. (1995) – Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana – Physiologia Plantarum 95: 373–378 – DOI: 10.1111/j.1399-3054.1995.tb00851.x – Wiley Online Library |CAS | CrossRefGoogle Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1995.tb00851.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/effect-of-aba-on-stomatal-opening-in-abi-mutants-of-arabidopsis/ )

Roelfsema M. R. G., Prins H. B. A. (1997) – Ion channels in guard cells of Arabidopsis thaliana (L) Heynh – Planta 202 (1): 18–27 – DOI: 10.1007/s004250050098 –https://link.springer.com/article/10.1007/s004250050098 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/arabidopsis-thaliana-stomata-provide-an-excellent-system-for-the-study-of-signal-transduction-processes/ )

Roelfsema M. R. G., Prins H. B. A. (1998) – The membrane potential of Arabidopsis thaliana guard cells; depolarizations induced by apoplatic acidification – Planta 205: 100-112 – DOI: 10.1007/s004250050301 –https://www.ncbi.nlm.nih.gov/pubmed/9599807 – (On our blog : https://plantstomata.wordpress.com/2018/12/30/apoplastic-acidification-will-increase-the-k-efflux-in-the-depolarized-state-and-reduce-the-k-influx-in-the-hyperpolarized-state-in-stomata-2/ )

Roelfsema M. R. G., Staal M., Prins H. B. A. (1998) – Blue light‐induced apoplastic acidification of Arabidopsis thaliana guard cells: inhibition by ABA is mediated through protein phosphates – Physiologia Plantarum 103: 466-474 – https://doi.org/10.1034/j.1399-3054.1998.1030404.x –https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.1998.1030404.x – (On our blog : https://plantstomata.wordpress.com/2018/12/30/blue-light%e2%80%90induced-apoplastic-acidification-of-stomata/ )

Roelfsema M. R. G., Steinmeyer R., Staal M., Hedrich R. (2001) – Single guard cell recordings in intact plants: light‐induced hyperpolarization of the plasma membrane – The Plant Journal 26: 1-13 – https://doi.org/10.1046/j.1365-313x.2001.01000.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313x.2001.01000.x – (On our blog : https://plantstomata.wordpress.com/2018/10/27/single-guard-cell-recordings-in-intact-plants-2/

Roessler P. G., Monson R. K. (1985) – Midday depression in net photosynthesis and stomatal conductance in Yucca glauca : Relative contributions of leaf temperature and leaf-to-air water vapor concentration difference – Oecologia 67(3): 380-387 –  doi: 10.1007/BF00384944 – https://pubmed.ncbi.nlm.nih.gov/28311572/ – (On our blog : https://plantstomata.wordpress.com/2021/02/27/the-threshold-temperature-for-stomatal-closure-matches-afternoon-leaf-temperatures/ )

Rogers C. (1980) – Dark Opening of Stomates of Vicia faba in CO(2)-free Air: EFFECT OF TEMPERATURE ON STOMATAL APERTURE AND POTASSIUM ACCUMULATION – Plant Physiol. 65(6): 1036-1038 – doi: 10.1104/pp.65.6.1036 – PMID: 16661325 – PMCID: PMC440475 – https://pubmed.ncbi.nlm.nih.gov/16661325/ – (On our blog : https://plantstomata.wordpress.com/2021/08/22/dark-opening-of-stomates/ )

Rogers C. A., Powell R. D., Sharpe P. J. H. (1979) – Relationship of Temperature to Stomatal Aperture and Potassium Accumulation in Guard Cells of Vicia faba – Plant Physiol. 63(2): 388–391 – DOI: https://doi.org/10.1104/pp.63.2.388http://www.plantphysiol.org/content/63/2/388.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/relationship-of-temperature-to-stomatal-aperture/ )

Rogers C. A., Sharpe P. J. H., Powell R. D. (1981) – High temperature disruption of guard cells of Vicia faba. Effect on stomatal aperture – Plant Physiol 67: 193-196

Rogiers S. Y., Clarke S. (2013) – Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines – Annals of Botany 111(3): 433-444 – doi:doi:10.1093/aob/mcs298 – https://researchdirect.westernsydney.edu.au/islandora/object/uws:43783/ – (On our blog : https://plantstomata.wordpress.com/2018/09/15/both-night-time-and-daytime-stomatal-conductance-are-responsive-to-root-zone-temperature/ )

Rogiers S. Y., Greer D. H., Hatfield J. M., Hutton R. J., Clarke S. J., Hutchinson P. A., Somers A. (2012) – Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid – Tree Physiol 32(3): 249-261 –  doi: 10.1093/treephys/tpr131 – Epub 2011 Dec 22 – https://pubmed.ncbi.nlm.nih.gov/22199014/ – (On our blog : https://plantstomata.wordpress.com/2020/07/15/stomatal-response-to-evaporative-demand-available-soil-moisture-and-aba/ )

Rogiers S. Y., Hardie W. J., Smith J. P. (2011) – Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide – Australian Journal of Grape and Wine Research 17(2):  – https://doi.org/10.1111/j.1755-0238.2011.00124.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-0238.2011.00124.x – (On our blog : https://plantstomata.wordpress.com/2018/03/29/stomatal-density-responds-to-soil-temperature-and-atmospheric-co2/ )

Romano A., Martins-Loução M. A. (2003) – Water Loss and Morphological Modifications in Leaves during Acclimatization of Cork Oak Micropropagated Plantlets – Acta Hort. 616, ISHS 2003, 439-442 – https://core.ac.uk/download/pdf/157588742.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/10/stomatal-density-stomatal-aperture-and-guard-cell-protuberance-decreased-during-the-acclimatization-period/ )

Romano L. A., Jacob T., Gilroy S., Assmann S. M. (2000) – Increases in cytosolic Ca2+ are not required for abscisic acid-inhibition of inward K+ currents in guard cells of Vicia faba L. – Planta 211: 209-217 – https://doi.org/10.1007/s004250000286https://link.springer.com/article/10.1007/s004250000286 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/ca2-independent-regulation-is-involved-in-aba-inhibition-of-stomatal-opening-processes-2/ )

Romero-Aranda R., Canto-Garay R., Fernandez P. F. (1994) – Distribution and density of stomata in two cultivars of Gerbera jamesonii and its relation to leaf conductance – Sci Hortic 58: 167–173 – https://doi.org/10.1016/0304-4238(94)90137-6https://www.sciencedirect.com/science/article/abs/pii/0304423894901376?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/03/10/distribution-and-density-of-stomata-and-its-relation-to-leaf-conductance/ )

Ronzier E., CorratgéFaillie C., Sanchez F., Prado K., BrièreC., Leonhardt N., Thibaud J. B., Xiong T. C. (2014) – CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening – Plant Physiol. 166: 314–326 – doi:http://dx.doi.org/10.1104/pp.114.240226 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/166/1/314.long – ( On our blog : https://plantstomata.wordpress.com/2017/01/25/cpk13-reduces-stomatal-aperture-through-its-inhibition-of-the-guard-cell-expressed-kat2-and-kat1-channels/ )

Roos J., Bejai S., Oide S., Dixelius C. (2014) – RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity – PloS one 9, e88187 – doi:10.1371/journal.pone.0088187 –http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088187 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/rabgap22-contributes-to-stomata-immunity/ )

Rosa L. M.,Dillenburg L. R., ForsethI. N.(1991) – Responses of soybean leaf angle, photosynthnesis and stomatal conductance to leaf and water potential – Annals of Botany 67: 51-58 – https://doi.org/10.1093/oxfordjournals.aob.a088099https://academic.oup.com/aob/article-abstract/67/1/51/257934?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2021/01/07/leaflet-angle-was-correlated-with-stomatal-conductance-and-photosynthetic-rate-suggesting-a-close-association-between-leaf-orientation-leaf-metabolism-and-soil-water-availability/ )

Rose M. A., Rose M. A. (1994) – Oscillatory transpiration may complicate stomatal conductance and gas-exchange measurements – HortScience 29: 693–694 – https://journals.ashs.org/hortsci/view/journals/hortsci/29/6/article-p693.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/08/oscillatory-transpiration-may-complicate-stomatal-conductance-and-gas-exchange-measurements/ )

Roselli G., Benelli G., Morelli D. (1989) – Relationship between stomatal density and winter hardiness in olive (Olea europaea L.) – J. Hort. Sc.Biotech. 64: 199-203 –

Rosen P. M., Musselman R. C., Kender W. J. (1978) – relationship of stomatal resistance to sulfur dioxide and ozone injury in grapevines – Scientific Horticulture 8: 137-142 –

Rossatto D. R., Kolb R. M. (2012) – Structural and functional leaf traits of two Gochnatia species from distinct growth forms in a sclerophyll forest site in Southeastern Brazil – Acta Bot. Bras. 26(4): – https://doi.org/10.1590/S0102-33062012000400014https://www.scielo.br/j/abb/a/6455qQSCYzGxFmpZJQqGTQK/?lang=en – (On our blog : https://plantstomata.wordpress.com/2021/09/17/different-stomatal-traits-in-gochnatia/ )

Ross-Karstens G. S., Ebert G., Ludders P. (1998) : Influence of in vitro growth conditions on stomatal density, index and aperture of grape, coffee and banana plantlets – Plant Tissue Cult. Biotechnol. 4: 21-27 –

Roth I., Merida de Bifano T. (1979) – Morphological and anatomical studies of leaves of the plants of a venezuelan cloud forest 2. stomata density and stomatal patterns – Acta Biologica Venezuelica 10(1): 69-108 – https://eurekamag.com/research/005/928/005928610.php – (On our blog : https://plantstomata.wordpress.com/2022/01/09/the-variety-of-species-and-structures-in-a-venezuelan-cloud-forest-becomes-obvious-also-by-the-great-variation-of-stomata-density-and-stomata-length/ )

Roth-Bejerano N., Itai C. (1987) – Phytochrome involvement in stomatal movement in Pisum sativum, Vicia faba, and Pelargonium sp. – Physiol. Plant. 70: 85–89 – https://doi.org/10.1111/j.1399-3054.1987.tb08701.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1987.tb08701.x – (On our blog : https://plantstomata.wordpress.com/2018/12/30/phytochrome-involvement-in-stomatal-movement-2/ )

Roth-Nebelsick A. (2005) – Reconstructing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO2-sensor – Trees – Structure and Function 19: 251–265 –

Roth-Nebelsick A. (2007) – Computer-based Studies of Diffusion through Stomata of Different Architecture – Annals of Botany 100: 23–32 – doi: 10.1093/aob/mcm075 –  www.aob.oxfordjournals.org – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Computer-based-Studies-of-Diffusion-through-Stomata-of-Different-Architecture.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/29/diffusion-through-stomata-of-different-architecture/ )

Roth-Nebelsick A., Fernandez V., Peguero-Pina J. J., Sancho-Knapik D., Gil-Pelegrin E. (2013) – Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a Mediterranean evergreen species (Quercus coccifera L.) – Plant Cell & Environment, 36(3), 579-589 – https://doi.org/10.1111/j.1365-3040.2012.02597.x –https://app.dimensions.ai/details/publication/pub.1030669549 – (On our blog : https://plantstomata.wordpress.com/2019/01/31/plasticity-of-stomatal-architecture-can-be-an-important-structural-component-of-hydraulic-adaptation/ )

Roth-Nebelsick A., Grein M., Utescher T., Konrad W. (2012) – Stomatal pore length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange and CO2 reconstruction – Review of Palaeobotany and Palynology 174: 106-112 – CrossRefGeoRefWeb of ScienceGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S0034666712000024 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/any-interpretation-of-stomatal-parameters-as-indicators-of-co2-should-consider-the-influence-of-climate-on-stomatal-conductance-and-gas-exchange/ )

Roth-Nebelsick A., Hacke U. G., Voigt D., Schreiber S. G., Krause M. (2023) – Foliar water uptake in Pinus species depends on needle age and stomatal wax structures – Annals of Botany 131(2): 287–300 – https://doi.org/10.1093/aob/mcac141https://academic.oup.com/aob/article-abstract/131/2/287/6844251?redirectedFrom=fulltext&utm_source=etoc&utm_campaign=aob&utm_medium=email – (On our blog : https://plantstomata.wordpress.com/2023/03/12/evidence-for-1-widespread-fwu-in-pinus-2-the-influence-of-stomatal-wax-plugs-on-fwu-and-3-age-related-needle-surface-erosion/ )

Roth-Nebelsick A., Hassiotou F., Veneklaas E. J. (2009) – Stomatal Crypts Have Small Effects on Transpiration: A Numerical Model Analysis – Plant Physiology 151: 2018–2027 –doi:  10.1104/pp.109.146969 –  http://www.plantphysiol.org/content/plantphysiol/151/4/2018.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomatal-crypts-and-reduction-of-transpiration/ )

Roussel M., Dreyer E., Montpied P., Le-Provost G., Guehl J. M., Brendel O. (2009) – The diversity of (13)C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance – J Exp Bot. 60(8): 2419-2431 – doi: 10.1093/jxb/erp100 – Epub 2009 Apr 20 PMID: 19380420 – https://pubmed.ncbi.nlm.nih.gov/19380420/ – (On our blog : https://plantstomata.wordpress.com/2023/01/01/genetic-differences-of-delta13c-and-wi-can-be-ascribed-to-differences-in-stomatal-conductance-and-stomatal-density-but-not-in-photosynthetic-capacity/ )

Roux B., Leonhardt N. (2018) – Chapter Seven – The Regulation of Ion Channels and Transporters in the Guard Cell – In Advances in Botanical Research 87: 171-214 – https://doi.org/10.1016/bs.abr.2018.09.013https://www.sciencedirect.com/science/article/pii/S0065229618300570 – (On our blog : https://plantstomata.wordpress.com/2019/08/05/79754/ )

Rovira A., Veciana N., Locascio A., Yenush L., Leivar P., Monte E. (2023) – PIF transcriptional regulators are required for rhythmic stomatal movements – bioRxiv – https://doi.org/10.1101/2023.01.14.524044https://www.biorxiv.org/content/10.1101/2023.01.14.524044v1 – (On our blog : https://plantstomata.wordpress.com/2023/02/28/a-molecular-framework-for-daily-rhythmic-stomatal-movements-under-well-water-conditions-whereby-pifs-are-required-for-accumulation-of-kat1-at-night/ )

Rowe M. H., Bergmann D. C. (2010) – Complex signals for simple cells: the expanding ranks of signals and receptors guiding stomatal development. – Curr Opin Plant Biol. 2010 Oct;13(5):548-55. – PMID: 20638894 – https://doi.org/10.1016/j.pbi.2010.06.002 – https://www.sciencedirect.com/science/article/pii/S1369526610000804?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/11/21/the-latest-findings-regarding-rlk-mediated-signaling-in-stomatal-development/

Rowe M. H., Dong J., Weimer A. K., Bergmann D. C. (2019) – A Plant-Specific Polarity Module Establishes Cell Fate Asymmetry in the Arabidopsis Stomatal Lineage – Preprint doi: https://doi.org/10.1101/614636https://www.biorxiv.org/content/10.1101/614636v1.abstract – (On our blog : https://plantstomata.wordpress.com/2021/07/06/members-of-the-brx-family-are-polarly-localized-to-peripheral-domains-in-stomatal-lineage-cells/ )

Rowland-Bamford A.J., Nordenbrock C., Baker J. T., Bowes G., Allen L.H. Jr. (1990) – Changes in stomatal density in rice grown under various CO2 regimes with natural solar irradiance – Environ. Exp. Bot. 30: 175-180 – https://doi.org/10.1016/0098-8472(90)90062-9https://www.sciencedirect.com/science/article/abs/pii/0098847290900629?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2020/03/10/changes-in-stomatal-density-in-rice-grown-under-various-co2-regimes-with-natural-solar-irradiance/ )

Rowson J. M. (1946) – The significance of stomatal index as a differential character; studies in the genera Atropa, Datura, Digitalis, Phytolacca and in polyploid leaves – Q J Pharm Pharmacol. 19: 136-143 – https://pubmed.ncbi.nlm.nih.gov/21000713/No abstract available

Roy D., Melotto M. (2019) – Stomatal response and human pathogen persistence in leafy greens under preharvest and postharvest environmental conditions – Postharvest Biology and Technology 148: 76-82 – https://doi.org/10.1016/j.postharvbio.2018.10.013https://www.sciencedirect.com/science/article/abs/pii/S0925521418307300 – (On our blog : https://plantstomata.wordpress.com/2021/01/03/stomatal-response-and-human-pathogen-persistence/ )

Roychowdhury R., Sultana P., Tah J. (2011) – Morphological architecture of foliar stomata in M2 Carnation (Dianthus caryophyllus L.) genotypes using Scanning Electron Microscopy (SEM) – Electronic Journal of Plant Breeding 2(4): 583-588 – ISSN 0975-928X –https://core.ac.uk/download/pdf/25899308.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/foliar-stomata-in-m2-carnation-dianthus-caryophyllus-l-genotypes/ )

Royer D. L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Rev. Palaeobot. Palynol. 144 (1-2): 1 – 28. – http://dx.doi.org/10.1016/S0034-6667(00)00074-9 – http://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Royer%202001.pdf – (https://plantstomata.wordpress.com/2016/12/09/paleoatmospheric-co2-concentration-and-stomata/ )

Royer D. L. (2003) – Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices – Geological Society of America – Special paper 369 – https://books.google.be/books?hl=en&lr=&id=XVzrzxA8XRoC&oi=fnd&pg=PA79&dq=stomata+American+Journal+of+Botany&ots=HGUiFxTi5J&sig=BRivyxXU90Cx5Tti6dsNi4vzhBA#v=onepage&q=stomata%20American%20Journal%20of%20Botany&f=false – (On our blog : https://plantstomata.wordpress.com/2020/05/23/estimating-latest-cretaceous-and-tertiary-atmospheric-co2-from-stomatal-indices/ )

Royer D. L. (2014) – Chapter 6.11.3.1 CO2: Stomata – in Treatise on Geochemistry (Second Edition) – https://www.sciencedirect.com/topics/earth-and-planetary-sciences/stomata – (On our blog : )https://plantstomata.wordpress.com/2021/08/17/stomata-and-co2-6/ )

Royle D. J., Thomas G. G. (1971) – The influence of stomatal opening on the infection of hop leaves by Pseudoperonospora humuli – Physiological Plant Pathology 1(3): 329-343 – https://doi.org/10.1016/0048-4059(71)90053-1https://www.sciencedirect.com/science/article/abs/pii/0048405971900531?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/10/27/infection-of-hop-leaves-and-stomatal-opening/ )

Rubino P., Tarantino E., Rega F. (1989) – Relationship between soil water status and stomatal resistance of tomatoes – Irrigazione e Drenaggio 36: 95- 98 –

Rucińska-Sobkowiak R. (2016) – Water relations in plants subjected to heavy metal stresses – Acta Physiol Plant 38257 – https://doi.org/10.1007/s11738-016-2277-5https://link.springer.com/article/10.1007/s11738-016-2277-5#citeas – (On our blog : https://plantstomata.wordpress.com/2020/03/09/in-metal-stressed-plants-root-derived-aba-or-aba-induced-signals-might-play-a-role-in-stomatal-movement/ )

Rudall P. J., Gardens R. B., Tansley H. J. (2013) – review Several developmental
and morphogenetic factors govern the evolution of stomatal patterning in
land plants – New Phytologist. 200: 598-614 –

Rudall P. J., Hilton J., Bateman R. M. (2013) – Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants – New Phytol. 200(3): 98-614 – doi: 10.1111/nph.12406 – Epub 2013 Jul 26 – https://www.ncbi.nlm.nih.gov/pubmed/23909825 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/the-evolution-of-stomatal-patterning-in-land-plants-2/ )

Rudall P. J., Knowles E. V. W. (2013) – Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning – Ann. Bot. 112: 1031–1043 – doi: 10.1093/aob/mct169 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783234/ – (On our blog : https://plantstomata.wordpress.com/2018/12/29/loss-of-asymmetric-divisions-in-stomatal-development-could-be-a-significant-factor-in-land-plant-evolution/ )

Rufelt H., Wiese B. (1981) – A method for determination of the effects of air pollutants on the stomatal width – Silva Fennica 15(4): article id 5134 – https://doi.org/10.14214/sf.a15361https://silvafennica.fi/article/5134 – (On our blog : https://plantstomata.wordpress.com/2022/02/18/determination-of-the-effects-of-air-pollutants-on-the-stomatal-width/ )

Ruggenthaler P., Fichtenbauer D., Krasensky J., Jonak C., Waigmann E. (2009) – Microtubule-Associated Protein AtMPB2C Plays a Role in Organization of Cortical Microtubules, Stomata Patterning, and Tobamovirus Infectivity – Plant Physiology 149(3): 1354–1365 – https://doi.org/10.1104/pp.108.130450http://www.plantphysiol.org/content/149/3/1354 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/atmpb2c-is-involved-in-the-alignment-of-cortical-microtubules-and-the-patterning-of-stomata/ )

Rühl E., Imgraben H. (1985) – Einfluß der Stickstoffversorgung auf die Stomatazahl und den Blattaufbau von Weinreben (Vitis vinifera L.). Wein·Wiss. 40: 160-171 [Abstr.: Vitis 24,4 E 128] –

Rui Y., Anderson C. T. (2016) – Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis – Plant Physiol.  170 (3) 1398-1419 –  DOI: https://doi.org/10.1104/pp.15.01066 – http://www.plantphysiol.org/content/170/3/1398 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66272

Rui Y., Chen Y., Kandemir B., Yi H., Wang J. Z., Puri V. M., Charles T Anderson C. T. (2018) – Balancing Strength and Flexibility: How the Synthesis, Organization, and Modification of Guard Cell Walls Govern Stomatal Development and Dynamics – Frontiers in Plant Science 9 – DOI: 10.3389/fpls.2018.01202 – https://www.researchgate.net/publication/327043368_Balancing_Strength_and_Flexibility_How_the_Synthesis_Organization_and_Modification_of_Guard_Cell_Walls_Govern_Stomatal_Development_and_Dynamics – (On our blog : https://plantstomata.wordpress.com/2018/08/24/wall-polysaccharides-in-guard-cells-of-stomata-and-stomatal-form-and-function/ )

Rui Y., Chen Y., Yi H., Purzycki T., Puri V. M., Anderson C. T. (2019) – – Synergistic Pectin Degradation and Guard Cell Pressurization Underlie Stomatal Pore Formation – Plant Physiol. 180(1): 66-77 -https://doi.org/10.1104/pp.19.00135 – http://www.plantphysiol.org/content/early/2019/02/25/pp.19.00135 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/hg-delivery-and-modification-and-guard-cell-pressurization-make-functional-contributions-to-stomatal-pore-initiation-and-enlargement/ )

Rui Y., Xiao C., Yi H., Kandemir B., Wang J. Z., Puri V. M., Anderson C. T. (2017) – POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in Arabidopsis thaliana – The Plant Cell 29(9) – DOI: https://doi.org/10.1105/tpc.17.00568 – http://www.plantcell.org/content/early/2017/10/03/tpc.17.00568 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/pgx3-mediated-pectin-degradation-affects-stomatal-development-in-cotyledons/ )

Rui Y., Yi H., Kandemir B., Wang J. Z., Puri V. M., Anderson C. T. (2016) – Integrating cell biology, image analysis, and computational mechanical modeling to analyze the contributions of cellulose and xyloglucan to stomatal function – Plant Signal. Behav. 11:e1183086 – doi: 10.1080/15592324.2016.1183086 – https://www.ncbi.nlm.nih.gov/pubmed/27220916 – (On our blog : https://plantstomata.wordpress.com/2019/08/02/the-contributions-of-cellulose-and-xyloglucan-to-stomatal-function/ )

Ruiz L. P., Atkinson C. J., Mansfield T. A. (1993) – Calcium in the xylem and its influence on the behaviour of stomata – Philos. Transactions of Royal Soc. B – https://doi.org/10.1098/rstb.1993.0092https://royalsocietypublishing.org/doi/10.1098/rstb.1993.0092 – (On our blog : https://plantstomata.wordpress.com/2021/04/06/a-plants-calcium-status-affects-the-amount-of-free-calcium-in-the-xylem-and-the-effect-this-may-have-on-the-diurnal-pattern-of-stomatal-behaviour/ )

Ruiz-Lozano J. M., Aroca R. (2010) – Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants – Arbuscular mycorrhizas: Physiology and Function, eds H Koltai and Y Kapulnik (Springer), 239–256 – doi: 10.1007/978-90-481-9489-6_11 – https://link.springer.com/chapter/10.1007%2F978-90-481-9489-6_11 – (On our blog : https://plantstomata.wordpress.com/2020/09/02/stomatal-behaviour-and-water-use-efficiency-of-arbuscular-mycorrhizal-plants/ )

Run-hui W., Nian-he X., Ru-shun L. (2002) – Micro-morphological study on leaf characteristics of dominant species in different succession stages of forest communities in Dingushan – J. Tropi and Subtropi Bot 10 (1): 1-8 –

Rusconi F., Simeoni F., Francia P., Cominelli E., Conti L., Riboni M., Simoni L., Martin C. R., Tonelli C., Galbiati M. (2013) –  The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. – J Exp Bot64(11): 3361-3371 – doi:10.1093/jxb/ert180 – https://www.academia.edu/23511850/The_Arabidopsis_thaliana_MYB60_promoter_provides_a_tool_for_the_spatio-temporal_control_of_gene_expression_in_stomatal_guard_cells – (On our blog : https://plantstomata.wordpress.com/2018/06/16/regulatory-modules-derived-from-the-atmyb60-promoter-offer-new-insights-into-the-functional-conservation-of-the-cis-mechanisms-that-mediate-gene-expression-in-stomata/ )

Rushin J. W., Anderson J. E. (1981) – An Examination of the Leaf Quaking Adaptation and Stomatal Distribution in Populus tremuloides Michx – Plant Physiol. http://www.plantphysiol.org/content/67/6/1264.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2021/04/06/leaf-quaking-adaptation-and-stomatal-distribution/ )

Russo G., De Angelis P., Mickle J. E., Lumaga Barone M. R. (2014) – Stomata morphological traits in two different genotypes of Populus nigra L. – Italian Society of Silviculture and Forest Ecology – iForest (early view) – doi: 10.3832/ifor1104-007 – https://www.researchgate.net/publication/282683703_Stomata_morphological_traits_in_two_different_genotypes_of_Populus_nigra_L – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1165 )

Russo S. E., Cannon W. L., Elowsky C., Tan S., Davies S. ( 2010) – Variation in Leaf Stomatal Traits of 28 Tree Species in Relation to Gas Exchange along an Edaphic Gradient in a Bornean Rain Forest – American Journal of Botany 97(7): 1109–1120 – https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=https://www.google.be/&httpsredir=1&article=1159&context=bioscifacpub – (On our blog : https://plantstomata.wordpress.com/2018/03/23/variation-in-leaf-stomatal-traits-of-tree-species/ )

Ruszala E. M., Beerling D. J., Franks P. J., Chater C., Casson S. A., Gray J. E., Hetherington A. M. ( 2011) – Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History – Curr. Biology 21(12): 1030-1035  – https://doi.org/10.1016/j.cub.2011.04.044 – https://www.sciencedirect.com/science/article/pii/S0960982211004866 – (On our blog : https://plantstomata.wordpress.com/2018/09/02/stomata-are-a-key-evolutionary-innovation-vital-to-the-success-of-the-land-plants/ )

Rutter A. J., Sands K. (1958) – THE RELATION OF LEAF WATER DEFICIT TO SOIL MOISTURE TENSION IN PINUS SYLVESTRIS L. – I. THE EFFECT OF SOIL MOISTURE ON DIURNAL CHANGES IN WATER BALANCE – New Phytologist 57(1): 50-65 – https://doi.org/10.1111/j.1469-8137.1958.tb05916.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1958.tb05916.x – (On our blog : https://plantstomata.wordpress.com/2021/12/08/increase-in-soil-moisture-tension-caused-a-progressive-increase-in-leaf-water-deficit-and-a-decrease-in-transpiration-and-stomatal-opening/ )

Rutter J. C., Willmer C. M. (1979) – A light and electron microscopy study of the epidermis of Paphiopedilum spp. with emphasis on stomatal ultrastructure – Plant Cell Environ 2: 211–219 – https://doi.org/10.1111/j.1365-3040.1979.tb00072.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00072.x – (On our blog : https://plantstomata.wordpress.com/2018/12/29/lady-slipper-orchids-possess-functional-stomata-the-guard-cells-of-which-do-not-contain-chloroplasts/ )

Ryang S. Z., Woo S. Y. (2008) – Stomatal density and size of Acer palmatum to the elevated ozone – Journ. Korean For. Soc. 97(5): 552-554 – https://www.koreascience.or.kr/article/JAKO200830335053722.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/05/stomata-and-elevated-ozone/ )

Rychel A. L., Peterson K. L., Torii K. U. (2010) – Plant twitter: ligands under 140 amino acids enforcing stomatal patterning – Journal of Plant Research 123: 275–280 – doi: 10.1007/s10265-010-0330-9 – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/20336477?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/11/21/ligands-under-140-amino-acids-enforcing-stomatal-patterning-2/

Rydsaa J. H., Stordal F., Gerosa G., Finco A., Hodnebrog Ø. (2016) – Evaluating stomatal ozone fluxes in WRF-Chem: Comparing ozone uptake in Mediterranean ecosystems – Atmospheric Environment 143: 237-248 – https://doi.org/10.1016/j.atmosenv.2016.08.057https://www.sciencedirect.com/science/article/pii/S1352231016306501 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/evaluating-stomatal-ozone-fluxes-in-wrf-chem/ )

Rzigui T., Jazzar L., Khaoula B. B., Fkiri S., Nasr Z. (2018) – Drought tolerance in cork oak is associated with low leaf stomatal and hydraulic conductances – iForest – Biogeosciences and Forestry 11(6): 728-733 – doi: https://doi.org/10.3832/ifor2749-011https://iforest.sisef.org/abstract/?id=ifor2749-011 – (On our blog : https://plantstomata.wordpress.com/2020/02/25/drought-tolerance-is-associated-with-low-leaf-stomatal-and-hydraulic-conductances/ )

Saab I. N., Sharp R. E. (1989) – Non-hydraulic signals from maize roots in drying soil: inhibition of leaf elongation but not stomatal conductance – Planta 179: 466–474 – DOI: 10.1007/BF00397586 –https://www.ncbi.nlm.nih.gov/pubmed/24201770 – (On our blog : https://plantstomata.wordpress.com/2018/12/30/inhibition-of-leaf-elongation-but-not-stomatal-conductance-in-drying-soil/ )

Saadabi A. M. A., El-Amin A.-N. (2011) – Effects of Environmental Pollution (Auto-Exhaust) on the Micro-Morphology of Some Ornamental Plants from Sudan – Environmental Research Journal 5(2): 38-41 – DOI: 10.3923/erj.2011.38.41 – https://www.medwelljournals.com/abstract/?doi=erj.2011.38.41 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/environmental-pollution-auto-exhaust-and-stomata/ )

Saadu R. O., Abdulrahaman A. A., Oladele F. A. (2009) – Stomatal complex types and transpiration rates in some tropical tuber species – African Journal of Plant Science Vol. 3 (5), pp. 107-112 – http://www.academicjournals.org/AJPS –http://www.academicjournals.org/article/article1380095359_Saadu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomata-and-transpiration-rates-in-tuber-species/ )

Saakov V., Lang M., Schindler C., Stober F., Lichtenthaler H. K. (1992) – Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation – IAEA – FAO/AGRIS record; ARN: CZ9400220; Country of input: International Atomic Energy Agency (IAEA) – Photosynthetica 27(3): 369-338 – ISSN 0300-3604 – https://inis.iaea.org/search/search.aspx?orig_q=RN:46071397 – (On our blog : https://plantstomata.wordpress.com/2022/09/11/the-gamma-ray-damage-of-plants-can-best-be-detected-by-measurements-of-stomatal-conductance/ )

Sabir A., Yazar K. (2015) – Diurnal dynamics of stomatal conductance and leaf temperature of grapevines (Vitis vinifera L.) in response to daily climatic variables – Acta scientiarum Polonorum. Hortorum cultus = Ogrodnictwo 14(4): 3-15 – https://www.researchgate.net/publication/282379365_Diurnal_dynamics_of_stomatal_conductance_and_leaf_temperature_of_grapevines_Vitis_vinifera_L_in_response_to_daily_climatic_variables – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-conductance-characteristics-with-an-emphasis-on-daily-climatic-responses/ )

Sabnis T. S. (1920) – The physiological anatomy of the plants of the Indian desert – Journal of Indian Botany 1(6&7): – https://en.wikisource.org/wiki/The_Journal_of_Indian_Botany/Volume_1/March_1920/The_Physiological_Anatomy_of_the_Plants_of_The_Indian_Desert – (On our blog : https://plantstomata.wordpress.com/2022/03/05/stomata-in-plants-of-the-indian-desert/ )

Sabo M., Bede M., Vukadinovic V. (2001) – Correlation between number of stomata and concentration of macro- and microelements in some winter wheat (Triticum aestivum L.) genotypes – Acta-Agronomica_Hungarica 49: 319-327 – DOI:10.1556/AAgr.49.2001.4.2https://www.semanticscholar.org/paper/CORRELATION-BETWEEN-NUMBER-OF-STOMATA-AND-OF-MACRO-Sabo-Bede/342cf29c79dda6e110e80c17c9945bb151d20ae8 – (On our blog : https://plantstomata.wordpress.com/2019/07/17/significant-correlation-between-the-stomata-number-per-mm2-and-the-macro-n-p-k-ca-mg-and-microelement-zn-cu-fe-mn-concentrations/ )

Sabo M., Lajdes T., Bačić T., Grgić L., Lendel A. (2004) – Length and width of guard cells and variation in the appearance of stomata pores in some species of genus Arum from the Eastern Slavonia and Baranya Region – Acta Botanica Hungarica 46(3-4): – https://doi.org/10.1556/abot.46.2004.3-4.10https://akjournals.com/view/journals/034/46/3-4/article-p385.xml – (On our blog : https://plantstomata.wordpress.com/2021/12/25/differences-in-length-and-width-of-stomatal-guard-cells-and-variation-in-the-appearance-of-stomatal-pores/ )

Sachs T. (1974) – The developmental origin of stomata pattern in Crinum – Bot. Gaz. 135: 314–318 – https://www.jstor.org/stable/2474226?seq=1#page_scan_tab_contents – (On our blog :  https://plantstomata.wordpress.com/2017/12/18/developmental-origin-of-stomatal-pattern/ )

Sachs T. (1978) – The development of the spacing pattern in the leaf
epidermis. In: Subtelny S, Sussex JM, eds. The clonal basis of
development. New York: Academic Press, 161-218 –

Sachs T. (1979) – Cellular interactions in the development of stomatal patterns in Vinca major L. – Annals of Botany 43: 693–700 –

Sachs T. (1982) – A morphogenetic basis for plant morphology –
Acta Biotheoretiea 31 a: 118-13 –

Sachs T. (1984) – Controls of cell patterns in plants. In “Pattern Formation: A Primer in Developmental Biology” (G. M. Malacinski and S. V. Bryant, Eds.), pp. 367-392. Macmillan, New York.

Sachs T. (1991) – “Pattern Formation in Plant Tissues” – Cambridge University Press, Cambridge

Sachs T. (1991) – Stomata as an example of meristemoid development – In ‘‘Pattern Formation in Plant Tissues’’ (T. Sachs, Ed.) 101–117- https://doi.org/10.1017/CBO9780511574535.009https://www.cambridge.org/core/books/abs/pattern-formation-in-plant-tissues/stomata-as-an-example-of-meristemoid-development/ACEE9929498B69C11A61FDD8FC31DA41 – Cambridge Univ. Press, Cambridge – (On our blog : https://plantstomata.wordpress.com/2023/01/13/stomata-as-an-example-of-meristemoid-development-2/ )

Sachs T. (1992) – Evolutionary implications of cell patterning
Evolutionary Trends in Plants 6: 1-9 –

Sachs T. (1994) – Commentary: Both cell lineages and cell interactions contribute to stomatal patterning – International Journal of Plant Sciences 155: 245-247 – DOI: 10.1086/297163https://www.jstor.org/stable/2475177?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/09/both-cell-lineages-and-cell-interactions-contribute-to-stomatal-patterning/ )

Sachs T., Novoplansky N. (1993) – The development and patterning of stomata and glands in the epidermis of Peperomia – New Phytol. 123: 567-574 – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1993.tb03769.x – (On our blog : https://plantstomata.wordpress.com/2021/04/05/the-development-and-patterning-of-stomata-and-glands/ )

Sack F. D. (1987) – The development and structure of stomata – In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, 59–89 – https://books.google.be/books?hl=en&lr=&id=mp-aAAAAIAAJ&oi=fnd&pg=PA59&dq=stomata+American+Journal+of+Botany&ots=T7gYn26f8r&sig=JqoM0R1ANY88u98b0CrZG14ADwY#v=onepage&q=stomata%20American%20Journal%20of%20Botany&f=false – (On our blog : https://plantstomata.wordpress.com/2020/05/23/84677/ )

Sack F. D. (1994) – Structure of the stomatal complex of the monocot Flagellaria indica – American Journal of Botany 81(3): 339-344 – https://doi.org/10.1002/j.1537-2197.1994.tb15452.x – https://app.dimensions.ai/details/publication/pub.1100741399 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/flagellaria-indica-does-not-have-a-grass-or-dumbbell%e2%80%90shaped-type-of-stomate/ )

Sack F. D. – The Sack Lab – https://www.botany.ubc.ca/people/fred-sack – (On our blog : https://plantstomata.wordpress.com/2018/01/22/the-fred-d-sack-lab/ )

Sack F. D., Chen J. C. (2009) – Pores in place – Science 323: 592-593 – DOI: 10.1126/science.1169553 – http://science.sciencemag.org/content/323/5914/592/tab-figures-data – (On our blog : https://plantstomata.wordpress.com/2018/06/16/signals-controling-cell-division-and-fate-also-control-stomatal-development/ )

Sack F. D., Paolillo D. J. Jr (1982) – Microtubule distribution in stomata with incomplete cytokinesis – Abstracts, Bot. Soc. Amer. Misc. Publ. 162: 24 –

Sack F. D., Paolillo D. J. Jr (1983) – Stomatal pore and cuticle formation in Funaria – Protoplasma 116: 1-13 – https://doi.org/10.1007/BF01294225https://link.springer.com/article/10.1007%2FBF01294225#citeas – (On our blog : https://plantstomata.wordpress.com/2019/05/12/stomatal-pore-and-cuticle-formation-in-funaria-bryophyta/

Sack F. D., Paolillo D. J. Jr (1983) – Protoplasmic changes during stomatal development in Funaria – Canadian Journal of Botany 61: 2515–2526 – https://doi.org/10.1139/b83-275 –http://www.nrcresearchpress.com/doi/abs/10.1139/b83-275 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/protoplasmic-changes-during-stomatal-development/

Sack F. D., Paolillo D. J. Jr (1983) – Structure and development of walls in Funaria stomata – Amer. J. Bot. 70: 1019–1030 – https://doi.org/10.1002/j.1537-2197.1983.tb07902.x https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.198 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/walls-in-funaria-stomata/ )

Sack F. D., Paolillo D. J. Jr (1985) – Incomplete cytokinesis in Funaria stomata – American Journal of Botany 72: 1325–1333 –  – https://doi.org/10.1002/j.1537-2197.1985.tb08389.xhttps://onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1985.tb08389.x – (On our blog : https://plantstomata.wordpress.com/2018/11/29/incomplete-cytokinesis-in-funaria-stomata/

Sack L., Buckley T. N. (2016) – The Developmental Basis of Stomatal Density and Flux – Plant Physiol. 171(4): 2358-2363 – https://doi.org/10.1104/pp.16.00476 – http://www.plantphysiol.org/content/171/4/2358 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-density-and-flux-2/ )

Sack L., John G. P., Buckley T. N. (2018) – ABA Accumulation in Dehydrating Leaves Is Associated with Decline in Cell Volume, Not Turgor Pressure – Plant Physiol. 176 (1): 489-495 – https://doi.org/10.1104/pp.17.01097 – http://www.plantphysiol.org/content/176/1/489 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/aba-accumulation-in-dehydrating-leaves/

Sack L., Scoffoni C. (2012) – Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM) – J. Vis. Exp. (70): e4179 – doi:10.3791/4179 – https://www.jove.com/video/4179/measurement-leaf-hydraulic-conductance-stomatal-conductance-their – (On our blog : https://plantstomata.wordpress.com/2018/02/15/method-for-simultaneously-measurement-of-leaf-hydraulic-conductance-kleaf-and-stomatal-conductance-gs-for-transpiring-excised-leaves/ )

Sack L., Streeter C. M., Holbrook N. M. (2004) – Hydraulic Analysis of Water Flow through Leaves of Sugar Maple and Red Oak – Plant Physiology 134: 1824–1833 –https://scholar.harvard.edu/files/holbrooklab/files/plantphysiol_v134_2004.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/31/stomata-and-hydraulic-analysis-of-water-flow-through-leaves/ )

Sade N., Gallé A., Flexas J., Lerner S., Peleg G., Yaaran A., Moschelion M. (2014) – Differential tissue-specific expression of NtAQP1 in Arabidopsis thaliana reveals a role for this protein in stomatal and mesophyll conductance of CO 2 under standard and salt-stress conditions – Planta 239: 357–366 – doi: 10.1007/s00425-013-1988-8https://link.springer.com/article/10.1007/s00425-013-1988-8 – (On our blog : https://plantstomata.wordpress.com/2020/07/06/a-role-for-the-protein-ntaqp1-in-stomatal-and-mesophyll-conductance/ )

Sadras V. O., Lawson C., Montoro A., (2012) – Photosynthetic traits in Australian wheat varieties released between 1958 and 2007 – Field crops research 134: 19-29 – ISSN:0378-4290 – https://pubag.nal.usda.gov/catalog/572131 – (On our blog : https://plantstomata.wordpress.com/2021/12/08/stomata-and-photosynthetic-traits-in-australian-wheat-varieties-released-between-1958-and-2007/ )

Sadras V. O., Montoro A., Morana M. A., Aphaloc P. J. (2012) – Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine – Agr. For. Meteorol. 165: 35–42 – https://doi.org/10.1016/j.agrformet.2012.06.005https://www.sciencedirect.com/science/article/pii/S0168192312002043?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/12/03/current-stomatal-conductance-is-a-function-of-i-the-prevailing-environmental-conditions-during-early-stages-of-leaf-development-ii-the-current-environmental-conditions-and-iii-the-source-sink/ )

Saei A., Zamani Z., Talaie A. R. (2004) – Stomatal behavior of Olive Cv. Zard under drought stress conditions – V International Symposium on Olive Growing 791: 507-511 –https://www.researchgate.net/publication/281605833_Stomatal_behavior_of_olive_cv_Zard_under_drought_stress_conditions– (On our blog : https://plantstomata.wordpress.com/2021/04/09/stomatal-behavior-of-olive-plants-under-drought-stress-for-better-orchard-management/ )

Saei A., Zamani Z., Talaie A. R., Fatahi R. (2006) – Influence of drought stress periods on olive (Olea europaea L. cv. Zard) leaves stomata – Int. J. Agri. Biol. 8: 430-433 – https://scholar.google.de/citations?user=2D-M7Q4AAAAJ&hl=ja#d=gs_md_cita-d&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Dja%26user%3D2D-M7Q4AAAAJ%26citation_for_view%3D2D-M7Q4AAAAJ%3Ad1gkVwhDpl0C%26tzom%3D-120 – (On our blog : https://plantstomata.wordpress.com/2021/04/09/stomatal-movements-in-drought-stress-periods/ )

Saftner R. A., Raschke K. (1978) – and Membrane Potentials of
Guard Cells of Commelina communis – Plant Physiol. Supp. 61: 86 –

Saftner R. A., Raschke K. (1981) – Electrical potentials in stomatal complexes – Plant Physiol. 67(6): 1124-1132 – doi: 10.1104/pp.67.6.1124 – PMID: 16661822 – PMCID: PMC425847 – https://pubmed.ncbi.nlm.nih.gov/16661822/ – (On our blog : https://plantstomata.wordpress.com/2021/08/22/gradients-in-the-electrical-potential-existed-across-stomatal-complexes-with-open-pores/ )

Sagaram M., Lombardini L. (2007) – Variation in Leaf Anatomy of Pecan Cultivars from Three Ecogeographic Locations – JASHS 132(5): 592-596 – http://journal.ashspublications.org/content/132/5/592.full – (On our blog : https://plantstomata.wordpress.com/2018/01/27/stomatal-density-and-stomatal-index-in-pecan-cultivars/

Sahadevan Y. (2020) – Chickpea’s trick can help mustard fight fungi – Research Matters Bengaluru Mar 23, 2020 – https://researchmatters.in/news/chickpea%E2%80%99s-trick-can-help-mustard-fight-fungi – (On our blog : https://plantstomata.wordpress.com/2020/03/23/the-genes-associated-with-stomatal-closure-thickening-of-the-cell-wall-and-cuticular-wax-formation-were-active-at-the-time-of-infection-in-chickpeas/ )

Sahay S., Kumar J. (2019) – Stomatal responses to environmental variation among Duranta erecta L. – Annals of Plant Sciences 7(12): 3481-3483 – DOI: 10.21746/aps.2018.7.12.4https://www.researchgate.net/publication/330896477_Stomatal_responses_to_environmental_variation_among_Duranta_erecta_L – (On our blog : https://plantstomata.wordpress.com/2022/02/23/stomatal-responses-to-environmental-variation/ )

Sahin T., Soylu A. (1991) – A study on leaf and stomatal properties of
some selected chestnuts – Uludag University No:10: 20 –

Sahin T., Soylu A. (1991) – Seleksiyonla elde edilmifl baz› kestane
çeflitlerinin yaprak morfolojileri ve stoma da¤›l›mlar› üzerinde
araflt›rmalar. Uluda¤ Üniversitesi, Fen Bilimleri Enstitüsü, Bilimsel
Raporlar Serisi : 10 – 20s –

Sahin T., Soylu A. (1991) – Stomatal frequency of some chestnut cultivars
grown in Marmara Region of Turkey, XIII. Int. Hort. Cong. 27 August –
1 September, Firenze, Italy, Abstract, Poster Number 3003 –

Saibo N. J. M., Vriezen W. H., Beemster G. T., Van Der Straeten D. (2003) – Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins – Plant Journal 33: 989–1000 – https://doi.org/10.1046/j.1365-313X.2003.01684.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2003.01684.x – (On our blog : https://plantstomata.wordpress.com/2018/12/30/the-implication-of-three-hormones-in-relation-to-cell-division-and-stomata-formation/ )

Saibo N. J. M., Vriezen W. H., Van Der Straeten D. (2003) – Stomata formation in the hypocotyl of Arabidopsis is gibberellin-dependent and is modulated by ethylene and auxin – In M. Vendrell, H. Klee, J. Pech, & F. Romojaro (Eds.), NATO Science Series, subseries I : Life and Behavioural Sciences 349: 301–302 – Presented at the NATO Advanced Research Workshop on Biology and Biotechnology of the Plant Hormone Ethylene 2002, Amsterdam, The Netherlands: IOS Press – http://hdl.handle.net/1854/LU-404730

Said H., Tolba M. K. (1948) – The effect on stomatal behaviour of detaching leaves of  Kalanchoë and Mesembryanthemum at different times of the day – New Phytologist 47(2): 284-287 – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1948.tb05105.x#:~:text=Experiments%20are%20reported%20in%20which,or%20approaching%20their%20maximum%20openings. – (On our blog : https://plantstomata.wordpress.com/2021/12/27/stomatal-behaviour-of-detaching-leaves-from-their-branches/ )

Saikia D. N., Dey S. K. (1984) – Leaf-water potential and stomatal resistance of tea leaf as influenced by soil moisture and potash application – Indian journal of Agricultural Science 54: 727–732 –

Saito S., Hamamoto S., Moriya K., Matsuura A., Sato Y., Muto J., Noguchi H., Yamauchi S., Tozawa Y., Ueda M., Hashimoto K., Köster P., Dong Q., Held K., Kudla J., Utsumi T., Uozumi N. (2018) – N-myristoylation and S-acylation are common modifications of Ca2+-regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel – New Phytol. – doi:10.1111/nph.15053 – http://onlinelibrary.wiley.com/doi/10.1111/nph.15053/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/02/n-myristoylation-and-s-acylation-required-for-activation-of-the-slac1-anion-channel-in-stomata/ )

Saito S., Uozumi N. (2019) – Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure – Planta 8(1): 9 – https://doi.org/10.3390/plants8010009 –https://www.mdpi.com/2223-7747/8/1/9 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/an-elaborate-mechanism-controlling-stress-induced-stomatal-closure/ )

Saji S., Bathula S., Kubo A., Tamaoki M., Kanna M., Aono M., Nakajima N., Nakaji T., Takeda T., Asayama M., Saji H. (2008) – Disruption of a gene encoding C4-dicarboxylate transporter-like protein increases ozone sensitivity through deregulation of the stomatal response in Arabidopsis thaliana – Plant Cell Physiol. 49: 2-10 – DOI: 10.1093/pcp/pcm174https://www.ncbi.nlm.nih.gov/pubmed/18084014 – (On our blog : https://plantstomata.wordpress.com/2019/04/14/ozs1-helps-to-close-stomata/ )

Sakaki T., Satoh A., Tanaka K., Omasa K., Shimazaki K.-I. (1995) Lipids and fatty acids in guard-cell protoplasts from Vicia faba leaves – Phytochemistry 40: 1065–1070 – DOI: 10.1016/0031-9422(95)00272-9https://www.sciencedirect.com/science/article/pii/0031942295002729 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/lipids-and-fatty-acids-in-stomata/ )

Sakiroh S., Aunillah A. (2020) – Bentuk, Ukuran dan Kerapatan Stomata Daun dari Lima Varietas Kopi Arabika (Coffea arabica L.) – In: Herlinda S et al. (Eds.) – Prosiding Seminar Nasional Lahan Suboptimal ke-8 Tahun 2020, Palembang  20 Oktober 2020. pp. xx. Palembang: Penerbit & Percetakan Universitas Sriwijaya (UNSRI) – http://conference.unsri.ac.id/index.php/lahansuboptimal/article/view/1901 – (On our blog : https://plantstomata.wordpress.com/2023/02/26/113438/ )

Sakisaka M. (1929) – On the number of chloroplasts in the guard cells of seed plants – Jap. J. Bot. 43: 47-48 –

Sakoda K., Yamori W., Shimada T., Sugano S. S., Hara-Nishimura I., Tanaka Y. (2020) – Stomatal density affects gas diffusion and CO2 assimilation dynamics in Arabidopsis under fluctuating light – bioRxiv –  https://doi.org/10.1101/2020.02.20.958603https://www.biorxiv.org/content/10.1101/2020.02.20.958603v1.full – (On our blog : https://plantstomata.wordpress.com/2022/04/07/how-the-change-in-stomatal-density-affects-stomatal-conductance-gs-and-co2-assimilation-rate-a-dynamics-biomass-production-and-water-use-under-fluctuating-light/ )

Sakoda K., Yamori W., Shimada T., Sugano S. S., Hara-Nishimura I., Tanaka Y. (2020) – Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light – Front. Plant Sci., 21 October 2020 – https://doi.org/10.3389/fpls.2020.589603https://www.frontiersin.org/articles/10.3389/fpls.2020.589603/full – (On our blog : https://plantstomata.wordpress.com/2022/04/28/higher-stomatal-density-can-be-beneficial-to-improve-biomass-production-in-plants-under-fluctuating-light-conditions/ )

Sakoda K. , Watanabe T., Sukemura S., Kobayashi S., Nagasaki Y., Tanaka Y., Shiraiwa T. (2019) – Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection – Scientific Reports 9 – Article number: 7610 – https://www.nature.com/articles/s41598-019-44127-0 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/genetic-diversity-in-stomatal-density/ )

Sakurai N., Akiyama M., Kuraishi S. (1986) – Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings – Plant and Cell Physiology 27: 1177-1185 – https://doi.org/10.1093/oxfordjournals.pcp.a077202 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/irreversible-effects-of-water-stress-on-growth-and-stomatal-development-in-cotyledons/ )

Sakya A. T., Sulistyaningsih E., Indradewa D., Purwanto B. H. (2018) – Stomata character and chlorophyll content of tomato in response to Zn application under drought condition – IOP Conf. Ser.: Earth Environ. Sci. 142: 012033 – https://doi.org/10.1088/1755-1315/142/1/012033https://iopscience.iop.org/article/10.1088/1755-1315/142/1/012033 – (On our blog : https://plantstomata.wordpress.com/2020/02/17/the-soil-with-a-zn-application-under-drought-conditions-increased-the-aperture-stomata/ )

Sala A., Tenhunen J. D. (1994) – Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed – Tree Physiol 14: 601–617 – https://doi.org/10.1093/treephys/14.6.601 –https://academic.oup.com/treephys/article-abstract/14/6/601/1655635?redirectedFrom=PDF – (On our blog :https://plantstomata.wordpress.com/2018/12/30/site-specific-water-relations-and-stomatal-response/

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2012) – MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure – Biosci. Biotechnol. Biochem. 76: 1785–1787 – DOI: 10.1271/bbb.120228 – https://www.ncbi.nlm.nih.gov/pubmed/22972330 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/mpk9-and-mpk12-are-involved-in-cht-induced-stomatal-closure/ )

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2013) – Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells – Plant Biol. (Stuttg.) 15: 436–442 – doi: 10.1111/j.1438-8677.2012.00671.x – Epub 2012 Oct 8 – https://www.ncbi.nlm.nih.gov/pubmed/23043299 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/mpk9-and-mpk12-regulate-yel-signalling-in-stomata/ )

Salas J. A., Sanabria M. E., Pire R. (2001) Variación en el índice y densidad estomática en plantas de tomate (Lycopersicon esculentum Mill.) sometidas a tratamientos salinos. – Bioagro 13(3): 99-104  – http://www.redalyc.org/articulo.oa?id=85713302 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/modification-of-stomatal-index-and-density-in-tomato-plants/ )

Saleh H., Thind  S. K.  (2015) Physiology of Cell Membranes, Stomata And Photosynthetic Pigments of Rice (Oryza sativa L.) Under High Temperature – International Journal of Scientific Research 4(6): 8179 – DOI : 10.15373/22778179 – https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/articles.php?val=NTc2NA==&b1=65&k=17 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/physiology-of-stomata-under-high-temperature/ )

Salem A. (2017) – A General Discerption of Plants’ PhotosyntheticPathways in Deserts in Saudi Arabia – American Research Journal of Bio Sciences (ARJB) 3: 1-5 – https://www.academia.edu/38681654/A_General_Discerption_of_Plants_Photosynthetic_Pathways_iIn_Deserts_in_Saudi_Arabia?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-differences-among-photosynthesis-pathways-based-on-climate-conditions-in-deserts-stomata-in-c3-and-c4-photosynthesis/ )

Saliendra N.Z., Meinzer F. C. (1989) – Relationship between root soil hydraulic-properties and stomatal behaviour in sugarcane – Australian Journal of Plant Physiology 16: 241–250 – https://doi.org/10.1071/PP9890241https://www.publish.csiro.au/fp/PP9890241 – (On our blog : https://plantstomata.wordpress.com/2020/06/23/root-soil-hydraulic-properties-and-stomatal-behaviour/ )

Saliendra N.Z., Meinzer F. C. (1991) – Symplast volume, turgor, stomatal conductance and growth in relation to osmotic and elastic adjustment in droughted sugarcane – J. Exp. Bot. 42(243): 1251–1259 – https://doi.org/10.1093/jxb/42.10.1251https://academic.oup.com/jxb/article-abstract/42/10/1251/484701?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/07/23/stomatal-conductance-and-growth-in-relation-to-osmotic-and-elastic-adjustment-in-droughted-sugarcane/ )

Saliendra N. Z., Sperry J. S., Comstock J. P. (1995) – Influence of leaf water status on stomatal responses to humidity, hydraulic conductance, and soil drought in Betula occidentalis – Planta 196: 357-366 – https://doi.org/10.1007/BF00201396https://link.springer.com/article/10.1007/BF00201396#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/influence-of-leaf-water-status-on-stomatal-responses-to-humidity-hydraulic-conductance-and-soil-drought/ )

Salimi F., Shekari F., Hamzei J. (2014) – Effect of Salinity Stress and Foliar Application of Methyl Jasmonate on Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency and Yield of German Chamomile – Iranian Journal of Field Crop Research 12(2): 328-334 – doi: 10.22067/GSC.V12I2.22635https://jcesc.um.ac.ir/article_36595.html?lang=en – (On our blog : https://plantstomata.wordpress.com/2022/03/13/methyl-jasmonate-and-stomatal-conductance/ )

Salisbury E. J. (1928) – On the causes and ecological significance of stomatal frequency with special reference to the woodland flora – Philosophical Transactions of the Royal Society of London B Biological Sciences 216: 1-65 – https://doi.org/10.1098/rstb.1928.0001https://royalsocietypublishing.org/doi/10.1098/rstb.1928.0001 – (On our blog : https://plantstomata.wordpress.com/2021/12/28/the-causes-of-the-numerical-variation-of-stomata/ )

Sallanon H., Laffray D., Coudret A. (1993)  Ultrastructure and functioning of guard cells of in vitro cultured rose plants – Plant Physiol. Biochem. 29: 333-339 –https://geoscience.net/research/002/269/002269301.php – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomata-of-in-vitro-cultured-rose-plants/ )

Sallanon H., Tort M., Coudret A. (1993) – The ultrastructure of micropropagated and greenhouse rose plant stomata – Plant Cell, Tissue and Organ Culture 32(2): 227-233 – https://doi.org/10.1007/BF00029847https://link.springer.com/article/10.1007/BF00029847 – (On our blog : https://plantstomata.wordpress.com/2019/05/29/micropropagated-and-greenhouse-rose-plant-stomata/ )

Salleo S., Nardini A., Pitt F., LoGullo M. (2000) – Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.) – Plant, Cell & Environm. 23: 71-79 – https://doi.org/10.1046/j.1365-3040.2000.00516.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2000.00516.x – (On our blog : https://plantstomata.wordpress.com/2019/05/28/78847/ )

Salmon Y., Lintunen A., Dayet A., Chan T., Dewar R., Vesala T., Hölttä T. (2020) – Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees – New Phytologist 226(3): 690-703 – https://doi.org/10.1111/nph.16436https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.16436 – (On our blog : https://plantstomata.wordpress.com/2022/04/14/nsls-and-stomatal-control-are-coordinated-to-maximize-leaf-photosynthesis-and-allow-the-effect-of-nsls-to-be-included-in-models-of-tree-gas-exchange/ )

Salomé P. A. (2017)  This ICE/SCRM Melts in the Dark: Light-Dependent COP1-Mediated Protein Degradation in Stomatal Formation – The Plant Cell 29(11) –https://doi.org/10.1105/tpc.17.00870 – http://www.plantcell.org/content/29/11/2680?rss=1 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/light-dependent-cop1-mediated-protein-degradation-in-stomatal-formation/ )

Salter W. (2020) – Control of the stomatal response to VPD in sunflower – Botany One – https://www.botany.one/2020/08/control-of-the-stomatal-response-to-vpd-in-sunflower/ – (On our blog : https://plantstomata.wordpress.com/2022/04/04/foliage-aba-levels-provide-the-best-metabolic-signal-to-explain-the-stomatal-response-to-vpd-in-angiosperms/ )

Salter W. (2021) – Fast and small stomata optimise the water use efficiency of sugar beet – Botany One 11 March 2021 – https://www.botany.one/2021/03/fast-and-small-stomata-optimise-the-water-use-efficiency-of-sugar-beet/ – (On our blog : https://plantstomata.wordpress.com/2021/07/28/fast-and-small-stomata-optimise-the-water-use-efficiency-of-sugar-beet/ )

Sam O., Jerez E., Dell’Amico J., Sanchez R., Carmen M. (2000) – Water stress induced changes in anatomy of tomato leaf epidermis – Biologia Plantarum 43(2): 275-277 – http://dx.doi.org/10.1023/A:1002716629802http://digital.csic.es/handle/10261/17388?locale=en – (On our blog : https://plantstomata.wordpress.com/2020/02/17/the-water-deficit-had-little-effect-on-length-of-stomata-and-decreased-the-stomatal-density-especially-on-adaxial-surface/ )

Samakovli D., Komis G., Šama J. (2020) – Uncovering the Genetic Networks Driving Stomatal Lineage Development – Molecular Plant Spotlight 13(10): 1355-1357 – https://doi.org/10.1016/j.molp.2020.08.013https://www.cell.com/molecular-plant/fulltext/S1674-2052(20)30269-0?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Molecular_Plant_TrendMD_1 – (On our blog : https://plantstomata.wordpress.com/2021/11/27/the-genetic-networks-driving-stomatal-lineage-development/ )

Samakovli D., Tichá T., Šamaj J. (2020) – HSP90 chaperones regulate stomatal differentiation under normal and heat stress conditions – Plant Signal Behav. 15(9): 1789817 – doi: 10.1080/15592324.2020.1789817 – Epub 2020 Jul 15 – PMID: 32669038 – PMCID: PMC8550182 – https://pubmed.ncbi.nlm.nih.gov/32669038/ – (On our blog : https://plantstomata.wordpress.com/2021/11/27/hsp90-chaperones-safeguard-the-completion-of-distinct-stomatal-differentiation-steps/ )

Samakovli D., Tichá T., Vavrdová T., Ovečka M., Luptovčiak I., Zapletalová V., Kuchařová A., Křenek P., Krasylenko Y., Margaritopoulou T., Roka L., Milioni D., Komis G., Hatzopoulos P., Šama J. (2020) – YODA-HSP90 Module Regulates Phosphorylation-Dependent Inactivation of SPEECHLESS to Control Stomatal Development under Acute Heat Stress in Arabidopsis – Mol Plant 13(4): 612-633 – doi: 10.1016/j.molp.2020.01.001 – Epub 2020 Jan 11 – https://pubmed.ncbi.nlm.nih.gov/31935463/ – (On our blog : https://plantstomata.wordpress.com/2021/01/22/hsp90-mediated-specification-and-differentiation-of-the-stomatal-cell-lineage-couples-stomatal-development-to-environmental-cues-providing-an-adaptive-heat-stress-response-mechanism-in-plants/ )

Samarappuli L. (1987) – Leaf water potential and stomatal conductance of rubber (Hevea brasiliensis) as influenced by soil moisture and leaf age – https://www.semanticscholar.org/paper/Leaf-water-potential-and-stomatal-conductance-of-as-Samarappuli/f9c81b6bd0ed54a74674a79916f396ce375eaa51 – (On our blog : https://plantstomata.wordpress.com/2021/09/25/stomatal-conductance-as-influenced-by-soil-moisture-and-leaf-age/ )

Sanbon C. G., Gebeyo B. A., Patil R., Mencia R., Moshelion M. (2022) – Diurnal stomatal apertures and density ratios affect whole-canopy stomatal conductance, water-use efficiency and yield – bioRxiv – https://doi.org/10.1101/2022.01.06.475121https://www.biorxiv.org/content/10.1101/2022.01.06.475121v1.full – (On our blog : https://plantstomata.wordpress.com/2022/03/28/stomatal-density-the-abaxial-adaxial-stomatal-density-ratio-and-the-time-of-maximum-stomatal-apertures-are-crucial-for-plant-adaptation-and-productivity-under-drought-stress-conditions/ )

Sánchez-Guerrero A., Nadal M., Florez-Sarasa I., Ribas-Carbó M., Vallarino J. G., Brasi-Velasco S. D., Fernie A. R., Flexas J., Jiménez A., Sevilla F. (2021) – Decreased Levels of Thioredoxin o1 Influences Stomatal Development and Aperture but Not Photosynthesis under Non-Stress and Saline Conditions – Int. J. Mol. Sci. 22(3): 1063 – https://doi.org/10.3390/ijms22031063https://www.mdpi.com/1422-0067/22/3/1063 – (On our blog : https://plantstomata.wordpress.com/2021/11/27/the-lack-of-attrxo1-affects-stomata-development-and-opening/ )

Sanchez C., Fischer G., Sanjuanelo D. W. (2013) – Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer] – Agron. colomb. 31(1): 38-47 – ISSN electrónico 2357-3732 – ISSN impreso 0120-9965 – https://revistas.unal.edu.co/index.php/agrocol/article/view/35800/47061 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-behavior-in-fruits-and-leaves/ )

Sanchez S. (1977) – The fine structure of the guard cells of Helianthus annuus – American Journal of Botany 64: 814–824 – http://www.jstor.org/stable/2442374 – Google Scholar – http://www.jstor.org/stable/2442374?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/05/the-fine-structure-of-the-guard-cells-of-helianthus-annuus/ )

Sánchez-Salguero Raúl, Ortíz C., Covelo F., Ochoa V., García-Ruíz R., Seco J. I., Carreira J. A., Merino J. A., Linares J. C. (2015) – Regulation of Water Use in the Southernmost European Fir (Abies pinsapo Boiss.) – Drought Avoidance Matters – Forests 6(6): 2241-2260 – https://doi.org/10.3390/f6062241https://www.mdpi.com/1999-4907/6/6/2241 – (On our blog : https://plantstomata.wordpress.com/2022/09/29/abies-pinsapo-closed-stomata-rapidly-over-a-very-narrow-range-of-soil-water-availability-and-atmospheric-dryness/ )

Sanderson M. G., Collins W. J., Hemming D. L., Betts R. A. (2007) – Stomatal conductance changes due to increasing carbon dioxide levels: Projected impact on surface ozone levels – Tellus 59B: 404–411 – https://www.geos.ed.ac.uk/~dstevens/publications/sanderson_tellus07.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-conductance-and-increasing-co2-levels/ )

Sandford A. P.,  Jarvis P. G. (1986) –  Stomatal response to humidity in selected conifers – Tree Physiol.2: 89-103 – DOI: 10.1093/treephys/2.1-2-3.89https://pubmed.ncbi.nlm.nih.gov/14975844/ – (On our blog : https://plantstomata.wordpress.com/2021/02/07/stomatal-response-to-humidity-2/)

Sandoval D., Rada F., Sarmiento L. (2019) – Stomatal response functions to environmental stress of dominant species in the tropical Andean páramo – Plant Ecology & Diversity 12: 649 – 661 – DOI:10.1080/17550874.2019.1683094https://www.tandfonline.com/doi/abs/10.1080/17550874.2019.1683094?journalCode=tped20 – (On our blog : https://plantstomata.wordpress.com/2021/08/20/stomatal-response-functions-to-environmental-stress-suggest-that-a-tolerant-shrub-could-be-more-resistant-to-more-intense-drought/ )

Sands R., Bachelard E. P. (1973) – Uptake of picloram by Eucalypt leaf discs – New Phytologist 72(1): 87-99 – https://doi.org/10.1111/j.1469-8137.1973.tb02013.xhttps://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1973.tb02013.x – (On our blog : https://plantstomata.wordpress.com/2021/12/17/a-major-role-for-stomata-in-the-uptake/ )

Sangsing K., Kasemsap P., Thanisawanyangkura S., Sangkhasila K., Gohet E., Thaler P., Cochard H. (2004) – Xylem embolism and stomatal regulation in two rubber clones(Hevea brasiliensis  Muell. Arg.) – Trees 18: 109–114 – DOI 10.1007/s00468-003-0286-7https://www.academia.edu/32409499/Xylem_embolism_and_stomatal_regulation_in_two_rubber_clones_Hevea_brasiliensis_Muell.Arg. – (On our blog : https://plantstomata.wordpress.com/2022/01/06/99129/ )

Santakumari M., Fletcher R. A. (1987) – Reversal of triazole-induced stomatal closure by gibberellic acid and cytokinins in Commelina benghalensis – Physiol. Plant. 71: 95-99 – DOI: 10.1111/j.1399-3054.1987.tb04623.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1987.tb04623.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/20/triazole-induced-stomatal-closure-ga-and-cytokinins/ )

Santamaria, J. M., Davies W. J., Atkinson C. J. (1993) – Stomata of micropropagated Delphinium plants respond to abscisic acid (ABA), CO2, light and water potential but fail to close fully – Journal of Experimental Botany 44(1): 99-107 – ISSN 1460-2431 – http://www.research.lancs.ac.uk/portal/en/publications/stomata-of-micropropagated-delphinium-plants-respond-to-abscisic-acid-aba-co2-light-and-water-potential-but-fail-to-close-fully(774441ae-ef2f-4eb5-99a2-9b8b213f5996).html – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1321 )

Santelia D. (2019) – The role of carbon metabolism in drought stress tolerance – University of Basel, Plant Molecular Physiology and Biochemistry – https://swissplantscienceweb.unibas.ch/en/santelia/ – (On our blog : https://plantstomata.wordpress.com/2020/01/06/82635/ )

Santelia D., Lawson T. (2016) – Rethinking Guard Cell Metabolism – Plant Physiology 172(3): 1371–1392 – https://doi.org/10.1104/pp.16.00767 –http://www.plantphysiol.org/content/172/3/1371 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/multiple-processes-and-plasticity-in-guard-cell-metabolism-of-stomata/ )

Santelia D., Lunn J. E. (2017) – Transitory starch metabolism in guard cells: unique features for a unique function. – Plant Physiol 174: 539–549 – DOI: 10.1104/pp.17.00211 – http://www.plantphysiol.org/content/174/2/539 – (On our blog : https://plantstomata.wordpress.com/2018/01/02/transitory-starch-metabolism-in-stomata/)

Santelia S., Lawson J., McManus J. R. L. (2015) – Guard cells as a model system for understanding stomatal development and responses to biotic and abiotic stress – Frontiers in Plant Science, 6: 1-13 –

Santiago E. J. A., Pinto J. E. B. P., Castro E. M., Lameira A. O., Conceição H. E. O. (2001) – Aspectos da anatomia foliar da pimenta-longa (Piper hispidinervium C. DC.) sob diferentes condições de luminosidade – Ciências Agrotécnicas. 25: 1035-1042 –

Santos L. D. T., Thadeo M., Iarema L., Meira R. S. A. M., Ferreira F. A. (2008) – Foliar anatomy and histochemistry in seven species of Eucalyptus – Revista Árvore 32(4): 769-779 – Universidade Federal de Viçosa, Brasil – ISSN: 0100-6762 – https://www.redalyc.org/pdf/488/48813385019.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/18/stomata-and-histochemistry-in-eucalyptus/ )

Santos M. G., Davey P. A., Hofmann T. A., Borland A., Hartwell J., Lawson T. (2021) – Stomatal Responses to Light, CO2, and Mesophyll Tissue in Vicia faba and Kalanchoë fedtschenkoi – Front. Plant Sci. 12: 740534 – doi: 10.3389/fpls.2021.740534https://www.frontiersin.org/articles/10.3389/fpls.2021.740534/full – (On our blog : https://plantstomata.wordpress.com/2022/01/03/evidence-for-both-the-involvement-of-stomatal-guard-cell-metabolism-and-mesophyll-signals-in-stomatal-responses-in-both-c3-and-cam-species/ )

Šantrůček J. (2022) – The why and how of sunken stomata: does the behaviour of encrypted stomata and the leaf cuticle matter? – Ann Bot. 130(3): 285-300 – doi: 10.1093/aob/mcac055 – PMID: 35452520 – PMCID: PMC9486903 – https://pubmed.ncbi.nlm.nih.gov/35452520/ – (On our blog : https://plantstomata.wordpress.com/2023/01/08/mechanisms-behind-the-specific-behaviour-of-hidden-stomata-and-the-multipurpose-origin-of-sunken-stomata/ )

Šantrůček J., Hronkova M., Kveton J. K., Sage R. F. (2003) – Photosynthesis inhibition during gas exchange oscillations in ABA-treated Helianthus annuus: relative role of stomatal patchiness and leaf carboxylation capacity – PHOTOSYNTHETICA 41 (2): 241-252 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Photosynthesis-inhibition-during-gas-exchange-oscillations-in-ABA-treated-Helianthus-annuus–relative-role-of-stomatal-patchiness-and-leaf-carboxylation-capacity.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/stomatal-patchiness-and-leaf-carboxylation-capacity/ )

Šantrůček J., Sage R. F. (1996) – Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album – Australian Journal of Plant Physiology 23: 467-478 – https://doi.org/10.1071/PP9960467https://www.publish.csiro.au/FP/PP9960467 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/stomatal-conductance-co2-enriched-atmosphere-and-elevated-temperature/ )

Šantrůček J., Šimáňová E., Karbulková J., Šimková M., Scheiber L. (2004) – A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves – Journal of Experimental Botany 55: 1411–1422 – https://doi.org/10.1093/jxb/erh150 –  https://academic.oup.com/jxb/article/55/401/1411/478991 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/a-new-technique-for-measurement-of-water-permeability-of-stomatous-cuticular-membranes/ )

Šantrůček J., Slavík B. (1990) – A method for separating cuticular and stomatal components of gas exchange by amphistomatous leaves. I. Model solution. J. Exp. Bot. 41: 795-802 – DOI: 10.1093/jxb/41.7.795https://www.jstor.org/stable/23695057?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/02/10/separating-cuticular-and-stomatal-components-of-gas-exchange-by-amphistomatous-leaves/ )

Šantrůček J., Slavík B. (1990) – A method for separating cuticular and stomatal components of gas exchange by amphistomatous leaves. II. Experimental solution. J. Exp. Bot. 41: 803-813 – https://doi.org/10.1093/jxb/41.7.803https://academic.oup.com/jxb/article-abstract/41/7/803/489958 – (On our blog : https://plantstomata.wordpress.com/2020/02/10/a-method-for-separating-cuticular-and-stomatal-components/ )

Šantrůček J., Vráblová M., Šimková M., Hronková M., Drtinová M., Květoň J., Vrábl D., Kubásek J., Macková J., Wiesnerová D., Neuwithová J., Schreiber L. (2014) – Stomatal and pavement cell density linked to leaf internal CO2 concentration – Ann Bot 114(2): 191–202 – PMC4217638 –  doi: 10.1093/aob/mcu095 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217638/ – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-density-affected-by-rising-atmospheric-co2-light-air-humidity-and-drought/ )

Sanyal P., Bhattacharya U., Bandyopadhyay S. (2008) – Analysis of sem images of stomata of different tomato cultivars based on morphological features – Modeling Simulation, 2008. AICMS 08. Second Asia International Conference on, May 2008, 890–894 –

Sanz L. C., Fernández-Maculet J. C., Gómez E., Vioque B., Olías J. M. (1993) – Effect of methyl jasmonate on ethylene biosynthesis and stomatal closure in olive leaves – Phytochemistry 33: 285-289 – https://doi.org/10.1016/0031-9422(93)85504-Khttps://www.sciencedirect.com/science/article/pii/003194229385504K – (On our blog : https://plantstomata.wordpress.com/2017/12/20/meja-caused-stomatal-closure/ )

Sapala A., Runions A., Routier-Kierzkowska A.-L., Gupta M. D., Hong L., Hofhuis H., Verger S., Mosca G., Li C.-B., Hay A., Hamant O., Roeder A. H. K., Tsiantis M., Prusinkiewicz P., Smith R. S. (2018) – Why plants make puzzle cells, and how their shape emerges – eLife: e32794 – DOI: 10.7554/eLife.32794 – https://elifesciences.org/articles/32794 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/mechanical-stress-is-a-key-driver-of-cell-shape-morphogenesis-in-stomata/ )

Sapra V. T., Hughes J. L., Sharma G. C. (1975) – Frequency, size and distribution of stomata in Triticale leaves – Crop Sci 15: 356–358 – https://doi.org/10.2135/cropsci1975.0011183X001500030022xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1975.0011183X001500030022x – (On our blog : https://plantstomata.wordpress.com/2021/03/28/the-number-of-stomata-unit-area-decreased-and-stomata-size-increased-with-increasing-ploidy-level-within-a-species/ )

Sarabi B., Fresneau C., Ghaderi N., Bolandnazar S., Streb P., Badeck F. W., Citerne S., Tangama M., David A., Ghashghaie J. (2019) – Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy – Plant Physiol Biochem. 141:1-19 – doi: 10.1016/j.plaphy.2019.05.010 – Epub 2019 May 15 – PMID: 31125807 – https://pubmed.ncbi.nlm.nih.gov/31125807/ – (On our blog : https://plantstomata.wordpress.com/2021/11/17/the-stomatal-and-non-stomatal-factors-during-photosynthesis-with-an-insight-into-better-understanding-the-physiological-mechanisms-involved-in-the-response-of-melon-plants-to-increasing-salinity/ )

Saradadevi C., Rao R. G. (1978) – NaCl salinity-induced changes in stomatal characteristicvs of safflower – Proc. Indian Acad. Sci. 87(5): 141-148 –

Saradadevi R., Bramley H., Palta J. A., Siddique K. H. M. (2017) – Stomatal behaviour under terminal drought affects post-anthesis water use in wheat – Functional Plant Biology 44(3): 279 –

Saradadevi R., Palta J. A., Siddique K. H. M. (2017) – ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat – Front Plant Sci. 8: 1251 – doi: 10.3389/fpls.2017.01251 – eCollection 2017 – https://www.ncbi.nlm.nih.gov/pubmed/28769957 – (On our blog : https://plantstomata.wordpress.com/2019/09/03/aba-mediated-stomatal-response/ )

Saravanavel R., Ranganathan R., Anantharaman P. (2011) – Effect of Sodium Chloride on Photosynthetic Pigments and Photosynthetic Characteristics of Avicennia officinalis Seedlings – Recent Res. Sci. Technol. 3(4) –https://scienceflora.org/journals/index.php/rrst/article/view/665 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/effect-of-nacl-on-stomatal-conductance-in-avicennia/ )

Sarda X., Tousch D., Ferrare K., Legrand E., Dupuis J., Casse-Delbart F., Lamaze T. (1997) – Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells – Plant J. 12: 1103–1111 – doi: 10.1046/j.1365-313x.1997.12051103.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1997.12051103.x – (On our blog : https://plantstomata.wordpress.com/2020/07/06/two-tip-like-genes-encoding-aquaporins-are-expressed-in-sunflower-guard-cells/ )

Saridis P., Georgiadou X., Shtein I., Pouris J., Panteris E., Rhizopoulou S., Constantinidis T., Giannoutsou E., Adamakis I.-DS. (2022) – Stomata in Close Contact: The Case of Pancratium maritimum L. (Amaryllidaceae) – Plants 11(23): 3377 – https://doi.org/10.3390/plants11233377https://www.mdpi.com/2223-7747/11/23/3377 – (On our blog : https://plantstomata.wordpress.com/2022/12/24/stomata-with-a-connection-strand-do-not-open-like-the-single-stomata-do-indicating-that-the-connection-strand-could-also-affect-stomatal-function/ )

Sarsag M., Ünal M. (2004) – The effects of Sultan 70 WG on stomatal function – Biotechnol. & Biotechnol. Eq. 18/2004/2: 104-111 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/herbicide-effects-on-stomatal-function/ )

Sarwar A. K. M. G., Karim M. A., Rana S. M. A. M. (2013) – Influence of stomatal characteristics on yield and yield attributes of rice – J. Bangladesh Agril. Univ. 11(1): 47–52 – ISSN 1810-3030  – http://ageconsearch.umn.edu/bitstream/209746/2/18207-65562-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-and-rice-yield/ )

Sasaki T., Mori I. C, Furuichi T., Munemasa S., Toyooka K., Matsuoka K., Murata Y., Yamamoto Y. (2010) – Closing plant stomata requires a homolog of an aluminum-activated malate transporter – Science.gov (United States) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html – (On our blog : https://plantstomata.wordpress.com/2022/03/06/atalmt12-is-a-novel-class-of-anion-transporter-involved-in-stomatal-closure-2/ )

Sass J. E., Lindstrom E. W. (1941) – Epidermal Patterns in Haploid, Diploid and Tetraploid Tomatoes (Abstract) – Proceedings of the Iowa Academy of Science 48(1): 196 – https://scholarworks.uni.edu/pias/vol48/iss1/32/ – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomatal-characteristics-in-a-n-2n-4n-series-of-tomatoes/ )

Satler S. O., Thimann K. V. (1977) – The relation between senescence and stomatal
opening; senescence in darkness – Proc Natl Acad Sci USA 70: 2770-2773 –

Sato H., Kumagai T. O., Takahashi A., Katul G. (2015) – Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO2-enriched climate conditions – J. Geophys. Res. Biogeosci. 120: 979–988 – doi: 10.1002/2014JG002838 – http://onlinelibrary.wiley.com/doi/10.1002/2014JG002838/full – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomatal-conductance-response-to-humidity/ )

Sato N. (1985) – Lipid biosynthesis in epidermal, guard and mesophyll cell protoplasts from leaves of Vicia faba L. – Plant Cell Physiol. 26: 805–811 – DOI: 10.1093/oxfordjournals.pcp.a076974 – https://link.springer.com/chapter/10.1007/978-1-4684-5263-1_100 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/epidermal-and-guard-cells-are-quite-different-in-ability-to-synthesize-long-chain-fatty-acids-in-stomata-of-broad-bean/ )

Sato T., Abdalla O. S., Oweis T. Y., Sakuratani T. (2006) – Effect of supplemental irrigation on leaf stomatal conductance of field-grown wheat in northern Syria – Agricultural Water Management 85: 105–112 – https://doi.org/10.1016/j.agwat.2006.03.015 –https://www.sciencedirect.com/science/article/pii/S0378377406001041 – (On our blog : https://plantstomata.wordpress.com/2018/12/30/effect-of-supplemental-irrigation-on-leaf-stomatal-conductance/ )

Saupe S. G. (2009) – Plant Physiology (Biology 327) – Stomatal Images – https://employees.csbsju.edu/ssaupe/biol327/Lab/stomata/stomata-images.htm

Savchenko T., Kolla V. A., Wang C. Q., Nasafi Z., Hicks D. R., Phadungchob B., Chehab W. E., Brandizzi F., Froehlich J., Dehesh K. (2014) – Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought – Plant Physiol. 164: 1151–1160 – doi: 10.1104/pp.113.234310 – https://www.ncbi.nlm.nih.gov/pubmed/24429214 – (On our blog : https://plantstomata.wordpress.com/2018/06/17/12-opda-as-a-drought-responsive-regulator-of-stomatal-closure-functioning-together-with-aba/

Savitsky H. (2017) – Effectiveness of Selection for Tetraploid Plants In Co Generation on the Basis of the Number of Chloroplasts in Stomata – JOCRNAL OF THE A. S. S. B. T 13(8): 655-661 – https://bsdf-assbt.org/wp-content/uploads/2017/04/JSBRVol13No8P655to661EffectivenessofSelectionforTetraploidPlantsinCGenerationontheBasisoftheNumberofChloroplastsinStomata.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/31/selection-for-tetraploids-in-co-generation-should-be-based-onselection-of-diploid-gametes-pollen-grains-which-will-producea-tetraploid-progeny/ )

Savvides A., Fanourakis D., van Ieperen W. (2012) – Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves – J Exp Bot. 63(3): 1135–1143 – doi: 10.1093/jxb/err348 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276089/ – (On our blog : https://plantstomata.wordpress.com/2018/12/21/co-ordination-of-hydraulic-and-stomatal-conductances-across-light-qualities/ )

Sawhney B. L., Zelitch I. (1969) – Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light – Plant Physiol. 44(9): 1350–1354 – https://www.jstor.org/stable/4261836?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/30/potassium-ion-accumulation-in-guard-cells-in-relation-to-stomatal-opening-in-light/ )

Sawhney B. L., Zelitch I. (1971) – Stomata and the potassium pump in plants – Frontiers of Plant Science 23(2): 2 + 8 – https://portal.ct.gov/-/media/CAES/DOCUMENTS/Publications/Frontiers/FPS232pdf.pdf?la=en – (On our blog : https://plantstomata.wordpress.com/2022/01/16/stomata-and-the-potassium-pump-in-plants/ )

Sawinski K., Mersmann S., Robatzek S., Böhmer M. (2013) – Guarding the green: pathways to stomatal immunity – Mol. Plant Microbe Interact. 26: 626–632 – doi: 10.1094/Mpmi-12-12-0288-CR – https://www.ncbi.nlm.nih.gov/pubmed/23441577 – (On our blog : https://plantstomata.wordpress.com/2018/06/17/the-signaling-pathways-leading-to-stomatal-closure-triggered-by-biotic-and-abiotic-stresses-employ-several-common-components/ )

Sawyer W. H. Jr. (1932) – Stomatal apparatus of the cultivated cranberry Vaccinium macrocarpon – American Journal of Botany 19(6): 508-513 – https://www.jstor.org/stable/2436073?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/08/22/stomata-in-vaccinium-macrocarpon/ )

Sayed S. A. (1997)  Effect of cadmium and kinetin on transpiration rate, stomatal opening and leaf relative water content in safflower plants – Journal of Islamic Academy of Sciences. 10(3): 73-80 – https://www.journalagent.com/ias/pdfs/IAS_10_3_73_80.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/20/cadmium-mediated-reduction-in-transpiration-rate-stomatal-opening-and-leaf-turgidity-are-reversed-by-kinetin/ )

Sayre J. D. (1923) – Physiology of Stomata of Rumex patientia – Science 57(1468): 205-206 (Ohio Jour. Sci. 26: 233-266) – doi: 10.1126/science.57.1468.205 – PMID: 17800655 –

Sayre J. D. (1929) – Opening of Stomata in Different Ranges of Wave Lengths of Light – Plant Physiology 4(3): 323–328 – https://doi.org/10.1104/pp.4.3.323https://academic.oup.com/plphys/article/4/3/323/6069218 – (On our blog : https://plantstomata.wordpress.com/2022/02/07/the-stomata-of-rumex-patientia-do-not-open-in-light-of-wave-lengths-longer-than-690-mu/ )

Sax H. J. (1938) – The relation between stomata counts and chromosome number – J. Arnold Arbor 19: 437-441 – http://www.jstor.org/stable/43780877 – (On our blog :

Sax H. J. (1938) – The relation between stomata counts and chromosome number – J. Arnold Arbor 19: 437-441 – http://www.jstor.org/stable/43780877 – (On our blog : https://plantstomata.wordpress.com/2021/12/25/to-test-the-correlation-of-stomata-frequency-in-a-species-with-the-chromosome-number-and-to-learn-whether-herbarium-material-could-be-successfully-used-in-such-work/ )

Sax K., Sax H. J. (1937) – Stomata size and distribution in diploid and polyploid plants – Journal of the Arnold Arboretum 18: 164-172 – https://www.jstor.org/stable/43780826https://www.jstor.org/stable/43780826?seq=1 – (On our blog : https://plantstomata.wordpress.com/2021/03/28/89118/ )

Saxe H. (1979) – A structural and functional study of the coordinated reactions of individual Commelina communis L. stomata (Commelinaceae) – Amer. J. Bot. 66: 1044-1052 – https://doi.org/10.1002/j.1537-2197.1979.tb06320.x –https://bsapubs.onlinelibrary.wiley.com/doi/pdf/10.1002/j.1537-2197.1979.tb06320.x – (On our blog : https://plantstomata.wordpress.com/2018/12/31/coordinated-reactions-of-individual-stomata/ )

Saxe H. (1990) – Photosynthesis and stomatal responses to polluted air, and the use of physiological and biochemical responses for early detection and diagnostic tools – Advances in Botanical Research 18: 1–129 – https://doi.org/10.1016/S0065-2296(08)60021-X –https://www.sciencedirect.com/science/article/pii/S006522960860021X – On our blog : https://plantstomata.wordpress.com/2018/12/31/photosynthesis-and-stomatal-responses-to-polluted-air/ )

Scarr (2011) – The use of stomatal frequency from three Australian evergreen tree species as a proxy indicator of atmospheric carbon dioxide concentration – PhD Thesis Victoria University – https://vuir.vu.edu.au/16044/1/Mark_Scarr_thesis_2011.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomatal-frequency-and-co2-concentration/ )

Scarpeci T. E., Zanor M. I., Valle E. M. (2017) – Estimation of Stomatal Aperture in Arabidopsis thaliana Using Silicone Rubber Imprints – bio-proocol 7(12): – DOI:   10.21769/BioProtoc.2347https://bio-protocol.org/e2347 – (On our blog : https://plantstomata.wordpress.com/2021/04/07/an-accurate-estimation-of-stomatal-aperture/ )

Scarth G. W. (1927) – Stomatal Movement: its Regulation and Regulatory Role. A Review – Protoplasma 2(3): 498-511 –

Scarth G. W. (1929) – The Influence of H-Ion Concentration on the Turgor and Movement of Plant Cells with Special Reference to Stomatal Behaviour – Proc. Internat. Cong. Plat. Sci. 2: 1151-1162 –

Scarth G. W. (1932) – Mechanism of the Action of Light and Other Factors on Stomatal Movement – Plant Phys. 7: 481-504 – https://doi.org/10.1104/pp.7.3.481https://academic.oup.com/plphys/article/7/3/481/6069424 – (On our blog : https://plantstomata.wordpress.com/2021/08/08/92090/ )

Scarth G. W., Shaw M. (1951) – Stomatal Movement and Photosynthesis in Pelargonium. II. Effects of Water Deficit and of Chloroform: photosynthesis in guard cells – Plant Physiol. 26: 581-597 – https://www.jstor.org/stable/4258451?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/20/effect-of-water-deficit-and-chloroform-on-stomatal-movement/ )

Scarth G. W., Whyte J. H., Brown (1933) – On the Cause of Night Opening of Stomata – Trans. Roy. Soc. Canada 115-117 –

Schäfer R. (1888) – Über den Einfluss des Turgors der Epidermiszellen auf die Function des Spaltöffnungsapparates – Jahrb. f. wiss. Bot. 19: 178-205 – u. Pringsh. Jahrb. IX

Schäfer K. V. R.,, Oren R., Tenhunen J. D. (2000) – The effect of tree height on crown level stomatal conductance – Plant, Cell and Environment 23: 365-375 – https://doi.org/10.1046/j.1365-3040.2000.00553.x –http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.3632&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/31/decreasing-hydraulic-conductance-with-tree-height-reduces-carbon-uptake-through-a-corresponding-decrease-in-stomatal-conductance/ ) – https://plantstomata.wordpress.com/2019/01/04/tree-height-and-crown-level-stomatal-conductance/ )

Schafer K., Tirtapradja H. (1970) – Net assimilation, respiration in darkness, number of stomata and chlorophyll content of leaf segments of several varieties of Dactylis glomerata L. – Zeitschrift fur Acker- und Pflanzenbau 132(4): 320-339 – https://eurekamag.com/research/014/572/014572951.php – (On our blog : https://plantstomata.wordpress.com/2022/02/18/measurements-of-nar-dark-respiration-number-of-stomata-and-chlorophyll-content/ )

Schäfer N., Maierhofer T., Herrmann J., Jørgensen M. E., Lind C., von Meyer K., Lautner S., Fromm J., Felder M., Hetherington A. M., Ache P., Geiger D., Hedrich R. (2018) –  A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate – Current Biology 26 April 2018 – DOI: 10.1016/j.cub.2018.03.027 – https://www.scoop.it/t/plant-hormones-by-julio-retamales/p/4097207899/2018/04/26/a-tandem-amino-acid-residue-motif-in-guard-cell-slac1-anion-channel-of-grasses-allows-for-the-control-of-stomatal-aperture-by-nitratehttps://www.cell.com/current-biology/abstract/S0960-9822(18)30356-7 – (On our blog : https://plantstomata.wordpress.com/2018/04/29/a-tandem-amino-acid-residue-motif-that-within-the-slac1-channels-differs-fundamentally-between-monocots-and-dicots/ )

Schäfer K. V. R., Oren R., Tenhunen J. D. (2000) – The effect of tree height on crown level stomatal conductance – Plant Cell Environ. 23: 365–375 – https://doi.org/10.1046/j.1365-3040.2000.00553.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2000.00553.x – (On our blog : https://plantstomata.wordpress.com/2021/06/11/decreasing-hydraulic-conductance-with-tree-height-reduces-carbon-uptake-through-a-corresponding-decrease-in-stomatal-conductanc/ )

Schaller J., Paschold P. J. (2009) – Stomata-characteristics and responses to soil drought indicating a cultivar specific drought stress susceptibility in asparagus – European Journal of Horticultural Science 74(4): 145-151 – http://0-search.ebscohost.com.catalog.library.colostate.edu/login.aspx?direct=true&AuthType=cookie,ip,url,cpid&custid=s4640792&db=lah&AN=20093259465&site=ehost-live – https://agwaterconservation.colostate.edu/library/stomata-characteristics-and-responses-to-soil-drought-indicating-a-cultivar-specific-drought-stress-susceptibility-in-asparagus/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-and-responses-to-soil-drought-in-asparagus/ )

Schauf C. L., Wilson K. J. (1987) – Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts – Biochem. Biophys. Res. Commun. 145: 284-290 –

Scheibe R., Reckmann U., Hedrich R., Raschke K. (1990) – Malate dehydrogenase in guard cells of Pisum sativum – Plant Physiol. 93: 1358-1364 – https://doi.org/10.1104/pp.93.4.1358 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062680/ – (On our blog : https://plantstomata.wordpress.com/2017/12/20/the-malate-requirement-for-stomatal-opening-in-the-light-malate-dehydrogenase-in-guard-cells/ )

Scheidegger Y., Saurer M., Bahn M., Siegwolf R. (2000) – Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model – Oecologia 125(3): 350-357 – doi: 10.1007/s004420000466 https://pubmed.ncbi.nlm.nih.gov/28547329/ – (On our blog : https://plantstomata.wordpress.com/2021/03/31/linking-stable-oxygen-and-carbon-isotopes-with-stomatal-conductance/ )

Scheitterer H., Weber F. (1930) – Osmotischer Wert bei Harnstoff-Endosmose – Protoplasma 11158–167 – https://doi.org/10.1007/BF01614323https://link.springer.com/article/10.1007/BF01614323#citeas – (On our blog : https://plantstomata.wordpress.com/2020/03/01/osmotischer-wert-bei-harnstoff-endosmose/ )

Schellenberg (1896) – Beiträge zur Kenntnis von Bau und Funktion der Spaltöffnungen – Pringsgh. Jahrb.

Schellenberg B., Ramel C., Dudler R. (2010)  Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition – Mol. Plant Microbe Interact. 23: 1287–1293 –  doi: 10.1094/MPMI-04-10-0094 – https://www.ncbi.nlm.nih.gov/pubmed/20831408 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/inhibition-of-stomatal-immunity-by-syringolin-a/ )

Scherzer S., Maierhofer T., Al-Rasheid K. A. S., Geiger D., Hedrich R. (2012) – Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels – Mol. Plant 5: 1409–1412 – doi: 10.1093/mp/sss084 – https://www.ncbi.nlm.nih.gov/pubmed/22933711 – ((On our blog : https://plantstomata.wordpress.com/2018/06/17/ca-dependent-kinases-modulate-aba-activated-stomatal-anion-channels/ )

Scheuermann R., Stuhlfauth T., Sueltemeyer D., Fock H. (1989) – Survival strategies of plants during water stress – Plant Physiology, Supplement (USA) 89: 4 – Journal ID: ISSN 0079-2241 – https://www.osti.gov/biblio/7165103 – (On our blog : https://plantstomata.wordpress.com/2022/10/06/co2-recycling-behind-closed-stomata-contributed-to-energy-dissipation-under-severe-stress-conditions/ )

Scheurich P., Zimmerman U. (1981) – Electrically Stimulated Fusion of Different Plant Cell Protoplasts : MESOPHYLL CELL AND GUARD CELL PROTOPLASTS OF VICIA FABA – Plant Physiology 67(4): 849-853 – DOI10.1104/pp.67.4.849https://eurekamag.com/research/000/877/000877265.php – (On our blog : https://plantstomata.wordpress.com/2021/09/21/93543/ )

Schickling A., Graf A., Pieruschka R., Pluckers ¨C., Geiß H., Lai I.-L., Schween J. H., Erentok K., Schmidt M., Wahner A., Crewell S., Rascher U. (2010) – The influence of leaf photosynthetic efficiency and stomatal closure on canopy carbon uptake and evapotranspiration – a model study in wheat and sugar beet – Biogeosciences Discuss. 7: 7131–7172 – doi:10.5194/bgd-7-7131-2010https://bg.copernicus.org/preprints/7/7131/2010/bgd-7-7131-2010.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/24/the-link-of-the-main-physiological-leaf-level-mechanisms-stomatal-conductance-and-efficiency-of-photosynthetic-energy-conversion-on-canopy-transpiration-and-photosynthetic-co2-uptake/ )

Schlegel T. K., Schönherr J., Schreiber L. (2005) – Size selectivity of aqueous pores in stomatous cuticles of Vicia faba leaves – Planta 221: 648–655 – DOI: 10.1007/s00425-005-1480-1https://pubmed.ncbi.nlm.nih.gov/15700185/ – (On our blog : https://plantstomata.wordpress.com/2021/01/28/size-selectivity-of-aqueous-pores-in-stomatous-cuticles/ )

Schlegel T. K., Schönherr J., Schreiber L. (2006) – Rates of Foliar Penetration of Chelated Fe(III):  Role of Light, Stomata, Species, and Leaf Age – J. Agric. Food Chem. 54(18): 6809-6813 – https://doi.org/10.1021/jf061149ihttps://pubs.acs.org/doi/10.1021/jf061149i – (On our blog : https://plantstomata.wordpress.com/2020/03/05/rates-of-foliar-penetration-of-chelated-feiii%e2%80%89-role-of-light-stomata-species-and-leaf-age/ )

Schletz R. (2008) – Stomata Densities of Developing and Mature Leaves of Geraniums – ESSAI: 6: Article 42 – http://dc.cod.edu/essai/vol6/iss1/42 – https://dc.cod.edu/cgi/viewcontent.cgi?article=1084&context=essai – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomata-densities-of-developing-and-mature-leaves/ )

Schlüter U., Muschak M., Berger D., Altmann T. (2003) – Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes – J Exp Bot 54: 867–874 – https://doi.org/10.1093/jxb/erg087 –  – https://academic.oup.com/jxb/article/54/383/867/545860 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/a-point-mutation-in-a-single-gene-sdd1-causes-specific-alterations-in-stomatal-density-and-distribution/

Schmidt C., Schelle I., Liao Y.-J., Schroeder J. I. (1995) – Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events – Proc Natl Acad Sci USA 92: 9535–9539 – DOI: 10.1073/pnas.92.21.9535https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40836/ – (On our blog : https://plantstomata.wordpress.com/2019/01/07/strong-regulation-of-slow-anion-channels-and-aba-signaling-in-stomata/ )

Schmidt C., Schroeder J. I. 1994) – Anion-selectivity of slow anion channels in Vicia faba guard cells: large nitrate permeability – Plant Physiol 106: 383–391 – https://doi.org/10.1104/pp.106.1.383https://pdfs.semanticscholar.org/3df8/c333491b895b6a76a86983bf1c09516f9f51.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/06/slow-anion-channels-can-provide-an-efficient-pathway-for-efflux-of-physiologically-important-anions-from-stomata/ )

Schmitt U., Ruetze M., Liese W. (1987) – Scanning electron microscopical investigations on stomatal wax plugs of fir and spruce needles after fumigation and acid rain treatment (Rasterelektronenmikroskopische Untersuchungen an Stomata von Fichten‐ und Tannennadeln nach Begasung und saurer Beregnung) – European Journal of Forest Pathology, 17: 118-124 – https://doi.org/10.1111/j.1439-0329.1987.tb00736.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0329.1987.tb00736.x – (On our blog : https://plantstomata.wordpress.com/2019/01/07/stomatal-wax-plugs-after-fumigation-and-acid-rain-treatment/ )

Schnabl H. (1976) – Der Einfluss von Aluminiumionen auf ·den Starke-metabolismus von Vicia faba-epidermen – Z. Pflanzenphysiol. 77: 167-173 –

Schnabl H. (1978) – The effect of Cl(-) upon the sensitivity of starch-containing and starch-deficient stomata and guard cell protoplasts towards potassium ions, fusicoccin and abscisic acid – Planta 144(1): 95-100 – doi: 10.1007/BF00385013https://pubmed.ncbi.nlm.nih.gov/24408650/ – (On our blog : https://plantstomata.wordpress.com/2021/08/22/the-effect-of-chloride-ions-upon-the-sensitivity-of-starch-containing-and-starch-deficient-stomata/ )

Schnabl H. (1978) – Compensation of the Potassium Charge by Chloride Ions during Stomatal Movement in Allium cepa – Fed. Eur. Soc, Pl. Physiol. Inaug. Meeting Edinburgh Abs. 472-473 –

Schnabl H. (1980) – CO2 and malate metabolism in starch-containing and starch lacking guard cell protoplasts – Planta 149: 52–58 –

Schnabl H. (1981) – The compartmentation of carboxylating and decarboxylating enzymes in guard cell protoplasts – Planta 152: 307–313 – https://doi.org/10.1007/BF00388254https://link.springer.com/article/10.1007%2FBF00388254#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/17/carboxylating-and-decarboxylating-enzymes-in-stomatal-protoplasts/ )

Schnabl H., Bornman C., Ziegler H. (1978) – Studies on isolated starch-containing (Vicia faba) and starch-deficient (Alllium cepa) guard cell protoplasts – Planta 143: 33–39 – doi: 10.1007/BF00389049https://pubmed.ncbi.nlm.nih.gov/24408258/ – (On our blog : https://plantstomata.wordpress.com/2021/08/22/advantages-by-working-with-isolated-stomatal-gcps/ )

Schnabl H., Kottmeier C. (1984) – Determination of malate levels during the swelling of vacuoles isolated from guard cell protoplasts – Planta 161: 27–31 – https://doi.org/10.1007/BF00951456https://link.springer.com/article/10.1007%2FBF00951456#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/07/malate-levels-during-the-swelling-of-vacuoles-isolated-from-stomatal-protoplasts/ )

Schnabl H., Kottmeier C. (1984) – Properties of phosphoenolpyruvate carboxylase in desalted extracts from isolated guard cell protoplasts – Planta 162: 220–225 – https://doi.org/10.1007/BF00397443https://link.springer.com/article/10.1007/BF00397443 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/properties-of-pep-carboxylase-in-desalted-extracts-from-isolated-guard-cell-protoplasts/ )

Schnabl H., Michalke B. (1988) – The role of oxidative phosphorylation in stomatal opening. Adenylate pool sizes in light- and dark-treated swelling guard cell protoplasts – Life Sci. Adv. Plant Physiol. 7: 203–207 –

Schnabl H., Raschke K. (1980) – Potassium Chloride as Stomatal Osmoticum in Allium cepa L., a Species Devoid of Starch in Guard Cells – Plant Physiol. 65(1): 88–93 – PMID: 16661151 – PMCID: PMC440273 https://www.ncbi.nlm.nih.gov/pubmed/16661151 – (On our blog :https://plantstomata.wordpress.com/2019/01/17/potassium-chloride-as-stomatal-osmoticum/ )

Schnabl H., Vienken J., Zimmermann U., (1980) – Regular arrays of intramembranous particles in the plasmalemma of guard cell and mesophyll cell protoplasts of Vicia faba – Planta 148(3): 231-237 – DOI: 10.2307/23374821file:///C:/Users/wille/Downloads/23374821%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/21/intramembranous-particles-in-the-plasmalemma-of-the-stomatal-guard-cell/ )

Schnabl H., Weissenböck G., Scharf H. (1989)In vivo– microspectrophotometric characterization of flavonol glycosides in Vicia faba guard and epidermal cells – J Exp Bot 37: 61–72 – https://doi.org/10.1093/jxb/37.1.61https://academic.oup.com/jxb/article-abstract/37/1/61/576115 – (On our blog : https://plantstomata.wordpress.com/2023/01/03/in-vivo-spectrophotometric-analyses-of-stomata-stomatal-guard-cell-protoplasts-and-epidermal-cells-of-vicia-faba-have-shown-that-kaempferol-37-o-glycosides-are-localized-in-the-vacuol/ )

Schnabl H., Weissenböck G., Sachs G., Scharf H. (1989) – Cellular distribution of UV-absorbing compounds in guard and subsidiary cells of Zea mays L. – Journal of Plant Physiology 135: 249–252 –

Schnabl H., Ziegler H. (1975)  Über die Wirkung von Aluminiumionen auf die Stomatabewegung von Vicia faba Epidermen – The influence of aluminium ions on the movement of the stomata in Vicia faba-epidermis strips – Zeit. Pflanzenphysiol. 74: 394-403 – https://doi.org/10.1016/S0044-328X(75)80149-8https://www.sciencedirect.com/science/article/abs/pii/S0044328X75801498 – (On our blog : https://plantstomata.wordpress.com/2021/03/17/influence-of-aluminium-ions-on-the-movement-of-the-stomata/ )

Schnabl H., Ziegler H. (1977) The mechanism of stomatal movement in Allium cepa L. – Planta 136: 37-43 – doi: 10.1007/BF00387922https://www.ncbi.nlm.nih.gov/pubmed/24420224 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/starch-and-the-mechanism-of-stomatal-movement/ )

Schneider J. V., Habersetzer J., Rabenstein R., Wesenberg J., Wesche K., Zizka G. (2017) – Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density – New Phytol. 214(1): 473-486 – doi: 10.1111/nph.14382 – Epub 2016 Dec 22 – https://www.ncbi.nlm.nih.gov/pubmed/28005294 – (On  our blog : https://plantstomata.wordpress.com/2018/06/14/relationships-between-leaf-size-vein-and-stomata-traits-and-their-interplay-with-climate/ )

Schoch C.H., Lhotel J. C., Brunel B. (1988) – Variations of stem diameter, leaf stomatal-resistance and net photosynthetic rate in eggplants affected by water-stress – Photosynthetica 22: 477-482 –

Schoch P. G., Jacques R., Lecharny A., Sibi M. (1984) – Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. II. Effect of different light quality – Journal of Experimental Botany 35: 1405-1409 –  https://doi.org/10.1093/jxb/35.10.1405 –https://academic.oup.com/jxb/article-abstract/35/10/1405/512576?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/07/phytochrome-is-involved-in-stomatal-differentiation/ )

Schoch P. G., Zinsou C., Sibi M. (1980) – Dependence of the stomatal index on environmental-factors during stomatal differentiation in leaves of Vigna sinensis L. – 1. Effect of light-intensity – J. Exp. Bot. 31: 1211–1216 – doi:10.1093/jxb/31.5.1211 – https://academic.oup.com/jxb/article-abstract/31/5/1211/454079?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/01/dependence-of-the-stomatal-index-on-environmental-factors/ )

Scholefield P. B., Kriedmann P. E. (1979) – Stomatal development in avocado leaves – CSIRO Australian Division of Horticultural Research, Report 1977-1979: 50-51 –

Schönherr J., Bukovac M. J. (1972) – Penetration of stomata by liquids:
dependence on surface tension, wettability, and stomatal morphology – Plant Physiol. 49: 813-819 – PMID: 16658054 – PMCID: PMC366058 – DOI: 10.1104/pp.49.5.813https://pubmed.ncbi.nlm.nih.gov/16658054/ – (On our blog : https://plantstomata.wordpress.com/2021/08/03/the-degree-of-stomatal-opening-cannot-be-assessed-by-observing-spontaneous-infiltration-of-stomata-by-organic-liquids-of-low-surface-tension/ )

Schönherr J., Ziegler H. (1975) – Hydrophobic cuticular ledges prevent water entering the air pores of liverwort thalli – Planta 124(1): 51-60 – doi: 10.1007/BF00390067https://pubmed.ncbi.nlm.nih.gov/24435173/ – (On our blog : https://plantstomata.wordpress.com/2021/08/03/hydrophobic-cuticular-ledges-prevent-water-entering-the-air-pores-of-liverwort-thalli/ )

Schreck E., Dappe V., Sarret G., Sobanska S., Nowak D., Nowak J., Stefaniak E. A., Magnin V., Ranieri V., Dumat C. (2014) – Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves – Science of The Total Environment 476–477: 667-676 – ISSN 0048-9697 – https://doi.org/10.1016/j.scitotenv.2013.12.089https://www.sciencedirect.com/science/article/pii/S0048969713015726 – (On our blog : https://plantstomata.wordpress.com/2022/09/06/stomata-contained-pb-rich-particles-in-their-apertures/ )

Schrock G. F. (1982) – A Laboratory Exercise to Assess Transpiration – The American Biology Teacher 44(4): 242-252 – (On our blog : https://plantstomata.wordpress.com/2021/10/17/stomata-and-transpiration-3/ )

Schroeder K. R.,  Stimart D. P. (2005) – Comparison of stomatal density and postharvest transpiration between long- and short-lived cut flower genotypes of Antirrhinum majus L. – J. Amer. Soc. Hort. Sci. 130: 243-244 – https://doi.org/10.21273/JASHS.130.5.742https://journals.ashs.org/jashs/view/journals/jashs/130/5/article-p742.xml – (On our blog : https://plantstomata.wordpress.com/2020/11/16/comparison-of-stomatal-density-and-postharvest-transpiration-between-long-and-short-lived-cut-flower-genotypes/)

Schroeder J. I. (1988) K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells – J. Gen. Physiol. 92: 667–683 – DOI: 10.1085/jgp.92.5.667 –  https://www.ncbi.nlm.nih.gov/pubmed/3235976 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/a-prominent-role-for-ikin-and-ikout-channels-in-k-transport-across-the-plasma-membrane-of-guard-cells-in-stomata-of-vicia/ )

Schroeder J. I. (1989)  Quantitative analysis of outward rectifying K+ channel currents in guard cell protoplasts from Vicia faba – J Membr Biol. 107(3): 229-35 – doi: 10.1007/BF01871938 https://pubmed.ncbi.nlm.nih.gov/2716046/ – (On our blog : https://plantstomata.wordpress.com/2020/08/29/outward-rectifying-k-channel-currents-in-guard-cell-protoplasts/ )

Schroeder  J. I. (1992)  Plasma membrane ion channel regulation during abscisic acid-induced closing of stomata – Philos. Trans. R. Soc. Lond. 338: 83-89 – DOI: 10.1098/rstb.1992.0131 – http://rstb.royalsocietypublishing.org/content/338/1283/83 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/plasma-membrane-ion-channel-regulation-and-stomatal-closure/ )

Schroeder J. I. (1995) – Magnesium-independent activation of inward-rectifying K+ channels in Vicia faba guard cells – FEBS Lett 363: 157–160  – https://core.ac.uk/download/pdf/82557060.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/07/the-activation-mechanism-of-inward-rectifying-k-channels-in-stomata-is-independent-of-intracellular-mg2-block/ )

Schroeder J. I. (1995) – Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions – Plant Molecular Biology 28(3): 353-361 – https://doi.org/10.1007/BF00020385https://link.springer.com/article/10.1007%2FBF00020385#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/06/a-brief-review-of-new-and-recent-insights-into-the-molecular-properties-and-cell-biological-functions-of-anion-channels-in-stomata/ )  

Schroeder  J. I. (2003) – Knockout of the guard cell Kout channel and stomatal movements – PNAS 100(9): 4976–4977 – doi: 10.1073/pnas.1031801100 – http://www.pnas.org/content/100/9/4976.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/kout-channels-function-in-mediating-stomatal-closing-and-turgor-reduction-in-plant-cells/ )

Schroeder J. I., Allen G. J., Hugouvieux V., Kwak,J. M., Waner D. (2001) – Guard cell signal transduction – Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 627–658 – doi: 10.1146/annurev.arplant.52.1.627 – https://www.ncbi.nlm.nih.gov/pubmed/11337411 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/stomatal-cells-signal-transduction/ )

Schroeder J. I., Fang H. H. (1991) – Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake – Plant Physiol 88: 11583–11587 – https://pdfs.semanticscholar.org/d904/3945e04c4608cd53247e5f9f69f13f63239e.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/11/inward-rectifying-k-channels-in-stomata-and-low-affinity-k-uptake/ )

Schroeder  J. I., Hagiwara S. (1989) – Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells – Nature 338: 427–443 – doi: 10.1038/338427a0 –  https://www.nature.com/articles/338427a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/ca2-dependent-regulation-of-stomatal-movements/ )

Schroeder J. I., Hagiwara S. (1990) – Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels – Proc. Natl. Acad. Sci. U.S.A. 87: 9305–9309  – doi: 10.1073/pnas.87.23.9305 –  http://www.pnas.org/content/87/23/9305.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/aba-activation-of-ca2-permeable-ion-channels-in-the-plasma-membrane-of-guard-cells/ )

Schroeder J. I., Hedrich R., Fernandez J. M. (1984) – Potassium-selective single channels in guard cell protoplasts of Vicia faba – Nature 312: 361–362 – doi: 10.1038/312361a0https://www.nature.com/articles/312361a0 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/k-channel-contributes-significantly-to-the-uptake-and-release-of-k-by-guard-cells-during-stomatal-movement-2/ )

Schroeder J. I., Keller B. U. (1992) – Two types of anion channel currents in guard-cells with distinct voltage regulation. – Proc. Natl. Acad. Sci. U.S.A. 89, 5025–5029 – PMCID: PMC49221 – PMID: 1375754 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC49221/ – (On our blog : https://plantstomata.wordpress.com/2019/01/07/anion-channel-currents-in-stomata/ )

Schroeder J. I., Kwak J. M., Allen G. J. (2001) – Guard cell abscisic acid signaling and engineering drought hardiness in plants – Nature 410: 327–330 – doi: 10.1038/35066500 – http://www.nature.com/nature/journal/v410/n6826/full/410327a0.html – ( https://plantstomata.wordpress.com/2017/01/25/engineering-stomatal-responses-to-control-co2-intake-and-plant-water-loss/ )

Schroeder J. I., Munemasa S., Hauser F., Hu H., Kim T.-H., Brandt B., Nishimura N., Israelsson-Nordstrom M., Boisson-Dernier A., Brodsky D. (2012) – Guard cell CO2 and abscisic acid signal transduction network – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomata-co2-and-aba-signal-transduction-network/ )

Schroeder J. I., Raschke K., Neher E. (1987) – Voltage dependence of K+ channels in guard cell protoplasts – Proceedings of the National Academy of Sciences, USA 84: 4108-4112 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Voltage-dependence-of-K–channels-in-guard-cell-protoplasts.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/voltage-dependence-of-k-channels-in-guard-cell-protoplasts/ )

Schroeder J., Schmidt C., Sheaffer J. (1993) – Identification of High-Affinity Slow Anion Channel Blockers and Evidence for Stomatal Regulation by Slow Anion Channels in Guard Cells – Plant Cell 5: 1831–1841 – https://doi.org/10.1105/tpc.5.12.1831http://www.plantcell.org/content/5/12/1831 – (On our blog : https://plantstomata.wordpress.com/2019/01/09/evidence-for-stomatal-regulation-by-slow-anion-channels/ )

Schroeder K. R., Stimart D. P. (2005) – Comparison of stomatal density and postharvest transpiration between long- and short-lived cut flower genotypes of Antirrhinum majus L. – J. Amer. Soc. Hort. Sci. 130: 243-244 – https://doi.org/10.21273/JASHS.130.5.742 –https://journals.ashs.org/jashs/view/journals/jashs/130/5/article-p742.xml – file:///C:/Users/wille/Downloads/[23279788%20-%20Journal%20of%20the%20American%20Society%20for%20Horticultural%20Science]%20Comparison%20of%20Stomatal%20Density%20and%20Postharvest%20Transpiration%20between%20Long-%20and%20Short-lived%20Cut%20Flower%20Genotypes%20of%20Antirrhinum%20majus%20L.%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/11/88535/ )

Schuermann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora (Jena) 147: 471-520 –

Schuler M. L., Sedelnikova O. V., Walker B. J., Westhoff P., Langdale J. A. (2018) – SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency – Plant Physiol.176 (1): 1-11 – https://doi.org/10.1104/pp.17.01763 – http://www.plantphysiol.org/content/176/1 – (On our blog : https://plantstomata.wordpress.com/2018/01/15/shortroot-mediated-increase-in-stomatal-density/ )

Schulte P. J., Hinckley T. M. (1987) – The relationship between guard cell water potential and the aperture of stomata in Populus – Plant, Cell & Environment 10(4): 313-318 – https://doi.org/10.1111/j.1365-3040.1987.tb01611.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1987.tb01611.x – (On our blog : https://plantstomata.wordpress.com/2021/05/23/guard-cell-water-potential-and-the-aperture-of-stomata/ )

Schulz H. R., Kiefer W., Gruppe W. (1996) – Photosynthetic duration, carboxylation efficiency and stomatal limitation of sun and shade leaves of different ages in field-grown grapevine (Vitis vinifera L.) – Vitis 35(4): 169-176 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1008.6361&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/15/stomatal-limitation-of-sun-and-shade-leaves-of-different-ages/ )

Schulz K. E., Adams M. S. (1995) – Effect of canopy gap light environment on evaporative load and stomatal conductance in the temperate forest understory herb Aster macrophyllus (Asteraceae) – American Journal of Botanye 82(5): 630-637 – https://doi.org/10.1002/j.1537-2197.1995.tb11507.xhttps://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1995.tb11507.x – (On our blog : https://plantstomata.wordpress.com/2022/07/06/effect-of-canopy-gap-light-environment-on-stomatal-conductance/ )

Schulz-Lessdorf B., Lohse G., Hedrich R. (1996)  GCAC1 recognizes the pH gradient across the plasma membrane: a pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism – The Plant J. 10: 993-1004 – DOI: 10.1046/j.1365-313X.1996.10060993.xhttp://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1996.10060993.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/21/gcac1-is-strongly-modulated-by-atp-and-protons-this-channel-is-capable-of-sensing-changes-in-the-energy-status-acid-metabolism-and-the-h-atpase-activity-of-guard-cells/ )

Schulze D. E., Hall A. E. (1982) – Stomatal responses, water loss and CO2assimilation rates of plant – In: O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler (eds.), Physiological Plant Ecology, II Encyclopedia of Plant Physiology, 12B, Springer Verlag, Berlin, 181-230 –

Schulze D. E., Hall A. E. (1982) – Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments – In: Physiological Plant Ecology II: Water Relations and Carbon Assimilation (Lange OL, Nobel
PS, Osmond CB, Ziegler H, eds) Springer Verlag, Berlin, 263-324 –

Schulze E. D., Kelliher F. M., Korner C., Lloyd J., Leuning R. (1994) – Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. – Annu. Rev. Ecol. Syst. 25: 629–660 – DOI: 10.1146/annurev.es.25.110194.003213 – –https://www.jstor.org/stable/2097327?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/21/maximum-stomatal-conductance-ecosystem-surface-conductance-carbon-assimilation-rate-and-plant-nitrogen-nutrition/ )

Schulze E. D., Küppers M. (1970) – Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. – Planta 146: 319-326 – DOI: 10.1007/BF00387804https://www.ncbi.nlm.nih.gov/pubmed/24318185 – (On our blog : https://plantstomata.wordpress.com/2018/11/25/concurrent-measurements-of-plant-water-status-may-not-be-sufficient-for-explaining-stomatal-and-other-plant-responses-to-drought/ )

Schulze E. D., Lange O. L., Buschbom U., Kappen L., Evenari M. (1972) – Stomatal responses to changes in humidity in plants growing in the desert – Planta 108: 259-270 – DOI: 10.1007/BF00384113 – https://link.springer.com/article/10.1007/BF00384113 – (On our blog : https://plantstomata.wordpress.com/2017/08/02/stomatal-responses-to-changes-in-humidity-in-desert-plants/ )

Schulze E. D., Lange O. L., Evenari M., Kappen L., Buschbom U. (1973)  The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance – Oecologia (Berl.) 17 : 159-170 – DOI: 10.1007/BF00345424 – DOI: 10.1007/BF00346278 – https://link.springer.com/article/10.1007/BF00346278 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/the-role-of-air-humidity-and-leaf-temperature-in-controlling-stomatal-resistance-under-desert-conditions/ )

Schulze E. D., Lange O. L., Evenari M., Kappen L., Buschbom U. (1975)  The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. III. The effect on water use efficiency. – Oecologia 19: 303–314 – doi: 10.1007/BF00348106https://www.ncbi.nlm.nih.gov/pubmed/28309242 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/the-role-of-air-humidity-and-leaf-temperature-in-controlling-stomatal-resistance-and-the-effect-on-water-use-efficiency/ )

Schulze E. D., Lange O. L., Kappen L., Buschbom U., Evenari M. (1973)  Stomatal responses to changes in temperature at increasing water stress – Planta 110: 29–42 – doi: 10.1007/BF00386920 – https://link.springer.com/article/10.1007/BF00386920 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/stomatal-response-to-changes-in-temperature-at-increasing-water-stress/ )

Schulze E. D., Lange O. L., Kappen L., Evenari M., Buschbom U. (1975) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration – Oecologia (Berl.) 18 : 219-233 – DOI: 10.1007/BF00345424 –https://www.ncbi.nlm.nih.gov/pubmed/28308679 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/controlling-stomatal-resistance-under-desert-conditions-significance-of-leaf-water-status-and-internal-co2-concentration/ )

Schulze E. D., Turner N. C., Gollan T., Shackel K. A. (1987) – Stomatal responses to air humidity and to soil drought. In: Stomatal Function. Eds. E. Zeiger, G.D. Farquhar and I.R. Cowan. Stanford University Press, Stanford, CA, 311–322 –

Schulze-Lefert P., Robatzek S. (2006) – Plant pathogens trick guard cells into opening the gates – Cell 126(5): 831-834 – doi: 10.1016/j.cell.2006.08.020https://pubmed.ncbi.nlm.nih.gov/16959560/ – (On our blog : https://plantstomata.wordpress.com/2020/12/13/pathogenic-bacteria-have-evolved-strategies-to-suppress-the-closure-of-stomata/ )

Schürmann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora 147: 471-520 – https://ac.els-cdn.com/S036716151731981X/1-s2.0-S036716151731981X-main.pdf?_tid=12c86a7c-e736-11e7-b153-00000aab0f26&acdnat=1513960689_dff4a08cb2065fa088a5515db1fc3a5f – (On our blog : https://plantstomata.wordpress.com/2017/12/22/influence-of-water-and-light-on-the-development-of-stomata-initials-in-german/ )

Schurr U., Gollan T., Schulze E. D. (1992) – Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap – Plant, Cell and and Environment 15: 561-567 – https://doi.org/10.1111/j.1365-3040.1992.tb01488.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01489.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/stomatal-sensitivity-to-aba-imported-from-the-xylem-sap-2/ )

Schwabe W. W. (1952)  Effects of photoperiodic treatment on stomatal movement – Nature (Lond.) 169: 1053-1054 – DOI: 10.1038/1691053a0https://www.nature.com/articles/1691053a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/the-effects-of-day-length-treatments-on-stomatal-movement/ )

Schwartz A. (1985) – Role of Ca2+ and EGTA on Stomatal Movements in Commelina communis L. – Plant Physiol. 79: 1003–1005 – DOI: https://doi.org/10.1104/pp.79.4.1003 – https://www.jstor.org/stable/4269650?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/18/ca-and-egta-in-stomatal-movements/ )

Schwartz A., Ilan N., Grantz D. A. (1988) – Calcium effects on stomatal movement in Commelina communis L. Use of EGTA to modulate stomatal response to light, KCl and CO2 – Plant Physiol.  87: 583-587 –  PMID:16666189 –  http://dx.doi.org/10.1104/pp.87.3.583 https://eurekamag.com/research/004/867/004867898.php – (On our blog : https://plantstomata.wordpress.com/2019/01/07/use-of-egta-to-modulate-stomatal-response-to-light-kcl-and-co2-2/ )

Schwartz A., Ilan N., Assmann S. M. (1991) Vanadate inhibition of stomatal opening in epidermal peels of Commelina communis – Planta 183: 590596 – DOI: 10.1007/BF00194281 – https://link.springer.com/article/10.1007/BF00194281#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/22/vanadate-inhibition-of-stomatal-opening/ )

Schwartz A., Ilan N., Schwarz M., Scheaffer J., Assmann S. M., Schroeder J. I. (1995) – Anion-channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells – Plant Physiology 109: 651–658 – https://doi.org/10.1104/pp.109.2.651https://www.ncbi.nlm.nih.gov/pubmed/12228619 – (On our blog : https://plantstomata.wordpress.com/2019/01/07/anion-channel-blockers-inhibit-s-type-anion-channels-and-aba-responses-in-stomata/ )

Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. (1994) – Inhibition of inward K+channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action – Proc. Natl. Acad. Sci. U.S.A. 91: 4019–4023 – https://doi.org/10.1073/pnas.91.9.4019 – http://www.pnas.org/content/91/9/4019 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Inhibition-of-inward-K–channels-and-stomatal-response-by-abscisic.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/18/aba-can-act-from-within-guard-cells-to-regulate-stomatal-apertures/

Schwartz A., Zeiger E. (1984) – Metabolic energy for stomatal opening – Roles of photophosphorylation and oxidative-phosphorylation – Planta161129136 – DOI: 10.1007/BF00395472 – https://link.springer.com/article/10.1007/BF00395472 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/photophosphorylation-and-oxidative-phosphorylation-for-stomatal-movements/ )

Schwendener S. (1881) – Über Bau und Mechanik der Spaltöffnungen – Monatsber. d. Akad. d. Wiss. zu Berlin, 833 –

Schwendener S. (1882) – Über Bau und Mechanik der Spaltöffnungen – Monatsber. d. preuss. Akad. der Wissensch. Berlin

Schymanski S., Milenovic M., Thakur G. (2023) – Optimal stomatal control in the presence of leaf-atmosphere coupling – Abstract EGU23-11630 – https://doi.org/10.5194/egusphere-egu23-11630 – EGU General Assembly 2023 – https://meetingorganizer.copernicus.org/EGU23/EGU23-11630.html – (On our blog : https://plantstomata.wordpress.com/2023/03/22/a-theoretical-analysis-and-preliminary-experimental-results-of-optimal-stomatal-control-in-the-presence-of-leaf-atmosphere-coupling/ )

Schymanski S. J., Or D., Zwieniecki M. (2013) – Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations – PLoS ONE 8: e54231 – doi:10.1371/ journal.pone.0054231 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054231 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/65176/ )

Schymanski S. J., Roderick M. L., Sivapalan M. (2015) – Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations – AoB Plants 7: plv060 – https://doi.org/10.1093/aobpla/plv060https://academic.oup.com/aobpla/article/doi/10.1093/aobpla/plv060/201663 – (On our blog : https://plantstomata.wordpress.com/2023/03/22/eco2-may-lead-to-unchanged-or-even-increased-vegetation-water-use-in-water-limited-climates-contrary-to-the-widespread-expectation-that-eco2-would-generally-decrease-water-use-due-to-its-le/ )

Schymanski S. J., Singer T., Or D. (2017)  Linking stomata geometries and densities to leaf gas exchange – new opportunities and old pitfalls – Geophysical Research Abstracts 19, EGU2017-11526 – http://meetingorganizer.copernicus.org/EGU2017/EGU2017-11526.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/29/linking-stomata-geometries-and-densities-to-leaf-gas-exchange/ )

Science & Plants for Schools (xxxx) – Stomata in plants – further information for A-level students and teachers – http://www.saps.org.uk/saps-associates/browse-q-and-a/1101#:~:text=Monocots%20have%20stomata%20on%20both,stomata%20on%20only%20one%20surface – (On our blog : https://plantstomata.wordpress.com/2022/02/03/101535/ )

Science Forums (2004) – Stomata on the upper epidermis of a leaf – [online] – https://www.scienceforums.net/topic/5783-stomata-on-the-upper-epidermis-of-a-leaf/

Scienza A., Boselli M. (1981) – Fréquence et caractéristiques biométriques des stomates de certains portegreffes de vigne – Vitis 20: 281-292 –

Scoffoni C., Albuquerque C., Cochard H., Buckley T. N., Fletcher L. R., Caringella M. A., Bartlett M., Brodersen C. R., Jansen S., McElrone A. J., Lawren Sack L. (2018) – The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in Arabidopsis thaliana – Plant Physiology 178(4): 1584-1601 – https://doi.org/10.1104/pp.18.00743http://www.plantphysiol.org/content/plantphysiol/178/4/1584.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/15/causes-of-leaf-hydraulic-vulnerability-and-stomatal-conductance/ )

Scuffi D., Álvarez C., Laspina N., Gotor C., Lamattina L., Garcia-Mata C. (2014) – Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure – Plant Physiol. 166: 2065–2070 – doi: 10.1104/pp.114.245373 – https://www.ncbi.nlm.nih.gov/pubmed/25266633 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/des1-is-a-unique-component-of-aba-signaling-in-stomata-2/ )

Scuffi D., Lamattina L., Garcia-Mata C. (2016) – Gasotransmitters and Stomatal Closure: Is There Redundancy, Concerted Action, or Both? – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7: 277 – doi: 10.3389/fpls.2016.00277– 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/gasotransmitters-and-stomatal-closure-2/ )

Scuffi D., Nietzel T., Di Fino L. M., Meyer A. J., Lamattina L., Schwarzlander M., Laxalt A. M., Garcia-Mata C. (2018) – Hydrogen Sulfide Increases Production of NADPH Oxidase-Dependent Hydrogen Peroxide and Phospholipase D-Derived Phosphatidic Acid in Guard Cell Signaling –  Plant Physiol. 176: 2532–2542 – https://doi.org/10.1104/pp.17.01636http://www.plantphysiol.org/content/176/3/2532 – (On our blog : https://plantstomata.wordpress.com/2019/01/16/the-involvement-of-h2s-in-the-signaling-network-that-controls-stomatal-closure/ )

SeedWorld (2021) – Researchers Uncover New Clue About Plant Evolution from Pattern on Leaves – March 30, 2021 – https://seedworld.com/researchers-uncover-new-clue-about-plant-evolution-from-pattern-on-leaves/ – (On our blog : https://plantstomata.wordpress.com/2021/04/06/89586/ )

Seemann J. R., Critschley C. (1985) – Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. – Planta 164(2): 151-162 – https://doi.org/10.1007/BF00396077https://link.springer.com/article/10.1007/BF00396077#citeas – (On our blog : https://plantstomata.wordpress.com/2019/10/19/effects-of-salt-stress-on-the-growth-ion-content-stomatal-behaviour-and-photosynthetic-capacity-of-a-salt-sensitive-species/ )

Seethaler S. (2006) – UCSD Study Reveals How Plants Respond to Elevated Carbon Dioxide – UCSD News – http://ucsdnews.ucsd.edu/archive/newsrel/science/sCO2plants.asp – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-plants-and-stomata-respond-to-elevated-carbon-dioxide/ )

Segev R., Nannapaneni R., Sindurakar P., Kim H., Read H., Lijek S. (2015) – The Effect of the Stomatal Index on the Net Rate of Photosynthesis in the Leaves of Spinacia oleraceaVinca minorRhododendron sppEpipremnum aureum, and Hedera spp –  Journal of Emerging Investigators 2018 – https://www.emerginginvestigators.org/articles/the-effect-of-the-stomatal-index-on-the-net-rate-of-photosynthesis-in-the-leaves-of-i-spinacia-oleracea-i-i-vinca-minor-i-i-rhododendron-spp-i-i-epipremnum-aureum-i-and-i-hedera-spp-i – (On our blog : https://plantstomata.wordpress.com/2018/01/23/correlation-between-stomatal-index-and-photosynthesis/ )

Segschneider H. J., Wildt J., Forstel H. (1995) – Uptake of (NO2)-N-15 by sunflower (Helianthus-annuus) during exposures in light and darkness – quantities, relationship to stomatal aperture and incorporation into different nitrogen pools within the plant – New Phytologist 131: 109–119 – https://doi.org/10.1111/j.1469-8137.1995.tb03060.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1995.tb03060.x – (On our blog : https://plantstomata.wordpress.com/2019/09/10/uptake-of-no2-n-15-and-stomatal-aperture/ )

Seibt U., Wingate L., Berry J. A. (2007) – Nocturnal stomatal conductance effects on the d18O signatures of foliage gas exchange observed in two forest ecosystems – Tree Physiology 27: 585–595 – DOI: 10.1093/treephys/27.4.585https://www.researchgate.net/publication/6561086_Nocturnal_stomatal_conductance_effects_on_the_d18O_signatures_of_foliage_gas_exchange_observed_in_two_forest_ecosystems – (On our blog : https://plantstomata.wordpress.com/2019/01/17/nocturnal-stomatal-conductance-effects/ )

Seidl-Adams I. , Richter A., Boomer K. B., Yoshinaga N., Degenhardt J., Tumlinson J. H. (2015) – Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings – Plant Cell Environ 38(1): 23-34 – doi: 10.1111/pce.12347https://pubmed.ncbi.nlm.nih.gov/24725255/ – (On our blog : https://plantstomata.wordpress.com/2021/01/23/stomata-not-only-play-an-important-role-in-gas-exchange-for-primary-metabolism-but-also-for-indirect-plant-defences-2/ )

Seif M., Aliniaeifard S., Arab M., Mehrjerdi M. Z., Shomali A., Fanourakis D., Li T., Woltering E. (2021) – Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemum – Functional Plant Biology, 48(5): 515 – https://doi.org/10.1071/FP20280https://research.wur.nl/en/publications/monochromatic-red-light-during-plant-growth-decreases-the-size-an – (On our blog : https://plantstomata.wordpress.com/2021/07/28/monochromatic-r-light-enhanced-stomatal-ability-to-regulate-water-loss-upon-desiccation/ )

Sekaran U. (2022) – “Does dew provide water to plants?” – Sustainable, Secure Food Blog – https://sustainable-secure-food-blog.com/2022/08/07/does-dew-provide-water-to-plants/ – (On our blog : https://plantstomata.wordpress.com/2022/08/19/by-regulating-transpiration-pressure-dew-helps-the-plant-from-wilting-by-creating-a-higher-steady-restoration-state/ )

Sekera D. (1983) – The effect of fungicides and fungicide combinations on grape leaf stomata size and aperture – Vinohrad (Bratislava) 21: 29-31 [Abstr.: Vitis 22, 410] –

Sekiya N., Yano K. (2008) –  Stomatal density of cowpea correlates with carbon isotope discrimination in different phosphorus, water and CO2 environments – New Phytologist 179(3): 799-807 –

Sellin A. (2001) Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress – Tree Physiology 21:879–888 – DOI: 10.1093/treephys/21.12-13.879 – https://www.ncbi.nlm.nih.gov/pubmed/11498335 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/hydraulic-and-stomatal-adjustment-of-trees-to-environmental-stress/ )

Seman I. (1982) – The number of chloroplasts in the stomata of sugarbeets which differ in their degree of ploidy – Genetika a Slechteni 18(3): 169-174 – https://eurekamag.com/research/001/269/001269555.php – (On our blog : https://plantstomata.wordpress.com/2022/02/19/the-number-of-chloroplasts-in-the-stomata-with-difference-in-degree-of-ploidy/ )

Semmens E. S. (1934) – Bursting of Cell by Polarised Sunlight – Nature : 813 – https://www.nature.com/articles/134813a0.pdf?origin=ppub – (On our blog : https://plantstomata.wordpress.com/2022/02/07/stomatal-guard-cell-bursting-by-polarised-sunlight/ )

Semmens E. S. (1947) – Starch Hydrolysis Induced by Polarized Light in Stomatal Guard Cells of Living Plants – Plant Physiol. 22(3): 270-278 – doi: 10.1104/pp.22.3.270https://pubmed.ncbi.nlm.nih.gov/16654098/ – (On our blog : https://plantstomata.wordpress.com/2021/12/28/98404/ )

Sen A. (2021) – Comparing photosynthetic differences between wild and domesticated rice – https://phys.org/news/2021-11-photosynthetic-differences-wild-domesticated-rice.html – (On our blog : https://plantstomata.wordpress.com/2021/11/22/stomata-and-the-comparison-of-photosynthetic-differences/ )

Sen D. N., Chawan D. D., Bansal R. P. (1979) – Structure, function and ecology of stomata – Publisher Dehra Dun [India] : B.S.M.P. Singh –

Sen D. N., Harsha L. N. (1974) – Ecophysiological studies on stomatal regulation in Allium cepa L. and Asphodelus tenuifolius Cav. – Flora 163: 14-25 – DOI: 10.1016/S0367-2530(17)31074-5 – https://ac.els-cdn.com/S0367253017310745/1-s2.0-S0367253017310745-main.pdf?_tid=5548ae14-e7bf-11e7-8185-00000aab0f01&acdnat=1514019641_df39a1a59be5adad76dd9e986e7f1457 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/ecophysiological-studies-on-stomatal-regulation/ )

Sena, J. O. A. de, Zaidan H. A., Castro P. R. de Camargo e (2007) – Transpiration and stomatal resistance variations of perennial tropical crops under soil water availability conditions and water deficit – Brazilian Archives of Biology and Technology 50(2): 225-230 – https://dx.doi.org/10.1590/S1516-89132007000200007https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132007000200007 – (On our blog : https://plantstomata.wordpress.com/2021/03/31/transpiration-and-stomatal-resistance-variations-under-soil-water-availability-conditions-and-water-deficit/ )

Sena Gomes A. R. (1987) – Responses of seedlings of tropical woody plants to environmental stresses with emphasis on Theobroma cacao and Hevea brasiliensis – PhD Wisconsin Univ., Madison – https://www.osti.gov/biblio/6991443 – (On our blog : https://plantstomata.wordpress.com/2022/10/01/stomata-and-environmental-stresses-on-seedlings-of-tropical-woody-plants/ )

Seo H.,  Sepuru K. M., Putarjunan A., Aguirre L., Burrows B. A., Torii K. U. (2022) – Intragenic suppressors unravel the role of the SCREAM ACT-like domain for bHLH partner selectivity in stomatal development – PNAS 119(9): e2117774119 – https://doi.org/10.1073/pnas.2117774119https://www.pnas.org/content/119/9/e2117774119 – (On our blog : https://plantstomata.wordpress.com/2022/02/23/the-role-of-the-scream-act-like-domain-for-bhlh-partner-selectivity-in-stomatal-development/ )

Seo J., Lee H. Y., Choi H., Choi Y., Lee Y.,Kim Y.-W., Ryu S. B., Lee Y. (2008) – Phospholipase A2β mediates light-induced stomatal opening in Arabidopsis – Journal of Experimental Botany 59(13): 3587–3594 – https://doi.org/10.1093/jxb/ern208 –https://academic.oup.com/jxb/article/59/13/3587/514340 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/phospholipase-a2%ce%b2-mediates-light-induced-stomatal-opening/ )

Seo M., Park D.-H., Lee C. W., Jaworski J., Kim J.-M. (2016) – Fluorometric Measurement of Individual Stomata Activity and Transpiration via a “Brush-on”, Water-Responsive Polymer – Sci Rep. 6: 32394 – doi: 10.1038/srep32394https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006157/ – (On our blog : https://plantstomata.wordpress.com/2019/08/01/coating-can-identify-the-proportion-of-active-stomata/ )

Sepúlveda G., Kliewer W. M. (1986) – Stomatal response of three grapevine cultivars (Vitis vinifera L.) to high temperature – American Journal of Enology and Viticulture 37: 44– 52 –

Serna L. (2006) – Opening the door to CO2 – Nat Cell Biol 8: 311–312 –https://doi.org/10.1038/ncb0406-31https://www.nature.com/articles/ncb0406-311#citeas – (On our blog : https://plantstomata.wordpress.com/2021/02/25/a-protein-that-regulates-pore-opening-in-response-to-both-atmospheric-co2-concentrations-and-blue-light-has-now-been-identified/ )

Serna L. (2007) – bHLH proteins know when to make a stoma – Trends Plant Sci 12: 483–485 – DOI: 10.1016/j.tplants.2007.08.016 – https://www.ncbi.nlm.nih.gov/pubmed/17928257?dopt=Abstract – (On our blog :  https://plantstomata.wordpress.com/2018/12/04/bhlh-proteins-know-when-to-make-a-stoma/

Serna L. (2007) – Drawing the future : Stomatal response to CO2 levels – Plant Signaling & Behavior 3(4): 214-217 – https://doi.org/10.4161/psb.3.4.5280https://www.tandfonline.com/doi/full/10.4161/psb.3.4.5280 – (On our blog : https://plantstomata.wordpress.com/2021/02/25/the-co2-signalling-mechanisms-that-regulate-both-stomatal-function-and-development/ )

Serna L. (2008)CAPRICE positively regulates stomatal formation in the Arabidopsis hypocotyl – Plant Signaling & Behavior 3(12): 1077-1082 – DOI: 10.4161/psb.3.12.6254https://www.tandfonline.com/action/showCitFormats?doi=10.4161%2Fpsb.3.12.6254 – (On our blog : https://plantstomata.wordpress.com/2020/12/13/cpc-and-try-positive-regulators-of-stomata-formation-in-the-embryonic-stem/ )

Serna L. (2008) – Coming closer to a stoma ion channel –  Nature Cell Biology 10: 509–511 – doi:10.1038/ncb0508–509http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Coming-closer-to-a-stoma-ion-channel.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/21/anion-transport-by-unidentified-guard-cell-channels-closes-the-stomatal-pore-and-the-first-component-for-this-channel-function-has-now-been-found/ )

Serna L. (2009) – Cell fate transitions during stomatal development – Bioessays 31: 865–873 – DOI:  10.1002/bies.200800231–  https://www.ncbi.nlm.nih.gov/pubmed/19565615 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/the-role-of-a-signaling-cascade-during-stomatal-development/ )

Serna L. (2009) – Emerging Parallels between Stomatal and Muscle Cell Lineages – Plant Physiology 149 (4) 1625-1631 – https://doi.org/10.1104/pp.108.133090 – http://www.plantphysiol.org/content/149/4/1625/F1 – (On our blog :  https://plantstomata.wordpress.com/2018/12/04/emerging-parallels-between-stomatal-and-muscle-cell-lineages/

Serna L. (2011) – Stomatal development in Arabidopsis and grasses: differences and commonalities – International Journal of Developmental Biology 55: 5–10 – doi: 10.1387/ijdb.103094lshttps://www.ncbi.nlm.nih.gov/pubmed/21425077 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/distinctions-in-the-regulation-of-gene-expression-and-protein-function-are-responsible-for-the-divergence-of-stomatal-development-between-arabidopsis-and-grasses/ )

Serna L. (2014) – The role of brassinosteroids and abscisic acid in stomatal development – Plant Sci. 225: 95-101 – doi: 10.1016/j.plantsci.2014.05.017 – Epub 2014 Jun 2 – PMID: 25017164 – https://pubmed.ncbi.nlm.nih.gov/25017164/ – (On our blog : https://plantstomata.wordpress.com/2021/07/08/brassinosteroids-and-aba-in-stomatal-development-2/ )

Serna L. (2016) – Crosstalk among hormones and signaling networks during stomatal development in Arabidopsis hypocotyls – AIMS Molecular Science 3(4): 550-559 – doi: 10.3934/molsci.2016.4.550https://www.aimspress.com/article/10.3934/molsci.2016.4.550 – (On our blog : https://plantstomata.wordpress.com/2020/10/25/crosstalk-among-hormones-and-signaling-networks-guides-stomatal-cell-fate-determination-and-patterning-in-the-hypocotyl/ )

Serna L. (2020) – The Role of Grass MUTE Orthologues During Stomatal Development – Front. Plant Sci., 11 February 2020 – https://doi.org/10.3389/fpls.2020.00055https://www.frontiersin.org/articles/10.3389/fpls.2020.00055/full – (On our blog : https://plantstomata.wordpress.com/2021/12/05/the-grass-mute-genes-contrasts-with-that-of-arabidopsis-mute/ )

Serna L., Fenoll C. (1997) – Tracing the ontogeny of stomatal clusters in Arabidopsis with molecular markers – Plant J. 12: 747–755 – PMID: 9375390 – https://www.ncbi.nlm.nih.gov/pubmed/9375390 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/tracing-the-ontogeny-of-stomatal-clusters-with-molecular-markers/ )

Serna L, Fenoll C. (2000) – Stomatal development in Arabidopsis: how to make a functional pattern – Trends in Plant Science 5: 458-460 – https://doi.org/10.1016/S1360-1385(00)01782-9 – http://www.cell.com/trends/plant-science/pdf/S1360-1385(00)01782-9.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/22/stomatal-development-how-to-make-a-functional-pattern/ )

Serna L., Fenoll C. (2001) – Stomatal development and patterning in Arabidopsis leaves – Physiologia Plantarum 109(3): – https://doi.org/10.1034/j.1399-3054.2000.100317.xhttps://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.2000.100317.x – (On our blog : https://plantstomata.wordpress.com/2021/01/22/the-anisocytic-stomatal-complex-is-the-basic-structural-unit-formed-in-arabidopsis-thaliana-during-leaf-development/ )

Serna L, Fenoll C. (2002) – Reinforcing the idea of signalling in the stomatal pathway – Trends in Genetics 18: 597–600 – https://doi.org/10.1016/S0168-9525(02)02790-7 –https://www.sciencedirect.com/science/article/pii/S0168952502027907 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/signalling-in-the-stomatal-pathway/ )

Serna L., Torres-Contreras J., Fenoll C., (2002) – Clonal analysis of stomatal development and patterning in Arabidopsis leaves – Developmental Biology 241: 24-33 – doi:10.1006/dbio.2001.0506http://www.idealibrary.com – https://ac.els-cdn.com/S0012160601905068/1-s2.0-S0012160601905068-main.pdf?_tid=6344cd74-9996-4379-9322-240873410272&acdnat=1520793969_16932ebe86988dedab59603bde8e5e29 – (On our blog : https://plantstomata.wordpress.com/2018/03/11/cell-lineage-plays-a-very-important-role-during-stomatal-pattern-establishment/ )

Serra I., Strever A., Myburgh P., Schmeisser M., Deloire P. A. (2017) – Grapevine (Vitis vinifera L. ‘Pinotage’) leaf stomatal size and density as modulated by different rootstocks and scion water status – Acta Hort. 1157: 177–181 – DOI:  10.17660/ActaHortic.2017.1157.26https://www.actahort.org/books/1157/1157_26.htm – (On our blog : https://plantstomata.wordpress.com/2019/12/03/leaf-stomatal-size-and-density-as-modulated-by-different-rootstocks-and-scion-water-status/ )

Serrano E. E., Zeiger E. (1989) – Sensory transduction and electrical signaling in guard cells – Plant Physiol. 91(3): 795–799 – PMID: 16667138 PMCID: PMC1062076 – https://www.ncbi.nlm.nih.gov/pubmed/16667138 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/sensory-transduction-and-electrical-signaling-in-stomata/ )

Serrano E. E., Zeiger E., Hagiwara S. (1988)  Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts – Proceedings of the National Academy of Sciences, USA 85: 436–440 – PMCID: PMC279564 – http://www.pnas.org/content/85/2/436 – https://plantstomata.wordpress.com/2017/12/23/red-light-stimulates-an-electrogenic-proton-pump-in-guard-cells-and-guard-cell-chloroplasts-modulate-this-response/ )

Sethi R. S., Malik C. P. (1974) – Histochemical studies in stomatal apparatus of Phaseolus mungo Linn. 3. Localization of ascorbic acid and peroxidase and their functional significance – Acta Histochem. 49(1): 142-148 – PMID: 4136200 – https://www.ncbi.nlm.nih.gov/pubmed/4136200

Sethi R. S., Malik C. P. (1975) – Histochemical studies in stomatal apparatus of Phaseolus mungo Linn. II. Localization of phosphorylase – Acta Histochem. 52(2): 231-233 – PMID: 811040 – https://www.ncbi.nlm.nih.gov/pubmed/811040 – (On our blog : https://plantstomata.wordpress.com/2020/01/06/localization-of-phosphorylase-in-the-stomatal-apparatus/ )

Setiawati T., Ayalla A., Nurzaman M., Mutaqin A. Z. (2018) – Influence of Light Intensity on Leaf Photosynthetic Traits and Alkaloid Content of Kiasahan (Tetracera scandens L.) – IOP Conf. Series: Earth and Environmental Science 166: 012025 – doi :10.1088/1755-1315/166/1/012025https://iopscience.iop.org/article/10.1088/1755-1315/166/1/012025/pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/16/influence-of-light-intensity-on-stomata-and-other-leaf-photosynthetic-traits/ )

Setter T. L., Brun W. A. (1980) – Stomatal closure and photosynthetic inhibition in soybean leaves induced by petiole girdling and pod removal – Plant Physiol. 65(5): 884-887 – doi: 10.1104/pp.65.5.884https://pubmed.ncbi.nlm.nih.gov/16661301/ – (On our blog : https://plantstomata.wordpress.com/2021/11/11/treatments-which-block-or-slow-translocation-from-source-leaves-reduce-their-photosynthetic-rate-by-inducing-stomatal-closure/ )

Setter T. L., Brun W. A., Brenner M. L. ( 1980) – Effect of obstructed translocation on leaf abscisic acid, and associated stomatal closure and photosynthesis decline – Plant Physiol 65: 1111– 1115 – PMID: 16661342 – PMCID: PMC440492https://www.ncbi.nlm.nih.gov/pubmed/16661342?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/effect-of-obstructed-translocation-on-leaf-aba-and-associated-stomatal-closure/ )

Setter T. L., Brun W. A., Brenner M. L. ( 1981) – Abscisic acid translocation and metabolism in soybeans following depodding and petiole girdling treatments – Plant Physiol. 67: 774–779 – doi: 10.1104/pp.67.4.774https://pubmed.ncbi.nlm.nih.gov/16661753/ – (On our blog : https://plantstomata.wordpress.com/2021/11/11/increased-leaf-aba-levels-and-partial-stomatal-closure/ )

Sevik H., Cetin M., Kapucu O., Aricak B., Canturk U. (2017) – Effects of light on morphologic and stomatal characteristics of Turkish fir needles (Abies nordmanniana subsp. Bornmulleriana Mattf.) – Fresenius Environmental Bulletin 26(11): 6579-6587 –

Shabala L., Mackay A., Tian Y., Jacobsen S. E., Zhou D., Shabala S. (2012) – Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa) – Physiol Plant. 146(1): 26–38 –

Shabala S. (2022) – Stomata Regulation and Water Use Efficiency in Plants under Saline Soil Conditions – series: Advances in Botanical Research – Hardcover ISBN: 9780323912174 – eBook ISBN: 9780323914741 – Editor: Sergey Shabala

Shackel K. A., Brinckmann E. (1984) – In situ measurement of epidermal cell turgor, leaf water potential and gas exchange in Tradescantia virginiana L. – Plant Physiology 78: 66–70 – https://doi.org/10.1104/pp.78.1.66 – http://www.plantphysiol.org/content/78/1/66 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/little-direct-relation-between-stomatal-humidity-response-and-epidermal-water-status/ )

Shackel K. A., Novello V., Sutter E.G. (1990) – Stomatal Function and Cuticular Conductance in Whole Tissue-cultured Apple Shoots – J. AMER. SOC HORT. SCI. 115(3):468-472 – http://journal.ashspublications.org/content/115/3/468.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cuticular-conductance/ )

Shahinnia F., Le Roy J., Laborde B., Sznajder B., Kalambettu P., Mahjourimajd S., Tilbrook J., Fleury D. (2016) – Genetic association of stomatal traits and yield in wheat grown in low rainfall environments – BMC Plant Biology 16:150 – DOI 10.1186/s12870-016-0838-9 – https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/s12870-016-0838-9?site=bmcplantbiol.biomedcentral.com – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-traits-and-yield-in-wheat-grown-in-low-rainfall-environments/ )

Shaish A., Roth-Bejerano N., Itai C. (1989) – The response of stomata to relate to its effect on respiration and ATP level – Physiol. Plantarum 76: 107-111 – https://doi.org/10.1111/j.1399-3054.1989.tb05460.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1989.tb05460.x – (On our blog : https://plantstomata.wordpress.com/2021/05/09/stomata-respiration-and-atp-level/ )

Shang Y., Dai C., Lee M. M., Kwak J. M., Nam K. H. (2015) – BRI1-Associated Receptor Kinase 1 regulates guard cell ABA signaling mediated by Open Stomata 1 in Arabidopsis – Mol. Plant 9: 447–460 – https://doi.org/10.1016/j.molp.2015.12.014 – https://www.cell.com/molecular-plant/abstract/S1674-2052(15)00467-0 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/bak1-regulates-aba-induced-stomatal-closure-in-guard-cells-2/ )

Shang Y., Li M., Ding B., Niu H., Yang Z. N., Chen X. Q., Cao G. Y., Xie X. D. (2017) – Advances in auxin regulation of plant stomatal development – Chin. Bull. Bot. 52: 235–240 – doi: 10.11983/CBB16099http://www.chinbullbotany.com/EN/10.11983/CBB16099 – (On our blog : https://plantstomata.wordpress.com/2020/01/13/auxin-regulation-of-plant-stomatal-development/ ) –

Shang Y., Yang D., Ha Y., Lee J. Y., Kim J. Y., Oh M.-H., Nam K. H. (2021) – Open stomata 1 exhibits dual serine/threonine and tyrosine kinase activity in regulating abscisic acid signaling – Journal of Experimental Botany 72(15): 5494–5507 – doi:10.1093/jxb/erab225 – (On our blog : https://plantstomata.wordpress.com/2022/04/02/open-stomata-1-and-abscisic-acid-signaling/ )

Shanmughavel P. (1995) – Effect of cement dust on stomata structure – Ecology, Environment and Conservation Paper 01(14): 7-9 –http://www.envirobiotechjournals.com/article_abstract.php?aid=2441&iid=84&jid=3 – (On our blog : https://plantstomata.wordpress.com/2017/11/28/effect-of-cement-dust-on-stomata/ )

Shantha T. R., Patchaimal P., Reddy M. P., Kumar R. K., Tewari D., Bharti V., Venkateshwarlu G., Mangal A. K., Padhi M. M., Dhiman K. S. (2022) – Pharmacognostical Standardization of UpodikaBasella alba L.: An Important Ayurvedic Antidiabetic Plant – Ancient Sci Life36: 35-41 – https://www.ancientscienceoflife.org/text.asp?2016/36/1/35/195411https://www.ancientscienceoflife.org/article.asp?issn=0257-7941;year=2016;volume=36;issue=1;spage=35;epage=41;aulast=Shantha – (On our blog : https://plantstomata.wordpress.com/2022/09/29/109009/ )

Sharan A. K. (xxxx) – COURSE: MSc Part -II- PAPER – IX – TOPIC-1 Stomatal opening and closing – http://www.nou.ac.in/Online%20Resourses/28-6/MSc-2%5EJ%20Paper–IX%20(1).pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomatal-opening-and-closing/ )

Sharghi K. (2008) – Stanford researchers investigate how plants adapt to climate – Stanford Report, November 24, 2008 – https://news.stanford.edu/news/2008/december3/stomata-120308.html – (On our blog : https://plantstomata.wordpress.com/2018/01/24/development-of-stomata-can-be-altered-on-the-fly-to-better-enable-the-plant-to-cope-with-environmental-conditions/ )

Sharkey T. D., Holland E. A., Mooney H. A., (1991) – Stomatal control of trace gas emissions – in Physiological Ecology. A Series of Monographs, Texts, and Treatises: Trace Gas Emissions by Plants – eds Sharkey TD, Holland EA, Mooney HA (Academic Press, San Diego), 335–339 –

Sharkey T. D., Ogawa T. (1987) – Stomatal responses to light. In Stomatal Function, ed. E Zeiger, G Farquhar, I Cowan, 195–227. Stanford, CA: Stanford Univ. Press – https://www.cabdirect.org/cabdirect/abstract/19880712408 – (On our blog : https://plantstomata.wordpress.com/2021/05/20/direct-responses-of-stomata-to-light/ )

Sharkey T. D., Raschke K. (1980) – Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus – Plant Physiol. 65(2): 291–297 –  PMID: 16661176 PMCID: PMC440313 – https://www.ncbi.nlm.nih.gov/pubmed/16661176 – (On our blog : https://plantstomata.wordpress.com/2018/11/30/effects-of-phaseic-acid-and-dihydrophaseic-acid-on-stomata/

Sharkey T. D., Raschke K. (1981)  Separation and measurement of direct and indirect effects of light on stomata – Plant Physiol. 68: 33–40 – DOI: 10.2307/3670169 – https://www.jstor.org/stable/4266838?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/direct-and-indirect-effects-of-light-on-stomata/ )

Sharkey T. D., Raschke K. (1981)  Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. – Plant Physiol 68: 1170–1174 – https://doi.org/10.1104/pp.68.5.1170http://www.plantphysiol.org/content/68/5/1170 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/effect-of-light-quality-on-stomatal-opening/ )

Sharma B., Apple M. E., Morales S., Zhou X., Holben B., Olson J., Prince J., Dobeck L., Cunningham A. B., Spangler L. (2010) – Stomatal Conductance, Plant Species Distribution, and an Exploration of Rhizosphere Microbes and Mycorrhizae at a Deliberately Leakimg Experimental Carbon Sequestration Field (ZERT) – American Geophysical Union, Fall Meeting 2010, abstract id. GC31C-0910 – https://ui.adsabs.harvard.edu/abs/2010AGUFMGC31C0910S/abstract – (On our blog : https://plantstomata.wordpress.com/2022/03/12/stomatal-conductance-and-co2-2/ )

Sharma G. K. (1969) – Environmental modifications of leaf surface traits in Datura stramonium – Can. J. Bot. 47: 1211-1216 –

Sharma G. K. (1972) – Environmental modifications of leaf epidermis
and morphological features in Verbena canadensis – SWEST. NAT.
17: 221-228 –

Sharma G. K. (1975) – Leaf surface effects of environmental pollution on sugar maple (Acer saccharum) in Montreal – CAN. J. BOT.

Sharma G. K. (1977) – Cuticular features as indicators of environmental pollution – Water Air Soil Pollut 8: 15–19 – https://doi.org/10.1007/BF00156720https://link.springer.com/article/10.1007/BF00156720#citeas – (On our blog : https://plantstomata.wordpress.com/2021/12/14/97472/ )

Sharma G. K., Butler J. (1973) – Leaf cuticular variations in Trifoliumv repens L. as indicators of environmental pollution – Environ. Pollut. 5: 287-293 –

Sharma G. K., Butler J. (1975) Environmental pollution.  Leaf cuticular patterns in Trifolium repens L. – Ann. Bot. 39: 1087-1090 –  doi: 10.1093/oxfordjournals.aob.a085028 – https://www.jstor.org/stable/42756344?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/stomatal-size-density-and-environmental-pollution/ )

Sharma G. K., Dunn K. B. (1968) Effect of environment on the cuticular features in Kalanchoe fedschenkoi – Bull. Torrey bot. Club 95: 464-473 – https://doi.org/10.2307/2483478https://www.jstor.org/stable/2483478 – (On our blog : https://plantstomata.wordpress.com/2022/02/23/stomatal-index-subsidiary-cell-complex-the-pattern-of-stomatal-development-and-the-smallest-and-largest-stomatal-sizes-were-consistent-cuticular-features/ )

Sharma G. K., Dunn K. B. (1969) Environmental modifications of leaf
surface traits in Datura stramonium – Can. J. Bot. 47: 1211-1216 –

Sharma G. K., Tyree (1973) Geographic leaf cuticular and gross morphological variations in Liquidambar styraciflua L. and their possible relationship to environmental pollution – Bot. Gaz. 134: 179-184 –

Sharma M., Roy, A. N. (1995) – Effect of automobile exhauston the leaf epidermal features of Azadirachta indica and Dalbergia sissoo – Int. Journal of Mendel 12(1-4): 18-19 –

Sharma P. N., Tripathi A., Kumar N., Gupta S., Kumar P., Chatterjee J., Tewari R. K. (2016) –  Iron plays a critical role in stomatal closure in cauliflower – Environmental and Experimental Botany 131: 68-76 – ISSN 0098-8472 – https://doi.org/10.1016/j.envexpbot.2016.07.001https://www.sciencedirect.com/science/article/abs/pii/S0098847216301332?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/12/03/iron-and-stomatal-closure/ )

Sharma R. C., Sharma S., Gupta A. K. (2001) – Stomatal characters of Populus ciliata in relation to leaf rust and growth parameters – Phytomorphology. 51: 199-205 –

Sharma S. S., Sen D. N. (1976) – Effect of different sugars on stomatal behaviour in Merremia aegyptia (L.) Urban and M. dissecta Hallier F. – Biol. Plant. 18: 81-87 – https://doi.org/10.1007/BF02923141 – https://link.springer.com/article/10.1007/BF02923141 – https://plantstomata.wordpress.com/2017/12/27/effect-of-different-sugars-on-stomatal-behaviour/ )

Sharpe P. J. H. (1973)  Adaxial and abaxial stomatal resistance of cotton in the field – Agron. J. 65: 570-574 – doi:10.2134/agronj1973.00021962006500040014xhttps://dl.sciencesocieties.org/publications/aj/abstracts/65/4/AJ0650040570?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/26/65210/ )

Sharpe P. J. H., Wu H. (1978) – Stomatal mechanics : volume changes during opening – Plant, Cell & Environment 1(4): 259-268 – https://doi.org/10.1111/j.1365-3040.1978.tb02038.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1978.tb02038.x – (On our blog : https://plantstomata.wordpress.com/2021/01/10/the-stomatal-volume-increase-during-the-motorphase-comes-from-three-different-sources/ )

Sharpe P. J. H., Wu H., Spence R. D. (1987) – Stomatal mechanics – In: Stomatal Function (eds. E. Zeiger, G. D. Farquhar & I. R. Cowan : 253-279) – Stanford University Press, Stanford, California

Shaw M. (1954)  Chloroplasts in the stomata of Allium cepa L. – New Phytol. 53. 344-348 – DOI: 10.1111/j.1469 -8137.1954.tb05244.xhttp://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1954.tb05244.x/asset/j.1469-8137.1954.tb05244.x.pdf?v=1&t=jbp4maps&s=983c0c7145ac87817841a5f2ae61221022301050 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/65220/ )

Shaw M. (1958) – The physiology of stomata II. The apparent absence of chlorophyll, photosynthesis, and a normal response to light in the stomatal cells of an albino barley – Canad. Jour. Bot. 36: 575-579 – https://doi.org/10.1139/b58-052http://www.nrcresearchpress.com/doi/abs/10.1139/b58-052?journalCode=cjb1 – https://plantstomata.wordpress.com/2017/12/27/normal-light-sensitive-stomatal-cells-contain-functional-chloroplasts/ )

Shaw M., MacLachlan G. A. (1954) – Chlorophyll Content and Carbon Dioxide Uptake of Stomatal Cells – Nature 173: 29–30 – https://doi.org/10.1038/173029a0

Shaw M., MacLachlan G. A. (1954) – The physiology of stomata. I. Carbon dioxide fixation in guard cells – Can J Bot 32: 784-794 – https://doi.org/10.1139/b54-067 –http://www.nrcresearchpress.com/doi/abs/10.1139/b54-067 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/carbon-dioxide-fixation-in-stomata/ )

Shawesh G. A., Voigt R. L., Dobreng A. K. (1985) – Stomatal frequency and distribution in drought tolerant and drought susceptible Sorghum bicolor L. Moench genotypes grown under moisture stress and non-stress – Sorghum Newsl. 28: 123-125 –

Shawney B. L., Zelitch. I. (1969) – Direct determination of potassium accumulation in guard cells in relation to stomatal opening – Pl. Physiol., Lancaster 44: 1350-1354 –

She X.-P., Huang A.-X., Li J., Han X.-Z. (2010) – Inhibition of dark-induced stomatal closure by fusicoccin involves a removal of hydrogen peroxide in guard cells of Vicia faba – Physiologia Plantarum 140(3): 258-268 – DOI: 10.1111/j.1399-3054.2010.01400.xhttps://eurekamag.com/research/053/866/053866006.php – (On our blog : https://plantstomata.wordpress.com/2021/10/23/fusicoccin-fc-treatment-prevents-dark-induced-stomatal-closure-and-involves-removal-of-hydrogen-peroxide-in-guard-cells/ )

She X.-P., Li J., Huang A.-X., Han X.-Z. (2010) – Fusicoccin inhibits dark-induced stomatal closure reducing nitric oxide in the guard cells of broad bean – Australian J Bot. 58: 81–88 –  https://doi.org/10.1071/BT09182http://www.publish.csiro.au/bt/BT09182 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/fusicoccin-inhibits-dark-induced-stomatal-closure/ )

She X.-P., Song, X.-G., (2006) – Cytokinin- and auxin-induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean – Physiologia plantarum 128(3): 569-579 – DOI: 10.1111/j.1399-3054.2006.00782.xhttps://eurekamag.com/research/011/918/011918574.php – (On our blog : https://plantstomata.wordpress.com/2021/10/23/the-change-of-nitric-oxide-levels-in-guard-cells/ )

She X.-P., Song, X.-G. (2008) – Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells – J. Integr. Plant Biol. 50: 1539–1548 – doi: 10.1111/j.1744-7909.2008.00716.x – https://www.ncbi.nlm.nih.gov/pubmed/19093972 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/the-regulatory-role-of-co-during-stomatal-movement/ )

She X.-P., Song, X.-G. (2012) – Ethylene inhibits abscisic acid-induced stomatal closure in Vicia faba via reducing nitric oxide levels in guard cells – New Zealand Journal of Botany 50(2): 203-216 – DOI: 10.1080/0028825X.2012.661064https://www.researchgate.net/publication/254281150_Ethylene_inhibits_abscisic_acidinduced_stomatal_closure_in_Vicia_faba_via_reducing_nitric_oxide_levels_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2019/04/22/ethylene-probably-induces-no-removal-thereby-reducing-no-levels-in-vicia-faba-guard-cells-and-finally-inhibits-stomatal-closure-induced-by-aba/ )

She X.-P., Song, X.-G., He J. M. (2004) – Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba – Acta Bot Sin 46: 1292–1300 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.580.8139&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2019/10/04/no-and-h2o2-in-light-dark-regulated-stomatal-movement/ )

Shearman R. C., Beard J. B. (1972) – Stomatal density and distribution in Agrostis as influenced by species, cultivars and leaf blade surface and position – Crop Sci 12 (6): 822-823 –

Shen J., Diao W., Zhang L., Acharya B. R., Wang M., Zhao X., Chen D., Zhang W. (2020) – Secreted Peptide PIP1 Induces Stomatal Closure by Activation of Guard Cell Anion Channels in Arabidopsis – Front Plant Sci. 11: 1029 – doi: 10.3389/fpls.2020.01029 – eCollection 2020 – PMID: 32733520 – https://pubmed.ncbi.nlm.nih.gov/32733520/ – (On our blog : https://plantstomata.wordpress.com/2020/08/15/pip1-induces-stomatal-closure/ )

Shen J., Zhang J., Zhou M., Zhou H., Cui B., Gotor C., Romero L. C., Fu L., Yang J., Foyer C. H., Pan Q., Shen W., Xie Y. (2020) – Persulfidation-based Modification of Cysteine Desulfhydrase and the NADPH Oxidase RBOHD Controls Guard Cell Abscisic Acid Signaling – Plant Cell 32(4): 1000-1017 – doi: 10.1105/tpc.19.00826 – Epub 2020 Feb 5 – PMID: 32024687 – PMCID: PMC7145499 – https://pubmed.ncbi.nlm.nih.gov/32024687/ – (On our blog : https://plantstomata.wordpress.com/2021/07/08/h2s-function-in-the-context-of-guard-cell-aba-signaling/ )

Shen J. L., Li C. L., Wang M., He L. L., Lin M. Y., Chen D. H., Zhang W. (2017) – Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana – BMC Plant Biol. 17: 217 – doi: 10.1186/s12870-017-1175-3https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-017-1175-3 – (On our blog : https://plantstomata.wordpress.com/2021/03/19/the-essential-roles-of-mpc1-and-pyruvate-in-stomatal-movement-and-plant-drought-resistance/ )

Shen L., Sun P., Bonnell V. C., Edwards K. J., Hetherington A. M., McAinsh M. R., Roberts M. R. (2015) – Measuring stress signaling responses of stomata in isolated epidermis of graminaceous species. – Front. Plant Sci. 6: 533 – doi: 10.3389/fpls.2015.00533 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stress-signaling-responses-of-stomata/ )

Shearman R. C., Beard J. B. (1972) – Stomatal density and distribution in Agrostis as influenced by species, cultivars and leaf blade surface and position – Crop Sci 12 (6): 822-823 – doi:10.2135/cropsci1972.0011183X001200060031x – https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060822?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-density-and-distribution-in-agrostis/ )

Sheriff D. W. (1977) –  Where is humidity sensed when stomata respond to it directly ? – Ann. Bot. 41: 1083-1084 –

Sheriff D. W. (1979) – Stomatal aperture and the sensing of the environment by guard cells – Plant Cell Environ. 2: 15–22 – https://doi.org/10.1111/j.1365-3040.1979.tb00769.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00769.x – (On our blog : https://plantstomata.wordpress.com/2019/01/19/stomatal-aperture-and-the-sensing-of-the-environment/ )

Sheriff D. W. (1984) – Epidermal transpiration and stomatal responses to humidity: some hypotheses explored. – Plant, Cell and Environment 7:669–677 – DOI: 10.1111/1365-3040.ep11571796 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11571796/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/27/stomatal-responses-to-humidity-6/ )

Sheriff D. W., Kaye P. E. (1977) – Response of diffusive conductance to humidity in a drought avoiding and a drought resistant (in terms of stomatal response) legume – Ann. Bot. 41: 653-655 – https://doi.org/10.1093/oxfordjournals.aob.a085335 –https://academic.oup.com/aob/article-abstract/41/3/653/236398?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/27/response-of-diffusive-conductance-to-humidity/ )

Sheriff D. W., Meidner H. (1975) – Correlations between the unbound water content of guard cells and stomatal aperture in Tradescantia virginiana L. – J. exp. Bot. 26: 315-318 –

Sheteawi S. A., Tawfik K. M., El-Gawad Z. A. (2001) – Water relations, transpiration rate, stomatal behaviour and leaf sap pH of Aloe vera and Aloe eru – Egyptian Journal of Biology, 3 – DOI:10.4314/EJB.V3I1.29928https://www.semanticscholar.org/paper/Water-relations%2C-transpiration-rate%2C-stomatal-and-Sheteawi-Tawfik/73707321f3ab159b8270291e162f77325500ddba – (On our blog : https://plantstomata.wordpress.com/2021/08/19/stomatal-behaviour-of-aloe/ )

Shi C., Chen F., Peng T., She X. (2017) – Role of cytoplasmic alkalization and nitric oxide in ethylene-induced stomatal closure in Arabidopsis – Int. J. Agric. Biol. 19: 1220‒1226 – DOI: 10.17957/IJAB/15.0429http://www.fspublishers.org/published_papers/26558_..pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/09/ethylene-induces-guard-cell-cytosol-alkalization-and-then-promotes-nia1-dependent-no-synthesis-and-finally-initiates-stomata-closing/ )

Shi C., Qi C., Ren H. Y., Huang A. X., Hei S. M., She X. P. (2015) – Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis – The Plant Journal 82: 280–301 – DOI10.1111/tpj.12815  – https://www.semanticscholar.org/paper/Ethylene-mediates-brassinosteroid-induced-stomatal-Shi-Qi/3e99dcbdf377e8475c93d2a74f9f601673bd54ea – (On our blog : https://plantstomata.wordpress.com/2017/12/27/ethylene-mediates-brassinosteroid-induced-stomatal-closure-2/ )

Shi K., Li X., Zhang H., Zhang G., Liu Y., Zhou Y., Xia X., Chen Z., Yu J. (2015) – Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato – New Phytologist 208(2): 342-353 – doi: 10.1111/nph.13621https://www.ncbi.nlm.nih.gov/pubmed/26308648 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/the-signaling-pathway-for-elevated-co2-induced-stomatal-movement/ )

Shi P., Jiao Y., Diggle P. J., Turner R., Wang R., Niinemets Ü. (2021) – Spatial distribution characteristics of stomata at the areole level in Michelia cavaleriei var. platypetala (Magnoliaceae) – Annals of Botany 128(7): 875–886 – https://doi.org/10.1093/aob/mcab106https://academic.oup.com/aob/article/128/7/875/6352790?login=false – (On our blog : https://plantstomata.wordpress.com/2023/02/08/quantification-of-the-spatial-relationship-among-stomata-at-the-areole-level/ )

Shi P., Wang L., Niinemets Ü., Jiao Y., Niklas K. J. (2022) – Estimation of stomatal density of leaves with hierarchical reticulate venation – Botany Letters –  DOI: 10.1080/23818107.2022.2156600https://www.tandfonline.com/doi/abs/10.1080/23818107.2022.2156600?journalCode=tabg21 – (On our blog : https://plantstomata.wordpress.com/2023/01/21/a-method-for-estimating-stomatal-density-sd-based-on-the-scaling-relationship-between-sd-and-mean-nearest-neighbour-distance-mnnd-of-sampled-stomatal-centres/ )

Shi W., Wang L., Yao L., Hao W., Fan M., Wang W., Bai M.-Y. (2022) – Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis – Nat Commun 13: 5040 – https://doi.org/10.1038/s41467-022-32770-7https://www.nature.com/articles/s41467-022-32770-7#citeas – (On our blog : https://plantstomata.wordpress.com/2023/03/10/the-spatial-pattern-of-h2o2-in-epidermal-leaves-is-critical-for-the-optimal-stomatal-development-in-arabidopsis/ )

Shi W. L., Jia W. S., Liu X., Zhang S. Q. (2004) – Protein tyrosine phosphatases involved in signaling of the ABA-induced H2O2 generation in guard cells of Vicia faba L. – Chinese Sci. Bull. 49: 1841-1846 – https://doi.org/10.1007/BF03183411 – https://link.springer.com/article/10.1007%2FBF03183411 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/ptpases-are-a-critical-signaling-component-in-aba-induced-stomatal-closure/ )

Shi W. L., Liu X., Jia W. S., Zhang S. Q. (2005) – Protein tyrosine phosphatases mediate the signaling pathway of stomatal closure of Vicia faba L. – J. Integr. Plant Biol. 47: 319-326 – DOI: 10.1111/j.1744-7909.2005.00032.x – http://www.jipb.net/Abstract.aspx?id=4839 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/a-novel-explanation-for-conflicting-results-about-vanadate-modulating-stomatal-movement-and-the-involvement-of-ptpases/ )

Shi Y. C., Fu Y. P., Liu W. Q. (2012)  NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate – Plant Physiology and Biochemistry 51: 26-30 – DOI: 10.1016/j.plaphy.2011.09.014 –https://www.infona.pl/resource/bwmeta1.element.elsevier-9d0315d5-6aa2-360b-8e5c-b0ef0593b56f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/dha-induced-h-2-o-2-generation-via-activation-of-nadph-oxidase-results-in-stomatal-closure/ )

Shield L. M. (1950) – Leaf xeromorphy as related to physiological and structural influences – Botanical Review 16: 4399–4471 –

Shimada T., Sugano S. S., Hara-Nishimura I. (2011)  Positive and negative peptide signals control stomatal density – Cellular and Molecular Life Sciences 68: 2081-2088 – DOI: 10.1007/s00018-011-0685-7 – https://link.springer.com/article/10.1007/s00018-011-0685-7 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/recent-research-progress-in-the-peptide-signaling-of-stomatal-development/)

Shimadzu S., Seo M., Terashima I., Yamori W. (2019) – Whole Irradiated Plant Leaves Showed Faster Photosynthetic Induction Than Individually Irradiated Leaves via Improved Stomatal Opening – Front. Plant Sci., 28 November 2019 – https://doi.org/10.3389/fpls.2019.01512https://www.frontiersin.org/articles/10.3389/fpls.2019.01512/full – (On our blog : https://plantstomata.wordpress.com/2019/12/25/aba-could-be-involved-in-the-systemic-response-for-stomatal-opening-allowing-plants-to-optimize-the-use-of-light-energy-at-minimal-cost-in-plants-in-a-dynamic-light-environment/ )

Shimazaki K.-i. (xxxx) – Molecular Mechanism of Blue Light Response in Stomatal Guard Cells – Light Sensing in Plants (Phototropin): 185-192 – DOI10.1007/4-431-27092-2_21 – https://www.infona.pl/resource/bwmeta1.element.springer-ec0d1399-4b76-31e2-b985-39aece10e5c7 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/blue-light-response-in-stomatal-guard-cells/ )

Shimazaki K.-i. (1989)  Ribulosebisphosphate carboxylase activity and photosynthetic O2 evolution rate in Vicia guard cell protoplasts – Plant Physiology 91: 459-463 – https://doi.org/10.1104/pp.91.2.459 – http://www.plantphysiol.org/content/91/2/459 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-guard-cells-fix-co2-photosynthetically/)

Shimazaki K.-i. (2016) – Stomatal responses to light and CO2 depend on the plasma membrane H+-ATPase activity – Trends in Plant Science 21(9): 727-729 –

Shimazaki K., Doi M., Assmann S. M., Kinoshita T. (2007) – Light regulation of stomatal movement – Annu. Rev. Plant Biol. 58: 219–247 – doi: 10.1146/annurev.arplant.57.032905.105434 – https://www.ncbi.nlm.nih.gov/pubmed/17209798 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/recent-progress-in-blue-and-red-light-dependent-stomatal-opening/ ) – https://wordpress.com/post/plantstomata.wordpress.com/69298 )

Shimazaki K.-i., Goh C. H., Kinoshita T. (1999) Involvement of intracellular CA2+ in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba – Physiol. Plant. 105: 554-561 – DOI: 10.1034/j.1399-3054.1999.105322.x – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1999.105322.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/a-stimulus-specific-ca2-signal-for-stomatal-opening/)

Shimazaki K., Gotow K., Kondo N. (1982) – Photosynthetic properties of guard cell protoplasts from Vicia faba – Plant Cell Physiol. 23: 871-879 – https://doi.org/10.1093/oxfordjournals.pcp.a076422https://academic.oup.com/pcp/article-abstract/23/5/871/1844796?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/01/19/photosynthetic-properties-of-stomatal-protoplasts/ )

Shimazaki K.-i., Gotow K., Sakaki T., Kondo N. (1983) – High respiratory activity of guard-cell protoplasts from Vicia faba L. – Plant, Cell & Environment 24: 1049-1056 –  https://doi.org/10.1093/oxfordjournals.pcp.a076607 –https://academic.oup.com/pcp/article-abstract/24/6/1049/1858924?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/01/22/high-respiratory-activity-of-stomatal-guard-cell-protoplasts/

Shimazaki K.-i., Iino M., Zeiger E. (1986) – Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba – Nature 319: 324–326 – doi: 10.1038/319324a0 – https://www.nature.com/articles/319324a0 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/an-electrogenic-plasmalemma-h-atpase-is-postulated-as-the-cause-of-blue-light-induced-h-extrusion/ )

Shimazaki K.-i., Kinoshita T., Nishimura M. (1992)  Involvement of Ca2+/calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping of guard cell protoplast from Vicia faba L. – Plant Physiology 99: 1416–1421 – DOI: 10.1104/pp.99.4.1416https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080641/ – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cam-and-ca2-cam-dependent-myosin-light-chain-kinase-are-the-components-of-the-signal-transduction-process-in-blue-light-dependent-proton-pumping-in-stomata/)

Shimazaki K.-i., Kondo N. (1987) – Plasma membrane H+ -ATPase in guard-cell protoplasts from Vica faba L. – Plant Cell Physiol. 28: 893–900 – https://doi.org/10.1093/oxfordjournals.pcp.a077371 –https://academic.oup.com/pcp/article-abstract/28/5/893/1913155?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/24/stomatal-guard-cells-have-a-high-plasma-membrane-h-atpase-activity/ )

Shimazaki K.-i., Omasa K., Kinoshita T., Nishimura M. (1993) – Properties of the signal transduction pathway in the blue light response of stomatal guard cells of Vicia faba and Commelina benghalensis – Plant Cell Physiol.  34: 1321–1327 – https://doi.org/10.1093/oxfordjournals.pcp.a078556 –https://academic.oup.com/pcp/article-abstract/34/8/1321/1813276?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-signal-transduction-pathway-in-the-blue-light-response-of-stomatal-guard-cells/ )

Shimazaki K.-i., Sugiyama N., Takemiya A. (2012) – Signaling in stomatal guard cells in response to blue light – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/signaling-in-stomatal-guard-cells-in-response-to-blue-light/ )

Shimazaki K.-i., Terada J., Tanaka K., Kondo N. (1989) – Calvin-Benson cycle enzymes in guard cell protoplasts from Vicia faba L. – Plant Physiol. 90: 1057-1064 – PMCID: PMC1061843 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061843/ –  (On our blog : https://plantstomata.wordpress.com/2017/12/31/calvin-benson-cycle-enzymes-in-guard-cell-protoplasts-of-stomata/)

Shimazaki K.-i., Tominaga M., Shigenaga A. (1997) – Inhibition of the stomatal blue light response by verapamil at high concentration – Plant Cell Physiol. 38: 747–750 – https://www.ncbi.nlm.nih.gov/pubmed/9249989 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/verapamil-inhibits-blue-light-signaling-in-stomata-without-inhibiting-the-pump/ )

Shimazaki K.-i., Zeiger E. (1985)  Cyclic and non-cyclic photophosphorylation in isolated guard cell chloroplasts from Vicia faba L. – Plant Physiol. 78: 211-214 – https://doi.org/10.1104/pp.78.2.211 – http://www.plantphysiol.org/content/78/2/211 – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cyclic-and-non-cyclic-photophosphorylation-in-isolated-guard-cell-chloroplasts-of-stomata/)

Shimazaki K.-i., Zeiger E. (1987)  Red light-dependent CO2 uptake and oxygen evolution in guard cell protoplast of Vicia faba L.: Evidence for photosynthetic CO2 fixation – Plant Physiol. 84: 7-9 – https://doi.org/10.1104/pp.84.1.7 – http://www.plantphysiol.org/content/84/1/7.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/suggestion-that-proton-pumping-and-photosynthesis-in-stomata-are-regulated-by-light-quality/ )  

Shimoda S., Maruyama A. (2014) – Rice varietal differences in responses of stomatal gas exchange to supplemental nitrogen application – Photosynthetica 52(3): 397-403 – https://doi.org/10.1007/s11099-014-0043-8 – https://link.springer.com/article/10.1007%2Fs11099-014-0043-8 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/responses-of-stomatal-gas-exchange-to-supplemental-nitrogen-application/ )

Shimono H., Nakamura H., Hasegawa T., Okada M. (2013)  Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice – Glob. Change Biol. 19: 2444–2453 – doi: 10.1111/gcb.12214  –http://onlinelibrary.wiley.com/doi/10.1111/gcb.12214/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/28/canopy-evapotranspiration-rate-leaf-stomatal-conductance-and-open-air-co2-elevation/ )

Shimono H., Okada M., Inoue M., Nakamura H., Kobayashi K., Hasegawa T. (2010) – Diurnal and seasonal variations in stomatal conductance of rice at elevated atmospheric CO2 under fully open‐air conditions – Plant Cell Environ. 33(3): 322–331 – doi:10.1111/j.1365‐3040.2009.02057.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.02057.x – (On our blog : https://plantstomata.wordpress.com/2019/10/15/diurnal-and-seasonal-variations-in-stomatal-conductance-of-rice/ )

Shimono M., Higaki T., Kaku H., Shibuya N., Hasezawa S., Day B. (2016) – Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana – PLoS ONE 11(7): e0159291 – doi:10.1371/journal. pone.0159291http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC4944930&blobtype=pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/10/a-highly-tractable-and-quantifiable-method-to-assign-transitions-in-actin-filament-organization-in-the-stomatal-guard-cell-to-the-activation-of-immune-signaling-in-plants/ )

Shimshi D. (1963)  Effect of chemical closure of stomata on transpiration in varied soil and atmospheric environments – Plant Physiol. 38: 709-712 –http://www.plantphysiol.org/content/plantphysiol/38/6/709.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/28/effect-of-chemical-closure-of-stomata-on-transpiration/ )

Shimshi D. (1963) – Effect of soil moisture and phenylmercuric acetate upon stomatal aperture, transpiration, and photosynthesis – Plant Physiol. 38: 713-721 – PMCID: PMC550000 –http://www.plantphysiol.org/content/plantphysiol/38/6/713.full.pdf – (On our blog :  https://plantstomata.wordpress.com/2017/12/29/the-control-of-stomatal-opening-by-chemical-treatment/)

Shimshi D. (1967) – Leaf chlorosis and stomatal aperture – New Phytol. 66: 455–461 – doi: 10.1111/j.1469-8137.1967.tb06024.xhttps://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1967.tb06024.x – (On our blog : https://plantstomata.wordpress.com/2022/12/03/stomata-and-chlorosis/ )

Shimshi D. (1970) – The effect of nitrogen supply on transpiration and stomatal behavior of beans (Phaseolus vulgaris L.) – New Phytol. 69: 4123-4124 – Energy Technology Data Exchange (ETDEWEB) – https://worldwidescience.org/topicpages/c/closing+plant+stomata.html# – (On our blog : https://plantstomata.wordpress.com/2022/03/06/n-deficient-plants-fail-to-open-their-stomata-as-widely-and-to-close-them-as-tightly-as-n-supplied-plants/ )

Shimshi D., Ephrat J. (1975) – Stomatal behavior of wheat cultivars in relation to their transpiration, photosynthesis, and yield – J. Agron. 67: 326–331 – https://doi.org/10.2134/agronj1975.00021962006700030011xhttps://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/agronj1975.00021962006700030011x – (On our blog : https://plantstomata.wordpress.com/2020/11/15/wheat-cultivars-having-wider-stomatal-aperture-produce-higher-yields-without-consuming-more-water/ )

Shiraishi M., Hashimoto Y., Kuraishi S. (1978) – Cyclic variations of stomatal aperture observed under the scanning electron microscope – Plant & Cell Physiol. 19: 637-645 –

Shiraishi S., Hsiung T. C., Shiraishi M. (1996) – Preliminary survey on stomatal density and length of grapevine – J. Fac. Agr. Kyushu Univ. 41(1-2): 11-15 –

Shirakawa M., Ueda H., Nagano A. J., Shimada T., Kohchi T., HaraNishimura I. (2014)  FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis – Plant Cell 26: 4039-4052 – DOI: 10.1105/tpc.114.129874 – https://www.ncbi.nlm.nih.gov/pubmed/25304202 – (On our blog : https://plantstomata.wordpress.com/2017/12/29/a-common-regulatory-pathway-that-determines-two-distinct-cell-types-in-leaves-epidermal-guard-cells-stomata-and-inner-tissue-myrosin-cells/)

Shiv K., Ila P. (2014)  Stomatal analysis in Cassia occidentalis L. in response to automobile pollution along Roadsides in Meerut city, India – Int. Res. J. of Sci. & Engg., 2(5): 167-170- http://oaji.net/articles/2014/731-1409862820.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/stomata-and-pollution/ )

Shivhare D., Mueller-Cajar O. (2017) – In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop – Plant Physiol. 174(3): 1505-1516 – doi: 10.1104/pp.17.00554 – Epub 2017 May 25 – PMID:28546437 – https://pubmed.ncbi.nlm.nih.gov/28546437/ – (On our blog : https://plantstomata.wordpress.com/2022/08/26/cam-plants-must-possess-thermostable-rca-to-support-calvin-benson-bassham-cycle-flux-during-the-day-when-stomata-are-closed/ )

Shoda M. (1974) – Studies on the Stomatal Movement of Tobacco Leaves : 2. The behavior of stomata in the upper and lower surfaces of intact tobacco leaves in relation to transpiration and photosynthesis – Japanese Journal of Crop Science 43(4): 510-516 – https://doi.org/10.1626/jcs.43.510https://www.jstage.jst.go.jp/article/jcs1927/43/4/43_4_510/_article – (On our blog : https://plantstomata.wordpress.com/2020/02/09/the-behavior-of-stomata-in-the-upper-and-lower-surfaces-of-intact-tobacco-leaves/ )

Shoemaker E. M., Srivastava L. M. (1973) – The mechanics of stomatal opening in corn (Zea mays L.) leaves – J Theor Biol. 42: 219–225 – https://doi.org/10.1016/0022-5193(73)90086-6https://www.sciencedirect.com/science/article/pii/0022519373900866 – (On our blog : https://plantstomata.wordpress.com/2019/08/02/the-assumption-that-opening-of-corn-stomata-is-related-to-differential-wall-thickening-of-the-guard-cells/ )

Shohat H., Illouz-Eliaz N., Kanno Y., Seo M., Weiss D. (2020) – The tomato DELLA protein PROCERA promotes Abscisic Acid responses in guard cells by upregulating an Abscisic Acid transporter – Plant Physiol. 184: 518–528 – https://doi.org/10.1104/pp.20.00485https://academic.oup.com/plphys/article/184/1/518/6117825 – (On our blog : https://plantstomata.wordpress.com/2021/11/11/the-della-protein-procera-pro-promotes-aba-induced-stomatal-closure-and-gene-transcription-in-guard-cells/ )

Shope J. C., DeWald D. B., Mott K. A. (2003) – Changes in surface area of intact guard cells are correlated with membrane internalization – Plant Physiol. 133: 1314–1321 – https://doi.org/10.1104/pp.103.027698 – http://www.plantphysiol.org/content/133/3/1314?ijkey=c39eedca681055b2a64c725ccc7932f3b1cccefb&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/12/03/changes-in-surface-area-of-intact-guard-cells-are-correlated-with-membrane-internalization/ )

Shope J. C., Peak D., Mott K. A. (2008)  Stomatal responses to humidity in isolated epidermes – Plant, Cell and Environment 31: 1290-1298 – DOI: 10.1111/j.1365-3040.2008.01844.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01844.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-responses-to-humidity-in-isolated-epidermes/)

Shpak E. D. (2013) – Diverse roles of ERECTA family genes in plant development – J Integr Plant Biol. 55(12):1238-1250 – doi: 10.1111/jipb.12108 – Epub 2013 Oct 30 – PMID: 24016315 – https://pubmed.ncbi.nlm.nih.gov/24016315/ – (On our blog : https://plantstomata.wordpress.com/2022/03/09/the-functions-of-erfs-in-stomata-development/ )

Shpak E. D., McAbee J. M., Pillitteri L. J., Torii K. U. (2005) – Stomatal patterning and differentiation by synergistic interactions of receptor kinases – Science 309: 290–293 – DOI: 10.1126/science.1109710  – http://science.sciencemag.org/content/309/5732/290?ijkey=a061a0cdb1d934059dc68174286074f559286e5d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/04/06/patterning-and-differentiation-of-stomata-and-erecta-er-family-leucine-rich-repeat-receptor-like-kinases/)

Shrestha S. D., Devkota A., Jha P. K. (2021) – Assessment of air pollution impact on micro-morphological and biochemical properties of Callistemon citrinus (Curtis) Skeels and Lagerstroemia indica L. – Scientific World 14(14): 132–140 – https://doi.org/10.3126/sw.v14i14.35024https://www.nepjol.info/index.php/SW/article/view/35024 – (On our blog : https://plantstomata.wordpress.com/2022/02/24/urban-air-pollution-and-stomatal-traits/ )

Shrestha S. L., Kang W. H. (2016) – Stomata length and density as an
indicator of ploidy level in sweet pepper (Capsicum annuum L.) – Research Journal of Recent Sciences 5: 4-10 –

Shri P. U., Haritha (2019) – Structural Changes in Stomata in Plants Exposed to Air Pollution – IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) – e-ISSN: 2319-2402 – ISSN: 2319-2399 – 13(8): 66-70 – DOI: 10.9790/2402-1308016670http://iosrjournals.org/iosr-jestft/papers/Vol13-%20Issue%208/Series-1/J1308016670.pdf – (On our blog : https://plantstomata.wordpress.com/2019/12/07/changes-in-the-epidermal-configuration-reveal-marked-alteration-in-number-of-stomata-epidermal-cells-and-stomatal-indices-in-leaf-samples-collected-from-polluted-zones/ )

Shrinivasa R., Bhatt P. M. (1991) – Stomatal frequency conductance transpiration rate at different canopy position of water stressed cultivation of tomato (Lycopersicon esculentum) – Ind. J. Agric. Sci. 61: 434-436 –

Shtein I., Harpaz-Saad S. (2019) – Stomata – what are they for? – Nature Campus – http://campusteva.tau.ac.il/eng/content/stomata-what-are-they – (On our blog : https://plantstomata.wordpress.com/2020/08/24/stomata-what-are-they-for/ )

Shtein I., Popper Z. A., Harpaz-Saad S. (2017)  Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns – Plant Signaling & Behavior 12(7) – http://dx.doi.org/10.1080/15592324.2017.1339858 – http://www.tandfonline.com/doi/abs/10.1080/15592324.2017.1339858 – https://plantstomata.wordpress.com/2017/10/28/the-pattern-of-cellulose-crystallinity-in-stomata-of-floating-plants-2/

Shtein I., Shelef Y., Marom Z., Zelinger E., Schwartz A., Popper Z. A., Bar-On B., Harpaz-Saad S. (2017)  Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups – Annals of Botany 119(6): 1021-1033 – https://doi.org/10.1093/aob/mcw275 – https://www.botany.one/2017/05/stomatal-cell-wall-composition-distinct-structural-patterns-different-phylogenetic-groups/ – https://plantstomata.wordpress.com/2017/10/31/stomatal-cell-wall-composition-cell-wall-patterns-in-stomata-and-stomatal-wall-strengthening-function/ )

Shukla S. N., Gangopadhyaya S. (1981) – Stomatal index and size of stomatal opening of rice cultivars varying in reaction to bacterial leaf blight – Proc. Indian natn. Sci. Acad. B47 (4): 557-559 – 20005a0c_557.pdfhttps://www.researchgate.net/profile/Dr_Tresina…/20005a0c_557.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-and-size-of-stomatal-opening-in-reaction-to-bacterial-leaf-blight/ )

Shull C. A. (1926) – Stomatal movements – Bot. Gaz. 44: 453-454 – https://www.journals.uchicago.edu/doi/pdf/10.1086/333690 – (On our blog : https://plantstomata.wordpress.com/2022/02/18/stomatal-movements-3/ )

Sibbernsen E., Mott K. A. (2010) Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells – Plant Physiol. 153: 1435–1442 – doi: 10.1104/pp.110.157685 – https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=%22Sibbernsen%20E%22%5Bau%5D&dispmax=50 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/a-vapor-phase-signal-between-the-mesophyll-and-stomata/ )

Sibole J. V., Cabot C., Poschenrieder C., Barcelo J. (2003) – Efficient leaf ion partitioning, an overriding condition for abscisic acid‐controlled stomatal and leaf growth responses to NaCl salinization in two legumes  – Journal of Experimental Botany 54(390): 2111–2119 – https://doi.org/10.1093/jxb/erg231https://academic.oup.com/jxb/article/54/390/2111/606475 – (On our blog : https://plantstomata.wordpress.com/2019/10/19/aba%e2%80%90controlled-stomatal-and-leaf-growth-responses-to-nacl-salinization-in-two-legumes/ )

Sicard P., De Marco A., Dalstein-Richier L., Tagliaferro F., Renou C., Paoletti E. (2016) – An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests – Sci. Total Environ. 541: 729–741 – https://doi.org/10.1016/j.scitotenv.2015.09.113 –https://www.sciencedirect.com/science/article/pii/S0048969715307749 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/new-stomatal-flux-based-critical-levels-clef-for-forest-protection-against-visible-o3-injury/ )

Siebke K., Weis E. (1995) – Assimilation images of leaves of Glechoma hederacea: Analysis of non‐synchronous stomata related oscillations – Planta 196: 155–165 – https://doi.org/10.1007/BF00193229https://link.springer.com/article/10.1007/BF00193229 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/non%E2%80%90synchronous-stomata-related-oscillations/)

Siegel K. (2019) – What’s Stomata With You? Investigating the Role of a Protein Kinase Family in Stomatal Defense – Queen’s University – Molecular & Cellular Integrative Biology Seminar – https://mcibseminar.weebly.com/ – (On our blog : https://plantstomata.wordpress.com/2019/05/04/a-small-family-of-mitogen-activated-protein-kinases-involved-in-blue-light-induced-stomatal-opening/ )

Siegel R. S., Xue S., Murata Y., Yang Y., Nishimura N., Wang A., Schroeder J. I. (2009) – Calcium elevation-dependent and attenuated resting calcium- dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+channels in Arabidopsis guard cells – Plant J. 59: 207–220 – doi: 10.1111/j.1365- 313X.2009.03872.x – https://www.ncbi.nlm.nih.gov/pubmed/19302418 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/an-attenuated-and-slowed-aba-response-when-ca2i-elevations-are-directly-inhibited-in-guard-cells/ )

Siegenthaler P. A., Packer L. (1965) – Light-dependent volume changes and reactions in chloroplasts. I. Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control – Plant Physiol., Lancaster 40: 785

Siegert C. M., Levia D. F. (2011) – Stomatal conductance and transpiration of co-occurring seedlings with varying shade tolerance – Trees 25: 1091–1102 –  https://doi.org/10.1007/s00468-011-0584-4https://link.springer.com/article/10.1007/s00468-011-0584-4#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/19/stomatal-conductance-and-transpiration/ )

Sierla M., Hõrak H., Overmyer K., Waszczak C., Yarmolinsky D., Maierhofer T., Vainonen J. P., Denessiouk K., Salojärvi J., Laanemets K., Tõldsepp K., Vahisalu T., Gauthier A., Puukko T., Paulin L., Auvinen P., Geiger D., Hedrich R., Kollist H., Kangasjärvi J. (2018) – The receptor-like pseudokinase GHR1 is required for stomatal closure – https://doi.org/10.1105/tpc.18.00441 – http://www.plantcell.org/content/early/2018/10/25/tpc.18.00441 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/ghr1-acts-in-stomatal-closure-as-a-scaffolding-component/ )

Sierla M., Waszczak C., Vahisalu T., Kangasjärvi J. (2016) Reactive Oxygen Species in the Regulation of Stomatal Movements – Plant Physiology 171(3) – https://doi.org/10.1104/pp.16.00328 – http://www.plantphysiol.org/content/171/3/1569 – (On our blog : https://plantstomata.wordpress.com/2017/11/07/the-role-of-ros-in-stomatal-closure/ )

Sifa F., Bani P., Naisumu Y. (2022) – Colchicine Effect on Germination and Stomata Number of Local Corn (Zea mays L.) in North Central Timor Regency – Jurnal Saintek Lahan Kering 5(1): 18-20 – https://doi.org/10.32938/slk.v5i1.1852https://savana-cendana.id/index.php/SLK/article/view/1852 – (On our blog : https://plantstomata.wordpress.com/2023/01/22/colchicine-treatment-has-a-significant-effect-on-the-number-of-stomata-and-no-effect-on-the-stomata-type-of-local-maize/ )

SIGA (2016) – Sistema de Información Geográfica de Datos Agrarios (http://sig.mapama.es/siga/) – Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente. España (accessed oct 2016) – In: Wagner‐Cremer, F., et al. (2007) – Influence of ontogeny and atmospheric CO2 on stomata parameters of Osmunda regalis – CFS Courier Forschungsinstitut Senckenberg 258: 183-189 –

Sigenthaler P. A., L. Packer (1965) – Light-dependent volume changes and reactions in chloroplasts I . Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control – Plant Physiol. 40: 785-791 –

Sikorska K., Kozlowska B., Ciereszko I., Maleszewski S. (1998) – Effects of radiation quality on the opening of stomata in intact Phaseolus vulgaris L. leaves – Photosynthetica 3431–36 – https://doi.org/10.1023/A:1006803515586https://link.springer.com/article/10.1023/A:1006803515586#citeas – (On our blog : https://plantstomata.wordpress.com/2020/04/22/effects-of-radiation-quality-on-the-opening-of-stomata/ )

Silva E. C., Nogueira R. J., Vale F. H., Araújo F. P. D., Pimenta M. A.  (2009)  Stomatal changes induced by intermittent drought in four umbu tree genotypes – Brazilian Journal of Plant Physiology 21: 33–42 –  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202009000100005&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/04/13/drought-and-stomatal-responses-in-spondias-tuberosa-trees-umbu/ )

Silva H., Sagardia S., Ortiz M., Franck N., Opazo M., Quiroz M., Baginsky C., Tapia C. (2014)  Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L) Burm f. as a function of water availability – Revista Chilena de Historia Natural201487:13 – https://doi.org/10.1186/s40693-014-0013-3 –https://revchilhistnat.biomedcentral.com/articles/10.1186/s40693-014-0013-3 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/water-availability-and-stomatal-traits/ )

Silva-Santos L., Corte-Real N., Dias-Pereira J., Figueiredo R. C. B.Q. de, Endres L., Pompelli M. F. (2019) – Salinity shock in Jatropha curcas leaves is more pronounced during recovery than during stress time – (O efeito da a salinidade em folhas de pinhão-manso é mais pronunciadodurante a recuperação do que durante o estresse) – Brazilian Journal of Development 5(8): 11359-11369 – DOI:10.34117/bjdv5n8-033https://brazilianjournals.com/index.php/BRJD/article/view/2720/2724 – (On our blog : https://plantstomata.wordpress.com/2022/02/14/stomata-in-genotypes-of-jatropha/ )

Silveira N. M., Marcos F. C. C., Frungillo L., Moura B. B., Seabra A. B., Salgado I., Machado E. C., Hancock J. T., Ribeiro R. V. (2017) – S-nitrosoglutathione spraying improves stomatal conductance, Rubisco activity and antioxidant defense in both leaves and roots of sugarcane plants under water deficit – Physiol Plant. 160(4): 383-395 – doi: 10.1111/ppl.12575 – Epub 2017 Jun 8 – PMID: 28417466 – https://pubmed.ncbi.nlm.nih.gov/28417466/ – (On our blog : https://plantstomata.wordpress.com/2023/02/05/gsno-spraying-alleviates-the-negative-impact-of-water-deficit-on-stomatal-conductance-and-photosynthetic-rates/ )

Simeoni F., Simoni L., Zottini M., Conti L., Tonelli C., Castorina G., Espen L., Galbiati M. (2022) – Expression of the VvMYB60 Transcription Factor Is Restricted to Guard Cells and Correlates with the Stomatal Conductance of the Grape Leaf – Agronomy 12: 694 – https://doi.org/10.3390/agronomy12030694file:///C:/Users/wille/Downloads/agronomy-12-00694-v2.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/27/the-relevance-of-the-vvmyb60-regulatory-network-in-mediating-stomatal-activity-in-grapes/ )

Simeoni F., Skirycz A., Simoni L., Castorina G., Souza L. P de, Fernie A. R., Alseekh S., Giavalisco P., Conti L., Tonelli C., Galbiati M. (2022) – The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells – Sci Rep 12: 533 – https://doi.org/10.1038/s41598-021-04433-yhttps://www.nature.com/articles/s41598-021-04433-y#citeas – (On our blog : https://plantstomata.wordpress.com/2022/03/14/oxylipins-metabolism-in-stomatal-regulation-and-atmyb60-as-transcriptional-integrator-of-aba-and-oxylipins-responses-in-guard-cells/ )

Simmonds N. W. (1948) – Genetical and cytological studies of Musa X. Stomatal size and plant vigour in relation to polyploidy – Journal of Genetics 49: 57-68 –

Simmons A. R., Bergmann D. C. (2016) – Transcriptional control of cell fate in the stomatal lineage – Curr Opin Plant Biol. 29: 1-8 – doi: 10.1016/j.pbi.2015.09.008 – PMID: 26550955 – http://www.sciencedirect.com/science/article/pii/S136952661500148X – (On our blog : https://plantstomata.wordpress.com/2017/12/28/transcriptional-control-of-cell-fate-in-the-stomatal-lineage/)

Simmons A. R., Davies K. A., Wang W., Liu Z., Bergmann D. C. (2018) – SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage –  https://www.biorxiv.org/content/early/2018/08/17/394940 https://prelights.biologists.com/highlights/sol1-sol2-regulate-fate-transition-cell-divisions-arabidopsis-stomatal-lineage/ – (On our blog : https://plantstomata.wordpress.com/2018/10/06/sol1-and-sol2-regulate-fate-transition-and-cell-divisions-in-the-arabidopsis-stomatal-lineage/ )

Simon N. M. L., Graham C. A., Comben N. E.,  Hetherington A. M., Dodd A. D. (2020) – The circadian clock influences the long-term water use efficiency of Arabidopsis – Plant Physiology – https://doi.org/10.1104/pp.20.00030http://www.plantphysiol.org/content/early/2020/03/16/pp.20.00030 – (On our blog : https://plantstomata.wordpress.com/2020/03/18/the-circadian-oscillator-within-guard-cells-can-contribute-to-long-term-water-use-efficiency/ )

Simon N. M. L., Sugisaka J., Honjo M. N., Tunstad S. A.,Tunna G., Kudoh H., Dodd A. N. (2020) – Altered stomatal patterning accompanies a trichome dimorphism in a natural population of Arabidopsis – bioRxiv preprint https://doi.org/10.1101/710889https://www.biorxiv.org/content/10.1101/710889v2.full.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/14/differences-in-stomatal-density-are-associated-with-trichome-dimorphism/ )

Simon T. K. (2018) – Tracing stomatal ontogeny though foliar histochemical study in Acanthaceae – Int. J. of Adv. Res. 6: 1056-1063 – http://dx.doi.org/10.21474/IJAR01/6529 – ISSN 2320-5407 – https://www.journalijar.com/article/22410/tracing-stomatal-ontogeny-though-foliar-histochemical-study-in-acanthaceae/ – (On our blog : https://plantstomata.wordpress.com/2021/12/21/the-stomatal-complex-of-acanthaceae-is-analysed-correlating-the-evidences-from-ontogeny-and-histochemistry/ )

Simono H., Okada M., Inoue M., Nakamura H., Kobayashi K., Hasegawa T. (2010) – Diurnal and seasonal variations in stomatal conductance of rice at elevated atmospheric CO2 under fully open-air conditions – Plant, Cell and Environment 33: 322–331 – https://doi.org/10.1111/j.1365-3040.2009.02057.x –https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.02057.x – (On our blog : https://plantstomata.wordpress.com/2019/01/29/diurnal-and-seasonal-variations-in-stomatal-conductance-of-rice-at-elevated-atmospheric-co2/ )

Sinclair R. (1980) – Water potential and stomatal conductance of three Eucalyptus species in the Mount Lofty Ranges, South Australia: Responses to summer drought – Australian Journal of Botany 28: 499–510 – https://doi.org/10.1071/BT9800499http://www.publish.csiro.au/BT/BT9800499 – (On our blog : https://plantstomata.wordpress.com/2019/01/24/water-potential-and-stomatal-conductance-responses-to-summer-drought/)

Sinclair T. R. (2017) – 2. Early Partial Stomata Closure with Soil Drying – in: “Water-Conservation Traits to Increase Crop Yields in Water-deficit Environments” – https://www.springerprofessional.de/en/early-partial-stomata-closure-with-soil-drying/12285478 – (On our blog : https://plantstomata.wordpress.com/2022/01/05/early-partial-closure-of-stomata-is-associated-with-decreased-photosynthetic-capacity/ )

Singh A. P. (1977) – The subcellular organization of stomatal initials in sugar cane leaves: the guard and subsidiary mother cells – Can. J. Bot. 55: 2801-2809 – https://doi.org/10.1139/b77-318 –http://www.nrcresearchpress.com/doi/abs/10.1139/b77-318 – (On our blog : https://plantstomata.wordpress.com/2019/01/24/stomatal-initials-in-sugar-cane-leaves-the-guard-and-subsidiary-mother-cells/ )

Singh A. P., Shaw H., Hollins G. (1977) – Preprophase bands of microtubules in developing stomatal complexes of sugar cane – Cytologia 42: 611-620 – DOI: 10.1508/cytologia.42.611https://www.jstage.jst.go.jp/article/cytologia1929/42/3-4/42_3-4_611/_pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/24/preprophase-bands-of-microtubules-in-developing-stomatal-complexes/ )

Singh A. P., Srivastava L. M. (1973) – The fine structure of pea stomata – Protoplasma 76: 61–82 – https://doi.org/10.1007/BF01279673https://link.springer.com/article/10.1007%2FBF01279673 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/structure-and-cytology-of-the-guard-cells-of-pea/ )

Singh G. (1951) – Behaviour of stomata in apple leaves as affected by various soil water, nitrogen, and spray treatments – Indian Jour Hort 8(4): 38-44 – https://eurekamag.com/research/024/227/024227059.php – (On our blog : https://plantstomata.wordpress.com/2021/12/17/97819/ )

Singh J., Kant S. (2007) – Impact of coal mining on leaf morphology and stomatal index of plants in Kalakote Range, Rajouri (J&K), India – Nature Environment and Pollution Technology © Technoscience Publications 6(4): 715-718 –http://www.neptjournal.com/upload-images/NL-30-30-(30)comB-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/21/impact-of-coal-mining-on-leaf-morphology-and-stomatal-index/ )

Singh J., Lombardozzi D. L., Walmsley E., Xia L., Robock A. (2022) – B45G-1798 – Improving the relationship of photosynthesis and stomatal conductance to chronic ozone exposure in the ozone damage function of Community Land Model 5 – AGU Fall Meeting – https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1108604 – (On our blog : https://plantstomata.wordpress.com/2023/01/30/understanding-of-change-in-photosynthesis-and-stomatal-conductance-under-chronic-ozone-concentration/ )

Singh R., Parihar P., Singh S., Mishra R. K., Singh V. P., Prasad S. M. (2017)
Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives – Redox Biology 11: 213-218 – ISSN 2213-2317 –https://doi.org/10.1016/j.redox.2016.11.006https://www.sciencedirect.com/science/article/pii/S2213231716302968?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/01/29/the-basic-concepts-and-role-of-ros-signaling-in-the-stomatal-movement-have-been-presented-comprehensively-along-with-recent-highlights/ )

Singh S., Sethi G. S. (1995) – Stomatal size, frequency and distribution in Triticum aestivum, Secale cereale and their amphiploids – Cereal Res Commun 23: 103-108 – https://www.jstor.org/stable/23783891https://www.jstor.org/stable/23783891?seq=1 – (On our blog : https://plantstomata.wordpress.com/2021/03/28/stomatal-size-frequency-and-distribution/ )

Singh S. K., Badgujar G., Reddy V. R., Fleisher D. H., Bunce J. A. (2013) – Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton – J. Plant Physiol. 170: 801–813 – https://doi.org/10.1016/j.jplph.2013.01.001https://www.sciencedirect.com/science/article/pii/S0176161713000187?via%3Dihub – (On our blog : Carbon dioxide diffusion across stomata and mesophyll )

Singh S. K., Reddy K. R. (2011) – Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata {[}L.] Walp.) under drought – J. Photochem. Photobiol. B-Biol. 105(1): 40-50 – Doi:10.1016/j.jphotobiol.2011.07.001https://www.sciencedirect.com/science/article/pii/S1011134411001588 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomatal-regulation-is-a-major-limitation-to-photosynthesis-under-drought-conditions/ )

Singh Y., Verma P. K. (2022) – Guiding the guards: MPK3/6-VLN3 module regulating stomatal defense – Trends Plant Sci. 27(6): 513-515 – doi: 10.1016/j.tplants.2022.02.007– Epub 2022 Mar 9 – PMID: 35279364 – https://pubmed.ncbi.nlm.nih.gov/35279364/ – (On our blog : https://plantstomata.wordpress.com/2023/03/06/upon-pathogen-attack-stomatal-closure-is-a-commonly-observed-response-to-prevent-microbial-invasion/ )

Sinha R., C/o Rajesh A., Marg S. T. A. C., Chowh A. K. B., Ranchi, Ranchi J. (2018) – Effects of Ethyl Methane Sulphonate on the stomata of Urginea indica Kunth – CytotypeII as observed in M1 and M2 Generations – International Journal of Advanced Life Sciences (IJALS) 11(3): 111-116 – ISSN 2277–758X – http://forest.jharkhand.gov.in/fresearch/admin/file/research_180.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/15/effects-of-ethyl-methane-sulphonate-on-the-stomata-of-urginea/ )

Sionit H., Kramer P. J. (1976) – Water potential and stomatal resistance of sunflower and soybean subjected to water stress during various growth stages – Plant Physiol. 58: 537-540 –

Sirichandra C., Wasilewska A., Vlad F., Valon C., Leung J. (2009) – The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action – Journal of Experimental Botany 60(5): 1439–1463 – https://academic.oup.com/jxb/article/60/5/1439/481377 -https://doi.org/10.1093/jxb/ern340 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/an-emerging-signalling-complex-critical-for-modulating-the-stomatal-aperture-in-response-to-environmental-stimuli-2/ )

Sirisampan S., Hiyama T., Takahashi A., Hashimoto T., Fukushima Y. (2003) – Diurnal and seasonal variations of stomatal conductance in a secondary temperate forest – Journal of Japan Society of Hydrology and Water Resources 16: 113–130 [In Japanese with English summary] –

Sivadjian J. (1967) – Les inhibiteurs chimiques de la transpiration vegetale – L’acetato de phenyl- mercure – Bull. Soc. bot. Fr. 114: 1-4 –

Skabeeva A. S. (1969) – The effect of some micro-elements on the number and size of stomata on black currant leaves -Trudy vses. Sel’.-hoz. Inst. zaocn. Obraz 33: 99-101 – https://eurekamag.com/research/014/736/014736601.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/positive-effect-of-some-micro-elements-on-the-number-and-size-of-stomata/ )

Skrodzki C. J. A. (2017) – Unexpected Environmental Conditions Suggest Paleozoic Plant Morphological Gas Conductance Models – http://hdl.handle.net/2104/9431https://baylor-ir.tdl.org/baylor-ir/handle/2104/9431 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63948 )

Slatyer R. O., Bierhuizen J. F. (1963) – The influence of several transpiration suppressants on transpiration, photosynthesis, and water-use efficiency of cotton leaves – Aust. J. Biol. Sci. 17: 131-146 – https://www.publish.csiro.au/bi/pdf/bi9640131 – (On our blog : https://plantstomata.wordpress.com/2021/11/21/the-influence-of-several-transpiration-suppressants-on-stomatal-behaviour/ )

Slavik B. (1963) – The distribution pattern of transpiration rate, water saturation deficit, stomata number and size, photosynthetic and respiration rate in the area of the tobacco leaf blade – Biol. Plantarum 5: 143-153 – https://doi.org/10.1007/BF02933646https://link.springer.com/article/10.1007%2FBF02933646?LI=true#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomata-number-and-size-photosynthetic-and-respiration-rate-in-tobacco-leaf-blade/)

Slogteren E. van (1917) – De gasbeweging door het blad in verband met stomata en intercellulaire ruimten – Dissert. Groningen

Slootweg G., van Meeteren U. (1991)  Transpiration and stomatal conductance of roses cv. Sonia grown with supplemental lighting – Acta Hort. 298: 119-125 – DOI: 10.17660/ActaHortic.1991.298.12 –http://www.actahort.org/books/298/298_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomatal-behavior-of-nl-plants-and-sl-plants/)

Slot M. , Winter K. (2017) – In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species – Plant Cell Environ. 40: 3055–3068 – doi: 10.1111/pce.13071 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13071 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/in-situ-temperature-relationships-of-biochemical-and-stomatal-controls-of-photosynthesis/ )

Slovik S., Siegmund A., Führer H.-W., Heber U. (1996) – Stomatal uptake of SO2, NOx and O3 by spruce crowns (Picea abies) and canopy damage in central Europe – New. Phytol. 132: 661-676 – https://doi.org/10.1111/j.1469-8137.1996.tb01884.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1996.tb01884.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/stomatal-uptake-of-so2-nox-and-o3/ )

Small J., Clarke M.I., Crosbie-Baird J. (1942) – pH-phenomena in relation to stomatal opening. II-V. – Proc. Roy. Soc. Edinburgh B 61(3): 233-266 – https://doi.org/10.1017/S0080455X00011565https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-b-biological-sciences/article/xixph-phenomena-in-relation-to-stomatal-opening-iiv/11924EE3219C49CB2098CED7E634DA7F – (On our blog : https://plantstomata.wordpress.com/2017/12/29/the-closing-of-stomatal-pores-both-with-too-little-and-with-too-much-illumination/)

Small J., Maxwell K. M. (1939) – pH-phenomena in relation to stomatal opening. I. Coffea arabica and some other species – Protoplasma 32: 272-283 – https://doi.org/10.1007/BF01796986https://link.springer.com/article/10.1007/BF01796986#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/ph-phenomena-in-relation-to-stomatal-opening/)

Smart L. B., Cameron K. D., Bennett A. B. (2000) – Isolation of genes predominantly expressed in guard cell and epidermal cell of Nicotiana glauca – Plant Molecular Biology 42857–869 – https://doi.org/10.1023/A:1006480107407https://link.springer.com/article/10.1023/A:1006480107407#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/isolation-of-genes-predominantly-expressed-in-guard-cells-stomata/)

Smirnov O. E., Kosyan A. M., Kosyk O. I., Taran N. Y. (2014) – Buckwheat stomatal traits under aluminium toxicity – Modern Phytomorphology 6: 15–18 – https://www.phytomorphology.com/articles/buckwheat-stomatal-traits-under-aluminium-toxicity.pdf – (On our blog : https://plantstomata.wordpress.com/2020/04/23/stomata-in-fagopyrum/ )

Smit M. E., Vatén A., Mair A., Northover C. A.M., Bergmann D. C. (2022) – Slow and not so furious: de novo stomatal pattern formation during plant embryogenesis – bioRxiv – https://doi.org/10.1101/2022.09.02.506417https://www.biorxiv.org/content/10.1101/2022.09.02.506417v1 – (On our blog : https://plantstomata.wordpress.com/2023/01/19/embryonic-stomatal-pattern-enables-quick-stomatal-differentiation-and-photosynthetic-activity-upon-germination-but-also-guides-the-formation-of-additional-stomata-as-the-leaf-expands/ )

Smit M. E., Vatén A., Mair A., Northover C. A.M., Bergmann D. C. (2023) – Extensive embryonic patterning without cellular differentiation primes the plant epidermis for efficient post-embryonic stomatal activities – Developmental Cell 58(6) : 506-521 – https://doi.org/10.1016/j.devcel.2023.02.014https://www.cell.com/developmental-cell/fulltext/S1534-5807(23)00073-4?dgcid=raven_jbs_etoc_email – (On our blog : https://plantstomata.wordpress.com/2023/03/27/the-embryonic-stomatal-pattern-enables-fast-stomatal-differentiation-and-photosynthetic-activity-upon-germination-but-it-also-guides-the-formation-of-additional-stomata-as-the-leaf-expands/ )

Smith B. (2016) – Does grass hold the secret to more efficient crops? – Cosmos News Biology July 5, 2016 – https://cosmosmagazine.com/biology/change-the-shape-of-plant-mouths-to-feed-the-world – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-in-grasses-share-underlying-genes-with-broad-leafed-plants-implications/ )

Smith B. G. (1989) – The effect of soil water and atmospheric vapour pressure deficit on stomatal behaviour and photosynthesis in the oil palm – Journal of Experimental Botany 40: 647–651 – https://doi.org/10.1093/jxb/40.6.647https://academic.oup.com/jxb/article-abstract/40/6/647/617419?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2020/02/27/the-effect-of-soil-water-and-atmospheric-vapour-pressure-deficit-on-stomatal-behaviour/ )

Smith B. G., Burgess P. J., Carr M. K. V. (1994) – Effects of Clone and Irrigation on the Stomatal Conductance and Photosynthetic Rate of Tea (Camellia sinensis) – Experimental Agriculture 30(1): 1-16 – https://doi.org/10.1017/S0014479700023802https://www.cambridge.org/core/journals/experimental-agriculture/article/effects-of-clone-and-irrigation-on-the-stomatal-conductance-and-photosynthetic-rate-of-tea-camellia-sinensis/B000E27DCA28074AD6D8B2C6AA53B5C3# – (On our blog : https://plantstomata.wordpress.com/2020/02/27/effects-of-clone-and-irrigation-on-the-stomatal-conductance/ )

Smith D. L., Watt W. M. (1986) – Distribution of lithocysts, trichomes, hydatodes and stomata in leaves of Pilea eadieri Gagnep. and Guill (Urticaceae) – Annals of Botany 58: 155-166 –

Smith E. F. (1903) – Observations on a hitherto unreported bacterial disease the cause of which enters the plant through ordinary stomata – Science N. S. XVII, 429: 456-457 – https://wellcomecollection.org/works/wvuf4vvr – (On our blog : https://plantstomata.wordpress.com/2021/11/24/96177/ )

Smith E. F. (1905) – Bacterial infection by way of the stomata in black spot of plum – Science 21: 502 –

Smith E. P., Jolly M. S. (1932) – Stomatal Movement and Hydrogen Ion Concentration – Nature 129: 544 – https://doi.org/10.1038/129544a0https://www.nature.com/articles/129544a0#citeas – (On our blog : https://plantstomata.wordpress.com/2022/02/03/stomata-and-ph/ )

Smith G. N., Willmer C. M. (1988) – Effect of calcium and abscisic acid on volume changes of guard cell protoplasts of Commelina – J. Exp. Bot. 39: 1529-1539 –

Smith H. B. (1939) – Stomatal Index and Transpiration Rate of Leaves – Science 89(2308): 268-269 – DOI: 10.1126/science.89.2308.268https://www.science.org/doi/10.1126/science.89.2308.268 – (On our blog : https://plantstomata.wordpress.com/2022/01/19/stomatal-index-and-transpiration-rate/ )

Smith H. B. (1941) – Variation and correlation of stomatal frequency and transpiration rate in Phaseolus vulgaris – Am. J. Bot. 28: 722–725 – https://doi.org/10.2307/2436972https://www.jstor.org/stable/2436972?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/12/12/a-positive-correlation-between-stomatal-frequency-and-transpiration-rate/ )

Smith J. A., Blanchette R. A., Burnes T. A., Gillman J. H., David A. J. (2006) – Epicuticular wax and white pine blister rust resistance in resistant and susceptible selections of eastern white pine (Pinus strobus) – Phytopathology 96: 171-177 – https://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-96-0171 – (On our blog : https://plantstomata.wordpress.com/2022/01/21/100494/ )

Smith R. Y., Greenwood D. R., Basinger J. F. (2010) – Estimating paleo-atmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada – Palaeogeography, Palaeoclimatology, Palaeoecology 293: 120-131 – https://doi.org/10.1016/j.palaeo.2010.05.006 – https://www.sciencedirect.com/science/article/pii/S003101821000283X – (On our blog : https://plantstomata.wordpress.com/2019/02/01/estimating-paleo-atmospheric-pco2-from-stomatal-frequency/ )

Smith S., Weyers J. D. B., Berry W. G. (1989) – Variation in stomatal characteristics over the lower surface of Commelina communis leaves – Plant, Cell and Environment 12: 653–659 – DOI: 10.1111/j.1365-3040.1989.tb01234.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01234.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/29/variation-in-stomatal-characteristics/)

Smith W. K. (2008) – C4 leaf curling–coupling incident light, stomatal and photosynthetic asymmetries – New Phytol. 177(1): 5-8 – doi: 10.1111/j.1469-8137.2007.02284.xhttps://pubmed.ncbi.nlm.nih.gov/18078468/ – (On our blog :https://plantstomata.wordpress.com/2022/01/05/a-more-dynamic-biochemical-response-occurred-that-linked-sunlight-incidence-to-the-behavior-of-stomata-and-photosynthetic-cells-throughout-the-full-thickness-of-the-leaf/ )

Smith W. K., Hollinger D. Y. (1991) – Measuring stomatal behaviour. In: Lassoie JP, Inckley TM (eds) Techniques and approaches in forest tree ecophysiology – CRC Press, Boca Raton

Smith W. K., McClean M. (1989) – Adaptive relationship between leaf water repellency, stomatal distribution, and gas exchange – American Journal of Botany 76(3): – https://doi.org/10.1002/j.1537-2197.1989.tb11335.xhttps://bsapubs.onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1989.tb11335.x – (On our blog : https://plantstomata.wordpress.com/2020/05/20/leaf-water-repellency-stomatal-distribution-and-gas-exchange/ )

Smith W. K., Young D. R., Carter G. A., Hadley J. L., McNaughton G. M. (1984) – Autumn stomatal closure in six conifer species of the Central Rocky Mountains – Oecologia (Berlin) (1 984) 63 : 237-242  – http://library.wrds.uwyo.edu/wrp/84-23/84-23.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/03/seasonal-stomatal-closure/ )

Snaith P. J., Mansfield T. A. (1982) – Stomatal sensitivity to abscisic acid: can it be defined? – Plant Cell Environ. 5(4): 309‒311 – https://doi.org/10.1111/1365-3040.ep11572699https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-3040.ep11572699 – (On our blog : https://plantstomata.wordpress.com/2022/12/08/stomatal-sensitivity-to-aba/ )

Snaith P. J., Mansfield T. A. (1982) – Control of the CO2 responses of stomata by indol-3-ylacetic acid and abscisic acid – Journal of Experimental Botany 33: 360-365 – DOI: 10.1093/jxb/33.2.360 – https://www.researchgate.net/publication/249280215_Control_of_the_Co_2_Responses_of_Stomata_by_Indol-3ylacetic_Acid_and_Abscisic_Acid – (On our blog : https://plantstomata.wordpress.com/2018/06/22/iaa-aba-and-co2-responses-of-stomata-2/ )

Snaith P. J., Mansfield T. A. (1984) – Studies of the inhibition of stomatal opening by naphth-1–ylacetic acid and abscisic acid – J. Exp. Bot. 35: 1410–1418 – https://doi.org/10.1093/jxb/35.10.1410https://academic.oup.com/jxb/article/35/10/1410/512579 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/inhibition-of-stomatal-opening-by-naa-and-aba/ )

Snaith P. J., Mansfield T. A. (1985) – Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm – J. Exp. Bot. 36: 937-944 – https://doi.org/10.1093/jxb/36.6.937https://academic.oup.com/jxb/article-abstract/36/6/937/603950?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/29/responses-of-stomata-to-iaa-and-fusicoccin/)

Soar C. J., Speirs J., Maffei S. M., Loveys B. R. (2004) – Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis viniferacv. Shiraz: molecular and physiological studies investigating their source – Functional Plant Biology 31(6) 659-669 – https://doi.org/10.1071/FP03238http://www.publish.csiro.au/fp/FP03238 – (On our blog : https://plantstomata.wordpress.com/2019/02/04/gradients-in-stomatal-conductance/ )

Soar C. J., Speirs J., Maffei S. M., Penrose A. B., McCarthy M. G., Loveys B. R. (2006) – Grape vine varieties shiraz and grenache differ in their stomatal response to VPD: apparent links with ABA physiology and gene expression in leaf tissue – Australian Journal of Grape and Wine Research 12(1): 2-12 – https://doi.org/10.1111/j.1755-0238.2006.tb00038.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.2006.tb00038.x – (On our blog : https://plantstomata.wordpress.com/2023/03/31/comparing-stomatal-responses-in-grenache-and-shiraz-grape-cultivars-to-contrasting-vapour-pressure-deficit-vpd/ )

Soares A., Driscoll S. P., Foyer C. (2006) – Differential regulation of stomata and photosynthesis on the adaxial and abaxial leaf surfaces of the C-4 species Paspalum dilatatum in response to CO2 enrichment. In: COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY  143: S180-S180) –

Soares A. S., Driscoll S. P., Olmos E., Harbison J., Arrabaça M. C., Foyer C. H. (2008) –  Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum – New Phytologist 177(1): 186-198 – doi: 10.1111/j.1469-8137.2007.02218.x – Epub 2007 Sep 11 – https://pubmed.ncbi.nlm.nih.gov/17850248/ – (On our blog : https://plantstomata.wordpress.com/2022/01/05/adaxial-abaxial-specification-in-the-regulation-of-photosynthesis-results-from-differential-sensitivity-of-stomatal-opening-to-light-orientation-and-fixed-gradients-of-enzyme-activation-across-the-lea/ )

Sobahan M. A., Akter N., Okuma E., Uraji M., Ye W., Mori I. C., Nakamura Y., Murata Y. (2015) – Allyl isothiocyanate induces stomatal closure in Vicia faba – Biosci. Biotechnol. Biochem. 79: 1737–1742 – doi: 10.1080/09168451.2015.1045827 – https://www.ncbi.nlm.nih.gov/pubmed/26027691 – (On our blog : https://plantstomata.wordpress.com/2018/06/22/aitc-induces-stomatal-closure-2/ )

Sõber A. (1996) – Simultaneous measurement of leaf hydraulic and stomatal conductances by pressure bomb, gas exchange and -gauge techniques – Proc. Est. Acad. Sci. Biol. 45:35–43 –

Sõber A. (1997) – Hydraulic conductance, stomatal conductance, and maximal photosynthetic rate in bean leaves – Photosynthetica 34: 599–603 – https://doi.org/10.1023/A:1006834119588https://link.springer.com/article/10.1023/A:1006834119588 – (On our blog : https://plantstomata.wordpress.com/2019/02/01/a-positive-correlation-between-steady-state-values-of-hydraulic-lpa-and-stomatal-conductance-gs/ )

Sõber A. J., Moldau H. A. (1977) – An apparatus with separate conditioning of the plant and the leaf for the determination of stomatal resistance and leaf water content – Fiziol. Rast. 24: 1301–1307 – In Russian.

Sõber A. J., Sild E. (1999) – Stomatal closure during tobacco leaf desiccation as affected by ozone – Biol. Plant. 42: 267–272 – https://doi.org/10.1023/A:1002168820518https://link.springer.com/article/10.1023/A:1002168820518 – (On our blog : https://plantstomata.wordpress.com/2019/02/01/ozone-sensitive-cultivars-treated-with-ozone-lost-more-water-during-desiccation-than-control-plants/ )

Sobeih W. Y., Dodd I. C., Bacon M. A., Grierson D., Davies W. J. (2004) – Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying – Journal of Experimental Botany  55(407): – Water-Saving Agriculture Special Issue 2353–2363 – doi:10.1093/jxb/erh204 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/long-distance-signals-regulating-stomatal-conductance-in-plants-subjected-to-partial-root-zone-drying/ )

Socratic – Biology Topics  (2015) – How do stomata help conserve water ? – https://socratic.org/questions/how-do-stomata-help-conserve-water – (On our blog : https://plantstomata.wordpress.com/2018/11/04/conservation-of-water-by-stomata/ )

Soda M. N., Hayashi Y., Takahashi K., Kinoshita T. (2022) – Tryptophan synthase ß subunit 1 affects stomatal phenotypes in Arabidopsis thaliana – Front Plant Sci. 13: 1011360 – doi: 10.3389/fpls.2022.1011360 – PMID: 36518509 – PMCID: PMC9743989 – https://pubmed.ncbi.nlm.nih.gov/36518509/ – (On our blog : https://plantstomata.wordpress.com/2023/01/19/open-stomata-phenotype-in-tsb1-1-is-due-to-trp-deficiency-but-not-auxin/ )

Sojka R. E. (1992) – Stomatal closure in oxygen-stressed plants – Soil Science 154(4): 269-280 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.535.9&rep=rep1&type=pdfhttps://eprints.nwisrl.ars.usda.gov/id/eprint/588/1/787.pdf (On our blog : https://plantstomata.wordpress.com/2020/06/10/stomatal-closure-in-oxygen-stressed-plants/ )

Sojka R. E., Oosterhuis D. M., Scott H. S. (xxxx) – Root Oxygen Deprivation and the
Reduction of Leaf Stomata Aperture and Gas Exchange – In : Handbook of Photosynthesis (Ed. M. Pessarakli) – https://eprints.nwisrl.ars.usda.gov/id/eprint/827/1/1149.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/12/correlation-of-stomatal-hypoxic-response-to-soil-odr-is-suggested-as-the-most-appropriate-way-to-normalize-plant-response/ )

Sojka R. E., Stolzy L. H. (1980) – Soil-oxygen effects on stomatal response – Soil Sci. 130: 350-358 – https://journals.lww.com/soilsci/Abstract/1980/12000/Soil_Oxygen_Effects_on_Stomatal_Response.10.aspx – (On our blog : https://plantstomata.wordpress.com/2020/06/10/soil-oxygen-effects-on-stomatal-response/ )

Sojka R. E., Stolzy L. H. (1981) – Stomatal response to soil oxygen – Calif. Agric. 35: 18-19 – https://naldc.nal.usda.gov/download/18098/PDF – (On our blog : https://plantstomata.wordpress.com/2020/06/10/stomatal-response-to-soil-oxygen/ )

Sokolov V., Shumnyi V., Tsonev T., Stanev V., Danailov Zh., Dobrinova K. (1988) – Frequency, size and functional characteristics of the stomata in relation to heterosis in pea – Izvestia Sibirskogo-Otdeleniya-Akademii-Nauk-SSSR – Biologicheskikh-Nauk, (14/2): 89-94. 3 of 6 in
CAB Abstract. 1989 –

Sokolovski S., Blatt M. R. (2004) – Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells – Plant Physiol. 136: 4275–4284 – doi: 10.1104/pp.104.050344 – http://www.plantphysiol.org/content/136/4/4275 – (On our blog : https://plantstomata.wordpress.com/2018/06/22/no-directly-modifies-the-k-channel-or-a-closely-associated-regulatory-protein-probably-by-nitrosylation-of-cysteine-sulfhydryl-groups-in-stomata/ )

Sokolovski S., Hills A., Gay R., Garcia-Mata C., Lamattina L., Blatt, M. R. (2005) – Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells – Plant J. 43: 520–529 – doi: 10.1111/j.1365-313X.2005.02471.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.2005.02471.x – (On our blog : https://plantstomata.wordpress.com/2018/06/23/no-dependent-signals-can-be-modulated-through-protein-phosphorylation-upstream-of-intracellular-ca2-release-in-stomata/ )

Solanki S., Ameen G., Borowicz P., Brueggeman R. S. (2019) – Shedding Light on Penetration of Cereal Host Stomata by Wheat Stem Rust Using Improved Methodology – Scientific Reports 9: 7939 – https://www.nature.com/articles/s41598-019-44280-6 – (On our blog : https://plantstomata.wordpress.com/2019/06/07/penetration-of-cereal-host-stomata-by-wheat-stem-rust/ )

Solárová J. (1965) – Stomata reactivity in leaves at different insertion level during wilting – In:Slavík B. (ed.): Water Stress in Plants – Academia, Praha, 147-154 –

Solarova J. (1970) – Hydroreactivity of stomata in kale leaves of different insertion level as determined by analysis of transpiration curves – Biologia plantarum 12: 110-116 – DOI: 10.1007/BF02920858https://bp.ueb.cas.cz/artkey/bpl-197002-0005_Hydroreactivity-of-stomata-in-kale-leaves-of-different-insertion-level-as-determined-by-analysis-of.php – (On our blog : https://plantstomata.wordpress.com/2021/12/08/values-of-the-water-saturation-deficit-for-hydroactive-stomatal-movements-of-kale-leaves/ )

Solarova J., Pospisilova J. (1983) – Photosynthetic characteristics during ontogenesis of leaves. VIII. Stomatal diffusive conductance and stomata reactivity – Photosynthetica 17: 101- 151 – https://eurekamag.com/research/001/108/001108643.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/stomatal-diffusive-conductance-and-stomata-reactivity/ )

Solarova J., Pospisilova J. (1987) – Effect of irradiance of leaves during their ontogeny on the number and size of stomata and the epidermal diffusive conductance – Biologicke Listy 52(3): 207-223 – https://eurekamag.com/research/005/248/005248895.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/effect-of-irradiance-of-leaves-during-their-ontogeny-on-the-number-and-size-of-stomata/ )

Soleh M. A., Ariyanti M., Dewi I. R., Kadapi M. (2018) – Chlorophyll Fluorescence and Stomatal Conductance of Ten Sugarcane Varieties under Waterlogging and Fluctuation Light Intensity – Emirates Journal of Food and Agriculture 30(11): 935-940 – https://doi.org/10.9755/ejfa.2018.v30.i11.1844https://www.ejfa.me/index.php/journal/article/view/1844 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-conductance-under-waterlogging-and-fluctuation-light-intensity/ )

Soleimani A., Lessani H., Talaie A. R. (2003) – Relationship between stomatal density and ionic leakage as indicators of cold hardiness in olive (Olea europaea l.) – Acta Horticulturae 618: 521-525 – DOI: 10.17660/ActaHortic.2003.618.61https://www.researchgate.net/publication/287857685_Relationship_between_stomatal_density_and_ionic_leakage_as_indicators_of_cold_hardiness_in_olive_olea_europaea_l – (On our blog : https://plantstomata.wordpress.com/2022/12/27/stomatal-density-and-ionic-leakage-as-indicators-of-cold-hardiness/ )

Solmaz I., Sari N., Dasgan H. Y., Aktas H., Yetisir H., Unlu H. (2013) – The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids – Journal of Food Agriculture and Environment 9(3) – https://www.researchgate.net/publication/235921373_The_effect_of_salinity_on_stomata_and_leaf_characteristics_of_dihaploid_melon_lines_and_their_hybrids – (On our blog : https://plantstomata.wordpress.com/2018/08/22/the-effect-of-salinity-on-stomata/ )

Solovyeva L. V. (1982) – The number of chloroplasts in stomata guard-cells as a ploidy test in apple – XXIst internat hortic congr, I: 1044 – https://eurekamag.com/research/001/269/001269554.php – (On our blog : https://plantstomata.wordpress.com/2022/02/19/in-apple-cultivars-and-seedlings-the-number-of-chloroplasts-in-stomatal-guard-cells-increases-with-ploidy/ )

Solovyeva L. V. (1990) – Number of chloroplasts in guard cells of stomata as an indicator of the ploidy level of apple seedlings – Cytology and genetics 4(4): 1-4 – ISSN/ISBN: 0095-4527 – https://eurekamag.com/research/016/511/016511932.php

Song L., Ding R., Du T., Kang S., Tong L., Xue F., Wei Z. (2023)
Stomatal conductance parameters of tomatoes are regulated by reducing osmotic potential and pre-dawn leaf water potential via increasing ABA under salt stress – Environmental and Experimental Botany 206: 105176 – ISSN 0098-8472 –
https://doi.org/10.1016/j.envexpbot.2022.105176https://www.sciencedirect.com/science/article/pii/S0098847222003987 – (On our blog : https://plantstomata.wordpress.com/2023/03/08/structural-equation-modeling-showed-that-aba-directly-modulates-model-parameters-not-through-leaf-morphology-or-stomatal-development/ )

Song S.-J., Feng Q.-N., Li C.-L., Li E., Liu Q., Kang H., Zhang W., Zhang Y., Li S. (2018) – A Tonoplast-Associated Calcium-Signaling Module Dampens ABA Signaling during Stomatal Movement – Plant Physiol. – https://doi.org/10.1104/pp.18.00377 – http://www.plantphysiol.org/content/177/4/1666?rss=1 – (On our blog : https://plantstomata.wordpress.com/2018/08/07/the-tonoplast-cbl-cipk-complexes-form-a-signaling-module-that-negatively-regulates-aba-signaling-during-stomatal-movement/ )

Song W., Li J., Li K., Chen J., Huang J. (2020) – An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model – Forests 11(9): 954 – https://doi.org/10.3390/f11090954https://www.mdpi.com/1999-4907/11/9/954#cite – (On our blog : https://plantstomata.wordpress.com/2021/07/05/stomatal-pore-detection-and-measurement-method-based-on-the-mask-r-cnn-can-automatically-measure-the-anatomy-parameters-of-pores-in-plants/ )

Song W.-Y., Zhang Z.-B., Shao H.-B, Guo X.-L., Cao H.-X., Zhao H.-B, Fu Z.-Y., Hu X.-J. (2008) – Relationship between calcium decoding elements and plant abiotic-stress resistance – International Journal of Biological Sciences – ISSN 1449-2288 http://www.biolsci.org 4(2): 116-125 – https://www.ijbs.com/v04p0116.pdf – (On our blog : https://plantstomata.wordpress.com/2020/03/16/there-may-be-a-close-relationship-between-ca2-transporters-and-stomatal-closure-as-well-as-wue/ )

Song X., She X., He J., Huang C., Song T. (2006) – Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba – Funct. Plant Biol. 33: 573–583 – http://dx.doi.org/10.1071/FP05232 – http://www.publish.csiro.au/fp/fp05232 – (On our blog : ls of Vicia faba – Russ. J. Plant Physiol. 59: 372-380 – http://dx.doi.org/10.1134/S102144371203017X – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69334 )

Song X., Zhou G., He Q., Zhou H. (2020) – Stomatal limitations to photosynthesis and their critical water conditions in different growth stages of maize under water stress – Agricultural Water Management 241: 106330 – ISSN 0378-3774 – https://doi.org/10.1016/j.agwat.2020.106330https://www.sciencedirect.com/science/article/pii/S0378377420308805 – (On our blog : https://plantstomata.wordpress.com/2022/05/05/photosynthesis-of-maize-leaves-at-different-positions-changed-from-being-determined-by-stomatal-limitations-to-non-stomatal-limitations-under-different-water-stress-levels-at-different-growth-stages/ )

Song X.-G., She X.-P., Guo L.-Y., Meng Z.-N., Huang A.-X.,(2008) – MAPK kinase and CDP kinase modulate hydrogen peroxide levels during dark-induced stomatal closure in guard cells of Vicia faba – Botanical Studies: 4: 323-334 – https://eurekamag.com/research/032/217/032217238.php – (On our blog : https://plantstomata.wordpress.com/2021/10/23/the-role-of-mek-cdpk-and-its-effects-on-h2o2-levels-of-guard-cells-in-the-dark-induced-stomatal-closure/ )

Song X.-G., She X.-P., Wang J. (2011) – Inhibition of abscisic acid-induced stomatal closure by ethylene is related to the change of hydrogen peroxide levels in guard cells in broad bean – Australian Journal of Botany 59: 781–789 –

Song X.-G., She X.-P., Wang J. (2012) – Inhibition of darkness-induced stomatal closure by ethylene involves a removal of hydrogen peroxide from guard cells of Vicia faba – Russ J Plant Physiol 59: 372-380 –  https://doi.org/10.1134/S102144371203017X – https://link.springer.com/article/10.1134/S102144371203017X – (On our blog : https://plantstomata.wordpress.com/2018/06/25/ethylene-probably-induces-h2o2-removal-and-reduces-h2o2-level-in-stomata-and-inhibits-stomatal-closure-induced-by-darkness/ )

Song X.-G., She X.-P., Wang J., Sun Y.-C. (2011) – Ethylene inhibits darkness- induced stomatal closure by scavenging nitric oxide in guard cells of Vicia faba. – Funct. Plant Biol. 38, 767–777 – doi: 10.1071/FP11055 – http://www.publish.csiro.au/FP/FP11055 – (On our blog : https://plantstomata.wordpress.com/2018/06/25/ethylene-reduces-the-levels-of-no-in-stomata-via-a-pattern-of-no-scavenging-then-induces-stomatal-opening-in-the-dark/ )

Song X. G., She X. P., Yue M., Liu Y. E., Wang Y. X., Zhu X., Huang A. K. (2014) – Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba – Russ. J. Plant Physiol. 61: 390–396 – doi:10.1134/S1021443714020150 – https://link.springer.com/article/10.1134%2FS1021443714020150 – (On our blog : https://plantstomata.wordpress.com/2018/06/24/cuao-mediated-h2o2-production-is-involved-in-ethylene-induced-stomatal-closure-2/

Song Y., Miao Y., Song C. P. (2014) – Behind the scenes: the roles of reactive oxygen species in guard cells – New Phytol. 201: 1121–1140 – doi: 10.1111/nph.12565 – https://www.ncbi.nlm.nih.gov/pubmed/24188383 – (On our blog : https://plantstomata.wordpress.com/2018/06/24/understanding-of-ros-signalling-in-stomata/ )

Song Y., Xiang F.,  Zhang G. Miao Y., Miao C., Song C.-P.  (2016) – Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7: 181 – doi: 10.3389/fpls.2016.00181 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/aba-stomatal-aperture-and-senescence/ )

Song Z., Wang L., Lai C., Lee M., Yang Z., Yue G. (2022) – EgSPEECHLESS responses to salt stress by regulating stomatal development in oil palm –  Int. J. Mol. Sci. 23(9): 4659 – doi: 10.3390/ijms23094659 – PMID: 35563049 – PMCID: PMC9105668 – https://pubmed.ncbi.nlm.nih.gov/35563049/ – (On our blog : https://plantstomata.wordpress.com/2023/03/22/salt-activates-egspch-to-generate-more-stomata-in-response-to-salt-stress-which-differs-from-herbaceous-plants-difference-of-salt-induced-stomatal-development-between-ligneous-and-herbaceous-crops/ )

Song Z., Wang L., Lee M., Yue G. H. (2023) – The evolution and expression of stomatal regulators in C3 and C4 crops: Implications on the divergent drought tolerance – Front. Plant Sci. 14 – https://doi.org/10.3389/fpls.2023.1100838https://www.frontiersin.org/articles/10.3389/fpls.2023.1100838/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Plant_Science&id=1100838 – (On our blog : https://plantstomata.wordpress.com/2023/03/22/stomatal-development-is-unresponsive-to-drought-in-drought-tolerant-c3-crops-but-is-repressed-in-drought-tolerant-c4-plants/ )

Soni D. K., Ranjan S., Singh R., Khare P. B., Pathre U. V., Shirke P. A.. (2012) – Photosynthetic characteristics and the response of stomata to environmental determinants and ABA in Selaginella bryopteris, a resurrection spike moss species – Plant Sci. 191-192: 43‒52 –

Sonobe K., Hattori T., An P., Tsuji W., Eneji E., Tanaka K., Inanaga S. (2009) – Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in Sorghum grown with or without silicon under water stress – J. Plant Nutr. 32: 433– 442 –  DOI: 10.1080/01904160802660743https://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=ACS&version=1.0&coi=1%3ACAS%3A528%3ADC%252BD1MXhs1Cksro%253D&md5=7659ae1819c6bcec8d2054fb0d2445c0 – (On our blog : https://plantstomata.wordpress.com/2020/11/04/silicon-enhanced-water-uptake-and-gs-improving-water-supply-to-the-leaves/ )

Soonthornkalump S., Chuenboonngarm N. Jenjıttıkul, T., Thammasırı K., Soontornchaınaksaeng P. (2017) – Morphological and Stomatal Guard Cell Characteristics ofin vitro Kaempferia rotunda L. (Zingiberaceae) through Colchicine Induced Polyploidy – Walailak Journal of Science and Technology 14(3): 235-242 –

Sorek Y., Greenstein S., Netzer Y., Shtein I., Jansen S., Hochberg U. (2020) – An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes – New Phytologist (IF 8.512) – 229(4): – DOI:10.1111/nph.17025 https://www.x-mol.com/paper/1273038415424155648 – (On our blog : https://plantstomata.wordpress.com/2021/01/25/an-increase-in-xylem-embolism-resistance-is-coordinated-with-stomatal-regulation/ )

Sorensen H. K., Fanourakis D., Tsaniklidis G., Bouranis D., Nejad A. R., Ottosen C. O. (2020) – Using artificial lighting based on electricity price without a negative impact on growth, visual quality or stomatal closing response in Passiflora – Sci. Hortic. 267: 109354 – https://doi.org/10.1016/j.scienta.2020.109354https://www.sciencedirect.com/science/article/abs/pii/S0304423820301825?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/26/artificial-lighting-and-stomatal-closing-response/)

Sorokin H. P., Sorokin S. (1968) –  Fluctuations in the acid phosphatase activity of spherosomes in guard cells of Campanula persicifolia – J. Histochem. Cytochem. 16: 791-802 – https://doi.org/10.1177/16.12.791 –https://journals.sagepub.com/doi/abs/10.1177/16.12.791– (On our blog : https://plantstomata.wordpress.com/2019/02/02/acid-phosphatase-activity-of-spherosomes-in-stomata/ )

Sosa-Flores V. P., Ramírez-Godina F., Benavides-Mendoza A., Ramírez H. (2014) – Study of morphological and histological changes in melon plants grown from seeds irradiated with UV-B – Journal of Applied Horticulture 16(3): 199-204 –http://horticultureresearch.net/journal_pdf/melon.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-frequency-stomatal-index-length-and-width-of-stomata-in-melon-plants-grown-from-seeds-irradiated-with-uv-b/ )

Sota V., Themeli S., Zekaj Z. Kongjika E. (2019) – EXOGENOUS CYTOKININS APPLICATION INDUCES CHANGES IN STOMATAL AND GLANDULAR TRICHOMES PARAMETERS IN ROSEMARY PLANTS REGENERATED IN VITRO – Journ. Microbiology, Biotechnolgy and Food Sciences 9(1): 25-28 – DOI:10.15414/jmbfs.2019.9.1.25-28https://www.jmbfs.org/issue/august_septmeber_2019_vol-9_no1/jmbfs_1195_sota/?issue_id=5954&article_id=4 – (On our blog : https://plantstomata.wordpress.com/2022/05/10/in-vitro-leaves-have-a-higher-stomatal-density-value-which-is-increased-in-higher-concentrations-of-bap-and-thus-transpiration-rates-are-affected/ )

Soundararajan P., Manivanna A., Cho Y. S., Jeong B. R. (2017) Exogenous Supplementation of Silicon Improved the Recovery of Hyperhydric Shoots in Dianthus caryophyllus L. by Stabilizing the Physiology and Protein Expression – Frontiers Plant Science – https://doi.org/10.3389/fpls.2017.00738 –https://www.frontiersin.org/articles/10.3389/fpls.2017.00738/full – (On our blog : https://plantstomata.wordpress.com/2019/04/10/deformation-of-stomata-by-si/ )

Sousa H. C., Sousa G. G. de, Lessa C. I. N., Lima A. F. da S., Ribeiro R. M. R., Rodrigues F. H. da C. (2021) – Growth and gas exchange of corn under salt stress and nitrogen doses – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662021000300174&lng=en&tlng=enhttps://scielo.figshare.com/articles/dataset/Growth_and_gas_exchange_of_corn_under_salt_stress_and_nitrogen_doses/14320356 – (On our blog : https://plantstomata.wordpress.com/2022/02/09/stomatal-conductance-growth-and-gas-exchange-under-salt-stress-and-nitrogen-doses/ )

Sousa Paiva E. A. (2017) – How does the nectar of stomata-free nectaries cross the cuticle? – Acta Bot. Bras. 31 (3)  – https://doi.org/10.1590/0102-33062016abb0444https://www.scielo.br/j/abb/a/xHLgBWVMv6xkfxt9SrmkMvQ/?lang=en – (On our blog : https://plantstomata.wordpress.com/2021/09/25/nectar-of-stomata-free-nectaries-crosses-the-cuticle/ )

Sousa Paiva E. A., Lemos-Filho J. P., Oliveira D. M. T. (2006) – Imbibition of Swietenia macrophylla (Meliaceae) Seeds: The Role of Stomata – Annals of Botany 98(1): 213-217 – DOI: 10.1093/aob/mcl090 – https://www.researchgate.net/publication/7096069_Imbibition_of_Swietenia_macrophylla_Meliaceae_Seeds_The_Role_of_Stomata – (On our blog : https://plantstomata.wordpress.com/2018/05/29/the-role-of-stomata-in-the-seed-coat/ )

Souza G. M., de Oliveira R. F., Mendes Cardoso V. J. (2004) – Temporal Dynamics of Stomatal Conductance of Plants under Water Deficit: Can Homeostasis be Improved by More Complex Dynamics? – BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 47(3): 423-431 – https://core.ac.uk/download/pdf/205138829.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/03/chaotic-or-complex-behavior-of-stomatal-conductance-could-improve-plant-homeostasis-after-water-deficit/ )

Souza R. P. de, Ribeiro R. V., Machado E. C., Oliveira R. F. de, Silveira J. A. G. da (2005) – Photosynthetic responses of young cashew plants to varying environmental conditions – Respostas da fotossíntese à variação das condições ambientais em plantas jovens de cajueiro – Plant Physiology – Pesq. agropec. bras. 40 (8): – https://doi.org/10.1590/S0100-204X2005000800002https://www.scielo.br/j/pab/a/wdhxZZRxpjqPjvb3bfWmkmz/?lang=en – (On our blog : https://plantstomata.wordpress.com/2022/01/22/photosynthetic-and-stomatal-responses-to-varying-environmental-conditions/ )

Spanner D. C., Heath O. V. S. (1951) – Experimental studies of the relation between carbon assimilation and stomatal movement. IL The use of the resistance porometer in estimating stomatal aperture and diffusive resistance – Ann. Bot. N.S. 15(3): 319-331 – https://doi.org/10.1093/oxfordjournals.aob.a083284https://academic.oup.com/aob/article-abstract/15/3/319/165719?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2021/12/17/the-resistance-porometer-and-important-errors-due-to-the-responses-of-the-enclosed-stomata-to-variations-in-co2-supply/ )

Sparks J. P., Black R.A. (1999) – Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation – Tree Physiology 19: 453–459 – PMID: 12651551- https://www.ncbi.nlm.nih.gov/pubmed/12651551 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/interpopulation-variation-in-resistance-to-drought-induced-xylem-cavitation-stomatal-behavior-and-hydraulic-conductivity/ )

Speckmann G. J., Post J., Dijkstra H. (1965) – The length of stomata as an indicator for polyploidy in rye-grasses – Euphytica 14: 225–230 –https://doi.org/10.1007/BF00149503 – https://link.springer.com/article/10.1007/BF00149503#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/28/diploid-and-tetraploid-plants-can-be-separated-with-a-large-degree-of-certainty-if-the-selection-is-based-on-the-stomata-length/ )

Speirs J., Binney A., Collins M., Edwards E., Loveys B. (2013) – Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon) – Journal of Experimental Botany 64: 1907–1916 – https://doi.org/10.1093/jxb/ert052 –https://academic.oup.com/jxb/article/64/7/1907/580763 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/aba-plays-an-important-role-in-linking-stomatal-response-to-soil-moisture-status/ )

Spence R. D. (1987) – The problem of variability in stomatal responses, particularly aperture variance, to environmental and experimental conditions – New Physiol. 107(2): 303–315 – DOI: 10.1111/j.1469-8137.1987.tb00182.xhttp://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1987.tb00182.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-aperture-as-a-characteristic-response-to-environmental-and-experimental-conditions/ )

Spence R. D., Sharpe P. J. H., Powell R. D. (1984) – The Role of the Epidermal Cells in the Carbon Dioxide Response of Stomata of Vicia faba L. – The New Phytologist 97(2): 145–154 – http://www.jstor.org/stable/2432294 – (On our blog : https://plantstomata.wordpress.com/2022/01/05/there-are-two-opposing-responses-in-the-stomatal-system-to-co2-an-opening-response-located-in-the-epidermis-and-an-overriding-closing-response-controlled-by-the-mesophyll/ )

Songsri P., Jogloy S., Junjittakarn J., Kesmala T., Vorasoot N., Holbrook J. C., Patanothai A. (2013) – Association of stomatal conductance and root distribution with water use efficiency of peanut under different soil water regimes – Australian Journal of Crop Science 7(7): 948-955 –

Spence R. D., Wu H., Sharpe P. J. H. Clark K. G. (1986) – Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells – Plant, Cell and Environment 9: 197–202 – https://doi.org/10.1111/1365-3040.ep11611639 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11611639 – (On our blog : https://plantstomata.wordpress.com/2018/10/07/an-anatomical-mechanical-basis-to-explain-how-stomatal-opening-in-drought-conditions-can-occur/

Sperry J. S. (1986) – Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa – Plant Physiol. 80: 110–116 – https://doi.org/10.1104/pp.80.1.110http://www.plantphysiol.org/content/80/1/110 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/relationship-of-xylem-embolism-to-xylem-pressure-potential-and-stomatal-closure/ )

Sperry J. S. (2004) – Coordinating stomatal and xylem functioning – an evolutionary perspective – New Phytologist 162: 568–570 – http://sperry.biology.utah.edu/publications/NewPhyt04B.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/coordinating-stomatal-and-xylem-functioning/ )

Sperry J. S., Alder N. N., Eastlack S. E. (1993) –  The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation – J. Exp. Bot. 44: 1075-1082 – https://doi.org/10.1093/jxb/44.6.1075 – https://academic.oup.com/jxb/article-abstract/44/6/1075/594712?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/05/effect-of-reduced-hydraulic-conductance-on-stomatal-conductance/ )

Sperry J. S., Hacke U. G., Oren R., Comstock J. P. (2002) – Water deficits and hydraulic limits to leaf water supply – Plant, Cell and Environment 25: 251–263 – https://www.academia.edu/18694310/Water_deficits_and_hydraulic_limits_to_leaf_water_supply?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2022/01/24/the-adaptive-signi%ef%ac%81cance-of-%ef%bf%bcstomatal-behaviour/ )

Sperry J. S., Pockman W. T. (1993) – Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis – Plant, Cell and Environment 16(3): 279-287 – DOI: 10.1111/j.1365-3040.1993.tb00870.x – https://utah.pure.elsevier.com/en/publications/limitation-of-transpiration-by-hydraulic-conductance-and-xylem-ca – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-conductance-responding-to-reduced-hydraulic-conductance-and-preventing-cavitation%e2%80%90inducing-xylem-pressure/ )

Sperry J. S., Venturas M. D., Anderegg W. R. I., Mencuccini M., Mackay D. S., Wang Y., Love D. M. (2017) – Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost – Plant, Cell and Environment 40: 816-830 – DOI: 10.1111/pce.12852 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12852/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/21/the-optimization-of-photosynthetic-gain-and-hydraulic-cost-to-predict-stomatal-responses/ )

Sperry J. S., Wang Y., Wolfe B. T., Mackay D. S., Anderegg W. R. L., McDowell N. G., Pockman W. T. (2016) – Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits – New Phytol. 212: 577–589 – DOI: 10.1111/nph.14059https://www.ncbi.nlm.nih.gov/pubmed/27329266 – (On our blog : https://plantstomata.wordpress.com/2019/06/14/hydraulic-theory-predicts-stomatal-responses-to-climatic-water-deficits/ )

Speth E. B., Melotto M., Zhang W., Assmann S. M., He S. Y. (2009) – Crosstalk in pathogen and hormonal regulation of guard cell signaling – Book Editor(s): Keiko Yoshioka, Kazuo Shinozaki – https://doi.org/10.1002/9780813805931.ch5https://onlinelibrary.wiley.com/doi/abs/10.1002/9780813805931.ch5 – (On our blog : https://plantstomata.wordpress.com/2021/01/03/pathogen-and-hormonal-regulation-of-guard-cell-signaling-in-book/ )

Spiegelhalder R. P., Raissig M. T. (2021) – Morphology made for movement: formation of diverse stomatal guard cells – Curr Opin Plant Biol. 63: 102090 – doi: 10.1016/j.pbi.2021.102090 – Epub 2021 Jul 28 – PMID: 34332256 – https://pubmed.ncbi.nlm.nih.gov/34332256/ – (On our blog : https://plantstomata.wordpress.com/2021/11/22/the-developmental-and-morphogenetic-processes-shaping-this-essential-and-morphologically-diverse-cell-types/ )

Spielman-Sun E., Avellan A., Bland G. D., Clement E. T., Tappero R. V., Acerbo A. S., Lowry G. V. (2020) – Protein coating composition targets nanoparticles to leaf stomata and trichomes – Nanoscale 2020 – https://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr08100c#!divAbstract – (On our blog : https://plantstomata.wordpress.com/2020/01/30/protein-coating-composition-targets-nanoparticles-to-leaf-stomata/ )

Spinelli G. M., Snyder R. L., Sanden B. L., Shackel K. A. (2016) – Water stress causes stomatal closure but does not reduce canopy evapotranspiration in almond – Agricultural Water Management 168: 11-22 – https://doi.org/10.1016/j.agwat.2016.01.005https://www.sciencedirect.com/science/article/abs/pii/S0378377416300130 – (On our blog : https://plantstomata.wordpress.com/2022/04/20/water-stress-causes-stomatal-closure-but-does-not-reduce-canopy-evapotranspiration/ )

Spinelli G. M., Snyder R. L., Sanden B. L., Gilbert M., Shackel K. A. (2018) – Low and variable atmospheric coupling in irrigated Almond (Prunus dulcis) canopies indicates a limited influence of stomata on orchard evapotranspiration – Agricultural Water Management 196: 57-65 – ISSN 0378-3774 – https://doi.org/10.1016/j.agwat.2017.10.019
https://www.sciencedirect.com/science/article/pii/S0378377417303451 – (On our blog : https://plantstomata.wordpress.com/2022/04/20/a-limited-influence-of-stomata-on-orchard-evapotranspiration/ )

Spinner H. (1936) – Stomates et altitude – Berichte der Schweizerischen Botanischen Gesellschaft 46: 12–27 – 

Squire G. R., Black J. R. (1981) – Stomatal Behaviour in the Field, p. 223-245. In: P. I. Jarvis, T. A. Mansfield (Eds.) – Stomatal Physiology. Cambridge Univ. Press, Cambridge –

Squire G. R., Mansfield T. A. (1972) – A simple method of isolating stomata on detached epidermis by low pH treatment: observations on the importance of subsidiary cells – New Phytol. 71: 1033-1043 – https://plantstomata.wordpress.com/2017/08/23/isolating-stomata-on-detached-epidermis-by-low-ph-treatment/ )

Squire G. R., Mansfield T. A. (1974) – The action of fusicoccin on stomatal guard cells and subsidiary cells – New Phytol. 73: 433-440 – https://doi.org/10.1111/j.1469-8137.1974.tb02120.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1974.tb02120.x – (On our blog : https://plantstomata.wordpress.com/2019/02/05/fusicoccin-and-stomata/ )

Srivastava A., Lu Z. M., Zeiger E. (1995) – Modification of guard-cell properties in advanced lines of Pima cotton bred for higher yields and heat-resistance – Plant Science 108: 125-131 – https://doi.org/10.1016/0168-9452(95)04140-P – https://www.sciencedirect.com/science/article/pii/016894529504140P – (On our blog : https://plantstomata.wordpress.com/2018/10/08/the-conductance-increases-are-associated-with-modifications-of-some-key-stomatal-properties/ )

Srivastava A., Zeiger E. (1992) – Fast fluorescence quenching from isolated guard cell chloroplasts of Vicia faba is induced by blue light and not by red light – Plant Physiology 84: 7-9 – https://doi.org/10.1104/pp.100.3.1562http://www.plantphysiol.org/content/100/3/1562 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/stomatal-guard-cell-chloroplasts-have-a-specific-response-to-blue-light/ )

Srivastava A., Zeiger E. (1995) – The inhibitor of zeaxanthin formation, dithiothreitol, inhibits blue-light-stimulated stomatal opening in Vicia faba – Planta 196: 450-457 – https://doi.org/10.1007/BF00203642https://link.springer.com/article/10.1007/BF00203642 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/zeaxanthin-could-function-as-a-photoreceptor-mediating-the-stomatal-responses-to-blue-light/ )

Srivastava A., Zeiger E. (1995) – Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia faba leaves – Plant, Cell & Environment 18: 813-817 – https://doi.org/10.1111/j.1365-3040.1995.tb00586.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1995.tb00586.x – (On our blog : https://plantstomata.wordpress.com/2019/05/10/zeaxanthin-is-well-suited-to-function-as-a-molecular-photosensor-in-stomatal-movements-2/ )

Srivastava A., Zeiger E., Strasser R. J. (1998) – Light Sensing by Guard Cell Chloroplasts: Large Antenna Size and High Electron Transport Rates. In: Garab G. (eds) Photosynthesis: Mechanisms and Effects. Springer, Dordrecht – Photosynthesis: Mechanisms and Effects 2813-2816 – https://link.springer.com/chapter/10.1007/978-94-011-3953-3_662#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/08/light-sensing-by-stomatal-chloroplasts/

Srivastava L. (2002) – Stomata – an overview – [online] – Science Direct – https://www.sciencedirect.com/topics/earth-and-planetary-sciences/stomata

Srivastava L. M. (2002) – Abscisic Acid Signal Perception and Transduction – In : Plant Growth and Development: Hormones and Environment 2002: 569-590 – https://doi.org/10.1016/B978-012660570-9/50166-0 –https://www.sciencedirect.com/science/article/pii/B9780126605709501660 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/aba-signal-perception-and-transduction/ )

Srivastava L. M., Singh A.P. (1972) – Stomatal structure in corn leaves – J. Ultrastruct. Res. 39: 345–363 – https://doi.org/10.1016/s0022-5320(72)90028-7 –https://app.dimensions.ai/details/publication/pub.1006460944 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/stomatal-structure-in-relation-to-the-mechanism-of-stomatal-movements/

Srivastava N., Gonugunta V., Puli M., Raghavendra, A. (2009) – Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum – Planta 229: 757–765 – doi: 10.1007/s00425-008-0855-5 – https://www.ncbi.nlm.nih.gov/pubmed/19084995 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/the-role-of-no-and-chitosan-in-stomata/ )

Sruamsiri P., Lenz F. (1986) – Photosynthese and stomatäres Verhalten bei Erdbeeren (Fragaria x ananassa Duch.). I. Einfluss von Licht – Gartenbauwissenschaft 50: 78-83 –

Stadler R., Büttner M., Ache P., Hedrich R., Ivashikina N., Melzer M., Shearson S. M., Smith S. M., Sauer N. (2003) – Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis – Plant Physiol. 133: 528–537 – doi: 10.1104/pp.103.024240 – http://www.plantphysiol.org/content/133/2/528 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/atstp1-in-stomata/

Staff L., Hurd P., Reale L., Seoighe C., Rockwood A., Gehring C. (2012) – The Hidden Geometries of the Arabidopsis thaliana Epidermis – PLoS ONE 7(9): e43546 – https://doi.org/10.1371/journal.pone.0043546https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043546 – (On our blog : https://plantstomata.wordpress.com/2021/12/06/epidermal-pavement-cells-have-a-role-in-spacing-and-positioning-of-the-stomata-in-the-growing-leaf/ )

Staley D. (2018)  – NEXT: Plants that Provide Energy, Fuel, Light – Columbus Underground April 3, 2018 – https://www.columbusunderground.com/next-plants-that-provide-energy-fuel-light-ds1 – (On our blog : https://plantstomata.wordpress.com/2018/04/04/plants-that-provide-energy-fuel-light-and-the-role-of-stomata/ )

Stålfelt M. G. (1927) – Die photischen Reaktionen im SpaItöffnungsmechanismus -Flora. N. F. 121: 236-272 – https://doi.org/10.1016/S0367-1615(17)31118-7https://www.sciencedirect.com/science/article/abs/pii/S0367161517311187 – (On our blog : https://plantstomata.wordpress.com/2022/07/06/photischen-reaktionen-im-spaitoffnungsmechanismus/ )

Stålfelt M. G. (1928) – Die Abhangigkeit der Pholischen Spaltöffnungsreaktionen von der Temperatur – Zeit. Wiss. Biol. Abt. E. Planta 6 (2): 183-191 –

Stålfelt M. G. (1929) – Die Abhängigkeit der Spaltöffnungsreaktionen von der Wasserbilanz – Planta 8: 287–340 – https://doi.org/10.1007/BF01916623https://link.springer.com/article/10.1007%2FBF01916623 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/the-dependency-of-stomatal-reactions-on-the-water-balance-in-german/ )

Stålfelt M. G. (1935) – Die Spaltöffnungsweite als Assimilationsfaktor – Planta 23( 5): 715-759 – (On our blog : https://plantstomata.wordpress.com/2022/07/06/spaltoffnungsweite-als-assimilationsfaktor/)

Stålfelt M. G. (1935) – Die Transpiration und Kohlensaureassimilation bei Blaittern und Stroh des Hafers – Angew. Botan. 17: 157-190 –

Stålfelt M. G. (1955) – The stomata as a hydrophotic regulator of the water deficit of the plant – Physiologia Plant. 8: 572-593 –

Stålfelt M. G. (1956) – Die stomatäre Transpiration und die Physiologie der Spaltöffnungen – Handbuch der Pflanzenphysiologie 3 – ed. O. Stocker 351-426 – Berlin, Heidelberg, New York: Springer Verlag –

Stålfelt M. G. (1956) – Die stomatäre Transpiration und die Umweltfactoren – Handbuch der Pflanzenphysiologie 3 – ed. O. Stocker 436

Stålfelt M. G. (1957) – The water output of the guard cells of the stomata – Physiol. Plant. 10: 752-775 – https://doi.org/10.1111/j.1399-3054.1957.tb06981.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1957.tb06981.x – (On our blog : https://plantstomata.wordpress.com/2021/12/11/the-water-output-of-stomatal-guard-cells/ )

Stålfelt M. G. (1959) – The effect of carbon dioxide on hydroactive closure of the stomatal cells – Physiol. Plant. 12: 691-705 –

Stålfelt M. G. (1961) – The Effect of the Water Deficit on the Stomatal Movements in a Carton Dioxide-free Atmosphere – Physiol. Plant. 14: 826-843 –

Stålfelt M. G. (1962) – The effect of temperature on the opening of the stomatal cells – Physiol. Plant 15: 772–779 – https://doi.org/10.1111/j.1399-3054.1962.tb08126.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1962.tb08126.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/temperature-and-opening-of-stomatal-cells/ )

Stålfelt M. G. (1963) – Diurnal dark reactions in the stomatal movements – Physiologia Plantarum 16: 756–766 – https://doi.org/10.1111/j.1399-3054.1963.tb08353.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1963.tb08353.x – (On our blog : https://plantstomata.wordpress.com/2019/02/11/75331/ )

Stålfelt M. G. (1964) – Reactions Participating in the Photoactive Opening of the Stomata – Physiologia Plantarum 17(4): 828-838 – DOI: 10.1111/j.1399-3054.1964.tb08209.xhttps://www.researchgate.net/publication/229857325_Reactions_Participating_in_the_Photoactive_Opening_of_the_Stomatahttps://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1964.tb08209.x (On our blog : https://plantstomata.wordpress.com/2021/11/19/95875/ )

Stålfelt M. G. (1966) – The role of epidermal cells in the stomatal movements – Physiol. Plant. 19: 241-256 – https://doi.org/10.1111/j.1399-3054.1966.tb09096.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1966.tb09096.x – (On our blog : https://plantstomata.wordpress.com/2021/11/15/epidermal-cells-and-stomatal-movements/ )

Stålfelt M. G. (1967) – The components of the CO2-induced stomatal movements – Physiol. Plant. 20: 634-642 –

Stange A., Hedrich R., Roelfsema M. R. (2010) – Ca2+‐dependent activation of guard cell anion channels, triggered by hyperpolarization, is promoted by prolonged depolarization – The Plant Journal 62(2) – https://doi.org/10.1111/j.1365-313X.2010.04141.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-313X.2010.04141.x – (On our blog : https://plantstomata.wordpress.com/2020/08/29/ca2%e2%80%90dependent-activation-of-guard-cell-anion-channels/

Staxen I., Pical C., Montgomery L. T., Gray J. E., Hetherington A. M., and others. (1999) – Abscisic acid induces oscillations in guard cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C – Proc Natl Acad Sci USA 96: 1779–1784 – https://doi.org/10.1073/pnas.96.4.1779 – https://www.pnas.org/content/96/4/1779 – https://www.researchgate.net/publication/13299565_Abscisic_Acid_Induces_Oscillations_in_Guard-Cell_Cytosolic_Free_Calcium_That_Involve_Phosphoinositide-Specific_Phospholipase_C – (On our blog : https://plantstomata.wordpress.com/2019/02/05/involvement-of-oscillations-in-ca2cyt-in-the-maintenance-of-stomatal-aperture-by-aba/ )

Stebbins G. L., Jain S. K. (1960) – Developmental studies of cell differentiation in the epidermis of monocotyledons. I. Allium, Rhoeo, Commelina – Dev. Biol. 2: 401-426 – https://doi.org/10.1016/0012-1606(60)90025-7https://www.sciencedirect.com/science/article/pii/0012160660900257 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/cell-differentiation-in-the-epidermis-of-monocotyledons-i-allium-rhoeo-commelina/ )

Stebbins G. L., Shah S. S. (1960) – Developmental studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the Gramineae – Dev. Biol. 2: 477-500 – https://doi.org/10.1016/0012-1606(60)90050-6https://www.sciencedirect.com/science/article/pii/0012160660900506 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/cell-differentiation-in-the-epidermis-of-monocotyledons-ii-cytological-features-of-stomatal-development-in-the-gramineae/ )

Steduto P., Albrizio R., Giorio P., Sorrentino G. (2000) – Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity – Environ. Exp. Bot. 44: 243-255 – doi: 10.1016/S0098-8472(00)00071-Xhttps://www.sciencedirect.com/science/article/abs/pii/S009884720000071X – (On our blog : https://plantstomata.wordpress.com/2022/02/08/stomatal-and-non-stomatal-limitations-to-carbon-assimilation-under-salinity/ )

Stenglein S. A., Arambarri A. M., Menendez-Sevillano M. C., Balatti P. A. (2005) – Leaf epidermal characters related with plant’s passive resistance to pathogens vary among accessions of wild beans Phaseolus vulgaris var. aborigineus (Leguminosae-Phaseoleae) – Flora 200: 285–295 –

Stenglein S. A., Colares M. N., Arambarri A. M., Novoa M. C., Vizcaino C. E., Katinas L. (2003) – Leaf epidermis microcharacters of the old-world species of Lotus (Leguminosae: Lotae) and their systematic significance – Aust. J. Bot. 51: 459-469 –

Stenström A., Jónsdóttir I. S., Augner M. (2002) – Genetic and environmental effects on morphology in clonal sedges in the Eurasian Arctic – American Journal of Botany 89(9): – https://bsapubs.onlinelibrary.wiley.com/action/doSearch?AllField=Stomata&SeriesKey=15372197&startPage=2&pageSize=20 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/107863 )

Stephens J., Waugh R. (2017) – Reducing stomatal density in barley improves drought tolerance without impacting on yield – Plant Physiology 174: 776-787 –

Steppe K., Dzikiti S., Lemeur R., Milford J. R. (2006) – Stomatal oscillations in orange trees under natural climatic conditions – Annals of Botany 97: 831–835 – https://doi.org/10.1093/aob/mcl031 – https://academic.oup.com/aob/article/97/5/831/220237 – (On our blog : https://plantstomata.wordpress.com/2018/10/28/stomatal-oscillations-under-natural-climatic-conditions/ )

Sternberg L. D. S. L, Manganiello L. M. (2014) – Stomatal Pore Size and Density in Mangrove Leaves and Artificial Leaves: Effects on Leaf Water Isotopic Enrichment during Transpiration – Functional Plant Biology 41: 648-658 – https://doi.org/10.1071/FP13235http://www.publish.csiro.au/fp/FP13235 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-pore-size-and-density-in-mangrove-leaves-and-artificial-leaves-2/ )

Stettler R., Dunlap J. (2001) – Variation in leaf epidermal and stomatal traits of Populus trichocarpa from two transects across the Washington Cascades – Canadian Journal of Botany 79(5): 528–536 – https://insights.ovid.com/canadian-botany/cajb/2001/05/000/variation-leaf-epidermal-stomatal-traits-populus/2/01041748 – (On our blog : https://plantstomata.wordpress.com/2020/02/24/variation-in-stomatal-traits-of-populus-trichocarpa-2/ )

Steuer B., Stuhlfauth T., Fock H. P. (1988) – The efficiency of water use in water stressed plants is increased due to ABA induced stomatal closure – Photosynth Res 18: 327–336 – https://doi.org/10.1007/BF00034837https://link.springer.com/article/10.1007%2FBF00034837#citeas – (On our blog : https://plantstomata.wordpress.com/2021/01/23/possible-reasons-for-the-responses-of-photosynthesis-and-water-use-efficiency-to-different-stress-and-aba-levels/ )

Stevens R. A. (1977) –  A structural and functional study of stomata – PhD Thesis Plymouth Polytechnic – https://core.ac.uk/download/pdf/29818701.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/16/93245/ )

Stevens R. A., Martin E. S. (1977) – New structure associated with the stomatal complex of the fern Polypodium vulgare – Nature 265: 331–334 – doi:10.1038/265331a0 – https://www.nature.com/articles/265331a0 – (On our blog : https://plantstomata.wordpress.com/2018/01/13/new-structures-in-the-stomatal-complex-the-site-of-potassium-accumulation/ )

Stevens R. A, Martin E. S. (1977) – The ion-adsorbent substomatal structures in Tradescantia pallidus – Nature (Lond.) 268: 364-365

Stevens R. A., Martin E. S. (1978) – Structural and functional aspects of stomata: I. Developmental studies in Polypodium vulgare – Planta 142: 307–316 – https://doi.org/10.1007/BF00385082https://link.springer.com/article/10.1007/BF00385082 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/structural-and-functional-aspects-of-stomata/ )

Stewart D. W., Dwyer L. M. (1983) – Stomatal response to plant water deficits – Journ. Theoret. Biology 104(3): 655-666 – https://doi.org/10.1016/0022-5193(83)90253-9https://www.sciencedirect.com/science/article/pii/0022519383902539 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/stomatal-response-to-plant-water-deficits/ )

Stewart F. C. (1892) – The Stomata and Palisade Cells of Leaves -Proceedings of the Iowa Academy of Science 1(3): 80-84 – https://scholarworks.uni.edu/pias/vol1/iss3/23/ – (On our blog : https://plantstomata.wordpress.com/2021/05/26/the-stomata-of-leaves/ )

Stewart J. B. (1988) – Modelling surface conductance of pine forest -Agric. For. Meteorol. 43: 19-37 –

Stewart J. B., Gay L. W. (1989) – Preliminary modelling of transpiration from the FIFE site in Kansas – Agric. For. Meteorol. 48: 305-315 –

Stewart J. D., El Abidine A. Z., Bernier P. Y. (1994) – Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought – Tree Physiol. 15: 57–64 –

Steyn J. M., Du-Plessis H. F., Nortje P. F. (1992) – The effect of different water regimes on Up-to-date potatoes: I. Vegetative development, photosynthetic rate and stomatal diffusive resistance – South African Journal of Plant and Soil 9(3): 113-117 – https://eurekamag.com/research/009/561/009561619.php – (On our blog : https://plantstomata.wordpress.com/2021/01/07/stomatal-diffusive-resistance-and-photosynthetic-rate-served-as-good-indicators-of-the-incidence-of-plant-water-stress/ )

Stieve S. M., Stimart D. P. (1994) – 842PB482 Influence of stomata and transpiration on Anthirrhinum majus L. postharvest longevity – ASHS 29(5): 554-554 – https://doi.org/10.21273/HORTSCI.29.5.554ahttps://journals.ashs.org/hortsci/view/journals/hortsci/29/5/article-p554a.xml – (On our blog : https://plantstomata.wordpress.com/2021/03/31/influence-of-stomata-and-transpiration-on-postharvest-longevity/ )

Stikic R., Davies W. J. (2000) – Stomatal reactions of two maize lines to osmotically induced drought stress – Biologia Plantarum 43(3): 399-405 – https://doi.org/10.1023/A:1026798528481https://link.springer.com/article/10.1023%2FA%3A1026798528481#citeas – (On our blog : https://plantstomata.wordpress.com/2020/02/19/stomatal-reactions-to-osmotically-induced-drought-stress/ )

Stimler K., Berry J. A., Yakir D. (2012) – Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance – Plant Physiol. 158: 524–530 – doi: 10.1104/pp.111.185926http://www.plantphysiol.org/content/158/1/524 – (On our blog : https://plantstomata.wordpress.com/2019/12/26/there-was-no-relationship-between-the-sensitivity-of-stomata-to-cos-and-the-rate-of-cos-uptake-or-by-inference-hydrogen-sulfide-production/ )

Stojni´c S., Orlovi´c S., Miljkovi´c D., Gali´c Z., Kebert M., Von Wuehlisch G. (2015) – Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites –
Eur. J. For. Res. 134: 1109–1125 – https://doi.org/10.1007/s10342-015-0914-yhttps://link.springer.com/article/10.1007/s10342-015-0914-y#citeas – (On our blog : https://plantstomata.wordpress.com/2022/05/15/the-highest-values-of-plasticity-index-seem-to-be-the-result-of-a-regulative-function-of-stomata-and-mesophyll-structure-on-physiological-adaptation-to-the-unfavorable-growth-conditions-at-the-margina/ )

Stojnić S., Orlović S., Trudić B., Živković U., von Wuelisch G., Miljković D. (2015) – Phenotypic plasticity of European beech (Fagus sylvatica L.) stomatal features under water deficit assessed in provenance trail – Dendrobiology 73: 163-173