BIBLIOGRAPHY OF STOMATA: PHYSIOLOGY, BIOCHEMISTRY-ECOLOGY-CYTOLOGY M – Z

 

 

 

Ma Y.-L., Niu J., Zhang W., Wu X. (2017) – Hydrogen Sulfide May Function Downstream of Hydrogen Peroxide in Mediating Darkness-induced Stomatal Closure in Vicia faba – Functional Plant Biology – https://doi.org/10.1071/FP17274 – http://www.publish.csiro.au/fp/FP17274 – (On our blog :  https://plantstomata.wordpress.com/2017/12/04/h2s-is-involved-in-darkness-induced-stomatal-closure-and-acts-downstream-of-h2o2/ )

Ma Y. L., She X. P., Yang S. S. (2012) – Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H2O2) levels in guard cells in Vicia faba – Science China Life Sciences 55(11): 974-983 – DOI10.1007/s11427-012-4386-8 –https://www.infona.pl/resource/bwmeta1.element.springer-7f5d9a25-3c26-304a-8786-944d63ee107a – (On our blog : https://plantstomata.wordpress.com/2017/10/22/darkness-induced-s1p-synthesis-causing-cytosolic-alkalization-and-subsequent-h2o2-production-finally-leads-to-stomatal-closure/ )

Ma Y., She X., Yang S. (2013) – Cytosolic alkalization-mediated H2O2 and NO production are involved in darkness induced stomatal closure in Vicia faba. – Can. J. Plant Sci. 93, 119–130. – doi: 10.4141/cjps2012-040 – CrossRef | CAS |http://www.nrcresearchpress.com/doi/abs/10.4141/cjps2012-040  – (On our blog :- https://plantstomata.wordpress.com/2016/07/30/h2o2-and-no-production-are-involved-in-darkness-induced-stomatal-closure/ )

MacAlister C. A., Bergmann D. C. (2007)  – Stomatal Patterning – eLS. Edited by Anonymous. John Wiley & Sons, Ltd; 2001. – Encyclopedia of Life Sciences. – DOI: 10.1002/9780470015902.a0020125 – http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0020125/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/05/mechanisms-that-lead-to-pattern-and-cell-fate-acquisition-in-stomata/ )

 

MacAlister C. A., Bergmann D. C. (2011) – Sequence and function of bHLHs required for stomatal development in Arabidopsis are deeply conserved in land plants – Evolution and Development 13182-192. -10.1111/j.1525-142X.2011.00468.x. – PMID: 21410874 – Publisher Full Text |PubMed Central Full Text) – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139685/?tool=pubmed – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/17011 )

MacAlister C. A.Ohashi-Ito K.Bergmann D. C. (2007) – Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445537540. – CrossRefPubMedGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/30/speechless-spch-encoding-a-basic-helix-loop-helix-bhlh-transcription-factor-for-stomatal-lineage/)

Machida Y., Lin C., Tamanoi F. (2014) – Signaling Pathways in Plants, Volume 35, 1st Edition, eBook ISBN: 9780128020159, Academic Press, 298 pp., in The Enzymes2.4 Light-Controlled Stomatal Opening and Development – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stoma – (On our blog : https://plantstomata.wordpress.com/2018/01/07/light-controlled-stomatal-opening-and-development/ )

 

Macho A. P., Boutrot F., Rathjen J. P., Zipfel, C. (2012) – Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. – Plant Physiol. 159: 1845–1856. – doi: 10.1104/pp.112.199810 – https://www.researchgate.net/publication/228064322_ASPARTATE_OXIDASE_plays_an_important_role_in_Arabidopsis_stomatal_immunity – (On our blog : https://plantstomata.wordpress.com/2016/10/18/stomatal-immunity-and-aspartate-oxidase/ )

Mackowiak C. L., Wheeler R. M. (1996) – Growth and stomatal behavior of hydroponically cultured potato (Solanum tuberosum L.) at elevated and super-elevated CO2 – J. Plant Physiol. 149: 205-210 –

MacRobbie E. A. C. (1980) – Osmotic measurements on stomatal cells of Commelina communis L. – J. Membr. Biol. 53: 189-198. – DOI: 10.1007/BF01868824 –https://www.researchgate.net/publication/246987913_Osmotic_measurements_on_stomatal_cells_of_Commelina_communis_L – (On our blog : https://plantstomata.wordpress.com/2016/11/05/osmotic-measurements-on-stomata/ )

MacRobbie E. A. C. (1981) – Ionic relations of stomatal guard cells – In : Stomatal Physiology, (Ed. by P. G.Jarvis & T. A.Mansfield), pp. 5170.- Cambridge University Press. Cambridge) – Google Scholar – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/ion-movements-and-stomata/ )

MacRobbie E. A. C. (1982) Chloride Transport in Stomatal Guard Cells – Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 299(1097), The Binding and Transport of Anions in Living Tissues (Dec. 1, 1982), pp. 469-481 – https://www.jstor.org/stable/2395789?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/17/chloride-transport-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1983) – Effects of light/dark on cation fluxes in guard cells of Commelina communis L. – J Exp Bot 34: 1695-710 –  http://dx.doi.org/10.1093/jxb/34.12.1695

MacRobbie E. A. C. (1988) – Stomatal guard cells. In: Solute transport in plant cells and tissues (Eds. D. A. BAKER and J. I. HALL) pp. 453-497. John Wiley and Sons. Inc ., New York .

MacRobbie E. A. C. (1988) – Control of ion fluxes in stomatal guard cells – Botanica Acta 101: 140-148. – DOI: 10.1111/j.1438-8677.1988.tb00025.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1988.tb00025.x/abstract – (https://plantstomata.wordpress.com/2016/12/01/ion-fluxes-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1993) – Ca2+ and cell signalling in guard cells – Semin Cell Biol 4:113122 – http://dx.doi.org/10.1006/scel.1993.1014 – CrossRefMedlineGoogle Scholar – http://www.sciencedirect.com/science/article/pii/S1043468283710147 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-and-cell-signalling-in-stomata/ )

MacRobbie E. A. C. (1998) – Signal transduction and ion channels in guard cells. – Philos. Trans. R Soc. Lond. [B], 353: 1475–1488 – doi:  10.1098/rstb.1998.0303 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692354/ – (On our blog : https://plantstomata.wordpress.com/2018/06/01/signal-transduction-and-ion-channels-in-stomata-3/

MacRobbie E. A. C. (2006) – Control of volume and turgor in stomatal guard cells. – J. Membr. Biol. 210, 131. – doi: 10.1007/s00232-005-0851-7 – https://www.ncbi.nlm.nih.gov/pubmed/16868673 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/volume-and-turgor-of-a-pair-of-stomatal-guard-cells/ )

MacRobbie E. A. C., Kurup S. (2007) – Signaling mechanisms in the regulation of vacuolar ion release in guard cells – New Phytologist 175: 630–640 –

MacRobbie E. A. C., Smyth W. D. (2010) – Effects of fusicoccin on ion fluxes in guard cells – New Phytol 186:636-647. – DOI: 10.1111/j.1469-8137.2010.03209.x –https://www.researchgate.net/publication/42344067_Effects_of_fusicoccin_on_ion_fluxes_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2016/10/18/fusicoccins-effect-on-ion-fluxes-in-stomata/ )

Madhavan S., Chrominiski A., Smith B. N. (1983) – Effect of ethylene on stomatal opening in tomato and carnation leaves – Plant Cell Physiol. 24: 569–572 – https://doi.org/10.1093/oxfordjournals.pcp.a076550https://academic.oup.com/pcp/article-abstract/24/3/569/1904722?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/06/01/effect-of-ethylene-on-stomatal-opening/

Maercker U. (1965) – Zur Kenntnis der Transpiration der Schliesszellen – Protoplasma 60:61–78. – doi:10.1007/BF01248129 –http://link.springer.com/article/10.1007/BF01248129 – https://plantstomata.wordpress.com/2016/10/18/25426/ )

Maherali H., Johnson H. B., Jackson R. B. (2003) – Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland – Plant, Cell and Environment 26: 1297–1306 – https://jacksonlab.stanford.edu/sites/default/files/pce03.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-sensitivity-to-vapour-pressure-difference-over-a-subambient-to-elevated-co2-gradient/ )

Maherali H., Reid C. D., Polley H. W., Johnson H. B., Jackson R. B. (2002) – Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland – Plant, Cell and Environment 25: 557-566 –

 

Maierhofer T., Diekmann M., Offenborn J. N., Lind C., Bauer H., Hashimoto K., Al-Rashied K. A. S., Luan S., Kudla J., Geiger D.,  Rainer Hedrich R. (2014) – Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. – Sci. Signal. 7:ra86. – doi: 10.1126/scisignal.2005703 – http://stke.sciencemag.org/content/7/342/ra86 – (On our blog : https://plantstomata.wordpress.com/2018/06/01/cbl-cipk-complexes-are-potential-regulators-of-stomatal-aperture-through-s-type-anion-channels/ )

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – II. Observation of Stomatal Movements under Different Conditions of Water Supply and Demand – Zeitschrift für Pflanzenphysiologie 91(2): 157-172 – https://doi.org/10.1016/S0044-328X(79)80090-2 – https://www.sciencedirect.com/science/article/pii/S0044328X79800902 – (On our blog :

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view – IV. Ion Accumulation by Peristomatal Transpiration – Zeitschrift für Pflanzenphysiologie 91(3): 239-254 – https://doi.org/10.1016/S0044-328X(79)80098-7 – https://www.sciencedirect.com/science/article/pii/S0044328X79800987 – (On our blog: https://plantstomata.wordpress.com/2018/08/15/ion-accumulation-by-peristomatal-transpiration/ )

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – V. Rubidium-86 in the Epidermal Transpiration Stream– Zeitschrift für Pflanzenphysiologie 101(5)): 447-459 – https://doi.org/10.1016/S0044-328X(81)80084-0 – https://www.sciencedirect.com/science/article/pii/S0044328X81800840 – (On our blog :

Maier-Maercker U. (1980) – “Peristomatal transpiration” and stomatal movement: a controversial view – VI. Lanthanum deposits in the epidermal apoplast – Z. Pflanzenphysiol. 100: 121-130 –

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – VII. Correlation of Stomatal Aperture with Evaporative Demand and Water Uptake Through the Roots – Zeitschrift für Pflanzenphysiologie 102(5)): 397-413 – DOI: 10.1016/S0044-328X(81)80175-4 – https://www.researchgate.net/publication/256915943_Peristomatal_Transpiration_and_Stomatal_Movement_A_Controversial_View_VII_Correlation_of_Stomatal_Aperture_with_Evaporative_Demand_and_Water_Uptake_Through_the_Roots – (On our blog :

Maier-Maercker U. (1981) – “Peristomatal transpiration” and stomatal movement: a controversial view – VIII.Stomatal Control by Conditions of Water Supply and Peristomatal Transpiration – Zeitschrift für Pflanzenphysiologie 103(1)): 15-25 – https://doi.org/10.1016/S0044-328X(81)80236-Xhttps://www.sciencedirect.com/science/article/pii/S0044328X8180236X – (On our blog : https://plantstomata.wordpress.com/2018/08/15/stomatal-control-by-conditions-of-water-supply-and-peristomatal-transpiration/ )

Maier-Maercker U. (1983) – The role of peristomatal transpiration in the mechanism of stomatal movement – Plant, Cell & Environment 6(5): 369-380 – https://doi.org/10.1111/j.1365-3040.1983.tb01269.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.1983.tb01269.x – (On our blog :

Maier-Maercker U. (1989) – Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst by fumigation with ozone – Trees 3: 57-64 – https://doi.org/10.1007/BF00202401 – https://link.springer.com/article/10.1007/BF00202401 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/the-significance-of-delignification-for-the-regulatory-capacity-of-the-stomata/ )

Maier-Maercker U., Koch W. (1986) – Delignification of subsidiary and guard cell walls by SOand probable implication on the humidity response of Picea abies (L.) Karst. – European Journal of Forest Pathology 16(5‐6): 342-351 – https://doi.org/10.1111/j.1439-0329.1986.tb00200.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0329.1986.tb00200.x – (On our blog : https://plantstomata.wordpress.com/2018/06/02/delignification-of-cell-walls-in-stomata/ )

Maier-Maercker U., Koch W. (1991) – Experiments on the control capacity of stomata of Picea abies (L.) Karst after fumigation by ozone and in environmentally damaged material – Plant, Cell and Environment 14: 175-184 – https://doi.org/10.1111/j.1365-3040.1991.tb01334.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01334.x – On our blog : https://plantstomata.wordpress.com/2018/06/03/control-capacity-of-stomata/ )

Majernik O., Mansfield T. A. (1970) – Effects of SO2 pollution on stomatal movements in Vicia faba – Phytopathologische Zeitschrift 71: 123-128 – https://doi.org/10.1111/j.1439-0434.1971.tb03147.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0434.1971.tb03147.x – (On our blog : https://plantstomata.wordpress.com/2018/06/02/so2-pollution-and-stomatal-movements/ )

Majernik O., Mansfield T. A. (1971) – Direct effect of SO2 pollution on the degree of opening of stomata – Nature 227: 377-378 – https://www.nature.com/articles/227377a0 – (On our blog : https://plantstomata.wordpress.com/2018/06/03/effect-of-so2-pollution-on-opening-of-stomata/ )

Majewska-Sawka A., Münster A., Rodriguez-Garcia M. I. (2002) – Guard cell wall: immunocytochemical detection of polysaccharide components – Journal of Experimental Botany 53(371): 1067–1079 – https://doi.org/10.1093/jexbot/53.371.1067 – https://academic.oup.com/jxb/article/53/371/1067/509295 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/the-histochemical-and-immunocytochemical-structure-of-the-guard-cell-wall-in-stomata-2/ )

 

Malcheska F., Ahmad A., Batool S., Müller H. M., Ludwig-Müller J., Kreuzwieser J., Randewig D., Hänsch R., Mendel R. R., Hell R., et al. (2017) – Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. – Plant Physiol 174: 798–814 – http://www.plantphysiol.org/content/174/2/798 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/xylem-derived-sulfate-seems-to-be-a-chemical-signal-of-drought-that-induces-stomatal-closure/)

Males J., Griffiths H. (2017) – Stomatal biology of CAM plants. – Plant Physiol 174: 550–560 – http://www.plantphysiol.org/content/174/2/550 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-functional-biology-of-cam-plant-stomata/)

Males J., Griffiths H. (2017) – Specialized stomatal humidity responses underpin ecological diversity in C3 bromeliads – Plant, Cell & Environment, doi: 10.1111/pce.13024. – http://onlinelibrary.wiley.com/doi/10.1111/pce.13024/full – (on our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-humidity-responses-and-ecological-diversity-in-c3-bromeliads )

Malone S. R., Mayeux H. S., Johnson H. B., Polley H. W. (1993) – Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient – American Journal of Botany 80: 1413–1418 –

Mansfield T. A. (1976) – Chemical control of stomatal movements – Philosophical Transactions of the Royal Society, London B273: 541-550 – DOI: 10.1098/rstb.1976.0030 – http://rstb.royalsocietypublishing.org/content/273/927/541 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/chemical-control-of-stomatal-movements/ )

Mansfield T. A. (1986) – The physiology of stomata: new insights into old problems – In: Steward, F.C. (Ed.). Plant Physiology, a treatise, Vol IX. Academic Press, Orlando, 155-224 –

Mansfield T. A. (1998) – Stomata and plant water relations: does air pollution create problems? – Environmental Pollution 101 (1998) 1-l 1  – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomata-and-plant-water-relations-does-air-pollution-create-problems.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-pollution-and-plant-water-relations/ )

Mansfield T. A., Da Silva D. L. R. (1994) – Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves – Physiological Chemistry and  Physics and Medical NMR 26: 89-99 –

Mansfield T. A., Freer-Smith P. H. (1984) – The role of stomata in resistance mechanisms. In: Koziol, M.J., Whatley, F.R. (Eds.). Gaseous air pollutants and plant metabolism. Butterworths, London, pp. 131-146 –

Mansfield T. A., Hetherington A. M., Atkinson C. J. (1990) – Some current aspects of stomatal physiology. – Annu. Rev. Plant Physiol.  – Plant Mol. Biol. 41, 55–75. – doi: 10.1146/annurev.pp.41.060190.000415 – https://www.annualreviews.org/doi/10.1146/annurev.pp.41.060190.000415 – (On our blog : https://plantstomata.wordpress.com/2018/06/02/aspects-of-stomatal-physiology/ )

Mansfield T. A.Majernik O. (1970) – Can stomata play a part in protecting plants against air pollutants? – Environmental Pollution 1970;1:149154. – doi:10.1016/0013-9327(70)90015-7 – http://www.sciencedirect.com/science/article/pii/0013932770900157 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomata-and-protection-against-air-pollutants/ )

Mansfield T. A., Meidner H. (1966) – Stomatal opening in light of different wavelengths: Effect of blue light independent of CO2concentration – J. Exp. Bot. 17: 510 521 – 

Mansfield T. A.Willmer C. M. (1969) – Stomatal responses to light and carbon dioxide in the hart’s-tongue fern, Phyllitis scolopendrium Newm. – New Phytol. 68 : 63-66. – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomata-light-and-co2/ )

Manzoni S.Vico G.Katul G.Fay P. A.Polley W.Palmroth S., Porporato A. (2011) – Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates – Functional Ecology 25456467. -doi: 10.1111/j.1365-2435.2010.01822.x –Wiley Online Library | https://nicholas.duke.edu/people/faculty/katul/fec_1822_Rev_EV.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/08/31221/ )

Manzoni S.Vico G.Palmroth S., Porporato A. , Katul G. (2013) – Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture – Advances in Water Resources Volume 62, Part A,  90–105 – http://dx.doi.org/10.1016/j.advwatres.2013.09.020 –http://www.sciencedirect.com/science/article/pii/S0309170813001814 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-conductance-under-dynamic-soil-moisture/ )

 

Mao J., Zhang Y. C., Sang Y., Li Q. H., Yang H. Q. (2005) – A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 102, 12270–12275. – doi: 10.1073/pnas.0501011102 – https://www.researchgate.net/publication/7667688_A_role_for_Arabidopsis_cryptochromes_and_COP1_in_the_regulation_of_stomatal_opening – (On our blog : https://plantstomata.wordpress.com/2018/06/04/cop1-is-a-repressor-of-stomatal-opening-and-likely-acts-downstream-of-cry-and-phot-signaling-pathways/ )

Mao Z.-J., Wang Y.-J., Wang X.-W., Voronin P. Y. (2004) – Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves – Russ J Plant Physiol (2005) 52: 171. https://doi.org/10.1007/s11183-005-0025-6 – https://link.springer.com/article/10.1007/s11183-005-0025-6 – (On our blog : https://plantstomata.wordpress.com/2018/02/05/doubled-co2-concentration-exerts-a-morphotropic-effect-on-differentiation-of-young-epidermal-tissue/ )

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989) – The generation and consolidation of a radial array of cortical microtubules in developing guard cells of Allium cepa L. – Planta 179: 516–529 – DOI: 10.1007/BF00397591 –https://www.researchgate.net/publication/258348454_The_generation_and_consolidation_of_a_radial_array_of_cortical_microtubules_in_developing_guard_cells_of_Allium_cepa_L – (On our blog : https://plantstomata.wordpress.com/2016/10/18/25436/ )

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989) – A planar microtubule-organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules –Planta. 179(4): 530-40. – doi: 10.1007/BF00397592. –https://www.ncbi.nlm.nih.gov/pubmed/24201776 – (On our blog : https://plantstomata.wordpress.com/2016/10/19/experimental-depolymerization-and-reassembly-of-microtubules-in-stomata/ )

Marc J., Palevitz B. A. (1990) – Regulation of the spatial order of cortical microtubules in developing guard cells of Allium – Planta 182: 626–634 – doi:10.1007/BF02341041 –  http://link.springer.com/article/10.1007/BF02341041 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/cortical-microtubules-in-developing-guard-cells/ )

Marcus A., Moore R. C., Cyr R. J. (2001) – The role of microtubules in guard cell function – Plant Physiology 125: 387–395 –

Marenco R. A., Siebke K., Farquhar G. D., Ball M. C. (2006) – Hydraulically based stomatal oscillations and stomatal patchiness in Gossypium hirsutum – Functional Plant Biology 33: 1103-1113 –

Marias D. (2015) – Accurately measuring cavitation resistance to understand how plants cope with drought – Botany One Jan 10, 2018 – https://www.botany.one/2015/03/accurately-measuring-cavitation-resistance-to-understand-how-plants-cope-with-drought/ – (On our blog : https://plantstomata.wordpress.com/2018/01/10/cavitation-resistance-is-crucial-to-coping-with-and-surviving-drought/ )

Maricle B. R., Koteyeva N. K., Voznesenskaya E. V., Thomasson J. R., Edwards G. E. (2009) – Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae)  – New Phytol. 184(1): 216-233 – https://doi.org/10.1111/j.1469-8137.2009.02903.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2009.02903.x – (On our blog : https://plantstomata.wordpress.com/2018/07/07/stomata-in-salt-marsh-and-freshwater-species-in-the-c4-genus-spartina-poaceae/ )

 

Marom Z., Shtein I., Bar-On B. (2017) – Stomatal Opening: The Role of Cell-Wall Mechanical Anisotropy and Its Analytical Relations to the Bio-composite Characteristics – Frontiers in Plant Science  8: 2061-  – DOI=10.3389/fpls.2017.02061 – https://www.frontiersin.org/articles/10.3389/fpls.2017.02061/full – (On our blog : https://plantstomata.wordpress.com/2018/01/31/cell-wall-mechanical-anisotropy-and-stomatal-opening/ )

Marten I.Busch H.Raschke K.Hedrich R. (1993) – Modulation and block of the plasma membrane anion channel of guard cells by stilbene derivatives – Eur Biophys J 21:403408. – Web of ScienceGoogle Scholar –http://cel.webofknowledge.com/InboundService.do?product=CEL&SID=Z2xW27ed8sTOsZMc3ZE&UT=WOS%3AA1993KM49400004&SrcApp=Highwire&action=retrieve&Init=Yes&SrcAuth=Highwire&Func=Frame&customersID=Highwire&IsProductCode=Yes&mode=FullRecord – (On our blog : https://plantstomata.wordpress.com/2016/10/20/stilbene-derivatives-and-the-plasma-membrane-anion-channel-of-stomata/ )

 

Marten H., Hyun T., Gomi K., Seo S., Hedrich R., Roelfsema M. R. (2008) – Silencing of NtMPK4 impairs CO-induced stomatal closure, activation of anion channels and cytosolic Casignals in Nicotiana tabacum guard cells. – Plant J. 55: 698–708. – doi: 10.1111/j.1365-313X.2008.03542.x – https://www.ncbi.nlm.nih.gov/pubmed/18452588 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/ntmpk4-and-co2-and-darkness-induced-activation-of-guard-cell-anion-channels-in-stomata/ )

Marten H., Konrad K. R., Dietrich P., Roelfsema M. R. G., Hedrich, R. (2007) – Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum – Plant Physiol. 143, 28–37. – doi: 10.1104/pp.106.092643 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – http://www.plantphysiol.org/content/143/1/28.long – (On our blog : https://plantstomata.wordpress.com/2016/10/18/ca2-aba-and-plasma-membrane-anion-channels-in-stomata/ )

Marten I., Lohse G. Hedrich R. (1991) – Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells – Nature 353: 759-762 –

Marten I., Zeilinger C., Redhead C., Landry D. W., Al-Awqati Q., Hedrich R. (1992) – Identification and modulation of a voltagedependent anion channel in the plasma membrane of guard cells by high-affinity ligands – EMBO J 11: 3569-3575 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556815/ – (On our blog : https://plantstomata.wordpress.com/2016/10/29/a-voltagedependent-anion-channel-in-the-plasma-membrane-of-guard-cells-stomata/ )

Martin C., Glover B.J. (2007) – Functional aspects of cell patterning in aerial epidermis  – Current Opinion in Plant Biology 10: 70–82 – http://dx.doi.org/10.1016/j.pbi.2006.11.004 –http://www.sciencedirect.com/science/article/pii/S1369526606001853 – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-patterning-of-stomata-and-trichomes-in-different-plant-species/ ) – ( https://wordpress.com/post/plantstomata.wordpress.com/26150 ) 

Martin E. S., Donkin M. E., Stevens R. A. (1983) – Stomata. Edward Arnold, London.

Martin L., Jacquet H., Renaud J., Cotelle V., Giacalone C., Vavasseur A., Leonhardt N. (2012) – Guard cell plasma membrane H+- ATPases: highly regulated proton pumps to control gas exchange – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/three-isoforms-of-the-plasma-membrane-h-atpases-in-the-stomatal-movement-regulation/ )

Martin W. J., Stimart D. P. (2005) – Stomatal density in Antirrhinum majus L.: inheritance and trends with development – HortScience 40: 12521258 – Google Scholar – http://hortsci.ashspublications.org/content/40/5/1252.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/09/08/stomatal-density-in-antirrhinum-majus-l/ )

Martinez-Vilalta J., Garcia-Forner N. (2016) – Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept – Plant, Cell & Environment – DOI: 10.1111/pce.12846 – Accepted, unedited articles published online and citable. – http://onlinelibrary.wiley.com/doi/10.1111/pce.12846/abstract;jsessionid=412556820134C849930721AF4E74DE29.f02t03 – (On our blog : https://plantstomata.wordpress.com/2016/10/16/stomatal-behaviour-and-hydraulic-transport-under-drought/ )

Martin-StPaul N.Delzon S.Cochard H. (2017) – Plants resistance to drought relies on early stomata closure – http://biorxiv.org/content/early/2017/01/10/099531 – (https://plantstomata.wordpress.com/2017/01/13/drought-tolerance-and-stomatal-closure/ )

Martin-StPaul N.Delzon S.Cochard H. (2017) – Plants resistance to drought depends on timely stomatal closure – Ecol Lett, 20: 1437–1447. doi:10.1111/ele.12851 – http://onlinelibrary.wiley.com/doi/10.1111/ele.12851/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/15/the-functional-coordination-between-stomata-and-hydraulic-traits/ )

Martin C. E., Peters E. A. (1984) – Functional stomata of the atmospheric epiphyte Tillandsia usneoides – Bot. Gaz. 145(4): 502-5047 – Martin_BotGaz_145_502-507.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/functional-stomata-in-tillandsia-usneoides/ )

Mäser P., Leonhardt N., Schroeder J. I. (2003) – The Clickable Guard Cell: Electronically linked Model of Guard Cell Signal Transduction Pathways – Schroeder lab home page  –  – http://labs.biology.ucsd.edu/schroeder/clickablegc.html – http://www.bioone.org/doi/suppl/10.1199/tab.0114?file=10.1199_tab.0099.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/model-of-guard-cell-signal-transduction-pathways-stomata/ )

Masle J. (2012) – From roots to stomata  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/stomata-and-novel-networks-for-concerted-responses-to-stress/ )

Masle J., Gilmore S. R., Farquhar G. D. (2005) – The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. – Nature 436: 866870. – DOI: 10.1038/nature03835  – https://www.researchgate.net/publication/7737627_The_ERECTA_gene_regulates_plant_transpiration_efficiency_in – (On our blog : https://plantstomata.wordpress.com/2016/10/18/plant-transpiration-ef%EF%AC%81ciency-the-erecta-gene-and-stomata/ )

Massman W. J., Kaufmann M. R. (1991) – Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains – Agric For Meteorol. 54: 155–167 – doi: 10.1016/0168-1923(91)90004-A –

Matrosova A. (2015) – New Insights into the Regulation of Stomatal Movements by Red Light, Carbon Dioxide and Circadian Rhythms  – Doctoral Thesis Swedish University of Agricultural Sciences Umeå 2015 – https://pub.epsilon.slu.se/12812/1/matrosova_a_151113.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/18/requirement-of-both-ztl-and-ost1-in-the-regulation-of-guard-cell-turgor-and-suggestion-of-a-direct-link-between-the-circadian-clock-and-ost1-activity/ )

 

Matsuo N.Ozawa K.Mochizuki T. (2010) – Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems – Plant and Soil 335(1): 349-361 – DOI: 10.1007/s11104-010-0423-1 – https://www.scopus.com/record/display.uri?eid=2-s2.0-77956874424&origin=inward&txGid=18753fd66f4441b72bab306d3a39df7e – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-conductance-in-rice/ )

Matteoni J. A., Sinclair W. A., (1983) – Stomatal closure in plants infected with mycoplasmalike organisms – Phytopathology 73: 398-402 –https://www.apsnet.org/publications/phytopathology/backissues/Documents/1983Articles/Phyto73n03_398.PDF – (On our blog : https://plantstomata.wordpress.com/2017/11/20/stomata-and-foliar-infections/ )

Matthews J. S. A.Vialet-Chabrand S. R. M.Lawson T. (2017) – Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss – 

Matthews P. G. D., Seymour R. S. (2014) – Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera – Plant, Cell and Environment 37: 402–413 – doi: 10.1111/pce.12163 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/pce.12163 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/a-novel-function-for-stomata-the-active-regulation-of-convective-airflow-2/ )

Mawson B. T. (1993) – Modulation of photosynthesis and respiration in guard and mesophyll cell protoplasts by oxygen concentration – Plant, Cell and Environment1993 a;16:207214. – DOI: 10.1111/j.1365-3040.1993.tb00862.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1993.tb00862.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/photosynthesis-and-respiration-in-guard-and-mesophyll-cell-protoplasts/ )

Mawson B. T. (1993) – Regulation of blue-light-induced proton-pumping by Vicia faba L guard-cell protoplasts—energetic contributions by chloroplastic and mitochondrial activities – Planta 1993b191:293301. – doi:10.1007/BF00195685 –Google Scholar – http://link.springer.com/article/10.1007/BF00195685 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/blue-light-induced-proton-pumping-by-guard-cell-protoplasts/ )

Mawson B. T., Zeiger E. (1991) – Blue light-modulation of chlorophyll a fluorescence transients in guard cell chloroplasts – Plant Physiol. 96: 753–760 –

Maynard J. C.Mertz S. M. Jr.Arntzen C. J.Payne W. W. (1974) – Abnormal Guard Cell Development in an Olive Necrotic Mutant of Maize – American Journal of Botany 61(6): 580-584  – CrossRefGoogle Scholar – https://www.jstor.org/stable/2441680?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/17/ontogeny-of-the-stomatal-complex-is-abnormal-in-a-mutant-variety-of-zea-mays/ )

McAdam S. A. M. (2012) – Evolutionary innovations in the stomatal control of vascular plants – PhD Thesis University of Tasmania – https://eprints.utas.edu.au/16733/2/whole-McAdams-thesis-ex-pub-mat.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/14/evolutionary-innovations-in-the-stomatal-control/ )

McAdam S. A. M., Brodribb T. J. (2011) – Passive origins of stomatal control in vascular plants – Science 331: 582–585 – DOI: 10.1126/science.1197985 – [Google Scholar] [CrossRef] [PubMed] – http://science.sciencemag.org/content/331/6017/582 –  (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-and-a-fundamental-transition-from-passive-to-active-metabolic-control-of-plant-water-balance/ )

McAdam S. A. M., Brodribb T. J. (2012) – Fern and lycophyte guard cells do not respond to abscisic acid – The Plant Cell 24: 1510-1521 – doi:  10.1105/tpc.112.096404 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398560/ – (On our blog : https://plantstomata.wordpress.com/2018/06/04/aba-in-ferns-and-lycophytes-plays-little-role-in-the-regulation-of-transpiration-with-stomata-passively-responsive-to-leaf-water-potential/ ) –  (This paper comprises the entirety of chapter 3 of Scott McAdam’s PhD Thesis. Scott McAdam was the primary author (70%), Timothy Brodribb assisted with the conceptualisation and technical implementation of the study, as well as assisting with the writing of the manuscript (30%).)

McAdam S. A. M., Brodribb T. J. (2013) – Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought – New Phytol. 198(2): 429-441 – DOI: 10.1111/nph.12190 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12190/full – (On our blog : https://plantstomata.wordpress.com/2018/03/16/ferns-and-lycophytes-have-constrained-stomatal-responses-to-soil-and-atmospheric-water-deficit/

McAdam S.A.M., Brodribb T. J. (2015) – Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community – Plant, Cell & Environment Volume 38, Issue 3, March 2015, Pages: 423–432. – doi: 10.1111/pce.12398. Epub 2014 Aug 6. – PMID: 24995884. – https://www.ncbi.nlm.nih.gov/pubmed/24995884 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/seasonal-stomatal-behaviour-in-a-monsoonal-plant-community/ )

McAdam S.A.M., Brodribb T. J. (2015) – The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit – Plant Physiol. 167(3): 833–843 – doi:  10.1104/pp.114.252940 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348763/ – (On our blog : https://plantstomata.wordpress.com/2018/05/28/mechanisms-driving-the-stomatal-response-to-vapor-pressure-deficit/ )

McAdam E. L., Brodribb T. J., McAdam S.A.M. (2017) – Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close? – Plant, Cell and Environment 40, 741–747 – doi: 10.1111/pce.12893 – http://www.brodribblab.org.au/wp-content/uploads/2017/05/Does-ozone-increase-ABA-levels-by-non%E2%80%90enzymatic-synthesis-causing-stomata-to-close.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/ozone-exposure-aba-and-stomatal-closure/ )

McAdam S. A. M., Brodribb T. J., Ross J. J., Jordan G. J. (2011) – Augmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species – Journal of Experimental Botany 62(1): 195-203 – doi: 10.1093/jxb/erq260. Epub 2010 Aug 25 – https://www.ncbi.nlm.nih.gov/pubmed/20797996 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/increase-of-aba-levels-by-drought-does-not-induce-short-term-stomatal-sensitivity-to-co2/(This paper comprises the entirety of chapter 4 of Scott McAdam’s PhD Thesis. Scott McAdam was the primary author (70%), Timothy Brodribb, John Ross and Gregory Jordan assisted with the conceptualisation of the study, as well assisting with the writing of the manuscript (combined 30%))

McAinsh M. R. (2000) – Calcium signalling in stomatal guard cells – Biochemical Society Transactions 28(3): A57 – http://www.research.lancs.ac.uk/portal/en/publications/-(84e1d9a4-9d2f-45db-b9f5-646a46ba8530).html – (On our blog : https://plantstomata.wordpress.com/2018/01/17/calcium-signalling-in-stomatal-guard-cells/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Abscisic acid- induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. – Nature 343: 186–188. – doi: 10.1038/343186a0 – http://www.research.lancs.ac.uk/portal/en/publications/abscisic-acidinduced-elevation-of-guard-cell-cytosolic-ca2-precedes-stomatal-closure(36cb6e8c-e5e8-43ee-ae9b-0dea3cbb78e7)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-induces-a-rapid-increase-in-guard-cell-cytosolic-free-ca2-this-increase-precedes-stomatal-closure/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1991) – Partial inhibition of ABA-induced stomatal closure by calcium channel blockers. – Proc. R. Soc. B Biol. Sci. 243, 195–201. – doi: 10.1098/rspb.1991.0031 – CrossRef Full Text | Google Scholar –http://rspb.royalsocietypublishing.org/content/243/1308/195 – https://plantstomata.wordpress.com/2016/11/04/calcium-channel-blockers-aba-and-stomatal-closure/ )

McAinsh M. R, Brownlee C., Hetherington A. M. (1992) – Visualizing changes in cytoplasmic free Ca2+during the response of stomatal guard cells to abscisic acid – Plant Cell411131122. – doi: http://dx.doi.org/10.1105/tpc.4.9.1113 – CrossRef |PubMed | –http://www.plantcell.org/content/4/9/1113.abstract – (On our blog : Plant Cell411131122. – doi: http://dx.doi.org/10.1105/tpc.4.9.1113 – CrossRef |PubMed | –http://www.plantcell.org/content/4/9/1113.abstract – https://plantstomata.wordpress.com/2016/11/05/aba-induced-turgor-loss-in-guard-cells-is-a-ca2-dependent-process/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1997) – Calcium ions as second messengers in guard cell signal transduction – Plant Physiology 1997;100:16-29. – DOI: 10.1111/j.1399-3054.1997.tb03451.x – Wiley Online Library |CrossRefGoogle Scholar – CrossRef |PubMed |CAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03451.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-role-of-ca2-based-signal-transduction-in-stomatal-guard-cells/ )

McAinsh M. R., Clayton H., Mansfield T. A., Hetheringto, A. M. (1996) – Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. – Plant Physiol. 111, 1031–1042. – Plant Physiology 111: 10311042.  – PubMedCASWeb of Science – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12226345 – (On our blog : https://plantstomata.wordpress.com/2016/11/10/stomatal-behavior-in-oxidative-stress/ )

McAinsh M. R., Webb A. A. R., Taylor J. E., Hetherington A. M. (1995) – Stimulus-induced oscillations in guard-cell cytosolic-free calcium – Plant Cell 7: 12071219 – doi: http://dx.doi.org/10.1105/tpc.7.8.1207 – CrossRef |PubMed |CAS | –http://www.plantcell.org/content/7/8/1207 – (On our blog : https://plantstomata.wordpress.com/2017/01/09/oscillations-in-guard-cell-cytosolic-free-calcium/ )

McAusland L., Dumbrell A., Baker N. R., Lawson T. (2012) – Fluctuations in stomatal behaviour: impacts on carbon gain and water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/fluctuations-in-stomatal-behaviour/ )

 

McCormick S. (2017) – A 3-dimensional biomechanical model of guard cell mechanics – The Plant Journal 92(1): 3-4 – DOI: 10.1111/tpj.13665 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13665/abstract;jsessionid=BE068827E2606E5DB2C82F356C97941D.f02t04 – https://www.sciencedaily.com/releases/2017/09/170921101743.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/13/an-unexpected-stiffening-in-the-guard-cell-end-regions-preventing-stomata-increasing-in-length-as-they-open/ )

McCree K. J. (1974) – Changes in stomatal response characteristics of grain sorghum produced by water stress during growth – Crop Sci. 1974;14:273–278. – doi:10.2135/cropsci1974.0011183X001400020032x –https://dl.sciencesocieties.org/publications/cs/abstracts/14/2/CS0140020273?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-response-characteristics-in-water-stress-conditions/ )

McElwain J. C. (2013) – Evolution of Stomatal Function – UCD Dublin – https://www.ucd.ie/plantpalaeo/evol_stomatal_function.html – (On our blog : https://plantstomata.wordpress.com/2017/11/18/the-function-of-land-plant-stomata-over-evolutionary-time/ )

McDonald R., Liu B., Joshi M., Palevitz B. A. (1993) – γ-Tubulin is associated with a cortical-microtubule-organizing zone in the developing guard cells of Allium cepa L. Planta 191: 357–361 –

McGinley M. A. (2012) – Stomatal function and CAM photosynthesis – Slideshare, TechnologyBusiness Feb 23, 2012 – https://www.slideshare.net/MarkMcGinley/stomatal-function-and-cam-photosynthesis – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cam-photosynthesis/

McGoey B. V., Chau K., Dickinson T. A. (2014) – Stomata Size in Relation to Ploidy Level in North American Hawthorns (Crataegus, Rosaceae) – Madroño 61(2): 177-193 –
https://doi.org/10.3120/0024-9637-61.2.177 – http://www.bioone.org/doi/abs/10.3120/0024-9637-61.2.177 – (On our blog : https://plantstomata.wordpress.com/2018/03/20/associations-between-taxon-ploidy-level-stomatal-size-and-density-elevation-and-environmental-parameters/ )

McKee S. (2018) – How Plants Breathe: The Stimulating Story of Stomata – Maximum Yield February 8, 2018 – https://www.maximumyield.com/how-plants-breathe-the-stimulating-story-of-stomata/2/3827 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66556 )

McLachlan D. H., Kopischke M., Robatzek, S. (2014) – Gate control: guard cell regulation by microbial stress – New Phytol. 203: 1049–1063 – doi: 10.1111/nph.12916. Epub 2014 Jul 8. – https://www.ncbi.nlm.nih.gov/pubmed/25040778 – (On our blog :

https://plantstomata.wordpress.com/2018/06/04/stomatal-regulation-in-response-to-microbes-3/ )

McLachlan D. H., Lan J., Geilfus C.-M., Dodd A. N., Larson T., Baker A., Hõrak H., Kollist H., He Z., Graham I., Mickelbart M. V., Hetherington A. M. (2016) – The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening – Current Biology 26(5): 707-712 – DOI10.1016/j.cub.2016.01.019 –https://www.infona.pl/resource/bwmeta1.element.elsevier-099d1c17-a54c-32e5-be39-24c8080a077d – (On our blog : https://plantstomata.wordpress.com/2017/10/25/light-induced-stomatal-opening/ )

McNaughton K. G. (1994) – Effective stomatal and boundary layer resistances of heterogeneous surfaces – Plant, Cell & Environment 17: 1061-1068 –

McNaughton K., Jarvis P. G. (1991) – Effects of spatial scale on stomatal control of transpiration – Agric. Forest Meterol. 54, 279–301 (1991) – doi:10.1016/0168-1923(91)90010-N – http://www.sciencedirect.com/science/article/pii/016819239190010N – (On our blog : https://plantstomata.wordpress.com/2016/11/04/26883/ )

Meckel T., Gall L., Semrau S., Homann U., Thiel G. (2007) – Guard Cells Elongate: Relationship of Volume and Surface Area during Stomatal Movement – Biophys J. 92(3): 1072–1080 – doi:  10.1529/biophysj.106.092734 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779957 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/an-elongation-of-the-guard-cells-during-stomatal-movement/ )

Medeiros D. B., Daloso D. M., Fernie A. R., Nikoloski Z., Araújo W. L. (2015) – Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. – Plant Cell Environ. 38, 1457–1470. – doi: 10.1111/pce.12517 – https://www.ncbi.nlm.nih.gov/pubmed/25689387 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/a-system-biology-approach-may-be-used-to-elucidate-the-mechanisms-underlying-stomata-control/ )

Medeiros D. B., Fernie A. R., Araújo W. L. (2018) – Discriminating the Function(s) of Guard Cell ALMT Channels – Trends in Plant Science (Online June 21, 201) – DOI: https://doi.org/10.1016/j.tplants.2018.06.006 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30135-3?rss=yes – (On our blog : https://plantstomata.wordpress.com/2018/06/23/regulatory-mechanisms-and-individual-roles-for-specific-almt-proteins-in-stomata/ )

Medeiros D. B.Martins S. C. V.Cavalcanti J. H. F.Daloso D. M.Martinoia E.Nunes-Nesi A.Fábio M. DaMattaFernie A. R.Araújo W. L. (2016) – Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance – 
Medeiros D. B.Perez de Souza L., Antunes W. C., Araújo W. L., Daloso D. M., Fernie A. R. (2018) – Sucrose breakdown within guard cells is a substrate for glycolysis and glutamine biosynthesis during light-induced stomatal opening – The Plant Journal – Accepted Article – DOI: 10.1111/tpj.13889 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13889/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/16/redrawing-current-models-concerning-the-influence-of-sucrose-during-light-induced-stomatal-opening/

Mediavilla S., Escudero A. (2003) – Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity – Tree Physiol 23: 987–996 –https://www.ncbi.nlm.nih.gov/pubmed/12952785 – https://plantstomata.wordpress.com/2016/11/10/stomatal-responses-to-drought-2/ )

Medlyn B. E., Barton C. V. M. , Broadmeadow M. S. J. , Ceulemans R. , De Angelis P. , Forstreuter M. , Freeman M. , Jackson S. B. , Kellomäki S. , Laitat E. , Rey A. , Roberntz P., Sigurdsson B. D. , Strassemeyer J. , Wang K. , Curtis P. S. , Jarvis P. G. (2001) – Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis  New Phytol 149: 247–164 – https://doi.org/10.1046/j.1469-8137.2001.00028.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.2001.00028.x – (On our blog : https://plantstomata.wordpress.com/2018/06/04/stomatal-conductance-after-long-term-exposure-to-elevated-co2-concentration/ )

Meidner H. (1965) – Stomatal control of transpirational water loss – In: The State and Movement of Water in Living Organisms (ed. G. E. Fogg) : 185-204 – Academic Press, New York –

Meidner H. (1968) – The Comparative Effects of Blue and Red Light on the Stomata of Allium cepa L. and Xanthium pennsylvanicum – Journal of Experimental Botany 19(1): 146–151 – https://doi.org/10.1093/jxb/19.1.146 – https://academic.oup.com/jxb/article-abstract/19/1/146/447351?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/16/blue-light-may-promote-stomatal-opening-by-its-effect-on-enzymes/ )

Meidner H., Bannister P. (1979) – Pressure and solute potentials in stomatal cells of Tradescantia virginiana – J Exp Bot 30 255–265. – doi: 10.1093/jxb/30.2.255 –http://jxb.oxfordjournals.org/content/30/2/255.abstract – https://plantstomata.wordpress.com/2016/11/10/pressure-and-solute-potentials-in-stomata/ )

Meidner H., Mansfield T. A. (1965) – Stomatal responses to illumination – Biol. Reviews 40, Issue 4: 483–508 – DOI: 10.1111/j.1469-185X.1965.tb00813.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1965.tb00813.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/effects-of-environmental-factors-on-stomatal-movements/ )  – 

Meidner H., Mansfield T. A. (1968) – Physiology of stomata – New York, NYMcGraw-Hill. – Google Scholar

 

Meinhard M., Schnabl H. (2001) – Fusicoccin- and light-induced activation and in vivo phosphorylation of phosphoenolpyruvate carboxylase in Vicia guard cell protoplasts – Plant Sci. 160: 635–646 –

Meinzer F. C., Goldstein G., Holbrook N.M.,Jackson P., Cavelier J. (1993) – Stomatal and environmental control of transpiration in a lowland tropical forest tree – Plant, Cell and Environment 16: 429-436 – Stomatal_and_environmental_control_of_tr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-and-environmental-control-of-transpiration/ )

Meinzer F. C., Goldstein G., Jackson P., Holbrook N. M., Butierrez M. V., Cavelier J.(1995) – Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic conductance properties – Oec. 101: 514–522 –

Meinzer F. C., Grantz D. A. (1990) – Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity – Plant, Cell & Environm. 13: 383–388 –

Meinzer F. C., Hinckley T. M., Ceulemans R. (1997) – Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy – Plant, Cell Environ. 20(10): 1301- 1308. – DOI: 10.1046/j.1365-3040.1997.d01-18.x –http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-18.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/10/27481/ )

Meinzer F. C., Johnson D. M.,  Lachenbruch B.,  McCulloh K. A.,  Woodruff D. R. (2009) – Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance – Functional Ecology 23: 922-930 –

Melhorn V., Matsumi K., Koiwai H., Ikegami K., Okamoto M., Nambara E. (2008) –  Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. – J. Plant Res. 121, 125–131. – 10.1007/s10265-007-0127-7 – [PubMed][Cross Ref] – 

Melis A., Zeiger E. (1982) – Chlorophyll a fluorescence transients in mesophyll and guard cells – Plant Physiol. 69: 642–647 –

Melotto M., Underwood W., He S. Y. (2008) – Role of stomata in plant innate immunity and foliar bacterial diseases. – Annu. Rev. Phytopathol. 46, 101–122. – doi: 10.1146/annurev.phyto.121107.104959 – http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.121107.104959 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/microbial-and-environmental-regulation-of-stomatal-closure/ )

 

Melotto M., Underwood W., Koczan J., Nomura K., He S. Y. (2006) – Plant stomata function in innate immunity against bacterial invasion. – Cell 126, 969–980 (2006) – doi: 10.1016/j.cell.2006.06.054 – CAS – Article – PubMed – http://www.cell.com/cell/abstract/S0092-8674(06)01015-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867406010154%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/09/23/stomata-act-as-a-barrier-against-bacterial-infection/)

Melotto M., Zhang L. , Oblessuc P. R. , He S. Y. (2017) – Stomatal defense a decade later. – Plant Physiol 174: 561–571 – http://www.plantphysiol.org/content/174/2/561 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/significant-understanding-of-the-basic-mechanisms-of-stomatal-defense/)

Mencuccini M., Mambelli S., Comstock J. P. (2000) – Stomatal responsiveness to leaf water status in common bean is a function of time of day – Plant, Cell and Environment 23: 110–1118 –

Mendes K. R., Marenco R.  A. (2010) – Leaf traits and gas exchange in saplings of native tree species in the Central Amazon – Scientia Agricola, 67:624-632. – http://dx.doi.org/10.1590/S0103-90162010000600002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162010000600002 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-conductance-gs-in-saplings-of-native-tree-species/ )

Meng F. (2007) – ABA Contents in the Guard-Cell Symplast and Guard-Cell Apoplast Are Not Correlated with Stomatal Aperture Size under Three Conditions of Water Sufficiency – Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2485 – FSU_migr_etd-2485 (IID) – http://diginole.lib.fsu.edu/islandora/object/fsu%3A180678 – https://plantstomata.wordpress.com/2017/11/13/aba-and-stomatal-aperture/ )

Meng L., Li L., Chen W., Xu Z., Liu L. (1999) – Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves – Journal of Shenyang Agricultural University 30: 477–480 – http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYNY199905000.htm – (On our blog : https://plantstomata.wordpress.com/2018/06/04/water-stress-and-stomatal-density-length-and-width/ )

Meng L.-S., Li C., Xu M.-K., Sun X.-D., Wan W., Cao X.-Y., Zhang J.-L., Chen K.-M. (2018) – Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light‐mediated stomatal development – Plant, Cell & Environm. – Online Version of Record  – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13212?af=R – (On our blog : https://plantstomata.wordpress.com/2018/05/15/an3-cop1-and-light%e2%80%90mediated-stomatal-development/ )

Meng L.-S., Yao S.-Q. (2015) – Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA) – Plant Biotechnol. J. 13 893–902 – DOI: 10.1111/pbi.12324 [PubMed] [Cross Ref]

Meng X., Chen X., Mang H., Liu C., Yu X., Gao X., Torii K. U., He P., Shan L. (2015) – Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning – Current Biology 252361-2372 – doi:  10.1016/j.cub.2015.07.068 – [PubMed Abstract] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714584/ – (On our blog : https://plantstomata.wordpress.com/2017/12/17/serk-family-receptor-like-kinases-in-stomatal-patterning/ )

Menke U, Renault N, Mueller‐Roeber B. (2000) – StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline‐rich proteins – Plant Physiology 122,677–686. – doi:http://dx.doi.org/10.1104/pp.122.3.677 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/122/3/677.abstract?ijkey=c25910eb9cbd456ca3b67dd31d90f0cb1e7047de&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/01/26490/ )

Merilo E.Jalakas P.Kollist H.Brosché M. (2015)  The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA – Mol Plant. 8(4): 657-659 – doi: 10.1016/j.molp.2015.01.014 – Epub 2015 Jan 22 – https://www.cell.com/molecular-plant/abstract/S1674-2052(15)00101-X?code=cell-site – (On our blog : https://plantstomata.wordpress.com/2018/06/04/stomatal-responses-to-elevated-co2-concentration-reduced-air-humidity-and-exogenous-aba-in-different-mutants-of-aba-transport/ )

Merilo E., Jõesaar I., Brosché M., Kollist H. (2014) – To open or to close: Species-specific stomatal responses to simultaneously applied opposing environmental factors. – New Phytol. 202, 499–508. –  doi: 10.1111/Nph. 12667 – https://www.ncbi.nlm.nih.gov/pubmed/24392838 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/species-specific-and-nonadditive-responses-to-two-simultaneously-applied-opposing-factors-in-stomata/ )

Merilo E., Laanemets K., Hu H., Xue S., Jakobson L., Tulva I., Gonzalez-Guzman M.Rodriguez P. L.Schroeder J. I.Broschè M.Kollist H., (2013) – PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness- and CO2-induced stomatal regulation – Plant Physiol. 162:  1652–1668  – DOI: https://doi.org/10.1104/pp.113.220608 – http://www.plantphysiol.org/content/162/3/1652 – (On our blog : https://plantstomata.wordpress.com/2018/06/04/pyr-rcar-receptors-and-stomatal-adjustments-and-responses-to-low-humidity-darkness-and-o3-and-are-involved-in-responses-to-elevated-co2/ )

 

Merilo E., Yarmolinsky D., Jalakas P., Parik H., Tulva I., Rasulov B., Kilk K., Kollist H. (2017) – Stomatal VPD response: There is more to the story than ABA – Plant Physiol. 2017: 1532-1548 -DOI: http://dx.doi.org/10.1104/pp.17.0091 – [Google Scholar] [CrossRef] [PubMed]  – http://www.ncbi.nlm.nih.gov/pubmed/28986421 – – https://www.bioportfolio.com/resources/pmarticle/1861501/Stomatal-VPD-response-there-is-more-to-the-story-than-ABA.html – (On our blog : https://plantstomata.wordpress.com/2017/12/17/origin-and-role-of-aba-in-stomatal-regulation/ )

Merlaen B., De Keyser E., Van Labeke M.-C. (2017) – Effect of GA, SA and JA on PIP Aquaporin Expression in Fragaria x ananassa Leaves – SCIENCE ACROSS BOUNDARIES ABSTRACTS: SEB Annual Meeting Gothenburg 2017: 37, Goteborg, Zweden, 3/07/17 – http://pure.ilvo.vlaanderen.be/portal/en/publications/effect-of-ga-sa-and-ja-on-pip-aquaporin-expression-in-fragaria-x-ananassa-leaves(cccf1527-e44b-407c-850a-38b671e91b72)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-and-the-effect-of-ga-sa-and-ja-on-pip-aquaporin-expression/

Merlot S., Leonhardt N., Fenzi F., Valon C., Costa M., Piette L., Vavasseur A., Genty B., Boivin K., Müller A., Giraudat J., Leung J. (2007) – Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure – EMBO J. 26, 3216–3226 – doi:  10.1038/sj.emboj.7601750 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914098/ – (On our blog : https://plantstomata.wordpress.com/2018/06/05/aha1-and-stomatal-closure/ )

Merlot S., Mustilli A. C., Genty B., North H., Lefebvre V., Sotta B., Vavasseur A.Giraudat J. (2002) – Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. – Plant J. Cell Mol. Biol. 30, 601–609. – doi: 10.1046/j.1365- 313X.2002.01322.x – CrossRefPubMedWeb of ScienceGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/12047634 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/arabidopsis-mutants-defective-in-stomatal-regulation-2/ )

Messinger S. M.Buckley T. N.Mott K. A. (2006) – Evidence for Involvement of Photosynthetic Processes in the Stomatal Response to CO2 – WHOLE PLANT AND ECOPHYSIOLOGY – DOI: https://doi.org/10.1104/pp.105.073676 – http://www.plantphysiol.org/content/140/2/771.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/involvement-of-photosynthetic-processes-in-the-stomatal-response-to-co2/ )

 

Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K. A. S., Geiger D, Marten I, Martinoia E, Hedrich R. (2010) – AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. – Plant J. 63: 1054–1062. – doi: 10.1111/j.1365-313X.2010.04302.x – https://www.ncbi.nlm.nih.gov/pubmed/20626656 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/atalmt12-represents-an-r-type-anion-channel-required-for-stomatal-movement/ )

 

Meyers A. (2017) – MIT researchers create plants that glow – Boston Globe 2017-12-14 –https://www.bostonglobe.com/metro/2017/12/14/mit-researchers-create-plants-that-glow/BWSXklirU8N78UcFJiXstL/story.html – (On our blog : https://plantstomata.wordpress.com/2017/12/15/plants-that-glow-at-mit/ )

Meza-Canales I. D., Meldau S., Zavala J. A., Baldwin I. T. (2016) – Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception – Plant, Cell & Environment – DOI: 10.1111/pce.12874 – Accepted manuscript online: 7 December 2016 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12874/abstract – (https://plantstomata.wordpress.com/2016/12/08/herbivore-attack-and-stomatal-conductance/ )

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) –  Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany 57: 373-380 – DOI: 10.1093/jxb/eri278 – https://www.ncbi.nlm.nih.gov/pubmed/16172139 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/stomatal-conductance-of-mature-leaves-has-a-regulatory-effect-on-the-stomatal-development-of-expanding-leaves-2/ )

Miedema H., Assmann S. M. (1996) – A membrane-delimited effect of internal pH on the K+outward rectifier of Vicia faba guard cells. – J. Mem. Biol. 154, 227–237. -10.1007/s002329900147 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/8952952 – (On our blog : https://plantstomata.wordpress.com/2018/06/05/effect-of-internal-ph-on-the-koutward-rectifier-of-guard-cells-in-stomata/

Miller A. (2016) – Guard cells regulate gas and moisture exchange – https://asknature.org/strategy/guard-cells-regulate-gas-and-moisture-exchange/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-regulate-gas-and-moisture-exchange/ )

Miller J. (2017) – Modeling guard cell-to-leaf scales with OnGuard2 – Plant Cell 10.1105/tpc.17.00694 – https://plantae.org/modeling-guard-cell-to-leaf-scales-with-onguard2/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-single-framework-to-understand-stomatal-physiology-in-greater-detail/ )

Milne R. (2016) – Image highlight: stomata pores – The Royal Society Publishing Blog  Nov. 7, 2016 – https://blogs.royalsociety.org/publishing/image-highlight-stomata-pores/ – (On our blog : https://plantstomata.wordpress.com/2018/01/12/stomata-pores/ )

Miner G. L., Bauerle W. L., Baldocchi D. D. (2016) – Estimating the sensitivity of stomatal conductance to photosynthesis: A review – Plant, Cell & Environment – DOI: 10.1111/pce.12871 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12871/abstract – (https://plantstomata.wordpress.com/2016/12/13/sensitivity-of-stomatal-conductance-to-photosynthesis/ )

Mineyuki Y., Marc J., Palevitz B. A. (1988) – Formation of the oblique spindle in dividing guard mother cell of Allium – Protoplasma 147: 200–2003 –

Mineyuki Y., Marc J., Palevitz B. A. (1989) – Development of the preprophase band from random cytoplasmic microtubules in guard mother cell of Allium cepa L. – Planta 178: 291–296 –

Minguet-Parramona C.Wang Y.Hills A.Vialet-Chabrand S.Griffiths H.Rogers S.Lawson T.Lew V. L.Blatt M. R. (2016) – An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells – Plant Physiol. 1703342 – DOI: https://doi.org/10.1104/pp.15.01607 – Abstract/FREE Full TextGoogle Scholar –http://www.plantphysiol.org/content/170/1/33 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/ca2-oscillations-for-stomatal-closure-and-ion-transport-in-guard-cells/ )

Minnocci A., Panicucci A., Sebastiani L., Lorenzini G., Vitagliano C. (1999) – Physiological and morphological responses of olive plants to ozone exposure during a growing season – Tree Physiology 19, 391–397 – © 1999 Heron Publishing—-Victoria, Canada – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.417.7142&rep=rep1&type=pdf– (On our blog : https://plantstomata.wordpress.com/2018/02/06/o3-induced-reduction-in-transpiring-stomatal-surface-in-olive-trees/ )

Mino Y., Matsuhita Y., Sakai R. (1987) – Effect of coronatine on stomatal opening in leaves of braodbean and italian ryegrass – Ann Phytopath Soc Japan 53: 53–55 –https://www.jstage.jst.go.jp/article/jjphytopath1918/53/1/53_1_53/_pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/effect-of-coronatine-on-stomatal-opening/ )

Minorsky P. (2017) – Origin and Role of ABA in Stomatal Regulation – https://plantae.org/origin-and-role-of-aba-in-stomatal-regulation/ – (On our blog : https://plantstomata.wordpress.com/2017/11/19/aba-in-regulation-of-stomatal-movements/ )

Minorsky P. (2017) – Clathrin and Stomatal Function – Plantae blog –https://plantae.org/clathrin-and-stomatal-function/ – (On our blog : https://plantstomata.wordpress.com/2017/11/27/the-functions-of-clathrin-and-syp121-affect-stomatal-function/ )

Mirzaie-Nodoushan H., Ghamari-Zare A., Tavousi Rad F., Yousefifard M. (2015) – Inducing genetic variation in growth related characteristics of poplar germplasm, by producing inter-specific hybrids between P. albaand P. euphratica – Silvae Genetica 64, 5–6 (2015) – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomata-in-inter-specific-hybrids-between-p-alba-and-p-euphratica/ )

Mishkind M., Palevitz B. A., Raikhel N. V. (1981) – Cell wall architecture: normal development and environmental modification of guard cells of the Cyperaceae and related species – Plant, Cell & Environment 4(4): 319-328 – https://doi.org/10.1111/1365-3040.ep11604559 – https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-3040.ep11604559 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/normal-development-and-environmental-modification-of-cyperaceae-stomata/ )

Mishra G., Zhang W. H., Deng F., Zhao J., Wang X. M. (2006) – A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis – Science 312:264-6 – PMID:16614222; – http://dx.doi.org/10.1126/science.1123769 – https://www.ncbi.nlm.nih.gov/pubmed/16614222 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/a-bifurcating-signaling-pathway-that-regulates-plant-water-loss-with-stomatal-movements/ )

Miskin K. E., Rasmusson D. C., Moss D. N. (1970) – Frequency and distribution of stomata in barley – Crop Sci. 10: 575-578 –

Miskin K. E., Rasmusson D. C., Moss D. N. (1972) – Inheritance and physiological effects of stomatal frequency in barley – Crop Science 12: 780-783 –doi:10.2135/cropsci1972.0011183X001200060019x –https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060780?access=0&view=pdf – https://plantstomata.wordpress.com/2016/11/01/stomatal-frequency-in-barley/ )

Misra B. B., Acharya B. R., Granot D., Assmann S. M.,  Chen S . (2015) – The guard cell metabolome: functions in stomatal movement and global food security – Front Plant Sci 6; 334 – doi:  10.3389/fpls.2015.00334 – PMC4436583 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/ – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-guard-cell-metabolome-functions-in-stomatal-movement/ )

Misra B. B., de Armas E., Tong Z., Chen S. (2015) – Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate – PLoS ONE 10(12): e0144206. – https://doi.org/10.1371/journal.pone.0144206 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144206 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/metabolomic-responses-of-guard-cells-and-mesophyll-cells-to-bicarbonate/ )

Miyazaki A. (2014) – Plant growth enhanced through promotion of pore opening – Phys.org 2014-03 – http://phys.org/news/2014-03-growth-pore.html – (On our blog : https://plantstomata.wordpress.com/2016/08/09/plant-growth-and-promotion-of-pore-opening-in-stomata/ )

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) – Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany 57: 373380. – PMID:16172139DOI:10.1093/jxb/eri278 –https://www.ncbi.nlm.nih.gov/pubmed/16172139 – (On our blog : https://plantstomata.wordpress.com/2016/09/29/stomatal-development-and-stomatal-conductance-of-mature-leaves-in-poplar/ )

Mochizuki A., Sueoka N. (1955) – Genetic studies on the number of plastid in stomata. I. Effects of autopolyploidy in sugar beets – Cytologia 20, No. 4, 358-366 – http://doi.org/10.1508/cytologia.20.358 – https://www.jstage.jst.go.jp/article/cytologia1929/20/4/20_4_358/_article – (On our blog : https://plantstomata.wordpress.com/2016/11/14/27587/ )

Monda K.Araki H.Kuhara S.,Ishigaki G.Akashi R.Negi J.Kojima M.Sakakibara H.Takahashi S.Hashimoto-Sugimoto M.Goto N.Iba K. (2016) – Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture – 

Monteith J. L. (1995) – A reinterpretation of stomatal responses to humidity – Plant, Cell & Environment 18: 357–364 – DOI: 10.1111/j.1365-3040.1995.tb00371.x – Wiley Online Library | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00371.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/01/stomatal-responses-to-humidity-3/ )

Monteith J. L., Szeicz G., Waggoner P. E. (1965) – The Measurement and Control of Stomatal Resistance in the Field – Journal of Applied Ecology 2(2) : 345-355 – DOI: 10.2307/2401484 – https://www.jstor.org/stable/2401484?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/29/measurement-and-control-of-stomatal-resistance-in-the-field/ )

Montillet J. L., Hirt H. (2013) – New checkpoints in stomatal defense. – Trends Plant Sci. 18, 295–297. – 10.1016/j.tplants.2013.03.007 – [PubMed] [Cross Ref] – https://www.sciencedirect.com/science/article/pii/S1360138513000605 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/the-role-of-oxylipins-sa-and-aba-in-stomatal-immunity-in-response-to-pseudomonas-syringae/

Montillet J. L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A. V., Douki T., Bigeard J., Laurière C., Chevalier A., Castresana C., Hirt H.5 (2013) – An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. – PLoS Biol. 11:e1001513. – doi: 10.1371/journal.pbio.1001513 – http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001513 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/lox1-a-gene-that-encodes-lipoxygenase-lox-in-guard-cells-plays-a-major-role-in-stomatal-defense/ )

Morales-Navarro S., Pérez-Díaz R., Ortega A., de Marcos A., Mena M., Fenoll C., Mena M., Fenoll C., González-Villanueva E., Ruiz-Lara S. (2018) – Overexpression of a SDD1-Like Gene From Wild Tomato Decreases Stomatal Density and Enhances Dehydration Avoidance in Arabidopsis and Cultivated Tomato – Frontiers in Plant Science 9: 940 – http://doi.org/10.3389/fpls.2018.00940 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039981/ – (On our blog : https://plantstomata.wordpress.com/2018/08/11/schsdd1-like-functions-in-a-similar-manner-to-atsdd1-in-the-stomatal-development-pathway/ )

Mori I., Murata Y. (2011) – ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. – J. Plant Res. 124, 477–487. – doi: 10.1007/s10265-011- 0435-9 – PubMed Abstract | CrossRef Full Text | Google Scholar –http://link.springer.com/article/10.1007%2Fs10265-011-0435-9 – (On our blog : https://plantstomata.wordpress.com/2016/11/11/aba-signaling-in-stomata-2/ )

 

Mori I. C., Murata Y., Yang Y. Z., Munemasa S., Wang Y. F., Andreoli S., Tiriac H.Alonso J. M.Harper J. F.Ecker J. R., Kwak J. M., Schroeder J. I.  (2006) – CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2 + -permeable channels and stomatal closure. – PLoS Biol. 4:e327. – doi: 10.1371/journal.pbio.0040327 – pmid:17032064 – CrossRefMedline – CrossRef | PubMed | CAS | – https://www.ncbi.nlm.nih.gov/pubmed/17032064 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/cpk6-and-cpk3-cdpks-aba-and-stomatal-closure/ )

Mori I. C., Muto S. (1997) – Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. – Plant Physiol. 113, 833–839. – Google ScholarCrossRefAbstractMedline – PubMed Abstract | Google Scholar –https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12223647 – (On our blog : https://plantstomata.wordpress.com/2016/11/24/aba-and-a-48-kilodalton-protein-kinase-in-stomatal-protoplasts/ )

 

Mori I. C., Pinontoan R., Kawano T., Muto S. (2001) – Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. – Plant Cell Physiol. 42, 1383–1388. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/11773531 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/involvement-of-reactive-oxygen-species-in-signal-transduction-in-sa-induced-stomatal-closure/ )

Mori I. C., Uozumi N., Muto S. (2000) – Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cell – Plant and Cell Physiology2000;41:850-856. – Abstract/FREE Full Text – CrossRef | PubMed | CAS | –http://pcp.oxfordjournals.org/content/41/7/850.abstract?ijkey=e21d47298d062f959117cbcb070cfebf17d0c143&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/abr-kinase-phosphorylates-the-inward-rectifying-kchannel-in-response-to-treatment-of-stomatal-guard-cells-with-aba/ )

Moriana A. F., Villalobos J., Fereres E. (2002) – Stomatal and photosynthethic responses of olive (Olive europaea L.) leaves to water. – Plant, Cell Environ. 25: 395-405 – https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.0016-8025.2001.00822.x – (On our blog : https://plantstomata.wordpress.com/2018/06/07/stomatal-and-photosynthethic-responses-to-water/ )

Morison J. I. L. (1985) – Sensitivity of stomata and water use efficiency to high CO2 –  Plant, Cell and Environment 8467474. –Wiley Online Library | –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1985.tb01682.x/full – (https://plantstomata.wordpress.com/2016/11/27/co2-stomata-and-water-use-efficiency/

Morison J. I. L. (1987) – Intercellular CO2 concentration and stomata1 response to CO2. In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (Eds.). Stomata1 Function. Stanford University Press, California, pp. 229-251 – 

Morison J. I. L. (1998) – Stomatal response to increased CO2concentration – Journal of Experimental Botany 49443452. – http://jxb.oxfordjournals.org/content/49/Special_Issue/443 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-sensitivity-of-plants-grown-in-different-co2-concentrations/ )

Morison J. I. L., Gifford R. M. (1983) – Stomatal sensitivity to carbon dioxide and humidity. A comparison of two C3 and C4 grass species – Plant Physiol. 71:789–796. – doi: http://dx.doi.org/10.1104/pp.71.4.789 – Abstract/FREE Full Text –http://www.plantphysiol.org/content/71/4/789.abstract?ijkey=cc55c7551ba49662b4448cd371092f668a51927d&keytype2=tf_ipsecsha – https://plantstomata.wordpress.com/2016/11/11/stomata-co2-and-humidity/ )

Morris R., Woolfenden H. (2018) – How do plants breathe ? – JIC 17 January 2018 – https://www.jic.ac.uk/news-and-events/blog-copy/2018/01/how-do-plants-breathe/ – (On our blog : https://plantstomata.wordpress.com/2018/02/15/66561/ )

Morsucci R., Curvetto N., Delmastro S.(1991) – Involvement of cytokinins and adenosine 3′,5′-cyclic monophosphate in stomatal movement in Vicia faba – Plant Physiol. Biochem. 29: 537-547, 1991. –  https://eurekamag.com/research/007/487/007487174.php – (On our blog : https://plantstomata.wordpress.com/2016/11/25/cytokinins-and-adenosine-3%E2%80%B25%E2%80%B2-cyclic-monophosphate-in-stomatal-movement/ )

Morsucci R., Curvetto N., Delmastro S.(1992) – High concentration of adenosine or kinetin riboside induces stomatal closure in Vicia faba, probably through inhibition of adenylate cyclase – Plant Physiol. Biochem. 30: 383-388, 1992. –https://eurekamag.com/research/007/398/007398046.php – https://plantstomata.wordpress.com/2016/11/11/adenosine-or-kinetin-riboside-induces-stomatal-closure/ )

Mott K. A. (1988) – Do stomata respond to CO2 concentrations other than intercellular? – Plant Physiol. 86 200–203. – Abstract/FREE Full Text – CrossRef |PubMed | –http://www.plantphysiol.org/content/86/1/200.abstract?ijkey=dc59583300881ff958ec03d17e92af3a61841e1d&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/stomata-intercellular-co2-concentration-and-co2-concentration-at-the-surface-of-the-leaf-and-in-the-stomatal-pore/ )

Mott K. A. (1995) – Effects of patchy stomatal closure on gas exchange measurements following abscisic acid treatment – Plant, Cell and Environment 18: 1291–1300 –

Mott K. A. (2007) – Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves – Plant, Cell and Environment 30: 1444-1449. – DOI: 10.1111/j.1365-3040.2007.01720.x – https://www.researchgate.net/publication/5948120_Leaf_hydraulic_conductivity_and_stomatal_responses_to_humidity_in_amphistomatous_leaves – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-responses-to-humidity-in-amphistomatous-leaves/ )

Mott K. A. (2012) – Stomatal responses to humidity and temperature are consistent with a vapor-phase mechanism – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-responses-to-humidity-and-temperature/ )

 

Mott K. A., Buckley T. N. (1998) – Stomatal heterogeneity – J. Exp. Bot. 49: 407-418 –

Mott K. A., Buckley T. N. (2000) – Patchy stomatal conductance: emergent collective behaviour of stomata – Trends Plant Sci 5: 258–262 –

Mott K. A., Cardon Z. G., Berry J. A. (1993) – Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity – Plant, Cell & Environment 16: 25-34 –

Mott K.A., Denne F., Powell J. (1997) – Interactions among stomata in response to perturbations in humidity – Plant Cell Environ. 20(9): 1098–1107 – DOI: 10.1046/j.1365-3040.1997.d01-138.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-138.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-responding-to-perturbations-in-humidity/ )

Mott K. A., Gibson A. C., O’Leary J. W. (1982) – The adaptive significance of amphistomatic leaves – Plant, Cell & Environment 5: 455–460 – DOI: 10.1111/1365-3040.ep11611750 – CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11611750/abstract;jsessionid=81D3541DAB67DFFA4699036AD4F759B6.f01t04 – (https://plantstomata.wordpress.com/2016/12/01/the-effect-of-developing-stomata-on-the-upper-surface-as-well-as-the-lower/ )

Mott K. A., Michaelson O. (1991) – Amphistomy as an Adaptation to High Light Intensity in Ambrosia cordifolia (Compositae) – American Journal of Botany 78(1) : 76-79 – DOI: 10.2307/2445230 – https://www.jstor.org/stable/2445230?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/04/09/high-light-intensity-amphistomy-and-maximum-stomatal-conductance/ )

Mott K. A., Parkhurst D. F. (1991) – Stomatal responses to humidity in air and helox – Plant, Cell & Environment 14(5)509–515 – DOI: 10.1111/j.1365-3040.1991.tb01521.x – CrossRefWiley Online Library | http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01521.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/air-humidity-helox-and-stomata/ )

Mott K. A., Peak D. (2007) – Stomatal patchiness and task-performing networks – Annals of Botany 99: 219-226. – doi:  10.1093/aob/mcl234https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802990/ – https://plantstomata.wordpress.com/2016/11/06/stomatal-patchiness-and-networks/ )

Mott K. A., Peak D. (2013) – Testing a vapour-phase model of stomatal responses to humidity – Plant, Cell & Environment 36936944. – DOI: 10.1111/pce.12026 – Wiley Online Library | CAS – http://onlinelibrary.wiley.com/doi/10.1111/pce.12026/full – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomatal-responses-to-humidity-4/ )

Mott K. A., Peak D. (2018) – Effects of the Mesophyll on Stomatal Responses in Amphistomatous Leaves – Plant, Cell & Ennvironment, published online and citable.  – https://doi.org/10.1111/pce.13411 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13411?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/07/mesophyll-and-stomatal-responses-in-amphistomatous-leaves/ )

Mott K. A., Shope J. C., Buckley T. N. (1999) – Effects of humidity on light-induced stomatal opening: evidence for hydraulic coupling among stomata – J Exp Bot 50: 1207–1213 –

Mott K. A.Sibbernsen E. D., Shope J. C. (2008) – The role of the mesophyll in stomatal responses to light and CO2 – Plant, Cell & Environment 3112991306. – DOI: 10.1111/j.1365-3040.2008.01845.x – Wiley Online Library | PubMed | CAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01845.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-co2-and-light-occurs-in-response-to-a-signal-generated-by-the-mesophyll/ )

Mott K. A., Takemoto J. Y. (1989) – Syringomycin, a bacterial phytotoxin, closes stomata – Plant Physiol. 90: 1435–1439 – DOI: https://doi.org/10.1104/pp.90.4.1435  – [PMC free article] [PubMed] – http://www.plantphysiol.org/content/90/4/1435 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/syringomycin-and-aba-activate-the-same-k-export-system-in-stomata/ )

Mrinalini T.Latha Y. K.Raghavendra A. S.Das V. S. R. (1982) – Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis – New Phytology 91413418. – doi:10.1111/j.1469-8137.1982.tb03320.x –Wiley Online Library | CrossRefWeb of ScienceGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1982.tb03320.x/full – (https://plantstomata.wordpress.com/2016/11/27/bicarbonate-fusicoccin-and-stomatal-opening/ )

Muchow R. C., Sinclair T. R. (1989) – Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench – Plant, Cell and Environment 12, 425–431. – DOI: 10.1111/j.1365-3040.1989.tb01958.x – CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01958.x/abstract – (https://plantstomata.wordpress.com/2016/11/27/stomatal-density-and-stomatal-size-among-genotypes-of-sorghum/ )

Muir C. D. (2015) – Making pore choices: repeated regime shifts in stomatal ratio – Proc. Royal Soc. B 282(1813) :   – DOI: 10.1098/rspb.2015.1498 – http://rspb.royalsocietypublishing.org/content/royprsb/282/1813/20151498.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-ratio-hypostomy-and-amphistomy/ )

Muir C. D. (2017) – Light and growth form interact to shape stomatal ratio among British angiosperms – New Phytologist Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14956 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14956/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/31/light-and-growth-form-stomatal-ratio-hypostomy-and-amphistomy/)

Muir C. D.Conesa M. A.Galmés J. (2015) – Independent evolution of ab- and adaxial stomatal density enables adaptation –  – doi: https://doi.org/10.1101/034355 –https://www.biorxiv.org/content/early/2015/12/15/034355 –https://www.biorxiv.org/content/biorxiv/early/2015/12/15/034355.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/independent-evolution-of-stomatal-function-on-each-leaf-surface/ )

Mukhtar N., Hameed M., Ashraf M., Ahmed R., (2013) – Modifications in stomatal structure and function in Cenchrus ciliaris L. and Cynodon dactylon (L.) pers. in response to cadmium stress – Pakistan Journal of Botany 45(2): 351-357 – https://www.pakbs.org/pjbot/PDFs/45(2)/01.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/the-effect-of-cadmium-on-modifications-in-stomatal-structure-and-function/ )

Müller‐Röber B., Ellenberg J., Provart N., Willmitzer L., Busch H., Becker D., Dietrich P., Hoth S., Hedrich R. (1995) – Cloning and electrophysiological analysis of KST1, an inward rectifying K+channel expressed in potato guard cells – EMBO Journal 14: 2409-2416 –

Müller-Röber B., Sonnewald U., Willmitzer L. (1993) – Expression cassette and plasmids for a guard cell specific expression and their use for the introduction of transgenic plant cells and plants – International Patent Application No. WO 93/18169. –https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1993018169 – (https://plantstomata.wordpress.com/2016/12/01/the-transcriptional-regulatory-starter-region-for-a-guard-cell-specific-gene-expression/ )

Mullinax J. B., Palevitz B. A. (1989) – Microtubule reorganization accompanying preprophase band formation in guard mother cells of Avena sativa – Protoplasma 149: 89–94 –

Mumm P., Imes D., Martinoia E., Al-Rasheid K. A. S., Geiger D.,  Marten I.,  Hedrich R. (2013) – C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1 – Molecular Plant 6(5): 1550-1563 – http://www.zora.uzh.ch/id/eprint/87851/ – (On our blog : https://plantstomata.wordpress.com/2018/01/19/c-terminus-mediated-voltage-gating-of-guard-cell-anion-channel-quac1-stomata/ )

Munemasa S.Hauser F.Park J.Waadt R.Brandt B., Schroeder J. I. (2015) – Mechanisms of abscisic acid-mediated control of stomatal aperture – Curr Opin Plant Biol. 28: 154–162 – doi:  10.1016/j.pbi.2015.10.010 – CrossRefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679528/ – (On our blog : https://plantstomata.wordpress.com/2018/06/07/mechanisms-of-aba-mediated-control-of-stomatal-aperture/ )

Munemasa S., Hossain M. A., Nakamura Y., Mori I. C., Murata Y. (2011) – The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. – Plant Physiol. 155, 553–561. – doi: 10.1104/pp.110.162750 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=20978156 – (https://plantstomata.wordpress.com/2016/12/01/cpk6-functions-as-a-positive-regulator-of-meja-signaling-in-arabidopsis-stomata/

Munemasa S., Mori I. C., Murata Y. (2011) – Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. – Plant Signal. Behav. 6, 939–941. – doi: 10.4161/psb.6.7.15439 –  [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/21681023 – (On our blog : https://plantstomata.wordpress.com/2017/01/13/meja-signaling-and-signal-crosstalk-between-meja-and-aba-pathways-in-stomata/ )

Munemasa S., Muroyama D., Nagahashi H., Nakamura Y., Mori I. C., Murata Y. (2013) – Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. – Front. Plant Sci. 4:472. – 10.3389/fpls.2013.00472 – [PMC free article] [PubMed] [Cross Ref] – 

 

Munemasa S., Oda K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Murata Y. (2007) – The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. – Plant Physiol. 143, 1398–1407 – doi: 10.1104/pp.106.091298 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed]. – http://www.plantphysiol.org/content/143/3/1398.long – (On our blog : https://plantstomata.wordpress.com/2017/01/18/hormonal-signaling-interaction-between-aba-and-meja-in-stomata/ )

Munns R., King R. W. (1988) – Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants – Plant Physiol. 88: 703-708. –CrossRef |PubMed |CAS – https://www.ncbi.nlm.nih.gov/pubmed/16666371 – (https://plantstomata.wordpress.com/2016/12/01/inhibitory-activity-of-stomatal-transpiration-was-triggered-partly-by-leaf-water-deficit-and-partly-by-root-water-deficit/ )

 

Murata Y., Mori I. C., Munemasa S. (2015) – Diverse stomatal signaling and the signal integration mechanism. – Annu. Rev. Plant Biol. 66, 369–392. – doi: 10.1146/annurev-arplant-043014-114707 – https://www.ncbi.nlm.nih.gov/pubmed/25665132 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/signal-integration-and-signal-interaction-in-stomatal-movement/ )

 

Murata Y., Pei Z. M., Mori I. C., Schroeder J. I. (2001) – Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants – Plant Cell 13: 2513–2523 – DOI: https://doi.org/10.1105/tpc.010210 – http://www.plantcell.org/content/13/11/2513 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/early-aba-signal-transduction-aba-abi1-1-nadph-dependent-ros-production-abi2-1-icaca2-channel-activation-followed-by-stomatal-closing/ )

 

Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. (2002) – Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. – Plant Cell 14, 3089–3099 (2002). – doi: 10.1105/tpc.007906 – CAS – Article – PubMed – PubMed Central – http://www.plantcell.org/lens/plantcell/14/12/3089 – (On our blog : https://plantstomata.wordpress.com/2016/03/29/ost1-protein-kinase-and-stomatal-movement/)

Mutiibwa D., Irmak S. (2013) – Transferability of jarvis-type models developed and re-parameterized for maize to estimate stomatal resistance of soybean: analyses on model calibration, validation, performance, sensitivity, and elasticity – Biological Systems Engineering: Papers and Publications. 400. –http://digitalcommons.unl.edu/biosysengfacpub/400 – http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1402&context=biosysengfacpub – (On our blog : https://plantstomata.wordpress.com/2017/11/05/stomatal-resistance-of-soybean/ )

Nabity P. D.Haus M. J.Berenbaum M. R., DeLucia E. H. (2013) – Leaf-galling Phylloxera on grapes reprograms host metabolism and morphology – 

Nadeau J. A. (2009) – Stomatal development: new signals and fate determinants – Current Opinion in Plant Biology 12: 29–35 – [PMC free article] [PubMed] – 

Nadeau J. A., Sack F. D. (2002) – Stomatal Development in Arabidopsis – The Arabidopsis Book  1: e0066. 2002 – https://doi.org/10.1199/tab.0066 – http://www.bioone.org/doi/abs/10.1199/tab.0066 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/stomatal-development-in-arabidopsis-3/ )

Nadeau J. A., Sack F. D. (2002) – Control of stomatal distribution on the Arabidopsis leaf surface – Science 296: 1697–1700. – DOI: 10.1126/science.1069596 – Abstract/FREE Full Text Google Scholar – View ArticlePubMed – http://science.sciencemag.org/content/296/5573/1697.abstract?ijkey=61fdf63a0df9f80f6399baa35458f421570c77ef&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/10/25/control-of-stomatal-distribution/ )

Nadeau J. A., Sack F. D. (2003) – Stomatal development: cross talk puts mouths in place – Trends in Plant Science 8: 294–299. – http://dx.doi.org/10.1016/S1360-1385(03)00102-X – CrossRefMedlineWeb of Science  – http://www.sciencedirect.com/science/article/pii/S136013850300102X – (On our blog : https://plantstomata.wordpress.com/2016/10/25/stomatal-patterning-2/ )

Naidoo G., Von Willert D. J. (1994) – Stomatal oscillations in the mangrove Avicennia germinans – Functional Ecology 8: 651–657. – CrossRef – https://www.jstor.org/stable/2389928?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/01/18/stomatal-oscillations-in-a-mangrove/ )

Nakajima N., Saji H., Aono M., Kondo N. (1995) – Isolation of cDNA for a plasma membrane H+-ATPase from guard cells of Vicia faba L. – Plant Cell Physiol. 36: 919–924 –

Nakamura R. L., McKendree W. L., Hirsch R. E., Sedbrook J. C., Gaber R. F., Sussman M. R. (1995) – Expression of an Arabidopsis potassium channel gene in guard cells. – Plant Physiol. 109, 371–374. – doi: 10.1104/pp.109.2.371 – Plant Physiology 109, 371–374. – doi: http://dx.doi.org/10.1104/pp.109.2.371 – Abstract – http://www.plantphysiol.org/content/109/2/371.abstract?ijkey=689d58408d6b9a54709eb09fb192130693cc858f&keytype2=tf_ipse – (On our blog : https://plantstomata.wordpress.com/2017/01/25/a-potassium-channel-gene-in-stomata/ )

Nardini A., Salleo S. (2000) – Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? – Trees 15: 14–24 – doi:10.1007/s004680000071 – http://link.springer.com/article/10.1007%2Fs004680000071 – (On our blog : https://plantstomata.wordpress.com/2017/01/25/stomata-and-sensing-or-preventing-xylem-cavitation/ )

Naulin P. I., Valenzuela G., Estay S. A. (2016) – New Phytologist, Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14305 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14305/abstract – https://plantstomata.wordpress.com/2016/11/08/point-pattern-analysis-and-size-point-and-disc-null-models-for-stomata-distribution/ )

Negash L.Bjorn L. O. (1986) – Stomata closure by UV radiation – Physiol. Plant 66: 360-364 – 

Negi J.Hashimoto-Sugimoto M.Kusumi K.Iba K. (2014) – New Approaches to the Biology of Stomatal Guard Cells  – Plant and Cell Physiology 55(2):  241–250,- https://doi.org/10.1093/pcp/pct145 – https://academic.oup.com/pcp/article/55/2/241/1859195 – (On our blog : https://plantstomata.wordpress.com/2018/09/07/new-approaches-to-the-biology-of-stomata/ )

Negi J.Matsuda O.Nagasawa T.Oba Y.Takahashi H.Kawai-Yamada M.Uchimiya H.Hashimoto M.Iba K. (2008) – CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells – Nature 452: 483-486 – doi: 10.1038/nature06720 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – Medline– http://www.nature.com/nature/journal/v452/n7186/full/nature06720.html – (On our blog : https://plantstomata.wordpress.com/2017/01/25/co2-regulator-slac1-and-its-homologues-in-stomata/ )

Negi J., Moriwaki K., Konishi M., Yokoyama R., Nakano T., Kusumi K. et al. (2013) – A Dof transcription factor, SCAP1, is essential for the development of functional stomata in arabidopsis – Curr. Biol. 23: 479-484 – doi: 10.1016/j.cub.2013.02.001 –

 

Negi J.Munemasa S.Song B.Tadakuma R.Fujita M.Azoulay-Shemer T.Engineer C. B.Kusumi K.Nishida I.Schroeder J. I., Iba K. (2018) – Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells – 

Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P, Ribeiro D, Wilson I. (2008) – Nitric oxide, stomatal closure, and abiotic stress. – J. Exp. Bot. 59, 165–176. – doi: 10.1093/jxb/erm293 – https://www.ncbi.nlm.nih.gov/pubmed/18332225 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/two-processes-that-both-involve-no-as-a-key-signalling-intermediate-in-stomata/ )

Neill S. J., Desikan R., Clarke A., Hancock, J. T. (2002) – Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. – Plant Physiol. 128: 13–16. – doi: 10.1104/pp.010707 – CrossRef | CAS | PubMed |FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/128/1/13 – (https://plantstomata.wordpress.com/2017/01/26/aba-signaling-in-stomata-and-nitric-oxide/ )

Nejad A. R., van Meeteren U. (2005) – Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity – Physiologia Plantarum 125: 324-332 –

Nejidat A., Roth-Bejerano N., Ital C. (1986) – K, Mg-ATPase activitiy in guard cells of Commelina communis – Physiol. Plant. 68: 315-319 –

Nelson S. D., Mayo J. M. (1975) – The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp. – Canadian Journal of Botany, 1975, 53(1): 1-7 –  https://doi.org/10.1139/b75-001 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-001 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/guard-cell-chlorophyll-is-not-necessary-for-stomatal-functioning-2/ )

New Phytologist Symposium Nr. 29 (2012) – Stomata 2012 — https://www.newphytologist.org/symposia/29 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/65558 )

Ng C. K. Y., Carr K., McAinsh M. R., Powell B., Hetherington A. M. (2001) – Drought-induced guard cell signal transduction involves sphingosine- 1-phosphate. – Nature 410, 596–599. doi: 10.1038/35069092 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.nature.com/nature/journal/v410/n6828/full/410596a0.html – (https://plantstomata.wordpress.com/2017/01/26/sphingosine-1-phosphate-and-stomata/ )

Ng C.K.-Y., McAinsh M.R., Gray J.E., Hunt L., Leckie C.P., Mills L., Hetherington A.M.(2001) – Calcium-based signalling systems in guard cells – New Phytol. 151: 109-120 – DOI: 10.1046/j.1469-8137.2001.00152.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00152.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/07/calcium-based-signalling-pathways-have-been-identified-in-stomata/ )

 

Ni D. A. (2012) – Role of vacuolar invertase in regulating Arabidopsis stomatal opening – Acta Physiol. Plant. 34: 2449–2452. – doi: 10.1007/s11738-012-1036-5 – CrossRef Full Text | Google Scholar  – https://link.springer.com/article/10.1007/s11738-012-1036-5 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-aperture-correlated-with-vacuolar-invertase/ )

Niglas A., Alber M., Suur K., Jasinska A. K., Kupper P., Sellin A. (2015) – Does increased air humidity affect stomatal morphology and functioning in hybrid aspen? – Botany 93: 243–250 – dx.doi.org/10.1139/cjb-2015-0004 – http://www.nrcresearchpress.com/cjb – (On our blog : https://plantstomata.wordpress.com/2018/02/04/air-humidity-stomatal-morphology-and-functioning/ )

Niinemets ÜReichstein M.Staudt M.Seufert G., Tenhunen J. D. (2002) – Stomatal Constraints May Affect Emission of Oxygenated Monoterpenoids from the Foliage of Pinus pinea –  Plant Physiol. 130(3): 1371–1385 – doi:  10.1104/pp.009670 – Abstract/FREE Full TextGoogle Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166656/ – (On our blog : https://plantstomata.wordpress.com/2018/06/07/stomatal-constraints-may-affect-emission-of-oxygenated-monoterpenoids/ )

 

Nir I.Shohat H.Panizel I.Olszewski N. E.Aharoni A.Weiss D. (2017) – The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure – 

Nomura H., Komori T., Kobori M., Nakahira Y., Shiina T. (2008) – Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. – Plant J. 53: 988–998 – doi: 10.1111/j.1365-313X.2007.03390.x – https://www.ncbi.nlm.nih.gov/pubmed/18088326 – (On our blog : https://plantstomata.wordpress.com/2018/06/07/thylakoid-membrane-localized-cas-is-essential-for-ca2ext-induced-ca2cyt-transients-and-stomatal-closure/ )

Nonami H., Schulze E.-D. (1989) – Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves – Planta 177: 35–46 –

Nonami H., Schulze E.‐D., Ziegler H. (1990) – Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential – Planta 183, 57–64. – doi: 10.1007/BF00197567. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/24193533 – (https://plantstomata.wordpress.com/2017/01/26/stomatal-movement-in-response-to-air-humidity/ )

 

Noormets A., Sober A., Pell E. J., Dickson R. E., Podila G. K., Sôber J., Isebrands J. G., Karnosky D. F. (2001) – Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3 – Plant Cell Environ. 24, 327–336. doi: 10.1046/j.1365-3040.2001.00678.x – CrossRef Full Text | Google Scholar – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.4303&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-and-non-stomatal-limitation-to-photosynthesis-when-exposed-to-elevated-co2-and-or-o3/ )

Novick K. A., Miniar C. F., Vose J. M. (2016) – Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory – Plant, Cell & Environment 39(3): 583-596 – Station ID: JRNL-SRS-39doi: 10.1111/pce.12657 – – https://www.srs.fs.fed.us/pubs/50416 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/a-model-linking-stomatal-optimization-and-cohesion-tension-theory-2/ )

Nunes-Nesi A., Carrari F., Gibon Y., Sulpice R., Lytovchenko A., Fisahn J.,  Graham J., Ratcliffe R. G, Sweetlove L. J, Fernie A. R. (2007) – Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function – Plant J. 50, 1093–1106. doi: 10.1111/j.1365-313X.2007.03115.x – PubMed Abstract | CrossRef Full Text | Google Scholar https://www.ncbi.nlm.nih.gov/pubmed/17461782 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/deficiency-of-mitochondrial-fumarase-activity-impairs-photosynthesis-via-an-effect-on-stomatal-function/ )

Nutman F. J. (1937) – Studies of the physiology of Coffea arabica. II. Stomatal movement in relation to photosynthesis under natural conditions – Ann. Bot. n.S. 1(4): 682-693. – https://doi.org/10.1093/oxfordjournals.aob.a083497 –https://academic.oup.com/aob/article-abstract/1/4/681/90618?redirectedFrom=fulltext – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64987 )

Obiremi E. O., Oladele F. A. (2001) – Water-conserving stomatal systems in selected Citrus species – S. Afr. J. Bot. 67(2): 258 –260 – https://ac.els-cdn.com/S0254629915311273/1-s2.0-S0254629915311273-main.pdf?_tid=48eca991-8fe4-4743-85fc-5127236bee40&acdnat=1528555820_e082676094418811436c37d6472866f2 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/water-conserving-stomatal-systems-in-citrus/ )

Obulareddy N., Panchal S., Melotto M. (2013) – Guard cell purification and RNA isolation suitable for high throughput transcriptional analysis of cell- type responses to biotic stresses – Mol. Plant Microbe Interact. 26, 844–849 – doi: 10.1094/MPMI-03-13-0081-TA – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982617/ – (On our blog : https://plantstomata.wordpress.com/2018/06/09/guard-cell-purification-and-rna-isolation/ )

O’Carrigan A., Hinde E., Lu N., Xu X.-Q., Duan H., Huang G., Mak M., Belotti B., Chen Z.-H. (2014) – Effects of light irradiance on stomatal regulation and growth of tomato – Environ. Exp. Bot. 98, 65–73. doi: 10.1016/j.envexpbot.2013.10.007 –CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0098847213001512 – (https://plantstomata.wordpress.com/2017/01/26/stomata-as-physiological-markers-for-assessment-of-performance-of-plants/ )

Ogawa T. (1981) – Blue light response of stomata with starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cells under background illumination with red light -Plant Sci. Lett. 22: 103–108 –

Ogawa T., Ishikawa H., Shimada K., Shibata K. (1978) – Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. – Planta 142: 61– 65 –

 

Ogaya R., Llorens L., J. Peñuelas J. (2011) – Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime – Acta Oecologica 37: 381-385 – http://www.creaf.uab.es/Global-Ecology/Pdfs_UEG/2011%20ActaOecol.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/20/density-and-length-of-stomata-in-living-fossil-trees-2/ )

Ogle K., Lucas R. W., Bentley L. P, et al. (2012) – Differential daytime and nighttime stomatal behavior in plants from North American deserts – New Phytologist 194: 464–476-

Ogle K., Reynolds J. F. (2002) – Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata – Plant, Cell and Environment 25: 909–921 –

Ohashi-Ito K.Bergmann D. C. (2006) – Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development – Plant Cell 1824932505 – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/18/10/2493.abstract?ijkey=2b5f61553059c587dce02e954964848c45dd4412&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/08/15/fama-and-stomatal-development/)

Ohsumi A., Hamasaki A., Nakagawa H., et al. (2008) – Response of Leaf Photosynthesis to Vapor Pressure Difference in Rice (Oryza sativa L) Varieties in Relation to Stomatal and Leaf Internal Conductance – Plant Production Science. 11(2): 184-191 – DOI: 10.1626/pps.11.184 – https://www.tandfonline.com/doi/pdf/10.1626/pps.11.184 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-and-leaf-internal-conductance/ )

Ohsumi A.Kanemura T.Homma K.Horie T.Shiraiwa T. (2007) – Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.) – Plant Prod Sci 10322328 – https://doi.org/10.1626/pps.10.322 – Google Scholar – https://www.tandfonline.com/doi/abs/10.1626/pps.10.322 – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-conductance-stomatal-density-and-length/

Okamoto M., Tanaka Y., Abrams S. R., Kamiya Y., Seki M., Nambara E. (2009) – High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis – Plant Physiol. 149(2): 825-834 – doi: http://dx.doi.org/10.1104/pp.108.130823 – (CrossRef,Medline). – Abstract/FREE Full Text – http://dx.doi.org/10.1104/pp.108.130823 – (On our blog :  https://plantstomata.wordpress.com/2016/10/31/high-humidity-induces-aba-8%E2%80%B2-hydroxylase-in-stomata/ )

Okuma E., Jahan M.S., Munemasa S., Hossain M.A., Muroyama D., Islam M.M., Ogawa K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Mori I.C., Murata Y. (2011) – Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis – J. Plant Physiol. 168: 2048–2055. – doi: 10.1016/j.jplph.2011.06.002 –PubMed Abstract |Pubmed Full Text , CrossRef Full Text | Google Scholar –http://www.sciencedirect.com/science/article/pii/S0176161711002768 – (On our blog : https://plantstomata.wordpress.com/2016/10/31/aba-induced-stomatal-closure-by-glutathione/ )

Oljača R., Govedar Z., Hrkić Z. (2008) – Air pollution effects on percentage of stomata in leaves at tested species horse chestnut and birch in Banja Luka conditions. – Bulletin of the Faculty of Forestry 98: 155-166 – http://www.doiserbia.nb.rs/img/doi/0353-4537/2008/0353-45370898155O.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/air-pollution-effects-on-percentage-of-stomata-in-trees/ )

Olsen R. L., Pratt R. B., Gump P., Kemper A., Tallman G. (2002) – Red light activates a chloroplast-dependent ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. – N. Phytol. 153 :497–508 –

Omasa K., Hashimoto Y., Kramer P. J., Strain B. R., Aiga I., Kondo J. (1985) – Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO2 – Plant Physiology 84: 748–752. –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1074843/ – (On our blog : https://plantstomata.wordpress.com/2016/10/31/continuous-observation-of-individual-stomata-under-the-microscope/ )

Omasa K., Onoe M. (1984) – Measurement of stomatal aperture by digital image processing – Plant and Cell Physiology 25: 1379–1388. – DOI:https://doi.org/10.1093/oxfordjournals.pcp.a076848 – Abstract/FREE Full Text – https://academic.oup.com/pcp/article-abstract/25/8/1379/1811066/Measurement-of-Stomatal-Aperture-by-Digital-Image?ijkey=cda0d53df21790a0c1f7259b1d57ade20030bf32&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/01/29/digital-image-processing-for-measurement-of-stomatal-aperture/ )

Onoe T., Tani T., Minagawa S., Sagawa H. (1987) – Ultrastructural changes of stomata in relation to specificity of rust fungi – Molecular Determinants of Plant Diseases – Nishimura S. et al (Eds.) – Jap. Sci. Soc. Tokyo /Springer Verlag, Berlin 29-45 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-rust-infection/ )

Onwueme I. C., Johnston M. (2000) – Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro – Experimental Agriculture 36: 509-516. – DOI: https://doi.org/10.1017/S0014479700001071 – https://www.cambridge.org/core/journals/experimental-agriculture/article/influence-of-shade-on-stomatal-density-leaf-size-and-other-leaf-characteristics-in-the-major-tropical-root-crops-tannia-sweet-potato-yam-cassava-and-taro/64ABAA0DDD9E69191D1EC2AD23977F0E – (On our blog : https://plantstomata.wordpress.com/2017/01/29/stomatal-density-in-tropical-root-crops/ )

Ooba M., Takahashi H. (2003) – Effect of asymmetric stomatal response on gas-exchange dynamics – Ecological Modelling 1646582.  – http://dx.doi.org/10.1016/S0304-3800(03)00012-7 – http://www.sciencedirect.com/science/article/pii/S0304380003000127 – (On our blog : https://plantstomata.wordpress.com/2017/01/29/asymmetric-stomatal-response-on-gas-exchange-dynamics/ )

Ooi L., Matsuura T., Munemasa S., Murata Y., Katsuhara M., Hirayam T., Mori I. C. (2018) – The Mechanism of SO2‐Induced Stomatal Closure Differs from O3and CO2 Responses and Is Mediated by Non‐Apoptotic Cell Death in Guard Cells – Accepted, unedited article – https://doi.org/10.1111/pce.13406 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13406?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/21/the-mechanism-of-so2%e2%80%90induced-stomatal-closure/ )

Oosterhuis D. M., Walker S. (1987) – Stomatal resistance measurement as an indicator of water deficit stress in wheat and soybeans – S. Afr. J. Plant Soil 4(3): 1132-120 – https://doi.org/10.1080/02571862.1987.10634956 –http://www.tandfonline.com/doi/abs/10.1080/02571862.1987.10634956 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomatal-resistance-measurement-is-a-potentially-useful-and-reliable-plant-indicator-of-crop-water-stress/ )

Oren R.Sperry J. S.Ewers B. E.Pataki D. E.Phillips N., Megonigal J. P. (2001) – Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects – Oecologia 1262129. – doi:10.1007/s004420000497 – CrossRef  – http://link.springer.com/article/10.1007%2Fs004420000497 – (https://plantstomata.wordpress.com/2017/01/31/canopy-stomatal-conductance-and-vapor-pressure-deficit/ )

Oren R., Sperry J. S., Katul G. G., Pataki D. E., Ewers B. E., Phillips N., Schäfer K. V. R. (1999) – Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit – Plant Cell Environ. 22(12): 1515-1526  – DOI: 10.1046/j.1365-3040.1999.00513.x – (CrossRefISI) , Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1999.00513.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/31/stomatal-sensitivity-to-vapour-pressure-deficit/ )

Ormrod D. J., Renney A. J. (1968) – A survey of weed leaf stomata and trichomes – Can. J. Plant Sci. 48: 197-209 – http://www.nrcresearchpress.com/doi/pdf/10.4141/cjps68-034 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/54983 )

Osborne C. P., Taylor S., Franks P., Ripley B., Pasquet-Kok J., Scoffoni C., Sack L., Spriggs B., Christin P.A., Edwards E., Woodward I. (2012) – The significance of C4 photosynthesis for stomatal patterning and behaviour  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/c4-photosynthesis-and-stomatal-patterning-and-behaviour/ )

Osonubi O., Davies W. J. (1980) – The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity – Oecologia (Berlin) 46: 1–6. – DOI: 10.1007/BF00346957 – http://link.springer.com/article/10.1007/BF00346957 – (On our blog :https://plantstomata.wordpress.com/2017/01/31/plant-water-stress-and-stomatal-control-of-gas-exchange/ )

Osório M. L., Rodrigues M. L., Chaves M. M., Correia M. J., (1999) – Effect of growth temperature on the response of lupin stomata to drought and abscisic acid. – Aust. J. Plant Physiol. 26(6): 549-559 – https://doi.org/10.1071/PP99053 – http://www.publish.csiro.au/FP/PP99053 – (On our blog : https://plantstomata.wordpress.com/2018/02/25/growth-temperature-and-the-response-of-stomata-to-drought-and-aba/ )

Ou X., Gan Y., Chen P., Qiu M., Jiang K., Wang G. (2014) – Stomata prioritize their responses to multiple biotic and abiotic signal inputs. – PLoS ONE 9:e101587. – 10.1371/journal.pone.0101587 – [PMC free article] [PubMed] [Cross Ref] – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101587 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/successful-colonization-of-bacteria-on-the-leaf-surface-is-correlated-with-stomatal-aperture-regulation/ )

Outlaw W. H. (1982) – Carbon metabolism in guard cells. – In Recent Advances in Phytochemistry. p. 185-222. Edited by L. L. Greasy and G. Hrazdina, Plenum Publishing Co., New York

Outlaw W. H. Jr (1989) – Critical examination of the quantitative evidence for and against photosynthetic CO2 fixation by guard cells – Physiol. Plant. 77, 275–281. – doi: 10.1111/j.1399-3054.1989.tb04981.x – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1989.tb04981.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/02/the-evidence-for-and-against-photosynthetic-co2-fixation-by-stomata/ )

Outlaw W. H. Jr (2003) – Integration of cellular and physiological functions of guard cells. – Crit. Rev. Plant Sci. 22, 503–529. – doi: 10.1080/713608316 – CrossRef-Google Scholar – http://www.tandfonline.com/doi/abs/10.1080/713608316 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomata-and-an-overview-of-cellular-mechanisms-that-are-involved-in-turgor-regulation/ )

 

Outlaw W. H. Jr., De Vlieghere-He X. (2001) – Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean – Plant Physiology 126: 1716–1724. – CrossRef, CAS – http://www.plantphysiol.org/content/plantphysiol/126/4/1716.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-transpiration-rate/ )

Outlaw W. H. Jr., Lowry O. H. (1977) – Organic acid and potassium accumulation in guard cells during stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 74: 4434–4438. – https://doi.org/10.1073/pnas.74.10.4434 – [PMC free article] [PubMed] – http://www.pnas.org/content/74/10/4434 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/malic-and-citric-acids-provide-much-of-the-counter-ion-for-the-k-taken-up-during-stomatal-opening-2/

Outlaw W. H., Manchester J. (1979) – Guard cell starch concentration quantitatively related to stomatal aperture – Plant Physiol. 55: 705-711 – (64: 79-82 ?)

Outlaw W. H. Jr., Manchester J., DiCamelli C. A., Randall D. P., Rapp B., Veith G. M. (1979) – Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. – Proc. Natl. Acad. Sci. USA 76: 6371-6375 – PMID: 16592740 – PMCID: PMC411866 – https://www.ncbi.nlm.nih.gov/pubmed/16592740 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/enzymes-unique-to-the-photosynthetic-carbon-reduction-pathway-are-absent-in-stomata/ )

Outlaw W. H. Jr., Mayne B. C., Zenger V. E., Manchester J. (1981) – Presence of both photosystems in guard cells of Vicia faba L.; Implications for environmental signal processing – Plant Physiol. 67: 12–16. – doi: 10.1104/pp.67.1.12 – http://www.plantphysiol.org/content/67/1/12 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/noncyclic-photosynthetic-electron-flow-is-an-environmental-sensor-which-causes-stomata-to-remain-open-in-light/ )

 

Outlaw W. H. Jr., Zhang S., Hite D. R. C., Thistle A. B. (1996) – Stomata: Biophysical and Biochemical Aspects – In: Baker N.R. (eds) Photosynthesis and the Environment. Advances in Photosynthesis and Respiration, vol 5., 241-259,  Springer, Dordrecht –https://link.springer.com/chapter/10.1007/0-306-48135-9_9#citeas – https://plantstomata.wordpress.com/2017/12/18/biophysics-and-biochemistry-of-stomata/ )

Overlach S., Diekmann W., Raschke K. (1993) – Phosphate translocator of isolated guardcell chloroplasts from Pisum sativum L. transports glucose-6-phosphate – Plant Physiol. 101:1201–1207 –

Ozuna R., Yera R., Ortega K., Tallman G. (1985) – Analysis og guard cell viability and action in senescing leaves of Nicotiana glauca Graham, tree tobacco – Plant Physiol. 79: 7-10 – doi: 10.1104/pp.79.1.7 –

Padoan D., Mossad A., Chiancone B., Germana M. A., Khan P. S. S. V. (2013) – Ploidy levels in Citrus clementina affects leaf morphology, stomatal density and water content – Theoretical and Experimental Plant Physiology, 25(4): 283-290 – http://dx.doi.org/10.1590/S2197-00252013000400006. – http://www.scielo.br/pdf/txpp/v25n4/06.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/increase-in-ploidy-level-caused-an-effect-on-stomatal-characteristics/ )

Paiva E. A. S. (2017) – How does the nectar of stomata-free nectaries cross the cuticle? – Acta Bot. Bras. vol.31 no.3 Belo Horizonte July/Sept. 2017 – http://dx.doi.org/10.1590/0102-33062016abb0444 – http://www.scielo.br/scielo.php?pid=S0102-33062017000300525&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2017/10/30/nectar-release-in-stomata-free-nectaries/ )

Paiva E. A., Lemos-Filho J. P., Oliveira D. M. (2006) – Imbition of Swietenia macrophylla (Meliaceae) seeds: The role of stomata – Ann. Bot. 98: 213-217. – doi:  10.1093/aob/mcl090 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803541/ – (On our blog : https://plantstomata.wordpress.com/2017/02/04/permanently-opened-stomata-in-the-seed-coat-play-a-significant-role-in-seed-imbibition/ )

Palevitz B. A. (1981) – The structure and development of stomatal cells. In: Stomatal Physiology (Jarvis, P. G.,Mansfield, T. A., eds.), pp. 1–23. Cambridge Univ. Press.

Palevitz B. A. (1981) – Microtubules and possible microtubule nucleation centers in the cortex of stomatal cells as visualized by high voltage electron microscopy – Protoplasma 107: 115–125 –

Palevitz B. A. (1982) – The stomatal complex as a model of cytoskeletal participation in cell differentiation – in C.W. Lloyd (Ed.), The cytoskeleton in plant growth and development –  Academic Press, London : 346-376 (Article not found)

Palevitz B. A. (1986) – Division plane determination in guard mother cells of Allium: video-lapse analysis of nuclear movements and phragmoplast rotation in the cortex – Developmental Biology 117: 644–654 –

Palevitz B. A., Hepler P. K. (1974) – The control of the plane of division during stomatal differentiation in Allium. I. Spindle reorientation – Chromosoma 46: 297-326 –

Palevitz B. A., Hepler P. K. (1974) – The control of the plane of division during stomatal differentiation in Allium. II. Drug studies – Chromosoma 46: 327–341 –

Palevitz B. A., Hepler P. K. (1976) – Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: The role of microtubules and ion accumulation – Planta 132: 71. – https://doi.org/10.1007/BF00390333 – https://link.springer.com/article/10.1007/BF00390333#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/18/the-role-of-microtubules-and-ion-accumulation-in-stomata/ )

Palevitz B. A., Hepler P. K. (1985) – Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow – Planta 164: 473–479. – doi:10.1007/BF00395962 – CrossRef –http://link.springer.com/article/10.1007%2FBF00395962 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/dye-coupling-of-stomatal-cells/ )

Palevitz B. A., Hodge L. D. (1984) – The endoplasmic reticulum in the cortex of developing guard cells: coordinate studies with chlorotetracycline and osmium ferricyanide – Dev Biol. 101(1): 147-159 – PMID: 6198223 – https://www.ncbi.nlm.nih.gov/pubmed/6198223 – (On our blog : https://plantstomata.wordpress.com/2018/08/16/the-endoplasmic-reticulum-becomes-asymmetrically-distributed-in-young-guard-cells-of-stomata/ )

Palevitz B. A., Mullinax B. J. (1989) – Developmental changes in the arrangement of cortical microtubules in stomatal cells of oat (Avena sativa L.) – Cell Motility and Cytoskeleton 13: 170–180 –

Palevitz B. A., O’Kane D. J. (1981) – Epifluorescence and video analysis of vacuole motility and development in stomatal cells of Allium – Science 214: 443–445 – https://www.jstor.org/stable/1687396?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/08/18/epifluorescence-vacuole-motility-and-development-in-stomatal-cells/ )

Palevitz B. A., O’Kane D. J., Kobres R. E., Raikhel N. V. (1981) – The vacuole system in stomatal cells of Allium – Vacuole movements and changes in morphology in differentiating cells as revealed by epifluorescence, video and electron microscopy – Protoplasma 109: 23-55 – https://doi.org/10.1007/BF01287629 – https://link.springer.com/article/10.1007/BF01287629 – (On our blog : https://plantstomata.wordpress.com/2018/08/16/vacuoles-in-stomata-of-allium/ )

Pallaghy C. K. (1971) – Stomatal movement and potassium transport in epidermal strips of Zea mays-effect of CO2 . – Planta 101, 287–295. – doi: 10.1007/Bf00398115 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar.- https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=24488473&dopt=abstractplus – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomatal-movement-potassium-transport-and-co2/ )

 

Pallaghy C. K., Fischer R. A.( 1974) – Metabolic aspects of stomatal opening and ion accumulation by guard cells in Vicia faba – Z. f. Pflanzenphysiol. 71: 332–344 – https://doi.org/10.1016/S0044-328X(74)80040-1 –http://www.sciencedirect.com/science/article/pii/S0044328X74800401 – https://plantstomata.wordpress.com/2017/12/18/metabolic-aspects-of-stomatal-opening-and-ion-accumulation/ )

Pallardy S.G., Kozlowski T. T. (1979) – Frequency and length of stomata of 21 Populus clones – Canadian Journal of Botany 57: 2519-2523 –  https://doi.org/10.1139/b79-298 – http://www.nrcresearchpress.com/doi/abs/10.1139/b79-298 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/frequency-and-length-of-stomata-in-populus-clones/ )

Pallas J. E. (1994) – Guard cell starch retention and accumulation in the dark – Bot. Gaz. 125: 102-107 – 

Pallas J. E. (1966) – Mechanisms of Guard Cell Action – The Quarterly Review of Biology 41(4): 365-383 – https://doi.org/10.1086/405157 – PMID: 5341597 – http://www.journals.uchicago.edu/doi/abs/10.1086/405157?journalCode=qrb – (On our blog : https://plantstomata.wordpress.com/2018/01/19/biochemical-changes-involved-in-opening-and-closing-of-stomata/ )

Pallas J. E., Kays S. J. (1982) – Inhibition of photosynthesis by ethylene-a stomatal effect – Plant Physiol. 70, 598–601. – doi: 10.1104/pp.70.2.598 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS – http://www.plantphysiol.org/content/70/2/598 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/ethylene-influenced-the-conductance-of-abaxial-stomata/ )

Pallas J. E., Mollenhauer H. H. (1972) – Physiological implications of Vicia faba and Nicotiana tabacum guard-cell ultrastructure – American Journal of Botany 59: 504–514 –

Panchal S.Chitrakar R.Thompson B. K.Obulareddy N., Roy D.Hambright W. S.Melotto M. (2016) – Regulation of Stomatal Defense by Air Relative Humidity – Plant Physiology DOI: https://doi.org/10.1104/pp.16.00696 –http://www.plantphysiol.org/content/172/3/2021 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/high-humidity-suppressing-stomatal-defense-and-linked-to-hormone-signaling/ )

Pandey N., Archana (2009) – Boron-stress induced changes in water status and stomatal morphology in Zea maysL. and Catharanthus roseus L. – Indian Journal of Plant Physiology 14(3): 310-314  – ISSN : 0019-5502 – http://agris.fao.org/agris-search/search.do?recordID=IN2010001027 – (On our blog : https://plantstomata.wordpress.com/2017/11/18/reduced-stomatal-size-increased-stomatal-index-and-stomatal-opening-at-deficient-and-toxic-supply-of-boron/ )

Pandey R., Chacko P., Choudhary M. L. Prasad K. V., Pal M. (2007) Higher than optimum temperature under CO2 enrichment influences stomata anatomical characters in rose (Rosa hybrida) – Scientia Horticulturae 113: 7481 – CrossrefGoogle Scholar

Pandey S., Wang X.-Q., Coursol S. A., Assmann S. M. (2002) – Preparation and applications of Arabidopsis thaliana guard cell protoplasts – New Phytologist 153: 517–526. – DOI: 10.1046/j.0028-646X.2001.00329.x – CrossRef | CAS |– http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00329.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/how-to-elucidate-electrophysiological-biochemical-and-molecular-genetic-pathways-of-stomata-function/ )

Pandey S., Zhang W., Assmann, S. M. (2007) – Roles of ion channels and transporters in guard cell signal transduction – FEBS Lett. 581: 2325–2336 – doi: 10.1016/j.febslet.2007.04.008 – https://www.sciencedirect.com/science/article/pii/S0014579307003833 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/stomatal-movement-is-facilitated-by-the-activity-of-ion-channels-and-ion-transporters/ )

Panteris E., Achiati T., Daras G., Rigas S. (2018) – Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis – Molecules. 2018 Jun 6;23(6). pii: E1365 –  doi: 10.3390/molecules23061365 – https://www.ncbi.nlm.nih.gov/pubmed/29882773 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/stomatal-complex-development-depends-on-cell-wall-mechanical-properties/ )

 

Panteris E., Apostolakos P., Galatis B. (2006) – Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position – Cell Motil Cytoskeleton. 63(11): 696-709 – PMID: 16986138 –

Panteris E., Galatis B., Quader H., postolakos P. (2007) – Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum – Cell Motility and the Cytoskeleton 64: 531-548 –https://www.academia.edu/27006952/Cortical_actin_filament_organization_in_developing_and_functioning_stomatal_complexes_of_Zea_mays_and_Triticum_turgidum – (On our blog : https://plantstomata.wordpress.com/2017/12/18/cortical-actin-filament-organization-in-developing-and-functioning-stomatal-complexes/ )

Pantin F., Blatt M. R. (2018) – Stomatal Response to Humidity: Blurring the Boundary between Active and Passive Movement – 

Pantin F.Monnet F.Jannaud D.Costa J.M.Renaud J.Muller B.Simonneau T.Genty B. (2013) – The dual effect of abscisic acid on stomata – New Phytol 1976572  -DOI: 10.1111/nph.12013 – CrossRefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/23106390 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/aba-promotes-stomatal-closure-in-a-dual-way-a-biochemical-effect-on-guard-cells-and-a-hydraulic-effect/

Pantin F.Renaud J.Barbier F. F.Vavasseur A.Le Thiec D.Rose C.Bariac T.Casson S. A.McLachlan D. H.Hetherington A. M.Muller B.Simonneau T. (2013) – Developmental Priming of Stomatal Sensitivity to Abscisic Acid by Leaf Microclimate – Current Biology – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/stomatal-sensitivity-to-aba-is-acquired-during-leaf-development-by-exposure-to-an-increasingly-dryer-atmosphere/

Pantoja 0., Willmer C. M . (1988) – Redox activity and peroxidase activity associated with the plasma membrane of guard cell protoplasts – Planta 174: 44-50 –

Paoleti E., Gellini R. (1993) –  Stomatal density variation in beech and holm oak leaves collected over the last 200 years – Acta Oecologica 14: 173-178 – http://cat.inist.fr/?aModele=afficheN&cpsidt=3800365 – (On our blog : https://plantstomata.wordpress.com/2017/09/07/stomatal-density-reduced-over-the-last-200-years/ )

Papanatsiou M., Amtmann A.Blatt M. R. (2016) – Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir – Plant Physiology DOI: https://doi.org/10.1104/pp.16.00850 – http://www.plantphysiol.org/content/172/1/254 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/stomatal-spacing-safeguards-stomatal-dynamics/ )

Papanatsiou M., Amtmann A.Blatt M. R. (2017) – Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency – J Exp Bot. 68(9): 2309–2315 – doi:  10.1093/jxb/erx072 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447881/ – (On our blog : https://plantstomata.wordpress.com/2018/03/19/is-stomatal-clustering-altering-guard-cell-dynamics-and-gas-exchange/

Papanatsiou M., Scuffi D., Blatt M. R., Garcia-Mata C. (2015) – Hydrogen Sulfide Regulates Inward-Rectifying K+Channels in Conjunction with Stomatal Closure – Plant Physiolog DOI: https://doi.org/10.1104/pp.114.256057 –http://www.plantphysiol.org/content/168/1/29 – https://plantstomata.wordpress.com/2017/11/06/h2s-closes-stomata/ )

Papazian S.Khaling E.Bonnet C.Lassueur S.Reymond P.Moritz T.Blande J. D.Albrectsen B. R. (2016) – Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure – Plant Physiology DOI: https://doi.org/10.1104/pp.16.01318 – http://www.plantphysiol.org/content/172/3/2057 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/central-metabolic-responses-and-stomatal-closure/ )

Pappas T., McManus P., Vanderveer P., Croxdale J. (1988) – Characterization of stomatal development in Dianthus chinensis – Canadian Journal of Botany, 1988, 66(1): 142-149 – https://doi.org/10.1139/b88-022 –http://www.nrcresearchpress.com/doi/abs/10.1139/b88-022 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-development-in-dianthus-chinensis-2/ )

Park G. E., Lee D. K., Kim K. W., Batkhuu N.-O.,  Tsogtbaatar J., Zhu J.-J., Jin Y., Pil Sun Park P. S., Hyun J. O., Kim H. S. (2016) – Morphological Characteristics and Water-Use Efficiency of Siberian Elm Trees (Ulmus pumila L.) within Arid Regions of Northeast Asia – Forests 7: 280-299 – doi:10.3390/f7110280 – www.mdpi.com/1999-4907/7/11/280/pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/stomatal-traits-and-aridity-gradients/ )

Park K. Y., Jung J. Y., Park J., Hwang J. U., Kim Y. W., Hwang I., Lee Y. (2003) – A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. – Plant Physiol. 132: 92–98. – doi: 10.1104/pp.102.016964 – https://www.ncbi.nlm.nih.gov/pubmed/12746515 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/a-role-for-pi3p-in-aba-induced-ros-generation-and-stomatal-closing-2/ )

Parkhurst D. F. (1978) –  The adaptive significance of stomatal occurrence on one or both surfaces of leaves – Journal of Ecology 66: 367-383 – DOI: 10.2307/2259142 – https://www.jstor.org/stable/2259142?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/07/the-adaptive-significance-of-hypostomatous-and-amphistomatous-leaves/ )

Parlati A.Valkov V. T.D’Apuzzo E.Martins Alves L.Petrozza A.Summerer S.Costa A.Cellini F., Vavasseur A., Chiurazzi M. (2017) – Ectopic Expression of PII Induces Stomatal Closure in Lotus japonicus – Front. Plant Sci. – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/ectopic-expression-of-pii-induces-stomatal-closure/ )

Parvathi K., Raghavendra A. S. (1995) – Bioenergetic processes in guard cells related to stomatal function – Physiol. Plant. 93: 146–154 –

Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) (2012) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – Publisher: The International Maize and Wheat Improvement Center, CIMMYT – https://www.researchgate.net/publication/268743172_Physiological_Breeding_II_A_Field_Guide_to_Wheat_Phenotyping – (On our blog : https://plantstomata.wordpress.com/2018/01/30/66106/ )

Patel J. D. (1978) – How should we interpret and distinguish subsidiary cells? – Bot J Linn Soc, 77:65-72. – DOI: 10.1111/j.1095-8339.1978.tb01373.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.1978.tb01373.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-concept-of-subsidiary-cells-of-stomata/ )

 

Patel J. D., Raju E. C., Fotedar R. L., Kothari H., Shah J. J. (1975) – Structure and histochemistry of stomata and epidermal cells in five species of Polypodiaceae – Ann. Bot. 38: 611-619 – DOI: 10.1093/oxfordjournals.aob.a084973 –https://www.jstor.org/stable/42753379?seq=1#page_scan_tab_contents – https://plantstomata.wordpress.com/2017/12/18/structure-and-histochemistry-of-stomata-in-ferns/ )

Paterson N. W., Weyers J. D. B., A’Brook R. (1988) – The effect of pH on stomatal sensitivity to abscisic acid – Plant Cell Environ. 11, 83-89. – DOI: 10.1111/1365-3040.ep11604886 – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11604886/full  – (On our blog : https://plantstomata.wordpress.com/2017/02/07/ph-and-stomatal-sensitivity-to-abscisic-acid/ )

Paterson N. W., Weyers J. D. B., Herdman L. (1988) – Relative control potential of abscisic acid, carbon dioxide and light in responses of Phaseolus vulgaris stomata – Physiol Plant. 2001 Mar;111(3):412-418 – PMID: 11240927 –https://www.ncbi.nlm.nih.gov/pubmed/11240927 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/relative-control-potential-of-aba-co2-and-light-in-responses-of-stomata/ )

Paterson N. W., Weyers J. D. B., Schildknecht H. (1987) – The Effects of a Turgorin on Stomatal Movement and Transpiration in Commelina communis L. – Journal of Plant Physiology 128(s 4–5):491–495 – DOI 10.1016/S0176-1617(87)80136-0 –http://www.sciencedirect.com/science/article/pii/S0176161787801360 – (On our blog : https://plantstomata.wordpress.com/2017/12/14/the-effects-of-a-turgorin-on-stomatal-movement/ )

Pavol E. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14, Issue 1, 29–42- doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 – (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/ )

Pavol E. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41, ISSN 0001-7124 – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/ )

Pazourek J. (1970) – The effect of light intensity on stomatal frequency in leaves of Iris hollandica Hort var. wedgwood – Biol. Plant. (Prague) 12: 208-215 –

Peak D., Mott K. A. (2011) – A new, vapour-phase mechanism for stomatal responses to humidity and temperature – Plant Cell Environ 34162178 – DOI: 10.1111/j.1365-3040.2010.02234.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02234.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/02/a-new-mechanism-for-stomatal-responses-to-humidity-and-temperature-2/

Peak D., Mott K. A. (2011) – Leafy Social Network: USU Scientists Study How Stomata Communicate – Utah State Today – University News (Nov.23, 2011) –http://www.usu.edu/ust/index.cfm?article=50552 – (On our blog : https://plantstomata.wordpress.com/2017/02/15/how-stomata-communicate-2/ )

Pearce D. W., Millard S., Bray D. F., Rood S. B. (2006) – Stomatal characteristics of riparian poplar species in a semi-arid environment – Tree Physiology 26: 211-218 – http://dx.doi.org/10.1093/treephys/26.2.211 – CrossRefGoogle Scholar – https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/26.2.211 – (On our blog : https://plantstomata.wordpress.com/2017/02/07/stomatal-density-stomatal-conductance-and-climatic-conditions/ )

Pearson C. J. (1973) – Daily changes in stomatal aperture and in carbohydrates and malate within epidermis and mesophyll of leaves of Commelina cyanea and Vicia faba. – Aust. J. Biol. Sci. 26, 1035–1044 – https://doi.org/10.1071/BI9731035 – – http://www.publish.csiro.au/BI/BI9731035 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/daily-changes-in-stomatal-aperture/

Pearson D. (2011) – Understanding the Abscisic Acid Pathway Using Guard Cell Specific Genes and the Anti-Aging Drug Spermidine – The University of Maryland McNair Scholars Undergraduate Research Journal 3: 174-193 – http://hdl.handle.net/1903/12468 –  https://drum.lib.umd.edu/handle/1903/12468 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/63317/ )

Pearson M., Mansfield T. A. (1993) – Interacting effects of ozone and water stress on the stomata1 resistance of beech (Fagus sylvatica L.) – New Phytologist 123: 351-358 – https://doi.org/10.1111/j.1469-8137.1993.tb03745.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1993.tb03745.x – (On our blog : https://plantstomata.wordpress.com/2018/06/11/effects-of-ozone-and-water-stress-on-the-stomatal-resistance/ )

Peat H. J., Fitter A. H. (1994) – A comparative study of the distribution and density of stomata in the British flora – Biological Journal of the Linnean Society, 52: 377-393. – DOI: 10.1111/j.1095-8312.1994.tb00999.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1994.tb00999.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/hypostomaty-amphistomaty-epistomaty-and-stomata-density/ )

Peel J. R., Mandujano Sanchez M. C., Lopez Portillo J., Golubov J. (2017) – Stomatal density, leaf area and plant size variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) along a salinity gradient in the Mexican Caribbean – Revista Biologia Tropical 66(2): – DOI: https://doi.org/10.15517/rbt.v65i2.24372 – https://revistas.ucr.ac.cr/index.php/rbt/article/view/24372 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/stomatal-density-is-inversely-related-to-leaf-area-and-salinity-may-increase-stomatal-density-by-causing-reduction-of-leaf-size/ )

Pei Z. M., Baizabal-Aguirre V. M., Allen G. J., Schroeder J. I. (1998) – A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells. – Proc. Natl. Acad. Sci. U.S.A. 95, 6548–6553. – doi: 10.1073/pnas.95.11.6548 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27872/ – (On our blog : https://plantstomata.wordpress.com/2017/02/18/a-k-channel-currentcytosolic-ca2-and-stomatal-movements/ )

Pei Z.-M., Ghassemian M., Kwak C., McCourt P., Schroeder J. I. (1998) – Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. – Science 282: 287–290 – DOI: 10.1126/science.282.5387.287 – http://science.sciencemag.org/content/282/5387/287.full – (On our blog : https://plantstomata.wordpress.com/2018/06/14/farnesyltransferase-in-aba-regulation-of-stomatal-anion-channels/ )

Pei Z. M., Kuchitsu K. (2005) – Early ABA signaling events in guard cells – Journal of Plant Growth Regulation 24: 296–307 –

Pei Z. M., Kuchitsu K., Ward J. M., Schwarz M., Schroeder J. I. (1997) – Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. – Plant Cell 9: 409–423 – doi: 10.1105/tpc.9.3.409 – http://www.plantcell.org/content/9/3/409 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/aba-signaling-pathways-and-roles-for-abi1-abi2-and-protein-kinases-and-phosphatases-in-stomata/ )

 

Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J., Grill E., Schroeder J. I. (2000) – Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. – Nature 406: 731–734. – doi: 10.1038/35021067 – https://www.nature.com/articles/35021067 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/aba-induced-h2o2-production-and-the-h2o-2-activated-ca2-channels-are-important-mechanisms-for-aba-induced-stomatal-closing/ )

Pei Z. M., Ward J. M., Harper J. F., Schroeder J. I. (1996) – A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. – EMBO J. 15: 6564–6574 – PMID: 8978683 – PMCID: PMC452481 – https://www.ncbi.nlm.nih.gov/pubmed/8978683 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/vcl-channels-may-provide-a-previously-unidentified-pathway-for-anion-uptake-into-vacuoles-required-for-stomatal-opening/ )

Pei Z. M., Ward J. M.,  Schroeder J. I. (1999) – Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles – Plant Physiology 121: 977-986 –

Peiter E., Maathuis F. J., Mills L. N., Knight H., Pelloux J., Hetherington A. M., et al. (2005) – The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. – Nature 434: 404–408. – doi: 10.1038/nature03381 – https://www.nature.com/articles/nature03381 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/stomatal-movement-a-critical-role-of-intracellular-ca2-release-channels-in-the-physiological-processes-of-plants/ )

Peligrino G. P. G., Wayan R. G. R., Escoton J. D. (2011) – Comparison of leaf stomata density of Rhoeo spathacea from polluted and non-polluted site in Cebu – BS Thesis Cebu University – http://www.herdin.ph/index.php/component/herdin/?view=research&cid=45629 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-density-in-leaves-from-a-polluted-and-a-non-polluted-site-in-cebu/ )

Pemadasa M. A. (1981) – Photocontrol of stomatal movements – Biol. Reviews Volume 56, Issue 4, 551–588 – DOI: 10.1111/j.1469-185X.1981.tb00359.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1981.tb00359.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/light-and-stomatal-movements/

Penfield S., Clements S., Bailey K. J., Gilday A. D., Leegood R. C., Gray J. E., Graham I. A. (2012) – Expression and manipulation of PHOSPHOENOLPYRUVATE CARBOXYKINASE 1 identifies a role for malate metabolism in stomatal closure. – Plant J.69, 679–688. – 10.1111/j.1365-313X.2011.04822.x – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/22007864 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/malate-metabolism-is-important-during-dark-induced-stomatal-closure-and-pepck-is-involved/

 

Peng Z., Weyers J. D. B. (1994) – Stomatal sensitivity to abscisic acid following water deficit stress – Journal of Experimental Botany 45: 835–845 – https://doi.org/10.1093/jxb/45.6.835 – https://academic.oup.com/jxb/article-abstract/45/6/835/509011?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-sensitivity-to-aba-following-water-deficit-stress/ )

Pereira de Souza R., Vasconcelos Ribeiro R., Caruso Machado E., Ferraz de Oliveira R., Gomes da Silveira J. A. (2005) – Photosynthetic responses of young cashew plants to varying environmental conditions – Pesq. agropec. bras. vol.40 no.8 Brasília Aug. 2005 –http://dx.doi.org/10.1590/S0100-204X2005000800002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2005000800002&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/02/15/stomata-and-varying-environmental-conditions-2/ )

Perera L. K. R. R., Mansfield T. A., Malloch A. J. C. (1994) – Stomatal responses to sodium ions in Aster tripolium: a new hypothesis to explain salinity regulation in above-ground tissues – Plant, Cell & Environment 17(3): 335–340 – DOI: 10.1111/j.1365-3040.1994.tb00300.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00300.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-responses-to-sodium-ions/ )

Peschel S., Beyer M., Knoche M. (2003) – Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting – Scientia Horticulturae 97: 265–278 – Surface_characteristics_of_sweet_cherry.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/the-number-distribution-size-and-function-of-stomata-and-wettability-of-the-sweet-cherry/ )

Peterson K. M., Rychel A. L., Torii K. U. (2010) – Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development – The Plant Cell 

Peterson R. L., Firminger M. S,, Dobrindt L. A. (1975) – Nature of the guard cell wall in leaf stomata of three Ophioglossum species – Can J Bot. 53: 1698–1711 – https://doi.org/10.1139/b75-199 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-199?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/components-of-the-guard-cell-wall-in-stomata/ )

Peterson R. L., Hambleton S. (1978) – Guard cell ontogeny in leaf stomata of the fern Ophioglossum petiolatum – Canadian Journal of Botany 56: 2836–2852 –

Petrova Y. (2012) – The effect of light intensity on the stomatal density of lavender, Lavandula angustifolia – Young Scientists Journal 2012(12): 89-93 – https://www.ysjournal.com/wp-content/uploads/Issue12/The-effect-of-light-intensity-on-the-stomatal-density-of-lavender-Lavandula-angustifolia.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/04/a-positive-correlation-between-stomatal-density-and-the-light-intensity/ )

Pharmawati M., Billington T., Gehring C. A. (1998) – Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent – Cell. Mol. Life Sci. 54: 272–276. – doi: 10.1007/s000180050149 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://link.springer.com/article/10.1007%2Fs000180050149 – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomata-responses-to-kinetin-and-natriuretic-peptides/ )

Pickard W. F. (1982) – Distribution of evaporation in the sub-stomatal chamber, the possibility of transpiration-linked pore narrowing, and the pathway of water near the site of evaporation – Ann. Bot. 49: 545–548. –https://eurekamag.com/research/000/859/000859348.php – (On our blog : https://plantstomata.wordpress.com/2017/02/16/evaporation-through-the-chamber-wall-adjacent-to-the-inner-aperture-of-the-stomatal-pore/ )

Pickett-Heaps J. D. (1969) – Preprophase microtubules and stomatal differentiaton. Some effects of centrifugation on symmetrical and asymmetrical cell division – Journal of Ultrastructure Research 27: 24–44 –

Pickett-Heaps J. D. (1969) – Preprophase microtubules and stomatal differentiation in Commelina cyanea – Aust. J. Biol. Sci. 22: 374–391 –

Pickett-Heaps J. D., Northcote D. H. (1966) – Cell division in the formation of the stomatal complex of the young leaves of wheat – Journal of Cell Science 1: 121–128 –

Pieruschka R., Huber G., Berry J. A. (2009) – Control of transpiration by radiation – PNAS 107(30): 13372–13377 – doi: 10.1073/pnas.0913177107 – http://www.pnas.org/content/107/30/13372.abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-regulation-of-leaf-and-canopy-transpiration-by-the-radiation-load/ )

Pietragalla J., Pask A. (2012) – Stomatal conductance – In: Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – CIIMMYT – Chapter 2 – http://www.plantstress.com/methods/Stomatal%20conductance%20measurement%20(wheat%20example%20-%20from%20CIMMYT).PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomatal-conductance/ )

Pillitteri L. J., Bogenschutz N. L., Torii K. U. (2008) – The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis – Plant Cell Physiol 49:934–943. – DOI:https://doi.org/10.1093/pcp/pcn067 – Abstract/FREE Full TextGoogle Scholar – https://academic.oup.com/pcp/article/49/6/934/1811933/The-bHLH-Protein-MUTE-Controls-Differentiation-of?ijkey=a82b0b2306ff4bfe69c873557ad45343c29fd352&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/02/16/the-bhlh-protein-mute-stomata-and-the-hydathode-pore/ )

Pillitteri L. J., Dong J. (2013) – Stomatal Development in Arabidopsis – The Arabidopsis Book, 11, pp. e0162, June 2013. – doi:  10.1199/tab.0162 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711358/ – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomatal-development-2/ )

Pillitteri L. J., Peterson K. M., Horst R., Torii K. U. (2011) – Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis – Plant Cell 23: 3260–3275 –

Pillitteri L. J.Sloan D. B.Bogenschutz N. L.Torii K. U. (2007) – Termination of asymmetric cell division and differentiation of stomata. – Nature 445501505. – CrossRefPubMedGoogle Scholar – http://www.nature.com/nature/journal/v445/n7127/full/nature05467.html – (On our blog : https://plantstomata.wordpress.com/2016/08/22/stomata-the-roles-of-bhlhs-in-cell-type-differentiation/)

Pillitteri L. J, Torii K. U. (2007) – Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development – Bioessays 29: 861–870 – DOI: 10.1002/bies.20625 – [PubMed] [Cross Ref] – 

Pillitteri L. J, Torii K. U. (2012) – Mechanisms of stomatal development – Annual Review of Plant Biology 63: 591–614 – 10.1146/annurev-arplant-042811-105451 – CrossRefMedlineWeb of ScienceGoogle Scholar – http://www.annualreviews.org/doi/10.1146/annurev-arplant-042811-105451 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/mechanisms-of-stomatal-development/ )

Pilot G., Lacombe B., Gaymard F., Chérel I., Boucherez J., Thibaud J. B., Sentenac H. (2001) – Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. – J. Biol. Chem. 276, 3215–3221. – doi: 10.1074/jbc.M007303200 – http://www.jbc.org/content/276/5/3215.full – (On our blog : https://plantstomata.wordpress.com/2018/01/19/expression-of-the-twin-channel-subunits-kat1-and-kat2-in-stomata/ )

Pivovaroff A. L., Cook V. M. W., Santiago L. S. (2018) – Stomatal behavior and stem xylem traits are coordinated for woody plant species under exceptional drought conditions – Plant, Cell & Environment, published online and citable.  – https://doi.org/10.1111/pce.13367 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13367?af=R – (On our blog : https://plantstomata.wordpress.com/2018/06/28/the-stomatal-and-xylem-hydraulic-safety-strategies-of-woody-species/ )

Plesch G., Ehrhardt T., Mueller-Roeber B. (2001) – Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. – Plant J. 28: 455– 464 – https://doi.org/10.1046/j.1365-313X.2001.01166.x – https://www.ncbi.nlm.nih.gov/pubmed/11737782 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/taaag-elements-are-target-sites-for-trans-acting-dof-proteins-controlling-stomatal-specific-gene-expression/ )

Plumbe A. M., Willmer C. M. (1986) – Phytoalexins, water-stress and stomata – New Phytologist 102 (3): 375–384 – DOI: 10.1111/j.1469-8137.1986.tb00815.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1986.tb00815.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/the-effects-of-the-phytoalexins-on-stomatal-responses/ )

 

Poffenroth M., Green D. B., Tallman G. (1992) – Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light: analysis by high performance liquid chromatography. – Plant Physiol. 98, 1460–1471. – doi: 10.1104/pp.98.4.1460 – CrossRef |PubMed | – http://www.plantphysiol.org/content/98/4/1460 – (https://plantstomata.wordpress.com/2017/02/27/soluble-sugars-can-contribute-significantly-to-the-osmoregulation-of-stomatal-cells/ )

Pompelli M. F., Martins S. C. V., Celin E. F., Ventrella M. C., DaMatta F. M. (2010) – What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? – Braz. J. Biol. 70(4): 1083-1088 – http://www.scielo.br/pdf/bjb/v70n4/a25v70n4.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/24/influence-of-ordinary-epidermal-cells-and-stomata-on-the-leaf-plasticity-of-coffee/ )

Poole I.Weyers J. D. B.Lawson T.Raven J. A. (1996) – Variations in stomatal density and index: implications for palaeoclimatic reconstructions – Plant, Cell and Environment 19705712. – Wiley Online Library | CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00405.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/high-level-of-variation-in-stomatal-characters-occurs-both-within-and-between-leaves-of-a-tree/ )

 

Poole I.Weyers J. D. B.Lawson T.Raven J. A. (2000) – Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa – New Phytol. 145: 511–521 –Effect_of_elevated_CO2_on_the_stomatal_d.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-development-distribution-and-conductance-under-elevated-co2-concentration/ )

Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011) – Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress – Plant Biol. 13: 105–114 – doi: 10.1111/j.1438-8677.2010.00344.x – PubMed Abstract | CrossRef Full Text | Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.2010.00344.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/salicylic-acid-treatment-via-the-rooting-medium-interferes-with-stomatal-response/ )

Pospíšilová J. (1996) – Effect of air humidity on the development of functional stomatal apparatus – Biologia Plantarum 1996;38:197204. –  doi:10.1007/BF02873846 – (Google Scholar) – https://link.springer.com/article/10.1007%2FBF02873846?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/02/27/air-humidity-on-the-development-of-stomata/ )

Pospíšilová J.Šantrůček J. (1994) – Stomatal patchiness – Biologia Plantarum 36(4): 481-510  – doi:10.1007/BF02921169 – CrossRefWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF02921169. – (On our blog : https://plantstomata.wordpress.com/2017/02/27/small-groups-of-stomata-on-a-single-leaf-blade-stomatal-patchiness/ )

Pospíšilová J.Šantrůček J. (1997) – Stomatal patchiness: effects on photosynthesis – In: Handbook of Photosynthesis (ed. M. Pessarakli): 427-44 – Marcel Dekker, New York –

Pou A., Flexas J., del Mar A. M, et al. (2008) – Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris) – Physiologia Plantarum 134: 313–323 –

Poudel M. S. (2013) – Responses of air humidity and light quality on growth and stomata function of greenhouse grown Rosa × hybrida – Department of Plant and Environmental Sciences (IPM), Norwegian University of Life Sciences, Ås, Norway  – –https://brage.bibsys.no/xmlui/bitstream/handle/11250/189591/madhu%20sudhan%20thesis.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2018/01/10/light-quality-can-be-used-a-tool-to-improve-the-stomata-function-under-high-rh/ )

Poulter B., Frank D. (2015) – Rising CO2 levels are changing how fast forests cycle water – The Conversation  – http://theconversation.com/rising-co2-levels-are-changing-how-fast-forests-cycle-water-40746 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/stomata-and-rising-co2-levels/ )

Powles J. E., Buckley T. N., Nicotra A. B., Farquhar G. D. (2006) – Dynamics of stomatal water relations following leaf excision – Plant, Cell and Environment 29: 981–992 – doi: 10.1111/j.1365-3040.2005.01491.x – http://biology-assets.anu.edu.au/CMS/FileUploads/file/Farquhar/229PowleslfexcisionPCE2006.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/27/leaf-excision-and-dynamics-of-stomatal-water-relations/ )

Predovich S. (2012) – Stomata Density of Orchids and Cloud Forest Humidity – Oregon Undergraduate Research Journal – 3.1 (2012) ISSN: 2160-617X (online) – DOI: 10.5399/uo/ourj.3.1.2386 – 2386-5866-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/25/orchids-closed-their-stomata-in-drier-conditions-in-order-to-reduce-water-loss-and-desiccation/ )

Priddy S. (2016) – Stomata: Tree Breath – The Blog – http://www.kibi.org/stomata-tree-breath/ – (On our blog : https://plantstomata.wordpress.com/2018/01/11/video-the-earth-has-lungs-watch-them-breathe/ )

Prodhan Y., Munemasa S., Nahar N.-E- N., Nakamura Y., Murata Y. (2018) – Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca2+/CPK-Dependent Pathway – Plant Physiology DOI: https://doi.org/10.1104/pp.18.00321 – http://www.plantphysiol.org/content/178/1/441 – (On our blog : https://plantstomata.wordpress.com/2018/09/10/guard-cell-salicylic-acid-signaling-is-integrated-into-aba-signaling-in-stomata/ )

Prokic L., Jovanovic Z., McAinsh M. R., Vucinic Z., Stikic R. (2006) – Species- dependent changes in stomatal sensitivity to abscisic acid mediated by external pH. – J. Exp. Bot. 57, 675–683. – doi: 10.1093/jxb/erj057 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erj057 – (On our blog : https://plantstomata.wordpress.com/2017/03/01/species-and-stomatal-sensitivity-to-aba/ )

 

Puli M. R., Raghavendra A. S. (2012) – Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cells in abaxial epidermis of Pisum sativum. – J. Exp. Bot. 63:  1349–1356. – doi: 10.1093/jxb/err364 – https://www.ncbi.nlm.nih.gov/pubmed/22131162 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/pyrabactin-to-examine-the-aba-related-signal-transduction-components-in-stomatal-guard-cells/ )

 

Puli M. R., Rajsheel P., Aswani V., Agurla S., Kuchitsu K., Raghavendra A. S. (2016) – Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. – Planta 244: 831–841. – doi: 10.1007/s00425-016-2545-z – https://www.ncbi.nlm.nih.gov/pubmed/27233507 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/stomatal-closure-induced-by-phyto-s1p-and-s1p-depends-on-rise-in-ph-as-well-as-no-of-guard-cells/ )

Purcell C., Batke S., Yiotis C., Caballero R., Soh W. K., Murray M., McElwain J. C. (2018) – Increasing stomatal conductance in response to rising atmospheric CO2 – Annals of Botany 121(6): 1137-1149 – https://doi.org/10.1093/aob/mcx208 – https://doi.org/10.1093/aob/mcy023 -, https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcx208/4823760?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-conductance-and-rising-atmospheric-co2/ )

Purohit S., Kumar G. P., Laloraya M., Laloraya M. M. (1994) – Involvement of superoxide radical in signal transduction regulation stomatal movements – Biochem Biophys Res Commun 205: 30–37 – DOI: 10.1006/bbrc.1994.2625 – https://www.ncbi.nlm.nih.gov/pubmed/7999040?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/05/stomatal-movements-regulated-by-blue-light-activated-redox-reactions/ )

Putra E.T.S., Zakaria W., Abdullah N.A.P., Saleh G. B. (2012) – Stomatal Morphology, Conductance and Transpiration of Musa sp. cv. Rastali in Relation to Magnesium, Boron and Silicon Availability – American Journal of Plant Physiology  7( 2): 84-96 – DOI: 10.3923/ajpp.2012.84.9 – http://docsdrive.com/pdfs/academicjournals/ajpp/2012/84-96.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/06/linear-relationships-between-stomatal-width-stomatal-conductance-and-transpiration-rate/ )

Pyakurel A., Wang J. (2014) – Leaf Morphological and Stomatal Variations in Paper Birch Populations along Environmental Gradients in Canada – American Journal of Plant Sciences, 5, 1508-1520. – doi: 10.4236/ajps.2014.511166.- http://www.scirp.org/journal/PaperInformation.aspx?PaperID=45954#.VR6cL5OUe6E – (On our blog : https://plantstomata.wordpress.com/2017/03/01/35120/ )

Qi Z., Pi E., Zhang X., Möller M., Jiang B., Lu H. (2017) – Ontogenesis of D-type stomata and cork-warts on the leaf epidermis of Camellia japonica (Theaceae) and functional assessment – Flora 228: 24-30 – https://doi.org/10.1016/j.flora.2017.01.010 – https://www.sciencedirect.com/science/article/pii/S0367253017310174 – (On our blog : https://plantstomata.wordpress.com/2018/08/28/d-type-stomata-and-cork-warts-are-responsible-for-air-exchange-and-water-evaporation/

Qin X.-M., Bian M.-D., Yang Z.-M., Shi W.-L. (2015) – Tyrosine phosphorylation mediates starch metabolism in guard cell of Vicia faba – Published Online: 2015-06-23 –  DOIhttps://doi.org/10.1515/biolog-2015-0068 – https://www.degruyter.com/view/j/biolog.2015.70.issue-5/biolog-2015-0068/biolog-2015-0068.xml – (On our blog : https://plantstomata.wordpress.com/2018/01/19/tyrosine-phosphorylation-may-modulate-starch-degradation-in-guard-cells-and-regulate-the-stomatal-movement/ )

Qu X., Peterson K. M., Torii K. U. (2017) – Stomatal development in time: the past and the future – Curr. Opin. Genet. Dev. 45: 1–9 – DOI: 10.1016/j.gde.2017.02.001- [PubMed] [Cross Ref] – 

Rakocevic M., Vasconcelos Ribeiro R., Ribeiro Marchiori P. E., Ferreira Filizola H., Reis Batista E. (2018) – Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment – Annals of Botany, 12(5,): 1065–1078 – https://doi.org/10.1093/aob/mcy011 – https://academic.oup.com/aob/article/121/5/1065/4856813 – (On our blog : https://plantstomata.wordpress.com/2018/04/22/increased-air-co2-stimulated-stomatal-conductance-and-leaf-photosynthesis/ )

 

Raczka B., Duarte H. F., Koven C. D., Ricciuto D., Thornton P. E., Lin J. C., Bowling D. R. (2016) – An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5) – Biogeosciences 13(18): 5183-5204 – https://doi.org/10.5194/bg-13-5183-2016 – https://www.biogeosciences.net/13/5183/2016/ – (On our blog : https://plantstomata.wordpress.com/2017/11/24/isotope-observations-can-provide-important-information-related-to-stomatal-function/ )

Radin J. W.  (1984) – Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants – Plant Physiol 76:392–394 -doi: http://dx.doi.org/10.1104/pp.76.2.392 – PubMedCentralPubMedCrossRef – http://www.plantphysiol.org/content/76/2/392 – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-aba-and-cytokinins/ )

Radin J. W., Lu Z., Percy R. G., Zeiger E. (1994) – Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation – Proc. Natl. Acad. Sci. U.S.A. 91, 7217–7221. – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=11607487 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/genetic-variability-for-stomatal-conductance-and-temperature/ )

Radoglou K. M.Aphalo P. J.Jarvis P. G. (1992) – Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. – Annals of Botany 70,257264. –http://aob.oxfordjournals.org/content/70/3/257.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-conductance-elevated-co2-and-nutrient-supply/ )

Raghavendra A. S. (1990) – Blue light effects on stomata are mediated by the guard cell plasma membrane redox system distinct from the proton translocating ATPase – Plant Cell Environ. 13: 105–110 –

Raghavendra A.S., Bhaskar Reddy K. (1987) – Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate – Plant Physiol. 83: 732-734, 1987. –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1056439/ – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-proline-aba-g-substances-and-methyl-jasmonate/ )

Raghavendra A. S., Das V. S. R. (1972) – Control of stomatal opening by cyclic photophosphorylation – Curr. Sci. 41: 150-151 –

Raghavendra A. S., Gonugunta V. K., Christmann A., Grill E. (2010) – ABA perception and signaling. – Trends Plant Sci. 15, 395–401. – doi: 10.1016/j.tplants.2010.04.006 – https://www.ncbi.nlm.nih.gov/pubmed/20493758 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/aba-perception-and-signaling/ )

 

Raghavendra A. S., Murata Y. eds. (2017) – Editorial: Signal Transduction in Stomatal Guard Cells – Front. Plant Sci. 8:114. doi: 10.3389/fpls.2017.00114 – 9782889451678.PDF – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/247 )

Raghavendra A. S., Rao I. M., Das V. S. R. (1976) – Characterization of abscisic acid inhibition of stomatal opening in isolated epidermal strips – Plant Sci. Lett. 6, 111–115. – doi: 10.1016/0304-4211(76)90144-9 – CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/0304421176901449?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2017/03/03/aba-inhibition-of-stomatal-opening-in-isolated-epidermal-strips/ )

Raissig M. T.Abrash E.Bettadapur A.Vogel J. P.Bergmann D. C. (2016) – Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity – Proc Natl Acad Sci USA 11383268331 – Abstract/FREE Full TextGoogle Scholar  http://www.pnas.org/content/113/29/8326 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/the-stomatal-transcription-factor-module-is-a-prime-target-for-breeding-or-genome-modification-to-improve-plant-productivity/ )

Raissig M. T., Bergmann D. C. (2017) – The recipe for especially efficient stomata – VIDEO – Eurekalert AAAS – http://dx.doi.org/10.1126/science.aal3254 – https://www.eurekalert.org/multimedia/pub/135451.php – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-recipe-for-especially-efficient-stomata-video/ )

Raissig M. T., Matos J. L., Anleu Gil M. X., Kornfeld A., Bettadapur A., Abrash E., Allison H. R., Badgley G., Vogel J. P., Berry J. A., Bergmann D. C. (2017) – Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. – Science 355(6330):1215-1218 – doi:10.1126/science.aal3254 – http://science.sciencemag.org/content/355/6330/1215 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/an-ortholog-of-the-stomatal-regulator-atmute-defines-the-stomatal-precursor-fate/ )

Rajagopal V., Patil K. D., Sumathykuttyamma B. (1986) – Abnormal Stomatal Opening in Coconut Palms Affected with Root (Wilt) Disease – Journal of Experimental Botany Vol. 37, No. 182 (September 1986), pp. 1398-1405 – https://www.jstor.org/stable/23691597?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/28/stomatal-regulation-is-significantly-impaired-in-diseased-palms/ )

Rajendra B. R., Mujeeb K. A., Bates L. S. (1978) – Relationships between 2X hordeum sp., 2X Secale sp. and 2X, 4X, 6X triticum spp. for stomatal frequency, size and distribution – Environ. Exp. Bot., 18: 33-37. –http://journals2.scholarsportal.info/details?uri=/00988472/v18i0001/33_rb2hs2fsfsad.xml – (https://plantstomata.wordpress.com/2016/12/03/stomatal-frequency-size-and-distribution/ )

Rajmohan A. (2014) – Comparing stomatal densities in sun and shade – BIOC52 – https://www.scribd.com/document/248523446/Comparing-stomatal-densities-in-sun-and-shade – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-densities-in-sun-and-shade/ )

Rama Das V. S., Raghavendra A. S. (1982) – Stomata: The physiology and biochemistry of their regulation in leaves – Curr. Sci. 51: 586-593 –

Ramos L. J.Nayaranan K. R.McMillan R. T. Jr. (1992) – Association of stomatal frequency and morphology in Lycopersicon species with resistance to Xanthomonas campestris pv. vesicatoria – Plant Pathology 41(2): 157–164 –  Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.1992.tb02334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/correlations-between-stomatal-traits-and-the-number-of-bacterial-lesions/ )

Ramos L. J., Volin R. B. (1987) – Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria – Florida Agricultural Experiment Stations Journal Series No. 7355 – Phytopathology 77(9): 1311-1317 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Articles/Phyto77n09_1311.PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/06/role-of-stomatal-opening-and-frequency-on-infection-by-xanthomonas/ )

Ran J.-H., Shen T.-T., Liu W.-J., Wang X.-Q. (2013) – Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants – PLoS ONE 8, e78997 (2013). –https://www.ncbi.nlm.nih.gov/pubmed/24244399 – (https://plantstomata.wordpress.com/2016/12/03/the-bhlh-genes-involved-in-stomatal-development/ )

Rand R. H.Upadhyaya S. K.Cooke J. R., Storti D. W. (1981) – Hopf bifurcation in a stomatal oscillator – Journal of Mathematical Biology 12111. – doi:10.1007/BF00275199 – CrossRef – https://link.springer.com/article/10.1007%2FBF00275199 – (https://plantstomata.wordpress.com/2017/03/03/hopf-bifurcation-in-a-stomatal-oscillator/ )

Rao D. G., Vanaja M., Hebbar K. B., Venkateswarlu B. (1996) – Control of stomatal function by xylem exudates from stressed plants without a decrease in the leaf water potential: possible role for root signals ? – Proc. Indian natn. Sci. Acad. B62(4): 297-302 –http://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol62B_1996_4_Art08.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/control-of-stomatal-function-by-xylem-exudates/ )

Raschke K. (1965) – Die Stomata als Glieder eines schwingungsfähigen CO2‐Regelsystems Experimenteller Nachweis an Zea mays L. – Zeitschrift für Naturforschung 20b, 1261–1270. – https://www.degruyter.com/downloadpdf/j/znb.1965.20.issue-12/znb-1965-1219/znb-1965-1219.xml – (https://plantstomata.wordpress.com/2016/12/03/stomata-a-regulatory-system-stabilizing-the-co2-concentration-within-the-intercellular-spaces-of-leaves/ )

Raschke K. (1970) – Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. – Planta 91: 336–363. – doi: 10.1007/Bf00387507 – https://www.jstor.org/stable/23368819?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/15/stomatal-aperture-and-co2/ )

 

Raschke K. (1970) – Stomatal responses to pressure changes and interruption s in the water supply of detached leaves of Zea mays L. – Plant Physiol. 45: 415-423 –

Raschke K. (1975) – Stomatal action – Annu. Rev. Plant Physiol. 26:309 340 – 

Raschke K. (1976) – How stomata resolve the dilemma of opposing priorities – Phil Trans R Soc Lond 273: 551–560 – DOI: 10.1098/rstb.1976.0031 – CrossRefGoogle Scholar – http://rstb.royalsocietypublishing.org/content/273/927/551 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-opposing-priorities/ )

Raschke K. (1979) – Movements of stomata in Encyclopedia of Plant Physiology, New Series, 7. (Eds. HAUPT, W., and FEINLElB, M. E.) pp. 383-441. Springer-Verlag, Berlin 1979.

Raschke K. (1987) – Action of abscisic acid on guard cells – In : Stomatal Function (eds. E. Zeiger, G. D. Farquhar & I. R. Cowan : 253-279) – Stanford University Press, Stanford, California.

Raschke K. (2003) – Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate – Planta 217:651657 – doi:10.1007/s00425-003-1034-3 – CrossRef Medline Google Scholar – https://link.springer.com/article/10.1007%2Fs00425-003-1034-3 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/alternation-of-anion-conductance-in-stomata/ )

Raschke K., Dittrich P. (1977) –  (14C) Carbon dioxide fixation by isolated leaf epidermis with stomata closed or open – Planta 134: 69-75 – 

Raschke K., Fellows M. P. (1971) – Stomatal movement in Zea mays: Shuttle of potassium and chloride between guard cells and subsidiary cells – Planta 101: 296-316 –  https://doi.org/10.1007/BF00398116 – https://link.springer.com/article/10.1007/BF00398116#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/16/shuttle-of-potassium-and-chloride-between-stomatal-guard-cells-and-subsidiary-cells/ )

Raschke K., Hedrich R. (1989) – Patch-clamp measurements on isolated guard cell protoplasts and vacuoles – Methods Enzymol. 174: 312–330 –

Raschke K., Hedrich R., Reckmann U., Schroeder J. I. (1988) – Exploring biophysical and biochemical components of the osmotic motor that drives stomatal movement – Botanica Acta 101: 283-294 –

Raschke K., Humble G. D. (1973) – No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions – Planta 115: 47–57 –

Raschke K., Shabahang M., Wolf R. (2003) – The slow and the quick anion conductances in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2 – Planta 217(4): 639-50 – DOI 10.1007/s00425-003-1033-4  – https://www.ncbi.nlm.nih.gov/pubmed/12712336 – (On our blog : https://plantstomata.wordpress.com/2017/03/06/anion-conductances-in-stomata/

Raskin I., Ladyman J. A. R. (1988) – Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata – Planta 1988;173:73-78. – doi:10.1007/BF00394490 – CrossRefMedlineWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF00394490 – (On our blog : https://plantstomata.wordpress.com/2016/12/03/aba-insensitive-stomata/ )

Rasmussen H. (1986) – Pattern formation and cell interactions in epidermal development of Anemarrhena asphodeloides (Liliaceae) – Nordic Journal of Botany 6:467–477.- DOI: 10.1111/j.1756-1051.1986.tb00903.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1756-1051.1986.tb00903.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/a-characteristic-pattern-of-stomata/ )

 Rathaiah Y. (1975) – Infection of Sugarbeet by Cercospora beticolain Relation to Stomatal Condition – Phytopathology 66: 737-740. – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1976Articles/Phyto66n06_737.PDF – (On our blog : https://plantstomata.wordpress.com/2016/12/27/cercospora-beticola-penetrates-sugarbeet-through-stomata/ )

Raven  J. A. (2002) – Selection Pressures on Stomatal Evolution – New Phytologist, 153: 371-386 – DOI: 10.1046/j.0028-646X.2001.00334.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomatal-evolution-2/ )

Raven J. A. (2014) – Speedy small stomata ? – Journal of Experimental Botany 65(6): 1415–1424 – https://doi.org/10.1093/jxb/eru032 – https://academic.oup.com/jxb/article/65/6/1415/588799 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/faster-opening-and-closing-of-smaller-than-of-larger-stomata/ )

Rawson H. M., Craven C. L. (1975) – Stomatal Development During Leaf Expansion in Tobacco and Sunflower – Australian Journal of Botany 23(2) – DOI: 10.1071/BT9750253 – https://www.researchgate.net/publication/248898229_Stomatal_Development_During_Leaf_Expansion_in_Tobacco_and_Sunflower – (On our blog : https://plantstomata.wordpress.com/2018/09/17/stomatal-development-during-leaf-expansion/  )

Reckmann U., Scheibe R., Raschke K. (1990) – Rubisco activity in guard cells compared with the solute requirement for stomatal opening – Plant Physiol. 92: 246–253 – 10.1104/pp.92.1.246 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/plantphysiol/92/1/246.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/14/rubisco-activity-in-stomata/

Redmann R. E. (1985) – Adaptation of grasses to water stress – leaf rolling and stomate distribution – Annals of the Missouri Botanical Garden 72, No. 4, 1985 – 833–842 – CrossRef – http://www.jstor.org/stable/2399225?origin=crossref&seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomata-and-water-stress/ )

Reddy A. R., Das V. S. R. (1986) – Stomatal movement and sucrose uptake by guard cell protoplasts of Commelina benghalensis L. – Plant Cell Physiol 27: 1565–1570 – https://doi.org/10.1093/oxfordjournals.pcp.a077257https://academic.oup.com/pcp/article-abstract/27/8/1565/1840083?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/07/17/stomatal-movement-and-sucrose-uptake-by-guard-cell-protoplasts/ )

Reich P. B., Borchert R. (1988) – Changes with leaf age in stomatal function and water status of several tropical tree species – Biotropica 20(1): 60-69 –https://experts.umn.edu/en/publications/changes-with-leaf-age-in-stomatal-function-and-water-status-of-se – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-water-status-change-with-leaf-age/ )

Reich P. B., Hobbie S. E.,  Lee T. D. Pastore M. A. (2018) – Unexpected reversal of C3 versus Cgrass response to elevated CO2 during a 20-year field experiment – Science  360(6386): 317-320 – DOI: 10.1126/science.aas9313 – http://science.sciencemag.org/content/360/6386/317 – (On our blog : https://plantstomata.wordpress.com/2018/04/25/effect-of-rising-co2-levels-on-c3-and-c4-plants/

Rhine J. B. (1924) – Clogging of Stomata of Conifers in Relation to Smoke Injury and Distribution – Botanical Gazette Vol. 78, No. 2 (Oct., 1924), pp. 226-232 – https://www.jstor.org/stable/2469885?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/30/smoke-injury-and-clogging-of-stomata/ )

Rho H.,Van Epps V., Wegley N.,Doty S. I.,Kim S.-H. (2018) – Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice – Front Plant Sci. 9: 188 –   – doi:  10.3389/fpls.2018.00188 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840156/ – (On our blog : https://plantstomata.wordpress.com/2018/07/30/the-physiological-mechanisms-of-plant-endophyte-interactions-involving-plant-water-relations-and-stomatal-functions/ )

Richards J. (2016) – New study of water-saving plants advances efforts to develop drought-resistant crops – EurekAlert 2016-12-05 –https://www.eurekalert.org/pub_releases/2016-12/drnl-nso120516.php – (https://plantstomata.wordpress.com/2016/12/07/29113/ )

Richardson F., Brodribb T. J., Jordan G. J. (2017) – Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand – Tree Physiology 37: 869–878 doi:10.1093/treephys/tpx073 – http://www.brodribblab.org.au/wp-content/uploads/2017/08/Amphistomatic-leaf-surfaces-independently-regulate-gas-exchange-in-response-to-variations-in-evaporative-demand.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/amphistomatic-leaf-surfaces-independently-regulate-gas-exchange/ )

Ridolfi M., Fauveau M. L., Label P., Garrec J. P., Dreyer E.. (1996) – Responses to water stress in an ABA-unresponsive hybrid poplar, Populus koreana × trichocarpa cv. Peace. I. Stomatal function. – New Phytol. 134: 445–454 – https://doi.org/10.1111/j.1469-8137.1996.tb04361.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1996.tb04361.x – (On our blog : https://plantstomata.wordpress.com/2018/06/14/drought-control-of-stomatal-conductance-is-aba%e2%80%90independent-and-could-involve-calcium-ions/

Ridolfi M., Garrec J.-P. (2000) – Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves – Ann. For. Sci. 57(3): 209 – 218 – DOI: 10.1051/forest:2000112 – https://www.afs-journal.org/articles/forest/abs/2000/03/f0302/f0302.html – (On our blog : https://plantstomata.wordpress.com/2017/11/24/excess-al-associated-to-low-ca-and-mg-nutrition-lead-to-a-strong-stomatal-dysfonction/ )

Ridolfi M., Roupsard O., Garrec J. P., Dreyer E. (1996) – Effects of a calcium deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution – Annales des Sciences Forestières > 1996 > 53 > 2-3 > 325-335 – ISSN :0003-4312 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0234dd50-d101-38e8-8422-f8dd781d8c17 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/effects-of-a-calcium-deficiency-on-stomatal-conductance/ )

Rienmüller F., Beyhl D., Lautner S., Fromm J., Al-Rasheid K. A. S., Ache P., et al. (2010) – Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels – Plant Cell Physiol. 51: 1548–1554 – doi: 10.1093/pcp/pcq102 – https://www.ncbi.nlm.nih.gov/pubmed/20630987 – (On our blog : https://plantstomata.wordpress.com/2018/06/14/stomatal-specific-calcium-sensitivity-of-high-density-and-activity-sv-tpc1-channels/ )

Ripley B. S., Gilbert M. E., Ibrahim D. G., Osborne C. P. (2007) – Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata – Journal of Experimental Botany 58: 1351–1363 –

Ritte G., Raschke K. (2003) – Metabolite export of isolated guard cell chloroplasts of Vicia faba – N. Phytol. 159: 195–202 –

Ritte G., Rosenfeld J., Rohrig K., Raschke K. (1999) – Rates of sugar uptake by guard cell protoplasts of Pisum sativum L.; Related to the solute requirement for stomatal opening. Plant Physiol 121:647–656 – doi: 10.1104/pp.121.2.647 – 

 

Robaina-Estévez S., Daloso D. M., Zhang Y., Fernie A. R., Nikoloski Z. (2017) – Resolving the central metabolism of Arabidopsis guard cells – Scientific Reports 7, Nt.: 8307 – doi:10.1038/s41598-017-07132-9 – https://www.nature.com/articles/s41598-017-07132-9 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/55316)

Robatzek S., Lozano-Duran R., Bourdais G., Zhou J. (2012) – Guarding the gates: Stomatal responses to pathogens – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomatal-responses-to-pathogens/ )

Robinson J. M. (1994) – Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization – Plant, Cell & Environment 17: 345-354 –

Robinson N., Preiss J. (1985) – Biochemical phenomena associated with stomatal function. – Physiol. Plantarum 64: 141-146 – https://doi.org/10.1111/j.1399-3054.1985.tb02327.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1985.tb02327.x – (On our blog : https://plantstomata.wordpress.com/2018/06/14/stomatal-function-and-biochemical-phenomena/ )

Robredo A., Pérez-Lopez U., Sainz de la Maza H., Gonzalez-Moro B., Lacuesta M., Mena-Petite A., Alberto Munoz-Rueda A. (2007) – Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis – Environmental and Experimental Botany 59 : 252–263 – Elevated_CO2_alleviates_the_impact_of_dr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/co2-drought-and-improvement-of-water-status-by-lowering-stomatal-conductance/ )

Roccío A., Elvira S., Sanz M. J., Emberson L., Gimeno B. S. (2007) – Parameterization of the Stomatal Component of the DO3SE Model for Mediterranean Evergreen Broadleaf Species – The Scientific World Journal 7: 119-127 – doi:10.1100/tsw.2007.27 – https://www.ncbi.nlm.nih.gov/pubmed/17450288 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/parameterization-of-the-stomatal-component-of-the-do3se-model/ )

Rocha-Uriartt L., Marques Corta G., Gehlen G., Droste A., Schmitt J. L. (2014) – Morphometric differences of Microgramma squamulosa (Kaulf.) de la Sota (Polypodiaceae) leaves in environments with distinct atmospheric air quality – Anais da Academia Brasileira de Ciências 86(3):1137-46. – DOI: 10.1590/0001-3765201420130094 ·Source: PubMed – https://www.ncbi.nlm.nih.gov/pubmed/25014917 – (https://plantstomata.wordpress.com/2017/01/16/stomata-of-a-fern-in-environments-with-distinct-atmospheric-air-quality/ )

Roche D. (2015) – Stomatal conductance is essential for higher yield potential of C3 crops. – Crit. Rev. Plant Sci. 34, 429–453. – doi: 10.1080/07https://www.ncbi.nlm.nih.gov/pubmed/16101906352689.2015.10 23677 – https://www.tandfonline.com/doi/abs/10.1080/07352689.2015.1023677 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/stomatal-conductance-and-c3-crops/ )

Rodriguez J. L., Davies W. J. (1982) – The effects of temperature and ABA on stomata of Zea mays L. – J. Exp. Bot. 33, 977–987. – doi: 10.1093/jxb/33. 5.977 – https://academic.oup.com/jxb/article-abstract/33/5/977/566674?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/06/15/effects-of-temperature-and-aba-on-stomata/ )

Roelfsema M. R. G. Hanstein S., Felle H. H., Hedrich R. (2002)  – CO2 provides an intermediate link in the red light response of guard cells – Plant J. 32: 65–75 –

Roelfsema M. R. G., Hedrich R. (2002) – Studying guard cells in the intact plant: modulation of stomatal movement by apoplastic factors. – New Phytol. 153, 425–431. – doi: 10.1046/j.1469-8137.2002.00344.x –

 

Roelfsema M. R. G., Hedrich R. (2005) – In the light of stomatal opening: new insights into ‘the Watergate’ – New Phytol. 167: 665–691 – doi: 10.1111/j.1469- 8137.2005.01460.x – https://www.ncbi.nlm.nih.gov/pubmed/16101906 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/new-insights-in-stomatal-opening/ )

Roelfsema M. R. G., Hedrich R. (2009) – Stomata – eLS – https://doi.org/10.1002/9780470015902.a0002075.pub2 – https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470015902.a0002075.pub2 – (On our blog : https://plantstomata.wordpress.com/2018/08/02/stomata-5/ )

 

Roelfsema M. R. G., Hedrich R. (2010) – Making sense out of Ca2+signals: their role in regulating stomatal movements – Plant Cell Environ. 33, 305–321 – doi: 10.1111/j.1365-3040.2009.02075.x – Epub 2009 Nov 11 – https://www.ncbi.nlm.nih.gov/pubmed/19906147 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/ca2signals-their-role-in-regulating-stomatal-movements/ )

 

Roelfsema M. R. G., Konrad K. R., Marten H., Psaras G. K.,Hartung W., Hedrich R.. (2006) – Guard cells in albino leaf patches do not respond to photosynthetically active

radiation, but are sensitive to blue light, COand abscisic acid –  Plant, Cell Environment 29: 15951605 – DOI: 10.1111/j.1365-3040.2006.01536.x – CrossRefMedlineGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01536.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-function-of-stomata-in-albino-leaf-patches/ )

Roelfsema M. R. G., Levchenko V., Hedrich R. (2004) – ABA depolarizes guard cells in intact plants through a transient activation of R- and S-type anion channels. – Plant Journal 37: 578588. – doi:10.1111/j.1365-313X.2003.01985.x pmid:14756768 – CrossRefMedlineWeb of ScienceGoogle Scholar  – https://www.ncbi.nlm.nih.gov/pubmed/14756768 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/aba-depolarizes-guard-cells-in-intact-plants/ )

Roelfsema M. R. G., Prins H. B. A. (1995) – Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana – Physiologia Plantarum 95: 373378 – DOI: 10.1111/j.1399-3054.1995.tb00851.x – Wiley Online Library |CAS | CrossRefGoogle Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1995.tb00851.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/effect-of-aba-on-stomatal-opening-in-abi-mutants-of-arabidopsis/ )

Roelfsema M. R. G., Prins H. B. A. (1997) – Ion channels in guard cells of Arabidopsis thaliana (L) Heynh – Planta 202 (1): 1827 – DOI: 10.1007/s004250050098 –https://link.springer.com/article/10.1007/s004250050098 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/arabidopsis-thaliana-stomata-provide-an-excellent-system-for-the-study-of-signal-transduction-processes/ )

Roelfsema M. R. G., Prins H. B. A. (1998) – The membrane potential of Arabidopsis thaliana guard cells; depolarizations induced by apoplatic acidification – Planta 205: 100-112 – 

Roelfsema M. R. G., Staal M., Prins H. B. A. (1998) – Blue light‐induced apoplastic acidification of Arabidopsis thaliana guard cells: inhibition by ABA is mediated through protein phosphates – Physiologia Plantarum 103: 466-474 – 

Roelfsema M. R. G., Steinmeyer R., Staal M., Hedrich R. (2001) – Single guard cell recordings in intact plants: light‐induced hyperpolarization of the plasma membrane – The Plant Journal 26: 1-13 – 

Rogiers S. Y., Clarke S. (2013) – Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines – Annals of Botany 111(3): 433-444 – doi:doi:10.1093/aob/mcs298 – https://researchdirect.westernsydney.edu.au/islandora/object/uws:43783/ – (On our blog : https://plantstomata.wordpress.com/2018/09/15/both-night-time-and-daytime-stomatal-conductance-are-responsive-to-root-zone-temperature/ )

Rogiers S. Y., Hardie W. J., Smith J. P. (2011) – Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide – Australian Journal of Grape and Wine Research 17(2):  – https://doi.org/10.1111/j.1755-0238.2011.00124.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-0238.2011.00124.x – (On our blog : https://plantstomata.wordpress.com/2018/03/29/stomatal-density-responds-to-soil-temperature-and-atmospheric-co2/ )

Ronzier E.CorratgéFaillie C.Sanchez F.Prado K.BrièreC.Leonhardt N.Thibaud J. B.Xiong T. C. (2014) – CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening – Plant Physiol. 166314326 – doi:http://dx.doi.org/10.1104/pp.114.240226 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/166/1/314.long – ( On our blog : https://plantstomata.wordpress.com/2017/01/25/cpk13-reduces-stomatal-aperture-through-its-inhibition-of-the-guard-cell-expressed-kat2-and-kat1-channels/ )

Roos J., Bejai S., Oide S., Dixelius C. (2014) – RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity – PloS one 9, e88187 – doi:10.1371/journal.pone.0088187 –http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088187 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/rabgap22-contributes-to-stomata-immunity/ )

Roth-Bejerano N., Itai C. (1987) – Phytochrome involvement in stomatal movement in Pisum sativum, Vicia faba, and Pelargonium, sp. – Physiol. Plant. 70: 85–89 –

Roth-Nebelsick A. (2007) – Computer-based Studies of Diffusion through Stomata of Different Architecture – Annals of Botany 100: 23–32 – doi:10.1093/aob/mcm075 –  available online at http://www.aob.oxfordjournals.org – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Computer-based-Studies-of-Diffusion-through-Stomata-of-Different-Architecture.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/29/diffusion-through-stomata-of-different-architecture/ )

Roth-Nebelsick A., Grein M.Utescher T.Konrad W. (2012) – Stomatal pore length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange and CO2 reconstruction – Review of Palaeobotany and Palynology 174: 106-112 – CrossRefGeoRefWeb of ScienceGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S0034666712000024 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/any-interpretation-of-stomatal-parameters-as-indicators-of-co2-should-consider-the-influence-of-climate-on-stomatal-conductance-and-gas-exchange/ )

Roth-Nebelsick A., Hassiotou F., Veneklaas E. J. (2009) – Stomatal Crypts Have Small Effects on Transpiration: A Numerical Model Analysis – Plant Physiology 151: 2018–2027 –doi:  10.1104/pp.109.146969 –  http://www.plantphysiol.org/content/plantphysiol/151/4/2018.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomatal-crypts-and-reduction-of-transpiration/ )

Roychowdhury R., Sultana P., Tah J. (2011) – Morphological architecture of foliar stomata in M2 Carnation (Dianthus caryophyllus L.) genotypes using Scanning Electron Microscopy (SEM) – Electronic Journal of Plant Breeding 2(4): 583-588 – ISSN 0975-928X –https://core.ac.uk/download/pdf/25899308.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/foliar-stomata-in-m2-carnation-dianthus-caryophyllus-l-genotypes/ )

Royer D. L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Rev. Palaeobot. Palynol. 144 (1-2): 1 – 28. – http://dx.doi.org/10.1016/S0034-6667(00)00074-9 – http://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Royer%202001.pdf – (https://plantstomata.wordpress.com/2016/12/09/paleoatmospheric-co2-concentration-and-stomata/ )

Rudall P. J.Hilton J.Bateman R. M. (2013) – Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants – New Phytol. 200(3): 98-614 – doi: 10.1111/nph.12406 – Epub 2013 Jul 26 – https://www.ncbi.nlm.nih.gov/pubmed/23909825 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/the-evolution-of-stomatal-patterning-in-land-plants-2/ )

Rudall P. J., Knowles E. V. W. (2013) – Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning – Ann. Bot. 112: 1031–1043 –

Rui Y., Anderson C. T. (2016) – Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis – 

Rui Y., Chen Y., Kandemir B., Yi H., Wang J. Z., Puri V. M., Charles T Anderson C. T. (2018) – Balancing Strength and Flexibility: How the Synthesis, Organization, and Modification of Guard Cell Walls Govern Stomatal Development and Dynamics – Frontiers in Plant Science 9 – DOI: 10.3389/fpls.2018.01202 – https://www.researchgate.net/publication/327043368_Balancing_Strength_and_Flexibility_How_the_Synthesis_Organization_and_Modification_of_Guard_Cell_Walls_Govern_Stomatal_Development_and_Dynamics – (On our blog : https://plantstomata.wordpress.com/2018/08/24/wall-polysaccharides-in-guard-cells-of-stomata-and-stomatal-form-and-function/ )

Rui Y.Xiao C.Yi H.Kandemir B.Wang J. Z.Puri V. M.Anderson C. T. (2017) – POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in Arabidopsis thaliana – The Plant Cell 

Rusconi F., Simeoni F., Francia P., Cominelli E., Conti L., Riboni M., Simoni L., Martin C. R., Tonelli C., Galbiati M. (2013) –  The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. – J Exp Bot 64(11): 3361-3371 – doi:10.1093/jxb/ert180 – https://www.academia.edu/23511850/The_Arabidopsis_thaliana_MYB60_promoter_provides_a_tool_for_the_spatio-temporal_control_of_gene_expression_in_stomatal_guard_cells – (On our blog : https://plantstomata.wordpress.com/2018/06/16/regulatory-modules-derived-from-the-atmyb60-promoter-offer-new-insights-into-the-functional-conservation-of-the-cis-mechanisms-that-mediate-gene-expression-in-stomata/ )

Russo G., De Angelis P., Mickle J. E., Lumaga Barone M. R. (2014) – Stomata morphological traits in two different genotypes of Populus nigra L. – Italian Society of Silviculture and Forest Ecology – iForest (early view) – doi: 10.3832/ifor1104-007 – https://www.researchgate.net/publication/282683703_Stomata_morphological_traits_in_two_different_genotypes_of_Populus_nigra_L – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1165 )

Russo S. E., Cannon W. L., Elowsky C., Tan S., Davies S. ( 2010) – Variation in Leaf Stomatal Traits of 28 Tree Species in Relation to Gas Exchange along an Edaphic Gradient in a Bornean Rain Forest – American Journal of Botany 97(7): 1109–1120 – https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=https://www.google.be/&httpsredir=1&article=1159&context=bioscifacpub – (On our blog : https://plantstomata.wordpress.com/2018/03/23/variation-in-leaf-stomatal-traits-of-tree-species/ )

Ruszala E. M., Beerling D. J., Franks P. J., Chater C., Casson S. A., Gray J. E., Hetherington A. M. ( 2011) – Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History – Curr. Biology 21(12): 1030-1035  – https://doi.org/10.1016/j.cub.2011.04.044 – https://www.sciencedirect.com/science/article/pii/S0960982211004866 – (On our blog : https://plantstomata.wordpress.com/2018/09/02/stomata-are-a-key-evolutionary-innovation-vital-to-the-success-of-the-land-plants/ )

Rutter J. C., Willmer C. M. (1979) – A light and electron microscopy study of the epidermis of Paphiopedilum spp. with emphasis on stomatal ultrastructure – Plant Cell Environ 2: 211–219 –

Rychel A. L., Peterson K. L., Torii K. U. (2010) – Plant twitter: ligands under 140 amino acids enforcing stomatal patterning – Journal of Plant Research 123: 275–280 – [PubMed] – 

Saadabi A. M. A., El-Amin A.-N. (2011) – Effects of Environmental Pollution (Auto-Exhaust) on the Micro-Morphology of Some Ornamental Plants from Sudan – Environmental Research Journal 5(2): 38-41 – DOI: 10.3923/erj.2011.38.41 – https://www.medwelljournals.com/abstract/?doi=erj.2011.38.41 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/environmental-pollution-auto-exhaust-and-stomata/ )

Saadu R. O., Abdulrahaman A. A., Oladele F. A. (2009) – Stomatal complex types and transpiration rates in some tropical tuber species – African Journal of Plant Science Vol. 3 (5), pp. 107-112 – Available online at http://www.academicjournals.org/AJPS –http://www.academicjournals.org/article/article1380095359_Saadu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomata-and-transpiration-rates-in-tuber-species/ )

Sachs T. (1974) – The developmental origin of stomata pattern in Crinum – Bot. Gaz. 135314–318 – Google Scholar – https://www.jstor.org/stable/2474226?seq=1#page_scan_tab_contents – https://plantstomata.wordpress.com/2017/12/18/developmental-origin-of-stomatal-pattern/ )

Sack F. D. (1987) – The development and structure of stomata – In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 59–89 –

Sack F. D. – The Sack Lab – https://www.botany.ubc.ca/people/fred-sack – (On our blog : https://plantstomata.wordpress.com/2018/01/22/the-fred-d-sack-lab/ )

Sack F. D., Chen J. C. (2009) – Pores in place – Science 323: 592-593 – DOI: 10.1126/science.1169553 – http://science.sciencemag.org/content/323/5914/592/tab-figures-data – (On our blog : https://plantstomata.wordpress.com/2018/06/16/signals-controling-cell-division-and-fate-also-control-stomatal-development/ )

Sack F. D., Paolillo D. J. Jr (1982) – Microtubule distribution in stomata with incomplete cytokinesis – Abstracts, Bot. Soc. Amer. Misc. Publ. 162: 24 –

Sack F. D., Paolillo D. J. Jr (1983) – Stomatal pore and cuticle formation in Funaria – Protoplasma 116: 1–13 –

Sack F. D., Paolillo D. J. Jr (1983) – Protoplasmic changes during stomatal development in Funaria – Canadian Journal of Botany 61: 2515–2526 –

Sack F. D., Paolillo D. J. Jr (1983) – Structure and development of walls in Funaria stomata – Amer. J. Bot. 70: 1019–1030 –

Sack F. D., Paolillo D. J. Jr (1985) – Incomplete cytokinesis in Funaria stomata – American Journal of Botany 72: 1325–1333 –

Sack L., Buckley T. N. (2016) – The Developmental Basis of Stomatal Density and Flux – 

Sack L., John G. P., Buckley T. N. (2018) – ABA Accumulation in Dehydrating Leaves Is Associated with Decline in Cell Volume, Not Turgor Pressure – 

Sack L., Scoffoni C. (2012) – Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM) –J. Vis. Exp. (70), e4179, doi:10.3791/4179 (2012). – https://www.jove.com/video/4179/measurement-leaf-hydraulic-conductance-stomatal-conductance-their – (On our blog : https://plantstomata.wordpress.com/2018/02/15/method-for-simultaneously-measurement-of-leaf-hydraulic-conductance-kleaf-and-stomatal-conductance-gs-for-transpiring-excised-leaves/ )

Sagaram M., Lombardini L. (2007) – Variation in Leaf Anatomy of Pecan Cultivars from Three Ecogeographic Locations – JASHS 132(5): 592-596 – http://journal.ashspublications.org/content/132/5/592.full – (On our blog : https://plantstomata.wordpress.com/2018/01/27/stomatal-density-and-stomatal-index-in-pecan-cultivars/

Saibo N. J. M., Vriezen W. H., Beemster G. T., Van Der Straeten D. (2003) – Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins – Plant Journal 33: 989–1000 –

Saito S., Hamamoto S., Moriya K., Matsuura A., Sato Y., Muto J., Noguchi H., Yamauchi S., Tozawa Y., Ueda M., Hashimoto K., Köster P., Dong Q., Held K., Kudla J., Utsumi T., Uozumi N. (2018) – N-myristoylation and S-acylation are common modifications of Ca2+-regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel – New Phytol. doi:10.1111/nph.15053 – http://onlinelibrary.wiley.com/doi/10.1111/nph.15053/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/02/n-myristoylation-and-s-acylation-required-for-activation-of-the-slac1-anion-channel-in-stomata/ )

Sakaki T., Satoh A., Tanaka K., Omasa K., Shimazaki K.-I. (1995) – Lipids and fatty acids in guard-cell protoplasts from Vicia faba leaves – Phytochemistry 40: 1065–1070 – DOI: 10.1016/0031-9422(95)00272-9 – https://www.sciencedirect.com/science/article/pii/0031942295002729 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/lipids-and-fatty-acids-in-stomata/ )

Sakurai N., Akiyama M., Kuraishi S. (1986) – Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings – Plant and Cell Physiology 27: 1177-1185 – https://doi.org/10.1093/oxfordjournals.pcp.a077202 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/irreversible-effects-of-water-stress-on-growth-and-stomatal-development-in-cotyledons/ )

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2012) – MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure. – Biosci. Biotechnol. Biochem. 76: 1785–1787 – DOI: 10.1271/bbb.120228 – https://www.ncbi.nlm.nih.gov/pubmed/22972330 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/mpk9-and-mpk12-are-involved-in-cht-induced-stomatal-closure/ )

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2013) – Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells – Plant Biol. (Stuttg.) 15: 436–442 – doi: 10.1111/j.1438-8677.2012.00671.x. Epub 2012 Oct 8 – https://www.ncbi.nlm.nih.gov/pubmed/23043299 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/mpk9-and-mpk12-regulate-yel-signalling-in-stomata/ )

 

Salas J. A., Sanabria M. E., Pire R. (2001) – Variación en el índice y densidad estomática en plantas de tomate (Lycopersicon esculentum Mill.) sometidas a tratamientos salinos. – Bioagro 13(3): 99-104  – http://www.redalyc.org/articulo.oa?id=85713302 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/modification-of-stomatal-index-and-density-in-tomato-plants/ )

Saleh H., Thind  S. K.  (2015) – Physiology of Cell Membranes, Stomata And Photosynthetic Pigments of Rice (Oryza sativa L.) Under High Temperature – International Journal of Scientific Research 4(6) – 8179 – DOI : 10.15373/22778179 – https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/articles.php?val=NTc2NA==&b1=65&k=17 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/physiology-of-stomata-under-high-temperature/ )

Saliendra N. Z., Sperry J. S., Comstock J. P. (1995) – Influence of leaf water status on stomatal responses to humidity, hydraulic conducrance, and soil drought in Betula occidentalis – Planta 196: 357-366 –

Salisbury E. J. (1927) – On the causes and ecological significance of stomatal frequency with special reference to the woodland flora. – Philosophical Transactions of the Royal Society of London B Biological Sciences 216: 1-65 –

Sallanon H., Laffray D., Coudret A. (1993) – Ultrastructure and functioning of guard cells of in vitro cultured rose plants – Plant Physiol. Biochem. 29: 333-339 –https://geoscience.net/research/002/269/002269301.php – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomata-of-in-vitro-cultured-rose-plants/ )

Salomé P. A. (2017) – This ICE/SCRM Melts in the Dark: Light-Dependent COP1-Mediated Protein Degradation in Stomatal Formation – The Plant Cell DOI: https://doi.org/10.1105/tpc.17.00870– http://www.plantcell.org/content/29/11/2680?rss=1 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/light-dependent-cop1-mediated-protein-degradation-in-stomatal-formation/ )

Sanchez C., Fischer G., Sanjuanelo D. W. (2013) – Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer] – Agron. colomb., 31, (1): 38-47 – ISSN electrónico 2357-3732 – ISSN impreso 0120-9965 – https://revistas.unal.edu.co/index.php/agrocol/article/view/35800/47061 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-behavior-in-fruits-and-leaves/ )

Sanchez S. (1977) – The fine structure of the guard cells of Helianthus annuus – American Journal of Botany 64: 814–824 –

Sanderson M. G., Collins W. J., Hemming D. L., Betts R. A. (2007) – Stomatal conductance changes due to increasing carbon dioxide levels: Projected impact on surface ozone levels – Tellus 59B: 404–411 – https://www.geos.ed.ac.uk/~dstevens/publications/sanderson_tellus07.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-conductance-and-increasing-co2-levels/ )

Santakumari M., Fletcher R. A. (1987) – Reversal of triazole-induced stomatal closure by gibberellic acid and cytokinins in Commelina benghalensis – Physiol. Plant. 71: 95-99, 1987 – DOI: 10.1111/j.1399-3054.1987.tb04623.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1987.tb04623.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/20/triazole-induced-stomatal-closure-ga-and-cytokinins/ )

Santamaria, J. M.Davies W. J.Atkinson C. J. (1993) – Stomata of micropropagated Delphinium plants respond to abscisic acid (ABA), CO2, light and water potential but fail to close fully – Journal of Experimental Botany, 44 (1). pp. 99-107. ISSN 1460-2431 – http://www.research.lancs.ac.uk/portal/en/publications/stomata-of-micropropagated-delphinium-plants-respond-to-abscisic-acid-aba-co2-light-and-water-potential-but-fail-to-close-fully(774441ae-ef2f-4eb5-99a2-9b8b213f5996).html – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1321 )

Santelia D., Lawson T. (2016) – Rethinking Guard Cell Metabolism – Plant Physiology DOI: https://doi.org/10.1104/pp.16.00767 –http://www.plantphysiol.org/content/172/3/1371 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/multiple-processes-and-plasticity-in-guard-cell-metabolism-of-stomata/ )

Santelia D., Lunn J. E. (2017) – Transitory starch metabolism in guard cells: unique features for a unique function. – Plant Physiol 174: 539–549 – DOI: 10.1104/pp.17.00211 – http://www.plantphysiol.org/content/174/2/539 – (On our blog : https://plantstomata.wordpress.com/2018/01/02/transitory-starch-metabolism-in-stomata/)

Šantrůček J., Sage R. F. (1996) Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album – Australian Journal of Plant Physiology 23: 467-478 –

Šantrůček J., Vráblová M., Šimková M., Hronková M., Drtinová M., Květoň J., Vrábl D., Kubásek J., Macková J., Wiesnerová D., Neuwithová J., Schreiber L. (2014) – Stomatal and pavement cell density linked to leaf internal CO2 concentration – Ann Bot 114(2): 191–202 –  PMC4217638 – doi:  10.1093/aob/mcu095 – Abstract/FREE Full TextGoogle Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217638/ – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-density-affected-by-rising-atmospheric-co2-light-air-humidity-and-drought/ )

Sanz L. C., Fernández-Maculet J. C., Gómez E., Vioque B., Olías J. M. (1993) – Effect of methyl jasmonate on ethylene biosynthesis and stomatal closure in olive leaves – Phytochemistry 33: 285-289 – https://doi.org/10.1016/0031-9422(93)85504-K –https://www.sciencedirect.com/science/article/pii/003194229385504K – (On our blog : https://plantstomata.wordpress.com/2017/12/20/meja-caused-stomatal-closure/ )

Saravanavel R., Ranganathan R., Anantharaman P. (2011) – Effect of Sodium Chloride on Photosynthetic Pigments and Photosynthetic Characteristics of Avicennia officinalis Seedlings – Recent Res. Sci. Technol. 3(4) –https://scienceflora.org/journals/index.php/rrst/article/view/665 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/effect-of-nacl-on-stomatal-conductance-in-avicennia/ )

Sarsag M., Ünal M. (2004) – The effects of Sultan 70 WG on stomatal function – Biotechnol. & Biotechnol. Eq. 18/2004/2: 104-111 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/herbicide-effects-on-stomatal-function/ )

Sarwar A. K. M. Golam, Karim M. A., Rana S. M. A. Masud (2013) – Influence of stomatal characteristics on yield and yield attributes of rice – J. Bangladesh Agril. Univ. 11(1): 47–52 – ISSN 1810-3030  – http://ageconsearch.umn.edu/bitstream/209746/2/18207-65562-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-and-rice-yield/ )

Sasaki T., Mori I. C., Furuichi T., Munemasa S., Toyooka K., Matsuoka K., Murata Y., Yamamoto Y.  (2010) – Closing plant stomata requires a homolog of an aluminum-activated malate transporter. – Plant Cell Physiol. 51: 354–365. – doi: 10.1093/pcp/pcq016 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835873/ – (On our blog : https://plantstomata.wordpress.com/2018/06/17/atalmt12-is-a-novel-class-of-anion-transporter-involved-in-stomatal-closure/ )

 

Sato N. (1985) – Lipid biosynthesis in epidermal, guard and mesophyll cell protoplasts from leaves of Vicia faba L. – Plant Cell Physiol. 26: 805–811 – DOI: 10.1093/oxfordjournals.pcp.a076974 – https://link.springer.com/chapter/10.1007/978-1-4684-5263-1_100 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/epidermal-and-guard-cells-are-quite-different-in-ability-to-synthesize-long-chain-fatty-acids-in-stomata-of-broad-bean/ )

Sato H., Kumagai T. O., Takahashi A., Katul G. (2015) – Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO2-enriched climate conditions – J. Geophys. Res. Biogeosci. 120, 979–988. – doi: 10.1002/2014JG002838 – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1002/2014JG002838/full – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomatal-conductance-response-to-humidity/ )

Savchenko T., Kolla V. A., Wang C. Q., Nasafi Z., Hicks D. R., Phadungchob B., Chehab W. E., Brandizzi F., Froehlich J., Dehesh K. (2014) – Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought – Plant Physiol. 164: 1151–1160 – 10.1104/pp.113.234310 – [PMC free article] [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/24429214 – (On our blog : https://plantstomata.wordpress.com/2018/06/17/12-opda-as-a-drought-responsive-regulator-of-stomatal-closure-functioning-together-with-aba/

Sawinski K., Mersmann S., Robatzek S., Böhmer M. (2013) – Guarding the green: pathways to stomatal immunity. – Mol. Plant Microbe Interact. 26, 626–632. – doi: 10.1094/Mpmi-12-12-0288-CR – https://www.ncbi.nlm.nih.gov/pubmed/23441577 – (On our blog : https://plantstomata.wordpress.com/2018/06/17/the-signaling-pathways-leading-to-stomatal-closure-triggered-by-biotic-and-abiotic-stresses-employ-several-common-components/ )

 

Sayed S. A. (1997) – Effect of cadmium and kinetin on transpiration rate, stomatal opening and leaf relative water content in safflower plants – Journal of Islamic Academy of Sciences. 10(3): 73-80 – https://www.journalagent.com/ias/pdfs/IAS_10_3_73_80.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/20/cadmium-mediated-reduction-in-transpiration-rate-stomatal-opening-and-leaf-turgidity-are-reversed-by-kinetin/ )

Saxe H. (1979) – A structural and functional study of the coordinated reactions of individual Commelina communis L. stomata (Commelinaceae) – Amer. J. Bot. 66: 1044-1052 –

Scarth G. W., Shaw M. (1951) – Stomatal Movement and Photosynthesis in Pelargonium. II. Effects of Water Deficit and of Chloroform: photosynthesis in guard cells – Plant Physiol. 26: 581-597 – https://www.jstor.org/stable/4258451?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/20/effect-of-water-deficit-and-chloroform-on-stomatal-movement/ )

Schäfer K. V. R.,, Oren R., Tenhunen J. D. (2000) – The effect of tree height on crown level stomatal conductance – Plant, Cell and Environment 23: 365-375 –

Schäfer N., Maierhofer T., Herrmann J., Jørgensen M. E., Lind C., von Meyer K., Lautner S., Fromm J., Felder M., Hetherington A. M., Ache P., Geiger D., Hedrich R. (2018) –  A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate – Current Biology,26 April 2018 DOI: 10.1016/j.cub.2018.03.027 – https://www.scoop.it/t/plant-hormones-by-julio-retamales/p/4097207899/2018/04/26/a-tandem-amino-acid-residue-motif-in-guard-cell-slac1-anion-channel-of-grasses-allows-for-the-control-of-stomatal-aperture-by-nitratehttps://www.cell.com/current-biology/abstract/S0960-9822(18)30356-7 – (On our blog : https://plantstomata.wordpress.com/2018/04/29/a-tandem-amino-acid-residue-motif-that-within-the-slac1-channels-differs-fundamentally-between-monocots-and-dicots/ )

Schaller J., Paschold P. J. (2009) – Stomata-characteristics and responses to soil drought indicating a cultivar specific drought stress susceptibility in asparagus – European Journal of Horticultural Science 74(4): 145-151 – http://0-search.ebscohost.com.catalog.library.colostate.edu/login.aspx?direct=true&AuthType=cookie,ip,url,cpid&custid=s4640792&db=lah&AN=20093259465&site=ehost-live – https://agwaterconservation.colostate.edu/library/stomata-characteristics-and-responses-to-soil-drought-indicating-a-cultivar-specific-drought-stress-susceptibility-in-asparagus/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-and-responses-to-soil-drought-in-asparagus/ )

Scheibe R., Reckmann U., Hedrich R., Raschke K. (1990) – Malate dehydrogenase in guard cells of Pisum sativum – Plant Physiol. 93: 1358-1364 – DOI: https://doi.org/10.1104/pp.93.4.1358 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062680/ – (On our blog : https://plantstomata.wordpress.com/2017/12/20/the-malate-requirement-for-stomatal-opening-in-the-light-malate-dehydrogenase-in-guard-cells/ )

Schellenberg B., Ramel C., Dudler R. (2010) – Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition – Mol. Plant Microbe Interact. 23: 1287–1293 –  doi: 10.1094/MPMI-04-10-0094. – https://www.ncbi.nlm.nih.gov/pubmed/20831408 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/inhibition-of-stomatal-immunity-by-syringolin-a/ )

Scherzer S., Maierhofer T., Al-Rasheid K. A. S., Geiger D., Hedrich R. (2012) – Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. – Mol. Plant 5, 1409–1412. – doi: 10.1093/mp/sss084 – https://www.ncbi.nlm.nih.gov/pubmed/22933711 – ((On our blog : https://plantstomata.wordpress.com/2018/06/17/ca-dependent-kinases-modulate-aba-activated-stomatal-anion-channels/ )

Schletz R. (2008) – Stomata Densities of Developing and Mature Leaves of Geraniums – ESSAI: Vol. 6, Article 42. – http://dc.cod.edu/essai/vol6/iss1/42 – https://dc.cod.edu/cgi/viewcontent.cgi?article=1084&context=essai – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomata-densities-of-developing-and-mature-leaves/ )

Schlüter U.Muschak M.Berger D.Altmann T. (2003) – Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes – J Exp Bot 54867874 – https://doi.org/10.1093/jxb/erg087 – CrossRefPubMedGoogle Scholar – https://academic.oup.com/jxb/article/54/383/867/545860 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/a-point-mutation-in-a-single-gene-sdd1-causes-specific-alterations-in-stomatal-density-and-distribution/

Schmidt C., Schelle I., Liao Y.-J., Schroeder J. I. (1995) – Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events – Proc Natl Acad Sci USA 92: 9535–9539 –

 

Schnabl H., Raschke K. (1980) – Potassium Chloride as Stomatal Osmoticum in Allium cepa L., a Species Devoid of Starch in Guard Cells – Plant Physiol. 65(1): 88–93 –

Schnabl V., Ziegler H. (1977) – The mechanism of stomatal movement in Allium cepa L. – Planta 136: 37-43 – doi: 10.1007/BF00387922. –https://www.ncbi.nlm.nih.gov/pubmed/24420224 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/starch-and-the-mechanism-of-stomatal-movement/ )

Schneider J. V., Habersetzer J., Rabenstein R., Wesenberg J., Wesche K., Zizka G. (2017) – Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density – New Phytol. 214(1):473-486 – doi: 10.1111/nph.14382 – Epub 2016 Dec 22 – https://www.ncbi.nlm.nih.gov/pubmed/28005294 – (On  our blog : https://plantstomata.wordpress.com/2018/06/14/relationships-between-leaf-size-vein-and-stomata-traits-and-their-interplay-with-climate/ )

Schoch P. G., Jacques R., Lecharny A., Sibi M. (1984) – Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. II. Effect of different light quality – Journal of Experimental Botany 35: 1405-1409 –

Schoch P. G., Zinsou C., Sibi M. (1980) – Dependence of the stomatal index on environmental-factors during stomatal differentiation in leaves of vigna-sinensis l.1. effect of light-intensity. – J. Exp. Bot. 31, 1211–1216.-  doi:10.1093/jxb/31.5.1211 – https://academic.oup.com/jxb/article-abstract/31/5/1211/454079?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/01/dependence-of-the-stomatal-index-on-environmental-factors/ )

 

Schroeder J. I. (1988) – K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells – J. Gen. Physiol. 92: 667–683 – DOI: 10.1085/jgp.92.5.667 –PubMed – https://www.ncbi.nlm.nih.gov/pubmed/3235976 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/a-prominent-role-for-ikin-and-ikout-channels-in-k-transport-across-the-plasma-membrane-of-guard-cells-in-stomata-of-vicia/ )

Schroeder  J. I. (1992) – Plasma membrane ion channel regulation during abscisic acid-induced closing of stomata – Philos. Trans. R. Soc. Lond. 338: 83-89 – DOI: 10.1098/rstb.1992.0131 – http://rstb.royalsocietypublishing.org/content/338/1283/83 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/plasma-membrane-ion-channel-regulation-and-stomatal-closure/ )

Schroeder  J. I. (2003) – Knockout of the guard cell Kout channel and stomatal movements – PNAS 100(9): 4976–4977 – doi/10.1073/pnas.1031801100 – http://www.pnas.org/content/100/9/4976.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/kout-channels-function-in-mediating-stomatal-closing-and-turgor-reduction-in-plant-cells/ )

Schroeder J. I., Allen G. J., Hugouvieux V., Kwak,J. M., Waner D. (2001) – Guard cell signal transduction – Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 627–658 – doi: 10.1146/annurev.arplant.52.1.627 – https://www.ncbi.nlm.nih.gov/pubmed/11337411 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/stomatal-cells-signal-transduction/ )

 

Schroeder  J. I., Hagiwara S. (1989) – Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells – Nature 338, 427–443. – doi: 10.1038/338427a0 – CrossRef Full Text, – CrossRefWeb of ScienceGoogle Scholar – https://www.nature.com/articles/338427a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/ca2-dependent-regulation-of-stomatal-movements/ )

Schroeder J. I., Hagiwara S. (1990) – Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels – Proc. Natl. Acad. Sci. U.S.A. 87: 9305–9309.  – doi: 10.1073/pnas.87.23.9305 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – http://www.pnas.org/content/87/23/9305.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/aba-activation-of-ca2-permeable-ion-channels-in-the-plasma-membrane-of-guard-cells/ )

Schroeder J. I., Hedrich R., Fernandez J. M. (1984) – Potassium-selective single channels in guard cell protoplasts of Vicia faba. – Nature 312, 361–362. – doi: 10.1038/312361a0 –

 

Schroeder J. I., Keller B. U. (1992) – 2 types of anion channel currents in guard-cells with distinct voltage regulation. – Proc. Natl. Acad. Sci. U.S.A. 89, 5025–5029. –

Schroeder J. I., Kwak J. M., Allen G. J. (2001) – Guard cell abscisic acid signaling and engineering drought hardiness in plants – Nature 410: 327–330. – doi: 10.1038/35066500 –PubMed Abstract | CrossRef Full Text | Google ScholarMedline, – http://www.nature.com/nature/journal/v410/n6826/full/410327a0.html – ( https://plantstomata.wordpress.com/2017/01/25/engineering-stomatal-responses-to-control-co2-intake-and-plant-water-loss/ )

Schroeder J. I., Munemasa S., Hauser F., Hu H., Kim T.-H., Brandt B., Nishimura N., Israelsson-Nordstrom M., Boisson-Dernier A., Brodsky D. (2012) – Guard cell CO2 and abscisic acid signal transduction network – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomata-co2-and-aba-signal-transduction-network/ )

 

Schroeder J. I., Raschke K., Neher E. (1987) – Voltage dependence of K+ channels in guard cell protoplasts – Proceedings of the National Academy of Sciences, USA1987;84:4108-4112 –http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Voltage-dependence-of-K–channels-in-guard-cell-protoplasts.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/voltage-dependence-of-k-channels-in-guard-cell-protoplasts/ )

Schuermann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora (Jena) 147: 471-520 –

Schuler M. L.Sedelnikova O. V.Walker B. J.Westhoff P.Langdale J. A. (2018) – SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency – 

Schulz H. R., Kiefer W., Gruppe W. (1996) – Photosynthetic duration, carboxylation efficiency and stomatal limitation of sun and shade leaves of different ages in field-grown grapevine (Vitis vinifera L.) – Vitis 35(4): 169-176 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1008.6361&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/15/stomatal-limitation-of-sun-and-shade-leaves-of-different-ages/ )

Schulz-Lessdorf B., Lohse G., Hedrich R. (1996) – GCAC1 recognizes the pH gradient across the plasma membrane: a pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism – The Plant J. 10: 993-1004 – DOI: 10.1046/j.1365-313X.1996.10060993.x –http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1996.10060993.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/21/gcac1-is-strongly-modulated-by-atp-and-protons-this-channel-is-capable-of-sensing-changes-in-the-energy-status-acid-metabolism-and-the-h-atpase-activity-of-guard-cells/ )

Schulze D. E., Hall A. E. (1982) – Stomatal responses, water loss and CO2assimilation rates of plant. In O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler (eds.), Physiological Plant Ecology, II Encyclopedia of Plant Physiology, 12B, Springer Verlag, Berlin, pp. 181-230.

Schulze E. D.Kelliher F. M.Korner C.Lloyd J.Leuning R. (1994) – Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. – Annu. Rev. Ecol. Syst. 25: 629660 – DOI: 10.1146/annurev.es.25.110194.003213 –ISIArticle –https://www.jstor.org/stable/2097327?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/21/maximum-stomatal-conductance-ecosystem-surface-conductance-carbon-assimilation-rate-and-plant-nitrogen-nutrition/ )

Schulze E. D., Küppers M. (1970) – Short-term and long-term effects of plant water deficits on stomatal response to humidity on Corylus avellana L. – Planta 146: 319-326 –

Schulze E. D., Lange O. L., Evenari M., Kappen L., Buschbom U. (1973) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance – Oecologia (Berl.) 17 : 159-170 – DOI: 10.1007/BF00345424 – DOI: 10.1007/BF00346278 – https://link.springer.com/article/10.1007/BF00346278 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/the-role-of-air-humidity-and-leaf-temperature-in-controlling-stomatal-resistance-under-desert-conditions/ )

Schulze E. D., Lange O. L., Kappen L., Buschbom U., Evenari M. (1973) – Stomatal response to changes in temperature at increasing water stress – Planta 110: 29–42 – doi: 10.1007/BF00386920 – https://link.springer.com/article/10.1007/BF00386920 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/stomatal-response-to-changes-in-temperature-at-increasing-water-stress/ )

Schulze E. D., Lange O. L., Kappen L., Evenari M., Buschbom U. (1975) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. – Oecologia (Berl.) 18 : 219-233 – DOI: 10.1007/BF00345424 –https://www.ncbi.nlm.nih.gov/pubmed/28308679 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/controlling-stomatal-resistance-under-desert-conditions-significance-of-leaf-water-status-and-internal-co2-concentration/ )

Schürmann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora 147: 471-520 – https://ac.els-cdn.com/S036716151731981X/1-s2.0-S036716151731981X-main.pdf?_tid=12c86a7c-e736-11e7-b153-00000aab0f26&acdnat=1513960689_dff4a08cb2065fa088a5515db1fc3a5f – (On our blog : https://plantstomata.wordpress.com/2017/12/22/influence-of-water-and-light-on-the-development-of-stomata-initials-in-german/ )

Schwabe W. W. (1952) – Effects of photoperiodic treatment on stomatal movement – Nature (Lond.) 169: 1053-1054 – DOI: 10.1038/1691053a0 –https://www.nature.com/articles/1691053a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/the-effects-of-day-length-treatments-on-stomatal-movement/ )

Schwartz A. (1985) – Role of Ca and EGTA on Stomatal Movements in Commelina communis L. – Plant Physiol. 79: 1003–1005 – DOI: https://doi.org/10.1104/pp.79.4.1003 – https://www.jstor.org/stable/4269650?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/18/ca-and-egta-in-stomatal-movements/ )

Schwartz A.Ilan N.Assmann S. M. (1988) – Calcium effects on stomatal movement in Commelina communis L. Use of EGTA to modulate stomatal response to light, KCl and CO2 – Plant Physiol.  87: 583-587 –  PMID:16666189 –  http://dx.doi.org/10.1104/pp.87.3.583

Schwartz A.Ilan N.Assmann S. M. (1991) – Vanadate inhibition of stomatal opening in epidermal peels of Commelina communis – Planta 183: 590596 – DOI: 10.1007/BF00194281 – https://link.springer.com/article/10.1007/BF00194281#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/22/vanadate-inhibition-of-stomatal-opening/ )

Schwartz A., Ilan N., Schwarz M., Scheaffer J., Assmann S. M., Schroeder J. I. (1995) – Anion-channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells – Plant Physiology 109: 651–658 –

Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. (1994) – Inhibition of inward K+channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action – Proc. Natl. Acad. Sci. U.S.A. 91: 4019–4023 – https://doi.org/10.1073/pnas.91.9.4019 – [PMC free article] [PubMed] – http://www.pnas.org/content/91/9/4019 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Inhibition-of-inward-K–channels-and-stomatal-response-by-abscisic.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/18/aba-can-act-from-within-guard-cells-to-regulate-stomatal-apertures/

Schwartz A., Zeiger E. (1984) – Metabolic energy for stomatal opening – Roles of photophosphorylation and oxidative-phosphorylation – Planta 161129136 – DOI: 10.1007/BF00395472 –  Google Scholar CrossRef PubMed  – https://link.springer.com/article/10.1007/BF00395472 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/photophosphorylation-and-oxidative-phosphorylation-for-stomatal-movements/ )

Schymanski S. J., Or D., Zwieniecki M. (2013) – Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations – PLoS ONE 8, e54231 – doi:10.1371/ journal.pone.0054231 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054231 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/65176/ )

Schymanski S. J., Singer T., Or D. (2017) – Linking stomata geometries and densities to leaf gas exchange – new opportunities and old pitfalls – Geophysical Research Abstracts 19, EGU2017-11526 – http://meetingorganizer.copernicus.org/EGU2017/EGU2017-11526.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/29/linking-stomata-geometries-and-densities-to-leaf-gas-exchange/ )

Scuffi D., Álvarez C., Laspina N., Gotor C., Lamattina L., Garcia-Mata C. (2014) – Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. – Plant Physiol. 166: 2065–207 – doi: 10.1104/pp.114.245373 – https://www.ncbi.nlm.nih.gov/pubmed/25266633 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/des1-is-a-unique-component-of-aba-signaling-in-stomata-2/ )

 

Scuffi D., Lamattina L., Garcia-Mata C. (2016) – Gasotransmitters and Stomatal Closure: Is There Redundancy, Concerted Action, or Both? – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:277. – doi: 10.3389/fpls.2016.00277- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/gasotransmitters-and-stomatal-closure-2/ )

Seethaler S. (2006) – UCSD Study Reveals How Plants Respond to Elevated Carbon Dioxide – UCSD News – http://ucsdnews.ucsd.edu/archive/newsrel/science/sCO2plants.asp – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-plants-and-stomata-respond-to-elevated-carbon-dioxide/ )

Segev R., Nannapaneni R., Sindurakar P., Kim H., Read H., Lijek S. (2015) – The Effect of the Stomatal Index on the Net Rate of Photosynthesis in the Leaves of Spinacia oleraceaVinca minorRhododendron sppEpipremnum aureum, and Hedera spp. –  Journal of Emerging Investigators 2018 – https://www.emerginginvestigators.org/articles/the-effect-of-the-stomatal-index-on-the-net-rate-of-photosynthesis-in-the-leaves-of-i-spinacia-oleracea-i-i-vinca-minor-i-i-rhododendron-spp-i-i-epipremnum-aureum-i-and-i-hedera-spp-i – (On our blog : https://plantstomata.wordpress.com/2018/01/23/correlation-between-stomatal-index-and-photosynthesis/ )

Sellin A. (2001) – Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. – Tree Physiology 21:879888 – DOI: 10.1093/treephys/21.12-13.879 – https://www.ncbi.nlm.nih.gov/pubmed/11498335 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/hydraulic-and-stomatal-adjustment-of-trees-to-environmental-stress/ )

Sen D. N., Harsha L. N. (1974) – Ecophysiological studies on stomatal regulation in Allium cepa L. and Asphodelus tenuifolius Cav. – Flora 163: 14-25 – DOI: 10.1016/S0367-2530(17)31074-5 – https://ac.els-cdn.com/S0367253017310745/1-s2.0-S0367253017310745-main.pdf?_tid=5548ae14-e7bf-11e7-8185-00000aab0f01&acdnat=1514019641_df39a1a59be5adad76dd9e986e7f1457 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/ecophysiological-studies-on-stomatal-regulation/ )

Serna L. (2009) – Cell fate transitions during stomatal development – Bioessays 31: 865–873 – DOI:  10.1002/bies.200800231- [PubMed] [Cross Ref] – 

Serna L, Fenoll C. (2000) – Stomatal development in Arabidopsis: how to make a functional pattern – Trends in Plant Science 5: 458-460 – DOI: https://doi.org/10.1016/S1360-1385(00)01782-9 – http://www.cell.com/trends/plant-science/pdf/S1360-1385(00)01782-9.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/22/stomatal-development-how-to-make-a-functional-pattern/ )

Serna L, Fenoll C. (2002) – Reinforcing the idea of signalling in the stomatal pathway – Trends in Genetics 18: 597–600 –

Serna L, Fenoll C. (2002) – Clonal analysis of stomatal development and patterning in Arabidopsis leaves – Developmental Biology 241: 24–33 –

Serna L., Torres-Contreras J., Fenoll C., (2002) – Clonal analysis of stomatal development and patterning in Arabidopsis leaves – Developmental Biology 241: 24-33 – doi:10.1006/dbio.2001.0506, available online at http://www.idealibrary.com  – https://ac.els-cdn.com/S0012160601905068/1-s2.0-S0012160601905068-main.pdf?_tid=6344cd74-9996-4379-9322-240873410272&acdnat=1520793969_16932ebe86988dedab59603bde8e5e29 – (On our blog : https://plantstomata.wordpress.com/2018/03/11/cell-lineage-plays-a-very-important-role-during-stomatal-pattern-establishment/ )

Serrano E. E., Zeiger E. (1989) – Sensory transduction and electrical signaling in guard cells – Plant Physiol. 91(3):795–799. –

Serrano E. E., Zeiger E., Hagiwara S. (1988) – Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts – Proceedings of the National Academy of Sciences, USA 85: 436–440 – PMCID: PMC279564 – http://www.pnas.org/content/85/2/436 – https://plantstomata.wordpress.com/2017/12/23/red-light-stimulates-an-electrogenic-proton-pump-in-guard-cells-and-guard-cell-chloroplasts-modulate-this-response/ )

Shackel K. A., Brinckmann E. (1984) – In situ measurement of epidermal cell turgor, leaf water potential and gas exchange in Tradescantia virginiana L. – Plant Physiology 78: 66–70 – DOI: https://doi.org/10.1104/pp.78.1.66 – http://www.plantphysiol.org/content/78/1/66 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/little-direct-relation-between-stomatal-humidity-response-and-epidermal-water-status/ )

Shackel K. A., Novello V., Sutter E.G. (1990) – Stomatal Function and Cuticular Conductance in Whole Tissue-cultured Apple Shoots – J. AMER. SOC HORT. SCI. 115(3):468-472. – http://journal.ashspublications.org/content/115/3/468.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cuticular-conductance/ )

Shahinnia F., Le Roy J., Laborde B., Sznajder B., Kalambettu P., Mahjourimajd S., Tilbrook J., Fleury D. (2016) – Genetic association of stomatal traits and yield in wheat grown in low rainfall environments – BMC Plant Biology 16:150 – DOI 10.1186/s12870-016-0838-9 – https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/s12870-016-0838-9?site=bmcplantbiol.biomedcentral.com – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-traits-and-yield-in-wheat-grown-in-low-rainfall-environments/ )

Shang Y., Dai C., Lee M. M., Kwak J. M., Nam K. H. (2015) – BRI1-Associated Receptor Kinase 1 regulates guard cell ABA signaling mediated by Open Stomata 1 in Arabidopsis. – Mol. Plant 9: 447–460. – DOI: https://doi.org/10.1016/j.molp.2015.12.014 – https://www.cell.com/molecular-plant/abstract/S1674-2052(15)00467-0 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/bak1-regulates-aba-induced-stomatal-closure-in-guard-cells-2/ )

 

Shanmughavel P. (1995) – Effect of cement dust on stomata structure – Ecology, Environment and Conservation Paper 01(14): 7-9 –http://www.envirobiotechjournals.com/article_abstract.php?aid=2441&iid=84&jid=3 – (On our blog : https://plantstomata.wordpress.com/2017/11/28/effect-of-cement-dust-on-stomata/ )

Sharghi K. (2008) – Stanford researchers investigate how plants adapt to climate – Stanford Report, November 24, 2008 – https://news.stanford.edu/news/2008/december3/stomata-120308.html – (On our blog : https://plantstomata.wordpress.com/2018/01/24/development-of-stomata-can-be-altered-on-the-fly-to-better-enable-the-plant-to-cope-with-environmental-conditions/ )

Sharkey T. D., Ogawa T. (1987) – Stomatal responses to light. In Stomatal Function, ed. E Zeiger, G Farquhar, I Cowan, pp. 195–208. Stanford, CA: Stanford Univ. Press

Sharkey T. D., Raschke K. (1981) – Separation and measurement of direct and indirect effects of light on stomata – Plant Physiol. 68:33–40. – DOI: 10.2307/3670169 – https://www.jstor.org/stable/4266838?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/direct-and-indirect-effects-of-light-on-stomata/ )

Sharkey T. D., Raschke K. (1981) – Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. – Plant Physiol 6811701174 – 

Sharma G. K., Butler J. (1975) – Environmental pollution.  Leaf cuticular patterns in Trifolium repens L. – Ann. Bot. 39: 1087-1090 – DOI: 10.1093/oxfordjournals.aob.a085028 – https://www.jstor.org/stable/42756344?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/stomatal-size-density-and-environmental-pollution/ )

 Sharma S. S., Sen D. N. (1976) – Effect of different sugars on stomatal behaviour in Merremia aegyptia (L.) Urban and M. dissecta Hallier F. – Biol. Plant. 18: 81-87 – https://doi.org/10.1007/BF02923141 – https://link.springer.com/article/10.1007/BF02923141 – https://plantstomata.wordpress.com/2017/12/27/effect-of-different-sugars-on-stomatal-behaviour/ )

Sharpe P. J. H. (1973) – Adaxial and abaxial stomatal resistance of cotton in the field – Agron. J. 65: 570-574 – doi:10.2134/agronj1973.00021962006500040014x –https://dl.sciencesocieties.org/publications/aj/abstracts/65/4/AJ0650040570?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/26/65210/ )

Sharpe P. J. H., Wu H., Spence R. D. (1987) – Stomatal mechanics – In: Stomatal Function (eds. E. Zeiger, G. D. Farquhar & I. R. Cowan : 253-279) – Stanford University Press, Stanford, California.

Shaw M. (1954) – Chloroplasts in the stomata of Allium cepa L. – New Phytol. 53. 344-348 – DOI: 10.1111/j.1469-8137.1954.tb05244.xhttp://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1954.tb05244.x/asset/j.1469-8137.1954.tb05244.x.pdf?v=1&t=jbp4maps&s=983c0c7145ac87817841a5f2ae61221022301050 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/65220/ )

Shaw M. (1958) – The physiology of stomata II. The apparent absence of chlorophyll, photosynthesis, and a normal response to light in the stomatal cells of an albino barley – Canad. Jour. Bot. 36: 575-579 – https://doi.org/10.1139/b58-052 –http://www.nrcresearchpress.com/doi/abs/10.1139/b58-052?journalCode=cjb1 – https://plantstomata.wordpress.com/2017/12/27/normal-light-sensitive-stomatal-cells-contain-functional-chloroplasts/ )

She X.-P., Song, X.-G. (2008) – Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells. – J. Integr. Plant Biol. 50: 1539–1548. – doi: 10.1111/j.1744-7909.2008.00716.x – https://www.ncbi.nlm.nih.gov/pubmed/19093972 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/the-regulatory-role-of-co-during-stomatal-movement/ )

 

Shen L., Sun P., Bonnell V. C., Edwards K. J., Hetherington A. M., McAinsh M. R., Roberts M. R. (2015) – Measuring stress signaling responses of stomata in isolated epidermis of graminaceous species. – Front. Plant Sci. 6: 533. – doi: 10.3389/fpls.2015.00533 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stress-signaling-responses-of-stomata/ )

 

Sheriff D. W. (1984) – Epidermal transpiration and stomatal responses to humidity: some hypotheses explored. – Plant, Cell and Environment 7:669677 – DOI: 10.1111/1365-3040.ep11571796 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11571796/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/27/stomatal-responses-to-humidity-6/ )

Sheriff D. W., Kaye P. E. (1977) – Response of diffusive conductance to humidity in a drought avoiding and a drought resistant (in terms of stomatal response) legume – Ann. Bot. 41: 653-655 – https://doi.org/10.1093/oxfordjournals.aob.a085335 –https://academic.oup.com/aob/article-abstract/41/3/653/236398?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/27/response-of-diffusive-conductance-to-humidity/ )

Shi C., Qi C., Ren H. Y., Huang A. X., Hei S. M., She X. P. (2015) – Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis – The Plant Journal 82: 280–301 – DOI10.1111/tpj.12815 – CrossRef , CAS, –https://www.semanticscholar.org/paper/Ethylene-mediates-brassinosteroid-induced-stomatal-Shi-Qi/3e99dcbdf377e8475c93d2a74f9f601673bd54ea – (On our blog : https://plantstomata.wordpress.com/2017/12/27/ethylene-mediates-brassinosteroid-induced-stomatal-closure-2/ )

Shi K., Li X., Zhang H., Zhang G., Liu Y., Zhou Y., Xia X., Chen Z., Yu J. (2015) – Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato – New Phytologist 208(2):342-53. – doi: 10.1111/nph.13621 –https://www.ncbi.nlm.nih.gov/pubmed/26308648 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/the-signaling-pathway-for-elevated-co2-induced-stomatal-movement/ )

Shi W. L., Jia W. S., Liu X., Zhang S. Q. (2004) – Protein tyrosine phosphatases involved in signaling of the ABA-induced H2O2 generation in guard cells of Vicia faba L. – Chinese Sci. Bull. 49: 1841-1846 – https://doi.org/10.1007/BF03183411 – https://link.springer.com/article/10.1007%2FBF03183411 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/ptpases-are-a-critical-signaling-component-in-aba-induced-stomatal-closure/ )

Shi W. L., Liu X., Jia W. S., Zhang S. Q. (2005) – Protein tyrosine phosphatases mediate the signaling pathway of stomatal closure of Vicia faba L. – J. Integr. Plant Biol. 47: 319-326 – DOI: 10.1111/j.1744-7909.2005.00032.x – http://www.jipb.net/Abstract.aspx?id=4839 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/a-novel-explanation-for-conflicting-results-about-vanadate-modulating-stomatal-movement-and-the-involvement-of-ptpases/ )

Shi Y. C., Fu Y. P., Liu W. Q. (2012) – NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate – Plant Physiology and Biochemistry 51: 26-30 – DOI10.1016/j.plaphy.2011.09.014 –https://www.infona.pl/resource/bwmeta1.element.elsevier-9d0315d5-6aa2-360b-8e5c-b0ef0593b56f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/dha-induced-h-2-o-2-generation-via-activation-of-nadph-oxidase-results-in-stomatal-closure/ )

Shimada T., Sugano S. S., Hara-Nishimura I. (2011) – Positive and negative peptide signals control stomatal density – Cellular and Molecular Life Sciences (2011) 68: 2081-2088 – DOI: 10.1007/s00018-011-0685-7 – https://link.springer.com/article/10.1007/s00018-011-0685-7 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/recent-research-progress-in-the-peptide-signaling-of-stomatal-development/)

Shimazaki K.-i. (xxxx) – Molecular Mechanism of Blue Light Response in Stomatal Guard Cells – Light Sensing in Plants (Phototropin): 185-192 – DOI10.1007/4-431-27092-2_21 – https://www.infona.pl/resource/bwmeta1.element.springer-ec0d1399-4b76-31e2-b985-39aece10e5c7 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/blue-light-response-in-stomatal-guard-cells/ )

Shimazaki K.-i. (1989) – Ribulosebisphosphate carboxylase activity and photosynthetic O2evolution rate in Vicia guard cell protoplasts – Plant Physiology 91: 459-463. – DOI: https://doi.org/10.1104/pp.91.2.459 – http://www.plantphysiol.org/content/91/2/459 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-guard-cells-fix-co2-photosynthetically/)

Shimazaki K., Doi M., Assmann S. M., Kinoshita T. (2007) – Light regulation of stomatal movement – Annu. Rev. Plant Biol. 58: 219–247 – doi: 10.1146/annurev.arplant.57.032905.105434 – https://www.ncbi.nlm.nih.gov/pubmed/17209798 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/recent-progress-in-blue-and-red-light-dependent-stomatal-opening/ ) – https://wordpress.com/post/plantstomata.wordpress.com/69298 )

 

Shimazaki K.-i., Goh C. H., Kinoshita T. (1999) – Involvement of intracellular CA2+ in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba – Physiol. Plant. 105: 554-561 – DOI: 10.1034/j.1399-3054.1999.105322.x – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1999.105322.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/a-stimulus-specific-ca2-signal-for-stomatal-opening/)

Shimazaki K., Gotow K., Kondo N. (1982) – Photosynthetic properties of guard cell protoplasts from Vicia faba – Plant Cell Physiol. 23: 871-879 –

Shimazaki K., Gotow K., Sakaki T., Kondo N. (1983) – High respiratory activity of guard-cell protoplasts from Vicia faba L. – Plant, Cell & Environment 24: 1049-1056 –

Shimazaki K., Iino M., Zeiger E. (1986) – Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. – Nature 319: 324–326. – doi: 10.1038/319324a0 – https://www.nature.com/articles/319324a0 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/an-electrogenic-plasmalemma-h-atpase-is-postulated-as-the-cause-of-blue-light-induced-h-extrusion/ )

Shimazaki K.-i., Kinoshita T., Nishimura M. (1992) – Involvement of Ca2+/calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping of guard cell protoplast from Vicia faba L. – Plant Physiology 99: 1416–1421 — DOI: 10.1104/pp.99.4.1416 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080641/ – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cam-and-ca2-cam-dependent-myosin-light-chain-kinase-are-the-components-of-the-signal-transduction-process-in-blue-light-dependent-proton-pumping-in-stomata/)

Shimazaki K., Kondo N. (1987) – Plasma membrane H+ -ATPase in guard-cell protoplasts from Vica faba L. – Plant Cell Physiol. 28: 893–900 –

Shimazaki K.-i., Sugiyama N., Takemiya A. (2012) – Signaling in stomatal guard cells in response to blue light – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/signaling-in-stomatal-guard-cells-in-response-to-blue-light/ )

Shimazaki K.-i., Terada J., Tanaka K., Kondo N. (1989) – Calvin-Benson cycle enzymes in guard cell protoplasts from Vicia faba L. – Plant Physiol. 90: 1057-1064 – PMCID: PMC1061843 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061843/ –  (On our blog : https://plantstomata.wordpress.com/2017/12/31/calvin-benson-cycle-enzymes-in-guard-cell-protoplasts-of-stomata/)

Shimazaki K.-i., Tominaga M., Shigenaga A. (1997) – Inhibition of the stomatal blue light response by verapamil at high concentration – Plant Cell Physiol. 38: 747–750 –

Shimazaki K.-i., Zeiger E. (1985) – Cyclic and non-cyclic photophosphorylation in isolated guard cell chloroplasts from Vicia faba L. – Plant Physiol. 78: 211-214 – https://doi.org/10.1104/pp.78.2.211 – http://www.plantphysiol.org/content/78/2/211 – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cyclic-and-non-cyclic-photophosphorylation-in-isolated-guard-cell-chloroplasts-of-stomata/)

Shimazaki K.-i., Zeiger E. (1987) – Red light-dependent CO2 uptake and oxygen evolution in guard cell protoplast of Vicia faba L.: Evidence for photosynthetic CO2 fixation – Plant Physiol. 84: 7-9 –

Shimoda S., Maruyama A. (2014) – Rice varietal differences in responses of stomatal gas exchange to supplemental nitrogen application – Photosynthetica 52(3): 397-403 – https://doi.org/10.1007/s11099-014-0043-8 – https://link.springer.com/article/10.1007%2Fs11099-014-0043-8 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/responses-of-stomatal-gas-exchange-to-supplemental-nitrogen-application/ )

Shimono H., Nakamura H., Hasegawa T., Okada M. (2013) – Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice – Glob. Change Biol. 19, 2444–2453. doi: 10.1111/gcb.12214 – PubMed Abstract | CrossRef Full Text | Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/gcb.12214/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/28/canopy-evapotranspiration-rate-leaf-stomatal-conductance-and-open-air-co2-elevation/ )

Shimshi D. (1963) – Effect of chemical closure of stomata on transpiration in varied soil and atmospheric environments – Plant Physiol. 38: 709-712 –http://www.plantphysiol.org/content/plantphysiol/38/6/709.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/28/effect-of-chemical-closure-of-stomata-on-transpiration/ )

Shimshi D. (1963) – Effect of soil moisture and phenylmercuric acetate upon stomatal aperture, transpiration, and photosynthesis – Plant Physiol. 38: 713-721 – PMCID: PMC550000 –http://www.plantphysiol.org/content/plantphysiol/38/6/713.full.pdf – (On our blog :  https://plantstomata.wordpress.com/2017/12/29/the-control-of-stomatal-opening-by-chemical-treatment/)

Shirakawa M., Ueda H., Nagano A. J., Shimada T., Kohchi T., HaraNishimura I. (2014) – FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis – Plant Cell 26: 4039-4052 – DOI: 10.1105/tpc.114.129874 – https://www.ncbi.nlm.nih.gov/pubmed/25304202 – (On our blog : https://plantstomata.wordpress.com/2017/12/29/a-common-regulatory-pathway-that-determines-two-distinct-cell-types-in-leaves-epidermal-guard-cells-stomata-and-inner-tissue-myrosin-cells/)

Shiv K., Ila P. (2014) – Stomatal analysis in Cassia occidentalis L. in response to automobile pollution along Roadsides in Meerut city, India – Int. Res. J. of Sci. & Engg., 2014; 2 (5):167-170.- http://oaji.net/articles/2014/731-1409862820.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/stomata-and-pollution/ )

Shope J. C., DeWald D. B., Mott K. A. (2003) – Changes in surface area of intact guard cells are correlated with membrane internalization – Plant Physiol. 133: 1314–1321 –

Shope J. C., Peak D., Mott K. A. (2008) – Stomatal responses to humidity in isolated epidermes – Plant, Cell and Environment 31: 1290-1298 – DOI: 10.1111/j.1365-3040.2008.01844.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01844.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-responses-to-humidity-in-isolated-epidermes/)

Shpak E. D.McAbee J. M.Pillitteri L. J.Torii K. U. (2005) – Stomatal patterning and differentiation by synergistic interactions of receptor kinases. – Science 309290293 – DOI: 10.1126/science.1109710 – Abstract/FREE Full TextGoogle Scholar – http://science.sciencemag.org/content/309/5732/290?ijkey=a061a0cdb1d934059dc68174286074f559286e5d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/04/06/patterning-and-differentiation-of-stomata-and-erecta-er-family-leucine-rich-repeat-receptor-like-kinases/)

Plant Signaling & Behavior 12(7) – http://dx.doi.org/10.1080/15592324.2017.1339858 – http://www.tandfonline.com/doi/abs/10.1080/15592324.2017.1339858 – https://plantstomata.wordpress.com/2017/10/28/the-pattern-of-cellulose-crystallinity-in-stomata-of-floating-plants-2/

Shtein I., Shelef Y., Marom Z., Zelinger E., Schwartz A., Popper Z. A., Bar-On B., Harpaz-Saad S. (2017) – Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups – Annals of Botany, 119(6): 1021-1033 – https://doi.org/10.1093/aob/mcw275 – https://www.botany.one/2017/05/stomatal-cell-wall-composition-distinct-structural-patterns-different-phylogenetic-groups/ – https://plantstomata.wordpress.com/2017/10/31/stomatal-cell-wall-composition-cell-wall-patterns-in-stomata-and-stomatal-wall-strengthening-function/ )

Shukla S. N., Gangopadhyaya S. (1981) – Stomatal index and size of stomatal opening of rice cultivars varying in reaction to bacterial leaf blight – Proc. Indian natn. Sci. Acad. B47 (4): 557-559 – 20005a0c_557.pdfhttps://www.researchgate.net/profile/Dr_Tresina…/20005a0c_557.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-and-size-of-stomatal-opening-in-reaction-to-bacterial-leaf-blight/ )

Sibbernsen E., Mott K. A. (2010) – Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells – Plant Physiol. 153:1435–1442. – doi: 10.1104/pp.110.157685. – Abstract/FREE Full Text – https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=%22Sibbernsen%20E%22%5Bau%5D&dispmax=50 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/a-vapor-phase-signal-between-the-mesophyll-and-stomata/ )

Siebke K., Weis E. (1995) – Assimilation images of leaves of Glechoma hederacea: Analysis of non‐synchronous stomata related oscillations – Planta 196: 155–165 – https://doi.org/10.1007/BF00193229 –https://link.springer.com/article/10.1007/BF00193229 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/non%E2%80%90synchronous-stomata-related-oscillations/)

Siegel R. S., Xue S., Murata Y., Yang Y., Nishimura N., Wang A., Schroeder J. I. (2009) – Calcium elevation-dependent and attenuated resting calcium- dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+channels in Arabidopsis guard cells. – Plant J. 59, 207–220. – doi: 10.1111/j.1365- 313X.2009.03872.x – https://www.ncbi.nlm.nih.gov/pubmed/19302418 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/an-attenuated-and-slowed-aba-response-when-ca2i-elevations-are-directly-inhibited-in-guard-cells/ )

 

Sierla M.Waszczak C.Vahisalu T.Kangasjärvi J. (2016) – Reactive Oxygen Species in the Regulation of Stomatal Movements – Plant Physiology 

Silva E. C., Nogueira R. J., Vale F. H., Araújo F. P. D., Pimenta M. A.  (2009) – Stomatal changes induced by intermittent drought in four umbu tree genotypes – Brazilian Journal of Plant Physiology 21, 33–42. – CrossRef –  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202009000100005&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/04/13/drought-and-stomatal-responses-in-spondias-tuberosa-trees-umbu/ )

Silva H.Sagardia S.Ortiz M.Franck N.Opazo M.Quiroz M.Baginsky C.Tapia C. (2014) – Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L) Burm f. as a function of water availability – Revista Chilena de Historia Natural201487:13 – https://doi.org/10.1186/s40693-014-0013-3 –https://revchilhistnat.biomedcentral.com/articles/10.1186/s40693-014-0013-3 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/water-availability-and-stomatal-traits/ )

Simmons A. R., Bergmann D. C. (2016) – Transcriptional control of cell fate in the stomatal lineage – Curr Opin Plant Biol. 2016 Feb;29:1-8. – doi: 10.1016/j.pbi.2015.09.008. – PMID: 26550955 – http://www.sciencedirect.com/science/article/pii/S136952661500148X – (On our blog : https://plantstomata.wordpress.com/2017/12/28/transcriptional-control-of-cell-fate-in-the-stomatal-lineage/)

Singh A. P. (1977) – The subcellular organization of stomatal initials in sugar cane leaves: the guard and subsidiary mother cells – Can. J.Bot. 55: 2801-2809 –

Singh A. P., Shaw H., Hollins G. (1977) – Preprophase bands of microtubules in developing stomatal complexes of sugar cane – Cytologia 42, 611-620 –

Singh A. P., Srivastava L. M. (1973) – The fine structure of pea stomata – Protoplasma 76: 61–82 –

Singh J., Kant S. (2007) – Impact of coal mining on leaf morphology and stomatal index of plants in Kalakote Range, Rajouri (J&K), India – Nature Environment and Pollution Technology © Technoscience Publications 6(4): 715-718 –http://www.neptjournal.com/upload-images/NL-30-30-(30)comB-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/21/impact-of-coal-mining-on-leaf-morphology-and-stomatal-index/ )

Sirichandra C., Wasilewska A., Vlad F., Valon C., Leung J. (2009) – The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action – Journal of Experimental Botany 60(5): 1439–1463 – https://academic.oup.com/jxb/article/60/5/1439/481377 -https://doi.org/10.1093/jxb/ern340 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/an-emerging-signalling-complex-critical-for-modulating-the-stomatal-aperture-in-response-to-environmental-stimuli-2/ )

Skrodzki C. J. A. (2017) – Unexpected Environmental Conditions Suggest Paleozoic Plant Morphological Gas Conductance Models – http://hdl.handle.net/2104/9431 – https://baylor-ir.tdl.org/baylor-ir/handle/2104/9431 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63948 )

Slavik B. (1963) – The distribution pattern of transpiration rate, water saturation deficit, stomata number and size, photosynthetic and respiration rate in the area of the tobacco leaf blade – Biol. Plantarum 5: 143-153 – https://doi.org/10.1007/BF02933646 –https://link.springer.com/article/10.1007%2FBF02933646?LI=true#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomata-number-and-size-photosynthetic-and-respiration-rate-in-tobacco-leaf-blade/)

Slootweg G., van Meeteren U. (1991) – Transpiration and stomatal conductance of roses cv. Sonia grown with supplemental lighting – Acta Hort. 298: 119-125 – DOI:  10.17660/ActaHortic.1991.298.12 –http://www.actahort.org/books/298/298_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomatal-behavior-of-nl-plants-and-sl-plants/)

Small J., Maxwell K. M. (1939) – pH-phenomena in relation to stomatal opening. I. Coffea arabica and some other species – Protoplasma 32: 272-283 – https://doi.org/10.1007/BF01796986 –https://link.springer.com/article/10.1007/BF01796986#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/ph-phenomena-in-relation-to-stomatal-opening/)

Small J., Clarke M.I., Crosbie-Baird J. (1942) – pH-phenomena in relation to stomatal opening. II-V. – Proc. Roy. Soc. Edinburgh B 61(3): 233-266 – https://doi.org/10.1017/S0080455X00011565 –https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-b-biological-sciences/article/xixph-phenomena-in-relation-to-stomatal-opening-iiv/11924EE3219C49CB2098CED7E634DA7F – (On our blog : https://plantstomata.wordpress.com/2017/12/29/the-closing-of-stomatal-pores-both-with-too-little-and-with-too-much-illumination/)

Smart L. B., Cameron K. D., Bennett A. B. (2000) – Isolation of genes predominantly expressed in guard cell and epidermal cell of Nicotiana glauca – Plant Molecular Biology 42857–869 – https://doi.org/10.1023/A:1006480107407 –https://link.springer.com/article/10.1023/A:1006480107407#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/isolation-of-genes-predominantly-expressed-in-guard-cells-stomata/)

Smith B. (2016) – Does grass hold the secret to more efficient crops? – Cosmos News Biology July 5, 2016 – https://cosmosmagazine.com/biology/change-the-shape-of-plant-mouths-to-feed-the-world – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-in-grasses-share-underlying-genes-with-broad-leafed-plants-implications/ )

Smith S., Weyers J. D. B., Berry W. G. (1989) – Variation in stomatal characteristics over the lower surface of Commelina communis leaves. – Plant, Cell and Environment 12: 653–659 – DOI: 10.1111/j.1365-3040.1989.tb01234.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01234.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/29/variation-in-stomatal-characteristics/)

Smith W. K., Young D. R., Carter G. A., Hadley J. L., McNaughton G. M. (1984) – Autumn stomatal closure in six conifer species of the Central Rocky Mountains – Oecologia (Berlin) (1 984) 63 : 337-242  – http://library.wrds.uwyo.edu/wrp/84-23/84-23.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/03/seasonal-stomatal-closure/ )

Snaith P. J., Mansfield T. A. (1982) – Control of the CO2 responses of stomata by indol-3-ylacetic acid and abscisic acid – Journal of Experimental Botany 33: 360-365 – DOI: 10.1093/jxb/33.2.360 – https://www.researchgate.net/publication/249280215_Control_of_the_Co_2_Responses_of_Stomata_by_Indol-3ylacetic_Acid_and_Abscisic_Acid – (On our blog : https://plantstomata.wordpress.com/2018/06/22/iaa-aba-and-co2-responses-of-stomata-2/ )

Snaith P. J., Mansfield T. A. (1985) – Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm – J. Exp. Bot. 36: 937-944 – https://doi.org/10.1093/jxb/36.6.937 –https://academic.oup.com/jxb/article-abstract/36/6/937/603950?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/29/responses-of-stomata-to-iaa-and-fusicoccin/)

Sobahan M. A., Akter N., Okuma E., Uraji M., Ye W., Mori I. C., Nakamura Y., Murata Y. (2015) – Allyl isothiocyanate induces stomatal closure in Vicia faba – Biosci. Biotechnol. Biochem. 79, 1737–1742 –  doi: 10.1080/09168451.2015.1045827 – https://www.ncbi.nlm.nih.gov/pubmed/26027691 – (On our blog : https://plantstomata.wordpress.com/2018/06/22/aitc-induces-stomatal-closure-2/ )

Sokolovski S., Blatt M. R. (2004) – Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. – Plant Physiol. 136: 4275–4284. – doi: 10.1104/pp.104.050344 – http://www.plantphysiol.org/content/136/4/4275 – (On our blog : https://plantstomata.wordpress.com/2018/06/22/no-directly-modifies-the-k-channel-or-a-closely-associated-regulatory-protein-probably-by-nitrosylation-of-cysteine-sulfhydryl-groups-in-stomata/ )

Sokolovski S., Hills A., Gay R., Garcia-Mata C., Lamattina L., Blatt, M. R. (2005) – Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. – Plant J. 43: 520–529. – doi: 10.1111/j.1365-313X.2005.02471.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.2005.02471.x – (On our blog : https://plantstomata.wordpress.com/2018/06/23/no-dependent-signals-can-be-modulated-through-protein-phosphorylation-upstream-of-intracellular-ca2-release-in-stomata/ )

Solarova J., Pospisilova J. (1983) – Photosynthetic characteristics during ontogenesis of leaves. VIII. Stomatal diffusive conductance and stomata reactivity – Photosynthetica 17: 101- 151 –

Solmaz I., Sari N., Dasgan H. Y., Aktas H., Yetisir H., Unlu H. (2013) – The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids – Journal of Food Agriculture and Environment 9(3) – https://www.researchgate.net/publication/235921373_The_effect_of_salinity_on_stomata_and_leaf_characteristics_of_dihaploid_melon_lines_and_their_hybrids – (On our blog : https://plantstomata.wordpress.com/2018/08/22/the-effect-of-salinity-on-stomata/ )

Song S.-J.Feng Q.-N.Li C.-L.Li E.Liu Q.Kang H.Zhang W.Zhang Y.Li S. (2018) – A Tonoplast-Associated Calcium-Signaling Module Dampens ABA Signaling during Stomatal Movement – Plant Physiol., published online – DOI: -https://doi.org/10.1104/pp.18.00377 – http://www.plantphysiol.org/content/177/4/1666?rss=1 – (On our blog : https://plantstomata.wordpress.com/2018/08/07/the-tonoplast-cbl-cipk-complexes-form-a-signaling-module-that-negatively-regulates-aba-signaling-during-stomatal-movement/ )

Song X., She X., He J., Huang C., Song T. (2006) – Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. – Funct. Plant Biol. 33: 573–583 – http://dx.doi.org/10.1071/FP05232 – [Cross Ref] – http://www.publish.csiro.au/fp/fp05232 – (On our blog : ls of Vicia faba – Russ. J. Plant Physiol. 59: 372-380 – http://dx.doi.org/10.1134/S102144371203017X – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69334 )

Song X.-G., She X.-P., Wang J. (2012) – Inhibition of darkness-induced stomatal closure by ethylene involves a removal of hydrogen peroxide from guard cells of Vicia faba – Russ J Plant Physiol 59: 372-380 –  https://doi.org/10.1134/S102144371203017X – https://link.springer.com/article/10.1134/S102144371203017X – (On our blog : https://plantstomata.wordpress.com/2018/06/25/ethylene-probably-induces-h2o2-removal-and-reduces-h2o2-level-in-stomata-and-inhibits-stomatal-closure-induced-by-darkness/ )

 

Song X.-G., She X.-P., Wang J., Sun Y.-C. (2011) – Ethylene inhibits darkness- induced stomatal closure by scavenging nitric oxide in guard cells of Vicia faba. – Funct. Plant Biol. 38, 767–777. – doi: 10.1071/FP11055 – http://www.publish.csiro.au/FP/FP11055 – (On our blog : https://plantstomata.wordpress.com/2018/06/25/ethylene-reduces-the-levels-of-no-in-stomata-via-a-pattern-of-no-scavenging-then-induces-stomatal-opening-in-the-dark/ )

Song X. G., She X. P., Yue M., Liu Y. E., Wang Y. X., Zhu X., Huang A. K. (2014) – Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba. – Russ. J. Plant Physiol. 61: 390–396 – 10.1134/S1021443714020150 – [Cross Ref] – https://link.springer.com/article/10.1134%2FS1021443714020150 – (On our blog : https://plantstomata.wordpress.com/2018/06/24/cuao-mediated-h2o2-production-is-involved-in-ethylene-induced-stomatal-closure-2/

 

Song Y., Miao Y., Song C. P. (2014) – Behind the scenes: the roles of reactive oxygen species in guard cells. – New Phytol. 201, 1121–1140. – doi: 10.1111/nph.12565 – https://www.ncbi.nlm.nih.gov/pubmed/24188383 – (On our blog : https://plantstomata.wordpress.com/2018/06/24/understanding-of-ros-signalling-in-stomata/ )

 

Song Y., Xiang F.,  Zhang G. Miao Y., Miao C., Song C.-P.  (2016) – Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:181. doi: 10.3389/fpls.2016.00181 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/aba-stomatal-aperture-and-senescence/ )

Sorokin H. P., Sorokin S. (1968) –  Fluctuations in the acid phosphatase activity of spherosomes in guard cells of Campanula persicifolia – J. Histochem. Cytochem. 16:791-802-

Sosa-Flores V. P., Ramírez-Godina F., Benavides-Mendoza A., Ramírez H. (2014) – Study of morphological and histological changes in melon plants grown from seeds irradiated with UV-B – Journal of Applied Horticulture 16(3): 199-204 –http://horticultureresearch.net/journal_pdf/melon.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-frequency-stomatal-index-length-and-width-of-stomata-in-melon-plants-grown-from-seeds-irradiated-with-uv-b/ )

Sousa Paiva E. A., Lemos-Filho J. P., Oliveira D. M. T. (2006) – Imbibition of Swietenia macrophylla (Meliaceae) Seeds: The Role of Stomata – Annals of Botany 98(1): 213-217 – DOI 10.1093/aob/mcl090 – https://www.researchgate.net/publication/7096069_Imbibition_of_Swietenia_macrophylla_Meliaceae_Seeds_The_Role_of_Stomata – (On our blog : https://plantstomata.wordpress.com/2018/05/29/the-role-of-stomata-in-the-seed-coat/ )

Spence R. D. (1987) – The problem of variability in stomatal responses, particularly aperture variance, to environmental and experimental conditions – New Physiol. 107(2): 303 – 315. – DOI: 10.1111/j.1469-8137.1987.tb00182.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1987.tb00182.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-aperture-as-a-characteristic-response-to-environmental-and-experimental-conditions/ )

Spence R. D., Sharpe P. J. H., Powell R. D., Wu H. (1984) – Response of guard cells to temperature at different concentrations of carbon dioxide in Vicia faba L. – New Phytol. 97, 129–144 – doi: 10.1111/j.1469-8137.1984. tb04117.x – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1984.tb04117.x – (On our blog : https://plantstomata.wordpress.com/2018/06/25/response-of-stomata-to-temperature-at-different-concentrations-of-co2/ )

Spence R. D., Wu H., Sharpe P. J. H. Clark K. G. (1986) – Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells – Plant, Cell and Environment 9: 197–202 –

Sperry J. S., Venturas M. D., Anderegg W. R. I., Mencuccini M., Mackay D. S., Wang Y., Love D. M. (2016) – Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost – Plant, Cell and Environment – DOI: 10.1111/pce.12852 – Accepted, unedited articles published online – http://onlinelibrary.wiley.com/doi/10.1111/pce.12852/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/21/the-optimization-of-photosynthetic-gain-and-hydraulic-cost-to-predict-stomatal-responses/ )

Sperry J. S., Pockman W. T. (1993) – Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis – Plant, Cell and Environment 16(3): 279-287 – DOI 10.1111/j.1365-3040.1993.tb00870.x – https://utah.pure.elsevier.com/en/publications/limitation-of-transpiration-by-hydraulic-conductance-and-xylem-ca – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-conductance-responding-to-reduced-hydraulic-conductance-and-preventing-cavitation%e2%80%90inducing-xylem-pressure/ )

Squire G. R., Mansfield T. A. (1972) – A simple method of isolating stomata on detached epidennis by low pH treatment: observations on the importance of subsidiary cells – New Phytol. 71: 1033-1043 –

Squire G. R., Mansfield T. A. (1974) – The action of fusicoccin on stomatal guard cells and subsidiary cells – New Phytol. 73: 433-440 –

Srivastava A., Lu Z. M., Zeiger E. (1995) – Modification of guard-cell properties in advanced lines of Pima cotton bred for higher yields and heat-resistance – Plant Science 108: 125-131 –

Srivastava L. M., Singh A.P. (1972) – Stomatal structure in corn leaves – J. Ultrastruct. Res. 39: 345–363 –

Srivastava N., Gonugunta V., Puli M., Raghavendra, A. (2009) – Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. – Planta 229: 757–765. – doi: 10.1007/s00425-008-0855-5 – https://www.ncbi.nlm.nih.gov/pubmed/19084995 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/the-role-of-no-and-chitosan-in-stomata/ )

Staley D. (2018)  – NEXT: Plants that Provide Energy, Fuel, Light – Columbus Underground April 3, 2018 – https://www.columbusunderground.com/next-plants-that-provide-energy-fuel-light-ds1 – (On our blog : https://plantstomata.wordpress.com/2018/04/04/plants-that-provide-energy-fuel-light-and-the-role-of-stomata/ )

 

Stadler R., Büttner M., Ache P., Hedrich R., Ivashikina N., Melzer M., Shearson S. M.Smith S. M.Sauer N. (2003) – Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. – Plant Physiol. 133: 528–537 – 10.1104/pp.103.024240 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/133/2/528 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/atstp1-in-stomata/

Stebbins G. L., JainS. K. (1960) – Developmental studies of cell differentiation in the epidermis of monocotyledons. I. Allium, Rhoeo, Commelina – Dev. Biol. 2: 401-426 –

Stebbins G. L., Shah S. S. (1960) – Developmental studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the Gramineae – Dev. Biol. 2: 477-500 –

Stevens R. A., Martin E. S. (1977) – New structure associated with stomatal complex of the fern Polypodium vulgare – Nature 265: 331–334 – doi:10.1038/265331a0 – https://www.nature.com/articles/265331a0 – (On our blog : https://plantstomata.wordpress.com/2018/01/13/new-structures-in-the-stomatal-complex-the-site-of-potassium-accumulation/ )

Stevens R. A., Martin E. S. (1978) – Structural and functional aspects of stomata: I. Developmental studies in Polypodium vulgare – Planta 142: 307–316 –

Street I. (2017) – Guard Cells Tolerating Heat – The Quiet Branches blog April 18, 2017 – https://thequietbranches.com/2017/04/18/guard-cells-tolerating-heat/ – (On our blog : https://plantstomata.wordpress.com/2018/01/19/65858/ )

Strobel D. W., Sundberg M. D. (1983) – Stomatal density in leaves of various xerophytes–a preliminary study – Journal of the Minnesota Academy of Science 49(2): 7-9 – ISSN : 0026-539X – http://mnmas.org/sites/default/files/198384V49N2_Strobel.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-density-in-various-xerophytes/ )

Suetsugu N., Takami T., Ebisu Y., Watanabe H., Iiboshi C., Doi M., Shimazaki K-i. (2014) – Guard Cell Chloroplasts Are Essential for Blue Light-Dependent Stomatal Opening in Arabidopsis – PLoS ONE9(9): e108374. – https://doi.org/10.1371/journal.pone.0108374 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108374 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-chloroplasts-provide-atp-and-or-reducing-equivalents-that-fuel-bl-dependent-stomatal-opening/ )

Sugano S. S.Shimada T.Imai Y.Okawa K.Tamai A.Mori M.Hara-Nishimura I. (2010) – Stomagen positively regulates stomatal density in Arabidopsis. – Nature 463241244 – DOI: 10.1038/nature08682 – CrossRefPubMedGoogle Scholar – http://www.nature.com/nature/journal/v463/n7278/full/nature08682.html – (On our blog : https://plantstomata.wordpress.com/2015/10/18/stomagen-and-stomatal-density/)

Sugimoto K., Morita Y., Kazama H. (1993) – Red-light induced subsidiary cell differentiation in the hypocotyl epidermis of Cucumis sativus L. In: Proceedings of XV International Botanical Congress, Yokohama, p 435 –

Suh S. J., Wang Y. F., Frelet A., Leonhardt N., Klein M., Forestier C., Mueller-Roeber B., Cho M. H., Martinoia E., Schroeder J. I. (2007) – The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. – J. Biol. Chem. 282: 1916–1924. – doi: 10.1074/jbc.M6079 26200 – https://www.ncbi.nlm.nih.gov/pubmed/17098742 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/atmrp5-abc-transporter-is-a-central-regulator-of-stomatal-ion-channel-during-aba-and-ca2-signal-transduction-in-guard-cells/ )

 

Suhita D., Raghavendra A. S., Kwak J. M., Vavasseur A. (2004) – Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. – Plant Physiol. 134: 1536– 1545. – doi: 10.1104/pp.103.032250 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS –http://www.plantphysiol.org/content/134/4/1536.full.pdf – (https://plantstomata.wordpress.com/2016/12/27/cytoplasmic-alkalization-and-ros-production-during-mj-or-aba-signal-transduction-in-stomata/ )

Sun B.-N., Ding S.-T., Wu J.-Y., Dong C. (2012) – Carbon Isotope and Stomatal Data of Late Pliocene Betulaceae Leaves from SW China: Implications for Palaeoatmospheric CO2-levels -Turkish Journal of Earth Sciences 21(2): 237 – 250 – http://dergipark.gov.tr/tbtkearth/issue/11987/143550 – (On our blog : https://plantstomata.wordpress.com/2018/03/20/palaeoatmospheric-co2-levels-carbon-isotope-and-stomata/

Sun L. R., Hao F. S., Lu B. S., Ma L. Y. (2010) – AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. – Plant Signal. Behav. 5: 1022–1024. – doi: 10.4161/psb.5.8.12293 – https://www.ncbi.nlm.nih.gov/pubmed/20657186 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/atnoa1-regulates-sa-triggered-no-accumulation-and-stomatal-closure/ )

 

Sun W., Maseyk K., Lett C., Seibt U. (2018 ?) – Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh – Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-431, in review, 2017 – https://www.biogeosciences-discuss.net/bg-2017-431/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-control-of-leaf-fluxes-of-cos-and-co2/ )

Sun X., Kang X., Ni M. (2012) – Hypersensitive to red and blue 1 and its modification by protein phosphatase 7 are implicated in the control of Arabidopsis stomatal aperture. – PLoS Genet. 8: e1002674. – doi: 10.1371/journal.pgen.1002674 – https://www.ncbi.nlm.nih.gov/pubmed/22589732 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/hypersensitive-to-red-and-blue-1-hrb1-and-protein-phosphatase-7-pp7-and-the-control-of-stomatal-aperture-2/ )

Sun Y., Yan F., Cui X., Liu F. (2014) – Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes – J. Plant Physiol. 171: 1248–1255 – DOI:  10.1016/j.jplph.2014.06.002 – [PubMed] [Cross Ref] – 

Sun Z., Jin X., Albert R., Assmann S. M. (2014) – Multi-level modeling of light-induced stomatal opening offers new insights into its regulation by drought – PLoS Comp. Biol. PLOS Computational Biology 12(11): e1005181 – https://doi.org/10.1371/journal.pcbi.1005181 – PMC free article] [PubMed] [Cross Ref] – http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003930 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/light-induced-stomatal-opening-and-regulation-by-drought/ )

 

Suresh R., Foy C. D., Weidner J. R., (2008) – Effects of excess soil manganese on stomatal function in two soybean cultivars – Journal of Plant Nutrition 10(7): 749-760 – https://doi.org/10.1080/01904168709363606 –http://www.tandfonline.com/doi/pdf/10.1080/01904168709363606 – (On our blog : https://plantstomata.wordpress.com/2017/11/25/mn-toxicity-closed-stomata/ )

Sussmilch F. C., Brodribb T. J., McAdam S. A. (2017) – Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required – Journal of Experimental Botany – doi:10.1093/jxb/erx124 – http://www.brodribblab.org.au/wp-content/uploads/%20%202017/05/Up-regulation-of-NCED3-and-ABA-biosynthesis-occur-within-minutes-of-a-decrease-in-leaf-turgor-but-AHK1-is-not-required.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/decreased-leaf-turgor-triggers-de-novo-aba-biosynthesis-within-the-time-frame-of-the-stomatal-response-to-vpd/ )

Sussmilch F. C., McAdam S. A. (2017) – Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity – Plants 6(4): 54 – doi:10.3390/plants6040054 – the Special Issue Plant Adaptation to Climate Change)http://www.mdpi.com/2223-7747/6/4/54 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/aba-stomata-and-mechanisms-for-conserving-water-under-low-humidity/ )

Swift H. M. (1932) – Behavior of stomata – OREGON STATE AGRICULTURAL COLLEGE MSc Thesis – SwiftHarveyM1932.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/10/behavior-of-stomata-3/ )

Szyroki A., Ivashikina N., Dietrich P., Roelfsema M. R., Ache P., Reintanz B., et al. (2001) – KAT1 is not essential for stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 98, 2917–2921. – doi: 10.1073/pnas.051616698 – http://www.pnas.org/content/98/5/2917 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/multiple-k-channel-transcripts-exist-in-stomata-and-kat1-is-not-essential-for-stomatal-action/ )

 

Taiz L., Zeiger E. (1998) – Plant Physiology, 2nd Edn. Sunderland, MA: Sinauer Associates.

 

Taiz L., Zeiger E., Moeller I. M., Murphy A. (2015) – Plant Physiology and Development, Sixth Edition – Topic 10.4 – Phytochrome-mediated Responses in Stomata – http://6e.plantphys.net/index.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/phytochrome-mediated-responses-in-stomata/ )

Takahashi Y., Ebisu Y., Kinoshita T., Doi M., Okuma E., Murata Y., Shimazaki K.-i (2013) – bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation – Sci. Signal. 6, ra48 – doi: 10.1126/scisignal.2003760 – https://www.ncbi.nlm.nih.gov/pubmed/23779086 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/aks-family-of-bhlh-transcription-factors-facilitates-stomatal-opening-through-transcription-of-genes/ )

Takahashi Y., Kinoshita T., Shimazaki K.-i.. (2007) – Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA – Plant Cell Physiol. 48: 1182–1191 – doi: 10.1093/pcp/pcm093 – https://www.ncbi.nlm.nih.gov/pubmed/17634179 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/61-kda-protein-may-be-a-substrate-for-aapk-and-it-is-located-upstream-of-h2o2-and-ca2-or-on-ca2-independent-signaling-pathways-in-stomata/ )

Takemiya A., Kinoshita T., Asanuma M., Shimazaki K. (2006) – Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba – Proc. Natl. Acad. Sci. USA 103: 13549–13554 –

 

Takemiya A., Shimazaki K.-i. (2010) – Phosphatidic acid inhibits blue light- induced stomatal opening via inhibition of protein phosphatase – Plant Physiol. 153: 1555–1562 – DOI: https://doi.org/10.1104/pp.110.155689 – http://www.plantphysiol.org/content/153/4/1555 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/pa-inhibits-blue-light-signaling-in-stomata-by-pp1c-inhibition-accelerating-stomatal-closure/ )

Takemiya A., Sugiyama N., Fujimoto H., Tsutsumi T., Yamauchi S., Hiyama A., Tada Y., Christie J. M., Shimazaki K.-i. (2013) – Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening – Nat Commun 4: 2094  -DOI: 10.1038/ncomms3094 – https://www.ncbi.nlm.nih.gov/pubmed/23811955 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/blus1-functions-as-a-phototropin-substrate-and-primary-regulator-of-stomatal-control-2/

Takemiya A., Yamauchi S., Yano,T., Ariyoshi C., Shimazaki K. (2013) – Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. – Plant Cell Physiol. 54: 24–35. – doi: 10.1093/pcp/pcs073 – https://www.ncbi.nlm.nih.gov/pubmed/22585556 – (On our blog https://plantstomata.wordpress.com/2018/06/26/prsl1-functions-as-a-regulatory-subunit-of-pp1-and-regulates-blue-light-signaling-in-stomata-2/ )

Takeuchi Y., Kondo N. (1988) – Effect of abscisic acid on glucose metabolism in guard cells of Vicia faba L. – Plant Cell Physiology 29: 247–253 –

Takeuchi Y., Kondo N. (1988) – Effect of abscisic acid on cell-wall metabolism in guard cells of Vicia faba L. – Plant Cell Physiology 29: 573–580 –

Takuya F., Tatsumi H., Sokabe M. (2008) – Mechano-sensitive channels regulate the stomatal aperture in Vicia faba – Biochemical and Biophysical Research Communications 366: 758–762 – Mechano-sensitive_channels_regulate_the.pdf –  (On our blog : https://plantstomata.wordpress.com/2017/12/14/mechano-sensitive-channels-regulate-the-stomatal-aperture/ )

Talbott L. D. (2006) – The Blue–Green Reversibility of the Blue-Light Response of Stomata – Plant Physiology and Development, Sixth Edition (Eds. Taiz L., Zeiger E., Moeller I. M., Murphy A.,© 2015 Sinauer Associates) – http://6e.plantphys.net/essay10.04.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/blue-light-response-of-stomata/ )

Talbott L. D., Hammad J. W., Harn L. C., Nguyen V. H., Patel J., Zeiger E. (2006) – Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement – Plant Cell Physiol. 47: 332–339 –

Talbott L. D., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88, 887–895. – 10.1104/pp.88.3.887 – [PMC free article] [PubMed] [Cross Ref] – https://plantstomata.wordpress.com/2017/07/19/light-quality-and-osmoregulation-in-stomata/

Talbott L. D., Zeiger, E. (1993) – Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light. – Plant Physiol. 102: 1163–1169 – DOI: https://doi.org/10.1104/pp.102.4.1163 – http://www.plantphysiol.org/content/102/4/1163 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/light-quality-modulates-alternative-mechanisms-of-osmotic-accumulation-in-stomata-2/ )

Talbott L. D., Zeiger E. (1996) – Central roles for potassium and sucrose in guard-cell osmoregulation. – Plant Physiol. 111: 1051–1057 – DOI: https://doi.org/10.1104/pp.111.4.1051 – http://www.plantphysiol.org/content/111/4/1051 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/stomatal-osmoregulation-in-intact-leaves-depends-on-at-least-two-different-osmoregulatory-pathways-k-transport-and-sucrose-metabolism/ )

Talbott L. D., Zeiger E. (1998) – The role of sucrose in guard cell osmoregulation. – J. Exp. Bot. 49: 329–337 – doi: 10.1093/jexbot/49.suppl_1.329 – https://academic.oup.com/jxb/article/49/Special_Issue/329/507976 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/sucrose-in-stomatal-osmoregulation/ )

Talbott L. D., Zhu J., Han S. W., Zeiger E. (2002) – Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum – Plant Cell Physiol 43: 639–646 –

Tallman G. (2004) – Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? – J. Exp. Bot. 55, 1963–1976. – 10.1093/jxb/erh212 –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/15310824 – (On our blog : https://plantstomata.wordpress.com/2018/06/27/a-model-to-reconcile-proposed-cellular-mechanisms-for-guard-cell-signal-transduction-with-patterns-of-stomatal-movements-in-leaves/

Tallman G. (2006) – Guard cell protoplasts: isolation, culture, and regeneration of plants. – Methods Mol. Biol. 318: 233–252. – doi: 10.1385/1-59259-959-1:233 – In : Plant Cell Culture Protocols – http://www.springerprotocols.com/Abstract/doi/10.1385/1-59259-959-1:233 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-culture-of-guard-cell-protoplasts/ )

 

Tallman G., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88: 887–895. – doi: 10.1104/pp.88.3.887 – http://www.plantphysiol.org/content/88/3/887 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/osmoregulation-during-stomatal-opening-is-the-result-of-three-key-metabolic-processes-ion-transport-photosynthesis-and-sugar-metabolism/ )

Tamnanloo F.Damen H.Jangra R.Lee J. S. (2018) – MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development – Plant Physiology DOI: https://doi.org/10.1104/pp.18.00475 – http://www.plantphysiol.org/content/178/1/247 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71101 )

Tanaka Y., Kutsuna N., Kanazawa Y., Kondo N., Hasezawa S., Sano T. (2007) – Intra-vacuolar reserves of membranes during stomatal closure: the possible role of guard cell vacuoles estimated by 3-D reconstruction – Plant and Cell Physiology 48: 1159–1169 –

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2005) – Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis – Plant Physiol. 138: 2337–2343 – 10.1104/pp.105.063503 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/138/4/2337 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/ethylene-delays-stomatal-closure-by-inhibiting-the-aba-signaling-pathway-2/

Tanaka Y., Sugano S. S., Shimada T., Hara-Nishimura I. (2013) – Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis – New Phytol, 198: 757–764 – doi:10.1111/nph.12186 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12186/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/increased-stomatal-density-enhanced-leaf-photosynthetic-capacity-by-modulating-gas-diffusion/

 

Tanaka Y., Fujii K., Shiraiwa T. (2010) – Variability of Leaf Morphology and Stomatal Conductance in Soybean [Glycine max (L.) Merr.] Cultivars – Crop Science – 50(6): 2525-2532 – doi:10.2135/cropsci2010.02.0058 –https://dl.sciencesocieties.org/publications/cs/abstracts/50/6/2525 – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomatal-conductance-in-soybean-glycine-max/ )

Tang Y., Liang N. (2000) – Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes – Tree Physiology 20: 969–976 – https://www.ncbi.nlm.nih.gov/pubmed/11303572 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/photosynthetic-induction-response-with-stomata-barely-responding-to-light-changes/ )

Tardieu F. (2016) – Too many partners in root–shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control? – New Phytologist 212(4): 802–804 – DOI: 10.1111/nph.14292 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14292/abstract . This article is a Commentary on Visentin et al.212: 954–963. – (On our blog : https://plantstomata.wordpress.com/2016/11/09/hydraulics-and-stomatal-control/ )

Tardieu F., Davies W. J. (1993) – Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants – Plant, Cell and Environment 16: 341–349 –

Tardieu F., Simonneau T. (1998) – Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours – Journal of Experimental Botany 49: 419–432 –

Tari I. (2003) – Abaxial and adaxial stomatal density, stomatal conductances and water status of bean primary leaves as affected by paclobutrazol – Biologia Plantarum 47: 215–220 –

Tátrai Z. A., Sanoubar R., Pluhár Z., Mancarella S., Orsini F., Gianquinto G. (2015) – Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus – International Journal of Agronomy
2016 – ID 4165750, 8 pp. – http://dx.doi.org/10.1155/2016/4165750 –https://www.hindawi.com/journals/ija/2016/4165750/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63995 )

Tay A.-C., Furukawa A. (2008) – Variations in leaf stomatal density and distribution of 53 vine species in Japan – Plant Species Biology 23(1): 2-8 – https://doi.org/10.1111/j.1442-1984.2008.00201.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1442-1984.2008.00201.x – (On our blog : https://plantstomata.wordpress.com/2018/08/11/leaf-stomatal-density-and-distribution-vary-among-species-with-different-growth-life-forms-from-different-habitats/ )

Taylor A. R., Assmann S. M. (2001) – Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells – Plant Physiol. 125: 329–338 –

Taylor S. H., Franks P. J., Hulme S. P., Spriggs E., Christin P. A., Edwards E. J., Woodward F. I., Osborne C. P. (2012) – Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. – New Phytologist, 193(2), 387-396 – DOI: 10.1111/j.1469-8137.2011.03935.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03935.x/abstract – (On our blog :  https://wordpress.com/post/plantstomata.wordpress.com/65932 )

Tena G. (2015) – Stomatal development: Securing a lineage – Dev. Cell 33 , 136-149 –http://www.nature.com/articles/nplants201571 – (https://plantstomata.wordpress.com/2016/12/16/a-lineage-in-stomatal-development/ )

Teramura A. H.Tevini M.Iwanzik W. (1983) – Effects of ultraviolet-B on plants during mild water stress. I. Effects on diurnal stomatal resistance – Physiol Plant 57175180 – 

Thiel G., Blatt M. R .(1994) – Phosphatase antagonist okadaic acid inhibits steady-state K1 currents in guard cells of Vicia faba – Plant J. 5: 727–733 –

Thiel G., Blatt M. R., Fricker M. D., White I. R., Millner P. (1993) – Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin‐binding protein C terminus – Proceedings of the National Academy of Sciences, USA 90: 11.493-11.497 –

Thiel G., MacRobbie E. A., Blatt M. R. (1992) – Membrane transport in stomatal guard cells: the importance of voltage control – Journal of Membrance Biology 126: 1-18 –

Thiel G., Wolf A. H. (1997) – Operation of K+‐channels ion stomatal movement – Trends in Plant Science 2: 339-345 –

Thimann K. V., Satler S. (1979) – Relation between senescence and stomatal opening: senescence in darkness. – Proc. Natl. Acad. Sci. U.S.A. 76, 2770–2773. – doi: 10.1073/pnas.76.6.2770 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383690/ – (On our blog : https://plantstomata.wordpress.com/2018/06/28/a-parallel-between-stomatal-aperture-and-senescence-with-strong-indication-that-the-stomatal-aperture-is-the-causal-factor/ )

Thimann K. V., Satler S. O. (1979) – Relation between leaf senescence and stomatal closure: senescence in light – Proc. Natl. Acad. Sci. U.S.A. 76: 2295–2298 – doi: 10.1073/pnas.76.5.2295 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383586/ – (On our blog : https://plantstomata.wordpress.com/2018/06/28/the-effect-of-light-in-delaying-senescence-is-due-to-its-effect-on-the-stomatal-aperture/ )

Thomas D. S., Eamus D., Bell D. (1999) – Optimization theory of stomatal behaviour. II. Stomatal responses of several tree species of north Australia to changes in light, soil and atmospheric water content and temperature. – J. Exp. Bot. 50: 393–400 –

Thomas E. (2018) – Plants Also Absorb Mercury – The Talking Democrat April 3, 2018 – https://www.thetalkingdemocrat.com/2018/04/plants-also-absorb-mercury/ – (On our blog : https://plantstomata.wordpress.com/2018/04/04/plants-also-absorb-mercury-through-their-stomata/ )

Thor K., Peiter, E. (2014) – Cytosolic calcium signals elicited by the pathogen- associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. – New Phytol. 204, 873–881 – doi: 10.1111/nph.13064 – Epub 2014 Sep 22 – https://www.ncbi.nlm.nih.gov/pubmed/25243759 – (On our blog : https://plantstomata.wordpress.com/2018/06/28/cytosolic-calcium-signals-in-stomatal-guard-cells-are-of-an-oscillatory-nature/ )

 

Thorpe N. (1980) – Accumulation of carbon compounds in the epidermis of five species with either different photosynthetic systems or stomatal structure – Plant, Cell & Environment 3: 451-460 –

Tian M., Yu G., He N., Hou J. ( 2016) – Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors – Scientific Reports 6, Article number: 19703 (2016) – doi:10.1038/srep19703 –https://www.nature.com/articles/srep19703 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-traits-from-tropical-to-temperate-coniferous-forests/ )

Tian W., Hou C., Ren Z., Pan Y., Jia J., Zhang H., et al. (2015) – A molecular pathway for CO2 response in Arabidopsis guard cells. – Nat. Commun. 6:6057. – 10.1038/ncomms7057 – [PubMed] [Cross Ref] – https://www.nature.com/articles/ncomms7057 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/co2-response-in-guard-cells-stomata/ )

Tichá I. (1982) – Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes – Photosynthetica 16: 375–471 –

 

Tichá I., Radochová B., Kadleček P. (1999) – Stomatal Morphology during Acclimatization of Tobacco Plantlets to ex vitro Conditions – Biologia Plantarum 42(3): 469-474 – DOI10.1023/A:1002450210939 –https://www.infona.pl/resource/bwmeta1.element.springer-8c213c62-bf32-37bd-9448-939744b5cf2e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/stomatal-morphology-during-acclimatization/ )

Ting I. P.Loomis W. E. (1963) – Diffusion through stomates –  Am. J. Bot. 50: 866872 – DOI: 10.2307/2439773 – CrossRefWeb of Sciencehttp://www.plantphysiol.org/content/77/4/944Google Scholar – https://www.jstor.org/stable/2439773?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/28/stomatal-opening-will-have-no-important-effect-on-diffusion-from-or-into-a-leaf-until-the-stomates-are-essentially-closed/ )

Tingey D. T., Hogsett W. E. (1985) – Water-stress reduces ozone injury via a stomata1 mechanism – Environmental Pollution 77: 944-947 – DOI: https://doi.org/10.1104/pp.77.4.944 – http://www.plantphysiol.org/content/77/4/944 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/water-stress-protects-plants-from-ozone-injury-via-stomatal-aperture/ )

Tinoco-Ojanguren C., Pearcy R. W. (1992) – Dynamics of stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory Piper species acclimated to high and low light. – Oecologia 92: 222–228 – doi: 10.1007/BF00317368 – https://www.ncbi.nlm.nih.gov/pubmed/28313055 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/lightflecks-and-stomatal-behavior/ )

Tinoco-Ojanguren C., Pearcy R. W. (1993) – Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks – Oecologia 94: 388-394 – https://doi.org/10.1007/BF00317114 – https://link.springer.com/article/10.1007/BF00317114#citeas – (On our blog : https://plantstomata.wordpress.com/2018/07/05/vpd-effects-on-the-transient-stomatal-response-to-lightflecks/ )

Tinoco-Ojanguren C., Pearcy R. W. (1993) – Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. II. Stomatal versus biochemical limitations during photosynthetic induction. – Oecologia 94: 395–402 – doi: 10.1007/BF00317115 – https://www.ncbi.nlm.nih.gov/pubmed/28313677 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/stomatal-versus-biochemical-limitations-during-photosynthetic-induction/ )

Tissue D. T., Griffin K. L., Turnbull M. H., Whitehead D. (2005) – Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by Dacrydium cupressinum in New Zealand – Tree Physiol. 25(4): 447-456 – PMID: 15687093 – https://www.ncbi.nlm.nih.gov/pubmed/15687093 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/stomatal-and-non-stomatal-limitations-to-photosynthesis-in-a-temperate-rainforest/ )

 Tognetti R. (1997) – Stomatal numbers in holm oak (Quercus ilex L.) leaves grown in naturally and artificially CO 2 -enriched environments – https://www.academia.edu/30721351/Stomatal_numbers_in_holm_oak_Quercus_ilex_L._leaves_grown_in_naturally_and_artificially_CO_2_-enriched_environments – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-numbers-in-different-environment/ )

Toh S. Inoue S., Toda Y., Yuki T., Suzuki K., Hamamoto S. , Fukatsu K., Aoki S., Uchida M., Asai E., Uozumi N., Sato A., Kinoshita T. (2018) – Identification and Characterization of Compounds that Affect Stomatal Movements – Plant and Cell Physiology, pcy061 – https://doi.org/10.1093/pcp/pcy061 – https://academic.oup.com/pcp/advance-article-abstract/doi/10.1093/pcp/pcy061/4950858?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/04/11/compounds-that-affect-stomatal-movements/ )

Tõldsepp K., Zhang J., Takahashi Y., Sindarovska Y., Hõrak H., Ceciliato P. H. O., Koolmeister K., Wang Y.-S., Vaahtera L., Jakobson L., Yeh C.-Y., Park J., Brosche M., Kollist H., Schroeder J. I. (2018) – Mitogen‐activated protein kinases MPK4 and MPK12 are key components mediating CO2‐induced stomatal movements – The Plant Journal https://doi.org/10.1111/tpj.14087 – https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14087?af=R – (On our blog : https://plantstomata.wordpress.com/2018/09/12/mpk4-and-mpk12-act-as-key-components-of-early-stomatal-co2-signal-transduction/ )

 

Tominaga M., Kinoshita T., Shimazaki K. (2001) – Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening – Plant Cell Physiol. 42: 795–802 –

Torii K. U. (2012) – Cell-cell-communication and stomatal patterning – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-patterning-and-differentiation/ )

Torii K. U. (2015) – Stomatal differentiation: the beginning and the end. – Curr. Opin. Plant Biol. 28, 16–22. – doi: 10.1016/j.pbi.2015.08.005 – https://www.infona.pl/resource/bwmeta1.element.elsevier-cc2b73be-b5a3-3aee-a460-2d28ab3581a9 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/the-beginning-and-the-end-of-stomatal-differentiation/ )

 

Torii Lab (2012) – Research – Stomatal development – http://faculty.washington.edu/ktorii/stomata.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/stomatal-development-torii-lab/ )

Torre S., Fjeld T., Gislerod H. R., Moe R. (2003) – Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity – J. Amer. Hort. Sci. 128(4): 598-602 – http://journal.ashspublications.org/content/128/4/598.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/65132/ )

Trafton A. (2017) – Sensors applied to plant leaves warn of water shortage – http://news.mit.edu/2017/sensors-applied-plant-leaves-warn-water-shortage-1108 – (On our blog : https://plantstomata.wordpress.com/2017/11/08/monitoring-stomatal-movements-continuously/ )

Travis A. J., Mansfield T. A. (1979) – Reversal of CO2 responses of stomata by fusicoccin -New Phytol. 83: 607-614 –

Trejo C. L., Davies W. J. (1991) – Drought-induced closure of Phaseolus vulgaris L. stomata precedes leaf water deficit and any increase in xylem ABA concentration – J. Exp. Bot. 42: 1507-1515 –

Tricker P. J., Gibbings J. G., Rodriguez Lopez C. M., Hadley P., Wilkinson M. J. (2012) – Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development –J. Exp. Bot. 63:  3799–3813 – DOI:  10.1093/jxb/ers076 –  [PMC free article][PubMed] [Cross Ref ] – 

Triviño M., Martín-Trillo M., Ballesteros I., Delgado D., De Marcos A., Desvoyes B., et al. (2013) – Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types – Plant J. 75 808–822 – DOI:  10.1111/tpj.12244 –  [PubMed][Cross Ref – 

Tseng T.-S., Whippo C., Hangarter R. P., Briggs, W. R. (2012) – The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. – Plant Cell 24, 1114–1126. – doi: 10.1105/tpc.111.092130 – http://www.plantcell.org/content/24/3/1114 – (On our blog : https://plantstomata.wordpress.com/2018/07/05/specificity-of-phototropin-mediated-signal-transduction-pathways-in-stomata/ )

Tuba Z., Szente K., Koch J. (1994) – Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat – J. Plant Physiol. 144: 661–668 –

Tucker S. C. (1974) – Dedifferentiated Guard Cells in Magnoliaceous Leaves – Science 185(4149): 445-447 – DOI: 10.1126/science.185.4149.445 – http://science.sciencemag.org/content/185/4149/445 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/division-of-guard-cells-is-particularly-unusual-stomata-in-magnoliaceous-taxa/ )

Turner N. C. (1972) – K+ uptake by guard cells stimulated by fusicoccin – Nature 235: 341-342 –

Turner N. C., Begg J. E. (1973) – Stomatal behaviour and water status of maize, sorghum and tobacco under field conditions. I. At high water potential – Plant Physiol. 51: 31-36 –

Turner N. C., O’Toole J. C., Cruz R. Z., Yambao E. B., Ahmad S., Namuco O. S., Dingkuhn M. (1986) – Responses of seven diverse rice cultivars to water deficits. II. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis – Field Crop Res. 13: 273–286 – doi: 10.1016/0378-4290(86)90028-6 –

 

Turrell F. M. (1947) – Citrus leaf stomata, structure, composition, and pore size in relation to penetration of liquids – Bot. Gaz. 108: 476-483 –http://www.journals.uchicago.edu/doi/abs/10.1086/335435 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64420 )

TutorVista (2010) – Video: Structure And Working Of Stomata – https://www.youtube.com/watch?v=IlmgFYmbAUg – (On our blog : https://plantstomata.wordpress.com/2017/11/10/video-on-stomata/ )

Tyutereva E. , Dmitrieva V. , Shavarda A., Voitsekhovskaja O. (2017) – Stomata control is changed in chlorophyll b-free barley mutant – Functional Plant Biology (Accepted article) – http://www.publish.csiro.au/FP/justaccepted/FP17056 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-chlorophyll-b-free-barley-mutant-and-its-stomata/)

Uddling J., Hogg A. J., Teclaw R. M., Mary Anne Carroll M. A., Ellsworth D. S. (2010) – Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment – Environmental Pollution 158: 2023–2031 –Stomatal_uptake_of_O3_in_aspen_and_aspen.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-uptake-of-o3/ )

Ueno K., Kinoshita T., Inoue S., Emi T., Shimazaki K. (2005) – Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light – Plant Cell Physiol. 46, 955–963 – doi: 10.1093/pcp/pci104 – https://www.ncbi.nlm.nih.gov/pubmed/15821287 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/arabidopsis-guard-cell-protoplasts-can-be-useful-for-biochemical-analysis-of-stomatal-functions/ )

Upadhyaya S. K., Rand R. H.Cooke J. R. (1988) – Role of stomatal oscillations on transpiration, assimilation and water-use efficiency of plants – Ecological Modelling 41(1–2): 27-40 – https://doi.org/10.1016/0304-3800(88)90042-7 – https://www.sciencedirect.com/science/article/pii/0304380088900427 – (On our blog : https://plantstomata.wordpress.com/2018/03/12/role-of-stomatal-oscillations-on-transpiration-assimilation-and-water-use-efficiency-of-plants/

 

Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., Miura A.Nakamura Y.Mori I. C.Shinozaki K.Murata Y. (2012) – Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. – Plant Physiol. 159, 450–460. – doi: 10.1104/pp.112. 195578 – http://www.plantphysiol.org/content/159/1/450 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/pld%ce%b11-and-pld%ce%b4-cooperate-in-aba-signaling-in-stomata/ )

Urban J., Ingwers M. W., McGuire M. A., Teskey R. O. (2017) – Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra – Journal of Experimental Botany 68(7): 1757–1767 – doi:10.1093/jxb/erx052 – https://www.ncbi.nlm.nih.gov/pubmed/28338959 – (On our blog : https://plantstomata.wordpress.com/2018/01/12/higher-leaf-temperature-opens-stomata-and-decouples-net-photosynthesis-from-stomatal-conductance/ )

Urton J. (2018) – Stomata — the plant pores that give us life — arise thanks to a gene called MUTE, scientists report – UW News May 7, 2018 – https://www.washington.edu/news/2018/05/07/stomata-the-plant-pores-that-give-us-life-arise-thanks-to-a-gene-called-mute-scientists-report/ – (On our blog : https://plantstomata.wordpress.com/2018/05/09/stomata-and-a-gene-called-mute/ )

 

Vahisalu T., Kollist H., Wang Y. F., Nishimura N., Chan W. Y., Valerio G., Lamminmäki ABrosché MMoldau HDesikan R.Schroeder J. I., Kangasjärvi J. (2008) – SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. – Nature 452: 487–491 – doi: 10.1093/jxb/erx052 – https://www.nature.com/articles/nature06608 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/a-vital-role-for-slac1-in-the-function-of-s-type-anion-channels-in-stomatal-signalling/ )

Vahisalu T., Puzorjova I., Brosché M., Valk E., Lepiku M., Moldau H., Pechter P., Wang Y. S., Lindgren O., Salojärvi J., Loog M., Kangasjärvi J., Kollist H. (2010) – Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1 – Plant J. 62: 442–453 – https://doi.org/10.1111/j.1365-313X.2010.04159.x https://www.ncbi.nlm.nih.gov/pubmed/20128877 – (On our blog : https://plantstomata.wordpress.com/2018/07/07/ozone%e2%80%90triggered-rapid-transient-decrease-rtd-in-stomatal-conductance-coincides-with-a-burst-of-ros-in-guard-cells/ )

Van de Geyn S. C., Goudriaan J. (1996) – 5. The effects of elevated CO2 and temperature change on transpiration and crop water use – http://www.fao.org/docrep/W5183E/w5183e07.htm – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomata-elevated-co2-and-temperature-change-transpiration-and-crop-water-use/ )

Vandermeiren K., Black C., Lawson T., Casanova M. A., Ojanperä K. (2002) – Photosynthetic and stomatal responses of potatoes grown under elevated CO2and/or O3 – results from the European CHIP-programme – Eur. J. Agron. 17: 37-352 –

 

Van De Water P. K. (2016) – Pinus monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems – American Geophysical Union, Fall General Assembly 2016, abstract id. PP51A-2292 – http://adsabs.harvard.edu/abs/2016AGUFMPP51A2292V – (On our blog : https://plantstomata.wordpress.com/2018/02/05/changes-in-needle-cell-size-and-stomata-over-the-past-100-years-of-rising-co2/)

Van Hoof T. B., Kürschner W. M., Wagner F., Visscher H. (2006) – Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase – Plant Ecol 183: 237 – https://doi.org/10.1007/s11258-005-9021-3 – https://link.springer.com/article/10.1007/s11258-005-9021-3 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-response-to-the-anthropogenic-atmospheric-co2-increase/ )

Van Houtte H., Vandesteene L., Lopez-Galvis L., Lemmens L., Kissel E., Carpentier S., Feil R.Avonce N.Beeckman T.Lunn J. E.Van Dijck P. (2013) – Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. – Plant Physiol. 161, 1158–1171. – doi: 10.1104/pp.112.211391 – http://www.plantphysiol.org/content/161/3/1158 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/trehalase-plays-a-role-in-the-regulation-of-stomatal-closure-in-the-plant-drought-stress-response/ )

 

Vani T., Raghavendra A. S. (1989) – Tetrazolium Reduction by Guard Cells in Abaxial Epidermis of Vicia faba: Blue Light Stimulation of a Plasmalemma Redox System – Plant Physiol. (1989) 90, 59-62 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061677/pdf/plntphys00640-0069.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/21/an-nadh-dependent-flavin-mediated-electron-transport-system-operates-in-the-plasmalemma-of-stomata/ )

Vani T., Raghavendra A. S. (1994) – High mitochondrial activity but incomplete engagement of the cyanide-resistant alternative pathway in guard cell protoplasts of pea. Plant Physiol. 105: 1263–1268 –

Van Ieperen W. (2012) – Plant morphological and developmental responses to light quality in a horticultural context – Acta Hortic. 956: 131-139 – DOI: 10.17660/ActaHortic.2012.956.12 – https://doi.org/10.17660/ActaHortic.2012.956.12 –http://www.actahort.org/books/956/956_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/21/light-quality-in-horticulture-and-stomatal-behavior/ )

Vaseva I.Qudeimat E.Potuschak T.Du Y.Genschik P.Vandenbussche F.Van Der Straeten D. (2018) – The plant hormone ethylene restricts Arabidopsis growth via the epidermis – 

Vassilyev A , Vassilyeva A. (1976) –  In Russian (The ultrastructure of the stomatal apparatus in gymnosperms, wIth special reference to stomatal movements) – Batanicheskij Zhurnal, Leningrad 61: 449-465 –

Vatén A., Bergmann D. C. (2012) – Mechanisms of stomatal development: an evolutionary view – Evodevo 3(1): 11 – DOI10.1186/2041-9139-3-11 – PMID: 22691547 – http://evodevojournal.biomedcentral.com/articles/10.1186/2041-9139-3-11 – (On our blog : https://plantstomata.wordpress.com/2017/01/21/stomatal-developmental-pathways-at-morphological-and-molecular-levels/) – https://wordpress.com/post/plantstomata.wordpress.com/32359 )

Vauzia S., Chairul M., Auzar S. (2016) – Stomata characteristics and chlorophyll content in two plant species regenerating with sprout and seeds after burning at Peat Swamp Forest in Batang Alin-Indonesia – Journal of Chemical and Pharmaceutical Research  8(1): 356-361 – ISSN : 0975-7384  – http://www.jocpr.com/articles/stomata-characteristics-and-chlorophyll-content-in-two-plant-speciesregenerating-with-sprout-and-seeds-after-burning-at.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomata-in-anthocephalus-rubiaceae-and-mallotus-euphorbiaceae/ )

Vavasseur A., Lasceve G., Couchat P. (1988) – Oxygen-dependent stomatal opening in Zea mays leaves – effect of light and carbon dioxide – Physiologia Plantarum 73: 547-552 –

Vavasseur A., Raghavendra A. S. (2005) – Guard cell metabolism and CO2 sensing. – New Phytol. 165, 665–682. – doi: 10.1111/j.1469-8137.2004. 01276.x – https://www.ncbi.nlm.nih.gov/pubmed/15720679 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/there-are-common-as-well-as-unique-steps-in-aba-and-co2-signalling-pathways-in-stomata/ )

Venturas M. D., Sperry J. S., Love D.M., Frehner E. H., Allred M. G., Wang Y. Anderegg W. R. L. ( 2018) – A stomatal control model based on optimization of carbon gain versus hydraulic risk predicts aspen sapling responses to drought – New Phytol. – Online Version of Record  – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15333?af=R – (On our blog :

https://wordpress.com/post/plantstomata.wordpress.com/69686 )

Verduin J. (1949) – Diffusion through multiperforate septa. – In Photosynthesis in plants (eds J FranckW Loomis), pp. 95112Ames, IAIowa State College Press. – Google Scholar – https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=13804&context=rtd – (On our blog : https://plantstomata.wordpress.com/2018/07/09/diffusion-through-multiperforate-septa/ )

Véry A.-A., Robinson M. F., Mansfield T. A., Sanders D. (1998) – Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte – Plant J. 14: 509-521 – http://dx.doi.org/10.1046/j.1365-313X.1998.00147.x

Vialet-Chabrand S. R. M., Hills A., Wang Y., Griffiths H., Lew V., Lawson T., Blatt M. R., Rogers S. (2017) – Global sensitivity analysis of OnGuard models identifies key hubs for transport interaction in stomatal dynamics. – Plant Physiol 174: 680–688 – http://www.plantphysiol.org/content/174/2/680 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/onguard-models-and-transport-interaction-in-stomatal-dynamics/)

Vialet-Chabrand S. R. M., Matthews J. S. A., McAusland L., Blatt M. R., Griffiths H., Lawson T. (2017) – Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. -; Plant Physiol 174: 603–613 – http://www.plantphysiol.org/content/174/2/603 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/temporal-dynamics-of-stomatal-behavior/)

Vico G., Manzoni S., Palmroth S., Katul G. (2011) – Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes – New Phytol. 192, 640–652. doi: 10.1111/j.1469-8137.2011.03847.x –PubMed Abstract | CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03847.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-opening-and-closing-delays/ )

Vilela B., Pagès M., Riera M. (2015) – Emerging roles of protein kinase CK2 in abscisic acid signaling. – Front. Plant Sci. 6:966. – doi: 10.3389/fpls.2015. 00966 – https://www.ncbi.nlm.nih.gov/pubmed/26579189 – (On our blog : https://plantstomata.wordpress.com/2018/07/09/a-prominent-role-of-protein-kinase-ck2-in-aba-signaling-and-related-processes-in-stomata/ ),

 

Vinnakota R., Ramakrishnan A. M.,Samdani A., Venugopal M. A., Ram B. S., S. Krishnan N., Murugesan D., Sankaranarayanan K. (2016) – A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.) – Protoplasma 253(6): 1593-1597 – DOI10.1007/s00709-015-0916-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00709-015-0916-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/a-comparison-of-aquaporin-function-in-mediating-stomatal-aperture-gating/ )

Vogel S. (2004) – Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) I. Pathways of air circulation – Plant Systematics and Evolution 249(1): 9-25 – DOI: 10.1007/s00606-004-0201-8 – https://www.researchgate.net/publication/225163142_Contributions_to_the_functional_anatomy_and_biology_of_Nelumbo_nucifera_Nelumbonaceae_I_Pathways_of_air_circulation – (On our blog : https://plantstomata.wordpress.com/2018/06/11/circulation-starts-with-the-uptake-of-gas-through-leaf-stomata-and-ends-with-its-expulsion-via-the-specialized-navel-central-plate-of-the-leaves-in-nelumbo/ )

Voleníková M., Tichá I. (2001) – Insertion profiles in stomatal density and sizes in Nicotiana tabacum L. plantlets – Biologia Plantarum 44: 161–165 –

von Caemmerer S., Lawson T., Oxborough K., Baker N. R., Andrews T. J., Raines C. A. (2004) – Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco – Journal of Experimental Botany 55: 1157–1166 –

von Groll U.Altmann T. (2002) – Stomatal cell biology –   Current Opinion in Plant Biology 4: 555–560 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomatal-cell-biology.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/22/stomatal-cell-biology/

von Groll U.Berger D.Altmann T. (2002) – The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. – Plant Cell 1415271539 – DOI: 10.1105/tpc.001016 – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/14/7/1527.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/sdd1-and-stomatal-development/)

Vráblová M., Vrábl D., Hronková M., Kubásek J., Šantrůček J. (2017) – Stomatal function, density and pattern, and CO2 assimilation in Arabidopsis thaliana tmm1and sdd1-1 mutants – Plant Biol J, 19: 689–701. doi:10.1111/plb.12577 – http://onlinelibrary.wiley.com/doi/10.1111/plb.12577/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/stomatal-function-density-and-pattern-and-co2-assimilation/ )

Waadt R., Manalansan B., Rauniyar N., Munemasa S., Booker M. A., Brandt B., et al. (2015) – Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein Kinases2 and with Type 2A protein phosphatases that function in abscisic acid responses. – Plant Physiol. 169: 760–779 – doi: 10.1104/pp.15.00575 – http://www.plantphysiol.org/content/169/1/760 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-roles-of-regulatory-pp2aa-subunits-and-catalytic-pp2ac-subunits-in-aba-responses/ )

Wagg S., Mills G., Hayes F., Wilkinson S., Davies W. J. (2013) – Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris – Environmental Pollution 175: 82-91 – http://dx.doi.org/10.1016/j.envpol.2012.11.027 – https://www.sciencedirect.com/science/article/pii/S0269749112005052?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-responses-and-ozone/ )

 

Waggoner P. E. (1965) – Relative effectiveness of change in upper and lower stomatal openings – Crop Sci. 5: 291 –https://dl.sciencesocieties.org/publications/cs/abstracts/5/4/CS0050040291?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/16/effectiveness-of-change-in-upper-and-lower-stomatal-openings/ )

Waggoner P. E., Monteith J. L., Szeicz G. (1964) – Decreasing Transpiration of Field Plants by Chemical Closure of Stomata – Nature 201: 97–98 – doi:10.1038/201097b0 – https://www.nature.com/articles/201097b0 – (On our blog : https://plantstomata.wordpress.com/2018/01/05/chemical-closure-of-stomata-and-the-decrease-of-transpiration/ )

Waggoner P. E., Zelitch I. (1965) – Transpiration and the stomata of leaves – Science 150(3702): 1413-1420 – DOI: 10.1126/science.150.3702.1413 – http://science.sciencemag.org/content/150/3702/1413 – (On our blog : https://plantstomata.wordpress.com/2018/01/06/stomata-and-transpiration/ )

Walker D. A., Zelitch I. 1963) – Some effects of metabolic inhibitors, temperature, and anaeroobic conditions on stomatal movement – Plant Physiology 38: 390-396 –

Wall G., Adam N. R., Brooks T. J., Kimball B. A., Pinter P. J., LaMorte R. L., Adamsen F. J., Hunsaker D. J., Wechsung G., Wechsung F., Gossman-Clarke S., Leavitt S., Matthias A. D., Webber A. N. (2000) –  Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves – Photosynth. Res. 66: 79-95 –

Wallin G. (1990) – On the impact of tropospheric ozone on photosynthesis and stomatal conductance of Norway spruce, Picea abies (L.) Karst. – Ph. D. Thesis, University of Göteborg

Wallin G., Ottosson S., Selldén G. (1992) – Long term exposure of Norway spruce, Picea abies(L.) Karst., to ozone in open-top chambers. IV. Effects on the stomatal and the non-stomatal limitation of photosynthesis and on the carboxylation efficiency. New Phytol.

Wallin G., Skärby L. (1992) – The influence of ozone on the stomata1 and non-stomatal limitation of photosynthesis in Norway spruce, Picea abies (L.) Karst, exposed to soil moisture deficit – Trees, Structure and Function 6: 128-136 – https://link.springer.com/article/10.1007/BF00202428 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/the-influence-of-ozone-on-the-stomatal-and-non-stomatal-limitation-of-photosynthesis/ )

Walter K. (2018) – Scientists Manipulate Crops to Need Less Water – R&D magazine 2018-03-06 – https://www.rdmag.com/article/2018/03/scientists-manipulate-crops-need-less-water – (On our blog : https://plantstomata.wordpress.com/2018/03/07/increased-psbs-expression-allows-crop-plants-to-be-more-conservative-with-water-use-triggering-stomata-to-close/ )

Walton P. D. (1974) –  The genetics of stomatal length and frequency in clones of Bromus inermis and the relationships between these traits and yield – Canadian Journal of Plant Science 54: 749-754 –

Wan X., Landhäusser S. M., Zwiazek J. J., Lieffers V. J. (2004) – Stomatal conductance and xylem sap properties of aspen (Populus tremuloides) in response to low soil temperature – Physiologia Plantarum 122: 79–85 –

Wang C., Liu S., Dong Y., Zhao Y., Geng A., Xia X., et al. (2016) – PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar –Plant Biotechnol. J. 14: 849–860 – DOI:  10.1111/pbi.12434 – [PubMed] [Cross Ref] – 

Wang C., Zhang J., Wu J., Brodsky D. E., Schroeder J. I. (2018) – Cytosolic malate and oxaloacetate activate S‐type anion channels in Arabidopsis guard cells – New Phytol. Online Version of Record  – https://doi.org/10.1111/nph.15292 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15292?af=R – (On our blog : https://plantstomata.wordpress.com/2018/07/12/cytosolic-organic-anions-function-in-guard-cell-plasma-membrane-ion-channel-regulation-of-stomata/ )

Wang H.Ngwenyama N.Liu Y.Walker J. C.Zhang S. (2007) – Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis – Plant Cell 196373 – doi: 10.1105/tpc.106.048298 – Abstract/FREE Full TextGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2015/03/14/environmentally-responsive-mitogen-activated-protein-kinases/)

Wang J., Lu W., Tong Y., Yang Q. (2016) – Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light – Front. Plant Sci., 10 March 2016 | http://dx.doi.org/10.3389/fpls.2016.00250 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00250/full – (On our blog : https://plantstomata.wordpress.com/2016/03/28/8946/ )

Wang M., Feifei Y., Hao H., Zhang Y., Zhao H., Guo A., Hu J., Zhou X., Xie C. (2013) – BolOST1, an ortholog of Open Stomata 1 with alternative splicing products in Brassica oleracea, positively modulates drought responses in plants. – Biochem. Biophys. Res. Commun. 442, 214–220 – doi: 10.1016/j.bbrc.2013.11.032 – https://www.sciencedirect.com/science/article/pii/S0006291X13019141 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/bolost1-is-a-functional-snrk2-type-protein-kinase-positively-modulates-drought-responses-stomata/ )

Wang P., Du Y., Hou Y. J., Zhao Y., Hsu C. C., Yuan F., et al. (2015) – Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. U.S.A. 112, 613–618. doi: 10.1073/pnas.1423 481112 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299189/ – (On our blog : https://plantstomata.wordpress.com/2018/07/10/nitric-oxide-negatively-regulates-aba-signaling-in-stomata/ )

Wang P., Du Y., Zhao X., Miao Y., Song C.-P. (2012) – The MPK6-ERF-ROSE7/GCC-box complex modulates oxidative gene transcription and ROS signaling in Arabidopsis thaliana – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-mpk6-erf-rose7-gcc-box-complex-in-stomata/ )

 

Wang P., Song C. P. (2008) – Guard-cell signalling for hydrogen peroxide and abscisic acid. – New Phytol. 178, 703–718. – doi: 10.1111/j.1469-8137.2008.02431.x – https://www.ncbi.nlm.nih.gov/pubmed/18373649 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/points-of-connection-between-aba-and-h2o2-signalling-in-stomata/ )

Wang R. S., Pandey S., Li S., Gookin T. E., Zhao Z., Albert R., Assmann S. M. (2011) – Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. – BMC Genomics 12:216. – doi: 10.1186/1471-2164-12-216 – https://www.ncbi.nlm.nih.gov/pubmed/21554708 – (On our blog : https://plantstomata.wordpress.com/2018/07/10/elements-of-the-aba-regulated-transcriptome-of-stomata/ )

 

Wang W., Liu Z., Bao L.-J., Zhang S.-S., Zhang C.-G., Li X., Li H.-X., Zhang X.-L., Bones A. M., Yang Z., Chen Y.-L. (2017) – The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening. – Plant Physiol 174: 717–731 – http://www.plantphysiol.org/content/174/2/717 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-ropgef2-rop7-rop2-pathway-and-the-red-light-induced-stomatal-opening/)

Wang W.-H., Chen J., Liu T.-W., Chen J., Han A.-D., Simon M., Dong X.-J., He J.-X., Zheng H.-L. (2013) – Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis – Journal of Experimental Botany, Vol. 65, No. 1, pp. 223–234, 2014 – doi:10.1093/jxb/ert362 –http://jxb.oxfordjournals.org/content/65/1/223.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cas-stomatal-movement-wue-and-drought-tolerance/ )

Wang W. H., Yi X. Q., Han A. D., Liu T. W., Chen J., Wu F. H., Dong X. J., He J. X., Pei Z. M., Zheng H. L. (2011) – Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. – J. Exp. Bot. 63, 177–190. – doi: 10.1093/jxb/err259 – https://www.ncbi.nlm.nih.gov/pubmed/21940718 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/a-hypothetical-model-whereby-ca2o-induces-h2o2-and-no-accumulation-in-stomata/ )

Wang X. Q., Ullah H., Jones A. M., Assmann S. M. (2001) – G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. –Science 292: 2070–2072. – 10.1126/science.1059046 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/11408655 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/stomatal-opening-in-gpa1-plants-is-insensitive-to-inhibition-by-aba/

Wang Y., Chen X, Xiang C. (2007) –  Stomatal density and bio-water saving – Journal of Integrative Plant Biology 49 (10): 1435–1444 – https://doi.org/10.1111/j.1672-9072.2007.00554.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1672-9072.2007.00554.x – (On our blog : https://plantstomata.wordpress.com/2018/07/12/genes-regulating-stomatal-density-and-the-role-of-stomatal-density-in-plant-water-use-efficiency/ )

Wang Y.Hills A.Vialet-Chabrand S.Papanatsiou M.Griffiths H.Rogers S.Lawson T.Lew V. L.Blatt M. R. (2017) – Unexpected Connections between Humidity and Ion Transport Discovered Using a Model to Bridge Guard Cell-to-Leaf Scales – Plant Cell 2929212935 – DOI: https://doi.org/10.1105/tpc.17.00694 – http://www.plantcell.org/content/29/11/2921?ijkey=615d52f6f112083b64a7d81e76985c6f96eb7ef4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/66246/ )

Wang Y.Papanatsiou M., Eisenach C., Karnik R., Williams M., Hills A., Lew V. L.Blatt M. R. (2012) – Systems Dynamic Modeling of a Guard Cell Cl Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration – Plant Physiol 160:19561967 – DOI: https://doi.org/10.1104/pp.112.207704 – http://www.plantphysiol.org/content/160/4/1956?ijkey=cfc390beba20130ff1b1ff8b2c4ebc6af21a8836&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/emergent-homeostatic-network-regulating-stomatal-transpiration/

Ward J. M., Schroeder J. I. (1994) – Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. – Plant Cell 6, 669–683. – doi: 10.1105/tpc.6.5.669 – https://www.ncbi.nlm.nih.gov/pubmed/12244253 – (On our blog : https://plantstomata.wordpress.com/2018/07/11/interaction-of-vk-and-sv-channel-activities-is-crucial-in-regulating-vacuolar-k-and-ca2-release-during-stomatal-closure/ )

Ward J. M., Schroeder J. I. (1997) – Roles of ion channels in initiation of signal transduction in higher plants. In: Aducci P, ed. Molecular and cell biology updates, signal transduction in plants – Boston: Birkhauser Verlag 1-22 –

Waterkeyn L., Bienfait A. (1979) – Production et dégradation de callose dans les stomates des fougères –  La Cellule 73: 83–97 –

Watkins J. M.,  Chapman J. M.Muday G. K. (2017) – Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture – 

Watkins J. M., Hechler P. J., Muday G. K. (2014) – Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. – Plant Physiol. 164: 1707–1717. – 10.1104/pp.113.233528 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/164/4/1707 – (On our blog : https://plantstomata.wordpress.com/2018/07/14/flavonols-suppress-ros-accumulation-and-decrease-the-rate-of-aba-dependent-stomatal-closure-with-ethylene-induced-increase-in-guard-cell-flavonols-modulating-these-responses/

Watts-Williams S. J., Cavagnaro T. R., Tyerman S. D. (2018) – Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions – Plant, Cell & Environment, published online and citable. – https://doi.org/10.1111/pce.13369 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13369?af=R – (On our blog : https://plantstomata.wordpress.com/2018/06/28/mycorrhizal-plants-can-exhibit-increased-stomatal-conductance-gs/ )

Webb A. A. R., Baker A. J. (2002) – Stomatal biology: new techniques, new challenges – New Phytol 153: 365–370 –

Webb A. A. R., McAinsh M. R., Mansfield T. A., Hetherington A. M. (1996) – Carbon dioxide induces increases in guard cell cytosolic free calcium – The Plant Journal 9: 297-304 – http://www.research.lancs.ac.uk/portal/en/publications/-(c918b23f-ab6f-4bad-b34d-a421d92f8c0e).html – (On our blog : https://plantstomata.wordpress.com/2018/07/12/ca2i-may-be-a-requirement-for-the-stomatal-response-to-co2/ )

 

Webb A. A. R., Robertson F.C. (xxxx) – Calcium Signals in the Control of Stomatal Movements – Signaling and Communication in Plants – Coding and Decoding of Calcium Signals in Plants : 63-77 – DOI10.1007/978-3-642-20829-4_5 –https://www.infona.pl/resource/bwmeta1.element.springer-3c4ccf7e-1905-3015-bb6b-ab137434ab7e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/calcium-is-an-important-regulator-of-stomatal-movements/ )

Wege S., De Angeli A., Droillard M. J., Kroniewicz L., Merlot S., Cornu D., Gambale F., Martinoia E., Barbier-Brygoo H., Thomine S., Leonhardt N., Filleur S. (2014) – Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid – Sci. Signal. 7:ra65 – doi: 10.1126/scisignal.2005140 – https://www.ncbi.nlm.nih.gov/pubmed/25005229 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/phosphorylation-of-atclca-is-required-for-the-stomatal-response-to-aba/ )

 

Wehr R., Commane R., Munger J. W., McManus J. B., Nelson D. D., Zahniser M. S., Saleska S. R., Wofsy S. C. (2017) – Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake – Biogeosciences, 14, 389–401 – doi:10.5194/bg-14-389-2017 – http://www.biogeosciences.net/14/389/2017/ –  https://www.biogeosciences.net/14/389/2017/bg-14-389-2017.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/30/dynamics-of-canopy-stomatal-conductance/ )

Wei P.-C., Zhang X.-Q., Zhao P., Wang X.-C. (2011) – Regulation of stomatal opening by the guard cell expansin AtEXPA1 – Plant Signaling & Behavior 6(5): 740-742 – http://dx.doi.org/10.4161/psb.6.5.15144 – http://www.tandfonline.com/doi/abs/10.4161/psb.6.5.15144 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-expansins-regulate-stomatal-movement/ )

Weimer A. K., Matos J. L.Sharma N.Patell F.Murray J. A. H.Dewitte W.D. C. (2018) – Lineage and stage-specific expressed CYCD7;1 coordinates the single symmetric division that creates stomatal guard cells – Dev. Biol. – http://www.biologists.com/user-licence-1-1/ – 

Weinl S., Held K., Schlucking K., Steinhorst L., Kuhlgert S., Hippler M., Kudla J. (2008) – A plastid protein crucial for Ca2 + -regulated stomatal responses. – New Phytol 179: 675–686 – https://doi.org/10.1111/j.1469-8137.2008.02492.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2008.02492.x – (On our blog : https://plantstomata.wordpress.com/2018/07/17/cas-for-ca2-regulated-stomatal-responses/ )

Weise A., Lalonde S., Kuhn C., Frommer W. B., Ward J. M. (2008) – Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. – Plant Mol. Biol. 68, 251–262. – 10.1007/s11103-008-9366-9 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/18597047 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/lesut1-expression-was-detected-in-ab-and-adaxial-phloem-companion-cells-trichomes-and-stomata/ )

Wellburn F. A. M., Gounaris I., Wellburn A. R. (1984) – Carbohydrate reserves and plant growth substance sensitivity in plastids, stomata and statocytes during shoot development – Israel Journal of Botany 33(2-4): 237-252 – http://www.tandfonline.com/doi/abs/10.1080/0021213X.1984.10677001 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/carbohydrate-reserves-and-plant-growth-substance-sensitivity-in-plastids-and-stomata/

Weryszko-Chmielewska E., Michałojć Z. (2009) – Anatomical features of leaves of sweet pepper (Capsicum annuum L.) fed with calcium using foliar nutrition – ACTA AGROBOTANICA 62(2): 155–164 – 1627-3991-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-in-leaves-of-sweet-pepper-fed-with-calcium-using-foliar-nutrition/ )

 

Weyers J. D. B., Fitzsimons P. J. (1982) – The non-osmotic volume of Commelina guard cells – Plant, Cell and Environment 5( 5): 417–421 – DOI: 10.1111/j.1365-3040.1982.tb00942.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1982.tb00942.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/13/the-non-osmotic-volume-of-stomatal-guard-cells/ )

Weyers J. D. B., Fitzsimons P. J., Mansey G. M., Martin E. S. (1983) – Guard cell protoplasts-aspects of work with an important new research tool – Physiol. Plant. 58: 331-339 – Guard_cell_protoplasts_-_Aspects_of_work.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/aspects-of-gcp-research-and-contributions-of-gcps-towards-an-understanding-of-the-stomatal-mechanism/ )

Weyers J. D. B., Hillman J. R. (1977) – Uptake and Distribution of Abscisic Acid in Commelina Leaf Epidermis – Planta 144: 167-172 –Uptake_and_distribution_of_abscisic_acid.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomata-and-the-uptake-and-distribution-of-aba/ )

Weyers J. D. B., Hillman J. R. (1979) – Sensitivity of Commelina Stomata to Abscisic Acid – Planta 146: 623-628 – Sensitivity_of_Commelina_stomata_to_absc.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/sensitivity-of-stomata-to-aba/ )

Weyers J. D. B., Johansen L. G. (1985) – Accurate estimation of stomatal aperture from silicone rubber impressions – New Phytol. 101: 109-115 –Accurate_Estimation_of_Stomatal_Aperture.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/accurate-estimation-of-stomatal-aperture-from-silicone-rubber-impressions/ )

Weyers J. D. B., Lawson T. (1997) – Heterogeneity in stomatal characteristics – Advances in Botanical Research 26: 317-351 –

Weyers J. D. B.Patterson N. W. (1987) – Responses of Commelina stomata in vitro – Journal of Experimental Botany 38: 631–641 – DOI: 10.1093/jxb/38.4.631 –https://www.researchgate.net/publication/31454608_Responses_of_Commelina_communis_Stomata_In_Vitro – (On our blog : https://plantstomata.wordpress.com/2017/12/14/responses-of-stomata-in-vitro/ )

Weyers J. D. B.Patterson N. W. (1992) – Quantitative assessment of hormone sensitivity changes with reference to stomata’ responses to abscisic acid – In: Karssen C.M., van Loon L.C., Vreugdenhil D. (eds) : Progress in Plant Growth Regulation. Current Plant Science and Biotechnology in Agriculture, vol 13:  Springer, Dordrecht – DOI https://doi.org/10.1007/978-94-011-2458-4_25 – https://link.springer.com/chapter/10.1007/978-94-011-2458-4_25 – https://plantstomata.wordpress.com/2017/12/13/quantifying-hormone-sensitivity-using-stomatal-responses-to-aba-as-a-test-system/ )

Wilkinson S., Davies W. J. (1997) – Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast – Plant Physiology 113: 559–573 –

Wille A. C., Lucas W. J. (1984) – Ultrastructural and histochemical studies on guard cells – Planta 160: 129-142 – https://doi.org/10.1007/BF00392861- https://link.springer.com/article/10.1007/BF00392861#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/17/ultrastructural-and-histochemical-studies-on-stomata/ )

 

Williams M. (2017) – Small Pores with a Big Impact –   – https://plantae.org/blog/plant-physiology-focus-issue-on-stomata-published/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/small-pores-with-a-big-impact/ )

Williams M. (2017) – Update: Blue light regulation of stomatal opening and the plasma membrane H+-ATPase –  – https://plantae.org/update-blue-light-regulation-of-stomatal-opening-and-the-plasma-membrane-h-atpase/?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plantae_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/blue-light-regulation-of-stomatal-opening/ )

Williams W. E., Grivet C., Zeiger E. (1983) – Gas exchange in Paphiopedilum – lack of chloroplasts in guard cells correlates with low stomatal conductance – Plant Physiol 72: 906–908 –

Willmer C.M. (1993) – The evolution, structure and functioning of stomata – Botanical Journal of Scotland 46(3): 433-445 – https://doi.org/10.1080/03746609308684805 – http://www.tandfonline.com/doi/pdf/10.1080/03746609308684805 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/stomatal-structure-and-functioning/ )

Willmer C. M., Don R., Parker W. (1978) – Levels of short-chain fatty acids and of abscisic acid in water-stressed and non-stressed leaves and their effects on stomata in epidermal strips and excised leaves – Planta 139, 281–287 – doi: 10.1007/BF00388642 –  [PubMed][Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/24414272 – (On our blog : https://plantstomata.wordpress.com/2018/07/17/fatty-acids-aba-and-their-effects-on-stomata-in-epidermal-strips-and-excised-leaves/

Willmer C. M., Fricker M. (1996) – Stomata – In : Topics in Plant Functional Biology: 2 – Eds. M. Black and B. Charlwood – Springer-Science+ Business Media B. V. – https://books.google.be/books?id=9sjoCAAAQBAJ&pg=PA12&lpg=PA12&dq=stomata&source=bl&ots=tIpu1rPm39&sig=YGbF_YtCyNa-YR3F8_QWpf3UugI&hl=en&sa=X&ved=0ahUKEwiS3e-4ocbYAhVMmbQKHcY3DWw4HhDoAQgoMAA#v=onepage&q=stomata&f=false – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-3/ )

Willmer C. M., Pallas J. E. Jr. (1973) – A survey of stomatal movements and associated potassium fluxes in the plant kingdom – Canadian Journal of Botany 51(1): 37-42 – https://doi.org/10.1139/b73-006 – http://www.nrcresearchpress.com/doi/abs/10.1139/b73-006?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/01/28/stomatal-movements-and-associated-potassium-fluxes/ )

Willmer C. M., Pantoja O. (1992) – The plasma membrane and tonoplast of guard cells. In: Plant Membranes. Springer, Dordrecht – Plant Membranes : 220-238 – https://link.springer.com/chapter/10.1007/978-94-017-2683-2_11 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/ion-transport-across-the-tonoplast-and-plasma-membrane-play-a-central-role-in-stomatal-functioning/

Willmer C. M., Sexton R. (1979) – Stomata and plasmodesmata – Protoplasma 100: 113 –  https://doi.org/10.1007/BF01276305 – https://link.springer.com/article/10.1007/BF01276305#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-and-plasmodesmata/ )

Wilson D. (1975) – Leaf growth, stomatal diffusion resistances and photosynthesis during droughting of Lolium perenne populations selected for contrasting stomatal length and frequency – Ann. Applied Biol. – https://doi.org/10.1111/j.1744-7348.1975.tb01523.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1744-7348.1975.tb01523.x – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-diffusion-resistances-and-photosynthesis-during-droughting/ )

Wilson K. B., Bunce J. A. (1997) – Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean – Plant, Cell & Environment 20: 230-238 –

Wolf A., Anderegg W. R. L., Pacala S. W. (2016)  – Optimal stomatal behavior with competition for water and risk of hydraulic impairment – PNAS October 31, 2016 –http://www.pnas.org/content/early/2016/10/27/1615144113.short – (On our blog : https://plantstomata.wordpress.com/2016/11/06/optimal-stomatal-behavior/

Wolz K. J., Wertin T. M., Abordo M., Wang D., Leakey A. D. B. (2017) – Diversity in stomatal function is integral to modelling plant carbon and water fluxes – Nature Ecology & Evolution 1: 1292–1298(2017) – doi:10.1038/s41559-017-0238-z –https://www.nature.com/articles/s41559-017-0238-z – (On our blog : https://plantstomata.wordpress.com/2017/11/24/diversity-in-stomatal-function/ )

Wong S. C., Cowan I. F., Farquhar G. D. (1979) – Stomatal conductance correlates with photosynthetic capacity – Nature: 282: 424-426 – 10.1038/282424a0 –

Woods D. B., Turner N. C. (1971) – Stomatal response to changing light by four tree species of varying shade tolerance. – New Phytol. 70: 77–84 – https://doi.org/10.1111/j.1469-8137.1971.tb02512.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.1971.tb02512.x – (On our blog : https://plantstomata.wordpress.com/2018/07/19/stomatal-response-to-changing-light/ )

Woodruff D., Meinzer F. C., McCulloh K. A. (2009) – Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer – Journal of Experimental Botany 61(1):203-210 – https://www.ncbi.nlm.nih.gov/pubmed/19933710 – (on our blog : https://plantstomata.wordpress.com/2016/11/06/stomatal-sensitivity-to-leaf-to-air-vapour-pressure-deficit/ )

Woodward F. I. (1987) – Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels – Nature 327: 617–618 – doi:10.1038/327617a0 | CrossRef | – CrossRef Web of Science – Google Scholar –https://www.nature.com/nature/journal/v327/n6123/abs/327617a0.html – (On our blog : https://plantstomata.wordpress.com/2017/07/23/increases-in-co2-from-pre-industrial-levels-and-stomatal-density/ )

Woodward F. I. (1998) – Do plants really need stomata? – Journal of Experimental Botany 49: 471-480. – Google Scholar  CrossRef –http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Do-plants-really-need-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/do-plants-really-need-stomata/ )

Woodward F. I. (2012) – Stomata – a global view  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-global-view-on-stomata/ )

Woodward F. I., Kelly C. K. (1995) – The influence of CO2 concentration on stomatal density – New Phytologist 131: 311-327 – http://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1995.tb03067.x/asset/j.1469-8137.1995.tb03067.x.pdf?v=1&t=jd6h95wl&s=df4433366e7bdeb84775b67a8c73c5d4c03837ca – (On our blog : https://plantstomata.wordpress.com/2018/02/02/co2-concentration-and-stomatal-density-2/ )

Woolfenden H. C., Baillie A. L., Gray J. E., Hobbs J. K., Morris R. J., Fleming A. J. (2018) – Models and Mechanisms of Stomatal Mechanics –  In Press Corrected Proof – Trends in Plant Science – DOI: https://doi.org/10.1016/j.tplants.2018.06.003 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(18)30132-8 – (On our blog : https://plantstomata.wordpress.com/2018/07/13/a-reassessment-of-accepted-paradigms-and-a-new-understanding-of-the-mechanism-of-stomatal-mechanics/ )

Woolfenden H. C., Bourdais G., Kopischke M., Miedes E., Molina A., Robatzek S., Morris R. J. (2017) – A computational approach for inferring the cell wall properties that govern guard cell dynamics – The Plant Journal: Accepted, unedited articles published online and citable. – DOI: 10.1111/tpj.13640 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13640/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/29/proper-stomatal-dynamics-builds-on-two-key-properties-of-the-cell-wall-namely-anisotropy-in-the-form-of-hoop-reinforcement-and-strain-stiffening/ )

Wu H.-C, Huang Y.-C., Stracovsky L., Jinn T.-L. (2017) – Pectin methylesterase is required for guard cell function in response to heat – Plant Signaling & Behavior  12(6) – http://dx.doi.org/10.1080/15592324.2017.1338227 http://www.tandfonline.com/doi/full/10.1080/15592324.2017.1338227?src=recsys – (On our blog : https://plantstomata.wordpress.com/2017/10/28/the-significant-role-of-pme34-in-heat-tolerance-through-the-regulation-of-stomatal-movement/ )

Wu S.., Maseyk K., Lett C., Seibt U. (2018 ?) – Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh – Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-431, in review, 2017 – https://www.biogeosciences-discuss.net/bg-2017-431/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-control-of-leaf-fluxes-of-cos-and-co2/ )

Wu W. H., Assmann S. M. (1993) – Photosynthesis by guard cell chloroplasts of Vicia faba L. : effects of factors associated with stomatal movement – Plant Cell Physiology 34: 1015-1022 –

Wu W. H., Assmann S. M. (1994) – A membrane-delimited pathway of G protein regulation of the guard-cell inward K+channel – Proc Natl Acad Sci USA 91: 6310–6314 – https://doi.org/10.1073/pnas.91.14.6310 – http://www.pnas.org/content/91/14/6310?ijkey=0c9c7541994d9f3dd37d34ba334875c55d199d9e&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/05/g-proteins-can-act-via-a-membrane-delimited-pathway-to-regulate-inward-k-channels-in-stomata/ )

Wu W. H., Assmann S. M. (1995) – Is ATP required for K+ channel activation in Vicia guard cells? – Plant Physiol. 107: 101–109 –

Wullschleger S. D., Gunderson C. A., Hanson P. J., Wilson K. B., Norby R. J. (2002) – Sensitivity of stomatal and canopy conductance to elevated CO2 concentration – interacting variables and perspectives of scale. New Phytologist 153, 485–496.

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – Stomatal movement – guard cell physiology – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/stomatal-movements/ )

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – ABA action and receptors – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-action-and-receptors-in-stomata/ )

Wynn J. G. (2003) – Towards a physically based model of CO2-induced stomatal frequency response – New Phytol. 157: 394–398 –Towards_a_physically_based_model_of_CO2-.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/a-physically-based-model-of-co2-induced-stomatal-frequency-response/ )

Xia X. J., Gao C. J., Song L. X., Zhou Y. H., Shi K., Yu J. Q. (2014) – Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum – Plant Cell Environ. 37: 2036–2050 – 10.1111/pce.12275 – [PubMed][Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/24428600 – (On our blog : https://plantstomata.wordpress.com/2018/07/20/aba-deficiency-abolished-ebr-induced-stomatal-closure-but-did-not-affect-ebr-induced-stomatal-opening/ )

Xie C., Zhang R., Qu Y., Miao Z., Zhang Y., Shen X., et al. (2012) – Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density – New Phytol. 19: 5124–135 – DOI:  10.1111/j.1469-8137.2012.04136.x –  [PubMed] [Cross Ref] – 

Xie S., Luo X. (2003) – Effect of leaf position and age on anatomical structure, photosynthesis, stomatal conductance and transpiration of Asian pear – Bot. Bull. Acad. Sin. (2003) 44: 297-303 – https://ejournal.sinica.edu.tw/bbas/content/2003/4/bot444-06.html – (On our blog : https://plantstomata.wordpress.com/2018/01/13/leaf-position-and-age-stomatal-conductance-and-transpiration-of-asian-pear/ )

Xie X., Wang Y., Williamson L., Holroyd G. H., Tagliavia C., Murchie E., Theobald J., Knight M. R., Davies W. J., Leyser H. M. O., Hetherington A. M. (2006) – The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. – Curr. Biol. 16: 882–887 – DOI: https://doi.org/10.1016/j.cub.2006.03.028 – http://www.cell.com/current-biology/fulltext/S0960-9822(06)01324-8?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982206013248%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2018/02/02/genes-for-the-stomatal-response-to-reduced-atmospheric-relative-humidity/ )


Xie Y., Mao Y., Duan X., Zhou H., Lai D., Zhang Y., Shen W. (2016)
– Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness – Plant Physiology 

 

Xie Y., Mao Y., Zhang W., Lai D., Wang Q., Shen W. (2014) – Reactive oxygen species-dependent nitric oxide production contributes to hydrogen- promoted stomatal closure in Arabidopsis – Plant Physiol. 165: 759–773 – doi: 10.1104/pp.114.237925 – http://www.plantphysiol.org/content/early/2014/04/14/pp.114.237925 – (On our blog : https://plantstomata.wordpress.com/2018/07/20/no-production-contributes-to-h2-promoted-stomatal-closure/ )

 

Xinhua (2017) – Grass stomata seen as possible lead to crops better surviving climate change – http://news.xinhuanet.com/english/2017 – 03/17/c_136135449.htm – (On our blog : https://plantstomata.wordpress.com/2017/10/30/these-findings-may-lead-to-producing-other-plants-with-four-celled-stomata/ )

Xiong D.Douthe C.Flexas J. (2017) – Differential coordination of stomatal conductance, mesophyll conductance and leaf hydraulic conductance in response to changing light across species – Plant Cell Environ2017. – https://doi.org/10.1111/pce.13111 –http://onlinelibrary.wiley.com/doi/10.1111/pce.13111/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/10/differential-coordination-of-stomatal-conductance/ )

Xu B.-s., Zhang R.-h. ( 2002) – Study on chlorophyll content and stomata morphology of Pïnus massoniana – Chemistry and Industry of Forest Products 22(3): 59-61  – http://www.cifp.ac.cn/EN/abstract/abstract94.shtml – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-density-is-negatively-correlated-with-stomata-diameter-in-pinus/ )

Xu M., Chen F., Qi S., Zhang L., Wu S. (2018) – Loss or duplication of key regulatory genes coincides with environmental adaptation of the stomatal complex in Nymphaea colorata and Kalanchoe laxiflora – Horticulture Research (2018)5: 42 – DOI 10.1038/s41438-018-0048-8 – Loss_or_duplication_of_key_regulatory_genes_coinci.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/09/loss-or-duplication-of-key-regulatory-genes-is-associated-with-environmental-adaptation-of-the-stomatal-complex/ )

 

Xu Z., Jiang Y., Jia B., Zhou G. (2016) – Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors – Front. Plant Sci., 13 May 2016 | https://doi.org/10.3389/fpls.2016.00657 – https://www.frontiersin.org/articles/10.3389/fpls.2016.00657/full – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-stomata-respond-to-elevated-co2-levels-and-environmental-factors/ )

Xu Z.Zhou G. (2008) – Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grassJ. Exp. Bot. 5933173325 – DOI: 10.1093/jxb/ern185 – Abstract/FREE Full TextGoogle Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ern185 – (On our blog : https://plantstomata.wordpress.com/2017/06/15/stomatal-density-and-size/)

Xuan X., Wang Y., Ma S. M., Ye X.( 2011) – Comparisons between stomatal parameters between normal and abnormal leaf of Bougainvillea spectabilis Willd. – African Journal of Biotechnology 10(36): 6973-6978 – 94698-243748-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/20/stomatal-parameters-of-normal-and-abnormal-leaves/ )

Xue S., Hu H., Ries A., Merilo E., Kollist H., Schroeder J. I. (2011) – Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell – EMBO J. 30: 1645–1658 –  doi:  10.1038/emboj.2011.68 – http://labs.biology.ucsd.edu/schroeder/bggn227/oldfiles13/emboj201168%20Xue%20Hu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/20/bicarbonate-in-s-type-anion-channel-activation-and-ost1-protein-kinase-in-co2-signal-transduction-in-stomata-2/

 

Xue S., Yang P. (2005) – Effects of La 3+ on inward K + channels at plasma membrane in guard cells – Science in China Series B Chemistry 48(2):143-147 –https://www.researchgate.net/publication/244742609_Effects_of_La_3_on_inward_K_channels_at_plasma_membrane_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2017/12/14/effects-of-la-3-on-inward-k-channels-at-plasma-membrane-in-guard-cells/ )

Yaaran A., Negin B., Moshelion M. (2017) – Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response – Biorxiv – doi: https://doi.org/10.1101/218719 – https://www.biorxiv.org/content/early/2017/11/13/218719 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-maximal-stomatal-aperture-and-prompt-vapor-pressure-deficit-response/ )

Yamashita T. (1952) – Influences of potassium supply upon various properties and movement of guard cell. – Sielboldia Acta Biollogy 1, 51–70 – (Article not found)

Yamauchi S., Takemiya A., Sakamoto T., Kurata T.Tsutsumi T.Kinoshita T., Ken-ichiro Shimazaki K.-i. (2016) – The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light – Plant Physiology DOI: https://doi.org/10.1104/pp.16.01581 – http://www.plantphysiol.org/content/171/4/2731 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/aha1-plays-a-major-role-in-stomatal-opening-in-response-to-blue-light/ )

Yamazaki D., Yoshida S., Asami T., Kuchitsu K. (2003) – Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. – Plant J. 35: 129–139. – 10.1046/j.1365-313X.2003.01782.x –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/12834408 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/visualization-of-the-aba-perception-sites-and-the-nature-of-membrane-associated-aba-receptors-in-stomata/ )

Yan F., Sun Y., Song F., Liu F. (2012) – Differential responses of stomatal morphology to partial root-zone drying and deficit irrigation in potato leaves under varied nitrogen rates – Scientia Horticulturae 145: 76-83 – https://doi.org/10.1016/j.scienta.2012.07.026 – https://www.sciencedirect.com/science/article/pii/S0304423812003573 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/partial-root-zone-drying-prd-reduces-plant-water-use-via-modulating-stomatal-morphology-under-high-n-rate/

Yang D. L.Shi Z.Bao Y.Yan J.Yang Z.Yu H.Li Y.Gou M.Wang S.Zou B.Xu D.Ma Z.Kim J.Hua J. (2017) – Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity – Plant Physiology 

Yang H. M., Wang G. X. (2001) – Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment – Acta Phytoecologica Sinica 25: 312–316 – 

Yang H. M., Zhang X. Y., Tang Q.-L., Wang G.-X. (2006) – Extracellular calcium is involved in stomatal movement through the regulation of water channels in broad bean – Plant Growth Regulation 50(1): 79-83 – DOI10.1007/s10725-006-9128-0 –https://www.infona.pl/resource/bwmeta1.element.springer-6f95dbbd-1b60-3c0e-baed-9c2cbcc6471f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/extracellular-calcium-and-the-regulation-of-water-channels-in-stomatal-movement/ )

Yang J., Jonathan W., Zhu Q., Peng Z. (1995) – Effect of water deficit stress on the stomatal frequency, stomatal conductance and abscisic acid in rice leaves – Acta Agronomica Sinica 21: 533–539$ –

Yang L., Han M., Zhou G., Li J. (2007) – The changes of water-use efficiency and stoma density of Leymus chinensisalong Northeast China Transect – Acta Ecologica Sinica 27: 16–24 – https://plantstomata.wordpress.com/2016/02/16/water-use-efficiency-and-stoma-density/ )

Yang M., Sack F. D. (1995) – The too many mouths and four lips mutations affect stomatal production in Arabidopsis – Plant Cell 7: 2227–2239 – doi: 10.1105/tpc.7.12.2227 – https://www.jstor.org/stable/3870164?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/22/two-mutations-affect-stomatal-production-more-than-patterning-or-differentiation/ )

 

Yang X. et al. (2017) – Drought-resistant plant genes could accelerate evolution of water-use efficient crops – https://phys.org/news/2017-12-drought-resistant-genes-evolution-water-use-efficient.html#jCp – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomata-cam-plants-water-use-efficiency-and-drought-resistant-plant-genes/ )

Yang Y., Costa A., Leonhardt N., Siegel R. S., Schroeder J. I. (2008) – Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool – Plant Methods2008 4:6 –– https://doi.org/10.1186/1746-4811-4-6 – https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-4-6 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/isolation-of-a-strong-arabidopsis-guard-cell-promoter-and-its-potential-as-a-research-tool/ )

Ye W., Adachi Y., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2015) – Open stomata 1 kinase is essential for yeast elicitor-induced stomatal closure in Arabidopsis. – Plant Cell Physiol. 56: 1239–1248 -DOI: 10.1093/pcp/pcv051 – https://www.ncbi.nlm.nih.gov/pubmed/25840086 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/ost1-kinase-is-essential-for-stomatal-closure-and-activation-of-s-type-anion-channels-induced-by-yel/ )

Ye W., Hossain M. A., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2013) – Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells – J. Plant Physiol. 170: 1212–1215 – https://doi.org/10.1016/j.jplph.2013.03.011 – https://www.sciencedirect.com/science/article/pii/S0176161713001363 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/endogenous-aba-is-involved-in-meja-induced-ros-and-no-production-but-not-in-meja-induced-cytosolic-alkalization-in-stomata/ )

 

Ye W., Murata Y. (2016) – Microbe Associated Molecular Pattern Signaling in Guard Cells – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2016) – Front. Plant Sci. 7:583. doi: 10.3389/fpls.2016.00583- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/recent-findings-in-signaling-underlying-mamp-induced-stomatal-movement/ )

Ye W., Muroyama D., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Calcium-dependent protein kinase, CPK6, positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. – Plant Physiol. 163, 591–599. – doi: 10.1104/pp.113.224055 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/163/2/591.full.pdf+html – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk6-yel-and-stomatal-movement/ )

 

Yekondi S., Liang F.-C., Okuma E., Radziejwoski A., Mai H.-W., Swain S., Singh P., Gauthier M., Chien H.-C., Murata Y., Zimmerli L. (2017) – Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure – New Phytol. doi:10.1111/nph.14953 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14953/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-role-of-lecrk-v-2-and-lecrk-vii-1-in-stomatal-immunity/ )

Yin Y., Adachi Y., Ye W., Hayashi M., Nakamura Y. KinoshitaT., Mori I. C., Murara Y. (2013) – Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. – Plant Physiol. 163, 600–610 (2013). – CAS – Article – PubMed – PubMed Central – http://www.plantphysiol.org/content/163/2/600 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/aba-perception-mechanisms-and-stomata/)

Yin X.., Wang J., Duan Z., Wen J., Wang H. (2006) – Study on the stomatal density and daily change rule of the wheat. Chinese Agricultural Science Bulletin 22: 237–242 –

Yocum L. E. (1935) – The stomata and transpiration of oaks – Plant Physiology 10(4): 795-801, DOI: https://doi.org/10.1104/pp.10.4.795 – http://www.plantphysiol.org/content/plantphysiol/10/4/795.full.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/35085 )

Yoo C. Y., Pence H. E., Jin J. B., Miura K., Gosney M. J., Hasegawa P. M., et al. (2010) – The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1 – Plant Cell 22: 4128–4141 – DOI:  10.1105/tpc.110.078691 [PMC free article] [PubMed] [Cross Ref]

Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Shinozaki K. (2005) – The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid (ABA) and Osmotic Stress Signals Controlling Stomatal Closure in Arabidopsis – J Biol Chem 28153105318 – doi:10.1074/jbc.M509820200 – http://www.jbc.org/content/281/8/5310?ijkey=4d73b99bc49e061c5740fbd1b42af0114a33c6ed&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-direct-interaction-between-srk2e-ost1-and-abi1-through-domain-ii-plays-a-critical-role-in-the-control-of-stomatal-closure/

Yoshida T., Fernie A. R. (2018) – Remote Control of Transpiration via ABA – in Press Corrected Proof – DOI: https://doi.org/10.1016/j.tplants.2018.07.001 – https://www.cell.com/trends/plant-science/abstract/S1360-1385(18)30149-3 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/stomatal-transpiration-via-aba-is-controlled-by-remote-signals-from-roots-and-leaves-for-efficient-use-of-water/ )

Young J. J., Mehta S., Israelsson M., Godoski J., Grill E., Schroeder J. I. (2006) – CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2 + -independent phase, and CO2 insensitivity of the gca2 mutant. – Proc. Natl. Acad. Sci. U.S.A. 103, 7506–7511 – DOI: 10.1073/pnas.0602225103 – http://www.pnas.org/content/103/19/7506 – https://www.ncbi.nlm.nih.gov/pubmed/16651523 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/co2-concentrations-prime-ca2-sensors-which-could-mediate-specificity-in-ca2-signaling-in-stomata/ )

Young T., Turner S., Torau S., Stanley B., Murphy K., Lee E., Kenney K., Hoffmaster R., Foster L., Cavanaugh B., Brunot R., Bradford K., (2004) – How environmental factors affect stomatal density and chlorophyll in trees – https://www.frostburg.edu/fsu/assets/File/clife/rmsc/FinalPapers/2004/Stoma%202004.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/how-environmental-factors-affect-stomatal-density/ )

 

Yu H.Chen X.Hong Y. Y.Wang Y.Xu P.Ke S. D.Liu H. Y.Zhu J. K.Oliver D. J.Xiang C. B. (2008) – Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. – Plant Cell 2011341151 – https://doi.org/10.1105/tpc.108.058263 – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/early/2008/04/30/tpc.108.058263https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390749/ – (On our blog : https://plantstomata.wordpress.com/2018/01/02/hd-start-protein-confers-drought-tolerance-with-improved-root-system-and-reduced-stomatal-density/)

Yu R., Huang R.-F., Wang X.-C., Yuan M. (2001) – Microtubule dynamics are involved in stomatal movement of Vicia faba L. – Protoplasma 216: 113–118 –

Yu Y., Assmann S. M. (2014) – Metabolite transporter regulation of ABA function and guard cell response – Mol. Plant 7: 1505–1507 – DOI 10.1093/mp/ssu093 – [PubMed] [Cross Ref] – https://www.cell.com/molecular-plant/pdf/S1674-2052(14)60955-2.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69787 )

Yu Y., Assmann S. M. (2016) – The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants – Plant Signal Behav. 11(2): e1085275 – doi:  10.1080/15592324.2015.1085275 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883925/ – (On our blog : https://plantstomata.wordpress.com/2018/08/22/greater-transpiration-observed-in-agb1-plants-is-not-mediated-by-differential-genotypic-direct-effects-of-na-on-stomatal-apertures/

Yuan L.-m., Qiu M., Wang P., Wang Z.-q., Yang J.-c. (2006) – Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes – Scientia Agriucultura Sinica 39(5): 902-909 – Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/density-and-area-of-the-stomata-in-leaves-of-transgenic-rice-lines/ )

Zachariadis M., Apostolakos P., Galatis B. (1998) – Morphogenesis of ‘floating’ stomata in the fern Anemia mandioccana. Stomatal pore formation – In: Tsekos I, Moustakas M, editors – Progress in botanical research – Dordrecht: Kluwer Academic Publishers; 1998: 615–618 – 

Zait Y.Shapira O.Schwartz A. (2017) – The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves – Plant, Cell & Environment4011431152. doi: 10.1111/pce.12907.- http://onlinelibrary.wiley.com/doi/10.1111/pce.12907/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/blue-light-increased-xylem-epidermis-water-supply-and-stomatal-movement/ )

Zarafshar M., Akbarinia M., Askari H., Hosseini S. M., Rahaie M., Struve D., Striker G. G. (2014) – Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana) – Biotechnol. Agron. Soc. Environ. 18(3): 353-366 – http://www.pressesagro.be/base/text/v18n3/353.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/16/stomata-and-soil-water-deficit-in-seedlings-of-wild-pear/ )

Zeiditoolabi N., Daraie-Mofrad A., Direkvandy S., Mosavi Rad H., Romiani-Karami A. (2011) – Effect of plant density on the stomata morphological structure and forage yield in three species of forage yield vetch (Viciasp.) under dry farming conditions of Khorramabad – jdas  3 (5) : 17-32 – http://jdas.shahed.ac.ir/browse.php?a_code=A-10-1-28&slc_lang=en&sid=1 – http://jdas.shahed.ac.ir/article-1-143-en.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/effect-of-plant-density-on-the-stomata-morphological-structure-and-forage-yield/ )

Zeiger E. (1983) – The biology of stomatal guard cells – Annu. Rev. Plant Physiol. 34: 441-475 – https://doi.org/10.1146/annurev.pp.34.060183.002301 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.34.060183.002301 – (On our blog : https://plantstomata.wordpress.com/2018/07/21/biology-of-stomatal-guard-cells-2/ )

Zeiger E. (1984) – Blue light and stomatal function – In: Senger H. (eds) Blue Light Effects in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg, pp. 484-494. – DOI: https://doi.org/10.1007/978-3-642-69767-8_54 – Online ISBN978-3-642-69767-8 – https://link.springer.com/chapter/10.1007/978-3-642-69767-8_54#citeas – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomata-are-remarkably-sensitive-to-photon-fluxes-and-light-quality/ )

Zeiger E. (1990) – Light perception in guard cells – Plant Cell Environ 13: 739–744  -doi:10.1111/j.1365-3040.1990.tb01088.x – CrossRefGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01088.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/light-perception-in-stomata/ )

Zeiger E. (2000) – Sensory transduction of blue light in guard cells – Trends in Plant Science 5: 183-185 –

Zeiger E., Armond P., Melis A. (1981) – Fluorescence properties of guard cell chloroplasts – Plant Physiol. 67: 17–20 –

Zeiger E., Assmann S. M. Meidner H. (1983) – The photobiology of Paphiopedilum stomata: opening under blue but not red light – Photochem Photobiol 38: 627–630 –

Zeiger E., Farquhar G. D., Cowan.I. R.  (Eds) (1987) – Stomatal Function – Stanford University Press, Stanford, California, 491 pp. –http://www.rhizopon.com/images/stomatal%20function-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-function-3/ )

Zeiger E., Grivet C., Assmann S. M., Deitzer G. F., Hannegan M. W. (1985) –  limitation to carbon gain in Paphiopedilum sp. (Orchidaceae) and its reversal by blue light – Plant Physiol 77: 456–460 –

Zeiger E., Hepler P. K. (1976) -Production of guard cell protoplasts from onion and tobacco – Plant Physiol. 58(4): 492–498 –

Zeiger E., Hepler P. K. (1977) -Light and stomatal function: blue light stimulates swelling of guard cell protoplasts – Science 196: 887-889 – DOI: 10.1126/science.196.4292.887 – http://science.sciencemag.org/content/196/4292/887 – (On our blog : https://plantstomata.wordpress.com/2017/11/25/blue-light-stimulates-swelling-of-stomatal-protoplasts/ )

Zeiger E., Hepler P. K. (1979) – Blue light-induced, intrinsic vacuolar fluorescence in onion guard cells – J Cell Sci. 37: 1–10 – https://pdfs.semanticscholar.org/aef0/98859b2b1c7feb124f9373096f3d29f0b676.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/18/vacuolar-fluorescence-in-stomata/ )

Zeiger E., Talbott L. D., Frechilla S., Srivastava A., Zhu J. (2002) – The guard cell chloroplast: a perspective for the twenty-first century – New Phytol 153: 415–424 –

Zeiger E., Zhu J. (1998) – Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells – J. Exp. Bot. 49: 433–442 – DOI 10.1093/jxb/49.Special_Issue.433 – [Cross Ref] – https://www.jstor.org/stable/23695976?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/07/21/blue-light-sensing-by-guard-cell-zeaxanthin-has-a-regulatory-role-in-the-light-response-of-stomata/

Zeilinger C., Palme K., Hedrich R. (1992) – Identification of a potassium channel in mesophyll and guard cell plasma membranes of Vicia faba leaves – 9th International workshop on plant membrane biology, Monterey July 19-24, 1992, Abstr. No. 51 –

Zelitch I. (1963) – Stomata and water relations in plants – Advanced Science Seminar on the Physiology and Biochemistry of Leaf Stomata – Conn. Agric. Expt. Sta.,  Bull. 664. 116 pp – http://www.ct.gov/caes/lib/caes/documents/publications/bulletins/b664.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomata-and-water-relations/ )

Zemel E., Gepstein S. (1985) – Immunological evidence for the presence of ribulose bisphosphate carboxylase in guard cell chloroplasts – Plant Physiol. 78: 586–590 –

Zeng W., He S. Y. (2010) – A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis – Plant Physiol. 153, 1188–1198 – doi: 10.1104/pp.110.157016 – http://www.plantphysiol.org/content/153/3/1188 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/the-flagellin-receptor-flagellin-sensing2-in-mediating-stomatal-response-to-pseudomonas-syringae/ )

Zeng W., Melotto M., He S. Y. (2010) – Plant stomata: a checkpoint of host immunity and pathogen virulence – Curr. Opin. Biotechnol. 21: 599–603 – doi: 10.1016/j.copbio.2010.05.006 – https://www.ncbi.nlm.nih.gov/pubmed/20573499 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/signaling-events-involved-in-bacterium-triggered-stomatal-closure-and-virulence-factors-to-actively-counter-stomatal-closure-to-facilitate-invasion/ )

Zeppel M. J. B., Lewis J. D., Chaszar B., Smith R. A., Medlyn B. E., Huxman T. E., et al. (2012) – Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytol. 193: 929–938 – 10.1111/j.1469-8137.2011.03993.x –

Zhang A., Huang .R, Wang X., Yuan M. (2001) – Identification of integrin-like in guard cells of Vicia faba – Chinese Science Bulletin 46: 1100–110 –

Zhang F.-P., Carins-Murphy M. R., Cardoso A. A., Jordan G. J., Brodribb T. J. (2018) – Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves – New Phytologist – https://doi.org/10.1111/nph.15210 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15210?af=R – (On our blog : https://plantstomata.wordpress.com/2018/05/22/the-relationships-between-veins-stomata-and-epidermal-cells-in-leaves-sepals-and-petals/ )

Zhang H. (2012) – Using soil drying as a regulative tool to enhance crop water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-controlled-soil-drying-can-enhance-whole-plant-senescence-and-crop-water-use-efficiency/ )

Zhang H., Fang Q., Zhang Z., Wang Y., Zheng X. (2009) – The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. – J. Exp. Bot. 60, 3109–3122. – doi: 10.1093/jxb/erp146 – https://www.ncbi.nlm.nih.gov/pubmed/19454596 – (On our blog : https://plantstomata.wordpress.com/2018/07/22/two-rboh-function-in-elicitor-induced-stomatal-closure-but-not-in-elicitor-induced-hr/ )

Zhang H., Wang X., Wang S. (2004) – A study on stomatal traits of Platanus acerifolia under urban stress – Journal of Fudan Universiy  43: 651–656 –

Zhang J.-Y., He S.-B., Li L., Yang H.-Q. (2014) – Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll – PNAS 111 (29) E3015E3023 – doi:10.1073/pnas.1400542111 – http://www.pnas.org/content/111/29/E3015.full – (On our blog : https://plantstomata.wordpress.com/2018/01/20/auxin-signaling-in-mesophyll-to-coordinate-stomatal-development-with-photosynthesis/ ) 

Zhang L., Niu H., Wang S., Zhu X., Luo C., Li Y., Zhao X. (2012) – Gene or environment? Species-specific control of stomatal density and length – Ecology and Evolution 2 (5): 1065–1070 – DOI: 10.1002/ece3.233 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399171/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69825 )

Zhang S.Cai Z.Wang X. (2009) – The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling – 

Zhang S.-B., Guan Z.-J., Chang W., Hu H., Yin Q,, Cao K.-F. (2011) – Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy – Physiologia Plantarum 142: 118–127 – https://pdfs.semanticscholar.org/41b2/eb995324236f2d172d28f8d314a03d27b30d.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/07/evidence-for-the-morphological-and-physiological-evolution-of-stomata-relation-for-water-conservation-under-natural-selection/ )

Zhang S. Q., Outlaw W. H. Jr. (2001) – The guard‐cell apoplast as a site of abscisic acid accumulation in Vicia faba L. – Plant, Cell and Environment 24: 347–355 –

Zhang S. Q., Outlaw W. H. Jr., Aghoram K. (2001) – Relationship between changes in the guard cell abscisic acid content and other stress$related physiological parameters in intact plants – J. Exp. Bot. 52(355): 301-308 – https://watermark.silverchair.com/520301.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/03/28/changes-in-the-guard-cell-aba-content-and-other-stress-related-physiological-parameters/ )

 

Zhang T., Chen S., Harmon A. C. (2014) – Protein phosphorylation in stomatal movement. – Plant Signa. Behav. 9:e972845. – doi: 10.4161/ 15592316.2014.972845 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622631/ – (On our blog : https://plantstomata.wordpress.com/2018/07/23/the-essential-role-of-protein-phosphorylation-in-aba-induced-stomatal-closure-and-in-blue-light-induced-stomatal-opening/ )

Zhang W., Fan L. M., Wu W. H. (2007) – Osmo-sensitive and stretchactivated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics – Plant Physiology 143: 1140–1151 –

Zhang W., He S. Y., Assmann S. M. (2008) – The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation – Plant J. 56, 984–996 – doi: 10.1111/j.1365-313X.2008.03657.x – https://www.ncbi.nlm.nih.gov/pubmed/18702674 – (On our blog : https://plantstomata.wordpress.com/2018/07/23/insights-into-the-elusive-signaling-process-underlying-pti-associated-stomatal-responses/ )

Zhang W., Jeon B. W., Assmann S. M. (2011) – Heterotrimeric G-protein regulation of ROS signaling and calcium currents in Arabidopsis guard cells. – J. Exp. Bot. 62, 2371–2379. – doi: 10.1093/jxb/erq424 – https://www.ncbi.nlm.nih.gov/pubmed/21262908 – (On our blog : https://plantstomata.wordpress.com/2018/07/23/heterotrimeric-g-protein-regulation-of-ros-signaling-and-calcium-currents-in-stomata/ )

 

Zhang W., Nilson S. E., Assmann S. M. (2008) – Isolation and whole-cell patch clamping of Arabidopsis guard cell protoplasts. – CSH Protoc. 2008:pdb prot5014. – doi: 10.1101/pdb.prot5014 – http://cshprotocols.cshlp.org/content/2008/6/pdb.prot5014.abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-whole-cell-patch-clamping-of-guard-cell-protoplasts-stomata/ )

Zhang X., Dong F. C., Gao J. F., Song C. P. (2001) – Hydrogen peroxide- induced changes in intracellular pH of guard cells precede stomatal closure. – Cell Res. 11, 37–43. – doi: 10.1038/sj.cr.7290064 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Hydrogen-peroxide-induced-changes-in-intracellular-pH-of-guard-cells-precede-stomatal-closure-1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/07/23/h2o2-is-important-at-an-early-stage-in-the-signal-cascade-leading-to-stomatal-closure/ )

Zhang X., Miao Y. C., An G. Y., Zhou Y., Shangguan Z. P., et al. (2001) – K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells – Cell Res. 11: 195–202 –

 

Zhang X., Takemiya A., Kinoshita T., Shimazaki K. (2007) – Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. – Plant Cell Physiol. 48: 715-723 – https://academic.oup.com/pcp/article/48/5/715/2279068 – (On our blog : https://plantstomata.wordpress.com/2018/07/24/no-and-h-2-o-2-inhibit-blue-light-induced-activation-of-h-atpase-and-stimulate-stomatal-closure-by-aba/ )

Zhang X., Wang H., Takemiya A., Song C., Kinoshita T., Shimazaki K. (2004) – Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts. – Plant Physiol. 136: 4150–4158 –  10.1104/pp.104.046573 – http://europepmc.org/abstract/MED/15563626 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/inhibition-of-blue-light-dependent-h-pumping-by-aba-through-hydrogen-peroxide-induced-dephosphorylation-in-stomatal-protoplasts/ )

Zhang X., Zhang L., Dong F., Gao J., Galbraith D. W., Song C. P. (2001) – Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba – Plant Physiol. 126: 1438–1448 – DOI: https://doi.org/10.1104/pp.126.4.1438 – http://www.plantphysiol.org/content/126/4/1438 – (On our blog : https://plantstomata.wordpress.com/2018/07/24/aba-may-close-the-stomata-via-a-pathway-with-h2o2-production-involved-and-h2o2-may-be-an-intermediate-in-aba-signaling/ )

Zhang, X. et al. (2012) – Identification of PAN2 by quantitative proteomics as a leucine- rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize -Plant Cell 24: 4577–4589 – .

 

Zhang X. Y., Wang H. M., Hou Z. D., Wang G. X. (2003) – Stomatal density and distributions of spring wheat leaves under different planting densities and soil moisture levels – Acta Phytoecologica Sinica 27: 133–136 –

Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L.Welti R.Zhang W.Wang X. (2009) – Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. – Plant Cell 21, 2357–2377. – doi: 10.1105/tpc.108.062992 – http://www.plantcell.org/content/early/2009/08/18/tpc.108.062992 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/the-role-of-pld%ce%b11-and-pa-in-aba-induced-production-of-ros-in-stomata/ )

Zhang Y. P., Wang Z. M., Wu Y. C., Zhang X. (2006) – Stomatal characteristics of different green organs in wheat under different irrigation regimes – Acta Agronomica Sinica 32: 70–75 – 

Zhao L. , Sack F. D. (1999) –  Ultrastructure of stomatal development in Arabidopsis (Brassicaceae) leaves. – Amer J Botany 86: 929-939 – http://www.amjbot.org/content/86/7/929.full – (On our blog : https://plantstomata.wordpress.com/2018/01/29/ultrastructure-of-stomatal-development-2/ )

Zhao R. X., Zhang Q. B., Wu X. Y., Wang Y. (2001) – The effects of drought on epidermal cells and stomatal density of wheat leaves. Inner Mongolia Agricultural Science and Technology 6: 6–7 – 

Zhao S, Chen W, Ma D, Zhao F. (2006) – Influence of different salt level on stomatal character in rice leaves. Reclaiming and Rice Cultivation 6: 26–29 – 

Zhao W., Sun Y., Kjelgren R., Liu X. (2015) – Response of Stomatal Density and Bound Gas Exchange in Leaves of Maize to Soil Water Deficit – Plants, Soils, and Climate Faculty Publications. Paper 732 –  http://digitalcommons.usu.edu/psc_facpub/732 – https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1731&context=psc_facpub – (On our blog : https://plantstomata.wordpress.com/2018/02/04/response-of-stomatal-density-and-bound-gas-exchange-to-soil-water-deficit/ )

Zhao X., Li Y. Y., Xiao H. L., Xu C. S., Zhang, X. (2013) – Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba guard cells. – J. Integr. Plant Biol. 55, 527–536. – doi: 10.1111/jipb.12038 – https://www.ncbi.nlm.nih.gov/pubmed/23384172 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/ca2-plays-dual-and-distinctive-roles-in-the-crosstalk-between-bl-and-no-signaling-in-stomata-2/ )

Zhao X., Wang Y.-J., Wang Y.-L., Wang X.-L., Zhang X. (2011) –  Extracellular Ca2+ alleviates NaCl–induced stomatal opening through a pathway involving H2O2-blocked Na+ influx in Vicia guard cells – J. Plant Physiol. 168: 903-10 – PMID:21367483 – http://dx.doi.org/10.1016/j.jplph.2010.11.024

Zhao X., Yang Y., Shen, Z., Zhang H., Wang G., Gan Y. (2006) – Stomatal clustering in Cinnamomum camphora – South African Journal of Botany 72: 565-569 – https://doi.org/10.1016/j.sajb.2006.03.006 – https://www.sciencedirect.com/science/article/pii/S0254629906000883 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/stomatal-clusters-are-probably-able-to-assist-in-water-conservation/ )

Zhao Y., Zhao S., Mao T., Qu X., Cao W., Zhang L., Zhang W., He L., Li S., Ren S., Zhao J., Zhu G., Huang S., Ye K., Yuan,M., Guo Y. (2011) – The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis – Plant cell 23: 2314-2330 –

Zhao Z., Assmann S. M. (2011) – The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. –  J. Exp. Bot. 62, 5179–5189. – 10.1093/jxb/err223 – [PMC free article][PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/21813794 – (On our blog : https://plantstomata.wordpress.com/2018/07/25/ipgams-and-glycolytic-activity-are-critical-for-stomatal-function-and-fertility/

Zhao Z., Stanley B. A., Zhang W., Assmann S. M. (2010) – ABA-Regulated G Protein Signaling in Arabidopsis Guard Cells: A Proteomic Perspective – J. Proteome Res.20109 (4), pp 1637–1647 – DOI10.1021/pr901011h – http://pubs.acs.org/doi/abs/10.1021/pr901011h – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-regulated-g-protein-signaling-in-stomata/ )

Zhao Z. X., Zhang W., Stanley B. A., Assmann S. M. (2008) – Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. – Plant Cell 20, 3210–3226. – doi: 10.1105/tpc.108.063263 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630442/ – (On our blog : https://plantstomata.wordpress.com/2018/07/26/functional-proteomics-uncovers-new-stomatal-signaling-pathways/ )

Zheng X.Kang S.Jing Y.Ren Z.Li L.Zhou J. -M.Berkowitz G.Shi J.Fu A.Lan W.Zhao F. Luan S. (2018) – Danger-Associated Peptides Close Stomata by OST1-Independent Activation of Anion Channels in Guard Cells – 

Zheng Z. L., Nafisi M., Tam A., Li H., Crowell D. N., Chary S. N., Schroeder J. I., Shen J., Yang Z. (2002) – Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. – Plant Cell 14(11): 2787-2797 – PMID: 12417701 PMCID: PMC152727 – https://www.ncbi.nlm.nih.gov/pubmed/12417701 – (On our blog : https://plantstomata.wordpress.com/2018/07/26/rop10-a-pm-localized-signaling-molecule-involved-in-the-negative-regulation-of-aba-signaling-in-stomata/ )

 

Zhou Y., Vroegop-Vos I., Schuurink R. C., Pieterse C. M. J. , Van Wees S. C. M. (2017) – Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine – Front. Plant Sci., 16 May 2017 | https://doi.org/10.3389/fpls.2017.00700 –https://www.frontiersin.org/articles/10.3389/fpls.2017.00700/full – (On our blog : https://plantstomata.wordpress.com/2017/10/29/co2-aba-accumulation-and-stomatal-responsiveness-to-coronatine/ )

Zhou X. F., Jin Y. H., Yoo C. Y., Lin X.-L., Kim W.-Y., Yun D.-J., Bressan R. A.,  Hasegawa P. M., Jin J. B. (2013) – CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis – Plant Physiol. 162, 1030–1041  –http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DC%2BC3sXps1OqsLo%3D&md5=9148d023de1dca6c9f9e0f7c9e793052 – (https://plantstomata.wordpress.com/2016/12/07/cych1-regulates-blue-light-mediated-stomatal-opening-by-controlling-reactive-oxygen-species-homeostasis/ )

Zhou X. M., Wu W. H., Yuan M., Wang X. C. (1999) –  Regulation of the inward K+ -channels in stomatal guard cells by cytoskeletal microtubules – Chinese Science Bulletin 44: 919–923 –

Zhu M., Assmann S. M. (2017) – Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics – Scientific Reports 7(1) – DOI: 10.1038/s41598-017-13166-w – https://www.researchgate.net/publication/320288731_Metabolic_Signatures_in_Response_to_Abscisic_Acid_ABA_Treatment_in_Brassica_napus_Guard_Cells_Revealed_by_Metabolomics – (On our blog : https://plantstomata.wordpress.com/2018/07/28/metabolic-signatures-in-response-to-aba-in-stomatal-protoplasts/ )

Zhu M., Dai S., Zhu N., Booy A., Simons B., Yi S., Chen S. (2012) – Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics – J. Proteome Res. 11: 3728–3742 – DOI 10.1021/pr300213k – [PubMed] [Cross Ref] – https://pubs.acs.org/doi/abs/10.1021/pr300213k – (On our blog : https://plantstomata.wordpress.com/2018/07/28/meja-responsive-molecular-mechanisms-in-stomata/

Zhu M., Jeon B. W., Geng S., Yu Y., Balmant K., Chen S., et al. (2016) – Preparation of epidermal peels and guard cell protoplasts for cellular, electrophysiological, and -omics assays of guard cell function – Methods Mol. Biol. 1363, 89–121 – doi: 10.1007/978-1-4939-3115-6_9 – (Article not found)

Zhu M., Simons B., Zhu N., Oppenheimer D. G., Chen S. (2010) – Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging – J. Proteomics 73: 790–805 – doi: 10.1016/j.jprot.2009.11.002 – https://www.sciencedirect.com/science/article/pii/S1874391909003303 – (On our blog : https://plantstomata.wordpress.com/2018/07/28/inventory-of-aba-responsive-proteins-and-new-proteins-for-further-investigation-of-their-functions-in-guard-cell-aba-signaling/ )

Zhu M. Zhang T.Ji W.Silva-Sanchez C.Song W.-y.Assmann S. M.Harmon A. C.Chen S. 2017) – Redox regulation of a guard cell SNF1-related protein kinase in Brassica napus, an oilseed crop – 

Zhu M., Zhu N., Song W.-Y., Harmon A. C., Assmann S. M., Chen S. (2014) – Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells – Plant J. 78: 491–515 – doi: 10.1111/tpj.12490 – https://www.ncbi.nlm.nih.gov/pubmed/24580573 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/potential-redox-switches-and-a-protein-redox-regulatory-mechanism-in-aba-and-meja-signal-transduction-in-stomata/ )

 

Zhu Y., Ge X. M., Wu M. M., Li X., He J. M. (2014) – The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis – Plant Sci. 215–216: 84–90 – doi: 10.1016/j.plantsci.2013.11.010 – https://www.sciencedirect.com/science/article/pii/S0168945213002537 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/cytosolic-alkalization-and-hydrogen-peroxide-in-ultraviolet-b-induced-stomatal-closure/ )

 

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – Discovery of synthetic small molecules that enhance the number of stomata: C–H functionalization chemistry for plant biology – Chemical Communications 69 (2017) – DOI: 10.1039/C7CC04526C – http://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc04526c#!divAbstract – https://plantstomata.wordpress.com/2017/09/18/synthetic-small-molecules-that-enhance-the-number-of-stomata/ )

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – More mouths can be fed by boosting number of plant pores – https://phys.org/news/2017-09-mouths-fed-boosting-pores.html – (On our blog : https://plantstomata.wordpress.com/2017/10/31/more-mouths-can-be-fed-with-more-stomata/ )

Zia-Khan S., Spreer W., Pengnian Y., Zhao X., Othmanli H., He X., Müller J. (2015) – Effect of Dust Deposition on Stomatal Conductance and Leaf Temperature of Cotton in Northwest China – Water 2015, 7, 116-131; doi:10.3390/w7010116 – water-07-00116.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/dust-deposition-stomatal-conductance-and-leaf-temperature/ )

Ziegler D. J., Friedman C. R. (2017) – Morphology and stomatal density of developing Arceuthobium americanum (lodgepole pine dwarf mistletoe) fruit: a qualitative and quantitative analysis using environmental scanning electron microscopy – Botany, 2017, 95(3): 347-356 – https://doi.org/10.1139/cjb-2016-0187 – – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2016-0187 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/stomata-in-arceuthobium-santalaceae/ )

Zimmerli C.Ribot C.Vavasseur A.Bauer H.Hedrich R.Poirier Y. (2012) – PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis – The Plant Journal – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/pho1-expression-in-guard-cells-mediates-the-stomatal-response-to-aba/ )

Zipperlen S. W., Press M. C. (1997) – Photosynthetic induction and stomatal oscillations in relation to the light environment of two dipterocarp rain forest tree species. -J Ecol 85: 491–503 –

Zobayed S. M. A., Afreen-Zobayed F., Kubota C., Kozai T. (1999) – Stomatal characteristics and leaf anatomy of potato plantlets cultured in vitro under photoautotrophic and photomixotrophic conditions – In Vitro Cell. Dev. Biol.- Plant 35: 183-188 – https://doi.org/10.1007/s11627-999-0075-0 – https://link.springer.com/article/10.1007%2Fs11627-999-0075-0#citeas – (On our blog : https://plantstomata.wordpress.com/2018/04/30/stomatal-size-and-density-in-potato-plantlets-cultured-in-vitro/ )

Zou J., Wei F., Wang C., Wu J., Ratnasekera D., Liu W.,Wu W.-H. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+- mediated stomatal regulation in response to drought stress – Plant Physiol. 154: 1232–1243 –  doi:  10.1104/pp.110.157545 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2971602/ – (On our blog : https://plantstomata.wordpress.com/2018/07/30/cpk10-plays-important-roles-in-aba-and-ca2-mediated-regulation-of-stomatal-movements-2/

Zou J.-J., Li X.-D., Ratnasekera D., Wang C., Liu W.-X., Song L.-F.,Zhang W.-Z., Wu W.-H. (2015) – Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. – Plant Cell 27, 1445–1460.  – doi: 10.1105/tpc.15.00144 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantcell.org/content/27/5/1445.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cpk8-functions-in-aba-mediated-stomatal-regulation-in-responses-to-drought-stress-through-regulation-of-cat3-activity/ )

Zou J. J.,Wei F. J.Wang C.Wu J. J.Ratnasekera D.Liu W. X.WuW. H. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress – Plant Physiol 15412321243 – doi:http://dx.doi.org/10.1104/pp.110.157545 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/154/3/1232.abstract?ijkey=96f00ed7a9553111d6de0afaa2cd6a829c05317e&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk10-plays-important-roles-in-aba-and-ca2-mediated-regulation-of-stomatal-movements/ )

Zweifel R.Böhm J. P.Hasler R. (2002) – Midday stomatal closure in Norway spruce–reactions in the upper and lower crown – Tree Physiol. 2211251136 (2002) – CrossRefPubMedWeb of ScienceGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/12414372 – (On our blog : https://plantstomata.wordpress.com/2018/07/30/stomatal-conductance-can-be-modeled-accurately-only-when-both-local-microclimatic-conditions-and-tree-water-status-are-known/ )

 

Advertisements