CPK8 functions in ABA-mediated stomatal regulation

 

Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress

by Zou J.-J.Li X.-D.Ratnasekera D.Wang C.Liu W.-X.Song L.-F.Zhang W.-Z., Wu W.-H. (2015)

in Plant Cell: May 2015, 27 (5)

Abstract

Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca2+-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressingCPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca2+-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype ascpk8 mutant. Moreover, ABA and Ca2+ inhibition of inward K+ currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity.

Stomata, ozone and water deficit

 

Diel Trends in Stomatal Response to Ozone and Water Deficit: A unique relationship of midday values to growth and allometry in Pima cotton

by Grantz D. A. , Paudel R., Vu H.-B., Shrestha A.,  Grulke N. (2015)

in Plant Biology:

Accepted Article, DOI: 10.1111/plb.12355

Abstract

Plant responses to ozone (O3) and water deficit (WD) are commonly observed, though less is known about their interaction. Stomatal conductance (gs) is both an impact of these stressors, and a protective response to them. Stomatal closure reduces inward flux of O3 and outward flux of water. Stomatal measurements are generally obtained at midday when gas exchange is maximal, but these may not be adequate surrogates for stomatal responses observed at other times of day, nor for non-stomatal responses. Here, we find in Pima cotton that stomatal responses to O3 observed at midday do not reflect responses at other times. Stomata are more responsive to O3 and WD at midday, despite being at quasi-steady state, than during periods of active opening or closing. An index of stomatal responsivity to O3 was maximal in the afternoon, not coincident with maximum gas exchange or with periods of active regulation, but coincident with plant sensitivity to O3 previously determined in this cultivar. Responses of pigmentation, shoot and root productivity, and allometric parameters, were more closely related to stomatal responses at midday than to responses at other times of day, reflecting greater stomatal responsivity and sensitivity to O3, and the larger magnitude of midday gs which dominates integrated gas exchange. Responses of stomata to O3 at midday were not good surrogates for stomatal responses early or late in the day, and may not adequately predicting O3 flux when maximum ambient concentrations do not occur near midday.

See the text: Wiley Online Library

Stomata and CO2

Photo credit: Am. J. Bot. 

Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control

by Haworth M.Killi D., Materassi A.Raschi A. (2015)

===

in Am. J. Bot. 102(5): 677-688, 2015

Stomatal pores on leaf surfaces play an important role in plant adaptation to new or changing environments via regulation of CO2 uptake and water vapor loss, and have played a central role in plant evolutionary history. In a controlled chamber setting, Haworth et al. (p. 677) assessed responses of stomatal physiology and density in two sets of plants, in representative ferns and angiosperms, to atmospheres of ambient and artificially enriched CO2. They observed two distinct strategies to control CO2: species either regulated their stomatal behavior (via adjusting aperature openings) or changed stomatal density in new growth. Based on these results, Haworth et al. propose a generalized model that characterizes trade-offs in short-term physiological behavior and longer-term morphological responses.

===============

ABSTRACT

Premise of the study: Stomatal control is determined by the ability to alter stomatal aperture and/or the number of stomata on the surface of new leaves in response to growth conditions. The development of stomatal control mechanisms to the concentration of CO2 within the atmosphere ([CO2]) is fundamental to our understanding of plant evolutionary history and the prediction of gas exchange responses to future [CO2].

Methods: In a controlled environment, fern and angiosperm species were grown in atmospheres of ambient (400 ppm) and elevated (2000 ppm) [CO2]. Physiological stomatal behavior was compared with the stomatal morphological response to [CO2].

Key results: An increase in [CO2] or darkness induced physiological stomatal responses ranging from reductions (active) to no change (passive) in stomatal conductance. Those species with passive stomatal behavior exhibited pronounced reductions of stomatal density in new foliage when grown in elevated [CO2], whereas species with active stomata showed little morphological response to [CO2]. Analysis of the physiological and morphological stomatal responses of a wider range of species suggests that patterns of stomatal control to [CO2] do not follow a phylogenetic pattern associated with plant evolution.

Conclusions: Selective pressures may have driven the development of divergent stomatal control strategies to increased [CO2]. Those species that are able to actively regulate guard cell turgor are more likely to respond to [CO2] through a change in stomatal aperture than stomatal number. We propose a model of stomatal control strategies in response to [CO2] characterized by a trade-off between short-term physiological behavior and longer-term morphological response.

See the text: Am. J. Bot. 

BIBLIOGRAPHY OF STOMATA: GYMNOSPERMAE AND GINKGOPHYTA

Anderson A. A. (1897) – Stomata on the bud scales of Abies pectinata – Bot. Gaz. 24: 294-295 – (On our blog : https://plantstomata.wordpress.com/2017/04/17/stomata-in-abies-gymnospermae/)

Bačić T., Krstin L., Roša J., Popović Z. (2011) – Epicuticular wax on stomata of damaged silver fir trees (Abies alba Mili.) – Acta Societatis Botanicorum Poloniae 74: 159-166 (eissn: 2083-9480) – https://explore.openaire.eu/search/publication?articleId=doajarticles::8e47aba7f62ed4813dee69ca608190dehttps://pbsociety.org.pl/journals/index.php/asbp/article/view/asbp.2005.021 – (On our blog : https://plantstomata.wordpress.com/2022/10/01/amorphous-epicuticular-wax-crusts-disturbing-the-normal-gas-exchange/ )

Barone Lumaga M.R. , Moretti A., De Luca P. (1999) – Morphological aspects of stomata, cuticle and chloroplasts in Ceratozamia kuesteriana Regel (Zamiaceae) – Plant Biosystems 133(1): – http://dx.doi.org/10.1080/11263509909381531 – http://www.tandfonline.com/doi/abs/10.1080/11263509909381531?journalCode=tplb20#.VRFhsJPF-6F – (On our blog : https://plantstomata.wordpress.com/2016/11/02/stomata-in-ceratozamia-kuesteriana-regel/)

Bender O., Rudnik T. I. (2008) – Variability of needle structure in Siberian stone pine in provenance plantations – Annals of Forest Research 51(1): 165-168 – http://www.afrjournal.org/index.php/afr/article/view/163 – (On our blog : https://plantstomata.wordpress.com/2017/11/26/variation-in-stomata-in-pinus-sibirica/)

Bercu R., Broasca L., Popoviciu R. (2010) – Comparative anatomical study of some gymnospermae species leaves – Botanica Serbica 34: 21-28 – https://botanicaserbica.bio.bg.ac.rs/arhiva/pdf/2010_34_1_504_full.pdf – (On our blog : https://plantstomata.wordpress.com/2022/11/21/stomata-in-some-gymnospermae-species-leaves/ )

Berkshire Community College Bioscience Image Library (2014) – Gymnosperm Leaves: Stomatal Pits in Single Needled Pinus – Photographer: Fayette A. Reynolds M.S. – https://www.flickr.com/photos/146824358@N03/36445776096 – (On our blog : https://plantstomata.wordpress.com/2023/04/25/gymnosperm-leaves-stomatal-pits-in-single-needled-pinus/ )

Boulter M. (1970) – Lignified guard cell thickenings in the leaves of some modern and fossil species of Taxodiaceae (Gymnospermae) – Biological Journal of the Linnean Society 2(1): 41-46 – https://doi.org/10.1111/j.1095-8312.1970.tb01685.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1970.tb01685.x – (On our blog : https://plantstomata.wordpress.com/2023/06/06/under-macerated-preparations-reveal-the-structure-of-the-lignified-guard-cells/ )

Boulter M. (1971) – Fine details of some fossil and recent conifer leaf cuticles – In : Heywood V. H. (ed.) Scanning Electron Microscopy 211-236 – Academic Press, London and New York.

Brinker M., Engelmann W., Kellmann J. W., Piechulla B. (2001) – Circadian Rhythms of Leaf and Stomatal Movements in Gymnosperm Species – Biological Rhythm Research 32(4): 471-478 – DOI: 10.1076/brhm.32.4.471.1329https://www.tandfonline.com/doi/abs/10.1076/brhm.32.4.471.1329?journalCode=nbrr20 – (On our blog : https://plantstomata.wordpress.com/2023/04/25/a-circadian-clock-controls-leaf-and-stomatal-movements-in-gymnosperm-species-indicating-that-endogenous-time-keeping-mechanisms-are-present/ )

Brodribb T., Hill R. S. (1997) – Imbricacy and stomatal wax plugs reduce maximum leaf conductance in Southern Hemisphere conifers – Australian Journal of Botany 45: 657–668 – https://doi.org/10.1071/BT96060http://www.publish.csiro.au/bt/BT96060 – (On our blog : https://plantstomata.wordpress.com/2019/07/25/79609/ )

Calamassi R., Puglisi S. R., Vendramin G. G. (1988) – Genetic variation in morphological and anatomical needle characteristics in Pinus brutia Ten. – Silvae Genetica 37: 5-6 – https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1988/Vol._37_Heft_5-6/37_5-6_199.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/08/97097/ )

Campbell R. (1972) – Electron microscopy of the epidermis and cuticle of the needles of Pinus nigra var. maritima in relation to infection by Lophodermella sulcigena – Ann. Bot. 36: 307-314 – (On our blog : https://plantstomata.wordpress.com/2017/06/18/the-epidermis-with-stomata-and-cuticle-of-the-needles-of-pinus-nigra-var-maritima/)

Chabot J. F., Chabot B. F. (1977) – Ultrastructure of the epidermis and stomatal complex of balsam fir (Abies balsamea) – Can J Bot 55: 1064-1075 – DOI: 10.1139/b77-125 –  http://www.nrcresearchpress.com/doi/abs/10.1139/b77-125 – (On our blog : https://plantstomata.wordpress.com/2016/11/02/stomata-in-abies-balsamea-gymnospermae/)

Chaturvedi S. (1995) –  Micromorphology and vegetative anatomy of leaves of Taxodiaceae – Int. J. Mendel 12: 81

Chen L. Q., Li C. S. (2004) – The epidermal characters and stomatal development of Ginkgo biloba. – Bull. Bot. Res. 24: 417-422 – http://bbr.nefu.edu.cn/EN/abstract/abstract2434.shtml – (On our blog : https://plantstomata.wordpress.com/2016/11/02/stomata-in-ginkgo-biloba-2/)

Chiba S., Watanabe M. (xxxx) – Tetraploids of Larix kaempferi 1n the Nurseries – https://www.ffpri.affrc.go.jp/pubs/bulletin/051/documents/57-9.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/25/stomata-in-larix/ )

Coiro M. (2015) – The unusual stomatal apparatus of Stangeria reveals a familiar tale – http://botany.org/PlantImages/ConantSTA2015.php – (On our blog : https://plantstomata.wordpress.com/2015/11/07/stomata-in-stangeria-natal-grass-cycad/)

Coiro M., Lumaga B., Rosaria M., Rudall P. J. (2021) – Stomatal development in the cycad family Zamiaceae – Annals of Botany 128: 577-588 – https://doi.org/10.1093/aob/mcab095https://www.zora.uzh.ch/id/eprint/205151/13/mcab095%281%29.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/04/92870/ ) // https://academic.oup.com/aob/article/128/5/577/6321731

Davies W. J., Kozlovski T. T., Lee K. J. (1974) – Stomatal characteristics of Pinus resinosa and Pinus strobus in relation to transpiration and antitransparant efficiency – Can. J. For. Res. 4: 571-574 – https://doi.org/10.1139/x74-086 – http://www.nrcresearchpress.com/doi/abs/10.1139/x74-086?journalCode=cjfr – (On our blog : https://plantstomata.wordpress.com/2017/09/15/stomatal-size-and-frequency-in-pinus-gymnospermae/)

Denniston K. (2015) – Stomatal Bloom – Northwest Conifer Connections JULY 15, 2015 – http://nwconifers.blogspot.be/2015/07/stomatal-bloom.html – (On our blog : https://plantstomata.wordpress.com/2017/01/03/stomatal-bloom-in-conifers/)

Duan H., O’Grady A. P., Duursma R. A., Choat B., Huang G., Smith R. A., Jiang Y., Tissue D. T. (2015) – Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature – Tree Physiology 35(7): 756–770 – https://doi.org/10.1093/treephys/tpv047https://academic.oup.com/treephys/article/35/7/756/1621197 – (On our blog : https://plantstomata.wordpress.com/2023/04/25/stomatal-regulation-strategies-did-not-generally-affect-the-relative-contributions-of-hydraulic-failure-and-carbohydrate-depletion-to-mortality-under-severe-drought/ )

Finsinger W., Tinner W. (2020) – New insights on stomata analysis of European conifers 65 years after the pioneering study of Werner Trautmann (1953) -Vegetation History and Archaeobotany, Springer Verlag 29: 393-406 – 10.1007/s00334-019-00754-1 – hal-02319673 – https://hal.archives-ouvertes.fr/hal-02319673/document – (On our blog : https://plantstomata.wordpress.com/2021/12/12/97389/ )

Florin R. (1931) – Untersuchungen zur Stammesgeschichte der Coniferales. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen – K. Svenska Vet. Akad. Handl. 10: 1-588.

Florin R. (1933) – Studien über die Cycadales des Mesozoikums. Erörterungen über die Spaltöffnungdapparate der Bennettitales –  K. Svenska Vet. Akad. handl. 12: 1-134.

Florin R. (1934) – Die Spaltöffnungsapparate von Welwitschia mirabilis Hook. f. – Svensk. Bot. Tidskr. 28: 265-284 –

Florin R. (1934) – Die Spaltöffnungsapparate der Williamsonia-, Williamsoniella– und Wielandiella-Blüten (Bennettitales) – Ark. Bot. 25A(4) No. 15: 1–20 –

Florin R. (1958) – Studien über die Cycadales des Mesozoikumus nebst Erörterungen über die Spaltöffnungsapparate der Bennttitales. K. Svenska Vetensk. Akad. Handl., ser. 3, 12.

Franich R. A., Wells L. G., Barnett J. R.  (1977) – Variation with tree age of needle cuticle topography and stomatal structure in Pinus radiata D. Don. – Ann. Bot. 41: 621-626 – https://doi.org/10.1093/oxfordjournals.aob.a085331 – https://www.jstor.org/stable/42754183?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/15/variation-with-tree-age-of-needle-cuticle-topography-and-stomatal-structure-in-pinus-radiata/)

Garcia Alvarez S., Garcia-Amorena I., Rubiales J. M., Morla C. (2009) – The value of leaf cuticle characteristics in the identification and classification of Iberian Mediterranean members of the genus Pinus – Botanical Journal of the Linnean Society 161: 436–448 – https://oa.upm.es/5073/2/INVE_MEM_2009_64103.pdfhttps://www.researchgate.net/publication/227644426_The_value_of_leaf_cuticle_characteristics_in_the_identification_and_classification_of_Iberian_Mediterranean_members_of_the_genus_Pinus – (On our blog : https://plantstomata.wordpress.com/2022/02/04/the-structure-of-the-stomatal-complex-the-shape-and-arrangement-of-the-subsidiary-cells-was-different-in-each-pinus-species/ )

Ghimire B., Lee C., Heo K. (2014) – Leaf anatomy and its implications for phylogenetic relationships in Taxaceae s. l. – J Plant Res. 127(3): 373-388 – doi: 10.1007/s10265-014-0625-3 – Epub 2014 Feb 5 – https://www.ncbi.nlm.nih.gov/pubmed/24496502 – (On our blog : https://plantstomata.wordpress.com/2018/05/06/leaf-anatomy-and-stomatal-structures-of-six-genera-of-taxaceae/ )

Ghimire B., Lee C., Yang J., Heo K. (2015) – Comparative leaf anatomy of some species of Abies and Picea (Pinaceae) – Acta Bot. Bras. 29(3):  – https://doi.org/10.1590/0102-33062014abb0009 – https://www.scielo.br/j/abb/a/MjNwf9Bw3VW3jbzJxKVFgJt/?lang=en – (On our blog : https://plantstomata.wordpress.com/2022/01/19/stomata-in-abies-and-picea/ )

Hamidipour A., Radjabian T., Charlet D. A., Zarrei M. (2011) – Leaf anatomical investigation of Cupressaceae and Taxaceae in Iran – Wulfenia 18: 95–111 – https://www.zobodat.at/pdf/Wulfenia_18_0095-0111.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-in-cupressaceae-and-taxaceae/ )

Hanover J. W., Reicosky D. A. (1971) – Surface wax deposits on foliage of Picea pungens and other conifers – Amer. J. Bot. 58(7): 681-687 – (On our blog : https://plantstomata.wordpress.com/2017/07/19/stomata-with-surface-wax-in-picea-and-other-conifers/)

Hildebrand,  (1860) – Der Bau der Coniferenspaltöffnungen und einige Bemerkungen uber die Vertheilhung derselben – Bot. Zeit. (18): 149-152 – (On our blog : https://plantstomata.wordpress.com/2017/07/30/structure-and-distribution-of-conifer-stomata-in-german/)

Inamdar J. A., Bhatt D. C. (1972) – Epidermal structure and ontogeny of stomata in vegetative and reproductive organs of Ephedra and Gnetum – Ann. Bot. 36: 1041-1046 – (On our blog : https://plantstomata.wordpress.com/2017/07/13/stomata-in-ephedra-and-gnetum-gymnospermae/)

Jeffree C. E., Johnson R. P. C., Jarvis P. G. (1971) – Epicuticular wax in the stomatal antechamber of sitka spruce and its effect on the diffusion of water vapour and carbon dioxide – Planta 98: 1-10 -DOI: 10.1007/BF00387018 – https://link.springer.com/article/10.1007/BF00387018 – (On our blog : https://plantstomata.wordpress.com/2017/09/15/wax-filled-stomatal-antechambers-are-excellent-antitranspirants/)

Johnson R. W., Riding R. T. (1981) – Structure and ontogeny of the stomatal complex in Pinus strobus L. and Pinus banksiana Lamb. – Am J Bot 68: 260-268 – doi: 10.2307/2442858  – (On our blog : https://plantstomata.wordpress.com/2016/05/03/stomata-in-pinus/)

Kanis A. W., Karstens K. H. ( 1963) On the occurrence of amphistomatic leaves in Ginkgo biloba L. – Acta Botanica Neerlandica 12: 281-286 – DOI: 10.1111/j.1438-8677.1963.tb00121.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1963.tb00121.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/01/28/amphistomatic-leaves-in-ginkgo-biloba/)

Karatela Y.Y., Gill, S. L. (1984) –  Epidermal structures and stomatal ontogeny in some Gymnosperms from Nigeria. – Feddes Rep. 95(5-6): 351-354 –

Kausik S. B. (1974) – Ontogeny of the stomata in Gnetum ula Brongn. – Bot. J. Linn. Soc. 68 (2): 143-151 – (On our blog : https://plantstomata.wordpress.com/2017/03/19/stomata-in-gnetum-gymnosperms/)

Kausik S. B. (1974) – The stomata of Ginkgo biloba L., with comments on some noteworthy features – Bot. J. Linn. Soc. 69: 137- 146 – https://doi.org/10.1111/j.1095-8339.1974.tb01621.xhttps://academic.oup.com/botlinnean/article-abstract/69/2/137/2725915?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/03/15/stomata-of-ginkgo-biloba-l/)

Kausik S. B. (1976) – A contribution to foliar anatomy of Agathis dammara, with a discussion of the transfusion tissue and stomatal structure – Phytomorphology 26: 263-273 –

Khan R., Abidin S. Z. U., Ahmad M., Zafar M., Liu J., Lubna, Jamshed S., Kiliç Ö. (2019) – Taxonomic importance of SEM and LM foliar epidermal micro-morphology: A tool for robust identification of gymnosperms – Flora 255: 42-68 – ISSN 0367-2530 –https://doi.org/10.1016/j.flora.2019.03.016
https://www.sciencedirect.com/science/article/pii/S0367253018305802 – (On our blog : https://plantstomata.wordpress.com/2022/06/13/stomata-and-sem-and-lm-foliar-epidermal-micro-morphology-of-gymnosperms/ )

Kim K., Whang S. S., Sun B.-Y. (1995) – Cuticle micromorphology of Korean Gymnosperms. I. Cycadaceae, Ginkgoaceae, Taxaceae, -and Cephalotaxaceae – J. Plant Biol. 38(2): 181-193 – https://www.koreascience.or.kr/article/JAKO199511920117719.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/05/stomata-in-korean-gymnosperms/ )

Kouwenberg L. L. R. , McElwain J. C. , Kurschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H. (2003) – Stomata frequency adjustment of four conifer species to historical changes in atmospheric CO2 – Am. J. Bot. 90. 610-619 – doi: 10.3732/ajb.90.4.610 http://www.amjbot.org/content/90/4/610.full – (On our blog : https://plantstomata.wordpress.com/2016/12/30/historical-changes-in-atmospheric-co2-and-stomata-frequency-adjustment/) – No. of stomata per mm of needle length. Tsuga, Picea, Larix.

Lehela A. R., Day R. J., Koran Z. (1972) – A close up of the stomatal regions of white spruce and jack pine – For. Chron. Feb. 1972: 32-34 – http://pubs.cif-ifc.org/doi/pdf/10.5558/tfc48032-1 – (On our blog : https://plantstomata.wordpress.com/2017/09/15/the-stomatal-regions-of-picea-glauca-and-pinus-divaricata/)

Li B. J., Xing S. Y. (2007) – Anatomical structure and stomatal characteristics on the leaf of Ginkgo biloba var. epiphylla – Sci. Silvae Sin. 43: 34-39 –

Locosselli G. M., Ceccantini G. (2012) – Plasticity of stomatal distribution pattern and stem tracheid dimensions in Podocarpus lambertii: an ecological study – Ann Bot 110(5): 1057–1066 – doi:  10.1093/aob/mcs179 – PMC3448432 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448432/ – (On our blog : https://plantstomata.wordpress.com/2018/04/13/stomatal-distribution-pattern-in-podocarpus-gymnospermae/ )

Ma Q.-W., Li C.-S. (2002) – Epidermal structures of Sequoia sempervirens (D. DON) Endl. (Taxodiaceae) – Taiwania 47(3): 194-202 – https://taiwania.ntu.edu.tw/pdf/tai.2002.47.194.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/26/stomata-in-sequoia/ )

Ma Q.-W., Li C.-S., Li F.-L., Vickulin S. V. (2004) – Epidermal structures and stomatal parameters of Chinese endemic Glyptostrobus pensilis (Taxodiaceae)  – Botanical Journal of the Linnean Society 146(2): 153–162 – https://doi.org/10.1111/j.1095-8339.2004.00326.x – https://academic.oup.com/botlinnean/article/146/2/153/2420339 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/stomatal-characteristics-in-glyptostrobus-taxodiaceae/ )

Maäcz J. G. (1956) – Über die Blattepidermis von Ginkgo biloba L. – Acta Biol. Szeged 4: 403-410 –

MacDonald G. M. (2002) – Conifer Stomata in: Tracking Environmental Change Using Lake Sediments: Volume 3: Terrestrial, Algal and Siliceous Indicators edited by J. P. Smol, H. J. Birks, W. M. Last – Kluwer 2002: 33-47 – https://books.google.co.in/books?isbn=1402006810 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomata-in-conifers/)

Maheshwari P., Vasil V. (1961) – The stomata of Gnetum – Ann. Bot 25: 313-319 – http://aob.oxfordjournals.org/content/25/3/313.abstract – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/4458)

Mahlert (1885) – Beiträge zur Kenntnis der Anatomie der Laubblätter der Coniferen mit besonderer Berücksichtigung des Spaltöffnungapparates – Bot. Zentralbl. 1885 II 54 ff.

Menendez C. A., Caccavari M. A. (1966) – Estructura epidermica de Araucaria nathortstii Dus. de Terciario de Pico Quemado, Rio Negro – Ameghiniana 4: 195-197 –

Mill R. R., Schilling D. M. S. (2009) – Cuticle micromorphology of Saxegothaea (Podocarpaceae) – Botanical Journal of the Linnean Society 159(1): 58-67 – https://doi.org/10.1111/j.1095-8339.2008.00901.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.2008.00901.x – (On our blog : https://plantstomata.wordpress.com/2023/06/13/stomata-in-saxegothaea-podocarpaceae/ )

Nautiyal D. D., Singh S., Pant D. D. (1976) – Epidermal structure and ontogeny of stomata in Gnetum gnemom, G. montanum and G. ula – Phytomorphology 26: 282-296 – (On our blog : https://plantstomata.wordpress.com/2017/04/14/stomata-in-gnetum-gymnospermae/)

Oladele F. A. (1983) – Scanning electron microscope study of stomatal-complex configuration in Cupressaceae – Canadian Journal of Botany 61(4): 1232-1240 – https://doi.org/10.1139/b83-131https://www.nrcresearchpress.com/doi/abs/10.1139/b83-131 – (On our blog : https://plantstomata.wordpress.com/2020/05/22/sem-study-of-stomata-in-cupressaceae/ )

Pant D. D., Basu N. (1977) – A comparative study of the leaves of Cathaya argyrophylla Chun&Kuang and three species of Keteleeria Carrière – Bot. J. Linn. Soc. 75: 271-282 – (On our blog : https://plantstomata.wordpress.com/2017/08/07/stomata-in-cathaya-and-keteleeria-pinaceae-gymnospermae/)

Pant D. D., Mehra B. (1963) – Epidermal Structure and Development of Stomata in Ephedra foliata Boiss. – The New Phytologist 63(1): 91-95 – DOI: 10.1111/j.1469-8137.1964.tb07362.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1964.tb07362.x/full – (On our blog : https://plantstomata.wordpress.com/2016/12/07/stomata-in-ephedra-gymnosperms/)

Pant D. D., Mehra B. (1964) – Development of stomata in leaves of three species of Cycas and Ginkgo biloba L. – Bot. J. Linn. Soc. 58: 491-497 – DOI: 10.1111/j.1095-8339.1964.tb00917.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.1964.tb00917.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/02/stomata-in-cycas-and-ginkgo-gymnospermae/)

Pant D. D., Nautiyal D. D., Singh S. (1978) – Cuticular studies of reproductive organs of Gnetum and Ephedra – Phytomorphology 28(2): 141-150 – (On our blog : https://plantstomata.wordpress.com/2017/08/02/stomata-in-gnetum-and-ephedra-gymnospermae/)

Pant D. D., Srivastava G. K. (1968) – On the cuticular structure of Araucaria (Araucarites) cutchensis (Feistmantel) comb. nov. from the Jabalpur series, India – Bot. J. Linn. Soc. 61: 201-206  – (On our blog : plantstomata.wordpress.com/2017/08/13/cuticular-structure-and-stomata-of-araucaria-cutchensis-gymnosperms/)

Pant D. D., Verma B. K. (1974) – Taxonomy of the genus Ephedra. Significance of stem and leaf epidermis and cuticle – Bot. J. Linn. Soc. 69: 287-308 – (On our blog : https://plantstomata.wordpress.com/2017/08/06/stomata-in-ephedra-gymnosperms-2/)

Pisaric M. F. J., Szeicz J. M., Karst T., Smol J. P. (2000) – Comparison of pollen and conifer stomates as indicators of alpine treeline in northwestern Canadian lake sediments – Can. J. Bot. 78: 1180–1186 – https://www.academia.edu/35335956/Comparison_of_pollen_and_conifer_stomates_as_indicators_of_alpine_treeline_in_northwestern_Canadian_lake_sediments – (On our blog : https://plantstomata.wordpress.com/2017/12/11/conifer-stomates-as-indicators-of-alpine-treeline-in-lake-sediments/)

Reed J. E., Smith W. K. (2012) – Stomatal Frequency, Distribution, and Needle Hydrophobicity in Cloud Forest Spruce and Fir, Southern Appalachian Mountains – RURALS: Review of Undergraduate Research in Agricultural and Life Sciences: 7(1):  Article 3 – https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1045&context=rurals – (On our blog : https://plantstomata.wordpress.com/2018/03/25/stomata-in-cloud-forest-spruce-and-fir/ )

Rhine J. B. (xxxx) – The clogging of stomata in conifers – Thesis (M.S.)–University of Chicago, Department of Botany – https://www.researchgate.net/publication/34049161_The_clogging_of_stomata_in_conifers

Rhine J. B. (1924) – Clogging of Stomata of Conifers in Relation to Smoke Injury and Distribution – Botanical Gazette 78(2): 226-232 – https://www.jstor.org/stable/2469885?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2016/12/30/smoke-injury-and-clogging-of-stomata/)

Riding R. T., Aitken J. (1982) – Needle structure and development of the stomatal complex in cotyledons, primary needles, and secondary needles of Pinus radiata D. Don – Bot. Gaz. 143: 52-62 – (On our blog : https://plantstomata.wordpress.com/2017/08/16/stomata-in-pinus-radiata-gymnosperms/)

Rook D. A., Hellmers H., Hesketh J. D. (1971) – Stomata and cuticular surfaces of Pinus radiata needles as seen with the scanning electron microscope – J. Ariz. Acad. Sci. 6: 222-225 –

Rudall P. J., Bateman R. M. (2019) – Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales – Biological Reviews 94(3) – https://doi.org/10.1111/brv.12497 – https://onlinelibrary.wiley.com/doi/abs/10.1111/brv.12497 – (On our blog :  https://plantstomata.wordpress.com/2019/05/30/stomatal-patterning-in-bennettitales/ )

Rudall P. J., Rice C. L. (2019) – Epidermal patterning and stomatal development in Gnetales – Ann Bot. 124(1): 149-164 – doi: 10.1093/aob/mcz053 – PMID: 31045221 – https://pubmed.ncbi.nlm.nih.gov/31045221/ – (On our blog : https://plantstomata.wordpress.com/2021/04/24/stomatal-development-in-gnetales-2/ )

Rudall P. J., Rowland A. R., Bateman R. M. (2012) – Ultrastructure of stomatal development in Ginkgo biloba – International Journal of Plant Sciences 173: 849–860 – DOI: 10.1086/667230 – https://www.researchgate.net/publication/259711672_Ultrastructure_of_Stomatal_Development_in_Ginkgo_biloba – (On our blog : https://plantstomata.wordpress.com/2015/01/27/stomata-in-ginkgo-biloba/)

Salt A. (2019) – Epidermal patterning and stomatal development in Gnetales – Botany One May 30, 2019 – https://www.botany.one/2019/05/epidermal-patterning-and-stomatal-development-in-gnetales/ – (On our blog : https://plantstomata.wordpress.com/2019/05/30/stomatal-development-in-gnetales/ )

Schwabach E. (1902) – Zur Entwicklung der Spaltöffnungen bei Coniferen – Ber. Deutsch. Bot. Ges. 20: 1-7 – (On our blog : https://plantstomata.wordpress.com/2017/09/02/stomata-in-conifers-in-german/)

Shapiro S. (1951) – Stomata on the ovules of Zamia floridana – American Journal of Botany 38(1): 47-53 – https://doi.org/10.1002/j.1537-2197.1951.tb14246.xhttps://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1951.tb14246.x

Sikarwar R., Rajawat B. S., Sharma K. R. (2014) – Studies on relationship between Stomatal density and oleoresin yield in Chirpine (Pinus roxburghii Sargent) – Int. Journ. Adv. Res. 2(3): 751-758 –www.journalijar.com/uploads/302_I  – (On our blog : https://plantstomata.wordpress.com/2016/12/19/stomata-and-oleoresin-in-pine-needles/

Smith W. K., Young D. R., Carter G. A., Hadley J. L., McNaughton G. M. (1984) – Autumn stomatal closure in six conifer species of the Central Rocky Mountains – Oecologia (Berlin) 63: 237-242 – http://library.wrds.uwyo.edu/wrp/84-23/84-23.pdf – (On our blog : https://plantstomata.wordpress.com/2021/09/03/autumn-stomatal-closure/ )

Spjut R. W. (2010) – Taxus umbraculifera (Umbrelliform yew) – The World Botanical Associates, reformatted June 2010 – http://www.worldbotanical.com/Taxus_umbraculifera.htm – (On our blog : https://plantstomata.wordpress.com/2022/02/22/stomata-in-taxus-umbraculifera/ )

Spjut R. W. (2014) – A new variety of Taxus brevifolia from the Pacific Northwest of North America – The World Botanical Associates, The IV International Workshop, Oct 23–25, 2014 –

Stockey R. A., Ko H.  (1990) – Cutical micromorphology of Dacrydium (Podocarpaceae) from New Caledonia – Bot. Gazette 151: 138-149 – (ISSN: 0006-8071) – DOI : 10.1086/337813 – – http://www.journals.uchicago.edu/doi/abs/10.1086/337813 – (On our blog : https://plantstomata.wordpress.com/2017/09/16/stomata-in-dacrydium-podocarpaceae/)

Stockey R. A., Frevel B. J., Woltz P. (1998) – Cutical micromorphology of Podocarpus, subgenus Podocarpus, section Scytopodium (Podocarpaceae) of Madagascar and South Africa – Int. J. Plant Sci. 159: 923-940 – DOI: 10.1086/297613 – http://www.journals.uchicago.edu/doi/abs/10.1086/314089 – (On our blog : https://plantstomata.wordpress.com/2017/09/16/stomata-in-podocarpus-gymnospermae/)

Stockey R. A., Taylor T. N. (1978) – Cuticular features and epidermal patterns in the genus Araucaria De Jussieu – Bot. Gaz. 139(4): 490-498 – (On our blog : https://plantstomata.wordpress.com/2017/08/24/stomata-in-araucaria-coniferales/)

Sweeney C. A. (2000-2004) – Conifer stomata analysis in Late Quaternary paleoecolgy in Scandinavia – AMAP Project Portal – http://projects.amap.no/project/conifer-stomata-analysis-in-late-quaternary-paleoecolgy-in-scandinavia/ – (On our blog : https://plantstomata.wordpress.com/2017/01/06/project-conifer-stomata-analysis-as-a-tool-for-study-of-fossils/)

Sweeney C. A. (2004) – A key for the identification of stomata of the native conifers of Scandinavia – Review of Palaeobotany and Palynology 128(3–4): 281–290 – http://dx.doi.org/10.1016/S0034-6667(03)00138-6 – http://www.sciencedirect.com/science/article/pii/S0034666703001386 – (On our blog : https://plantstomata.wordpress.com/2016/11/02/stomata-of-conifers/)

Sze H. C. (1951) – Structure of cuticle and small stolmata of modern Metasequoia leaves – Sci. in China 2: 239-243 (in Chinese) –

Takeda H. (1913a) – Development of stomata in Gnetum gnemon – Ann. Bot. 27: 365-366 –

Takeda H. (1913b) – Some points in the anatomy of leaves of Welwitschia mirabilis – Ann. of Bot. 27: 347-375 – https://doi.org/10.1093/oxfordjournals.aob.a089462https://academic.oup.com/aob/article-abstract/os-27/2/347/177421/Some-Points-in-the-Anatomy-of-the-Leaf-of?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/16/stomata-in-welwitschia-gymnospermae/)

Toral M., Manríquez A., Navarro-Cerrillo R., Tersi D., NaulinP. (2010) – Características de los estomas, densidad e índice estomático en secuoya (Sequoia sempervirens) y su variación en diferentes plantaciones de Chile – Bosque 31(2): 157-164 – – http://dx.doi.org/10.4067/S0717-92002010000200009 – https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002010000200009 – (On our blog : https://plantstomata.wordpress.com/2022/11/21/stomata-in-sequoia-sempervirens-and-their-variation-in-different-plantations-in-chile/ )

Vassiliyev A. E., Vassiliyeva O. V. (1976) – The ultrastructure of the stomatal apparatus in Gymnosperms (with special reference to stomatal movements) – Bot. Zhur. 61: 449-465 (in Russian) –

Von Schmitt U., Ruetze M., Liese W. (1987) – Rasterelektronenmikroskopische Untersuchungen an Stomata von Fichten- und Tannennadeln nach Begasung und saurer Beregnung – European Journal of Forest Pathology 17(2): 118-124 – https://doi.org/10.1111/j.1439-0329.1987.tb00736.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1439-0329.1987.tb00736.x – (On our blog : https://plantstomata.wordpress.com/2023/12/20/scanning-electron-microscopical-investigations-on-stomatal-wax-plugs-of-fir-and-spruce-needles-after-fumigation-and-acid-rain-treatment/ )

Wan H., Shen J., Tang L., Li C. (2010) – Morphology of stomata of Pinaceae and Cupressaceae from northwestern China – http://europepmc.org/abstract/cba/643849 – (On our blog : https://plantstomata.wordpress.com/2018/02/05/stomata-of-pinaceae-and-cupressaceae/ )

Whiting M., Mill R. R., Jeffree C. E. (2017) – The stomatal complex of Podocarpus observed in cross-section using cryofracture: a preliminary study – Edinburgh Journal of Botany 74(3): 345-364 – https://doi.org/10.1017/S0960428617000245 https://www.cambridge.org/core/journals/edinburgh-journal-of-botany/article/stomatal-complex-of-podocarpus-observed-in-crosssection-using-cryofracture-a-preliminary-study/15726AE190A2AB0C1124E1BE3133A687 – (On our blog : https://plantstomata.wordpress.com/2019/04/11/stomata-in-podocarpus-2/ )

Wilhelm K. (1883) – Ueber eine Eigentumlichkeit der Spaltöffnungen bei Coniferen. – Ber. dtsch. bot. Ges. (I): 325-30 –

Wu J. L., Niu J. Y., Yan Z. Z., Li S., Gao Y. H., Jiang H. Y. (2007) – [SEM observation on leaf epidermis of different Ephedra species] (in Chinese) – Zhongguo Zhong Yao Za Zhi. 32(18): 1854-1857 – PMID: 18051888 – https://www.ncbi.nlm.nih.gov/pubmed/18051888 – (On our blog : https://plantstomata.wordpress.com/2018/04/18/stomata-in-different-ephedra-species/ )

Xia S. J., Liao F., Huang Y. Y., Lin J. Z. (2003) – The leaf epidermis of three species in Zamiaceae – Acta Bot. Yunn. 25(5): 596-602 – ISSN/ISBN: 0253-2700 – https://eurekamag.com/research/004/357/004357502.php – (On our blog ; https://plantstomata.wordpress.com/2022/11/21/stomata-in-zamiaceae-gymnospermae/ )

Xu B.-s., Zhang R.-h. ( 2002) – Study on chlorophyll content and stomata morphology of Pïnus massoniana – Chemistry and Industry of Forest Products 22(3): 59-61  – http://www.cifp.ac.cn/EN/abstract/abstract94.shtml – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66462

Zobel D. B., Lin T.-P., Liu V. T. (1978) – Stomatal distribution on leaves of three species of Chamaecyparis – Taiwania 23: 1-6 – DOI: 10.6165/tai.1978.23.1https://taiwania.ntu.edu.tw/pdf/tai.1978.23.1.pdfhttps://taiwania.ntu.edu.tw/abstract.php?type=abstract&id=594 – (On our blog : https://plantstomata.wordpress.com/2021/09/12/93111/ )

Stomata in Crassulaceae

 

Epidermal Structure and Stomatal Types in Some Species of Korean Crassulaceae

by Jeong W.-G., Sung M.-W. (1985)

===

in Asia Science and Technology Portal 28(2): 105-118 –

(https://astp.jst.go.jp/modules/search/DocumentDetail/0581-2607%2B%2540%2B0583-421x%2B%2540%2B1226-9239%2B%2540%2B_28_2_Epidermal%2BStructure%2Band%2BStomatal%2BTypes%2Bin%2BSome%2BSpecies%2Bof%2BKorean%2BCrassulaceae_N%252FA)

 

Abstract:

This study was carried out to investigate the epidermal structure and types of stomata on the upper and lower surfaces of the leaves in six species and one variety belonging to Korean Crassulaceae. The shape of epidermal cells was polygonal, isodiametric, or elongated. The cell wall was thick, sinuous or deeply sinuous. The subsidiary cell wall was thin or mostly arched. The cytolith-containing cells were found in Orostachys japonicus. The distribution of stomata was more on the upper surface than on the lower surface in the leaves of O. japonicus and Sedum sarmentosum. The stomata in the other species were less on the upper surface than on the lower surface, and stomatal size was different in each species.

The great majority of stomatal types was the helico-eumesogenous type. This type was subdivided into two, parahelico-eumesogenous type and diahelico-eumesogenous type by us on the basis of the angle of division of guard mother cell and the long axis of the last-formed subsidiary cells. Sometimes allelo-eumesogenous type as well as aniso-eumesogenous type was found. The tetra-eumesogenous type with four mesogenous subsidiary cells was rarely observed. It was observed that the varieties of aniso-eumesogenous type with one to three subsidiary cells and one helix of subsidiary cells were developed by the secondary division of subsidiary cells of aniso-eumesogenous stoma. The compound shape of helico-eumesogenous stomata was found. Five new kinds of stomatal types were observed as follows; the helico-tetra-eumesogenous type, the coallelohelico-eumesogenous type, the cohelico-allelo-eumesogenous type, the duplotetra-eumesogenous type, and the aniso-euperigenous type. These types were reported here in the vascular plants for the first time.

Read the full text: click.ndsl.kr

Stomatal aperture dynamics and hysteresis

Role of hysteresis in stomatal aperture dynamics

by Ramos A. M. T., Prado C. P. C.  (2013)

in Phys. Rev. E 87, 012719

Abstract

Stomata are pores responsible for gas exchange in leaves. Several experiments indicate that stomata synchronize into clusters or patches. The patches’ coordination may produce oscillations in stomatal conductance. Previous studies claim to reproduce some experimental results. However, none was able to explain the variety of behavior observed in the stomatal dynamics. Recently, Ferraz and Prado suggested a realistic geometry of vein distribution. Although it reproduces the patches, no oscillation was observed and the patches remain static. Without exploring significant details, the authors stated that hysteresis in stomatal aperture could explain several experimental features. In this paper, the hysteresis hypothesis is further explored through the concept ofhysteretic operators. We have shown that the hysteresis assumption is sufficient to obtain dynamical patches and oscillations in stomatal conductance. The robustness of this hypothesis is tested by using different hysteresis operators. The model analysis reveals a dependence between the period of oscillation in stomatal conductance and the water deficit between the leaf and the environment. This underlying feature of the model might inspire further experiments to test this hypothesis.

See the text: APS

Stomata of Swiss Chard under artificial lighting

 

Growth, Stomatal Conductance, and Leaf Surface Temperature of Swiss Chard Grown Under Different Artificial Lighting Technologies

by Goins G. D. (2002)

in SAE Technical Paper 2002-01-2338, 2002, doi:10.4271/2002-01-2338.

Abstract:

In controlled environment plant growth chambers, electric lamps provide photons necessary to drive photosynthesis. In order to determine the most productive, energy efficient, and safest way of providing light to plants for a given application, new lighting technologies are being evaluated by various researchers. Light-emitting diodes (LEDs) represent an innovative lighting source with several appealing features specific for supporting plants whether on space-based transit vehicles or planetary life support systems. For this study, there was specific interest in Swiss chard ( Beta vulgaris L. cv. ‘Ruby Red Rhubarb’) because these plants are among “salad-type” species chosen for early mission testing on Space Station. Of particular interest, were the growth dynamics and gas exchange characteristics of Swiss chard grown under red LEDs at narrow wavebands, which give different ratios of blue quanta to far-red photons. These types of studies are important for understanding basic plant responses to artificial lighting systems in tightly controlled plant growth systems, and ultimately, for future considerations for space missions.

Read the text : SAE

Stomata and water vapor pressure deficit

 

Modeling the Response of Canopy Stomatal Conductance to Humidity

by Wang S., Yang Y., Trishchenko A. P., Barr A. G., Black T. A., McCaughey H. (2009)

in J. Hydrometeor, 10, 521–532.

doi: http://dx.doi.org/10.1175/2008JHM1050.1

Abstract

Humidity of air is a key environmental variable in controlling the stomatal conductance (g) of plant leaves. The stomatal conductance–humidity relationships employed in the Ball–Woodrow–Berry (BWB) model and the Leuning model have been widely used in the last decade. Results of independent evaluations of the two models vary greatly. In this study, the authors develop a new diagnostic parameter that is based on canopy water vapor and CO2 fluxes to assess the response of canopy g to humidity. Using eddy-covariance flux measurements at three boreal forest sites in Canada, they critically examine the performance of the BWB and the Leuning models. The results show that the BWB model, which employs a linear relationship between g and relative humidity (hs), leads to large underestimates of g when the air is wet. The Leuning model, which employs a nonlinear function of water vapor pressure deficit (Ds), reduced this bias, but it still could not adequately capture the significant increase of g under the wet conditions. New models are proposed to improve the prediction of canopy g to humidity. The best performance was obtained by the model that employs a power function ofDs, followed by the model that employs a power function of relative humidity deficit (1 − hs). The results also indicate that models based on water vapor pressure deficit generally performed better than those based on relative humidity. This is consistent with the hypothesis that the stomatal aperture responds to leaf water loss because water vapor pressure deficit rather than relative humidity directly affects the transpiration rate of canopy leaves.

Read the text: Am. Meteorol. Soc.

Stomata in early angiosperms

 

Stomatal development of early angiosperms

by Cann A. J. (2013)

Alan J. Cann

in AoB Blog Dec. 2013

Stomatal structure is highly conserved across land plants – a symmetric pair of specialized guard cells delimits a central pore. However, when viewed from a developmental perspective, the patterning of the stomatal complex (the stoma and neighbouring cells) differs among taxa. Most hypotheses of stomatal evolution in angiosperms are based on comparative studies of mature stomata of both extant and fossil taxa, with a primary focus on three widely recognized stomatal types – anomocytic, paracytic and stephanocytic – which differ in the patterning of their neighbour cells.

Understanding evolutionary pathways requires a more explicit phylogenetic context than over-simplistic comparisons between dicotyledons (a non-monophyletic group) and monocotyledons. Such comparisons are most commonly exemplified by the model organisms Arabidopsis and rice, respectively. A recent paper in Annals of Botany presents a novel ultrastructural study of developing stomata in leaves of Amborella (Amborellales), Nymphaea and Cabomba (Nymphaeales), and Austrobaileya and Schisandra (Austrobaileyales), which represent the three earliest-divergent lineages of extant angiosperms. The authors show that similar mature stomatal phenotypes can result from contrasting morphogenetic factors. Loss of asymmetric divisions in stomatal development could be a significant factor in land plant evolution, with implications for the diversity of key structural and physiological pathways.

Stomata in Argania

Photo credit: WVC 2007-04

Oued Elmaa Argan P1010148 copy.jpg

Argania forest in the Tindouf area (S.W. Algeria)

Variability of leaf stomatal density of adult trees of Argania spinosa (L.) Skeels in the field

by Bani-Aameur F., Zahidi A. (2005)

in Acta Botanica Gallica: Botany Letters, Volume 152, Issue 3, 2005

Abstract

Stomatal density is recorded on both faces of the two types of argan (Argania spinosa (L.) Skeels) leaves (simple and grouped) of 30 adult trees within three populations at Ait Melloul, Ait Baha and Argana, three sites in the south-west of Morocco, during three consecutive years, 1994–97. No stomata are observed at adaxial leaf surface characterizing argan as a hypostomatous species. Stomata density varies from 312 to 50 stomata per mm2 for simple leaves and from 294 to 62 stomata per mm2 for grouped leaves setting a large variability interval within argan populations. Tree genotype and its interaction with year are the sole significant sources of variation for simple or grouped leaves. Interpopulation (population) contribution to total variance is lower than intra-population (tree/population or its interaction with year). Repeatability (an estimate of broad sense heritability) values, 26.7% −38.3% for simple leaves and 18.1 to 46.1 for grouped leaves are relatively high within each population for this ecophysiological character.

Fruits and seeds of the argan tree - 2007-04 Oued Elmaa Argan P1010151 copy.jpg
Fruits and seeds of the argan tree – 2007-04 Oued Elmaa Argan P1010151 copy.jpg

Résumé

La densité des stomates a été examinée sur les deux faces des deux types de feuilles (simples et groupées) de 30 Argania spinosa (L.) Skeels, arbres adultes dans chacune de trois populations à Ait Melloul, Ait Baha et Argana au sud-ouest du Maroc, pendant trois années consécutives, 1994–97. Nous n’avons pas observé de stomates sur la face adaxiale, ce qui caractérise l’Arganier comme une espèce hypostomatique. La densité des stomates varie entre 312 et 50 stomates par mm2 pour les feuilles simples et de 294 à 62 stomates par mm2 pour les feuilles groupées. Le génotype des arbres et son interaction avec l’année climatique étaient les seules sources de variation significatives quel que soit le type de feuille. La contribution de la variance interpopulation à la variance totale était plus faible que la contribution intrapopulation. Les valeurs de la répétabilité (une estimation de l’héritabilité au sens large) étaient relativement élevées dans chaque population montrant ainsi l’étendue de la variabilité de ce caractère écophysiologique.

See the text: Tandfonline