BIBLIOGRAPHY OF STOMATA: PHYSIOLOGY, BIOCHEMISTRY-ECOLOGY-CYTOLOGY M-Z

 

 

Ma Y. L., She X. P., Yang S. S. (2013) – Cytosolic alkalization-mediated H2O2 and NO production are involved in darkness-induced stomatal closure in Vicia faba.- Canadian Journal of Plant Science, 2013, 93(1): 119-130, 10.4141/cjps2012-040 – | CrossRef | CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/30/h2o2-and-no-production-are-involved-in-darkness-induced-stomatal-closure/)

MacAlister C. A., Bergmann D. C. (2001) – Stomatal Patterning. – In eLS. Edited by Anonymous. John Wiley & Sons, Ltd; 2001. – Encyclopedia of Life Sciences. -DOI: 10.1002/9780470015902.a0020125.pub2 – http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0020125/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/05/mechanisms-that-lead-to-pattern-and-cell-fate-acquisition-in-stomata/)

MacAlister C. A., Bergmann D. C. (2011) – Sequence and function of bHLHs required for stomatal development in Arabidopsis are deeply conserved in land plants. – Evol Dev 2011, 13:182-192. -10.1111/j.1525-142X.2011.00468.x. – Publisher Full Text |PubMed Central Full Text) – PMID: 21410874 – (On our blog : https://plantstomata.wordpress.com/2016/07/30/bhlhs-stomatal-development-and-land-plants/)

MacAlister C. A., Ohashi-Ito K., Bergmann D. C. (2007) – Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.Nature 2007, 445537-540. – doi: 10.1038/nature05491 – PubMed Abstract |Publisher Full Text)- CrossRefMedline – ViewArticlePubMed – http://www.nature.com/nature/journal/v445/n7127/full/nature05491.html – (On our blog : https://plantstomata.wordpress.com/2016/07/30/speechless-spch-encoding-a-basic-helix-loop-helix-bhlh-transcription-factor-for-stomatal-lineage/)

MacDowall F. D. H. (1963) – Midday closure of stomata in ageing tobacco leaves – Can. J. Bot. 41: 1289-1300 – https://doi.org/10.1139/b63-109 – http://www.nrcresearchpress.com/doi/abs/10.1139/b63-109 – (On our blog : https://plantstomata.wordpress.com/2017/08/24/midday-closure-of-stomata/)

Macho A.P., Boutrot F., Rathjen J.P., Zipfel C. (2012). – ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. – Plant Physiol. 159:1845–1856. – DOI: 10.1104/pp.112.199810 – https://www.researchgate.net/publication/228064322_ASPARTATE_OXIDASE_plays_an_important_role_in_Arabidopsis_stomatal_immunity – (On our blog : https://plantstomata.wordpress.com/2016/10/18/stomatal-immunity-and-aspartate-oxidase/)

MacRobbie E. A. C. (1980) –  Osmotic measurements on stomatal cells of Commelina communis L. – J. Membr. Biol. 53: 189-198. – DOI: 10.1007/BF01868824 – https://www.researchgate.net/publication/246987913_Osmotic_measurements_on_stomatal_cells_of_Commelina_communis_L – (On our blog : https://plantstomata.wordpress.com/2016/11/05/osmotic-measurements-on-stomata/)

MacRobbie E. A. C. (1981a) –  Effects of ABA in ‘isolated’ guard cells of Commelina communis L. – Journal of Experimental Botany 32, 563572. – doi: 10.1093/jxb/32.3.563 – CrossRef |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/07/30/aba-in-isolated-stomata/)

MacRobbie E. A. C. (1981b) – Ionic relations of stomatal guard cells. In: Stomatal Physiology, (Ed. by P. G.Jarvis & T. A.Mansfield), pp. 5170.- Cambridge University Press. Cambridge) – Google Scholar – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/ion-movements-and-stomata/)

MacRobbie E. A. C. (1982) – Chloride transport in stomatal guard cells.- Philosophical Transactions of the Royal Society, London. B299, 469481. – DOI: 10.1098/rstb.1982.0145 – CrossRefADS – (On our blog : https://plantstomata.wordpress.com/2016/07/31/chloride-in-stomata/)

MacRobbie E. A. C. (1983) –  Effects of light/dark on anion fluxes in isolated guard cells of Commelina communis L. – J. Exp. Bot. 35: 707-726 – https://www.jstor.org/stable/23690968?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/24/effects-of-lightdark-on-anion-fluxes-in-isolated-stomata/)

MacRobbie E. A. C. (1983) – Ionic relations of guard cells. In Stomatal Function (eds E. Zeiger, G.D. Farquhar & I.R. Cowan), pp. 125–162. – Stanford University Press, Stanford.

MacRobbie E. A. C. (1988) –  Control of ion fluxes in stomatal guard cells. – Botanica Acta 101: 140-148. – DOI: 10.1111/j.1438-8677.1988.tb00025.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1988.tb00025.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/01/ion-fluxes-in-stomatal-guard-cells/)

MacRobbie E. A. C. (1988) – Signal transduction and ion channels in guard cells. – Philos. Trans. R. Soc. Lond. B Biol. Sci.353,1475–1488. – DOI: 10.1098/rstb.1998.0303 – CrossRefAbstract/FREE Full TextMedline – (On our blog : https://plantstomata.wordpress.com/2016/08/26/signal-transduction-and-ion-channels-in-stomata-2/)

MacRobbie E. A. C. (1989) –  Calcium influx at the plasmalemma of isolated guard cells of Commelina communis. Effects of abscisic acid – Planta 178: 231-241 – https://www.ncbi.nlm.nih.gov/pubmed/24212753 – (On our blog : https://plantstomata.wordpress.com/2017/08/24/effects-of-aba-and-calcium-influx-at-the-plasmalemma-of-isolated-stomata/)

MacRobbie E. A. C. (1990) – Calcium-dependent and calcium-independent events in the initiation of stomatal closure by abscisic acid. Proc. R. Soc. Lond. B Biol. Sci. 241, 214219. – DOI: 10.1098/rspb.1990.0088 – CrossRefCASADS http://rspb.royalsocietypublishing.org/content/241/1302/214 –  (On our blog : https://plantstomata.wordpress.com/2016/07/31/ca-aba-and-stomatal-closure/)

MacRobbie E. A. C., (1991) – Effect of ABA on ion transport and stomatal regulation – W.J. Davies, H.G. Jones (Eds.), Abscisic acid physiology and biochemistry (1st ed.), Bios Scientific, Oxford (1991), pp. 153–168

MacRobbie E. A. C. (1992) – Calcium and ABA-induced stomatal closure. – Philos. Trans. R. Soc. Lond. B 338: 5-18 – https://www.jstor.org/stable/55777?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/26/calcium-and-aba-induced-stomatal-closure/)

MacRobbie E. A. C. (1993) – Ca2+ and cell signalling in guard cells. – Semin Cell Biol 4:113122 – http://dx.doi.org/10.1006/scel.1993.1014 – CrossRefMedlineGoogle Scholar – http://www.sciencedirect.com/science/article/pii/S1043468283710147 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-and-cell-signalling-in-stomata/)

MacRobbie E. A. C., (1995) – ABA-induced ion efflux in stomatal guard-cells – multiple actions of ABA inside and outside the cell – Plant J, 7 (1995), pp. 565–576 – doi:10.1046/j.1365-313X.1995.7040565.x – CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/31/multiple-actions-of-aba-in-stomata/)

MacRobbie E. A. C. (1995) – Effects of ABA on 86Rb+ fluxes at plasmalemma and tonoplast of stomatal guard cells – Plant J, 7 (1995), pp. 835–843. – DOI: 10.1046/j.1365-313X.1995.07050835.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1995.07050835.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/26/effects-of-aba-on-86rb-fluxes-at-plasmalemma-and-tonoplast-of-stomata/)

MacRobbie E. A. C.(1997) – Signalling in guard cells and regulation of ion channel activity. – J. Exp. Bot. 48: 515-528. – DOI:10.1093/jxb/48.Special_Issue.515 – CrossRef |PubMedMedlineWeb of Science – http://www.ncbi.nlm.nih.gov/pubmed/21245228 – (On our blog : https://plantstomata.wordpress.com/2016/08/31/signalling-and-ion-channel-activity-in-stomata/)

MacRobbie E. A. C. (1998) – Signal transduction and ion channels in guard cells. – Philos. Trans. R. Soc. B: Biol. Sci. 353: 1475–1488. – [PMC free article] [PubMed], Abstract/FREE Full Text– http://www.ncbi.nlm.nih.gov/pubmed/9800209 – (On our blog : https://plantstomata.wordpress.com/2016/08/26/signal-transduction-and-ion-channels-in-stomata-2/)

MacRobbie E.A.C. (2000) – ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release – Proc Natl Acad Sci USA, 97 (2000), pp. 12361–12368 – doi: 10.1073/pnas.220417197 – Abstract/FREE Full Text – http://www.pnas.org/content/97/22/12361.abstract?ijkey=ef0b76d2a9a727b99d14744c35b95db425378dda&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/09/18/ca2-fluxes-in-stomatal-guard-cells-aba-and-krb-release/).

MacRobbie E.A.C. (2002) – Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure – Proc. Nat. Acad. Sci. USA, 99 (2002), pp. 11963–11968 – doi: 10.1073/pnas.172360399 – http://www.pnas.org/content/99/18/11963.full – (On our blog : https://plantstomata.wordpress.com/2017/08/27/research-on-stomata-involvement-of-ptpases-in-a-major-signaling-network-in-plants/)

MacRobbie E.A.C. (2002) – Osmotic effects on vacuolar ion release in guard cells – Proc Natl Acad Sci USA, 103 (2006), pp. 1135–1140 – DOI: 10.1073/pnas.0510023103 – https://www.ncbi.nlm.nih.gov/pubmed/16418285 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/osmotic-effects-on-vacuolar-ion-release-in-stomata/)

MacRobbie E. A. C. (2006) – Control of volume and turgor in stomatal guard cells. – J. Membr. Biol. 210, 131. doi: 10.1007/s00232-005-0851-7 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://link.springer.com/article/10.1007%2Fs00232-005-0851-7 – (On our blog : https://plantstomata.wordpress.com/2016/09/18/the-key-to-regulation-of-stomatal-aperture/)

MacRobbie E. A. C. (2007) – Signalling mechanisms in the regulation of vacuolar ion release in guard cells – New Phytol 175:630-40.

MacRobbie E. A. C., Lettau J. (1980a) – Ion content and aperture in ‘isolated’ guard cells of Commelina communis L. – J. Membr. Biol. 53: 199-205 – https://link.springer.com/article/10.1007/BF01868825 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/ion-content-and-aperture-in-isolated-stomata/)

MacRobbie E. A. C., Lettau J. (1980b) – Potassium content and aperture in intact stomatal and epidermal cells of Commelina communis L. – J. Membrane Biol. 56, 249–256 – doi:10.1007/BF01869480 – CrossRef – http://link.springer.com/article/10.1007%2FBF01869480 – (On our blog : https://plantstomata.wordpress.com/2016/09/18/k-content-and-stomatal-aperture/)

MacRobbie E. A. C., Smyth W. D. (2010) – Effects of fusicoccin on ion fluxes in guard cells – New Phytol 186:636-647. – DOI: 10.1111/j.1469-8137.2010.03209.x – https://www.researchgate.net/publication/42344067_Effects_of_fusicoccin_on_ion_fluxes_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2016/10/18/fusicoccins-effect-on-ion-fluxes-in-stomata/)

Madore M. A.Lucas W. J., Outlaw W. H. Jr. (1995) – Stomata and sucrose: a full circle  [1995] in Carbon Partitioning and Source-Sink Interactions in Plants. – eds Madore MALucasWJ (The American Society of Plant PhysiologistsRockville, MD), pp 5667. – Google Scholar

Madhavan S., Chrominiski A., Smith B. N. (1983). – Effect of ethylene on stomatal opening in tomato and carnation leaves. – Plant Cell Physiol. 24, 569–572. – Google Scholar,  – http://pcp.oxfordjournals.org/content/24/3/569.short – (On our blog : https://plantstomata.wordpress.com/2016/08/31/ethylene-and-stomata/)

Maercker U. (1965) – Zur Kenntnis der Transpiration der Schliesszellen. – Protoplasma 60: 61–78. – doi:10.1007/BF01248129 – http://link.springer.com/article/10.1007/BF01248129 – (On our blog : https://plantstomata.wordpress.com/2016/10/18/25426/)

Maercker U. (1965) – Beiträge zur Histochemie der Schliesszellen – Protoplasma 60: 173-191. (Article not found)

Maherali H., Reid C. D., Polley H. W., Johnson H. B., Jackson R. B. (2002) – Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. – Plant, – Cell and Environment, 25: 557-566. – doi:10.1046/j.1365-3040.2002.00832.x – pce02.pdf – https://jacksonlab.stanford.edu/publication/stomatal-acclimation-over-subambient-elevated-co2-gradient-c3c4-grassland – (On our blog : https://plantstomata.wordpress.com/2016/08/25/stomatal-conductance-and-acclimation/)

Maier-Maercker U. (1979) – “Peristomatal transpiration” and stomatal movement: a controversial view. I. Additional proof of peristomatal transpiration by hydrophotography and a comprehensive discus- sion in the light of recent results. – Z. Pflanzenphysiol. 91:25–43. – doi:10.1016/S0044-328X(81)80236-X – CrossRef – http://www.sciencedirect.com/science/article/pii/S0044328X8180236X – (On our blog : https://plantstomata.wordpress.com/2016/09/18/a-mechanistic-model-in-which-peristomatal-transpiration-has-a-central-role/)

Maier-Maercker U. (1983) – The role of peristomatal transpiration in the mechanism of stomatal movement. – Plant, Cell and Environment 6, 369380. – DOI: 10.1111/j.1365-3040.1983.tb01269.x – Wiley Online Library | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1983.tb01269.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/18/peristomatal-transpiration-and-stomatal-movement/)

Maier-Maercker U. (1998) – Dynamics of change in stomatal response and water status of Picea abies during a persistent drought period: a contribution to the traditional view of plant water relations – Tree Physiology 1998, 18: 211- 222 – Google Scholar CrossRef PubMed – https://www.ncbi.nlm.nih.gov/pubmed/12651375 – (On our blog : https://plantstomata.wordpress.com/2017/08/17/stomatal-response-and-water-status-of-picea-abies/)

Maierhofer T., Diekmann M., Offenborn J. N., Lind C., Bauer H., Hashimoto K., S Al-Rasheid K. A., Luan S., Kudla J., Geiger D., Hedrich R. (2014) – Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. – Sci Signal. 2014 Sep 9;7(342):ra86. doi: 10.1126/scisignal.2005703. – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.ncbi.nlm.nih.gov/pubmed/25205850 – (On our blog : https://plantstomata.wordpress.com/2016/08/01/cblcipk-complexes-as-potential-regulators-of-stomatal-aperture/)

Majewska-Sawka A., Munster A., Rodriguez-Garcia M.I. (2002) – Guard cell wall: immunocytochemical detection of polysaccharide components. – J. Exp. Bot. 53: 1067–1079. – 10.1093/jexbot/53.371.1067 – http://jxb.oxfordjournals.org/content/53/371/1067.long – (On our blog : https://plantstomata.wordpress.com/2016/09/18/the-histochemical-and-immunocytochemical-structure-of-the-guard-cell-wall-in-stomata/)

Mak M., Babla M., Xu S.-C., O’Carrigan A., Liu X.-H., Gong Y.-M., Holford P., Chen Z.-H.(2014). – Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. – Environ. Exp. Bot. 98, 1–12. – doi: 10.1016/j.envexpbot.2013.10.003 – CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0098847213001470 – (On our blog : https://plantstomata.wordpress.com/2016/08/01/large-k-efflux-h-influx-early-response-of-ca2efflux-and-stomatal-closure/)

Malcheska F., Ahmad A., Batool S., Müller H. M., Ludwig-Müller J., Kreuzwieser J.Randewig D., Hänsch R., Mendel R. R., Hell R., Wirtz M., Geiger D., Ache P., Hedrich R., Herschbach C., Rennenberg H. (2017) — Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis – 

Males J., Griffiths H. (2017) – Stomatal biology of CAM plants. – Plant Physiol 174: 550–560 –

Malkowski E., Sas-Nowosielska A., Pogrzeba M., Kucharski R., Kuperberg J. M., Dushenkov S., Gorecki R. (1999) – Effect of agents stimulating opening or closing of stomata on Pb and Cd accumulation in shoots of plants. The role in phytoextraction – Ochrona Środowiska i Zasobów Naturalnych 18 – ISSN :0867-6119 – https://www.infona.pl/resource/bwmeta1.element.agro-article-b7764da7-bd11-4726-a81c-a4092cfbcf3f – (On our blog : https://plantstomata.wordpress.com/2017/10/08/effect-of-agents-stimulating-opening-or-closing-of-stomata/)

Malone S. R., Mayeux H. S., Johnson H. B., Polley H. W. (1993) – Stomatal density and aperture length in four plant species grown across a subambient CO2-gradient. – American Journal of Botany 80: 1413–1418. – CrossRef – http://www.jstor.org/stable/2445670?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2016/09/18/a-subambient-co2-gradient-stomatal-density-and-aperture-length/)

Mansfield T. A. (1965) – Studies in stomatal behavior. XII. Opening in high temperature in darkness – J. Exp. Bot. 16: 721-731 – https://www.jstor.org/stable/23686862?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/25/opening-of-stomata-in-high-temperature-in-darkness/)

Mansfield T. A. (1967) – Stomatal behaviour following treatment with auxin-like substances and phenyl-mercuric acetate. – New Phytol., 66, 325. –  DOI: 10.1111/j.1469-8137.1967.tb06011.x – Wiley Online LibraryCAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1967.tb06011.x/full – (On our blog : https://plantstomata.wordpress.com/2016/09/21/effect-of-auxin-like-substances-and-phenyl-mercuric-acetate-on-stomata/)

Mansfield T. A. (1970) – Stomata in new perspective – School Sci. Rev. 1970: 316-325. (Abstract not found)

Mansfield T. A. (1976) –  Mechanisms involved in turgor changes of guard cells  (), 453 – 462  – http://dx.doi.org/10.1016/B978-0-08-019868-2.50043-7 – CrossRef. (No Abstract found – Who can send us one ?)

Mansfield T. A. (1976) – Delay in the response of stomata to abscisic acid in carbon dioxide-free air – Journal of Experimental Botany (1976), 27(98), 559-64 – http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaE28XltVGhtL0%3D&md5=81e281cda64c901ff4ade8c6d2290967 – (On our blog : https://plantstomata.wordpress.com/2016/09/06/stomata-aba-and-co2/)

Mansfield T. A. (1998) – Stomata and plant water relations: does air pollution create problems? Environ. Pollut. 101(1): 1–11. doi: 10.1016/S0269-7491(98)00076-1 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.infona.pl/resource/bwmeta1.element.elsevier-1869acf7-29a5-381f-84c1-8eae4f31df6e – (On our blog : https://plantstomata.wordpress.com/2017/10/10/is-elevation-of-atmospheric-co2-really-leading-to-economies-in-water-use-by-plant-canopies/)

Mansfield T. A., Atkinson C. J. (1990) – Stomatal behaviour in water stressed plants. – In: Alscher, R.G., Cumming, J.R. (ed.): Stress Responses in Plants: Adaptation and Acclimation Mechanisms. Pp. 241-264. Willey-Liss, New York 1990. – https://www.researchgate.net/publication/262375120_Stomatal_behaviour_in_water_stressed_plants – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/22650)

Mansfield T. A., Davies W. J. (1981) – Stomata and stomatal mechanisms. In:The Physiology and Biochemistry of Drought Resistance in Plants (Ed. by L. G.Paleg & D.Aspinall), pp. 315346. Academic Press. Sydney .

Mansfield T. A., Heath O. V. S. (1961) – Photoperiodic effects on stomatal behaviour in Xanthium pennsylvanicum – Nature (Lond.) 191: 974-975. – (No abstract found)

Mansfield T. A., Heath O. V. S. (1963) – Studies in stomatal behaviour. IX. Photoperiodic effects on rhythmic phenomena in Xanthium pennsylvanicum – J. Exp. Bot. 14: 334-352 – https://www.jstor.org/stable/23686428?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/26/effects-of-different-day-length-treatments-on-stomatal-behaviour/)

Mansfield T. A., Hetherington A. M., Atkinson C. J. (1990) – Some current aspects of stomatal physiology. – Annual Rev. Plant Physiol. Plant Mol. Biol. 41, 55–75. – doi: 10.1146/annurev.pp.41.060190.000415 – CrossRef Full Text | Google Scholar | CAS | – http://www.annualreviews.org/doi/abs/10.1146/annurev.pp.41.060190.000415(No abstract found – Who can send us one ?)

Mansfield T. A., Jones R. J. (1971) – Effects of abscisic acid on potassium uptake and starch content of stomatal guard cells. – Planta 101, 147158. – DOI:10.1007/BF00387625 – CrossRef |PubMed |CAS | – https://www.ncbi.nlm.nih.gov/pubmed/24488344 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/22650)

Mansfield T. A.Majernik O. (1970) – Can stomata play a part in protecting plants against air pollutants? – Environmental Pollution 1970;1:149154. – doi:10.1016/0013-9327(70)90015-7 – http://www.sciencedirect.com/science/article/pii/0013932770900157 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomata-and-protection-against-air-pollutants/)

Mansfield T. A., Meidner H. (1966) – Stomatal Opening in Light of Different Wavelengths: Effects of Blue Light Independent of Carbon Dioxide Concentration – J. Exp. Bot. (1966) 17 (3): 510-521.doi: 10.1093/jxb/17.3.510 – CrossRef | (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/22650)

Mansfield T. A., Pearson M. (1996) – Disturbances in stomatal behavior in plants exposed to air pollution.  – In Plant Response to Air Pollution. Yumus M. and Iqbal M. (Eds.), Wiley, UK, 179-193. (No abstract found – Who can send us one ?)

Mansfield T. A., Travis A. J., Jarvis R. G. (1981) – Responses to light and carbon dioxide. – In Stomatal Physiology (eds P.G. Jarvis & T.A. Mansfield), pp. 119–135. – Cambridge University Press, Cambridge. – Google Scholar – (No abstract found – Who can send us one ?)

Mansfield T. A., Willmer C. M. (1969) – Stomatal responses to light and carbon dioxide in the hart’s-tongue fern, Phyllitis scolopendrium Newm. – New Phytol. 68 : 63-66. – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomata-light-and-co2/)

Manthe B., Schulz M., Schnabl H. (1992) – Effects of salicylic acid on growth and stomatal movements of Vicia faba L.: evidence for salicylic acid metabolization. – Journal of Chemical Ecology. 1992;18:1525–1539.- doi: 10.1007/BF00993226 – [PubMed] – http://www.ncbi.nlm.nih.gov/pubmed/24254284 – (On our blog : https://plantstomata.wordpress.com/2016/09/21/salicylic-acid-and-stomatal-movements/)

Manzoni S., Vico G., Katul G., Fay P. A., Polley W., Palmroth S., Porporato A. (2011)  – Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. – Functional Ecology 25, 456467. -doi: 10.1111/j.1365-2435.2010.01822.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2435.2010.01822.x/full – https://nicholas.duke.edu/people/faculty/katul/fec_1822_Rev_EV.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/08/31221/)

Manzoni S., Vico G.Palmroth S., Porporato A. , Katul G.,  (2013) – Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture – Advances in Water Resources Volume 62, Part A,  90–105 – http://dx.doi.org/10.1016/j.advwatres.2013.09.020 –http://www.sciencedirect.com/science/article/pii/S0309170813001814 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-conductance-under-dynamic-soil-moisture/)

Mao J.Zhang Y.-C.Sang Y.Li Q.-H.Yang H.-Q. (2005) -A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – Proc Natl Acad Sci USA 102: 1227012275 – Abstract/FREE Full Text – http://www.pnas.org/content/102/34/12270.full – (On our blog : https://plantstomata.wordpress.com/2016/04/04/cry-phot-and-cop1-in-stomata/)

Mao Z.-J., Wang Y.-J., Wang X.-W., Voronin P. Yu. (2005) – Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves – Russian Journal of Plant Physiology 52(2): 171-175 – DOI10.1007/s11183-005-0025-6 – https://www.infona.pl/resource/bwmeta1.element.springer-70709f38-594e-365d-ad78-80fb390a36ed – (On our blog : https://plantstomata.wordpress.com/2017/10/10/doubled-co2-concentration-exerts-a-morphotropic-effect-on-differentiation-of-stomata/)

Marais D. L. D., Auchincloss L. C., Sukamtoh E., McKay J. K., Logan T., Richards J. H., et al. (2014) – Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. – Proc. Natl. Acad. Sci. U.S.A. 111, 2836–2841. doi: 10.1073/pnas.1321429111 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/01/mpk12-affects-wue-and-reveals-link-between-stomata-size-and-aba/)

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989 a) – The generation and consolidation of a radial array of cortical microtubules in developing guard cells of Allium cepa L. -, Planta 179: 516–529 – DOI: 10.1007/BF00397591 – https://www.researchgate.net/publication/258348454_The_generation_and_consolidation_of_a_radial_array_of_cortical_microtubules_in_developing_guard_cells_of_Allium_cepa_L – (On our blog : https://plantstomata.wordpress.com/2016/10/18/25436/)

Marc J. , Mineyuki Y. , Palevitz B. A. (1989 b) – A planar microtubule-organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules. – Planta 179: 530–540 – DOI: 10.1007/BF00397592 – https://www.researchgate.net/publication/258348455_A_planar_microtubule-organizing_zone_in_guard_cells_of_Allium_experimental_depolymerization_and_reassembly_of_microtubules – (On our blog : https://plantstomata.wordpress.com/2016/10/19/experimental-depolymerization-and-reassembly-of-microtubules-in-stomata/)

Marc J., Palevitz B. A. (1990) – Regulation of the spatial order of cortical microtubules in developing guard cells of Allium. – Planta 182: 626–634 – doi:10.1007/BF02341041 – http://link.springer.com/article/10.1007/BF02341041 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/cortical-microtubules-in-developing-guard-cells/)

Marcus A. I., Moore R. C., Cyr R. J. (2001) – The role of microtubules in guard cell function. – Plant Physiol 125:387–395 – CrossRef PubMed PubMedCentral – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC61019/ – (On our blog : https://plantstomata.wordpress.com/2016/09/27/microtubules-are-involved-in-an-upstream-event-leading-to-stomatal-opening/)

Marenco R. A., Nascimento H. C. R., Magalhães N. S. (2014) – Stomatal conductance in Amazonian tree saplings in response to variations in the physical environment – Photosynthetica 52: 493–500 – DOI: 10.1007/s11099-014-0056-3 – http://link.springer.com/article/10.1007/s11099-014-0056-3 – (On our blog : https://plantstomata.wordpress.com/2016/08/26/stomatal-oscillations-and-stomatal-patchiness/)

Marenco R. A., Siebke K., Farquhar G. D., Ball M. C. (2006) –  Hydraulically based stomatal oscillations and stomatal patchiness in Gossypium hirsutum. Functional Plant Biology, 33: 1103-1113. – https://www.researchgate.net/publication/228630185_Hydraulically_based_stomatal_oscillations_and_stomatal_patchiness_in_Gossypium_hirsutum – (On our blog : https://plantstomata.wordpress.com/2016/08/26/stomatal-oscillations-and-stomatal-patchiness/)

Maricle B. R., Koteyeva N. K., Voznesenskaya E. V., Thomasson J. R., Edwards G. E. (2009) – Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). New Phytologist 184: 216–233. – DOI: 10.1111/j.1469-8137.2009.02903.x – AbstractFull Article (HTML)PDF(5534K)References – (On our blog : https://plantstomata.wordpress.com/2016/08/01/stomatal-distribution-and-conductance-in-salt-marsh-and-freshwater-spartina/).

Maricle B. R., Lee R. W., (2006) – Effects of environmental salinity on carbon isotope discrimination and stomatal conductance in Spartina grasses – Marine Ecology Progress Series 313: 305-310 – http://www.jstor.org/stable/24870107?seq=1#page_scan_tab_contents – (On  our blog : https://plantstomata.wordpress.com/2017/10/02/effects-of-environmental-salinity-on-stomatal-conductance-in-spartina-poaceae/)

Marks M. G., Sachs T. (1977) – The determination of stomata pattern and frequency in Anagallis. – Bot. Gaz. 138, 385–392. – CrossRefWeb of Science – http://www.journals.uchicago.edu/doi/10.1086/336938 – (On our blog : https://plantstomata.wordpress.com/2016/10/10/stomata-pattern-and-frequency/)

Marten I.Busch H.Raschke K.Hedrich R. (1993) – Modulation and block of the plasma membrane anion channel of guard cells by stilbene derivatives. – Eur Biophys J 21:403408. – Web of ScienceGoogle Scholar – http://cel.webofknowledge.com/InboundService.do?product=CEL&SID=Z2xW27ed8sTOsZMc3ZE&UT=WOS%3AA1993KM49400004&SrcApp=Highwire&action=retrieve&Init=Yes&SrcAuth=Highwire&Func=Frame&customersID=Highwire&IsProductCode=Yes&mode=FullRecord – (On our blog : https://plantstomata.wordpress.com/2016/10/20/stilbene-derivatives-and-the-plasma-membrane-anion-channel-of-stomata/)

Marten H., Hedrich R., Roelfsema M. R. G. (2007) – Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner. – Plant J.50:29–39. –DOI: 10.1111/j.1365-313X.2006.03026.x –  CrossRefMedlineWeb of ScienceGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.03026.x/abstract;jsessionid=0D62195EBB31F01C4B6369E8E7506A2C.f01t04 – (On our blog : https://plantstomata.wordpress.com/2016/10/05/blue-light-inhibits-plasma-membrane-anion-channels-in-stomata/)

Marten H., Hyun T., Gomi K., Seo S., Hedrich R., Roelfsema M. R. G. (2008) Silencing of NtMPK4 impairs CO2-induced stomatal closure, activation of anion channels and cytosolic Ca2+ signals in Nicotiana tabacum guard cells. – Plant Journal 55698708. – DOI: 10.1111/j.1365-313X.2008.03542.x  – https://www.researchgate.net/publication/5399339_Silencing_of_NtMPK4_impairs_CO2-induced_stomatal_closure_activation_of_anion_channels_and_cytosolic_Ca2_signals_in_Nicotiana_tabacum_guard_cells – (On our blog : https://plantstomata.wordpress.com/2016/10/10/ntmpk4-plays-an-essential-role-in-co2-and-darkness-induced-activation-of-guard-cell-anion-channels-in-stomuata/)

Marten H., Konrad K. R., Dietrich P., Roelfsema M. R. G., Hedrich, R. (2007) – Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum. Plant Physiol. 143, 28–37. – doi: 10.1104/pp.106.092643 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – http://www.plantphysiol.org/content/143/1/28.long – (On our blog : https://plantstomata.wordpress.com/2016/10/18/ca2-aba-and-plasma-membrane-anion-channels-in-stomata/)

Marten I., Zeilinger C., Redhead C., Landry D. W., Al-Awqati Q., Hedrich R. (1992) – Identification and modulation of a voltagedependent anion channel in the plasma membrane of guard cells by high-affinity ligands. – EMBO J 11: 3569-3575 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556815/ – (On our blog : https://plantstomata.wordpress.com/2016/10/29/a-voltagedependent-anion-channel-in-the-plasma-membrane-of-guard-cells-stomata/)

Martin C., Glover B. J. (2007) – Functional aspects of cell patterning in aerial epidermis. – Current Opinion in Plant Biology 10: 70–78.- https://www.ncbi.nlm.nih.gov/labs/articles/17140837/ – (On our blog : https://plantstomata.wordpress.com/2017/08/25/the-patterning-of-stomata-and-trichomes-in-different-plant-species-2/)

Martin E. S. (1970) – The significance of circadian rhythms in stomatal movements -Thesis, Dept. Hortic., Reading –

Martinez-Vilalta J., Garcia-Forner N. (2016) – Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept – Plant, Cell & Environment – DOI: 10.1111/pce.12846 – Accepted, unedited articles published online and citable. – http://onlinelibrary.wiley.com/doi/10.1111/pce.12846/abstract;jsessionid=412556820134C849930721AF4E74DE29.f02t03 – (On our blog : https://plantstomata.wordpress.com/2016/10/16/stomatal-behaviour-and-hydraulic-transport-under-drought/)

Martins S. C., McAdam S. A., Deans R. M., DaMatta F. M., Brodribb T. J. (2016) – Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves. – Plant Cell Environ. 2016 Mar;39(3):694-705. doi: 10.1111/pce.12668. Epub 2015 Dec 21. – PMID: 26510650 (On our blog : https://plantstomata.wordpress.com/2015/10/29/liquid-and-vapour-fluxes-in-leaves-and-stomatal-dynamics/)

Martin-StPaul N., Delzon S., Cochard H. (2017) – Plants resistance to drought relies on early stomata closure – 

Marx A., Sachs T. (1977) – Determination of stomata pattern and frequency in Anagallis. – Botanical Gazette 138: 385–392. – CrossRef – http://www.journals.uchicago.edu/doi/abs/10.1086/336938 – (On our blog : https://plantstomata.wordpress.com/2016/10/10/stomata-pattern-and-frequency/)

Mäser P., Leonhardt N., Schroeder J. I. (2003) – The Clickable Guard Cell: Electronically Linked Model of Guard Cell Signal Transduction Pathways – http://labs.biology.ucsd.edu/schroeder/clickablegc.html – (On our blog : https://plantstomata.wordpress.com/2017/09/20/electronically-linked-model-of-guard-cell-signal-transduction-pathways/)

Masle J., Gilmore S. R., Farquhar G. D. (2005) – The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. – Nature, 436,866870. – DOI: 10.1038/nature03835 https://www.researchgate.net/publication/7737627_The_ERECTA_gene_regulates_plant_transpiration_efficiency_in – (On our blog : https://plantstomata.wordpress.com/2016/10/18/plant-transpiration-ef%EF%AC%81ciency-the-erecta-gene-and-stomata/)

Mathur T., Sen D. N. (1972) – Interactions of potassium chloride and two antitranspirants on stomatal regulation in isolated leaf epidermal strips of Tephrosia purpurea Pers. – Biochem. Physiol. Pflanzen 163: 316-319 – https://doi.org/10.1016/S0015-3796(17)31241-6 – http://www.sciencedirect.com/science/article/pii/S0015379617312416 – (On our blog : https://plantstomata.wordpress.com/2017/08/25/interactions-of-kcl-and-two-antitranspirants-on-stomatal-regulation/)

Mathur T., Sen D. N. (1972) – Role of Potassium Chloride and Phenylmercuric Acetate on stomatal apertures in isolated epidermal peelings of Calotropis procera R. Br. – Curr. Sci. 41: 302-304. (Article not found)

Mathur T., Sen D. N. (1973) – Effect of Potassium Chloride and Phenylmercuric Acetate on the Regulation of Stomatal Opening and Water Economy in Tephrosia purpurea Pers. – Flora 162: 180-190. –  (On our blog : https://plantstomata.wordpress.com/2017/04/04/kcl-pma-and-stomatal-opening/)

Matos J. L., Bergmann D. C. (2014) – Convergence of stem cell behaviors and genetic regulation between animals and plants: insights from the Arabidopsis thaliana stomatal lineage. – F1000Prime Rep. 2014 Jul 8;6:53. – doi: 10.12703/P6-53. eCollection 2014. Review. – PMID: 25184043 – (On our blog : https://plantstomata.wordpress.com/2015/11/10/5004/).

Matos J. L., Lau O. S., Hachez C., Cruz-Ramírez A., Scheres B., Bergmann D. C. (2014) – Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module – DOI: 10.7554/eLife.03271 – eLife Sciences Thu, 09 Oct 2014 – http://lens.elifesciences.org/03271/index.html – (On our blog : https://plantstomata.wordpress.com/2015/10/24/fama-and-retinoblastoma-related-module-and-stomatal-lineage/).

Matrosova A., Bogireddi H., Mateo-Peñas A., Hashimoto-Sugimoto M., Iba K., Schroeder J. I., Israelsson-Nordström M. (2015) – The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2-induced stomatal movement responses – New Phytologist 208, 11261137. – – DOI: 10.1111/nph.13566 – CrossRefMedline – (On our blog : https://plantstomata.wordpress.com/2015/07/20/2256/)

Matsuda S., Takano S., Sato M., Furukawa K., Nagasawa H., Yoshikawa S., Kasuga J., Tokuji Y., Yazaki K. , Nakazono M., Takamure I., Kato K. (2016) – Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5 – Molecular Plant 9(3): 417-427 – DOI10.1016/j.molp.2015.12.007 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5eeb3a48-d31e-306b-9276-ac30a3777cf3 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/rcn1osabcg5-is-involved-in-accumulation-of-aba-in-guard-cells-indispensable-for-stomatal-closure/)

Matsumoto K., Ohta T., Tanaka T. (2005) – Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. – Agric. Forest Meteorol. 132, 44–57. doi: 10.1016/j.agrformet.2005.07.001 – CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0168192305001334 – (On our blog : https://plantstomata.wordpress.com/2016/10/05/stomatal-conductance-chlorophyll-concentration-and-meteorological-variables/)

Matthews J. S. A, Vialet-Chabrand S. R. M., Lawson T. (2017) – Diurnal variation in gas exchange: the balance between carbon fixation and water loss. – Plant Physiol.174: 614–623 –

Matthews P. G. D., Seymour R. S. (xxxx) – Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera – Plant, Cell & Environment 37(2): 402 – 413 – DOI10.1111/pce.12163 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-37-i-2-pce12163 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/a-novel-function-for-stomata-the-active-regulation-of-convective-airflow/)

Matyssek R., Baumgarten M., Hummel U., Häberle K. H., Kitao M., Wieser G. (2015) – Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress–Means of preventing enhanced O3 uptake under high O3 exposure? – Environ. Pollut. 196, 518–526. doi: 10.1016/j.envpol.2014.06.029 – PubMed Abstract | CrossRef Full Text | Google Scholar

Mawson B. T. (1993) – Modulation of photosynthesis and respiration in guard and mesophyll cell protoplasts by oxygen concentration. – Plant, Cell and Environment1993 a;16:207214. – DOI: 10.1111/j.1365-3040.1993.tb00862.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1993.tb00862.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/photosynthesis-and-respiration-in-guard-and-mesophyll-cell-protoplasts/)

Mawson B. T. (1993) – Regulation of blue-light-induced proton-pumping by Vicia faba L guard-cell protoplasts—energetic contributions by chloroplastic and mitochondrial activities. – Planta 1993b191:293301. – doi:10.1007/BF00195685 – Google Scholar – http://link.springer.com/article/10.1007/BF00195685 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/blue-light-induced-proton-pumping-by-guard-cell-protoplasts/)

Mawson B. T., Zeiger E. (1991) – Blue-light modulation of chlorophyll a fluorescence transients in guard cell chloroplasts – Plant Physiol. 96: 753-760. – DOI: https://doi.org/10.1104/pp.96.3.753 – http://www.plantphysiol.org/content/96/3/753 – (On our blog : https://plantstomata.wordpress.com/2017/08/26/blue-light-modulates-photosynthetic-activity-in-gc-chloroplasts-of-stomata/)

Maynard J. C.Mertz S. M.Jr.Arntzen C. J.Payne W. W. (1974) – Abnormal guard cell development in an olive necrotic mutant of maize. – Am. J. Bot. 61:580584. – CrossRefGoogle Scholar

McAdam S.A.M., Brodribb T. J. (2012) Fern and lycophyte guard cells do not respond to endogenous abscisic acid. – The Plant Cell, 24:151021. – Plant Cell. 2012 Apr;24(4):1510-21. doi: 10.1105/tpc.112.096404. Epub 2012 Apr 18. – PMID: 22517320 –Free PMC Article – (On our blog :  https://plantstomata.wordpress.com/2016/02/19/stomata-and-aba-in-fern-and-lycophyte/)

McAdam S.A.M., Brodribb T. J. (2012) Stomatal innovation and the rise of seed plants. – Ecology Letters, 15: 18. – Ecol Lett. 2012 Jan;15(1):1-8. – doi: 10.1111/j.1461-0248.2011.01700.x. Epub 2011 Oct 23. – PMID: 22017636. – ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/2016/08/01/comparison-of-stomatal-function-in-ferns-lycophytes-and-seed-plants/)

McAdam S.A.M., Brodribb T. J. (2013) Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought – New Phytologist Volume 198, Issue 2, April 2013, Pages: 429–441. – doi: 10.1111/nph.12190. Epub 2013 Feb 20. -PMID: 23421706 – (On our blog : https://plantstomata.wordpress.com/2015/09/25/stomatal-responses-in-ferns-and-lycophytes/).

McAdam S.A.M., Brodribb T. J. (2014) Separating active and passive influences on stomatal control of transpiration. – Plant Physiol. 2014 Apr;164(4):1578-1586. doi: 10.1104/pp.113.231944. Epub 2014 Jan 31. – PMID: 24488969 – Free PMC Article  – http://www.plantphysiol.org/content/164/4/1578.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/02/19/stomatal-control-of-transpiration/).

McAdam S.A.M., Brodribb T. J. (2015) Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community – Plant, Cell & Environment Volume 38, Issue 3, March 2015, Pages: 423–432. – doi: 10.1111/pce.12398. Epub 2014 Aug 6. – PMID: 24995884. – https://www.ncbi.nlm.nih.gov/pubmed/24995884 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/seasonal-stomatal-behaviour-in-a-monsoonal-plant-community/)

McAdam S.A.M., Brodribb T. J. (2015) The evolution of mechanisms driving the stomatal response to vapor pressure deficit. – Plant Physiol. 2015 Mar;167(3):833-43. doi: 10.1104/pp.114.252940. Epub 2015 Jan 30. – PMID: 25637454 – Free PMC Article – (On our blog : https://plantstomata.wordpress.com/2015/05/14/stomatal-response-to-vpd/).

McAdam S.A.M., Brodribb T. J. (2016) – Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants – Plant Physiology May 11, 2016 pp.00380.2016 – doi: http://dx.doi.org/10.1104/pp.16.00380 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/vapour-pressure-deficit-and-stomatal-responses/)

McAdam E. L., Brodribb T. J., McAdam S. A. M. (2017) – Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close? – Plant, Cell & Environment,  Accepted, unedited articles published online and citable. –DOI: 10.1111/pce.12893– http://onlinelibrary.wiley.com/doi/10.1111/pce.12893/abstract – (On our blog : https://plantstomata.wordpress.com/2017/01/02/stomatal-closure-in-response-to-ozone-exposure/)

McAdam S.A.M., Brodribb T. J., Ross J. J., Jordan G. J. (2011) – Augmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species. – J Exp Bot. 2011 Jan;62(1):195-203. doi: 10.1093/jxb/erq260. Epub 2010 Aug 25. – PMID: 20797996 – Free PMC Article  – Abstract/FREE Full Text  – (On our blog : https://plantstomata.wordpress.com/2016/02/19/aba-and-short-term-stomatal-sensitivity-to-co2/)

McAdam S. A. M., Sussmilch F. C., Brodribb T. J. (2015) – Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms – Plant, Cell & Environment 2016 Mar;39(3):485-91. doi: 10.1111/pce.12633. Epub 2015 Nov 24. – PMID: 26353082 – (On our blog : https://plantstomata.wordpress.com/2015/09/13/stomatal-responses-and-the-genes/)

McAdam S. A. M., Sussmilch F. C., Brodribb T. J., Ross J. J. (2015) – Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species. – AoB Plants. 2015 Jul 27;7. pii: plv091. doi: 10.1093/aobpla/plv091. – PMID: 26216469 (Article not found)

McAinsh M. R. (1996) – Opening up stomata – Trends in Plant Science 1(10): 360 – DOI10.1016/S1360-1385(96)82600-0 – Book review – https://www.infona.pl/resource/bwmeta1.element.elsevier-cfb9b44a-57d0-3a6b-96c3-26e461ef9695 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/opening-up-stomata/)

McAinsh M. R, Brownlee C., Hetherington A. M. (1990) Abscisic acid-induced elevation of guard-cell cytosolic Ca2+ precedes stomatal closure. – Nature 343: 186188. – doi: 10.1038/343186a0 – CrossRef Full Text CrossRefCASADS – http://www.nature.com/nature/journal/v343/n6254/abs/343186a0.html – (On our blog : https://plantstomata.wordpress.com/2016/10/05/aba-induces-a-rapid-increase-in-guard-cell-cytosolic-free-ca2-preceding-stomatal-closure/)

McAinsh M. R., Brownlee C., Hetherington A. M. (1991) Partial inhibition of ABA-induced stomatal closure by calcium-channel blockers. – Proceedings of the Royal Society B: Biological Sciences, 243 (1308). pp. 195-201.- doi: 10.1098/rspb.1991.0031 – CrossRef Full Text | Google Scholar – http://rspb.royalsocietypublishing.org/content/243/1308/195 – (On our blog : https://plantstomata.wordpress.com/2016/11/04/calcium-channel-blockers-aba-and-stomatal-closure/)

McAinsh M. R, Brownlee C., Hetherington A. M. (1992) – Visualizing changes in cytoplasmic free Ca2+ during the response of stomatal guard cells to abscisic acid.- Plant Cell, 4, 11131122. – doi: http://dx.doi.org/10.1105/tpc.4.9.1113 – CrossRef |PubMed | – http://www.plantcell.org/content/4/9/1113.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/05/aba-induced-turgor-loss-in-guard-cells-is-a-ca2-dependent-process/)

McAinsh M. R., Brownlee C., Hetherington A. M. (1997) – Calcium ions as second messengers in guard cell signal transduction. – Plant Physiology 1997;100:16-29.DOI: 10.1111/j.1399-3054.1997.tb03451.x – Wiley Online Library |CrossRefGoogle Scholar – CrossRef |PubMed |CAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03451.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-role-of-ca2-based-signal-transduction-in-stomatal-guard-cells/)

McAinsh M. R., Clayton H., Mansfield T. A., Hetherington A. M. (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology 111: 10311042.  – PubMedCASWeb of Science – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12226345 – (On our blog : https://plantstomata.wordpress.com/2016/11/10/stomatal-behavior-in-oxidative-stress/)

McAinsh M. R., Webb A. A. R., Taylor J. E., Hetherington A. M. (1995) Stimulus-induced oscillations in guard-cell cytosolic-free calcium. – Plant Cell 7: 12071219. – doi: http://dx.doi.org/10.1105/tpc.7.8.1207 – CrossRef |PubMed |CAS | – http://www.plantcell.org/content/7/8/1207 – (On our blog : https://plantstomata.wordpress.com/2017/01/09/oscillations-in-guard-cell-cytosolic-free-calcium/)

McCormick S. (2017) – A 3-dimensional biomechanical model of guard cell mechanics – The Plant Journal 92(1): 3-4 – DOI: 10.1111/tpj.13665 – 

McCree K. J. (1974) – Changes in stomatal response characteristics of grain sorghum produced by water stress during growth. – Crop Sci. 1974;14:273–278. – doi:10.2135/cropsci1974.0011183X001400020032x – https://dl.sciencesocieties.org/publications/cs/abstracts/14/2/CS0140020273?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-response-characteristics-in-water-stress-conditions/)

Medrano H., Escalona J. M., Bota J., Gulias J., Flexas J. (2002) – Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter –Ann Bot (2002) 89 (7): 895-905. – doi: 10.1093/aob/mcf079 – http://aob.oxfordjournals.org/content/89/7/895 – (On our blog : https://plantstomata.wordpress.com/2016/09/08/drought-stomatal-conductance-and-regulation-of-photosynthesis-of-c3-plants/)

Meidner H. (1965) – Stomatal control of transpirational water loss. In: The State and Movement of Water in Living Organisms. – Symp. Soc. Exptl. Biol. 19: 185-203 – (Article not found)

Meidner H. (1968) – The Comparative Effects of Blue and Red Light on the Stomata of Allium cepa L. and Xanthium pennsylvanicum – Journal of Experimental Botany 19(1): 146–151, https://doi.org/10.1093/jxb/19.1.146 – https://academic.oup.com/jxb/article-abstract/19/1/146/447351/The-Comparative-Effects-of-Blue-and-Red-Light-on?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/09/29/effects-of-blue-and-red-light-on-the-stomata/)

Meidner H. (1976) – Vapour loss through stomatal pores with the mesophyll tissue excluded – J. Exp. Bot. 27 : 172-174 – https://www.jstor.org/stable/23689096?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/26/measurements-of-sustained-rates-of-vapour-loss-via-stomatal-pores/)

Meidner H. (1976) – Water vapour loss from a physical model of a substomatal cavity. J. Exp. Bot. 27:691–694 – https://doi.org/10.1093/jxb/27.4.691 – Google Scholar CrossRef – https://academic.oup.com/jxb/article-abstract/27/4/691/692823/Water-Vapour-Loss-from-a-Physical-Model-of-a?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/08/17/water-vapour-loss-from-a-physical-model-of-a-substomatal-cavity/)

Meidner H., Bannister P. (1979) – Pressure and solute potentials in stomatal cells of Tradescantia virginiana. – J Exp Bot 30 255–265. – doi: 10.1093/jxb/30.2.255 – http://jxb.oxfordjournals.org/content/30/2/255.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/10/pressure-and-solute-potentials-in-stomata/)

McElwain J. C., Steinthorsdottir M. (2017) – Paleoecology, ploidy, paleoatmospheric composition, and developmental biology: a review of the multiple uses of fossil stomata. – Plant Physiol 174: 650–664

McGoey B. V. (2014) – Stomata Size in Relation to Ploidy Level in North American Hawthorns (Crataegus, Rosaceae) – Madroño 61(2):177-193. 2014 – doi: http://dx.doi.org/10.3120/0024-9637-61.2.177 – http://www.bioone.org/doi/abs/10.3120/0024-9637-61.2.177 – (On our blog : https://plantstomata.wordpress.com/2016/04/12/ploidy-level-and-stomatal-measurements/)

McKown A. D., Guy R. D., Quamme L., Klapste J., Mantia J. L., Constabel C. P., El-Kassaby Y. A., Hamelin R. C., Zifkin M., Azam M. S. (2014) –  Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. – Molecular Ecology 23(23): 5771-5790 – doi: 10.1111/mec.12969. – http://onlinelibrary.wiley.com/doi/10.1111/mec.12969/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/26/stomatal-patterning-in-populus-trichocarpa/)

McLachlan D.H., Kopischke M., Robatzek S. (2014) – Gate control: guard cell regulation by microbial stress. – New Phytol. 203:1049–1063.doi:10.1111/nph.12916. – http://www.ncbi.nlm.nih.gov/pubmed/25040778– (On our blog : https://plantstomata.wordpress.com/2016/04/26/stomatal-regulation-in-response-to-microbes-2/)

McLachlan D.H., Lan J., Geilfus C.-M., Dodd A., Larson T., Baker A., Hörak H., Kollist H., He Z., Graham I., Mickelbart M. V., Hetherington A. M. (2016) – The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening – Current Biology Volume 26, Issue 5, p707–712, 7 March 2016 – http://www.cell.com/current-biology/abstract/S0960-9822(16)00069-5 – (On our blog : https://plantstomata.wordpress.com/2016/04/05/the-role-of-triacylglycerols-in-light-induced-stomatal-opening/)

McNaughton K., Jarvis P. G. (1991) – Effects of spatial scale on stomatal control of transpiration -Agric. Forest Meterol. 54, 279–301 (1991) – doi:10.1016/0168-1923(91)90010-N – http://www.sciencedirect.com/science/article/pii/016819239190010N – (On our blog : https://plantstomata.wordpress.com/2016/11/04/26883/)

Meckel T., Gall L., Semrau S., Homann U., Thiel G. (2007) – Guard cells elongate: relationship of volume and surface area during stomatal movement. – Biophysical journal 92, 1072-1080. – doi:  10.1529/biophysj.106.092734 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779957/ – (On our blog : https://plantstomata.wordpress.com/2016/11/04/guard-cells-elongation-and-stomatal-movement/)

Meckel T., Hurst A. C., Thiel G., Homann U. (2004) – Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K+-channel KAT1. – The Plant Journal 2004;39:182-193. –DOI: 10.1111/j.1365-313X.2004.02119.x – CrossRefMedlineWeb of ScienceGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2004.02119.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/06/endocytosis-against-high-turgor-in-stomata/)

Medeiros D. B., Daloso D. M., Fernie A. R., Nikoloski Z., Araújo W. L. (2015). – Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. – Plant Cell Environ. doi: 10.1111/pce.12517 [Epub ahead of print]. – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/01/systems-biology-to-unravel-stomatal-function/)

Medeiros D. B., Martins S. C. V., Cavalcanti J. H. F., Daloso D. M., Martinoia E., Nunes-Nesi A., DaMatta F. M., Fernie A. R., Araujo W. L. (2016) – Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance. – Plant Physiol 170:86–101. doi:10.1104/pp.15.01053 – CrossRef PubMed – http://www.plantphysiol.org/content/170/1/86.abstract – (On our blog : https://plantstomata.wordpress.com/2016/08/03/stomatal-and-mesophyll-conductance-photosynthesis-and-growth-organic-acid-accumulation/)

Mediavilla S., Escudero A. (2003) – Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. – Tree Physiol 23:987–996 – https://www.ncbi.nlm.nih.gov/pubmed/12952785 – (On our blog : https://plantstomata.wordpress.com/2016/11/10/stomatal-responses-to-drought-2/)

Mediavilla S., Escudero A. (2004) – Stomatal responses to drought of mature trees and seedlings of two cooccurring Mediterranean oaks. – Forest Ecol Manag 187:281–294 – http://dx.doi.org/10.1016/j.foreco.2003.07.006 – http://www.sciencedirect.com/science/article/pii/S0378112703003827 – (On our blog : https://plantstomata.wordpress.com/2016/10/06/stomatal-responses-to-drought/)

Medlyn B. E., Barton C. V. M., Broadmeadow M. S. J., Ceulemans R., de Angelis P., Forstreuter M. et al. (2001) – Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. – New Phytol. 149: 247–264. – DOI: 10.1046/j.1469-8137.2001.00028.x – CrossRefWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/08/03/elevated-co2-concentration-and-stomatal-conductance-of-forest-species/)

Medlyn B. E., Duursma R. A., Eamus D., Ellsworth D. S., Prentice I. C., Barton C. V. M., Crous K. Y., de Angelis P., Freeman M., Wingate L. (2011) –  Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology 17: 2134–2144. – DOI: 10.1111/j.1365-2486.2012.02790.x – View Record in Scopus|Full Text via CrossRef | ArticleISI – (On our blog : https://plantstomata.wordpress.com/2016/08/03/17378/)

Medlyn B., Duursma R., Eamus D., Ellsworth D. S., Prentice I. C., Barton C. M. et al. (2011) –  Corrigendum: Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology 18 (2012), p. 3476. – Wiley Online Library View Record in Scopus|Full Text via CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/08/03/17378/)

Meidner H. (1968) – The Comparative Effects of Blue and Red Light on the Stomata of Allium cepa L. and Xanthium pennsylvanicum – Journal of Experimental Botany, 19(1): 146–151- https://doi.org/10.1093/jxb/19.1.146 – https://academic.oup.com/jxb/article-abstract/19/1/146/447351/The-Comparative-Effects-of-Blue-and-Red-Light-on?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/09/18/effects-of-blue-and-red-light-on-stomata/)

Meidner H., Edwards M. (1975) – Direct measurements of turgor pressure potentials of guard cells. I. – J. Exp. Bot. 26:319–329. – https://doi.org/10.1093/jxb/26.3.319 – https://academic.oup.com/jxb/article-abstract/26/3/319/605577/Direct-Measurements-of-Turgor-Pressure-Potentials?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/08/26/direct-measurements-of-turgor-pressure-potentials-in-stomata/)

Meidner H., Edwards M. (1996) – Osmotic and turgor pressures of guard cells. – Plant Cell Environ 19: 503. – DOI: 10.1111/j.1365-3040.1996.tb00383.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00383.x/abstract(No abstract available)

Meidner H., Heath O. V. S. (1959) – Studies in stomtatal behavior. VIII. Stomatal responses to temperature and carbon dioxide concentrations in Allium cepa L. and their relevance to mid-day closure – J. Exp. Bot. 10: 200-219 – https://doi.org/10.1093/jxb/10.2.206 – https://academic.oup.com/jxb/article-abstract/10/2/206/528173/Studies-in-Stomatal-BehaviourVIII-STOMATAL?redirectedFrom=PDF – (On our blog ; https://plantstomata.wordpress.com/2017/08/27/stomatal-responses-to-temperature-and-co2-concentrations-and-their-relevance-to-mid-day-closure/)

Meidner H., Mansfield T. A. (1965) – Stomatal responses to illumination – Biol. Reviews 40, Issue 4: 483–508 – DOI: 10.1111/j.1469-185X.1965.tb00813.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1965.tb00813.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/effects-of-environmental-factors-on-stomatal-movements/)

Meidner H., Mansfield T. A. (1966) – Rates of  photosynthesis and respiration in relation to stomatal movements in leaves treated with α-hydroxysulphonates and glycollate – J. Exp. Bot. 17: 502-509 – https://www.jstor.org/stable/23686822?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-movements-in-leaves-treated-with-%ce%b1-hydroxysulphonates-and-glycollate/)

Meidner H., Mansfield T. A. (1968) – Physiology of stomata. – McGraw Hill, London. 179 pp.

Meidner H., Willmer C. M. (1975) – Mechanics and metabolism of guard cells. – Curr. Adv. Plant Sci.-Comm. Plant Sci. 17: 1-15. – Google Scholar (Article not found)

Meinzer F. C. (1982) – The effect of vapor pressure on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings. – Oecologia 54: 236–242;  270-274 – https://link.springer.com/article/10.1007/BF00378398 – (On our blog : https://plantstomata.wordpress.com/2017/08/26/the-effect-of-vapor-pressure-on-stomatal-control-of-gas-exchange/)

Meinzer F. C., Andrade J. L., Goldstein G., Holbrook N.M., Cavelier J., Jackson P. (1997) – Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components. – Plant Cell Environ. 20: 1242-1252 –DOI: 10.1046/j.1365-3040.1997.d01-26.x –  (CrossRef, ISI).- http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-26.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/08/the-role-of-stomatal-boundary-layer-in-the-control-of-transpiration/)

Meinzer F. C., Grantz D. A. (1990) – Stomatal and hydraulic conductance in growing sugarcane: stomatal adjustment to water transport capacity. – Plant Cell Environ 13: 383–388 – DOI: 10.1111/j.1365-3040.1990.tb02142.x – Google Scholar CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb02142.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/19/stomatal-adjustment-to-water-transport-capacity/)

Meinzer F.C., Grantz D.A., Smit B. (1991) – Root signals mediate coordination of stomatal and hydraulic conductance in growing sugarcane. – Aust. J. Plant Physiol. 18: 329-338, 1991. – http://agris.fao.org/agris-search/search.do?recordID=AU9102322 – (On our blog : https://plantstomata.wordpress.com/2017/08/27/root-signals-mediate-coordination-of-stomatal-and-hydraulic-conductance/)

Meinzer F. C., Hinckley T. M., Ceulemans R. (1997) – Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy – Plant, Cell Environ. 20(10): 1301- 1308. – DOI: 10.1046/j.1365-3040.1997.d01-18.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-18.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/10/27481/)

Meinzer F. C., Johnson D. M., Lachenbruch B., McCulloh K.A., Woodruff D. R. (2009) – Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol. 23(5): 922 – 930 – CrossRefWeb of ScienceGoogle Scholar – https://www.researchgate.net/publication/227544767_Xylem_hydraulic_safety_margins_in_woody_plants_coordination_of_stomatal_control_of_xylem_tension_with_hydraulic_capacitance._Funct_Ecol – (On our blog : https://plantstomata.wordpress.com/2015/10/24/stomatal-control-of-xylem-tension-with-hydraulic-capacitance/)

Meinzer F. C., Smith D. D., Woodruff D. R., Marias D. E., McCulloh K. A., Howard A. R., Magedman A. L. (2017) – Stomatal kinetics and photosynthetic gas exchange along a continuum of iso- to anisohydric regulation of plant water status – Plant, Cell &Environment, Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in future. – DOI: 10.1111/pce.12970 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12970/abstract – (On our blog : https://plantstomata.wordpress.com/2017/04/22/stomatal-kinetics-and-plant-water-status/)

Meinzer F. C., Woodruff D. R., Marias D. E.,Smith D. D., McCulloh K. A., Howard A. R., Magedman A. L., Penuelas J. (xxxx) – Mapping ‘hydroscapes’ along the iso‐ to anisohydric continuum of stomatal regulation of plant water  – Ecology Letters19(11): 1343 – 1352 – DOI10.1111/ele.12670 – https://www.infona.pl/resource/bwmeta1.element.wiley-ele-v-19-i-11-ele12670 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/hydroscapes-and-the-iso%e2%80%90-to-anisohydric-continuum-of-stomatal-regulation-of-plant-water/)

Mekonnen D. W., Flügge U. I., Ludewig F. (2016) – Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. – Plant Sci. 2016 Apr;245:25-34. doi: 10.1016/j.plantsci.2016.01.005. Epub 2016 Jan 23. – http://www.ncbi.nlm.nih.gov/pubmed/26940489 – (On our blog : https://plantstomata.wordpress.com/2016/04/10/gaba-stomatal-closure-and-drought-tolerance/)

Melhorn V., Matsumi K., Koiwai H., Ikegami K., Okamoto M., Nambara E. (2008). – Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. J. Plant Res. 121, 125–131. – doi: 10.1007/s10265-007-0127-7 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/04/atnced3-and-aao3-genes-in-guard-cells-cause-stomatal-closure/)

Melis A., Zeiger E. (1982) – Chlorophyll a fluorescence transients in mesophyll and guard cells: modulation of guard cell photophosphorylation by CO2. – Plant Physiology 69, 642647. – CrossRef |PubMed | – http://www.ncbi.nlm.nih.gov/pubmed/16662265 – (On our blog : https://plantstomata.wordpress.com/2016/09/22/guard-cell-chloroplast-response-to-co2-and-stomatal-opening/)

Melotto M., Underwood W., He S.Y. (2008). – Role of stomata in plant innate immunity and foliar bacterial diseases. – Annu. Rev. Phytopathol. 46:101–122. – doi:  10.1146/annurev.phyto.121107.104959 – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613263/ – (On our blog : https://plantstomata.wordpress.com/2016/09/22/stomata-and-bacterial-diseases/)

Melotto M., Underwood W., Koczan J., Nomura K., He S. Y. (2006) Plant stomata function in innate immunity against bacterial invasion. – Cell 126: 969980. – doi: 10.1016/j.cell.2006.06.054 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.cell.com/cell/abstract/S0092-8674(06)01015-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867406010154%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/09/23/stomata-act-as-a-barrier-against-bacterial-infection/)

Melotto M., Zhang L., Oblessuc P. R., He S. Y. (2017) – Stomatal defense a decade later. – ,Plant Physiol 174: 561–571

Membs E-news (2015) – Revealing the molecular mechanism of plant stomata formation – http://molecularbiologynews.org/Revealing-the-Molecular-Mechanism-of-Plant-Stomata-Formation – (On our blog : https://plantstomata.wordpress.com/2016/08/05/17626/)

Mencuccini M., Mambelli S., Comstock J. (2000) – Stomatal responsiveness to leaf water status in common bean (Phaseolus vulgaris L.) is a function of time of day. – Plant Cell Environ. 23: 1109–1118. – DOI: 10.1046/j.1365-3040.2000.00617.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2000.00617.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/23/stomatal-response-to-leaf-water-status/)

Mendes K. R., Marenco R.  A. (2010) – Leaf traits and gas exchange in saplings of native tree species in the Central Amazon. – Scientia Agricola, 67:624-632. – http://dx.doi.org/10.1590/S0103-90162010000600002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162010000600002 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-conductance-gs-in-saplings-of-native-tree-species/)

 

Meng L.-s., Shun-Qiao Yao S.-Q. (2015) – Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA) – Plant Biotechnology Journal 01/2015; 13(7). DOI: 10.1111/pbi.12324 –
https://www.researchgate.net/publication/271275576_Transcription_co-activator_Arabidopsis_ANGUSTIFOLIA3_AN3_regulates_water-use_efficiency_and_drought_tolerance_by_modulating_stomatal_density_and_improving_root_architecture_by_the_transrepression_of_Y – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/9041)

Menke U, Renault N, Mueller‐Roeber B. (2000) StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline‐rich proteins. – Plant Physiology 122,677–686. – doi: http://dx.doi.org/10.1104/pp.122.3.677 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/122/3/677.abstract?ijkey=c25910eb9cbd456ca3b67dd31d90f0cb1e7047de&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/01/26490/)

Merced A. (2016) – Early land plants evolved a simple but effective mechanism to place stomata away from each other – Atlas of Science 2016 – https://atlasofscience.org/early-land-plants-evolved-a-simple-but-effective-mechanism-to-place-stomata-away-from-each-other/ – (On our blog : https://plantstomata.wordpress.com/2017/09/26/a-simple-but-effective-mechanism-to-place-stomata-away-from-each-other/)

Merced A., Renzaglia K. S. (2016) – Patterning of stomata in the moss Funaria: a simple way to space guard cells – Ann. Bot. 117(6): 985–994 – https://doi.org/10.1093/aob/mcw029 – https://academic.oup.com/aob/article/117/6/985/2195820/Patterning-of-stomata-in-the-moss-Funaria-a-simple – (On our blog : https://plantstomata.wordpress.com/2017/09/18/a-simple-way-to-space-stomata/)

Merget A. E. (1873) – Recherches sur le rôle des stomates dans les phénomènes d’échanges gazeux entre la plante et l’atmosphère – Ann. Bot. Soc. Lyon 1: 1-

Merilo E., Indrek J., Brosche M., Kollist H. (2014) To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors. – New Phytologist 202: 499508. – DOI: 10.1111/nph.12667 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12667/abstracthttp://onlinelibrary.wiley.com/doi/10.1111/nph.12667/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/15/species-specific-stomatal-responses-in-changing-environmental-conditions/)

Merilo E., Laanemets K., Hu H., Xue S., Jakobson L., Tulva I., Gonzalez-Guzman,M., Rodriguez P.L., Schroeder J.I., Brosché M., Kollist H. (2013). – PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. – Plant Physiol. 162:1652–1668. -doi: http://dx.doi.org/10.1104/pp.113.220608 – CrossRef | CAS | PubMed | – (On our blog : https://plantstomata.wordpress.com/2016/08/04/pyrrcar-receptors-play-an-important-role-for-stomatal-adjustments-and-responses/)

Merkel T., Gal L., Semrau S., Homan U., Thiel G. (2007) – Guard cells elongate: relationship of volume and surface area during stomatal movement. – Biophysical Journal 92: 1072–1080. –  doi:  10.1529/biophysj.106.092734 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779957/ – (on our blog : https://plantstomata.wordpress.com/2017/08/27/relationship-of-volume-and-surface-area-of-guard-cells-during-stomatal-movement/)

Merlot S., Leonhardt N., Fenzi F., Valon C., Costa M., Piette L., Vavasseur A., Genty B., Boivin K., Müller A.,Giraudat J., Leung J. (2007). – Constitutive activation of a plasma membrane H+ -ATPase prevents abscisic acid-mediated stomatal closure. – EMBO J. 26:3216–3226. –doi:10.1038/sj.emboj.7601750 pmid:17557075 – CrossRefMedlineWeb of ScienceGoogle ScholarPubMedCAS – (On our blog : https://plantstomata.wordpress.com/2016/08/04/aha1-is-a-distinct-component-of-an-aba%E2%80%90directed-signaling-pathway-in-stomatal-closure/)

Merlot S.Mustilli A. C.Genty B.North H.Lefebvre V.Sotta B.Vavasseur A.Giraudat J. (2002) – Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation – in Plant Journal 30: 601-609 – CrossRefMedlineWeb of Science – GoogleScholarCASISIPubMedArticle – http://cel.webofknowledge.com/InboundService.doproduct=CEL&SID=R1w3JrfK7WFKeShMwn5&UT=WOS%3A000176364100010&SrcApp=Highwire&action=retrieve&Init=Yes&SrcAuth=Highwire&Func=Frame&customersID=Highwire&IsProductCode=Yes&mode=FullRecord – (On our blog : https://plantstomata.wordpress.com/2016/09/14/arabidopsis-mutants-defective-in-stomatal-regulation/)

Merrit F., Kemper A., Tallman G.(2001) –  Inhibitors of ethylene synthesis inhibits auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L. – Plant Cell Physiol. 42: 223-230, 2001. – doi: 10.1093/pcp/pce030 – CrossRefPubMedCAS, – http://pcp.oxfordjournals.org/content/42/2/223 – (On our blog : https://plantstomata.wordpress.com/2016/09/15/auxin-induced-stomatal-opening/).

Messinger S. M., Buckley T. N., Mott K. A. (2006) – Evidence for involvement of photosynthetic processes in the stomatal response to CO2. – Plant Physiol.140: 771–778. -doi: http://dx.doi.org/10.1104/pp.105.073676 – Abstract/FREE Full Text – CrossRefPubMedCAS | – http://www.plantphysiol.org/content/140/2/771 – (On our blog : https://plantstomata.wordpress.com/2016/09/15/photosynthetic-processes-in-the-stomatal-response-to-co2/)

Metzinger C. A., Bergmann D. C. (2010) – Plant asymmetric cell division regulators: pinch-hitting for PARs? – F1000 Reports BIOLOGY, 2:25. – doi:  10.3410/B2-25 – PMID: 20948808 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948360/ – (On our blog : https://plantstomata.wordpress.com/2016/09/26/plants-use-asymmetric-cell-divisions-to-create-pattern-and-diversity-like-in-stomata/)

Meyer J. (1955) – Multiplication des stomates sous l’action du Peronospora parasita (Pers.) – Soc. Bot. France (1955) : 6-8. – (On our blog : https://plantstomata.wordpress.com/2017/03/27/the-peronospora-parasitica-creates-stomata-multiplication-in-french/)

Meyer K., Leube M. P., Grill E. (1994) – A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. – Science 264,1452–1455. – https://www.ncbi.nlm.nih.gov/pubmed/8197457 – (On our blog : https://plantstomata.wordpress.com/2016/09/29/aba-signal-transduction-and-a-protein-phosphatase-2c/)

Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K. A. S., Geiger D., Marten I., Martinoia E., Hedrich R.. (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant Journal 63: 10541062. – doi:10.1111/j.1365-313X.2010.04302.x pmid:20626656- CASPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/08/06/atalmt12-and-stomatal-movement/)

Meyer S., Scholz-Starke J., De Angeli A., Kovermann P., Burla B., Gambale F., Martinoia E. (2011) – Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. – Plant J. 67, 247257 (2011). – DOI: 10.1111/j.1365-313X.2011.04587.x – PubMedArticle – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04587.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/26/malate-transport-in-stomata/)

Meza-Canales I. D., Meldau S., Zavala J. A., Baldwin I. T. (2016) – Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception – Plant, Cell & Environment – DOI: 10.1111/pce.12874 – Accepted manuscript online: 7 December 2016 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12874/abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/08/herbivore-attack-and-stomatal-conductance/)

Miao Y., Lv D., Wang P., Wang X.-C., Chen J., Miao C., Song C.-P. (2006). – An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses.- Plant Cell 18, 2749–2766. – doi: 10.1105/tpc.106.044230 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/09/glutathione-peroxidase-in-stomata/)

Miedema H., Assmann S. M. (1996) – A membrane-delimited effect of internal pH on the K+ outward rectifier of Vicia faba guard cells – J Membr Biol, 154 (1996), pp. 227–237. – doi: 10.1007/s002329900147 – PubMed Abstract | CrossRef Full Text | Google Scholar – CrossRefMedlineWeb of Science – http://link.springer.com/article/10.1007/s002329900147 – (On our blog : https://plantstomata.wordpress.com/2016/09/29/internal-ph-regulates-outward-k-current-in-isolated-membrane-patches-from-stomatal-guard-cells/)

Miller-Rushing A. J., Primack R. B., Templer P. H., Rathbone S., Mukunda S. (2009) – Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. – American Journal of Botany 96, 1779–1786. -doi: 10.3732/ajb.0800410 – CrossRef | CAS | PubMed | , View ArticlePubMed/NCBIGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/09/atmospheric-co2-stomata-and-intrinsic-wue-in-individual-trees/)

Milthorpe F. L., Spencer E. J. (1957) – Experimental studies of the factors controlling transpiration.  III. The interrelationships between transpiration rate, stomatal movement and leaf water content – J. Exp. Bot. 8: 413-437 – https://doi.org/10.1093/jxb/8.3.413 – (On our blog : https://plantstomata.wordpress.com/2017/08/27/transpiration-rate-stomatal-movement-and-leaf-water-content/)

Miner G. L., Bauerle W. L., Baldocchi D. D. (2016) – Estimating the sensitivity of stomatal conductance to photosynthesis: A review – Plant, Cell & Environment – DOI: 10.1111/pce.12871 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12871/abstract? – (On our blog : https://plantstomata.wordpress.com/2016/12/13/sensitivity-of-stomatal-conductance-to-photosynthesis/)

Minguet-Parramona C.Wang Y.Hills A.Vialet-Chabrand S.Griffiths H.Rogers S.,Lawson T.Lew V. L.Blatt M. R. (2016) – An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells.  –  Plant Physiol. 1703342 – Abstract/FREE Full TextGoogle Scholar

Mino Y., Matsuhita Y., Sakai R. (1987) – Effect of coronatine on stomatal opening in leaves of braodbean and italian ryegrass. – Ann Phytopath Soc Japan. 1987;53:53–55 –

Miroslavov E. A. (1966) – Electron microscopic studies on stomata of the leaf of rye Secale cereale L. (Transl. from Russian) – Bot. Zh. 51: 446-449. – Google Scholar – (No abstract found)

Mirzaie-Nodoushan H., Ghamari-Zare A., Tavousi Rad F., Yousefifard M. (2015) – Inducing genetic variation in growth related characteristics of poplar germplasm, by producing inter-specific hybrids between P. alba and P. euphratica – Silvae Genetica 64, 5–6 (2015) – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomata-in-inter-specific-hybrids-between-p-alba-and-p-euphratica/)

Mishkind M., Palevitz B. A., Raikhel N. V. (1981) – Cell wall architecture: normal development and environmental modification of guard cells of the Cyperaceae and related species – Plant Cell Environm. 4: 319-328 – DOI: 10.1111/1365-3040.ep11604559 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11604559/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/28/cell-wall-architecture-in-stomata-of-the-cyperaceae/)

Mishra D., Panda K. C. (1970) – Acid phosphatases of rice leaves showing diurnal variation and its relation to stomatal opening – Biochem. Physiol. Pflanzen 161: 332-336 – https://doi.org/10.1016/S0015-3796(17)31088-0 – http://www.sciencedirect.com/science/article/pii/S0015379617310880 – (On our blog : https://plantstomata.wordpress.com/2017/08/28/acid-phosphatases-and-stomatal-opening/)

Mishra D., Pradhan G. C. (1968) – Delayed wilting of tomato plants by chemical closure of stomata – Bot. Mag. Tokyo 81: 219-225 – (On our blog : https://plantstomata.wordpress.com/2017/04/15/chemical-closure-of-stomata-and-wilting/)

Mishra D., Pradhan G. C. (1972) – Effect of transpiration-reducing chemicals on growth, flowering, and stomatal opening of tomato plants – Plant Physiol. 50: 271-274. – (On our blog : https://plantstomata.wordpress.com/2017/04/04/transpiration-reducing-chemicals-and-stomatal-opening/)

Mishra G.Zhang W.Deng F.Zhao J.Wang X. (2006) – A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. – Science 312:264266. -DOI: 10.1126/science.1123769  – Abstract/FREE Full Text – http://science.sciencemag.org/content/312/5771/264.abstract?ijkey=3dac2782792ec039cfd729b91a5ef5544894f41d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/08/27/a-bifurcating-signaling-pathway-that-regulates-plant-water-loss-through-stomata/

Mishra M. K. (1997) – Stomatal characteristics at different ploidy levels in Coffea L. – Annals of Botany 80: 689–692 – https://doi.org/10.1006/anbo.1997.0491 – https://academic.oup.com/aob/article-lookup/doi/10.1006/anbo.1997.0491 – (On our blog : https://plantstomata.wordpress.com/2017/08/07/stomatal-characteristics-at-different-ploidy-levels/)

Miskin K. E., Rasmusson D. C. (1970) – Frequency and distribution of stomata in barley – Crop Sci. 10: 575-578 – doi:10.2135/cropsci1970.0011183X001000050038x – https://dl.sciencesocieties.org/publications/cs/abstracts/10/5/CS0100050575?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2016/11/16/stomata-in-barley/)

Miskin K. E., Rasmusson D. C., Moss D. N. (1972) – Inheritance and physiological effects of stomatal frequency in barley. – Crop Science, 12: 780-783. – doi:10.2135/cropsci1972.0011183X001200060019x – https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060780?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2016/11/01/stomatal-frequency-in-barley/)

Misra B. B., Acharya B.R., Granot D., Assmann S. M., Chen S. (2015) – The guard cell metabolome: functions in stomatal movement and global food security. Front. Plant Sci. 6:334. doi: 10.3389/fpls.2015.00334 – http://www.ncbi.nlm.nih.gov/pubmed/26042131 – (On our blog : https://plantstomata.wordpress.com/?s=The+guard+cell+metabolome)

Misra B. B., Assmann S. M., Chen S. (2014). – Plant single-cell and single-cell-type metabolomics. – Trends Plant Sci. 19, 637–646. – doi: 10.1016/j.tplants.2014.05.005 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/10/current-challenges-and-future-perspectives-of-plant-metabolomics/)

Mitchell P., McAdam S., Pinkard E. A., Brodribb T. (2016) – Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata – Tree Physiology · October 2016 – DOI: 10.1093/treephys/tpw092 – https://www.researchgate.net/publication/308940975_Significant_contribution_from_foliage-derived_ABA_in_regulating_gas_exchange_in_Pinus_radiata – (On our blog : https://plantstomata.wordpress.com/2016/10/11/foliage-derived-aba-and-the-complex-regulatory-system-controlling-stomata/)

Mitra S., Maiti G. G., Maity D. (2015) – Structure and distribution of heteromorphic stomata in Pterygota alata (Roxb.) R. Br. (Malvaceae, formerly Sterculiaceae) – Adansonia 37(1):139-147. 2015 – doi: http://dx.doi.org/10.5252/a2015n1a9 – (On our blog : https://plantstomata.wordpress.com/2016/01/14/heteromorphic-stomata-in-pterygota-alata-2/).

Mittelheuser C. J., van Steveninck R. F. M. (1969) – Stomatal closure and inhibition of transpiration induced by (RS)-abscisic acid. – Nature. 1969; 221: 281–282. – http://www.nature.com/nature/journal/v221/n5177/abs/221281a0.html – (On our blog : https://plantstomata.wordpress.com/2016/10/07/rs-abscisic-acid-induces-stomatal-closure-and-inhibits-transpiration/)

Miyazaki A. (2014) – Plant growth enhanced through promotion of pore opening – Phys.org – http://phys.org/news/2014-03-growth-pore.html – (On our blog : https://plantstomata.wordpress.com/2016/08/09/plant-growth-and-promotion-of-pore-opening-in-stomata/)

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) – Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides). – Journal of Experimental Botany 57: 373380. – PMID:16172139DOI:10.1093/jxb/eri278 – https://www.ncbi.nlm.nih.gov/pubmed/16172139 – (On our blog : https://plantstomata.wordpress.com/2016/08/10/stomatal-conductance-of-mature-leaves-has-a-regulatory-effect-on-the-stomatal-development-of-expanding-leaves/)

Mochizuki A., Sueoka N. (1955) – Genetic studies on the number of plastid in stomata. I. Effects of autopolyploidy in sugar beets. – Cytologia. 20. 358-66 – http://doi.org/10.1508/cytologia.20.358 – https://www.jstage.jst.go.jp/article/cytologia1929/20/4/20_4_358/_article – (On our blog : https://plantstomata.wordpress.com/2016/11/14/27587/)

Moghbel N., Borujeni M. K., Bernard F. (2015) – Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var.glandulifera and Carthamus tinctorius L. cultured in vitro – Journal of Genetic Engineering and Biotechnology (2015). –doi:10.1016/j.jgeb.2015.02.002– http://www.sciencedirect.com/science/article/pii/S1687157X15000098– (On our blog : https://plantstomata.wordpress.com/2016/08/09/colchicine-dna-content-and-stomata-size/)

Mohanty P. K., Mishra D. (1963) – Stomatal distribution in relation to xeromorphy in aquatic plants – Nature 200, No. 4909, 909-910. – (On our blog : https://plantstomata.wordpress.com/2017/03/28/stomatal-numbers-and-xeromorphy/)

Molisch H. (1912) – Das Offen- und Geschlossensein der Spaltöffnungen veranschaulicht durch eine neue Methode – Zeit. Bot. 4

Monda K.Araki H., Kuhara S.Ishigaki G.Akashi R.Negi J.Kojima M.Sakakibara H.Takahashi S.Hashimoto-Sugimoto M., Goto N., Iba K. (2016) – Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture – Plant Physiology March 2016 vol. 170 no. 3 1435-1444 – doi: http://dx.doi.org/10.1104/pp.15.01450 –http://www.plantphysiol.org/content/170/3/1435.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/16/larger-stomatal-size-in-tetraploids-and-stomatal-conductance/)

Monda K., Negi J., Iio A., Kusumi K., Kojima M., Hashimoto-Sugimoto M., Sakakibara H., Iba K. (2011) – Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype. – Planta 234, 555563. – doi:10.1007/s00425-011-1424-x – CrossRefMedlineWeb of Science – http://link.springer.com/article/10.1007%2Fs00425-011-1424-x – (On our blog : https://plantstomata.wordpress.com/2016/10/07/the-stomatal-behavior-of-cvi-0-plants/)

Monteith J. L. (1995) – A reinterpretation of stomatal responses to humidity. – Plant, Cell and Environment 18,357–364. – DOI: 10.1111/j.1365-3040.1995.tb00371.x – Wiley Online Library | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00371.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/01/stomatal-responses-to-humidity-3/)

Monteith J. L., Szeicz G., Waggoner P. E. (1965) – The Measurement and Control of Stomatal Resistance in the Field Journal of Applied Ecology 2(2) : 345-355 – DOI: 10.2307/2401484 – https://www.jstor.org/stable/2401484?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/29/measurement-and-control-of-stomatal-resistance-in-the-field/)

Montfort C. (1926) – Physiologische und pflanzengeographische Salzwirkungen I. Einfluß ausgeglichener Salzlösungen auf Mesophyll und Schließzellen. – Jb. wiss. Bot.65, 502.Google Scholar (Article not found).

Montillet J, Hirt H. (2013) – New checkpoints in stomatal defense – 

Montillet J.L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., Garcia A.V., Douki T., Bigeard J., Laurière C., Chevalier A., Castresana C., Hirt H. (2013) – An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. – PLoS Biol. 11:e1001513. – doi: 10.3410/f.717991704.793474995 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRef | CAS | PubMed |  – (On our blog : https://plantstomata.wordpress.com/2016/08/10/oxylipin-controls-stomatal-closure-and-stomatal-immune-defense/)

Mooney H. A., Chu C. (1983) –  Stomatal responses to humidity of coastal and interior populations of a California shrub. – Oecologia (Berlin) 57: 148–150. – (No abstract found – Who can send us one ?)

Mori I. C., Murata Y., Yang Y., Munemasa S., Wang Y. F., Andreoli S., Tiriac H., Alonso J. M., Harper J. F., Ecker J. R., et al. (2006). – CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+- permeable channels and stomatal closure. – PLoS Biol. 4: 17491762.. – DOI: 310.1371/journal.p bio.0040327. – Google Scholar,  CrossRefCAS | – (On our blog : https://plantstomata.wordpress.com/2016/11/14/cpk6-and-cpk3-cdpks-aba-and-stomatal-closure/)

Mori I., Murata Y. (2011) – ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. – J. Plant Res. 124, 477–487. – doi: 10.1007/s10265-011-0435-9 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://link.springer.com/article/10.1007%2Fs10265-011-0435-9 – (On our blog : https://plantstomata.wordpress.com/2016/11/11/aba-signaling-in-stomata-2/)

Mori I. C., Muto S. (1997) – Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. – Plant Physiology 1997;113:883-839. – Google ScholarCrossRefAbstractMedline – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12223647 – (On our blog : https://plantstomata.wordpress.com/2016/11/24/aba-and-a-48-kilodalton-protein-kinase-in-stomatal-protoplasts/)

Mori I. C., Pinontoan R., Kawano T., Muto S. (2001) – Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. – Plant Cell Physiol. 42:1383–1388. [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/11773531 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/involvement-of-reactive-oxygen-species-in-signal-transduction-in-sa-induced-stomatal-closure/)

Mori I. C., Uozumi N., Muto S. (2000) – Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cell. Plant and Cell Physiology2000;41:850-856. – Abstract/FREE Full Text – CrossRefPubMedCAS | – http://pcp.oxfordjournals.org/content/41/7/850.abstract?ijkey=e21d47298d062f959117cbcb070cfebf17d0c143&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/27/abr-kinase-phosphorylates-the-inward-rectifying-kchannel-in-response-to-treatment-of-stomatal-guard-cells-with-aba/)

Morison J. I. L. (1983) – Intercellular CO2 concentration and stomatal response to CO2. – In Stomatal Function. Edited by Zeiger, E., Farquhar, G.D. and Cowan, I.R. pp. 229–251. Stanford University Press, Stanford, CA. – Google Scholar

Morison J. I. L. (1985) – Sensitivity of stomata and water use efficiency to high CO2.- Plant, Cell and Environment 8, 467474. – Wiley Online Library | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1985.tb01682.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/27/co2-stomata-and-water-use-efficiency/)

Morison J. I. L. (1998) – Stomatal response to increased CO2 concentration. – Journal of Experimental Botany 49, 443452. – http://jxb.oxfordjournals.org/content/49/Special_Issue/443 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-sensitivity-of-plants-grown-in-different-co2-concentrations/)

Morison J. I. L., Gifford R. M. (1983) – Stomatal sensitivity to carbon dioxide and humidity. A comparison of two C3 and C4 grass species. – Plant Physiol. 71:789–796. – doi: http://dx.doi.org/10.1104/pp.71.4.789 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/71/4/789.abstract?ijkey=cc55c7551ba49662b4448cd371092f668a51927d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/11/stomata-co2-and-humidity/)

Morison J. I. L., Jarvis P. G. (1983) – Direct and indirect effects of light on stomata. I. In Scots pine and Sitka spruce. – Plant Cell Environ 6: 95–101 – DOI: 10.1111/j.1365-3040.1983.tb01881.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1983.tb01881.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/28/effects-of-light-on-stomatal-conductance/)

Morison J. I. L, Jarvis P. G. (1983) – Direct and indirect effects of light on stomata: II. In Commelina communis L. – Plant Cell Environ. 1983;6:103–109 – DOI: 10.1111/j.1365-3040.1983.tb01882.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1983.tb01882.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/28/effects-of-light-on-stomata/)

Morsucci R., Curvetto N., Delmastro S.(1991) – Involvement of cytokinins and adenosine 3′,5′-cyclic monophosphate in stomatal movement in Vicia faba. – Plant Physiol. Biochem. 29: 537-547, 1991. – https://eurekamag.com/research/007/487/007487174.php – (On our blog : https://plantstomata.wordpress.com/2016/11/25/cytokinins-and-adenosine-3%E2%80%B25%E2%80%B2-cyclic-monophosphate-in-stomatal-movement/)

Morsucci R., Curvetto N., Delmastro S.(1992) – High concentration of adenosine or kinetin riboside induces stomatal closure in Vicia faba, probably through inhibition of adenylate cyclase. – Plant Physiol. Biochem. 30: 383-388, 1992. – https://eurekamag.com/research/007/398/007398046.php – (On our blog : https://plantstomata.wordpress.com/2016/11/11/adenosine-or-kinetin-riboside-induces-stomatal-closure/)

Mott K. A. (1988) – Do stomata respond to CO2 concentrations other than intercellular? – Plant Physiol. 86 200–203. Abstract/FREE Full Text – CrossRef |PubMed | – http://www.plantphysiol.org/content/86/1/200.abstract?ijkey=dc59583300881ff958ec03d17e92af3a61841e1d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/27/stomata-intercellular-co2-concentration-and-co2-concentration-at-the-surface-of-the-leaf-and-in-the-stomatal-pore/)

Mott K. A. (1995) – Effects of patchy stomatal closure on gas exchange measurements following abscisic acid treatment. – Plant, Cell and Environment 18: 1291–1300 – DOI: 10.1111/j.1365-3040.1995.tb00188.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00188.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/28/aba-treatment-and-effects-of-patchy-stomatal-closure-on-gas-exchange-measurements/)

Mott K. A. (2007) – Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves.  – Plant, Cell and Environment 30: 1444-1449. – DOI: 10.1111/j.1365-3040.2007.01720.x – Wiley Online LibraryPubMedCAS |- – https://www.researchgate.net/publication/5948120_Leaf_hydraulic_conductivity_and_stomatal_responses_to_humidity_in_amphistomatous_leaves – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-responses-to-humidity-in-amphistomatous-leaves/)

Mott K. A. (2009) – Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant Cell and Environment 32:1479–1486. doi: 10.1111/j.1365-3040.2009.02022.x –  Wiley Online LibraryCAS |  View ArticlePubMed/NCBIGoogle ScholarCrossRefMedline – (On our blog : https://plantstomata.wordpress.com/2016/08/11/stomatal-response-to-red-light-and-co2-is-caused-by-an-unknown-signal/)

Mott K. A., Buckley T. N. (1998) – Stomatal heterogeneity. – Journal of Experimental Botany 49: 407–418 – DOI: 10.1093/jexbot/49.suppl_1.407 – https://www.researchgate.net/publication/277483259_Stomatal_heterogeneity – (On our blog : https://plantstomata.wordpress.com/2017/08/29/stomatal-heterogeneity/)

Mott K. A., Buckley T. N. (2000) – Patchy stomatal conductance: emergent collective behaviour of stomata – Trends in Plant Science 5: 258-262 – PMID: 10838617 – 10.1016/S1360-1385(00)01648-4 – – https://www.ncbi.nlm.nih.gov/pubmed/10838617http://europepmc.org/abstract/med/10838617– (On our blog : https://plantstomata.wordpress.com/2017/09/05/emergent-collective-behaviour-of-stomata-patchy-stomatal-conductance/)

Mott K. A., Cardon Z. G., Berry J. A. (1993) – Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity – Plant, Cell & Environment 16)1): 25-34 – DOI: 10.1111/j.1365-3040.1993.tb00841.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1993.tb00841.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/asymmetric-patchy-stomatal-closure-for-two-surfaces-of-leaves-at-low-humidity/)

Mott K.A., Denne F., Powell J. (1997) – Interactions among stomata in response to perturbations in humidity. Plant Cell Environ. 20: 1098–1107.

Mott K. A., Franks P. J. (2001) The role of epidermal turgor in stomatal interactions following a local perturbation in humidity. – Plant, Cell & Environment 24: 657662 – DOI: 10.1046/j.0016-8025.2001.00705.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0016-8025.2001.00705.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/04/neighbouring-stomata-can-interact-through-the-influence-of-transpiration-on-epidermal-turgor/)

Mott K. A., Gibson A. C., O’Leary J. W. (1982) – The adaptive significance of amphistomatic leaves. – Plant, Cell & Environment 5, 455–460.-DOI: 10.1111/1365-3040.ep11611750 – | CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11611750/abstract;jsessionid=81D3541DAB67DFFA4699036AD4F759B6.f01t04 – (On our blog : https://plantstomata.wordpress.com/2016/12/01/the-effect-of-developing-stomata-on-the-upper-surface-as-well-as-the-lower/)

Mott K. A., Michaelson O. (1991) –  Amphistomy as an adaptation to high light-intensity in Ambrosia cordifolia (Compositae). – Amer. J. Bot. 78: 76-79 – https://www.jstor.org/stable/2445230?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/04/amphistomy-as-an-adaptation-to-high-light-intensity/)

Mott K. A., Parkhurst D. F. (1991) – Stomatal responses to humidity in air and helox – Plant, Cell & Environment – Volume 14, Issue 5 : 509–515, June 1991. – DOI: 10.1111/j.1365-3040.1991.tb01521.x – CrossRefWiley Online Libraryhttp://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01521.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/air-humidity-helox-and-stomata/)

Mott K. A., Peak D. (2007) – Stomatal patchiness and task-performing networks. – Annals of Botany 99: 219-226. – doi:  10.1093/aob/mcl234– https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802990/ – (On our blog : https://plantstomata.wordpress.com/2016/11/06/stomatal-patchiness-and-networks/)

Mott K. A., Peak D. (2010) – Stomatal responses to humidity and temperature in darkness.  – Plant, Cell and Environment 33: 1084-1090. – DOI: 10.1111/j.1365-3040.2010.02129.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02129.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/08/30/mechanisms-for-the-stomatal-response-to-humidity-and-temperature/)

Mott K. A., Peak D. (2013) – Testing a vapour-phase model of stomatal responses to humidity.- Plant, Cell & Environment 36, 936944. – DOI: 10.1111/pce.12026 – Wiley Online LibraryCAS – http://onlinelibrary.wiley.com/doi/10.1111/pce.12026/full– (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomatal-responses-to-humidity-4/)

Mott K. A., Shope J. C., Buckley T. N . (1999) – Effects of humidity on light-induced stomatal opening: evidence for hydraulic coupling among stomata.-  Journal of Experimental Botany 50: 1207-1213. – http://www.jstor.org/stable/23696280?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/04/hydraulic-coupling-among-stomata/)

Mott K. A., Sibbernsen E. D., Shope J. C. (2008) – The role of the mesophyll in stomatal responses to light and CO2. – Plant, Cell & Environment 31, 12991306. – DOI: 10.1111/j.1365-3040.2008.01845.x – Wiley Online LibraryPubMedCAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01845.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-co2-and-light-occurs-in-response-to-a-signal-generated-by-the-mesophyll/)

Mott K. A., Takemoto J. Y. 1989) – Syringomycin, a bacterial phytotoxin, closes stomata. – Plant Physiol. 1989;90:1435–1439. – [PMC free article] [PubMed] –

Mottenscher W. L. (1915) – Relation of transpiration to stomata – Jour. Bot. 2: 487-

Mouravieff I. (1951) – Action de l’hydratation des cellules épidermiques sur l’appareil stomatique – Compt. Rend. Acad. Sci. Paris 232: 1507-1509. (Article not found)

Mouravieff I. (1953) – Influence de diverses substances sur la teneur en amidon et l’hydrataion des cellules stomatiques de l’Aponogeton distachyus. – Compt. Rend. Acad. Sci. Paris 236: 1434-1436. (Article not found)

Mouravieff I. (1954) – L’ouverture des stomates dans les solutions acides par imbibition protoplasmique – Bulletin de la Société Botanique de France 101:3-4, 133-136 – DOI: 10.1080/00378941.1954.10835006 – http://www.tandfonline.com/doi/abs/10.1080/00378941.1954.10835006 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-opening-in-acid-solutions-in-french/)

Mouravieff I. (1956) – Action de CO2 et de la lumière sur l’appareil stomatique séparé du mésophylle. – Le Botaniste 40: 195-212. (Article not found)

Mouravieff I. (1956) – Action du CO2 et de la lumière sur le stomate séparé du mésophylle – Bulletin de la Société Botanique de France 102:7-8, 296-301 – DOI: 10.1080/00378941.1955.10833294 – http://www.tandfonline.com/doi/abs/10.1080/00378941.1955.10833294 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/action-of-co2-and-light-on-isolated-stomata-in-french/)

Mouravieff I. (1958) – Action de la lumière sur la cellule végétale. I. Production du mouvement d’ouverture somatique parla lumière des diverses régions du spectre – Bull Soc. Bot. Fr. 105: 467-475 – http://dx.doi.org/10.1080/00378941.1958.10835187 – http://www.tandfonline.com/doi/abs/10.1080/00378941.1958.10835187 – (On our blog : https://plantstomata.wordpress.com/2017/08/29/light-and-stomatal-opening-in-french/)

Mouravieff I. (1971) – Les inhibiteurs des groupes thiol empêchent l’ouverture des ostioles stomatiques.  Importance probable des glyceraldehyde-phosphate déhydrogénases. – Physiol. Vég. 9: 109-118. (No article found)

Mrinalini T., Latha Y. K., Raghavendra A. S., Das V. S. R. (1982) – Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis. – New Phytology 91, 413418. – doi:10.1111/j.1469-8137.1982.tb03320.x – Wiley Online LibraryCrossRefWeb of ScienceGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1982.tb03320.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/27/bicarbonate-fusicoccin-and-stomatal-opening/)

Muchow R. C., Sinclair T. R. (1989) Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench. – Plant, Cell and Environment 12, 425–431. – DOI: 10.1111/j.1365-3040.1989.tb01958.x – CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01958.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/27/stomatal-density-and-stomatal-size-among-genotypes-of-sorghum/)

Muenscher W. L. C. (1915) – A study of the relation of transpiration to size and number of stomata – Amer. J. Bot. 2: 487-504 – https://www.jstor.org/stable/2434979 – (On our blog : https://plantstomata.wordpress.com/2017/08/29/the-relation-of-transpiration-to-size-and-number-of-stomata/)

Müller H. M., Schäfer N., Bauer H., Geiger D., Lautner S., Fromm J., Riederer M., Bueno A., Nussbaumer T., Mayer K., Alquraishi S. A., Alfarhan A. H., Neher E., Al-Rasheid K. A. S., Ache P., Hedrich R. (2017) – The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel – New Phytol. – DOI: 10.1111/nph.14672 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14672/abstract;jsessionid=BD1807D23AC06ED98EACF0EDC014E1DF.f03t03 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42560)

Muller N. J. C. (1872) – Die Anatomie und die Mechanik der Spaltöffnungen – Jahrb. Wissensch. Bot. 7, 193-199. (Article not found)

Müller-Röber B., Ellenberg J., Provart N., Willmitzer L., Busch H., Becker D., Dietrich P., Hoth S., Hedrich R. (1995) – Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells – EMBO J. 14: 2409-2416 – PMID: 7781596 PMCID: PMC398354 – https://www.ncbi.nlm.nih.gov/pubmed/7781596 – http://onlinelibrary.wiley.com/store/10.1002/j.1460-2075.1995.tb07238.x/asset/embj07238.pdf?v=1&t=j6xnkg6b&s=3ccee6724165711d075db79d0c128774314e1d22 – (On our blog : https://plantstomata.wordpress.com/2017/08/29/stomata-and-kst1-an-inward-rectifying-k-channel-expressed-in-potato-guard-cells/)

Müller-Röber B., Ehrhardt T., Plesch G. (1998) Molecular features of stomatal guard cells. – J. Exp. Bot., 49, 293304. – CrossRef | – (Abstract not found – Who can send us one) ?

Müller-Röber B., La Cognata U., Sonnewald U., Willmitzer L. (1994) – A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants  – The Plant Cell 6, 601–612 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160462/pdf/060601.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/04/starch-synthesis-in-various-tissues-and-the-use-of-the-newly-identified-promoter-as-a-tool-for-stomatal-biology/)

Müller-Röber B., Sonnewald U., Willmitzer L. (1993) – Expression cassette and plasmids for a guard cell specific expression and their use for the introduction of transgenic plant cells and plants. – International Patent Application No. WO 93/18169. – https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1993018169 – (On our blog : https://plantstomata.wordpress.com/2016/12/01/the-transcriptional-regulatory-starter-region-for-a-guard-cell-specific-gene-expression/)

Mumm P., Wolf T., Fromm J., Roelfsema M. R. G., Marten I. (2011) Cell type-specific regulation of ion channels within the maize stomatal complex. Plant and Cell Physiology 52 : 13651375. – doi: 10.1093/pcp/pcr082 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/11/ion-channels-within-the-maize-stomata/)

Munemasa S., Mori I. C., Murata Y. (2011b) – Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. – Plant Signaling & Behavior. 2011b;6:939–941. -PMID:21681023PMCID:PMC3257766 –  [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/21681023 – (On our blog : https://plantstomata.wordpress.com/2017/01/13/meja-signaling-and-signal-crosstalk-between-meja-and-aba-pathways-in-stomata/)

Munemasa S., Hossain M. A., Nakamura Y., Mori I. C., Murata Y. (2011) –  The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol. 155, 553–561. – doi: 10.1104/pp.110.162750 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=20978156 – (On our blog : https://plantstomata.wordpress.com/2016/12/01/cpk6-functions-as-a-positive-regulator-of-meja-signaling-in-arabidopsis-stomata/)

Munemasa S., Muroyama D., Nagahashi H., Nakamura Y., Mori I.C., Murata, Y. (2013). – Regulation of reactive oxygen speciesmediated abscisic acid signaling in guard cells and drought tolerance by glutathione. – Front. Plant Sci. 4: 472. – doi: 10.3389/fpls.2013.00472 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://journal.frontiersin.org/article/10.3389/fpls.2013.00472/full – (On our blog : https://plantstomata.wordpress.com/2015/10/26/the-roles-of-gsh-in-guard-cell-aba-signaling-in-stomatal-closure/).

Munemasa S., Oda K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Murata Y. (2007). – The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. – Plant Physiol. 143:1398–1407. – doi: 10.1104/pp.106.091298 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed]. – http://www.plantphysiol.org/content/143/3/1398.long – (On our blog : https://plantstomata.wordpress.com/2017/01/18/hormonal-signaling-interaction-between-aba-and-meja-in-stomata/)

Munns R., King R. W. (1988) – Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants. – Plant Physiol. 88: 703-708. – CrossRef |PubMed |CAS – https://www.ncbi.nlm.nih.gov/pubmed/16666371 – (On our blog : https://plantstomata.wordpress.com/2016/12/01/inhibitory-activity-of-stomatal-transpiration-was-triggered-partly-by-leaf-water-deficit-and-partly-by-root-water-deficit/)

Murali K. M., Vanitha J., Jiang S., Ramachandran S.  (2013) – Impact of Colchicine Treatment on Sorghum bicolor BT×623, Molecular Plant Breeding, Vol.4, No.15 128135 – (http://biopublisher.ca/index.php/mpb/article/html/827/) – (On our blog : https://plantstomata.wordpress.com/2016/08/11/impact-of-colchicine-on-stomata/)

Murata Y., Mori I. C., Munemasa S. (2015) – Diverse stomatal signaling and the signal integration mechanism. – Annual Review of Plant Biology 66, 369–392.
|CrossRef | CAS |- http://www.annualreviews.org/doi/10.1146/annurev-arplant-043014-114707 – (On our blog : plantstomata.wordpress.com/2017/08/17/diverse-stomatal-signaling/)

Murata Y., Pei Z.M., Mori I.C., Schroeder, J. (2001). – Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. – Plant Cell 13:2513–2523. – doi: 10.1105/tpc.13.11.2513 – Pubmed Abstract |-PubMedCAS– (On our blog : https://plantstomata.wordpress.com/2016/08/12/a-model-of-stomatal-movement-aba-abi1-1-nadph-dependent-ros-production-abi2-1-ica-ca2-channel-activation-stomatal-closing/)

Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. (2002). – Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. – Plant Cell 14:3089–3099. –doi:10.1105/tpc.007906 pmid:12468729 – Abstract/FREE Full Text – CrossRefPubMedCASWeb of Science® – ISICASPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/03/29/ost1-protein-kinase-and-stomatal-movement/)

Miyazaki A. (2014) – Plant growth enhanced through promotion of pore opening – Phys.org – https://phys.org/news/2014-03-growth-pore.html – (On our blog : https://plantstomata.wordpress.com/2017/09/22/promotion-of-stomatal-pore-opening-to-enhance-plant-growth/)

Nabity P. D.Haus M. J.Berenbaum M. R., DeLucia E. H. (2013) – Leaf-galling Phylloxera on grapes reprograms host metabolism and morphology – PNAS – vol. 110 no. 41, 16663–16668 – (On our blog : https://plantstomata.wordpress.com/2015/04/10/induction-of-adaxial-stomata-in-vitis/)

Nadeau J. A. (2009) –  Stomatal development: new signals and fate determinants. – Current Opinion in Plant Biology 12: 29–35. –doi:10.1016/j.pbi.2008.10.006 – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/12/positive-and-negative-influences-on-stomatal-cell-transitions/)

Nadeau J. A., Sack F. D. (2002a) – Control of stomatal distribution on the Arabidopsis leaf surface. – Science 296: 1697–1700. – DOI: 10.1126/science.1069596 – Abstract/FREE Full Text Google Scholar – View ArticlePubMed – http://science.sciencemag.org/content/296/5573/1697.abstract?ijkey=61fdf63a0df9f80f6399baa35458f421570c77ef&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/10/25/control-of-stomatal-distribution/)

Nadeau J. A., Sack F.D. (2002b) – Stomatal Development in Arabidopsis, In Arabidopsis Book, ASPB 1: e0066 – C.R. Somerville and E.M. Meyerowitz, eds (Rockville, MD: American Society of Plant Biologists), doi/10.1199/tab.0066, http://www.aspb.org/publications/arabidopsis/ (Article not found).

Nadeau J. A., Sack F. D. (2003) – Stomatal development: cross talk puts mouths in place. – Trends in Plant Science 8: 294–299. – http://dx.doi.org/10.1016/S1360-1385(03)00102-X – CrossRefMedlineWeb of Science – http://www.sciencedirect.com/science/article/pii/S136013850300102X – (On our blog : https://plantstomata.wordpress.com/2016/10/25/stomatal-patterning-2/)

Nadeau J. A., Sack F. D., Sommerville C. R., Meyerowitz E. M. (2002) – Stomatal Development in ArabidopsisIn The Arabidopsis Book2002 Rockville, MD, American Society of Plant Biologists

Nagarajah S. (1978) – Some differences in the responses of stomata of the two leaf surfaces in cotton – Ann. Bot. 42: 1141-1147. – (On our blog : https://plantstomata.wordpress.com/2017/04/09/responses-of-stomata-of-the-two-leaf-surfaces-in-cotton/)

Nagata C., Miwa C., Tanaka N., Kato M., Suito M., Tsuchihira A.Sato Y., Segami S., Maeshima M. (2016) – A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure – Journal of Plant Researchpp 1-12- First online: 15 March 2016 – http://link.springer.com/article/10.1007%2Fs10265-016-0787-2 – (On our blog : https://plantstomata.wordpress.com/2016/03/16/pcap1-is-involved-in-the-stomatal-movemen/).

Nagatoshi Y., Mitsuda N., Hayashi M., Inoue S.-i., Okuma E., Kubo A., Murata Y., Seo M., Saji H., Kinoshita T., Ohme-Takagi M. (2016) – GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement – PNAS 2016 ; published ahead of print March 28, 2016 – http://www.pnas.org/content/early/2016/03/23/1513093113.full – (On our blog : https://plantstomata.wordpress.com/2016/04/07/modulating-glk12-activity-may-provide-an-effective-tool-to-control-stomatal-movements/)

Nagpal A., Hassan A., Ndamukong I., Avramova Z., Baluška F. (2017) – Myotubularins, PtdIns5P, and ROS in ABA-mediated stomatal movements in dehydrated Arabidopsis seedlings – Functional Plant Biologyhttps://doi.org/10.1071/FP17116 – http://www.publish.csiro.au/fp/FP17116 – (On our blog : https://plantstomata.wordpress.com/2017/06/29/myotubularins-ptdins5p-and-ros-in-aba-mediated-stomatal-movements/)

Naidoo G. (1983) – Effects of flooding on leaf water potential and stomatal resistance in Bruguiera gymnorrhiza (L.) Lam. – New Phytologist 93: 369-376 – doi:10.1111/j.1469-8137.1983.tb03437.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1983.tb03437.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/30/effects-of-flooding-on-stomatal-resistance-of-bruguiera-mangrove/)

Naidoo G., Von Willert D. J. (1994) – Stomatal oscillations in the mangrove Avicennia germinans. – Functional Ecology 8(5): 651–657. – CrossRef – https://www.jstor.org/stable/2389928?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/01/18/stomatal-oscillations-in-a-mangrove/)

Nakajima N., Saji H., Aono M., Kondo N. (1995) – Isolation of cDNA for a plasma membrane H+-ATPase from guard cells of Vicia faba L. – Plant Cell Physiol. 36: 919-924 – https://doi.org/10.1093/oxfordjournals.pcp.a078839 – (On our blog : https://plantstomata.wordpress.com/2017/08/29/cdna-for-a-plasma-membrane-h-atpase-from-stomata/)

Nakamura R. L., McKendree W. L., Hirsch R. E., Sedbrook J. C., Gaber R. F., Sussman M. R. (1995) – Expression of an Arabidopsis potassium channel gene in guard cells. – Plant Physiology 109, 371–374. – doi: http://dx.doi.org/10.1104/pp.109.2.371 – Abstract – http://www.plantphysiol.org/content/109/2/371.abstract?ijkey=689d58408d6b9a54709eb09fb192130693cc858f&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/01/25/a-potassium-channel-gene-in-stomata/

Nandy (Datta) P., Das S., Ghose M. (2005) – Relation of leaf micromorphology with photosynthesis and water efflux in some Indian mangroves – Acta Bot. Croat. 64 (2), 331–340, 2005.- http://agris.fao.org/agris-search/search.do?recordID=AV2012098659 – (On our blog : https://plantstomata.wordpress.com/2016/08/14/stomata-in-mangroves/)

Napp-Zinn K. (1951) – Zur Gewebedifferenzierung des Grindelia-Blattes, insbesondere seiner Epidermis – Z. Naturforschg 6b: 430-437 – (On our blog : https://plantstomata.wordpress.com/2017/04/14/stomata-in-grindelia-asteraceae/)

Nardini A., Salleo S. (2000) – Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? – Trees 15, 14–24 (2000).-doi:10.1007/s004680000071 – CrossRef – http://link.springer.com/article/10.1007%2Fs004680000071 – (On our blog : https://plantstomata.wordpress.com/2017/01/25/stomata-and-sensing-or-preventing-xylem-cavitation/)

Nascimento Vieira L., Freitas Fraga H. P., Goulart dos Anjos K., Corrêa Puttkammer C., Scherer R. F., Almeida da Silva D., Guerra M. P. (2015) – Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets – Theoretical and Experimental Plant Physiology 27(2): 91-98 – DOI10.1007/s40626-015-0035-5 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S40626-015-0035-5– (On  our blog : https://plantstomata.wordpress.com/2017/10/11/increased-formation-of-stomata-with-led-lighting-treatments-compared-to-fluorescent-lamps/)

Naulin P. I., Valenzuela G., Estay S. A. (2016) – Size matters: point pattern analysis biases the estimation of spatial properties of stomata distribution – New Phytologist, Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14305 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14305/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/08/point-pattern-analysis-and-size-point-and-disc-null-models-for-stomata-distribution/)

Nautiyal S., Purohit A. N. (1980) – High altitude acclimatization in plants: stomatal frequency and anatomical changes in leaves of Artemisia species – Biologia Plantarum (Praha) 22: 282-286 – https://link.springer.com/article/10.1007/BF02892773 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-number-pore-width-and-stomatal-frequency-in-relation-to-high-altitude/)

Naz N., Hameed M., Ashraf M., Al-Qurainy F., Arshad M. (2010). – Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity. Photosynthetica 48, 446–456. doi: 10.1007/s11099-010-0059-7 – CrossRef Full Text | Google Scholar – http://agris.fao.org/agris-search/search.do?recordID=US201301899532 – (On our blog : https://plantstomata.wordpress.com/2016/08/12/stomata-in-desert-grasses-under-high-salinity/)

Negi J.Hashimoto-Sugimoto M.Kusumi K.Iba K. (2014) – New approaches to the biology of stomatal guard cells. – Plant Cell Physiol. 55, 241–250. doi: 10.1093/pcp/pct145 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/03/16/the-biology-of-stomatal-guard-cells/)

Negi J.Matsuda O.Nagasawa T.Oba Y.Takahashi H.Kawai-Yamada M.Uchimiya H.Hashimoto M.Iba K. – (2008) – CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483–486. doi: 10.1038/nature06720 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – CrossRefMedlineWeb of Science – http://www.nature.com/nature/journal/v452/n7186/full/nature06720.html – (On our blog : https://plantstomata.wordpress.com/2017/01/25/co2-regulator-slac1-and-its-homologues-in-stomata/)

Negi J., Moriwaki K., Konishi M., Yokoyama R., Nakano T., Kusumi K.,  Hashimoto-Sugimoto M., Schroeder J. I., Nishitani K., Yanagisawa S., Iba K. (2013) – A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis. – Curr. Biol. 23(6): 479–484 – DOI10.1016/j.cub.2013.02.001 – CrossRefMedline – https://www.infona.pl/resource/bwmeta1.element.elsevier-46fc64c5-823c-3754-84ca-75ab7ac731b5 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/scap1-is-essential-for-the-development-of-functional-stomata/)

Neill S. J., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. (2008) – Nitric oxide, stomatal closure, and abiotic stress. – Journal of Experimental Botany 59, 165–176. -doi: 10.1093/jxb/erm293 – CrossRef | CAS |  – Abstract/FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/14/aba-no-and-stomatal-closure/)

Neill S. J., Desikan R., Clarke A., Hancock J. T. (2002) –  Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. – Plant Physiology 128, 13-16. – doi: http://dx.doi.org/10.1104/pp.010707 – CrossRef | CAS | PubMed | FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/128/1/13 – (On our blog : https://plantstomata.wordpress.com/2017/01/26/aba-signaling-in-stomata-and-nitric-oxide/)

Neilson R. E., Jarvis P. G. (1975) – Photosynthesis in Sitka spruce (Picea sitchensis – Bong. – Carr.) VI. Response of stomata to temperature – J. Appl. Ecol. 12: 879-891 – DOI: 10.2307/2402096 – https://www.jstor.org/stable/2402096?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-conductance-and-temperature/)

Neilson R. E., Ludlow M. M., Jarvis P. G. (1975) – Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). II. Response  to temperature – J. Appl. Ecol. 9: 721-745 – DOI: 10.2307/2401900 – https://www.jstor.org/stable/2401900?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/29/photosynthesis-and-stomatal-resistance-responses-to-temperature/)

Nejad A. R., van Meeteren U. (2005) – Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity – Physiologia Plantarum 125(3): 324 – 332 – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2005.00567.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/04/high-relative-air-humidity-rh-and-stomatal-behaviour/)

Nelson S. D., Mayo J. M. (1975) – The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum sp. – Can. J. Bot. 53: 1-7 – https://doi.org/10.1139/b75-001 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-001 – (On our blog : https://plantstomata.wordpress.com/2017/09/05/guard-cell-chlorophyll-is-not-necessary-for-stomatal-functioning/)

Nelson S. D., Mayo J. M. (1977) – Low K+ in Paphiopedilum leeanum leaf epidermis: implications for stomatal functioning – Can. J. Bot. 55: 489-495. – (On our blog : https://plantstomata.wordpress.com/2017/04/14/low-k-and-stomatal-functioning/)

Neubauer H. F., Apandi A. (1958) – Über Unregelmassigkeiten in de Entwicklung und über Missbildungen des Spaltöffnungsapparates – Protoplasma 50: 290-296 – (Article not found)

Ng C. K. Y., Carr K., McAinsh M. R., Powell B., Hetherington A. M. (2001). – Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. – Nature 410, 596–599. – doi: 10.1038/35069092 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.nature.com/nature/journal/v410/n6828/full/410596a0.html – (On our blog : https://plantstomata.wordpress.com/2017/01/26/sphingosine-1-phosphate-and-stomata/)

Ng C.K.-Y., McAinsh M.R., Gray J.E., Hunt L., Leckie C.P., Mills L., Hetherington A.M.(2001) –  Calcium-based signalling systems in guard cells. – New Phytol. 151: 109- 120, 2001.- DOI: 10.1046/j.1469-8137.2001.00152.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00152.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/07/calcium-based-signalling-pathways-have-been-identified-in-stomata/)

Ni D. A. (2012) – Role of vacuolar invertase in regulating Arabidopsis stomatal opening. – Acta Physiol. Plant. 34, 2449–2452. doi: 10.1007/s11738-012-1036-5 – CrossRef Full Text | Google Scholar

Nicolic M. (1925) – Beiträge zur Physiologie der Spaltöffnungsbewegung II. Über die Beziehung der Stomatärbewegung zur Lichtintensität – Beih. Bot. Centralbl. 41 (i): – (Article not found)

Niglas  A., Alber M., Suur K., Jasińska A. K., Kupper P., Sellin A. (2015) – Does increased air humidity affect stomatal morphology and functioning in hybrid aspen? – Botany, 10.1139/cjb-2015-0004. – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2015-0004?af=R#.VQ1fjJPF-6E  – (On our blog : https://plantstomata.wordpress.com/2016/04/09/the-effect-of-air-humidity-on-stomatal-morphology-and-functioning/)

Nijs I., Ferris R., Blum H., Hendrey G., Impens I. (1997) –  Stomatal regulation in a changing climate: a field study using Free Air Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE). Plant, Cell & Environment, 20: 1041–1050. doi:10.1111/j.1365-3040.1997.tb00680.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1997.tb00680.x/full – (On our blog : https://plantstomata.wordpress.com/2016/09/06/climate-warming-elevated-co2-concentration-and-stomatal-functioning/)

Nilson S. E., Assmann S. M. (2007) – The control of transpiration: insight from Arabidopsis. – Plant Physiology, 143: 19-27 – DOI: https://doi.org/10.1104/pp.106.093161 – http://www.plantphysiol.org/content/143/1/19 – (On our blog : https://plantstomata.wordpress.com/2017/09/05/understanding-of-the-regulation-of-transpiration-and-drought-tolerance-by-stomata/)

Nishida K. (1963) – Studies on stomatal movement of Crassulacean plants in relation to acid metabolism – Physiologia Pl. 16: 281-298 – DOI: 10.1111/j.1399-3054.1963.tb08309.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1963.tb08309.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/06/stomatal-movement-of-crassulacean-plants/)

Nogueira R. J. M. C., Silva E. C. (2002) Comportamento estomático em plantas jovens de Schinopsis brasiliensis Engl. cultivadas sob estresse hídrico. – Iheringia Ser. Bot. 57:31-38. – (Article not found)

Nolan R. H.Tarin T.Santini N. S.McAdam S. A. M.Ruman R.Eamus D. (2017) – Differences in osmotic adjustment, foliar ABA dynamics and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. – Plant Cell Environ.- unedited articles published online and citable. – https://doi.org/10.1111/pce.13077 – http://onlinelibrary.wiley.com/doi/10.1111/pce.13077/abstract– (On our blog : https://plantstomata.wordpress.com/2017/10/06/differences-in-stomatal-regulation-between-an-isohydric-and-anisohydric-woody-angiosperm-during-drought/)

Nonami H., Schulze E.‐D., Ziegler H. (1990) – Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential. – Planta 183, 57–64. – doi: 10.1007/BF00197567. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/24193533 – (On our blog : https://plantstomata.wordpress.com/2017/01/26/stomatal-movement-in-response-to-air-humidity/)

Noormets A., Sober A., Pell E. J., Dickson R. E., Podila G. K., Sôber J., et al. (2001) – Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. – Plant Cell Environ. 24, 327–336. doi: 10.1046/j.1365-3040.2001.00678.x – CrossRef Full Text | Google Scholar

Novick K. A., Miniat C. F., Vose J. M. (2015) – Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion tension theory – Plant, Cell & Environment:doi: 10.1111/pce.12657. Epub 2016 Jan 8. – http://www.ncbi.nlm.nih.gov/pubmed/26466749 – (On our blog : https://plantstomata.wordpress.com/2016/08/15/a-model-linking-stomatal-optimization-and-cohesion-tension-theory/)

Nunes-Nesi A., Carrari F., Gibon Y., Sulpice R., Lytovchenko A., Fisahn Graham J., et al. (2007) – Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. – Plant J. 50, 1093–1106. doi: 10.1111/j.1365-313X.2007.03115.x – PubMed Abstract | CrossRef Full Text | Google Scholar

Nutman F. J. (1937) – Studies of the physiology of Coffea arabica. II. Stomatal movement in relation to photosynthesis under natural conditions – Ann. Bot. n.S. 14: 682-693. – (Article not found)

Obiremi E. O., Oladele F. A. (2001) – Water-conserving stomatal systems in selected Citrus species. – S. Afri. J. Bot. 67: 258-260. – https://doi.org/10.1016/S0254-6299(15)31127-3 – http://www.sciencedirect.com/science/article/pii/S0254629915311273 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/citrus-species-have-a-water-conserving-stomatal-system-rutaceae/)

Obulareddy N., Panchal S., Melotto M. (2013) – Guard cell purification and RNA isolation suitable for high throughput transcriptional analysis of cell-type responses to biotic stresses. Mol. Plant Microbe Interact. 26, 844–849. doi: 10.1094/MPMI-03-13-0081-TA – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/15/a-brief-procedure-to-obtain-highly-pure-guard-cell-preparations/)

O’Carrigan A., Babla M., Wang F., Liu X., Mak M., Thomas R., Bellotti B.,  Chen Z.-H. (2014) Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments – Plant Physiology and Biochemistry, 2014, 82, 105-115 – doi:10.1016/j.plaphy.2014.05.012 – http://www.sciencedirect.com/science/article/pii/S0981942814001776 – (On our blog : https://plantstomata.wordpress.com/2016/08/14/gas-exchange-stomatal-behaviour-micronutrients-and-monochromatic-light-treatments/)

O’Carrigan A., Hinde E., Lu N., Xu X.-Q., Duan H., Huang G., Mak M., Belotti B., Chen Z.-H.(2014). – Effects of light irradiance on stomatal regulation and growth of tomato. – Environ. Exp. Bot. 98, 65–73. doi: 10.1016/j.envexpbot.2013.10.007 – CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0098847213001512 – (On our blog : https://plantstomata.wordpress.com/2017/01/26/stomata-as-physiological-markers-for-assessment-of-performance-of-plants/)

Ogaya R., Llorens L., Peñuelas J. (2011) – Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime. – Acta Oecol 37: 381–385 – https://doi.org/10.1016/j.actao.2011.04.010 – http://www.sciencedirect.com/science/article/pii/S1146609X11000725 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/density-and-length-of-stomata-in-living-fossil-trees/)

Ogawa T. (1981) – Blue-light response of stomata with starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cells under background illumination with red light – Plant Sci. Lett. 22: 103-108 – https://doi.org/10.1016/0304-4211(81)90131-0 – http://www.sciencedirect.com/science/article/pii/0304421181901310 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/blue-light-effect-is-not-brought-about-via-starch-hydrolysis-in-stomata/)

Ogawa T., Ishikawa H., Shimada K., Shibata K. (1978) – Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. – Planta 142: 61-65 -doi: 10.1007/BF00385121 – https://link.springer.com/article/10.1007/BF00385121 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/synergistic-action-of-red-and-blue-light-and-action-spectra-for-malate-formation-in-stomata/)

Ohashi-Ito K., Bergmann D. C. (2006)Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. – Plant Cell 18:2493–2505.doi: 10.1105/tpc.106.046136 – PMID: 17088607 – Abstract/FREE Full Text Google Scholar – PubMed CentralView ArticlePubMed – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/15/fama-and-stomatal-development/)

Ohki S., Takeuchi M., Mori M. (2011) – The NMR structure of stomagen reveals the basis of stomatal density regulation by plant peptide hormones – Nature Communications2,Article number:512doi:10.1038/ncomms1520 – http://www.nature.com/ncomms/journal/v2/n10/full/ncomms1520.html – (On our blog : https://plantstomata.wordpress.com/2015/10/24/stomagen-and-stomatal-density-2/).

Okada M., Ito S., Matsubara A., Iwakura I., Egoshi S., Ueda, M. (2009) – Total syntheses of coronatines by exo-selective Diels-Alder reaction and their biological activities on stomatal opening. – Org. & Biomol. Chem. 7: 3065–3073 – DOI: 10.1039/b905159g – http://pubs.rsc.org/en/content/articlelanding/2009/ob/b905159g/unauth#!divAbstract – (On our blog : https://plantstomata.wordpress.com/2017/09/06/stereoisomers-of-coronatine-and-their-biological-activities-on-stomatal-opening/)

Okamoto M., Peterson F. C., Defries A., Park S. Y., Endo A., Nambara E., Volkman B. F.,Cutler S. (2013) – Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance – Proc. Nat. Acad. Sci. 110 (29): 12132–12137· July 2013 – DOI: 10.1073/pnas.1305919110 – CrossRef PubMed PubMedCentral Google Scholar – https://www.researchgate.net/publication/244482691_Activation_of_dimeric_ABA_receptors_elicits_guard_cell_closure_ABA-regulated_gene_expression_and_drought_tolerance – (On our blog : https://plantstomata.wordpress.com/2016/08/19/dimeric-aba-receptors-aba-regulated-gene-expression-stomata-closure-and-drought-tolerance/)

Okamoto M., Tanaka Y., Abrams S. R., Kamiya Y., Seki M., Nambara E. (2009) – High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. – Plant Physiol. 149(2): 825-834 -doi: http://dx.doi.org/10.1104/pp.108.130823 –  (CrossRef,Medline). – Abstract/FREE Full Text – http://dx.doi.org/10.1104/pp.108.130823 – (On our blog : https://plantstomata.wordpress.com/2016/10/31/high-humidity-induces-aba-8%E2%80%B2-hydroxylase-in-stomata/)

Okuma E., Jahan M.S., Munemasa S., Hossain M.A., Muroyama D., Islam M.M., Ogawa K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Mori I.C., Murata Y. (2011). – Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. – J. Plant Physiol. 168: 2048–2055. – doi: 10.1016/j.jplph.2011.06.002 – PubMed Abstract |Pubmed Full Text , CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0176161711002768 – (On our blog : https://plantstomata.wordpress.com/2016/10/31/aba-induced-stomatal-closure-by-glutathione/)

Olsen R. L., Pratt R. B., Gump P., Kemper A., Tallman G. (2002) – Red light activates a chloroplast-dependent  ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. – New Phytol. 153: 497-508 – DOI: 10.1046/j.0028-646X.2001.00337.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00337.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/06/red-light-activates-a-chloroplast-dependent-ion-uptake-mechanism-for-stomatal-opening/)

Olsson T., Leverenz J. W. (1994) – Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve – Plant, Cell & Environment 17(6): 701-710 – DOI: 10.1111/j.1365-3040.1994.tb00162.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00162.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/non-uniform-stomatal-closure/)

Omasa K., Hashimoto Y., Kramer P. J., Strain B. R., Aiga I., Kondo J. (1985) – Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO2. – Plant Physiology 84: 748–752. – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1074843/ – (On our blog : https://plantstomata.wordpress.com/2016/10/31/continuous-observation-of-individual-stomata-under-the-microscope/)

Omasa K., Onoe M. (1984) – Measurement of stomatal aperture by digital image processing. – Plant and Cell Physiology 25: 1379–1388. – DOI:https://doi.org/10.1093/oxfordjournals.pcp.a076848 – Abstract/FREE Full Text – https://academic.oup.com/pcp/article-abstract/25/8/1379/1811066/Measurement-of-Stomatal-Aperture-by-Digital-Image?ijkey=cda0d53df21790a0c1f7259b1d57ade20030bf32&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/01/29/digital-image-processing-for-measurement-of-stomatal-aperture/)

Onwueme I. C., Johnston M. (2000) – Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro. – Experimental Agriculture, vol. 36, p. 509-516. – DOI: https://doi.org/10.1017/S0014479700001071 – https://www.cambridge.org/core/journals/experimental-agriculture/article/influence-of-shade-on-stomatal-density-leaf-size-and-other-leaf-characteristics-in-the-major-tropical-root-crops-tannia-sweet-potato-yam-cassava-and-taro/64ABAA0DDD9E69191D1EC2AD23977F0E – (On our blog : https://plantstomata.wordpress.com/2017/01/29/stomatal-density-in-tropical-root-crops/)

Ooba M., Takahashi H. (2003) – Effect of asymmetric stomatal response on gas-exchange dynamics. – Ecological Modelling 164, 6582.  – http://dx.doi.org/10.1016/S0304-3800(03)00012-7 – http://www.sciencedirect.com/science/article/pii/S0304380003000127 – (On our blog : https://plantstomata.wordpress.com/2017/01/29/asymmetric-stomatal-response-on-gas-exchange-dynamics/)

Opio A., Jones M. B., Kansiime F., Otiti T. (2015) – Influence of climate variables on Cyperus papyrus stomatal conductance in Lubigi wetland, Kampala, Uganda – African Journal of Aquatic Science: http://dx.doi.org/10.2989/16085914.2015.1037712 – http://www.tandfonline.com/doi/abs/10.2989/16085914.2015.1037712 – (On our blog : https://plantstomata.wordpress.com/2016/08/15/climate-variables-and-stomatal-conductance/)

Oppenheim J. D. (1927) – Researches on the changes in the opening of the  stomata which occur in different species of citrus. – Agr.Rec.Inst.Agr.and Nat.Hist. 1: 9-40. (Article not found)

Orairod D. J., Renney A. J. (1968) – A survey of weed leaf stomata and trichomes – Canad. J. Bot. 48: 197-209 – (On our blog : https://plantstomata.wordpress.com/2017/08/10/stomata-of-weeds-and-retention-or-penetration-of-sprays/)

Oren R., Sperry J. S., Ewers B. E., Pataki D. E., Phillips N., Megonigal J. P. (2001) – Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects. – Oecologia 126, 2129. – doi:10.1007/s004420000497 – CrossRef – http://link.springer.com/article/10.1007%2Fs004420000497 – (On our blog : https://plantstomata.wordpress.com/2017/01/31/canopy-stomatal-conductance-and-vapor-pressure-deficit/)

Oren R., Sperry J. S., Katul G. G., Pataki D. E., Ewers B. E., Phillips N., Schäfer K. V. R. (1999) – Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. – Plant Cell Environ. 22(12): 1515-1526  –DOI: 10.1046/j.1365-3040.1999.00513.x – (CrossRef, ISI) , Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1999.00513.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/31/stomatal-sensitivity-to-vapour-pressure-deficit/)

Osonubi O., Davies W. J. (1980) – The influence of water stress on the photosynthetic performance and stomatal behaviour of tree seedlings subjected to variation in temperature and irradiance. – Oecologia (Berl.) 45, 3–10 – doi:10.1007/BF00346699 – Google Scholar – http://link.springer.com/article/10.1007/BF00346699 – (On lour blog : https://plantstomata.wordpress.com/2017/02/02/influence-of-water-stress-on-stomatal-behaviour-of-tree-seedlings/)

Osonubi O., Davies W. J. (1980) – The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity. – Oecologia (Berlin) 46: 1–6. – DOI: 10.1007/BF00346957 – http://link.springer.com/article/10.1007/BF00346957 – (On our blog : https://plantstomata.wordpress.com/2017/01/31/plant-water-stress-and-stomatal-control-of-gas-exchange/)

Osunkoya O. O., Boyne R.Scharaschkin T. (2014) – Coordination and plasticity in leaf anatomical traits of invasive and native vine species – American Journal of Botany, 101(9), pp. 1423-1436. – DOI: 10.3732/ajb.1400125 – http://eprints.qut.edu.au/78294/ – (On our blog : https://plantstomata.wordpress.com/2016/08/15/stomata-and-other-leaf-anatomical-traits-of-invasive-and-native-vine-species/)

Ou X., Gan Y., Chen P., Qiu M., Jiang K., Wang G. (2014). – Stomata prioritize their responses to multiple biotic and abiotic signal inputs. PLoS ONE 9:e101587. – doi: 10.1371/journal.pone.0101587 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/15/colonization-of-bacteria-on-the-leaf-surface-is-correlated-with-stomatal-aperture-regulation/)

Outlaw W. H. Jr. (1983) – Current concepts on the role of potassium in stomatal movement. – Physiol. Plant. 59: 302–311 – DOI: 10.1111/j.1399-3054.1983.tb00775.x  – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1983.tb00775.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/06/the-role-of-potassium-in-stomatal-movement/)

Outlaw W. H. Jr. (1987) – A Minireview: Comparative biochemistry of photosynthesis in palisade cells, spongy cells and guard cells of C3 leaves. – In J Biggins, ed, Progress in Photosynthesis Research, Vol 4. Martinus Nijhoff, Dordrecht, pp 265-272

Outlaw W. H. Jr. (1989) – Critical examination of the quantitative evidence for and against photosynthetic CO2 fixation by guard cells. – Physiol. Plant. 77: 275–281. – doi: 10.1111/j.1399-3054.1989.tb04981.x – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1989.tb04981.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/02/the-evidence-for-and-against-photosynthetic-co2-fixation-by-stomata/)

Outlaw W. H. Jr. (1996) – Stomata: biophysical and biochemical aspects. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 241–259 – Google Scholar

Outlaw W. H. Jr., Lowry O. H. (1977) – Organic-acid and potassium accumulation in guard cells during stomatal opening. – Proceedings of the National Academy of Sciences, USA 74: 44344438 -PMID: 16592449 PMCID: PMC431957 – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=16592449 – (On our blog : https://plantstomata.wordpress.com/2017/08/19/malic-and-citric-acids-provide-much-of-the-counter-ion-for-the-k-taken-up-during-stomatal-opening/)

Outlaw W. H. Jr., Manchester J. (1979) – Guard cell starch concentration quantitatively related to the stomatal aperture. – Plant Physiol. 64: 79-82 – PMID: 16660919 PMCID: PMC543028 – https://www.ncbi.nlm.nih.gov/pubmed/16660919 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/guard-cell-starch-concentration-and-stomatal-aperture/)

Outlaw W. H. Jr., Manchester J., DiCamelli C. A., Randall D. D., Rapp B., Veith G. M. (1979) –  Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells – Proc. Nat. Acad. Sci. USA 76: 6371-6375 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC411866/ – (On our blog : https://plantstomata.wordpress.com/2017/09/06/photosynthetic-carbon-reduction-pathway-is-absent-in-chloroplasts-of-stomata/)

Outlaw W. H., Mayne B. C., Zenger V. E., Manchester J. (1981) – Presence of both photosystems in guard cells of Vicia faba L. – Plant Physiol. 67, 12–16. doi: 10.1104/pp.67.1.12 – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=16661609 – (On our blog : https://plantstomata.wordpress.com/2017/08/17/presence-of-both-photosystems-in-stomata/)

Outlaw W. M. Jr. (2003) – Integration of cellular and physiological functions of guard cells. – Crit. Rev. Plant Sci. 22:503–529. – http://dx.doi.org/10.1080/713608316 – CrossRef-Google Scholar – http://www.tandfonline.com/doi/abs/10.1080/713608316 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomata-and-an-overview-of-cellular-mechanisms-that-are-involved-in-turgor-regulation/)

Outlaw W. H. Jr., De Vlieghere-He X. (2001). – Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean. – Plant Physiol. 126, 1716–1724. doi: 10.1104/pp.126.4.1716 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/16/stomatal-aperture-size-and-a-high-transpiration-rate/– 

Outlaw W. H. Jr., Zhang S., Hite D. R. C., Thistle A. B. (xxxx) – Stomata: Biophysical and Biochemical Aspects – Advances in Photosynthesis and Respiration, Photosynthesis and the Environment: 241-259 – DOI10.1007/0-306-48135-9_9 – https://www.infona.pl/resource/bwmeta1.element.springer-f1a4d79c-7533-31eb-b5c8-68ff29185865 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/biophysical-and-biochemical-aspects-of-stomata/)

Oyeleke M. O., AbdulRahaman A. A., Oladele F. A. (2004) – Stomatal anatomy and transpiration rate in some afforestation tree species. – Nigerian Society for Experimental Biology Journal, 4(2): 83-90. – (Article not found)

Özygit, I. I., Akinci Ş, (2009) – Effects of some Stress Factors (Aluminum, Cadmium and Drought) on Stomata of Roman Nettle (Urtica pilulifera L.) – Not. Bot. Hort. Agrobot. Cluj 37 (1): 108-115 – DOI: http://dx.doi.org/10.15835/nbha3713191 – https://www.google.be/search?q=Urtica+pilulifera&newwindow=1&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjosYj75rXWAhXBI1AKHd_OBgYQ_AUICigB&biw=1038&bih=1081#imgrc=Rh7dHJnHbrhtfM: – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stress-factors-al-cd-and-drought-effect-on-stomata/)

Pääkkönen E., Vahala J., Pohjolai M., Holopainen T., Kärenlampi L. (1998) – Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress – Plant, Cell and Environment (1998) 21, 671–684 – DOI: 10.1046/j.1365-3040.1998.00303.x – CrossRef | http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1998.00303.x/abstract;jsessionid=A00ED99FF1F0AFD38195D36344AA60F9.f04t04 – (On our blog : https://plantstomata.wordpress.com/2015/09/29/stomata-and-response-to-drought-and-ozone-stress/).

Padoan D., Mossad A., Chiancone B., Germana M. A., Valli Khan P. S. S. (2013) – Ploidy levels in Citrus clementine affects leaf morphology, stomatal density and water content – Theor. Exp. Plant Physiol. vol.25 no.4,283-290. – http://dx.doi.org/10.1590/S2197-00252013000400006 –  Campo dos Goytacazes Oct./Dec. 2013. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2197-00252013000400006 – (On our blog ; https://plantstomata.wordpress.com/2015/02/16/ploidy-levels-and-stomatal-density/)

Paiva E. A., Lemos-Filho J. P., Oliveira D. M. (2006) –  Imbition of Swietenia macrophylla (Meliaceae) seeds: The role of stomata. – Ann. Bot. 98: 213-217. – doi:  10.1093/aob/mcl090 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803541/ – (On our blog : https://plantstomata.wordpress.com/2017/02/04/permanently-opened-stomata-in-the-seed-coat-play-a-significant-role-in-seed-imbibition/)

Palevitz B. A. (1981) – The structure and development of stomatal cells. In: Jarvis PG, Mansfield TA (eds) Stomatal physiology. – Cambridge University Press, Cambridge, pp 1–23 – Google Scholar – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA1&ots=rqOJ4MBvy1&sig=DHPfG0aeruknYBUYu4hCaz7nJ_k&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/09/06/structure-and-development-of-stomatal-cells/)

Palevitz B. A. (1983) – The stomatal complex as a model of cytoskeletal participation in cell differentiation. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 345–376 – (Article not found)

Palevitz B. A. (1986) – Division plane determination in guard mother cells of Allium: video time-lapse analysis of nuclear movements and phragmoplast rotation in the cortex. – Dev. Biol. 117: 644–654 – https://doi.org/10.1016/0012-1606(86)90333-7 – http://www.sciencedirect.com/science/article/pii/0012160686903337 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/division-planes-in-guard-cell-mother-cells-of-allium-stomata/)

Palevitz B. A., Hepler P. K. (1974) – The control of the plane of division during stomatal differentiation in Allium. I Spindle reorientation. – Chromosoma 46: 297–326 – Google Scholar – https://link.springer.com/article/10.1007/BF00284884 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/spindle-reorientation-during-stomatal-differentiation/)

Palevitz B. A., Hepler P. K. (1976) – Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: the role of microtubules and ion accumulation. – Planta 132, 71-93. – Google Scholar – https://link.springer.com/article/10.1007%2FBF00390333?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/09/06/the-role-of-microtubules-and-ion-accumulation-in-developing-stomata/)

Palevitz B. A., Hepler P. K. (1985) – Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow. – Planta 164: 473–479. – doi:10.1007/BF00395962 – CrossRef – http://link.springer.com/article/10.1007%2FBF00395962 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/dye-coupling-of-stomatal-cells/)

Palevitz B. A., Mullinax JB (1989) – Developmental changes in the arrangement of cortical microtubules in stomatal cells of oat (Avena sativa L.) – Cell Motil Cytoskeleton 13: 170–180 – (Article not found)

Palevitz B. A., O’Kane D. J. (1981) – Epifluorescence and video analysis of vacuole motility and development in stomatal cells of Allium. – Science 214: 443–445 – [PubMed] – http://www.jstor.org/stable/1687396?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/06/vacuole-motility-and-development-in-stomatal-cells/)

Palevitz B. A., O’Kane D. J., Korbes R. E., Raikhel N. V. (1981)The vacuole system in stomatal cells of Allium  Vacuole movements and changes in morphology in differentiating cells as revealed by epifluorescence, video and electron-microscopy. – Protoplasma 109: 2355.- Google Scholar – https://link.springer.com/article/10.1007%2FBF01287629?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/08/19/the-vacuole-in-differentiating-stomata-undergoes-two-major-changes-in-morphology/)

Paliwal N., Paliwal G. S., Barma B. (1974) – Effect of ethyl hydrogen 1-propyl phosphonate on the ontogeny and orientation of stomata of Vicia faba L. – Curr. Sci 43:(20): 662-664 – (On our blog : https://plantstomata.wordpress.com/2017/08/05/niagara-ethyl-hydrogen-1-propyl-phosphonate-and-the-ontogeny-and-orientation-of-stomata/)

Pallaghy C. K. (1970) – Effect of CA++ on ion specificity of stomatal opening in epidermal strips of Vicia faba – Z. Pflanzenphysiol. 62: 58-62 – (Article not found)

Pallaghy C. K. (1971) – Stomatal movement and potassium transport in epidermal strips of Zea mays: the effect of CO2. – Planta 101 287–295 – doi: 10.1007/BF00398115 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar.- https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=24488473&dopt=abstractplus – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomatal-movement-potassium-transport-and-co2/)

Pallaghy C. K. (1972) – Localization of thallium in stomata is independent of transpiration – Aust. J. biol. Sci. 25: 415-417 – (On our blog : https://plantstomata.wordpress.com/2017/08/10/thallium-in-stomata/)

Pallaghy C. K., Fischer R. A.( 1974) – Metabolic aspects of stomatal opening and ion accumulation by guard cells in Vicia faba. – Z. Pflanzenphysiol. 71:332–344

Pallardy S. G., Kozlowski T. T. (1979) – Stomatal response of Populus clones to light intensity and vapor pressure deficit – Plant Physiol. 64: 112-114 – (On our blog : plantstomata.wordpress.com/2017/08/08/stomatal-response-to-light-intensity-and-vapor-pressure-deficit/)

Pallardy S. G., Kozlowski T. T. (1979) – Frequency and length of stomata of 21 Populus clones. – Canadian Journal of Botany, vol. 57, p. 2519-2523 – https://doi.org/10.1139/b79-298 – http://www.nrcresearchpress.com/doi/abs/10.1139/b79-298 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/frequency-and-length-of-stomata-in-populus-clones/)

Pallardy S. G., Kozlowski T. T. (1979) – Relationships of leaf diffusion resistance of Populus clones to leaf water potential and environment – Oecologia (Berl.) 40: 371-380 – (On our blog : plantstomata.wordpress.com/2017/08/09/stomata-and-the-relationships-of-leaf-diffusion-resistance-to-leaf-water-potential-and-environment/)

Pallas J. E. Jr. (1964) – Guard cell starch retention and accumulation in the dark – Bot. Gaz. 125: 102-107 – https://www.jstor.org/stable/2473270?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/06/starch-retention-and-accumulation-in-the-dark-in-stomata/)

Pallas J. E. Jr. (1965) – Transpiration and stomatal opening with changes in carbon dioxide content of the air. – Science 147: 171-173 – DOI: 10.1126/science.147.3654.171 – https://www.ncbi.nlm.nih.gov/pubmed/17790695 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/co2-in-the-air-transpiration-and-stomatal-opening/)

Pallas J. E. Jr.  (1966) –  Mechanisms of guard cell action. – The Quarterly Review of Biology. 41(4): 365-383 – http://www.jstor.org/stable/2818333?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/06/mechanisms-of-guard-cell-action/)

Pallas J. E. Jr.  (1969) – Endogenous diurnal and nocturnal activity of guard cells as indicated by stomatal aperture and protoplasmic streaming – Physiol. Plant. 22: 546-559 – DOI: 10.1111/j.1399-3054.1969.tb07409.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1969.tb07409.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/07/endogenously-controlled-rhythm-in-stomatal-opening/)

Pallas J. E. Jr.  (1971) – Induced guard cell activity of Vicia faba and apparent changes in neutral red uptake – Bull. Georg. Acad. Science. 29: 209- 228 (Article not found)

Pallas J. E. Jr., Dilley R. A. (1972). – Photophosphorylation can provide sufficient adenosine 5′-triphosphate to drive K+ movements during stomatal opening – Plant Physiol. 49: 649-650 – PMCID: PMC366022 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366022/ – http://www.plantphysiol.org/content/plantphysiol/49/4/649.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/07/photophosphorylation-and-stomatal-opening/)

Pallas J. E. Jr., Kays S. J. (1982) – Inhibition of photosynthesis by ethylene-a stomatal effect. – Plant Physiol. 70, 598–601. – doi: 10.1104/pp.70.2.598 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS – http://www.plantphysiol.org/content/70/2/598 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/ethylene-influenced-the-conductance-of-abaxial-stomata/)

Pallas J. E. Jr., Mollenhauer H. H. (1972) – Physiological implications of Vicia faba and Nicotiana tabacum guard cell ultrastructure – Am. J. Bot. 59: 504-514. – Google Scholar – http://www.jstor.org/stable/2441533?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/07/physiological-implications-of-guard-cell-ultrastructure-in-stomata/)

Pallas J. E. Jr., Mollenhauer H. H. (1972) – Electron microscopic evidence for plasmodesmata in dicotyledonous guard cells. – Sci. 175, 1275–1276 -DOI: 10.1126/science.175.4027.1275 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/17794203 – (On our blog : https://plantstomata.wordpress.com/2017/08/19/plasmodesmata-and-the-mechanism-of-stomatal-movements/)

Pallas J. E. Jr., Wright B. G. (1973) – Organic acid changes in the epidermis of Vicia faba and their implication in stomatal movement – Plant Physiol. 51: 588-590 – PMC366310 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366310/ – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366310/pdf/plntphys00226-0166.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/07/organic-acid-production-in-the-epidermis-is-associated-with-stomatal-opening/)

Pandey R., Chacko P. M., Choudhary M. L., Prasad K. V., Pal M. (2007) – Higher than optimum temperature under CO2enrichment influences stomata anatomical characters in rose (Rosa hybrida). – Scientia Horticulturae 113, 74–81. –doi:10.1016/j.scienta.2007.01.021 -, | CrossRef | CAS | – (On our blog : https://plantstomata.wordpress.com/2016/09/10/stomatal-anatomy-temperature-and-co2/)

Pandey S., Wang X. Q., Coursol S. A., Assmann S. M. (2002) – Preparation and applications of Arabidopsis thaliana guard cell protoplasts. – New Phytologist 153, 517–526.-DOI: 10.1046/j.0028-646X.2001.00329.x – CrossRef | CAS | – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00329.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/how-to-elucidate-electrophysiological-biochemical-and-molecular-genetic-pathways-of-stomata-function/-)

Pandey S., Zhang W., Assmann S. M. (2007) – Roles of ion channels and transporters in guard cell signal transduction. – FEBS Lett. 581, 2325–2336. – doi: 10.1016/j.febslet.2007.04.008 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCASMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/08/18/ion-channels-and-transporters-in-stomata/)

Panteris E., Galatis B., Quader H., Apostolakis P. (2007) – Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum – Cell Motil Cytoskel 64: 531-548 –

Pantin F.Monnet F.Jannaud D.Costa J. M.Renaud J.Muller B.Simonneau T.Genty B. (2013) – The dual effect of abscisic acid on stomata. – New Phytologist 2013;197:6572. – DOI: 10.1111/nph.12013 – CrossRefMedlineWeb of ScienceGoogle Scholar) – [PubMed] – (On our blog :  https://plantstomata.wordpress.com/2016/08/17/dual-effect-of-aba-on-stomata/)

Pantin F., Renaud J., Barbier F., Vavasseur A., Le Thiec D., Rose C., Bariac T., Casson S., McLachlan D.H., Hetherington A.M., et al. (2013). – Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate. – Curr. Biol. 23:1805–1811. –  DOI: http://dx.doi.org/10.1016/j.cub.2013.07.050 – http://www.cell.com/current-biology/abstract/S0960-9822(13)00911-1 – (On our blog : https://plantstomata.wordpress.com/2016/08/17/leaf-microclimate-and-stomatal-sensitivity-to-aba/)

Paoleti E., Gellini R. (1993) – Stomatal density variations in beech and holm oak leaves collected over the last 200 years. – Acta Oecologica, 14: 73-178 – http://www.ltsermontado.pt/?q=node/4059 – (On our blog : https://plantstomata.wordpress.com/2017/09/07/stomatal-density-reduced-over-the-last-200-years/)

Pappas T., McManus P., Vanderveer P., Croxdale J. (1988) – Characterization of stomatal development in Dianthus chinensis. – Canadian Journal of Botany 66: 142–149 – https://www.researchgate.net/publication/237163388_Characterization_of_stomatal_development_in_Dianthus_chinensis – (On our blog : https://plantstomata.wordpress.com/2017/09/07/characterization-of-stomatal-development/)

Park K. Y., Jung J. Y., Park J., Hwang J. U., Kim Y. W., Hwang I. (2003). – A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. – Plant Physiol. 132, 92–98. – doi: 10.1104/pp.102.016964 – PubMed Abstract | CrossRef Full Text | Google Scholar [PMC free article] – (On our blog : https://plantstomata.wordpress.com/2016/08/18/a-role-for-pi3p-in-aba-induced-ros-generation-and-stomatal-closing/)

Park S. Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., Lumba S.,Santiago J., Rodrigues A., Chow T.-f., Alfred S. E.,  Bonetta D., Finkelstein R., Provart N. J., Desveaux D., Rodriguez P. L., McCourt P., Zhu J. K., Schroeder J. I., Volkman B. F., Cutler S. R. (2009) – Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.- Science 324, 1068–1071. – doi: 10.1126/science.1173041 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/19/pp2cs-pyrpyls-and-aba-in-stomata/)

Park S.-Y., Peterson F. C., Mosquna A., Yao J., Volkman B. F., Cutler S. R. (2015) – Agrochemical control of plant water use using engineered abscisic acid receptors –Nature 520,545–548 – doi:10.1038/nature14123 – http://www.nature.com/nature/journal/v520/n7548/full/nature14123.html – (On our blog : https://plantstomata.wordpress.com/2016/08/19/aba-receptors-and-stomata/)

Parkhurst D. F. (1978) – The adaptive significance of stomatal occurrence on one or both surfaces of leaves. – J. Ecology, 66: 367-383 – DOI: 10.2307/2259142 – https://www.jstor.org/stable/2259142?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/07/the-adaptive-significance-of-hypostomatous-and-amphistomatous-leaves/)

Parlange J.‐Y., Waggoner P. E. (1970) – Stomatal dimensions and resistance to diffusion. – Plant Physiology 46,337–342.  – CrossRefPubMedCAS[PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC396590/ – (On our blog : https://plantstomata.wordpress.com/2017/08/19/stomatal-dimensions-and-resistance-to-diffusion/)

Parvathi K., Raghavendra A. S. (1995) – Bioenergetic processes in guard cells related to stomatal function – Physiol. Plant. 93: 146-154 – DOI: 10.1034/j.1399-3054.1995.930121.x – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1995.930121.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/08/the-possible-mechanism-of-perception-and-transduction-of-external-signals-by-stomata/)

Patel J. D., Raju E. C., Fotedar R. L., Kothari H., Shah J. J. (1975) – Structure and histochemistry of stomata and epidermal cells in five species of Polypodiaceae – Ann. Bot. 38: 611-619 –

Paterson N. W., Weyers J. D. B., A’Brook R. (1988) – The effect of pH on stomatal sensitivity to abscisic acid. – Plant Cell Environ. 11, 83-89. – DOI: 10.1111/1365-3040.ep11604886 – Google Scholar– http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11604886/full – (On our blog : https://plantstomata.wordpress.com/2017/02/07/ph-and-stomatal-sensitivity-to-abscisic-acid/)

Patonnier M. P., Peltier J. P., Marigo G. (1999) Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. – Journal of Experimental Botany 50: 12231229. – https://doi.org/10.1093/jxb/50.336.1223  https://www.jstor.org/stable/23696282?seq=1#page_scan_tab_contentshttps://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/50.336.1223 –  (On our blog : https://plantstomata.wordpress.com/2017/09/07/the-hypothesis-that-malate-is-involved-in-the-stomatal-closure-under-drying-conditions/)

Pautov A., Bauer S., Ivanova O., Krylova E., Sapach Y., Gussarova G. (2017) – Role of the outer stomatal ledges in the mechanics of guard cell movements – Trees 31(1): 125-135 – DOI10.1007/s00468-016-1462-x – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00468-016-1462-X – (On our blog : https://plantstomata.wordpress.com/2017/10/17/role-of-the-outer-stomatal-ledges-in-the-mechanics-of-stomatal-movements/)

Pazourek J. (1970) – The effect of light intensity on stomatal frequency in leaves of Iris hollandica Hort. var. Wedgwood – Biol. Plant. (Prague) 12: 208-215 – DOI: 10.1007/BF02920869 – https://link.springer.com/article/10.1007/BF02920869 – (On our blog : https://plantstomata.wordpress.com/2017/09/08/the-effect-of-light-intensity-on-stomatal-frequency/)

Payne W. W. (1979) – Stomatal patterns in Embryophytes: Their evolution, ontogeny and interpretation – Taxon 28(1, 2/3): 117-132 – https://www.jstor.org/stable/1219566?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/25/stomatal-patterns-in-embryophytes-2/)

Peak D., Mott K. A. (2010) – A new, vapour-phase mechanism for stomatal responses to humidity and temperature – Plant, Cell and Environment 34: 162–178. – DOI: 10.1111/j.1365-3040.2010.02234.x – Wiley Online Library –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02234.x/full – (On our blog : https://plantstomata.wordpress.com/2016/08/30/a-new-mechanism-for-stomatal-responses-to-humidity-and-temperature/)

Peak D., Mott K. (2011) – Leafy Social Network: USU Scientists Study How Stomata Communicate – Utah State Today – University News (Nov.23, 2011) – http://www.usu.edu/ust/index.cfm?article=50552 – (On our blog : https://plantstomata.wordpress.com/2017/02/15/how-stomata-communicate-2/)

Pearce D. W., Millard S., Bray D. F., Rood S. B. (2006) –  Stomatal characteristics of riparian poplar species in a semi-arid environment. – Tree Physiology, 26: 211-218. – http://dx.doi.org/10.1093/treephys/26.2.211 –  CrossRefGoogle Scholar – https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/26.2.211 – (On our blog : https://plantstomata.wordpress.com/2017/02/07/stomatal-density-stomatal-conductance-and-climatic-conditions/)

Pearson C. J. (1973) – Daily changes in stomatal aperture and in carbohydrates and malate within epidermis and mesophyll of leaves of Commelina cyanea and Vicia faba. – Aust. J. Biol. Sci. 26, 1035–1044 – https://doi.org/10.1071/BI9731035 – Google Scholar – http://www.publish.csiro.au/BI/BI9731035 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/daily-changes-in-stomatal-aperture/)

Pearson C. J. (1975) – Fluxes of potassium and changes in malate within epidermis of Commelina cyanea and their relationships with stomatal aperture – Aust. J. Plant Physiol. 2: 85-89 – DOI: 10.1071/PP9750085 – http://www.publish.csiro.au/FP/PP9750085 – (On our blog : https://plantstomata.wordpress.com/2017/09/08/fluxes-of-potassium-and-changes-in-malate-and-stomatal-aperture/)

Pearson C. J., Milthorpe F. L. (1974) – Structure, carbon dioxide fixation and metabolism of stomata – Aust. J. Plant Physiol. 1: 221-236. (Article not found)

Peat H. J., Fitter A. H. (1994) –  A comparative study of the distribution and density of stomata in the British flora. – Biological Journal of the Linnean Society, 52: 377-393. – DOI: 10.1111/j.1095-8312.1994.tb00999.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1994.tb00999.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/hypostomaty-amphistomaty-epistomaty-and-stomata-density/)

Pei Z. M., Baizabal-Aguirre V. M., Allen G. I., Schroeder J. I. (1998)A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells. – Proceedings of the National Academy of Sciences, USA1998;95:6548-6553. – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27872/ – (On our blog : https://plantstomata.wordpress.com/2017/02/18/a-k-channel-currentcytosolic-ca2-and-stomatal-movements/)

Pei Z. M., Ghassemian M., Kwak C. M., Mccourt P., Schroeder J. I. (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. – Science 282: 287290 – DOI: 10.1126/science.282.5387.287 – CrossRef |PubMed |CASAbstract/FREE Full TextMedline – http://science.sciencemag.org/content/282/5387/287?ijkey=c46a0f317d179dd2ee102cc4f81b33edf544bf63&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/09/08/role-of-farnesyltransferase-in-stomata/)

Pei Z.M., Kuchitsu K. (2005) – Early ABA signaling events in guard cells.-  J. Plant Growth Regulat., 24: 296-307 – https://link.springer.com/article/10.1007/s00344-005-0095-x – (On our blog : https://plantstomata.wordpress.com/2017/09/08/an-overview-of-the-aba-evoked-signaling-events-in-stomata/)

Pei Z. M., Kuchitsu K., Ward J. M., Schwarz M., Schroeder J. I. (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. – Plant Cell 9: 409423. -DOI: https://doi.org/10.1105/tpc.9.3.409 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – Abstract/FREE Full TextCrossRefPubMedCAS |- http://www.plantcell.org/content/9/3/409 – (On our blog : https://plantstomata.wordpress.com/2017/09/08/cell-biological-evidence-that-the-abi2-locus-disrupts-early-aba-signaling-in-stomata/)

Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J., Grill E., Schroeder, J. I. (2000) – Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. – Nature 406:731–734. – doi: 10.1038/35021067 – Pubmed Abstract | Pubmed Full Text | CrossRef Full TextCrossRefMedlineWeb of ScienceGoogleScholarCrossRefCASADS – http://www.nature.com/nature/journal/v406/n6797/full/406731a0.html – (On our blog : https://plantstomata.wordpress.com/2015/10/21/h2o2-ca-channels-and-aba-signalling-in-stomata/).

Pei Z.-M., Ward J. M., Harper J. F., Schroeder J. I. (1996) – A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. – EMBO Journal 15, 65646574 – PMID: 8978683 PMCID: PMC452481 – PubMedCAS , ISIMedline – https://www.ncbi.nlm.nih.gov/pubmed/8978683 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/a-novel-chloride-channel-activated-by-cdpk-in-stomata/)

Peiter E., Maathuis F. J. M., Mills L. N., Knight H., Pelloux J., Hetherington A. M., Sanders D. (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. – Nature 434: 404408. – doi:10.1038/nature03381 – http://www.nature.com/nature/journal/v434/n7031/full/nature03381.html – (On our blog : https://plantstomata.wordpress.com/2016/08/19/tpc1-regulates-germination-and-stomatal-movement/)

Pekarek J. (1934) – Über die Aziditätsverhältnisse in den Epidermis- und Schliesszellen bei Rumex acetosa im Licht und im Dunkeln – Planta 21(3): 419-446 – http://www.jstor.org/stable/23841758?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/08/acidity-relations-in-epidermis-and-stomata-in-light-and-darkness-in-german/)

Pekarek J. (1933) – Bemerkungen zur Schliesszellen-Permeabilität offener und geschlossener Spaltöffnungen – Beih. z. Bot. Centralbl. 55: (Article not found)

Pemadasa M. A. (1977) – Stomatal responses to high temperature in darkness – Ann. Bot. 41: 969-976 – https://doi.org/10.1093/oxfordjournals.aob.a085394 – https://www.jstor.org/stable/42756471?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/08/stomatal-responses-to-high-temperature-in-darkness/)

Pemadasa M. A. (1979) – Movements of abaxial and adaxial stomata – New Phytol. 82: 69-80 – https://www.jstor.org/stable/2485077?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/08/movements-of-abaxial-and-adaxial-stomata/)

Pemadasa M. A. (1981) – Photocontrol of stomatal movements – Biol. Reviews Volume 56, Issue 4, 551–588 – DOI: 10.1111/j.1469-185X.1981.tb00359.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1981.tb00359.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/light-and-stomatal-movements/)

Pemadasa M. A. (1981) – Abaxial and adaxial stomatal behaviour and responses to fusicoccin on isolated epidermis of Commelina communis L. – New Phytologist 89, 373384 – OI: 10.1111/j.1469-8137.1981.tb02318.x – Wiley Online LibraryCAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1981.tb02318.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/09/fusicoccin-and-stomatal-behaviour/)

Pemadasa M.A. (1982a) – Differential abaxial and adaxial stomatal responses to indole-3-acetic acid in Commelina communis L. – New Phytol. 90: 209-219, 1982a  – DOI: 10.1111/j.1469-8137.1982.tb03253.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1982.tb03253.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/09/differential-abaxial-and-adaxial-stomatal-responses-to-iaa/)

Pemadasa M.A. (1982b) – Effects of phenylacetic acid on abaxial and adaxial stomatal movements and its interaction with abscisic acid. – New Phytol. 92: 21-30, 1982b – DOI: 10.1111/j.1469-8137.1982.tb03359.x  – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1982.tb03359.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/18/phenylacetic-acid-aba-and-stomata/)

Pemadasa M. A. (1983) – Sodium ions can eliminate the normal disparity in abaxial and adaxial stomatal opening on isolated epidermes – New Phytologist 94(2): 201-209 – DOI: 10.1111/j.1469-8137.1983.tb04493.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1983.tb04493.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/18/the-normal-disparity-in-abaxial-and-adaxial-stomatal-opening-is-specifically-linked-with-differential-k-accumulation-in-the-guard-cells/)

Penfield S.Clements S.Bailey K. J.Gilday A. D.Leegood R. C.Gray J. E.Graham I. A. (2012) – Expression and manipulation of phosphoenolpyruvate carboxykinase 1 identifies a role for malate metabolism in stomatal closure. – Plant J 69: 679688 – doi: 10.1111/j.1365-313X.2011.04822.x – PubMed Abstract | CrossRef Full Text | Google Scholar – CrossRef Medline – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04822.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/18/malate-metabolism-stomatal-closure-and-pepck/)

Peng Z., Weyers J. D. B. (1994) – Stomatal sensitivity to abscisic acid following water deficit stress. – Journal of Experimental Botany 45: 835–845.

Pennazio S., Sapetti C., Roggero P. (1986) Comparative effects of salicylate, 2,4-dinitrophenol and abscisic acid on stomatal resistance of detached tobacco leaves Biologia Plantarum, 1986, 28, 5, 345 – CrossRef – https://link.springer.com/article/10.1007%2FBF02902245 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/effects-of-salicylate-24-dinitrophenol-and-aba-on-stomatal-resistance/)

Penny M. G., Bowling D. J. F. (1974) – A study of potassium gradients in the epidermis of intact leaves of Commelina communis L. in relation to stomatal opening. – Planta 119: 17–25 -DOI: 10.1007/BF00390818 –  [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/24442405 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/potassium-gradients-and-stomatal-opening/)

Peñuelas J., Matamala R. (1990) – Changes in N and S leaf  content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. – Journal of Experimental Botany 230, 1119–1124 – https://doi.org/10.1093/jxb/41.9.1119 – https://www.jstor.org/stable/23695111?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/09/changes-in-n-and-s-leaf-content-stomatal-density-and-specific-leaf-area/)

Pereira de Souza R., Vasconcelos Ribeiro R., Caruso Machado E., Ferraz de Oliveira R., Gomes da Silveira J. A. (2005) – Photosynthetic responses of young cashew plants to varying environmental conditions – Pesq. agropec. bras. vol.40 no.8 Brasília Aug. 2005 – http://dx.doi.org/10.1590/S0100-204X2005000800002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2005000800002&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/02/15/stomata-and-varying-environmental-conditions-2/)

Perera L. K. R. R., De Silva D. L. R., Mansfield T. A. (1997) – Avoidance of sodium accumulation by the stomatal guard cells of the halophyte Aster tripolium – Journal of Experimental Botany  48(3): 707–711 – https://academic.oup.com/jxb/article/48/3/707/447764/Avoidance-of-sodium-accumulation-by-the-stomatalhttps://doi.org/10.1093/jxb/48.3.707 – (On our blog : https://plantstomata.wordpress.com/2017/09/30/avoidance-of-sodium-accumulation-by-the-stomatal-guard-cells/)

Perera L. K. R. R., Robinson M. F.Mansfield T. A. (1995) – Responses of the stomata of Aster tripolium to calcium and sodium ions in relation to salinity tolerance – Journal of Experimental Botany, 46(6) 623–629 – https://doi.org/10.1093/jxb/46.6.623 – https://academic.oup.com/jxb/article-abstract/46/6/623/511165 – (On our blog : https://plantstomata.wordpress.com/2017/09/30/stomatal-responses-to-ca2-and-na-in-relation-to-salinity-tolerance/)

Pérez-López U., Robredo A., Lacuesta M., Mena-Petite A., Muñoz-Rueda A. (2012) – Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. – Photosynth. Res. 111, 269–283 – doi: 10.1007/s11120-012-9721-1 – PubMed Abstract | CrossRef Full Text | Google Scholar https://link.springer.com/article/10.1007/s11120-012-9721-1 – (On our blog : https://plantstomata.wordpress.com/2017/10/05/elevated-co2-reduces-stomatal-limitations-on-photosynthesis-caused-by-salinity/)

Pérez-López U., Robredo A., Lacuesta M., Sgherri C., Muñoz-Rueda A., Navari-Izzo F., et al. (2009) – The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. – Physiol. Plant. 135, 29–42 – doi: 10.1111/j.1399-3054.2008.01174.x – PubMed Abstract | CrossRef Full Text | Google Scholar

Perks M. P., Irvine J., Grace J. (2002) – Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought – Tree Physiol. 2002 Aug;22(12):877-883. – http://www.ncbi.nlm.nih.gov/pubmed/12184977 – (On our blog : https://plantstomata.wordpress.com/2016/08/21/stomatal-conductance-aba-and-drought/)

Peterson D. (1929) – Die Spaltöffnungszahl von Rumex acetosa L. – Botaniska Notiser 1929: 175-193 – (On our blog : https://plantstomata.wordpress.com/2017/08/12/the-number-of-stomata-in-rumex-in-german/)

Peterson K. M., Rychel A. L., Torii K. U. (2010) – Out of the mouths of plants: The molecular basis of the evolution and diversity of stomatal development. – Plant Cell 22:296–306. -10.1105/tpc.109.072777. – PubMed CentralView ArticlePubMed –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845417/ – http://www.plantcell.org/content/22/2/296.full – (On our blog : https://plantstomata.wordpress.com/2016/04/08/the-evolution-and-diversity-of-stomatal-development/)

Peterson K. M., Shyu C., Burr C. A.Horst R. J.Kanaoka M. M.Omae M.,Sato Y., Torii K. U. (2013) – Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis – Development140, 1924-1935. (http://dev.biologists.org/content/140/9/1924.figures-only) – (On our blog : https://plantstomata.wordpress.com/2015/10/26/homeodomain-leucine-zipper-iv-proteins-and-stomata/).

Peterson R. L., Firminger M. S., Dobrindt L.A. (1975) Nature of the guard cell wall in leaf stomata of three Ophioglossum species. – Canadian Journal of Botany 53, 1698–1711 – https://doi.org/10.1139/b75-199 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-199 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/%ce%b2-13-glucan-callose-and-cellulose-in-the-stomata-wall/)

Pham J., Desikan R. (xxxx) – ROS Signalling in Stomata – Signaling and Communication in Plants, Reactive Oxygen Species in Plant Signaling 55-71 – DOI10.1007/978-3-642-00390-5_4 – https://www.infona.pl/resource/bwmeta1.element.springer-d78f0ee1-58e3-3840-82e1-d37d967b9774 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/ros-signalling-in-stomata/)

Pharmawati M., Billington T., Gehring C. A. (1998). – Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent. – Cell. Mol. Life Sci. 54, 272–276. – doi: 10.1007/s000180050149 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://link.springer.com/article/10.1007%2Fs000180050149 – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomata-responses-to-kinetin-and-natriuretic-peptides/)

Philippar K., Buchsenschutz K., Abshagen M., Fuchs I., Geiger D., Lacombe B. Hedrich R. (2003). -The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. – J. Biol. Chem. 278, 16973–16981. doi: 10.1074/jbc.M212720200 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/08/07/potassium-uptake-into-the-phloem-and-guard-cells-of-maize/)

Pickard W. F. (1981) – How does the shape of the substomatal chamber affect transpirational water loss? – Mathematical Biosciences 1981, 56: 111- 127 – https://doi.org/10.1016/0025-5564(81)90030-4 – Google Scholar CrossRef – http://www.sciencedirect.com/science/article/pii/0025556481900304 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/substomatal-chambers-and-transpiration/)

Pickard W.F. (1982) – Why is the substomatal chamber as large as it is? – Plant Physiology 1982, 69: 971-974 – DOI: https://doi.org/10.1104/pp.69.4.971 – Google Scholar – http://www.plantphysiol.org/content/69/4/971CrossRef – (On our blog : https://plantstomata.wordpress.com/2017/08/18/the-size-of-the-substomatal-chamber/)

Pickard W.F. (1982) – Distribution of evaporation in the sub-stomatal chamber, the possibility of transpiration-linked pore narrowing, and the pathway of water near the site of evaporation. – Ann. Bot. 49: 545–548. – https://eurekamag.com/research/000/859/000859348.php – (On our blog : https://plantstomata.wordpress.com/2017/02/16/evaporation-through-the-chamber-wall-adjacent-to-the-inner-aperture-of-the-stomatal-pore/)

Pickett-Heaps J. D. (1969) – Preprophase microtubules and stomatal differentiation in Commelina cyanea – Aust. J. Bot. Sci 22: 375-392 – DOI: 10.1071/BI9690375 – http://trove.nla.gov.au/work/180661045?q&versionId=196693521 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/preprophase-microtubules-and-stomatal-differentiation/)

Pickett-Heaps J. D., Northcote D. H. (1966) – Cell division in the formation of the stomatal complex of young leaves of wheat – J. Cell. Sci. 1: 121-128 – PMID: 5929805 – https://pdfs.semanticscholar.org/1bec/57bc1965d498da04bbf1603ba6a54532a7f8.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/09/microtubules-in-the-cell-division-in-the-formation-of-the-stomatal-complex/)

Pillitteri L. J., Bogenschutz N. L., Torii K. U. (2008) -The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. – Plant Cell Physiol 49:934–943. – DOI:https://doi.org/10.1093/pcp/pcn067 – Abstract/FREE Full TextGoogle Scholar – https://academic.oup.com/pcp/article/49/6/934/1811933/The-bHLH-Protein-MUTE-Controls-Differentiation-of?ijkey=a82b0b2306ff4bfe69c873557ad45343c29fd352&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/02/16/the-bhlh-protein-mute-stomata-and-the-hydathode-pore/)

Pillitteri L. J., Dong J. (2013) – Stomatal Development in Arabidopsis – The Arabidopsis Book, vol. 11, pp. e0162, June 2013. – doi:  10.1199/tab.0162 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711358/ – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomatal-development-2/)

Pillitteri L. J., Peterson K. M., Horst R. J., Torii K. U. (2011) – Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis. – Plant Cell 2011, 23:3260-3275. – doi: http://dx.doi.org/10.1105/tpc.111.088583 –  (PubMed Abstract | Publisher Full Text |PubMed Central Full TextGoogle Scholar – PubMed CentralView ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/2016/08/21/molecular-constituents-of-stomatal-stem-cells/)

Pillitteri L. J., Sloan D. B., Bogenschutz N. L., Torii K. U. (2007) – Termination of asymmetric cell division and differentiation of stomata. – Nature 445:501–505.  -doi: 10.1038/nature05467- CrossRefMedlineWeb of ScienceGoogle Scholar – http://www.nature.com/nature/journal/v445/n7127/full/nature05467.html – View ArticlePubMed – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/22/stomata-the-roles-of-bhlhs-in-cell-type-differentiation/)

Pillitteri L. J., Torii K. U. (2007) – Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. – Bioessays 29: 861–870 – DOI: 10.1002/bies.20625 – https://www.ncbi.nlm.nih.gov/pubmed/17691100 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/speechless-mute-and-fama-during-stomatal-development/)

Pillitteri L. J, Torii K. U. (2012) – Mechanisms of stomatal development. – Annual Review of Plant Biology 63: 591–614. – CrossRefMedlineWeb of ScienceGoogle Scholar – http://www.annualreviews.org/doi/10.1146/annurev-arplant-042811-105451 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/mechanisms-of-stomatal-development/)

Pilot G., Lacombe B., Gaymard F., Chérel I., Boucherez J., Thibaud J.-B., Sentenac H. (2001)Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. Journal of Biological Chemistry 2001;276:3215-3221.  – doi:10.1074/jbc.M007303200 Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/08/22/kat1-and-kat2-in-stomata/)

Pisek A., Winkler E. (1953)  Die Schliessbewegung der Stomata bei ökologisch verschiedenen Pflanzentypen in Abhängigkeit vom Wassersättigungszustand der Blätter und vom Licht. – Planta 42253–278 – https://link.springer.com/article/10.1007/BF01938572 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/the-role-of-water-saturation-and-light-in-stomatal-movements-in-german/)

Pleasants A. L. (1930) – The effect of nitrate fertilizers on stomatal behavior – Jour. Elisha Mitchell Sci. Soc. 46: 95-116 – http://dc.lib.unc.edu/cgi-bin/showfile.exe?CISOROOT=/jncas&CISOPTR=1518 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/effect-of-nitrate-fertilizers-on-stomatal-behavior/)

Plesch G., Ehrhardt T., Mueller-Roeber B. (2001) –  Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. – Plant J. 28: 455–464. – DOI: 10.1046/j.1365-313X.2001.01166.x – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/08/22/taaag-elements-and-dof-transcription-factors-in-stomata/)

Plumbe A. M., Willmer C. M. (1986) – Phytoalexins, water-stress and stomata – New Phytologist 102 (3): 375–384 – DOI: 10.1111/j.1469-8137.1986.tb00815.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1986.tb00815.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/the-effects-of-the-phytoalexins-on-stomatal-responses/)

Pompelli M .F., Martin S. C. V., Celin E. F., Ventrella M. C., Damatta F. M. (2010) – What is the Influence of Ordinary Epidermal Cells and Stomata on the Leaf Plasticity of Coffee Plants Grown under Full-Sun and Shady Conditions? – Brazilian Journal of Biology, 70, 1083-1088.
(http://dx.doi.org/10.1590/S1519-69842010000500025) – (On our blog : https://plantstomata.wordpress.com/2015/08/18/the-leaf-plasticity-of-coffee-plants-and-stomata/).

Poffenroth M., Green D. B., Tallman G. (1992) – Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light. – Plant Physiology 98, 14601471 – doi: http://dx.doi.org/10.1104/pp.98.4.1460 – CrossRef |PubMed | – http://www.plantphysiol.org/content/98/4/1460 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/soluble-sugars-can-contribute-significantly-to-the-osmoregulation-of-stomatal-cells/)

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (1996) – Variations in stomatal density and index: implications for palaeoclimatic reconstructions. – Plant, Cell and Environment 19, 705712. – Wiley Online LibraryCrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00405.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/high-level-of-variation-in-stomatal-characters-occurs-both-within-and-between-leaves-of-a-tree/)

Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011) – Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. – Plant Biol. 13, 105–114 – doi: 10.1111/j.1438-8677.2010.00344.x – PubMed Abstract | CrossRef Full Text | Google Scholar

Porsch O. (1905) – Der Spaltöffnungapparat im Lichte der Phylogenie. – Jena

Pospíšilová J. (1996) – Effect of air humidity on the development of functional stomatal apparatus. – Biologia Plantarum 1996;38:197204 – doi:10.1007/BF02873846 –  (Google Scholar) – https://link.springer.com/article/10.1007%2FBF02873846?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/02/27/air-humidity-on-the-development-of-stomata/)

Pospíšilová J. (2003) – Participation of phytohormones in the stomatal regulation of gas exchange during water stress. – Biol. Plantarum, 46 (4): 491-506. – doi:10.1023/A:1024894923865 – http://link.springer.com/article/10.1023/A:1024894923865 – (On our blog : https://plantstomata.wordpress.com/2016/08/23/phytohormones-in-the-stomatal-regulation-of-gas-exchange/)

Pospíšilová J., Šantrůček J. (1994) Stomatal patchiness – Biologia Plantarum, 1994, 36, 4, 481-510  – CrossRefWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF02921169. – (On our blog : https://plantstomata.wordpress.com/2017/02/27/small-groups-of-stomata-on-a-single-leaf-blade-stomatal-patchiness/)

Pospíšilová J., Solarova J. (1980) Environmental and biological control of diffusive conductances of adaxial and abaxial epidermises – Photosynthetica 14: 90-127 – https://www.cabdirect.org/cabdirect/abstract/19800704742 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/diffusive-conductances-of-the-adaxial-and-abaxial-epidermis-and-the-behaviour-of-stomata/)

Pou A., Medrano H., Flexas J., Tyerman S. D. (2013) – A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering: Grapevine leaf conductances and aquaporins. – Plant, Cell & Environment 36, 828–843 –DOI: 10.1111/pce.12019 – CrossRef  CAS – http://onlinelibrary.wiley.com/doi/10.1111/pce.12019/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/18/tip-and-pip-aquaporins-and-dynamics-of-leaf-hydraulic-and-stomatal-conductances/)

Poulter B., Frank D. (2015) – Rising CO2 levels are changing how fast forests cycle water – The Conversation  – http://theconversation.com/rising-co2-levels-are-changing-how-fast-forests-cycle-water-40746 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/stomata-and-rising-co2-levels/)

Prat R. (2004) – Protection des stomates par des repliements de la feuille – Dossier-Adaptation des plantes aux climats secs – Futura Planète – http://www.futura-sciences.com/planete/dossiers/climatologie-adaptations-plantes-climats-secs-476/page/6/ – (On our blog)

Prats E., Gay A. P., Mur L. A. J., Thomas B. J., Carver T. L. W. (2006) – Stomatal lock open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. – Journal of Experimental Botany 57: 2211–2226 – http://www.jstor.org/stable/24036182?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/09/transient-suppression-of-stomatal-opening-in-barley-attacked-by-blumeria-graminis/)

Predovich S. L. (2012) – Stomata Density in Orchids and Cloud Forest Humidity. – Oregon Undergraduate Research Journal 3(1): 15-24 – ISSN 2160-617X. –– doi:http://dx.doi.org/10.5399/uo/ourj.3.1.2386- http://journals.oregondigital.org/index.php/OURJ/article/view/2386 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/a-significant-difference-in-stomata-density-and-behavior-between-two-orchidfs/)

Prokic L., Jovanovic Z., McAinsh M. R., Vucinic Z., Stikic R. (2006) – Species-dependent changes in stomatal sensitivity to abscisic acid mediated by external pH. – J. Exp. Bot. 57, 675–683. – doi: 10.1093/jxb/erj057 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erj057 – (On our blog : https://plantstomata.wordpress.com/2017/03/01/species-and-stomatal-sensitivity-to-aba/)

Puli M. R., Rajsheel P., Aswani V., Agurla S., Kuchitsu K.Raghavendra A. S. (2016) – Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum – Planta pp 1-11 – First online: 27 May 2016 – http://link.springer.com/article/10.1007%2Fs00425-016-2545-z – (On our blog : https://plantstomata.wordpress.com/2016/05/28/phyto-s1p-and-s1p-induced-stomatal-closure-by-raising-the-levels-of-no-and-ph-in-guard-cells/)

Putarjunan A., Torii K. U. (2016) – Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals. – Develop. Growth Differ. 58: 341–354 –  doi:10.1111/dgd.12282 – http://onlinelibrary.wiley.com/doi/10.1111/dgd.12282/full – (On our blog)

Putra E. T. S., Zakaria W., Abdullah N. A. P., Saleh G. B. (2012) – Stomatal Morphology, Conductance and Transpiration of Musa sp. cv. Rastali in Relation to Magnesium, Boron and Silicon Availability – American Journal of Plant Physiology, 7: 84-96 (2012). (http://scialert.net/fulltext/?doi=ajpp.2012.84.96&org=10). (On our blog : https://plantstomata.wordpress.com/2015/09/06/linear-relationships-between-stomatal-width-stomatal-conductance-and-transpiration-rate/).

Pyakurel A., Wang J. (2014) – Leaf Morphological and Stomatal Variations in Paper Birch Populations along Environmental Gradients in Canada. – American Journal of Plant Sciences, 5, 1508-1520. doi: 10.4236/ajps.2014.511166. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=45954#.VR6cL5OUe6E –  (On our blog : https://plantstomata.wordpress.com/2017/03/01/35120/)

Pyke K., Lopez Juez E. (1999) – Cellular differentiation and leaf morphogenesis in Arabidopsis. – Critical Rev. Pl. Sci. 18. 527-546 – http://www.tandfonline.com/doi/abs/10.1080/07352689991309388 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/cellular-differentiation-and-leaf-morphogenesis/) – Cell types in leaf. Environmental effects (light).

Qiang W., Wang X.L., Chen T., Feng H.Y., An L.S., He Y.Q., Wang G. (2003) – Variation in stomatal density and carbon isotope values in Picea crassifolia at different altitudes in Qilian Mountains. – Trees 17: 258–262. – Google Scholar – https://link.springer.com/article/10.1007/s00468-002-0235-x – (On our blog : https://plantstomata.wordpress.com/2017/08/18/stomatal-density-and-altitude/)

Qi X., Han S.-K., Dang J. H., Garrick J. M., Ito M., Hofstetter A. K., Torii K. U. (2017) – Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling – eLife 2017;6:e24102 DOI: 10.7554/eLife.24102 – https://elifesciences.org/articles/24102 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/autocrine-regulation-of-stomatal-differentiation/)

Qiao Z., Li C.-L., Zhang W. (2016) – WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana – Plant Molecular Biology 91: 1-13 -doi:10.1007/s11103-016-0441-3 – http://link.springer.com/article/10.1007%2Fs11103-016-0441-3 – (On our blog : https://plantstomata.wordpress.com/2017/04/03/wrky1-a-negative-regulator-in-stomata-aba-signalling/)

Qu M., Hamdani S., Bunce J. A. (2016) – The physiology and genetics of stomatal adjustment under fluctuating and stressed environments. – In: Agricultural and Biological Sciences » “Applied Photosynthesis – New Progress”, Edited by Mohammad Mahdi Najafpour, ISBN 978-953-51-2267-8, Published: March 30, 2016  – DOI: 10.5772/62223 – http://www.intechopen.com/books/applied-photosynthesis-new-progress/the-physiology-and-genetics-of-stomatal-adjustment-under-fluctuating-and-stressed-environments – (On our blog : https://plantstomata.wordpress.com/2016/04/27/physiological-response-of-stomatal-dynamic-to-changing-enironments/)

Qu M., Hamdani S., Li W., Wang S., Tang J., Chen Z., Song Q., Li M., Zhao H., Chang T., Chu C., Zhu X. (2016) – Rapid stomatal response to fluctuating light: an under-explored mechanism to improve drought tolerance in rice –  Functional Plant Biology – http://dx.doi.org/10.1071/FP15348 – (On our blog : https://plantstomata.wordpress.com/2016/07/01/stomatal-dynamics-under-fluctuating-light-is-closely-related-to-drought-resistance/).

Qu X., Peterson K. M., Torii K. U. (2017) – Stomatal development in time: the past and the future – Current Opinion in Genetics & Development 45: 1-9 – https://www.infona.pl/resource/bwmeta1.element.elsevier-4dc5e27e-3609-377a-8c28-537d3640f7a5 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/the-past-and-the-future-of-stomatal-development/)

Querioz O., Brulfert J. (1982) – Photoperiod-controlled induction and enhancement of stomatal adaptation to drought. – In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. – American Soc Phyto, pp 208–230 – Google Scholar

Raab R. N. (2015) – COMPARISON OF THREE EMPIRICAL STOMATAL CONDUCTANCE MODELS INACACIA CAVEN (MOL.) UNDER DROUGHT CONDITIONS – Thesis in PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

Radin J. W.  (1984) – Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. – Plant Physiol 76:392–394 -doi: http://dx.doi.org/10.1104/pp.76.2.392 – PubMedCentralPubMedCrossRef – http://www.plantphysiol.org/content/76/2/392 – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-aba-and-cytokinins/)

Radin J.W., Hendrix D.L.(1988) – The apoplastic pool of abscisic acid in cotton leaves in relation to stomatal closure. – Planta 174: 180-186 – DOI: 10.1007/BF00394770 – https://www.ncbi.nlm.nih.gov/pubmed/24221474 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/the-apoplastic-pool-of-aba-in-relation-to-stomatal-closure/ )

Radin J. W., Lu Z., Percy R. G., Zeiger E. (1994). – Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. – Proc. Natl. Acad. Sci. U.S.A. 91, 7217–7221. – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=11607487 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/genetic-variability-for-stomatal-conductance-and-temperature/)

Radin J. W., Parker L. L., Guinn G. (1982) – Water relations of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. – Plant Physiology 70: 10661070 – PMID: 16662614 PMCID: PMC1065826 – CrossRef |PubMed |CAS |- https://www.ncbi.nlm.nih.gov/pubmed/16662614 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/environmental-control-of-aba-accumulation-and-stomatal-sensitivity-to-aba/)

Radoglou K. M., Aphalo P., Jarvis P. G. (1992) – Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2 and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. – Annals of Botany 70,257264. – http://aob.oxfordjournals.org/content/70/3/257.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-conductance-elevated-co2-and-nutrient-supply/)

Raghavendra A. S. (1981) – Energy supply for stomatal opening in epidermal strips of Commelina benghalensis. – Plant Physiol. 67: 385-387 – 

Raghavendra A. S. (1990) – Blue light effects on stomata are mediated by the guard cell plasma membrane redox system distinct from the proton translocating ATPase – Plant Cell Environm. 13: 105-110 – DOI: 10.1111/j.1365-3040.1990.tb01282.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01282.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/09/the-guard-cell-plasma-membrane-redox-system-and-blue-light-effects-on-stomata/)

Raghavendra A.S., Bhaskar Reddy K. (1987) – Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate. – Plant Physiol. 83: 732-734, 1987. – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1056439/ – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-proline-aba-g-substances-and-methyl-jasmonate/)

Raghavendra A. S., Rao I. M., Das V. S. R. (1976). – Characterization of abscisic acid inhibition of stomatal opening in isolated epidermal strips. – Plant Sci. Lett. 6, 111–115. – doi: 10.1016/0304-4211(76)90144-9 – CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/0304421176901449?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2017/03/03/aba-inhibition-of-stomatal-opening-in-isolated-epidermal-strips/)

Raghavendra A. S., Rao I. M., Das V. S. R. (1976) – Adenosine triphosphatase in epidermal tissue of Commelina benghalensis: possible involvement of isozymes in stomatal movement. – Plant Science Letters 7: 391–396 – https://doi.org/10.1016/0304-4211(76)90159-0 – http://www.sciencedirect.com/science/article/pii/0304421176901590 – (On our blog : https://plantstomata.wordpress.com/2017/09/09/atpase-7-5-associated-with-stomatal-opening-and-atpase-5-5-with-stomatal-closure/)

Raghavendra A. S., Reddy K. B. (1987) – Action of proline on stomata differs from that of abscisic acid, G-substances or methyl jasmonate – Plant Physiol. 144: 691–695 – PMCID: PMC1056439 – https://www.jstor.org/stable/4270501?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/10/action-of-proline-on-stomata/)

Rahman M. (2015) – Analysis of the Role of Grape ICE Proteins in the CBF Pathway and Stomatal Development – Thesis University of Guelph.

Rahnama A., James R. A., Poustini K., Munns R. (2010) – Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil – Functional Plant Biology 37(3) 255-263 – https://doi.org/10.1071/FP09148 – http://www.publish.csiro.au/fp/FP09148 – (On our blog : https://plantstomata.wordpress.com/2017/10/03/change-in-stomatal-conductance-a-means-of-screening-for-osmotic-stress-tolerance/)

Raissig M. T., Abrasha E., Bettadapur A., Vogel J. P., Bergmann D. C. (2016) – Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity – PNAS 113(29) – http://www.pnas.org/content/113/29/8326.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/18/alternatively-wired-bhlh-transcription-factor-network-to-establish-stomatal-identity/)

Raissig M. T., Bergmann D. C. (2017) – Super Stoma – hhmi Biointeractive – https://www.hhmi.org/biointeractive/super-stoma – (On our blog https://plantstomata.wordpress.com/2017/09/23/super-stomata/)

Raissig M. T., Matos J. L., Anleu Gil M. X., Kornfeld A., Bettadapur A., Abrash E., Allison H. R., Badgley G., Vogel J. P., Berry J. A., Bergmann D. C. (2017) – Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata – Science  17 Mar 2017: Vol. 355, Issue 6330, pp. 1215-1218 – DOI: 10.1126/science.aal3254 – http://science.sciencemag.org/content/355/6330/1215?rss=1 – (On our blog : https://plantstomata.wordpress.com/2017/03/17/subsidiary-cells-to-build-physiologically-improved-grass-stomata/)

Rajagopal V. (1981) – The influence of exogenous proline on the stomatal resistance in Vicia faba – Physiologia plantarum 52(2): 292–296 – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1981.tb08508.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/05/relationship-between-endogenous-proline-which-increased-markedly-due-to-exogenous-supply-and-stomatal-resistance/)

Rajagopal V., Patil K. D., Sumathykuttyamma B. (1986) – Abnormal Stomatal Opening in Coconut Palms Affected with Root (Wilt) Disease – Journal of Experimental Botany Vol. 37, No. 182 (September 1986), pp. 1398-1405 – https://www.jstor.org/stable/23691597?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2016/12/28/stomatal-regulation-is-significantly-impaired-in-diseased-palms/)

Rajendra B. R., Mujeeb K. A., Bates L. S. (1978) – Relationships between 2X hordeum sp., 2X Secale sp. and 2X, 4X, 6X triticum spp. for stomatal frequency, size and distribution. – Environ. Exp. Bot., 18: 33-37. – http://journals2.scholarsportal.info/details?uri=/00988472/v18i0001/33_rb2hs2fsfsad.xml – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-frequency-size-and-distribution/)

Ramonell K., Crispi M., Musgrave M. E. (1997) – Changes in stomatal density in Arabidopsis thaliana L. Heynh. grown under low oxygen atmospheres. – Eighth International Conference on Arabidopsis Research Meeting Schedule and Abstracts, 6–22. – (Article not found)

Ramos C., Hall A. E. (1983) – Effects of photon fluorescence rate and intercellular partial CO2pressure on leaf conductance and CO2 uptake rate in Capsicum and Amarantus. – Photosynthetica 17:34–42 – Google Scholar

Ramos L. J.Nayaranan K. R.McMillan R. T.Jr. (1992) – Association of stomatal frequency and morphology in Lycopersicon species with resistance to Xanthomonas campestris pv. vesicatoria. – Plant Pathol. 41:157164. – Google Scholar

Ran J.-H., Shen T.-T., Liu W.-J., Wang X.-Q. (2013) – Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants. – PLoS ONE 8, e78997 (2013). – https://www.ncbi.nlm.nih.gov/pubmed/24244399 – (On our blog : https://plantstomata.wordpress.com/2016/12/03/the-bhlh-genes-involved-in-stomatal-development/)

Rand R. H., Upadhyaya S. K., Cooke J. R., Storti D. W. (1981) – Hopf bifurcation in a stomatal oscillator – Journal of Mathematical Biology 12, 111. -doi:10.1007/BF00275199 – CrossRef – https://link.springer.com/article/10.1007%2FBF00275199 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/hopf-bifurcation-in-a-stomatal-oscillator/)

Rao N. V., Inamdar J. A. (1979) – Action of growth substances on the cotyledonary and hypocotyledonary stomata of Brassica juncea L.. – Histochemistry, developmental and structural anatomy of Angiosperms: A Symposium (ed. K. Periasamy) pp. 220–228 – (Article not found)

Rao M. G., Gangadhara M., Inamdar J. A. (1977) – Response of leaf epidermis of Allium cepa L. to growth substances – J. Indian Bot. Soc.  56: 216-228 – (Article not found)

Raschke K. (1965) – Die Stomata als Glieder eines schwingungsfähigen CO2‐Regelsystems Experimenteller Nachweis an Zea mays L. – Zeitschrift für Naturforschung 20b, 1261–1270. – https://www.degruyter.com/downloadpdf/j/znb.1965.20.issue-12/znb-1965-1219/znb-1965-1219.xml – (On our blog https://plantstomata.wordpress.com/2016/12/03/stomata-a-regulatory-system-stabilizing-the-co2-concentration-within-the-intercellular-spaces-of-leaves/)

Raschke K. (1966) – Die Reaktionen der CO2-Regelsystems in den Schliesszellen von Zea mays auf weisses Licht – Planta (Berl.) 68 : 111-140 – (Article not found)

Raschke K. (1970) Stomatal responses to pressure changes and interruptions in water supply of detached leaves of Zea mays L. – Plant Physiology 45: 415423 -DOI: https://doi.org/10.1104/pp.45.4.415 – Google Scholar – http://www.plantphysiol.org/content/45/4/415 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/stomatal-aperture-is-related-to-the-relative-water-content-of-a-leaf-and-to-air-humidity/)

Raschke K. (1970) – Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. – Planta 91, 336–363 -DOI: 10.1007/BF00387507  – doi: 10.1007/Bf00387507 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/24500098 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/temperature-dependence-of-co2-assimilation-and-stomatal-aperture/)

Raschke K. (1970) – Temperature dependencies and apparent activation energies of stomatal opening and closing – Planta (Berl.) 95 : 1-17 – (On our blog : https://plantstomata.wordpress.com/2017/08/14/temperature-and-activation-of-stomata/)

Raschke K. (1970) – Leaf hydraulic system: rapid epidermal and stomatal responses to changes in water supply. – Science 167,189–191 – DOI: 10.1126/science.167.3915.189 –  Abstract/FREE Full Text http://science.sciencemag.org/content/167/3915/189 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/stomatal-responses-to-changes-in-water-supply/)

Raschke K. (1972) – Saturation kinetics of the velocity of stomatal closing in response to CO2. – Plant Physiology 49, 229234. – CrossRef |PubMed |- https://www.jstor.org/stable/4262697?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/10/the-mechanism-of-stomatal-responses-to-co2-and-the-range-of-stomatal-sensitivity/)

Raschke K. (1975) – Stomatal action. – Annual Review of Plant Physiology 26: 309–340. – CrossRefCAS – http://www.annualreviews.org/doi/abs/10.1146/annurev.pp.26.060175.001521?journalCode=arplant.1 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/stomatal-action/)

Raschke K. (1975) – Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. – Planta 125:243–259.-doi:10.1007/BF00385601 – CrossRefWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF00385601 – (On our blog : https://plantstomata.wordpress.com/2016/09/06/simultaneous-requirement-of-co2-aba-for-stomatal-closing/)

Raschke K. (1976) – How stomata resolve the dilemma of opposing priorities. – Phyll Trans R Soc Lond 273:551–560 – CrossRefGoogle Scholar

Raschke K. (1977) – The stomatal turgor mechanism and its responses to CO2 and abscisic acid: observations and hypothesis. In: Regulation of cell membrane activities in plants (Ed. by E.Marré & O.Ciferri), pp. 17383. – Elsevier/North-Holland, Amsterdam – (Article not found)

Raschke K. (1979) – Movements of stomata. – In Encyclopedia of Plant Physiology, Vol. 7. Physiology of movements. Edited by Haupt W. and Feinlieb M. E. pp. 383–441. Springer, Berlin. – Google Scholar – (Article not found)

Raschke K. (1987) – Action of abscisic acid on guard cells. In: Zeiger E, Farquhar GD, Cowan IR, editors. Stomatal Function. Stanford, CA: Stanford University Press; 1987. pp. 253–279. – (Article not found)

Raschke K. (2003) – Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate. – Planta 217:651657 – doi:10.1007/s00425-003-1034-3 – CrossRef Medline Google Scholar – https://link.springer.com/article/10.1007%2Fs00425-003-1034-3 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/alternation-of-anion-conductance-in-stomata/)

Raschke K., Dickerson M. (1973) – Changes in shape and volume of guard cells during stomatal movement. – Plant Research 1972: 149–153 – (Article not found)

Raschke K., Dickerson M., Pierce M. (1972) Mechanics of stomatal responses to changes in water potential. – Plant Research 72: 155157 – (Article not found)

Raschke K., Dittrich P. (1977) – Carbon dioxide fixation by isolated epidermises with stomata closed or open. – Planta 134: 69-75. – Google Scholar – https://link.springer.com/article/10.1007/BF00390097 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/co2-fixation-by-isolated-epidermises-with-stomata-closed-or-open/)

Raschke K., Fellows M. (1971) – Stomatal movement in Zea mays: shuttle of potassium and chloride between guard cells and subsidiary cells. – Planta 101: 296–316 – doi: 10.1007/BF00398116 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=24488474&dopt=abstractplus – (On our blog : https://plantstomata.wordpress.com/2017/09/10/shuttle-of-k-and-cl-between-guard-cells-and-subsidiary-cells-in-stomata/)

Raschke K., Hedrich R.(1985) – Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves. – Planta. 1985;163:105–118 -DOI: 10.1007/BF00395904 –  [PubMed] – https://www.jstor.org/stable/23377537?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/10/simultaneous-and-independent-effects-of-aba-on-stomata/)

Raschke K., Humble G. D. (1973) – No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions – Planta 115: 47-57 – DOI: 10.1007/BF00388604 – https://link.springer.com/article/10.1007%2FBF00388604 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/53050/)

Raschke K., Kühl U. (1969) – Stomatal responses to changes in atmospheric humidity and water supply: experiments with leaf sections of Zea mays in CO2-free air. – Planta (Berl.) 87, 36–48 -DOI: 10.1007/BF00386962  – Google Scholar – https://link.springer.com/article/10.1007/BF00386962 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/stomatal-responses-to-changes-in-atmospheric-humidity-and-water-supply/)

Raschke K., Pierce M., Popiela C. C. (1976) – Abscisic acid content and stomatal sensitivity to CO2 in leaves of Xanthium strumarium L. after pretreatments in warm and cold growth chambers. – Plant Physiology 57, 115121 – PMID: 16659416 PMCID: PMC541974 – CrossRef |PubMed |CAS – https://www.ncbi.nlm.nih.gov/pubmed/16659416 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/aba-content-and-stomatal-sensitivity-to-co2/)

Raschke K., Schnabl H. (1978) Availability of chloride affects balance between potassium chloride and potassium malate in guard cells of Vicia faba L. – Plant Physiology 62 :8487 -PMID: 16660475 PMCID: PMC1092060 – ArticlePubMed – https://www.ncbi.nlm.nih.gov/pubmed/16660475?dopt=Abstract&holding=npg – (On our blog : https://plantstomata.wordpress.com/2017/08/12/chloride-affects-balance-between-kcl-and-k-malate-in-stomata/)

Raschke K., Shabahang M., Wolf R. (2003) – The slow and the quick anion conductances in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. – Planta DOI 10.1007/s00425-003-1033-4  – https://www.ncbi.nlm.nih.gov/pubmed/12712336 – (On our blog : https://plantstomata.wordpress.com/2017/03/06/anion-conductances-in-stomata/)

Raschke K., Zeevaart J. A. D. (1976) – Abscisic acid content, transpiration and stomatal conductance as related to leaf age in plants of Xanthium strumarium L. – Plant Physiol 58: 169-174 – 

Raskin I., Ladyman J. A. R. (1988)Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata. – Planta 1988;173:73-78. – doi:10.1007/BF00394490 – CrossRefMedlineWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF00394490 – (On our blog : https://plantstomata.wordpress.com/2016/12/03/aba-insensitive-stomata/)

Rasmussen H. (1986) –  Pattern formation and cell interactions in epidermal development of Anemarrhena asphodeloides (Liliaceae). – Nordic Journal of Botany 6:467–477.- DOI: 10.1111/j.1756-1051.1986.tb00903.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1756-1051.1986.tb00903.x/abstract –  (On our blog : https://plantstomata.wordpress.com/2016/12/03/a-characteristic-pattern-of-stomata/)

Rathaiah Y. (1975) – Infection of Sugarbeet by Cercospora beticola in Relation to Stomatal Condition – Phytopathology 66: 737-740. – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1976Articles/Phyto66n06_737.PDF – (On our blog : https://plantstomata.wordpress.com/2016/12/27/cercospora-beticola-penetrates-sugarbeet-through-stomata/)

Raven J. A. (1993) – The evaluation of vascular plants in relation to quantitative functioning of dead water-conducting cells and stomata. – Biol. Rev. 68. 337-363 – DOI: 10.1111/j.1469-185X.1993.tb00735.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1993.tb00735.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/10/quantitative-functioning-of-dead-water-conducting-cells-and-stomata/)

Raven  J. A. (2002) – Selection Pressures on Stomatal Evolution. – New Phytologist, 153: 371-386. – DOI: 10.1046/j.0028-646X.2001.00334.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomatal-evolution-2/)

Raven J. A. (2014) – Speedy small stomata? – J. Exp. Bot. 65: 1415–1424 – doi: 10.1093/jxb/eru032. – https://www.ncbi.nlm.nih.gov/pubmed/24609500 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/faster-opening-and-closing-of-smaller-than-of-larger-stomata/)

Rawson H. M., Craven C. L. (1975) – Stomatal development during leaf expansion in tobacco and sunflower – Aust. J. Bot. 23: 253-261 – (On our blog : https://plantstomata.wordpress.com/2017/08/15/stomatal-development-in-tobacco-and-sunflower/)

Rea M. W. (1921) – Stomata and hydathodes in Campanula rotundifolia and their relation to environment – The New Phytologist  20(2): 56-72 – DOI: 10.1111/j.1469-8137.1921.tb05772.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1921.tb05772.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/10/stomata-and-hydathodes-in-campanula/)

Reckmann U., Scheibe R., Raschke K. (1990). – Rubisco activity in guard cells compared with the solute requirement for stomatal opening. – Plant Physiol. 92, 246–253. – doi: 10.1104/pp.92.1.246 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/92/1/246 – (On our blog : https://plantstomata.wordpress.com/2017/08/12/rubisco-activity-in-guard-cells-and-stomatal-opening/)

Redaktion Pflanzenforschung.de (2016) – Beim Öffnen und Schließen der Stomata spielen Kohlenhydrate eine zentrale Rolle – Pflanzenforschung.de – http://www.pflanzenforschung.de/de/journal/journalbeitrage/schliesszellen-neu-gedacht-beim-oeffnen-und-schliessen-10579 – (On our blog : https://plantstomata.wordpress.com/2016/03/02/6471/)

Redmann R. E. (1985) – Adaptation of grasses to water stress – leaf rolling and stomate distribution. Annals of the Missouri Botanical Garden 72: 833–842. – CrossRef – http://www.jstor.org/stable/2399225?origin=crossref&seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomata-and-water-stress/)

Reddy A. R., Das V. S. R. (1986)Stomatal movements and sucrose uptake by guard cell protoplasts of Commelina benghalensis L. – Plant and Cell Physiology 1986; 27: 1565-1570 – https://doi.org/10.1093/oxfordjournals.pcp.a077257 – https://academic.oup.com/pcp/article-abstract/27/8/1565/1840083/Stomatal-Movement-and-Sucrose-Uptake-by-Guard-Cell?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/09/05/stomatal-movements-and-sucrose-uptake/)

Reddy P. S., Ramanjulu S., Sudhakar C., Veeranjaneyulu K. (1998) – Differential sensitivity of stomatal and non-stomatal components to NaCl or Na2SO4 salinity in horsegram, Macrotyloma uniflorum (Lam.) – Photosynthetica 35(1): 99–105 – https://link.springer.com/article/10.1023/A:1006830100627 – (On our blog : https://plantstomata.wordpress.com/2017/10/05/differential-sensitivity-of-stomatal-and-non-stomatal-components-to-nacl-or-na2so4-salinity/)

Reed H. S., Hirano E. (1931) – The density of stomata in citrus leaves. – Jour. Agr. Res. 43:209-222 – https://naldc.nal.usda.gov/download/IND43967921/PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/05/stomata-in-citrus-leaves/)

Rees A. R. (1961) – Midday closure of stomata in the oil palm Elaeis guineensis Jacq. – J. Exp. Bot. 12 : 129-146 – https://www.jstor.org/stable/23686590?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/05/midday-closure-of-stomata-in-the-oil-palm/)

Reginato M. A., Reinoso H., Llanes A. S., Luna M. V. (2013) – Stomatal Abundance and Distribution in Prosopis strombulifera Plants Growing under Different Iso-Osmotic Salt Treatments – AJPS> Vol.4 No.12C, December 2013 – DOI: 10.4236/ajps.2013.412A3010 – http://www.scirp.org/journal/PaperInformation.aspx?PaperID=41195 – (On our blog : https://plantstomata.wordpress.com/2016/04/11/stomata-and-progressive-salt-stress/)

Reich P. B. (1984) – Oscillations in stomatal conductance of hybrid poplar leaves in the light and dark. – Plant Physiology 1984;61:541-548 –DOI: 10.1111/j.1399-3054.1984.tb05167.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1984.tb05167.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/18/oscillations-in-stomatal-conductance-in-the-light-and-dark/)

Reich P. B. (1984) – Leaf stomatal density and diffusive conductance in three amphistomatous hybrid poplar cultivars. – New Phytologist 98 (2): 231-239 –DOI: 10.1111/j.1469-8137.1984.tb02733.x  – CrossRef Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1984.tb02733.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/12/stomatal-density-diffusive-conductance-and-stomatal-responses/)

Reid C. D., Jackson R. B., Ward J. K. (x) – Carbon dioxide as a selective agent for stomatal density – Sites.Biology.Duke (https://plantstomata.wordpress.com/2015/03/03/stomatal-density-and-co2/)

Reid C. D., Maherali H., Jackson R. B., Johnson H. B., Polley H. W. (x) – Effects of a 4-year exposure to pre-industrial and elevated CO2gradient on stomatal characters of C3 and C4 species. – Sites.Biology.Duke (https://plantstomata.wordpress.com/2015/03/03/stomatal-characters-of-c3-and-c4-species/)

Reid C. D., Maherali, H., Johnson, H. B., Smith, S. D., Wullschleger S. D., Jackson R. B. (2003) – On the relationship between stomatal characters and atmospheric CO– Geophys. Res. Letters  30, 1983, doi:10.1029/2003GL017775, 19. – http://onlinelibrary.wiley.com/doi/10.1029/2003GL017775/abstract – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomatal-characters-and-atmospheric-co2/)

Renner O., Kallmeyer M. (1948) – Luminiszenzmikroskopische Untersuchungen an Haaren und Spaltöffnungen. – Diss. Jena (1947) ref. Fiat Rev. of Germ. Sci. 52 I., 105.- Google Scholar (Citation)

Renzaglia K. S., Villarreal J. C., Piatkowski B. T., Lucas J. R., Merced A. (2017) – Hornwort stomata: architecture and fate shared with 400-million-year-old fossil plants without leaves. – Plant Physiol 174: 788–797 –

Resco de Dios V., Loik M. E., Smith R., Aspinwall M. J., Tissue D. T. (2015) – Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth – Plant, Cell & Environment 39(1): 3-11. doi: 10.1111/pce.12598. Epub 2015 Sep 19. – https://www.ncbi.nlm.nih.gov/pubmed/26147129 – (On our blog : https://plantstomata.wordpress.com/2017/03/15/stomatal-conductance-genotypic-variation-and-intraspecific-variation-in-tree-growth/)

Reuter L. (1938) – Protoplasmatik der Stomata-Zellen der Gleitzone der Nepenthes-Kanne – Protoplasma 30: 273-282 – https://link.springer.com/article/10.1007/BF01613754 – (On our blog : https://plantstomata.wordpress.com/2017/09/11/protoplasma-characteristics-of-stomata-in-nepenthes-in-german/)

Reynolds-Henne C. E., Langenegger A., Mani J., Schenk N., Zumsteg A., Feller U. (2010) – Interactions between temperature, drought and stomatal opening in legumes. – Environ. Exp. Bot. 68:37–43. – CrossRef Google Scholar – http://www.sciencedirect.com/science/article/pii/S0098847209002421 – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomata-temperature-and-drought-in-legumes/)

Rezaei Nejad A.Harbinson J.Van Meeteren U. (2006) – Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity. – Journal of Experimental Botany 2006;57:36693678. (Abstract/FREE Full Text) [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/16982653 – (On our blog : https://plantstomata.wordpress.com/2017/03/15/spatial-heterogeneity-of-stomatal-closure/)

Rezaei Nejad A., Van Meeteren U. (2005) – Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. – Physiol. Plant. 125(3): 324-332 –DOI: 10.1111/j.1399-3054.2005.00567.x – (CrossRef) – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2005.00567.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/12/stomatal-behavior-and-high-relative-air-humidity/)

Rezaei Nejad A., van Meeteren U. (2007) – The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. – Journal of Experimental Botany. 2007;58:627–636 – [PubMed] – https://www.jstor.org/stable/24036455?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/05/aba-high-relative-air-humidity-and-stomatal-responses/)

Rezaei Nejad A., Van Meeteren U. (2008) – Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana. – J. Exp. Bot. 59(2): 289-301 – DOI:https://doi.org/10.1093/jxb/erm308 – (CrossRef,Medline) – https://academic.oup.com/jxb/article-abstract/59/2/289/537363/Dynamics-of-adaptation-of-stomatal-behaviour-to?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/03/16/stomatal-behaviour-in-moderate-or-high-relative-air-humidity/)

Rhine J. B. (xxxx) – The clogging of stomata in conifers – Thesis (M.S.)–University of Chicago, Department of Botany – https://www.researchgate.net/publication/34049161_The_clogging_of_stomata_in_conifers (No abstract found – Who can send us one ?)

Rhine J. B. (1924) – Clogging of Stomata of Conifers in Relation to Smoke Injury and Distribution – Botanical Gazette Vol. 78, No. 2 (Oct., 1924), pp. 226-232 – https://www.jstor.org/stable/2469885?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2016/12/30/smoke-injury-and-clogging-of-stomata/)

Ribeiro D. M., Desikan R., Bright J., Confraria A., Harrison J., Hancock J. T., Barros R. S., Neill S. J., Wilson I. D. (2008) – Differential requirement for NO during ABA-induced stomatal closure in turgid and wilted leaves – Plant, Cell & Environment 32 (1): 46-57 – DOI: 10.1111/j.1365-3040.2008.01906.x- http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01906.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/04/nitric-oxide-no-during-aba-induced-stomatal-closure-in-turgid-and-wilted-leaves/)

Říčánek M., Vicherková M.(1992) – Stomatal responses to ABA and IAA in isolated epidermal strips of Vicia faba L. – Biologia Plantarum 34: 259-265 – https://link.springer.com/article/10.1007/BF02925879 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-responses-to-aba-and-iaa-in-isolated-epidermal-strips/)

Richards J. (2016) – New study of water-saving plants advances efforts to develop drought-resistant crops – EurekaAlert 2016-12-05 – https://www.eurekalert.org/pub_releases/2016-12/drnl-nso120516.php – (On our blog : https://plantstomata.wordpress.com/2016/12/07/29113/)

Richardson L. G. L., Torii K. U. (2013) – Take a deep breath: peptide signalling in
stomatal patterning and differentiation. – Journal of Experimental Botany 64:
52435251. DOI: https://doi.org/10.1093/jxb/ert246 – https://academic.oup.com/jxb/article/64/17/5243/702782/Take-a-deep-breath-peptide-signalling-in-stomatal – (On our blog : https://plantstomata.wordpress.com/2017/03/15/peptide-signalling-in-stomatal-patterning-and-differentiation/)

Ridolfi M., Fauveau M. L., Label P., Garrec J. P., Dreyer E. (1996) Responses to water stress in an ABA – unresponsive hybrid poplar (Populus koreana x trichocarpa cv. Peace) I. Stomatal function – New Phytologist, 1996, 134 ( 3): 445-454 – DOI: 10.1111/j.1469-8137.1996.tb04361.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1996.tb04361.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/07/stomatal-responses-to-water-stress-in-an-aba-unresponsive-hybrid-poplar/)

Rienmuller F., Beyhl D., Lautner S., Fromm J., Al-Rasheid K. A. S., Ache P., Farmer E. E., Marten I., Hedrich R. (2010) Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. – Plant and Cell Physiology 5115481554 – doi: 10.1093/pcp/pcq102. Epub 2010 Jul 14. – https://www.ncbi.nlm.nih.gov/pubmed/20630987 – (On our blog : https://plantstomata.wordpress.com/2017/03/16/guard-cell-specific-calcium-sensitivity/)

RIKEN Center (2014) – Plant hormone strigolactone plays key role in response to drought stress – https://phys.org/news/2014-03-hormone-strigolactone-key-role-response.html – (On our blog : https://plantstomata.wordpress.com/2017/09/22/promotion-of-stomatal-pore-opening-to-enhance-plant-growth/)

Ritte G., Raschke K. (2003) – Metabolite export of isolated guard cell chloroplasts of Vicia faba. – New Phytologist 159: 195–202 –DOI: 10.1046/j.1469-8137.2003.00789.x – https://www.jstor.org/stable/1514363?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/04/the-release-of-carbon-from-guard-cell-chloroplasts-as-a-source-for-the-production-of-organic-osmotica/)

Ritte G., Rosenfeld J., Rohrig K., Raschke K. (1999)Rates of sugar uptake by guard cell protoplasts of Pisum sativum L. related to the solute requirement for stomatal opening. – Plant Physiology 1999;121: 647-656. – DOI: https://doi.org/10.1104/pp.121.2.647 – http://www.plantphysiol.org/content/121/2/647 – (On our blog : https://plantstomata.wordpress.com/2017/09/04/the-capacity-of-sugar-uptake-mechanisms-in-stomata-and-stomatal-opening-requirement/)

Rivera L., Baraza E., Alcover J. A., Bover P., Rovira C. M., Bartolomé J. (2014) – Stomatal density and stomatal index of fossil Buxus from coprolites of extinct Myotragus balearicus Bate (Artiodactyla, Caprinae) as evidence of increased CO2 concentration during the late Holocene. – Holocene 24, 876–880 –  doi: 10.1177/0959683614530445 – CrossRef Full Text | Google Scholar

Roark B., Quisenberry J. E. (1977) – Environmental and genetic components of stomatal behavior in two genotypes of upland cotton – Plant Physiol.59: 354-356 -DOI: 10.1104/pp.59.3.354 – https://www.jstor.org/stable/4264736 – (On our blog : https://plantstomata.wordpress.com/2017/09/11/environmental-and-genetic-components-of-stomatal-behavior/)

Robaina-Estévez S., Daloso D. M., Zhang Y., Fernie A. R., Nikoloski Z. (2017) – Resolving the central metabolism of Arabidopsis guard cells – Scientific Reports 7, Nt.: 8307 – doi:10.1038/s41598-017-07132-9 – https://www.nature.com/articles/s41598-017-07132-9 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/central-metabolism-of-arabidopsis-stomata/)

Roberts C., Sahgal P., Merritt F., Perlman B., Tallman G. (1995) – Temperature and abscisic acid can be used to regulate survival, growth and differentiation of cultured guard cell protoplasts of tree tobacco. – Plant Physiology 109, 1411–20. – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC157676/ – (On our blog : https://plantstomata.wordpress.com/2017/03/16/survival-growth-and-differentiation-of-cultured-guard-cell-protoplasts/)

Roberts J., Cabral O. M. R., Aguiar L. F. De (1990) – Stomatal and Boundary-Layer Conductances in an Amazonian terra Firme Rain Forest – J. Appl. Ecol.27, 336–353 (1990) – https://www.jstor.org/stable/2403590?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/11/stomatal-and-boundary-layer-conductances/)

Robinson J. M. (1994) – Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization. – Plant, Cell and Environment 1994;17345354 – DOI: 10.1111/j.1365-3040.1994.tb00303.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00303.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/07/stomatal-adjustment-mechanisms-should-show-patterned-variation/)

Robinson M. F., Heath J., Mansfield T. A. (1998) – Disturbances in stomatal behavior caused by air pollution – J. Exp. Bot. 49: 461 – https://doi.org/10.1093/jxb/49.Special_Issue.461 – https://www.jstor.org/stable/23695979?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/11/disturbances-in-stomatal-behavior-caused-by-air-pollution/)

Robinson M. F., Very A. A., Sanders D., Mansfield T. A. (1997) – How can stomata contribute to salt tolerance?. – Ann. Bot. 80. 387-393 – https://doi.org/10.1006/anbo.1996.0435 – https://academic.oup.com/aob/article/80/4/387/2587680/How-Can-Stomata-Contribute-to-Salt-Tolerance  – (On our blog : https://plantstomata.wordpress.com/2017/09/11/stomata-and-the-development-of-salt-tolerance-in-crops/)

Robinson N., Preiss J. (1985) – Biochemical phenomena associated with stomatal function. – Physiol. Plant. 64: 141-146 – DOI: 10.1111/j.1399-3054.1985.tb02327.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1985.tb02327.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/11/environmental-and-internal-signals-trigger-significant-changes-in-the-biochemistry-of-stomata/)

Robinson S. J., Barbier de Reuille P., Bergmann D. C., Prusinkiewicz P., Coen E. (2011) – Generation of spatial patterns through cell polarity switching. – Science 333(6048):1436-40 – doi: 10.1126/science.1202185. – PMID: 21903812 – https://www.ncbi.nlm.nih.gov/pubmed/21903812 – (On our blog : https://plantstomata.wordpress.com/2017/03/16/stomatal-spacing-and-dynamic-two-way-interactions-between-stem-cells-and-their-neighborhood/)

Rocha-Uriartt L., Marques Corta G., Gehlen G., Droste A., Schmitt J. L. (2014) – Morphometric differences of Microgramma squamulosa (Kaulf.) de la Sota (Polypodiaceae) leaves in environments with distinct atmospheric air quality – Anais da Academia Brasileira de Ciências 86(3):1137-46. – DOI: 10.1590/0001-3765201420130094 · Source: PubMed – https://www.ncbi.nlm.nih.gov/pubmed/25014917– (On our blog : https://plantstomata.wordpress.com/2017/01/16/stomata-of-a-fern-in-environments-with-distinct-atmospheric-air-quality/)

Rodrigues M.L., Santos T.P., Rodrigues A.P., de Souza C.R., Lopes C.M., Maroco J.P., Pereira J.S., Chaves M.M. (2008) – Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation – Funct. Plant Biol. 35: 565–579 – https://doi.org/10.1071/FP08004 – Google Scholar CrossRef – http://www.publish.csiro.au/fp/FP08004 – (On our blog : https://plantstomata.wordpress.com/2017/08/11/hydraulic-and-chemical-signalling-in-the-regulation-of-stomatal-conductance/)

Rodriguez J. L., Davies W. J. (1982) – The effects of temperature and ABA on stomata of Zea mays L. – J. Exp. Bot. 33, 977–987. – doi: 10.1093/jxb/33.5.977 – CrossRef Full Text | Google Scholar – https://academic.oup.com/jxb/article-abstract/33/5/977/566674/The-Effects-of-Temperature-and-ABA-on-Stomata-of?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/08/07/aba-temperature-and-stomata/)

Rodriguez-Dominguez C. M., Buckley T. N.,  Egea G.,  de Cires A.,  Hernandez-Santana V.,  Martorell S.,  Diaz-Espejo A. (2016) – Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor  – in Wiley Online LIbrary: Browse Accepted Articles Accepted, unedited articles published online and citable. (On our blog : https://plantstomata.wordpress.com/2016/06/04/stomatal-responses-to-leaf-turgor/)

Rodriguez-Dominguez C. M., Buckley T. N.,  Egea G.,  Diaz-Espejo A. (2016) – Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor: Partitioning stomatal responses to drought. – Plant Cell and Environment · June 2016 -DOI: 10.1111/pce.12774 – https://www.researchgate.net/publication/303782229_Most_stomatal_closure_in_woody_species_under_moderate_drought_can_be_explained_by_stomatal_responses_to_leaf_turgor_Partitioning_stomatal_responses_to_drought –  (On our blog : https://plantstomata.wordpress.com/2016/06/07/partitioning-stomatal-responses-to-drought/)

Rodríguez-Gamir J., Ancillo G., González-Mas M. C., Primo-Millo E., Iglesias D. J., Forner-Giner M. A. (2011) – Root signalling and modulation of stomatal closure in flooded Citrus seedlings – Plant Physiol Biochem. 2011 Jun;49(6):636-45. doi: 10.1016/j.plaphy.2011.03.003. Epub 2011 Mar 12. – http://www.sciencedirect.com/science/article/pii/S0981942811000829 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/modulation-of-stomatal-closure-in-flooded-citrus-seedlings/)

Roelfsema M. G. R. (1997) – Electrophysiological properties of Arabidopsis thaliana guard cells: responses to abscisic acid studied with abi-mutants. PhD thesis, University of Groningen, 73–96.

Roelfsema M. R. G., Hanstein S., Felle H. H., Hedrich R. (2002) COprovides an intermediate link in the red light response of guard cells. – Plant Journal 32: 6575 – DOI: 10.1046/j.1365-313X.2002.01403.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.2002.01403.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/12/in-intact-leaves-the-red-light-response-of-stomata-is-mediated-through-a-decrease-of-the-intercellular-co2-concentration/)

Roelfsema M. R. G., Hedrich R. (2002) – Studying guard cells in the intact plant: modulation of stomatal movement by apoplastic factors. – New Phytol. 153, 425–431. – doi: 10.1046/j.1469-8137.2002.00344.x – CrossRef Full Text | Google Scholar – DOI: 10.1046/j.0028-646X.2001.Documedoc.doc.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.Documedoc.doc.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/08/12/modulation-of-stomatal-movement-by-apoplastic-factors/)

Roelfsema M.R., Hedrich R. (2005) – In the light of stomatal opening: New insights into ‘the Watergate’. – New Phytol, 2005; 167: 665–691. – doi:10.1111/j.1469-8137.2005.01460.x pmid:16101906 – (http://www.ncbi.nlm.nih.gov/pubmed/16101906). – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/18/biophysical-principles-and-mechanisms-of-stomatal-movement/)

Roelfsema M. R. G., Hedrich R. (2010) Making sense out of Ca2+ signals: their role in regulating stomatal movements. – Plant, Cell & Environment 33: 305321 –DOI: 10.1111/j.1365-3040.2009.02075.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.02075.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/18/ca2-signals-and-their-role-in-regulating-stomatal-movements/)

Roelfsema M. R. G., Hedrich R. (2016) Do stomata of evolutionary distant species differ in sensitivity to environmental signals? – New Phytol, 211: 767–770. doi:10.1111/nph.14074 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14020/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/07/why-do-groups-that-conduct-similar-gas-exchange-experiments-with-ferns-reach-very-different-results-with-stomata/)

Roelfsema M. R. G., Hedrich R., Geiger D. (2012) Anion channels: master switches of stress responses. Trends in Plant Science 17: 221229. – CrossRefPubMedCAS |
– http://www.sciencedirect.com/science/article/pii/S1360138512000106 – (On our blog : https://plantstomata.wordpress.com/2015/10/21/anion-channels-in-stomata/).

Roelfsema M. R. G., Konrad K. R., Marten H., Psaras G. K., Hartung W., Hedrich R.. (2006) Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, COand abscisic acid. Plant, Cell Environment 29: 15951605. – CrossRefMedlineGoogle Scholar

Roelfsema M. R. G., Levchenko V., Hedrich R. (2004) – ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. – Plant Journal 37: 578588. – doi:10.1111/j.1365-313X.2003.01985.x pmid:14756768 – CrossRefMedlineWeb of ScienceGoogle Scholar

Roelfsema M. R. G., Prins H. B. A. (1995) Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana. Physiologia Plantarum 95: 373378. – Wiley Online Library |CASCrossRefGoogle Scholar

Roelfsema M. R. G., Prins H. B. A. (1997) Ion channels in guard cells of Arabidopsis thaliana (L) Heynh. Planta 202:1827.

Roelfsema M. R. G., Prins H. B. A. (1998) – The membrane potential of Arabidopsis thaliana guard cells: depolarization induced by apoplastic acidification. – Planta1998 – 205: 100-112. – Google Scholar – PubMed | – https://link.springer.com/article/10.1007/s004250050301 – (On our blog : https://plantstomata.wordpress.com/2017/08/11/apoplastic-acidification-will-increase-the-k-efflux-in-the-depolarized-state-and-reduce-the-k-influx-in-the-hyperpolarized-state-in-stomata/)

Roelfsema M. R. G., Staal M., Prins H. B. A. (1998) Blue light-induced apoplastic acidification of Arabidopsis thaliana guard cells: inhibition by ABA is mediated through protein phosphatases. – Physiologia Plantarum 103: 466474 –DOI: 10.1034/j.1399-3054.1998.1030404.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1998.1030404.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/07/inhibition-in-stomata-by-aba-is-mediated-through-protein-phosphatases/)

Roelfsema M. R. G., Steinmeyer R., Hedrich R. (2001) Discontinuous single electrode voltage-clamp measurements: assessment of clamp accuracy in Vicia faba guard cells. – J. Exp. Bo.t 52:1933–1939 – https://doi.org/10.1093/jexbot/52.362.1933 – CrossRef PubMed Google Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jexbot/52.362.1933 – (On our blog : https://plantstomata.wordpress.com/2017/08/06/assessment-of-clamp-accuracy-in-stomata/)

Roelfsema M. R. G., Steinmeyer R., Staal M., Hedrich R. (2001) Single guard cell recordings in intact plants: light-induced hyperpolarization of the plasma membrane. – Plant Journal 26:113 – DOI: 10.1046/j.1365-313x.2001.01000.x  – https://www.ncbi.nlm.nih.gov/pubmed/11359605 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/single-guard-cell-recordings-in-intact-plants/)

Rogers C. A., Powell R. D., Sharpe P. J. H. (1979) – Relationship of temperature to stomatal aperture and potassium accumulation in guard cells of Vicia faba – Plant Physiology 63: 388-391 – PMCID: PMC542834 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC542834/pdf/plntphys00123-0162.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/12/temperature-stomatal-aperture-and-k-accumulation-in-stomata/)

Rogers C. A., Sharpe P. J. H., Powell R. D. (1980) – Dark opening of stomates of Vicia faba in CO2-free air: effect of temperature on stomatal aperture and potassium accumulation – Plant Physiology 65: 1036-1038 – (Article not found)

Rogers C. A., Spence R. D. (1981) – High temperature disruption of guard cells of Vicia faba: effect on stomatal aperture – Plant Physiology 67: 193-196 – DOI: https://doi.org/10.1104/pp.67.2.193 – http://www.plantphysiol.org/content/67/2/193.short – (On our blog : https://plantstomata.wordpress.com/2017/09/12/high-temperature-disruption-of-guard-cells-and-its-effect-on-stomatal-aperture/)

Rogiers S. Y., Clarke S. J. (2013) – Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines – Annals of Botany (2013) 111: 433-444 – doi: 10.1093/aob/mcs298. Epub 2013 Jan 4. – Google Scholar CrossRef PubMed – https://www.ncbi.nlm.nih.gov/pubmed/23293018 – (On our blog : https://plantstomata.wordpress.com/2017/08/06/nocturnal-and-daytime-stomatal-conductance-responses/)

Rogiers S. Y., Greer D. H., Hatfield J. M., Hutton R. J., Clarke S. J., Hutchinson P. A., Somers A. (2012) – Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. – Tree Physiol. 32(3): 249-261 – DOI: https://doi.org/10.1093/treephys/tpr131 – (CrossRef,Medline) – https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpr131 – (On our blog – https://plantstomata.wordpress.com/2017/03/13/increased-concentrations-of-aba-may-augment-stomatal-responsiveness-to-low-vpd/)

Romano L.A., Jacob T., Gilroy S., Assmann S.M. (2000) –  Increases in cytosolic Ca2+ are not required for abscisic acid-inhibition of inward K+ currents in guard cells of Vicia faba L. – Planta 211: 209-217, 2000. –  CrossRefPubMedCAS | – https://www.ncbi.nlm.nih.gov/pubmed/10945215 – (On our blog : https://plantstomata.wordpress.com/2017/03/13/ca2-independent-regulation-is-involved-in-aba-inhibition-of-stomatal-opening-processes/)

Romero-Aranda R.Cantó-Garay R., Martínez P.F. (1994) – Distribution and density of stomata in two cultivars of Gerbera jamesonii and its relation to leaf conductance – Scientia Horticulturae, Vol. 58, Issue 1-2, 167-173 – http://dx.doi.org/10.1016/0304-4238(94)90137-6 – http://www.sciencedirect.com/science/article/pii/0304423894901376 – (On our blog : https://plantstomata.wordpress.com/2017/03/13/stomatal-density-and-conductance-in-gerbera-cultivars/)

Ronzier E.Corratgé-Faillie C.Sanchez F.Prado K.Brière C.Leonhardt N.Thibaud J. B.Xiong T. C. (2014) – CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. – Plant Physiol. 166: 314326 – doi: http://dx.doi.org/10.1104/pp.114.240226 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/166/1/314.long – (On our blog : https://plantstomata.wordpress.com/2017/01/25/cpk13-reduces-stomatal-aperture-through-its-inhibition-of-the-guard-cell-expressed-kat2-and-kat1-channels/)

Roos J., Bejai S., Oide S., Dixelius C. (2014) –  RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity. – PloS one 9, e88187 – doi:10.1371/journal.pone.0088187 –

Rosing M. S. (1908) – Der Zucker- und Stärkegehalt in den Schliesszellen offener und geschlossener Spaltöffnungen – Ber. d. Deutsch. Bot. Ges. 26(6): 438-445 – DOI: 10.1111/j.1438-8677.1908.tb06711.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1908.tb06711.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/12/sugar-and-starch-content-in-guard-cells-of-open-and-closed-stomata-in-german/)

Roth-Bejerano N., Itai C.. (1987) – Phytochrome involvement in stomatal movement in Pisum sativum, Vicia faba, and Pelargonium sp. – Physiol. Plant. 70: 85-89 – DOI: 10.1111/j.1399-3054.1987.tb08701.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1987.tb08701.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/12/phytochrome-involvement-in-stomatal-movement/)

Roth-Nebelsick A. (2007) – Computer-based studies of diffusion through stomata of different architecture. – Ann Bot 100:23–32 -DOI:https://doi.org/10.1093/aob/mcm075 – PubMedCentralCrossRefPubMed – https://academic.oup.com/aob/article/100/1/23/2763351/Computer-based-Studies-of-Diffusion-through – (On our blog : https://plantstomata.wordpress.com/2017/03/13/diffusion-through-stomata/)

Rowe M. H., Bergmann D. C. (2010) – Complex signals for simple cells: the expanding ranks of signals and receptors guiding stomatal development. – Curr. Opin. Plant Biol. 2010 Oct;13(5):548-55.- doi: 10.1016/j.pbi.2010.06.002. Epub 2010 Jul 16. – PMID: 20638894 – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=20638894 – (On our blog : https://plantstomata.wordpress.com/2017/03/19/rlk-mediated-signaling-in-stomatal-development/)

Rowland-Banford A. J;, Nordenbrock C., Baker J. T., Bowes G., Allen L. H. Jr. (1990) – Changes in stomatal density of rice grown under various CO2 regimes with natural solar irradiance – Environmental and Experimental Botany 2: 175-180 – https://doi.org/10.1016/0098-8472(90)90062-9 – http://www.sciencedirect.com/science/article/pii/0098847290900629 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/changes-in-stomatal-density-under-various-co2-regimes-with-natural-solar-irradiance/)

Royer D.L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Rev. Palaeobot. Palynol. 144 (1-2): 1 – 28. – http://dx.doi.org/10.1016/S0034-6667(00)00074-9 – http://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Royer%202001.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/09/paleoatmospheric-co2-concentration-and-stomata/)

Rudall P. J., Knowles E. V. W. (2013) – Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning – Annals of Botany 112: 1031–1043, 2013 doi:10.1093/aob/mct169 – (On our blog : https://plantstomata.wordpress.com/2017/09/25/contrasting-patterning-and-pre-patterning-in-stomatal-development/)

Rudall P. J., Hilton J., Bateman R. M. (2013) – Several developmental and morphogenetic factors govern the diversity of stomatal development in land plants. -New Phytologist 200(3): 598-614 – doi:10.1111/nph.12406 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-200-i-3-nph12406 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/58772/)

Rudolph K. (1925) – Epidermis und epidermale Transpiration. – Bot. ArchivIX, 49.- Google Scholar  – (Article not found)

Rui Y., Anderson C. T. (2016) – Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis – Plant Physiology March 2016 vol. 170 no. 3 1398-1419 – doi: http://dx.doi.org/10.1104/pp.15.01066 – http://www.plantphysiol.org/content/170/3/1398.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/26/how-guard-cell-walls-allow-stomata-to-function/)

Ruiz L. P., Atkinson C. J., Mansfield T. A. (1993) – The transpiration stream – Calcium in the xylem and its influence on the behaviour of stomata. – Philosophical Transactions of the Royal Society of London Series B 341: 6774 – DOI: 10.1098/rstb.1993.0092 – CrossRef |ADS – http://rstb.royalsocietypublishing.org/content/341/1295/67 – (On our blog : https://plantstomata.wordpress.com/2017/08/06/calcium-and-the-behaviour-of-stomata/)

Ruiz L. P., Mansfield T. A. (1994) A postulated role for calcium oxalate in the regulation of calcium ions in the vicinity of stomatal guard cells. – New Phytol. 127: 473481 – DOI: 10.1111/j.1469-8137.1994.tb03965.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1994.tb03965.x/full – Wiley Online Library |- (On our blog : https://plantstomata.wordpress.com/2017/08/05/calcium-oxalate-in-the-regulation-of-calcium-ions-in-the-vicinity-of-stomata/)

Russo S.E., Cannon W. L., Elowsky C., Tan S., Davies, S. J. (2010) – Variation in Leaf Stomatal Traits of 28 Tree Species in Relation to Gas Exchange along an Edaphic Gradient in a Bornean Rain Forest. – American Journal of Botany, 97, 1109-1120. – http://dx.doi.org/10.3732/ajb.0900344 – CrossRefPubMed – http://www.amjbot.org/content/97/7/1109 – (On our blog : https://plantstomata.wordpress.com/2017/03/19/leaf-stomatal-traits-of-trees-in-relation-to-gas-exchange/)

Ruszala E. M., Beerling D. J., Franks P. J., Chater C., Casson S. A., Gray J. E., Hetherington A. M. (2011) – Land plants acquired active stomatal control early in their evolutionary history. – Curr Biol 2011,21:1030-1035 -DOI: http://dx.doi.org/10.1016/j.cub.2011.04.044 –  (PubMed Abstract | Publisher Full Text) – http://www.cell.com/current-biology/abstract/S0960-9822(11)00486-6?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982211004866%3Fshowall%3Dtrue – View ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/2017/03/19/physiologically-active-stomatal-control-originated-at-least-as-far-back-as-the-emergence-of-the-lycophytes/)

Rutter J. C.,Willmer C. M. (1979) – A light and electron microscopy study of the epidermis of Paphiopedilum spp. with emphasis on stomatal ultrastructure. – Plant, Cell and Environment 2(3): 211-219 – DOI: 10.1111/j.1365-3040.1979.tb00072.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1979.tb00072.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/12/stomatal-ultrastructure-in-paphiopedilum/)

Rychel A. L., Peterson K. L., Torii K. U. (2010) – Plant twitter: ligands under 140 amino acids enforcing stomatal patterning. – Journal of Plant Research 123: 275–280. – 10.1007/s10265-010-0330-9. – View ArticlePubMed – https://link.springer.com/article/10.1007%2Fs10265-010-0330-9 – (On our blog : https://plantstomata.wordpress.com/2017/03/19/genetic-components-for-stomatal-patterning-originated-early-in-land-plant-evolution/)

Saadu R. O., AbdulRahaman A. A., Oladele F. A. (2009) – Stomatal complex types and transpiration rates in some tropical tuber species. African Journal of Plant Science, 3(5): 107-112. – http://www.academicjournals.org/article/article1380095359_Saadu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2015/10/22/stomata-and-transpiration-rates/).

Sabo M., Bede M., Vukadinovic V. (2001) – Correlation between number of stomata and concentration of macro and microelements in some winter wheat (Triticum aestivum L.) genotypes. – Acta-Agronomica_Hungarica, 49: 319-327 – http://akademiai.com/doi/pdf/10.1556/AAgr.49.2001.4.2 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/correlation-between-number-of-stomata-and-concentration-of-macro-and-microelements/)

Sachs T. (1974) – The developmental origin of stomata pattern in Crinum. – Bot. Gaz. 135314–318 – Google Scholar

Sachs T. (1978) – The development of spacing patterns in the leaf epidermis. In: Subtelny S;, Sussex I. M. (eds) – The clonal basis of development. – Academic, New
York, pp 161–183

Sachs T. (1979) – Cellular interactions in the development of stomatal patterns in Vinca major L. – Annals of Botany 43: 693–700.- DOI: https://doi.org/10.1093/oxfordjournals.aob.a085682 – Abstract/FREE Full Text – https://academic.oup.com/aob/article-abstract/43/6/693/187950/Cellular-Interactions-in-the-Development-of?ijkey=2e0b7847d57351dd2d7ce5476547fa451d62b3e9&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/03/21/interactions-between-the-future-guard-cells-and-the-adjoining-cells-for-the-formation-of-the-pattern-of-functional-stomata/)

Sachs T. (1988) – Epigenetic selection, an alternative mechanism of pattern formation – Journal of Theoretical Biology  134547–559. – CrossRefMedlineWeb of ScienceGoogle Scholar

Sachs T. (1994) – Both cell lineages and cell interactions contribute to stomatal patterning. – International Journal of Plant Sciences 155: 245–247 –DOI: 10.1086/297163 – CrossRefWeb of Sciencehttp://www.journals.uchicago.edu/doi/10.1086/297163 – (On our blog : https://plantstomata.wordpress.com/2017/08/11/cell-lineages-cell-interactions-and-stomatal-patterning/)

Sachs T., Benouaiche P. (1978) – A control of stomata maturation in Aeonium. – Israel Journal of Botany 27: 47–53 (Article not found)

Sachs T., Novoplansky N., Kagan M. L. (1993) – Variable development and cellular patterning in the epidermis of Ruscus. – Ann. Bot. 71, 237–243 – https://doi.org/10.1006/anbo.1993.1030 – https://www.jstor.org/stable/42759317?seq=1#page_scan_tab_contents –  (On  our blog : https://plantstomata.wordpress.com/2017/08/05/patterning-in-the-epidermis-of-ruscus/)

Sack F.D. (1987) – The development and structure of stomata. In: Zeiger E, Farquhar GD, Cowan IR. eds. Stomatal function. Stanford, CA: Stanford University Press, 59–89.

Sack F. D. (2016) – Research Interests – UBC Univ. Brit. Columbia – https://botany.ubc.ca/people/fred-sack – (On our blog : https://plantstomata.wordpress.com/2016/04/10/fred-sacks-research-on-stomata/)

Sack F. D., Chen J. C. (2009) – Pores in place. – Science 323:592-593 – DOI: 10.1126/science.1169553 – http://science.sciencemag.org/content/323/5914/592 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/signals-that-control-cell-division-and-fate-also-control-stomatal-pore-development/)

Sack L., Buckley T. N. (2016) – The developmental basis of stomatal density and flux –Plant Physiology August 2016 vol. 171 no. 4 2358-2363 –  DOI:10.1104/pp.16.00476 – http://www.plantphysiol.org/content/171/4/2358.full – (On our blog : https://plantstomata.wordpress.com/2016/07/15/stomatal-density-and-flux/)

Sack L., Scoffoni C. (2012) – Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM). – J. Vis. Exp. 2012 Dec 31;(70). pii: 4179. – doi: 10.3791/4179.PMID: 23299126 – Free PMC Article – https://www.ncbi.nlm.nih.gov/pubmed/23299126 – (On our blog : https://plantstomata.wordpress.com/2017/03/21/leaf-hydraulic-conductance-and-stomatal-conductance/)

Sadras V.O., Montorob A., Morana M. A., Aphaloc P. J. (2012) – Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine. – Agr. Forest Meteorol., 165, 35–42. – http://dx.doi.org/10.1016/j.agrformet.2012.06.005 – http://www.sciencedirect.com/science/article/pii/S0168192312002043 – (On our blog : https://plantstomata.wordpress.com/2017/03/19/elevated-temperaturestomatal-dimensions-and-stomatal-conductance/)

Sahgal P., Martinez G. V., Roberts C., Tallman G. (1994) – Regeneration of plants from cultured guard cell protoplasts of Nicotiana glauca (Graham). – Plant Sci. 97199–208. – https://doi.org/10.1016/0168-9452(94)90057-4 – CrossRefWeb of Science – http://www.sciencedirect.com/science/article/pii/0168945294900574?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2017/03/21/cultured-guard-cell-protoplasts-of-nicotiana-glauca-are-totipotent/)

Saji S., Bathula S., Kubo A., Tamaoki M., Kanna M., Aono M., Nakajima N., Nakaji T., Takeda T., Asayama M., Saji H. (2008) – Disruption of a gene encoding C4-dicarboxylate transporter-like protein increases ozone sensitivity through deregulation of the stomatal response in Arabidopsis thaliana. – Plant Cell Physiol.49:2–10 –doi:10.1093/pcp/pcm174 pmid:18084014 – CrossRef PubMedAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/03/16/ozs1-and-stomatal-closure/)

Sakai Y., Sugano S. S., Kawase T., Shirakawa M., Imai Y., Kawamoto Y., Sugiyama H., Nakagawa T., Hara-Nishimura I., Shimada T., (2017) – The chemical compound bubblin induces stomatal mispatterning in Arabidopsis by disrupting the intrinsic polarity of stomatal lineage cells – Development 144, 499-506 – doi:10.1242/dev.145458 – http://dev.biologists.org/content/develop/144/3/499.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/20/bubblin-induces-stomatal-mispatterning/)

Sakaki T., Satoh A., Tanaka K., Omasa K., Shimazaki K.-I. (1995) – Lipids and fatty acids in guard-cell protoplasts from Vicia faba leaves – Phytochemistry 40, 1065–1070.

Sakisaka M. (1929) – On the number of chloroplasts in the guard cells of seed plants. – Jap. J. Bot. 43: 47-48.

Salam M.A., Jammes F., Hossain M.A., Ye W., Nakamura Y., Mori I.C., Kwak J.M., Murata Y. (2013) – Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells – Plant Biology 15(3): 436–442 – doi: 10.1111/j.1438-8677.2012.00671.x – PubMed Abstract | CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.2012.00671.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/03/22/two-mitogen-activated-protein-kinases-mapks-positively-regulate-aba-induced-stomatal-closure/)

Salas J.A., Sanabria M. E., Pire R. (2001) – Variación en el índice y densidad estomática en plantas de tomate (Lycopersicon esculentum Mill.) sometidas a tratamientos salinos. – Bioagro 13: 99-104.

Saldaña Z., Sánchez E., Xicohtencatl-Cortes J., Puente J. L., Girón J. A. (2011) – Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coliO157:H7 – Front. Microbiol., 27 May 2011 | http://dx.doi.org/10.3389/fmicb.2011.00119 – http://journal.frontiersin.org/article/10.3389/fmicb.2011.00119/full – (On our blog : https://plantstomata.wordpress.com/2015/10/21/stomata-and-bacteria/).

Saleh H., Thind  S. K.  (2015) – Physiology of Cell Membranes, Stomata And Photosynthetic Pigments of Rice (Oryza sativa L.) Under High Temperature – The Global Journals: Volume : 4 | Issue : 6 | June 2015 • ISSN No 2277 – 8179.

Saliendra N. Z., Sperry J. S., Comstock P. J. (1995) –  Influence of leaf water status on stomatal response to humidity, hydraulic conductance and soil drought in Betula occidentalis. – Planta 196,357–366 – doi:10.1007/BF00201396 – CrossRefGoogle Scholar – https://link.springer.com/article/10.1007%2FBF00201396 – (On our blog : https://plantstomata.wordpress.com/2017/03/22/leaf-water-status-and-stomatal-response-to-humidity-hydraulic-conductance-and-soil-drought/)

Salisbury, E. J. (1927) On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. – Philosophical Transactions of the Royal Society of London B 216: 165. – CrossRef

Salisbury E. J. (1932) – The interrelation of soil, climate, and organism and the use of stomatal frequency as an. Integrating index of the water relation of the plant – Beih. Bot. Zentralb., (49) 408-420 –

Sallanon H., Laffray D., Coudret A. (1993) – Ultrastructure and functioning of guard cells of in vitro cultured rose plants – Plant Physiol. Biochem. 29: 333-339 –

Salleo S., Nardini A., Pitt F., Lo Gullo M. A. (2000) – Xylem cavitation and hydraulic control of stomatal conductance in laurel (Laurus nobilis L.) – Plant Cell Environ. 23: 71-79. –DOI: 10.1046/j.1365-3040.2000.00516.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2000.00516.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/22/hydraulic-control-of-stomatal-conductance-2/)

Sánchez C., Fischer G., Sanjuanelo C. W. (2013) – Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer] – Agron. colomb. vol.31 no.1 Bogotá Jan./Apr. 2013 – http://www.scielo.org.co/scielo.php?pid=S0120-99652013000100005&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2015/10/21/stomatal-behavior-in-fruits-leaves-and-cladodes/).

Sanchez C. A., Haq N., Assogbadjo A.E. (2010) – Variation in baobab (Adansonia digitata L.) leaf morphology and its relation to drought tolerance – Genetic Resources and Crop Evolution, 57, (1), 17-25 – http://eprints.soton.ac.uk/73975/ – (On our blog : https://plantstomata.wordpress.com/2017/03/23/drought-tolerance-higher-stomata-density-and-smaller-guard-cell-length/)

Sanchez S. M. (1977) – The fine structure of the guard cells of Helianthus annuus – Am. J. Bot. 64: 814-824 – http://www.jstor.org/stable/2442374 – Google Scholar – http://www.jstor.org/stable/2442374?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/05/the-fine-structure-of-the-guard-cells-of-helianthus-annuus/)

Santakumari M., Fletcher R.A. (1987) – Reversal of triazole-induced stomatal closure by gibberellic acid and cytokinins in Commelina benghalensis. – Physiol. Plant. 71: 95-99, 1987

Santamaria J. M.Davies W. J.Atkinson C. J. (1993) – Stomata of micropropagated Delphinium plants respond to abscisic acid (ABA), CO2, light and water potential but fail to close fully – Journal of Experimental Botany, 44 (1). pp. 99-107 – DOI: 10.1093/jxb/44.1.99 – http://www.research.lancs.ac.uk/portal/en/publications/stomata-of-micropropagated-delphinium-plants-respond-to-abscisic-acid-aba-co2-light-and-water-potential-but-fail-to-close-fully(774441ae-ef2f-4eb5-99a2-9b8b213f5996).html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomatal-insensitivity-to-aba-for-stomata-from-leaves-cultured-in-vitro/)

Santelia D., Lunn J. E. (2017) – Transitory starch metabolism in guard cells: unique features for a unique function. – Plant Physiol 174: 539–549 –

Šantrůček J., Sage R. F. (1996) – Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. – Australian Journal of Plant Physiology 23, 467478 – https://doi.org/10.1071/PP9960467 – CrossRef |- http://www.publish.csiro.au/fp/PP9960467 – (On our blog : https://plantstomata.wordpress.com/2017/08/03/acclimation-of-stomatal-conductance-to-a-co2-enriched-atmosphere-and-elevated-temperature/)

Šantrůček J., Vráblová M., Šimková M., Hronková M., Drtinová M., Květoň J., Vrábl D., Kubásek J.,Macková J., Wiesnerová D., Neuwithová J., Schreiber L. (2014) – Stomatal and pavement cell density linked to leaf internal CO2 concentration. – Annals of Botany 114: 191–202. doi: 10.1093/aob/mcu095 – View ArticlePubMed/NCBIGoogle Scholar – https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcu095 – (On our blog : https://plantstomata.wordpress.com/2017/03/23/pavement-cell-density-pcd-stomatal-index-si-and-co2/)

Sanz L.C., Fernández-Maculet J.C., Gómez E., Vioque B., Olías J.M.: (1993) -Effect of methyl jasmonate on ethylene biosynthesis and stomatal closure in olive leaves. – Phytochemistry 33: 285-289, 1993.

Sasaki T.Mori I. C.Furuichi T.Munemasa S.Toyooka K.Matsuoka K.Murata Y.Yamamoto Y. (2010) – Closing plant stomata requires a homolog of an aluminum-activated malate transporter. – Plant Cell Physiol. 51, 354365 (2010).doi:10.1093/pcp/pcq016 pmid:20154005 – Abstract/FREE Full Text – https://academic.oup.com/pcp/article/51/3/354/1896695/Closing-Plant-Stomata-Requires-a-Homolog-of-an – (On our blog : https://plantstomata.wordpress.com/2017/03/23/a-homolog-of-an-aluminum-activated-malate-transporter-and-stomatal-closure/)

Sato N. (1985) – Lipid biosynthesis in epidermal, guard and mesophyll cell protoplasts from leaves of Vicia faba L. – Plant Cell Physiol. 26, 805–811.

Sato H., Kumagai T. O., Takahashi A., Katul G. (2015) – Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO2-enriched climate conditions. – J. Geophys. Res. Biogeosci. 120, 979–988. – doi: 10.1002/2014JG002838 – CrossRef Full Text | Google Scholar

Savchenko T., Kolla V.A., Wang C.Q., Nasafi Z., Hicks D. R., Phadungchob B., Chehab W. E., Brandizzi F., Froehlich J., Dehesh K. (2014) – Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought – Plant Physiol. 2014 Mar;164(3):1151-1160. – doi: 10.1104/pp.113.234310 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/164/3/1151 – (On our blog : https://plantstomata.wordpress.com/2017/03/23/oxylipin-and-aba-pathways-control-stomatal-closure-in-response-to-drought/)

Savitsky H. (1966) – Effectiveness of selection of tetraploid plants in cogeneration on the badsis of the number of chloroplasts in stomata – J. Amer. Soc. Sugar Beet. Techn. 13: 655-661.

Săvulescu E., Delian E., Luchian V., Chira C.-L. (2009) –  Morpho-anatomical changes in Quercus rubra L. leaf under pollution conditions – Lucrări ştiinţifice USAMVB, Seria B, vol. LIII: 688-693 – (On our blog : https://plantstomata.wordpress.com/2017/02/08/stomata-in-quercus-rubra-leaf-under-pollution-conditions/)

Savvides A., Fanourakis D., van Ieperen W. (2012) – Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. – Journal of Experimental Botany. 2012;63:1135–1143 – DOI:https://doi.org/10.1093/jxb/err348 – [PMC free article] [PubMed], Abstract/FREE Full Text – https://academic.oup.com/jxb/article/63/3/1135/470194/Co-ordination-of-hydraulic-and-stomatal – (On our blog : https://plantstomata.wordpress.com/2017/03/23/hydraulic-and-stomatal-conductances-across-light-qualities/)

Sawhney B. L., Zelitch I. (1969) – Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light. – Plant Physiol 44: 1350–1354 [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC396267/ – (On our blog : https://plantstomata.wordpress.com/2017/08/03/potassium-ion-accumulation-in-guard-cells-and-stomatal-opening-in-light/)

Sawinski K., Mersmann S., Robatzek S., Böhmer M. (2013) – Guarding the Green: Pathways to Stomatal Immunity – Molecular Plant-Microbe Interactions 2013 26(6): 626-632. doi:10.1094/MPMI-12-12-0288-CR – PubMed Abstract | CrossRef Full Text | Google Scholar – http://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-12-12-0288-CR – (On our blog : https://plantstomata.wordpress.com/2015/06/13/stomatal-closure-triggered-by-biotic-and-abiotic-stresses/)

Sayed S. A. (1997) – Effect of cadmium and kinetin on transpiration rate, stomatal opening and leaf relative water content in safflower plants – Journal of Islamic Academy of Sciences. 10(3): 73-80.

Sayre J. D. (1926) – Physiology of stomata of Rumex patientia – Science, N.Y. 57: 205 –

Sayre J. D. (1926) – Physiology of stomata of Rumex patientia – Ohio Jour.Sci. 26: 233-267.

SBS-UTEXAS – Stomatal crypts in Nerium oleander – http://www.sbs.utexas.edu/mauseth/weblab/webchap10epi/10.3-10.htm – (On our blog : https://plantstomata.wordpress.com/2017/09/27/stomatal-crypts-in-nerium-oleander/)

Scarth G. W. (1926) – The influence of the hydrogen-ion on the turgor and movement of the plant cells with special reference to stomatal movement – First Intern. Congress Plant Sci. Ithaca, N. Y.; Reviewed by C.A. Shull – Bot. Gaz. 82: 453-454.

Scarth G. W. (1927) – Stomatal Movement, its Regulation and Regulatory Role. – A review – Protoplasma 2, 498-511 – Google Scholar –  – https://link.springer.com/article/10.1007%2FBF01604752?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-movement/)

Scarth G. W. (1929) – The influence of H-ion concentration on the turgor and movement of plant cells with special reference to stomatal behaviour – Proc. Int. Conf. Plant Sci. 2, 1151-1162.

Scarth G. W. (1932) – Mechanism of the Action of Light and other Factors on Stomatal Movement. – Plant Physiol. 7, 481-504 – Google Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC440160/?page=22 – (On our blog : https://plantstomata.wordpress.com/2017/08/05/action-of-light-and-other-factors-on-stomatal-movement/)

Scarth G. W., Shaw M. (1951) – Stomatal Movement and Photosynthesis in Pelargonium. I. Effects of Light and Carbon Dioxide. – Plant Physiol.26, 207-225 – http://www.jstor.org/stable/4258416 – Google Scholar – http://www.jstor.org/stable/4258416?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/03/effects-of-light-and-co2-on-stomatal-movement-and-photosynthesis/)

Scarth G. W., Shaw M. (1951) – Stomatal Movement and Photosynthesis in Pelargonium. II. Effects of Water Deficit and of Chloroform: photosynthesis in guard cells. – Plant Physiol.26, 581-597.

Scarth G. W., Whyte J., Brown A. (1935) – On the cause of night opening of stomata – Trans. Roy. Soc. Canada – Sec V : 115-117 –

Schäfer K., Tirtapradja H. (1971) – Nettoassimilation, Dunkelatmung, Stomataanzahl und Chlorophyllgehalt von Blattabschnitten bei einigen Sorten von Dactylis glomerata L. – Z. Acker- u. Pflanzenbau 132(4): 320-339 – (On our blog : https://plantstomata.wordpress.com/2017/08/26/number-of-stomata-in-dactylis-glomerata-poaceae/)

Schäfer K. V. R., Oren R., Tenhunen J. D. (2000) – The effect of tree height on crown level stomatal conductance. – Plant Cell Environ.23(4): 365-375 –DOI: 10.1046/j.1365-3040.2000.00553.x – (CrossRef) – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2000.00553.x/abstract;jsessionid=E1BAC4D02DCB2A054DF001B263B7D821.f02t02 – (On our blog : https://plantstomata.wordpress.com/2017/03/24/tree-height-and-stomatal-conductance/)

Scheibe R., Rechmann U., Hedrich R., Raschke K. (1990) – Malate dehydrogenase in guard cells of Pisum sativum – Plant Physiol. 93: 1358-1364.

Schellenberg B., Ramel C., Dudler R. (2010).Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. – Mol. Plant Microbe Interact. 23:1287–1293.

Scherzer S.Maierhofer T.Al-Rasheid K. A.Geiger D.Hedrich R. (2012) – Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. – Mol Plant5: 14091412 – DOI: http://dx.doi.org/10.1093/mp/sss084 – CrossRefMedline – CrossRefPubMedCAS | – http://www.cell.com/molecular-plant/abstract/S1674-2052(14)60163-5?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1674205214601635%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2017/03/29/calcium-dependent-kinases-aba-and-anion-channels-in-stomata/)

Schlegel T. K., Schönherr J., Schreiber L. (2006) – Size selectivity of aqueous pores in stomatous cuticles of Vicia faba leaves – Planta 221(5): 648-655 – DOI10.1007/s00425-005-1480-1 – https://www.infona.pl/resource/bwmeta1.element.springer-6c467dc8-9590-3103-b17c-14f6a2376bb6 – (On our blog : https://plantstomata.wordpress.com/2017/10/18/active-ingredients-of-pesticides-growth-regulators-and-chemical-inducers-with-high-molecular-weights-penetrate-leaves-at-higher-rates-when-formulated-as-ions/)

Schletz  R. (2008) – Stomata densities of developing and mature leaves of Geraniums. ESSAI, 6(1), 42. –

Schlüter U., Muschak M., Berger D., Altmann T. (2003) – Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes – Journal of Experimental Botany, Vol. 54, No. 383: 867-874. – http://jxb.oxfordjournals.org/content/54/383/867.full.pdf – (On our blog : https://plantstomata.wordpress.com/2015/10/11/stomatal-density-and-photosynthetic-performance/)

Schmidt C., Schelle I., Liao Y.-J., Schroeder J. I. (1995) – Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. – Proceedings of the National Academy of Sciences, USA1995;92:9535-9539. –doi:10.1073/pnas.92.21.9535 pmid:11607582 –  CrossRefPubMedCAS | – http://www.pnas.org/content/92/21/9535 – (On our blog : https://plantstomata.wordpress.com/2017/03/30/slow-anion-channels-and-aba-signaling-in-stomata/)

Schmidt C.Schroeder J. I. (1994) – Anion selectivity of slow anion channels in the plasma membrane of guard cells (large nitrate permeability) – Plant Physiol 106:383391. – pmid:12232336 -DOI: https://doi.org/10.1104/pp.106.1.383 – Abstract – http://www.plantphysiol.org/content/106/1/383?ijkey=a2e407056ae0fa343312720f8de2a642788c62b5&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/08/03/anion-selectivity-of-slow-anion-channels-in-stomata/)

Schnabl V., Ziegler H. (1977) – The mechanism of stomatal movement in Allium cepa L. – Planta 136: 37-43 –

Schoch P. G., Jacques R., Lecharny A., Sibi M. (1984) – Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. II. Effect of different light quality. – J. Exp. Bot, 1984; 35: 1405-1409 -DOI:https://doi.org/10.1093/jxb/35.10.1405 http://jxb.oxfordjournals.org/content/35/10/1405.full.pdf+html – https://academic.oup.com/jxb/article-abstract/35/10/1405/512576/Dependence-of-the-Stomatal-Index-on-Environmental?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/04/12/stomatal-index-stomatal-differentiation-and-effect-of-different-light-quality/)

Schoch P. G., Lecharny A., Jacques R., Zinsou C. (1977) – Phytochrome et indice stomatique des feuilles du Vigna sinensis L. – C. R. Acad. Sci. D 285: 877-880 –

Schoch P. G., Sibi M. (1978) – Action du rayonnement sur l’indice stomatique in situ et en culture in vitro de feuilles du Vigna sinensis – C. R. Acad. Sc., Paris, Sér. D, 287: 1285-1287 –

Schoch P. G., Zinsou C., Sibi M. (1980) – Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. 1. Effect of light intensity. – Journal of Experimental Botany, vol. 31, p. 1211-1216. – doi: 10.1093/jxb/31.5.1211 – CrossRef Full Text | Google Scholar – https://academic.oup.com/jxb/article-abstract/31/5/1211/454079/Dependence-of-the-Stomatal-Index-on-Environmental?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/04/12/effect-of-light-intensity-on-stomatal-index/)

Schönherr J., Bukovac M.J. (1972) – Penetration of stomata by liquids: dependence on surface tension, wettability, and stomatal morphology – Plant Physiol. 1972 May; 49(5): 813-819. – http://www.ncbi.nlm.nih.gov/pubmed/16658054 – (On our blog : https://plantstomata.wordpress.com/2017/08/03/surface-tension-wettability-and-stomatal-morphology-vs-penetration-of-stomata-by-liquids/)

Schroeder J. I. (1988) – K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells.-  J. Gen. Physiol. 92:667–683 – PubMed

Schroeder  J. I. (1992) – Plasma membrane ion channel regulation during abscisic acid-induced closing of stomata. – Philos. Trans. R. Soc. Lond. 338: 83-89 

Schroeder  J. I. et al. (2001) – Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327–330 (2001)

Schroeder  J. I., Allen G. J , Hugouvieux V., Kwak J. M., Waner D. (2001) – Guard cell signal transduction – Annu Rev Plant Physiol Mol Biol, 52 (2001), pp. 627–658  -doi: 10.1146/annurev.arplant.52.1.627 – CrossRef |PubMedCASPubMed Abstract | CrossRef Full Text | Google Scholar – http://www.annualreviews.org/doi/10.1146/annurev.arplant.52.1.627 – (On our blog : https://plantstomata.wordpress.com/2017/04/12/advances-in-understanding-signal-transduction-mechanisms-in-stomata/)

Schroeder  J. I., Hagiwara S. (1989) – Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338, 427–443. – doi: 10.1038/338427a0 – CrossRef Full Text, – CrossRefWeb of ScienceGoogle Scholar

Schroeder J. I., Hagiwara S. (1990a) – Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc. Natl. Acad. Sci. U.S.A. 87, 9305–9309.  – doi: 10.1073/pnas.87.23.9305 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Schroeder J. I., Hagiwara S. (1990b) – Voltage-dependent activation of Ca2+-regulated anion channels and K+ uptake channels in Vicia faba guard cells. – In: Calcium and Plant Growth and Development. Vol. 4, pp. 144–150. R.T. Leonard, and P.K. Hepler, Editors. Am. Soc. Plant Physiol. Symp. Series, Rockville (MD)

Schroeder J. I., Hedrich R., Fernandez J. M. (1984) – Potassium-selective single channels in guard cell protoplasts of Vicia faba. – Nature, 312, 361362 – doi:10.1038/312361a0  – CrossRef |CAS |ADS Google Scholar – http://www.nature.com/nature/journal/v312/n5992/abs/312361a0.html?foxtrotcallback=true – (On our blog : https://plantstomata.wordpress.com/2017/08/05/k-channel-contributes-significantly-to-the-uptake-and-release-of-k-by-guard-cells-during-stomatal-movement/)

Schroeder J. I., Keller B. U. (1992) – Two types of anion channel currents in guard cells with distinct voltage regulation. – Proc. Natl. Acad. Sci. U.S.A. 89, 5025–5029. – doi: 10.1073/pnas.89.11.5025 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text,  CAS | ADSAbstract/FREE Full Text – http://www.pnas.org/content/89/11/5025.long – (On our blog : https://plantstomata.wordpress.com/2017/08/03/two-types-of-anion-channel-currents-in-stomata/)

Schroeder J. I., Kwak J. M., Allen G. J. (2001). – Guard cell abscisic acid signaling and engineering drought hardiness in plants. – Nature 410, 327–330. – doi: 10.1038/35066500 – PubMed Abstract | CrossRef Full Text | Google ScholarMedline, – http://www.nature.com/nature/journal/v410/n6826/full/410327a0.html – (On our blog : https://plantstomata.wordpress.com/2017/01/25/engineering-stomatal-responses-to-control-co2-intake-and-plant-water-loss/)

Schroeder J. I., Raschke K., Neher E. (1987) – Voltage dependence of K+ channels in guard cell protoplasts. Proceedings of the National Academy of Sciences, USA1987;84:4108-4112 –

Schroeder J. I.Schmidt C.Sheaffer J. (1993) – Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. – Plant Cell 5:18311841 – DOI: https://doi.org/10.1105/tpc.5.12.1831 – Abstract/FREE Full Text – http://www.plantcell.org/content/5/12/1831?ijkey=9f7add046cb8777fbd95c1f3901510afb7aa7097&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/08/02/stomatal-regulation-by-slow-anion-channels-in-guard-cells/)

Schuermann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora (Jena) 147: 471-520 –

Schulz-Lessdorf B., Lohse G., Hedrich R(1996) – GCAC1 recognizes the pH gradient across the plasma membrane:  A pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism. – Plant J. 10, 993-1004 – 

Schulte P. J., Hinckley T. M. (1987) – The relationship between guard cell water potential and the aperture of stomata in Populus – PLANT CELL AND ENVIRONMENT 10(4):313 – 318 – ResearchgateWiley Online Library – (On our blog : https://plantstomata.wordpress.com/2015/09/13/stomatal-responses-to-water-potential-in-populus/).

Schulze E. D., Hall A. E. (1982) – Stomatal responses to water loss and CO2 assimilation rates in plants of contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. Physiological plant ecology, vol 12B. Springer-Verlag, Berlin, pp 181–230

Schulze E. D., Kelliher F. M., Korner C., Lloyd J.Leuning R. (1994)Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25,629660 (1994). – ISIArticle

Schulze E.-D., Küppers M. (1979) – Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. – Planta. 1979; 146: 319–326 – doi: 10.1007/BF00387804. –  [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/24318185 – (On our blog : https://plantstomata.wordpress.com/2017/08/05/effects-of-plant-water-deficits-on-stomatal-response-to-humidity/)

Schulze E. D., Lange O. L., Buschbom U., Kappen L.,  Evenari M. (1972) – Stomatal responses to changes in humidity in plants growing in the desert. – Planta 108 : 259–270  – oi: 10.1007/BF00384113. – [PubMed – Google Scholar) – https://www.ncbi.nlm.nih.gov/pubmed/24473858 – (On our blog : https://plantstomata.wordpress.com/2017/08/02/stomatal-responses-to-changes-in-humidity-in-desert-plants/)

Schulze E. D., Lange O. L., Evenari M., Kappen L., Buschbom U. (1973) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance – Oecologia (Berl.) 17 : 159-170

Schulze E. D., Lange O. L., Kappen L., Buschbom U., Evenari M. (1973) – Stomatal response to changes in temperature at increasing water stress. Planta 110: 29–42.

Schulze E. D., Lange O. L., Kappen L., Evenari M., Buschbom U. (1975) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. – Oecologia (Berl.) 18 : 219-233.

Schulze E. D., Turner N. C., Gollan T., Shackel K. A. (1987) – Stomatal responses to air humidity and to soil drought. In Z Zeiger, GD Farquhar, IR Cowan, eds, Stomatal
Function. Stanford University Press, CA, pp 311–321.

Paul Schulze-Lefert, Silke Robatzek (2006) – Plant Pathogens Trick Guard Cells into Opening the Gates – Cell 126(5): 831-834 – DOI10.1016/j.cell.2006.08.020 – https://www.infona.pl/resource/bwmeta1.element.elsevier-edb6c705-b120-32da-85db-fda37c498deb – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-also-have-an-important-role-in-host-defense/)

Schulz-Lessdorf B., Lohse G., Hedrich R. (1996) – GCAC1 recognizes the pH gradient across the plasma membrane: a pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism. – Plant J. 10: 9931004 – DOI: 10.1046/j.1365-313X.1996.10060993.x – Wiley Online LibraryCAS |- http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1996.10060993.x/full – (On  our blog : https://plantstomata.wordpress.com/2017/08/01/gcac1-is-capable-of-sensing-changes-in-the-energy-status-acid-metabolism-and-the-h-atpase-activity-of-stomata/)

Schürmann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora 147: 471-520 –

Schurr U., Gollan T., Schulze E.-D. (1992) – Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II Stomatal sensitivity to abscisic acid imported from the xylem sap. – Plant Cell Environ. 15: 561-567 –DOI: 10.1111/j.1365-3040.1992.tb01489.x  – Wiley Online Library |CAS |- http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01489.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/01/stomatal-sensitivity-to-aba-imported-from-the-xylem-sap/)

Schwabe W. W. (1952) – Effects of photoperiodic treatment on stomatal movement – Nature (Lond.) 169: 1053-1054.

Schwartz A. (1985 ) – Role of calcium and EGTA on stomatal movements in Commelina communis L.– Plant Physiol., 79, 10031005. doi: 10.1104/pp.79.4.1003 – CrossRef Full Text | Google Scholar – CrossRef |PubMedCAS |- http://www.plantphysiol.org/content/79/4/1003 (On our blog : https://plantstomata.wordpress.com/2017/08/02/calcium-egta-and-stomatal-movements/)

Schwartz A., Ilan N.Assmann S. M. (1991) – Vanadate inhibition of stomatal opening in epidermal peels of Commelina communis. – Planta 183: 590–596.

Schwartz A., Ilan N., Grantz D. A. (1988) – Calcium effects on stomatal movement inCommelina communis L.: use of EGTA to modulate stomatal response to light, KCl and CO2. – Plant Physiology 87, 583587. – DOI: https://doi.org/10.1104/pp.87.3.583 – CrossRef |PubMed |- http://www.plantphysiol.org/content/87/3/583 – (On our blog : https://plantstomata.wordpress.com/2017/08/02/use-of-egta-to-modulate-stomatal-response-to-light-kcl-and-co2/)

Schwartz A., Zeiger E. (1984) –  Metabolic energy for stomatal opening-roles of photophosphorylation and oxidative-phosphorylation –Planta161129136 –  Google Scholar CrossRef PubMed

Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. (1994). – Inhibition of inward K+channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. – Proc. Natl. Acad. Sci. U.S.A. 91, 4019–4023. – PubMed Abstract | Google Scholar – http://www.jstor.org/stable/2364583?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/04/12/phytohormone-k-channels-aba-and-stomatal-responses/)

Schwartz A., Zeiger E. (1984) – Metabolic energy for stomatal opening: Roles of photophosphorylation and oxidative phosphorylation. – Planta 161:129–136. – Google Scholar – http://www.jstor.org/stable/pdf/23377168.pdf?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/01/photophosphorylation-and-oxidative-phosphorylation-for-stomatal-opening/)

Schwarz M., Schroeder J. I. (1998) – Abscisic acid maintains S-type anion channel activity in ATP-depleted Vicia faba guard cells. – FEBS Lett. 428,177182. – doi:10.1016/S0014-5793(98)00526-2 pmid:9654130 – CrossRefPubMedCAS |- http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(98)00526-2/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/31/aba-maintains-s-type-anion-channel-activity-in-atp-depleted-stomata/)

Schwendener S. (1881) – Über Bau und Mechanik der Spaltöffnungen – Monatsberichte der Kön.-Preuss. Akad. Wiss. Berlin – Phys.-math. Klasse : 833-867.

Schymanski S. J., Or D., Zwieniecki M. (2013) – Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. – PLoS ONE 8, e54231. (doi:10.1371/ journal.pone.0054231) –

Scuffi D., Álvarez C., Laspina N., Gotor C., Lamattina L., García-Mata C. (2014) – Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. – Plant Physiology 166, 2065–2076. -doi: 10.1104/pp.114.245373. Epub 2014 Sep 29 – | CrossRef | PubMed |- https://www.ncbi.nlm.nih.gov/pubmed?cmd=Retrieve&list_uids=25266633&dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2017/04/01/des1-is-a-unique-component-of-aba-signaling-in-stomata/)

Scuffi D., Lamattina L., García-Mata C. (2016) – Gasotransmitters and stomatal closure: is there redundancy, concerted action, or both? – Front. Plant Sci. | doi: 10.3389/fpls.2016.00277. – (On our blog : https://plantstomata.wordpress.com/2016/02/29/gasotransmitters-and-stomatal-closure/).

Seemann J. R., Critchley C. (1985) – Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt sensitive species, Phaseolus vulgaris L. – Planta 164: 151-162 – https://link.springer.com/article/10.1007/BF00396077 – (On our blog : https://plantstomata.wordpress.com/2017/09/30/effects-of-salt-stress-on-stomatal-behaviour/)

Seidl‐Adams I., Richter A. , Boomer K. B. , Yoshinaga N., Degenhardt J.,  Tumlinson J. H. (xxxx) – Emission of herbivore elicitor‐induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings – Plant, Cell & Environment 38(1): 23 – 34 – DOI10.1111/pce.12347 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-38-i-1-pce12347 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-not-only-play-an-important-role-in-gas-exchange-for-primary-metabolism-but-also-for-indirect-plant-defences/)

Sellin A. (2001) – Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. – Tree Physiology2001;21:879888.

Sen D. N. (1973) – Role of monovalent and divalent cations and phenylmercvuric acetate in the regulation of stomatal aperture in Euphorbia neriifolia L. – Flora 162: 13-60.

Sen D. N., Bhandari M. C., Mathur T. (1972) – Stomatal responses of some arid zone plant species – Curr. Sci. 41: 553-557.

Sen D. N., Harsh L. N. (1974) – Ecophysiological studies on stomatal regulation in Allium cepa L. and Asphodelus tenuifolius Cav. – Flora 1623: 14-25.

Sen D. N., Chawan D. D., Sharma S. S., Bohra P. N. (1975) – Stomatal movement on role of subsidiary cells – Geobios 2: 3-7.

Seo J., Lee H. Y., Choi H., Choi Y., Lee Y., Kim Y.-W., Beungtae Ryu S., Lee Y. (2008) – Phospholipase A2b mediates light-induced stomatal opening in Arabidopsis – Journal of Experimental Botany, Vol. 59, No. 13, pp. 3587–3594, 2008 – doi:10.1093/jxb/ern208 – http://jxb.oxfordjournals.org/content/59/13/3587.full.pdf – (On our blog : https://plantstomata.wordpress.com/2015/10/28/pla2b-is-involved-in-light-induced-stomatal-opening/).

Serna L. (2001) – Stomatal biology – Trends in Plant Science 6(12): 554-555 – ISSN :1360-1385 – https://www.infona.pl/resource/bwmeta1.element.elsevier-cecd3c2e-251a-395a-812b-ea9422bb3caf – (On our blog : https://plantstomata.wordpress.com/2017/10/07/stomatal-biology/)

Serna L. (2007) – bHLH proteins know when to make a stoma – Trends in Plant Science 12(11): 483-485 – DOI10.1016/j.tplants.2007.08.016 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1caa7ac1-a8fc-302c-b60e-d1e1c745d100 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/three-bhlh-proteins-act-successively-to-drive-the-formation-of-stomata/)

Serna L. (2008) – Coming closer to a stoma ion channel. Nature Cell Biology 10, 509–511 (2008) doi:10.1038/ncb0508–509. – http://www.nature.com/ncb/journal/v10/n5/fig_tab/ncb0508-509_F1.html – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/8861)

Serna L. (2009) – Cell fate transitions during stomatal development. – BioEssays 31: 865–873 – DOI: 10.1002/bies.200800231 – http://onlinelibrary.wiley.com/doi/10.1002/bies.200800231/full – (On our blog : https://plantstomata.wordpress.com/2017/10/06/current-insights-into-the-role-of-the-signaling-cascade-during-stomatal-development/)

Serna L. (2011) – Stomatal development in Arabidopsis and grasses: differences and commonalities. – International Journal of Developmental Biology 55: 5–10. – doi: 10.1387/ijdb.103094ls. – https://www.ncbi.nlm.nih.gov/pubmed/21425077 – (On our blog : https://plantstomata.wordpress.com/2016/09/27/stomatal-development-in-arabidopsis-and-grasses/)

Serna L. (2014) – The role of brassinosteroids and abscisic acid in stomatal development – Plant Science 225: 95-101 –  doi:10.1016/j.plantsci.2014.05.017 – https://www.infona.pl/resource/bwmeta1.element.elsevier-09eabee5-9941-3e53-866d-1d67c60d385d – (On our blog : https://plantstomata.wordpress.com/2017/10/07/brassinosteroids-and-aba-in-stomatal-development/)

Serna L. (2015) – Development: Early events in asymmetric division – Nature Plants 1, Article number: 15008 (2015). – http://www.nature.com/articles/nplants20158 – (On our blog : https://plantstomata.wordpress.com/2016/09/27/asymmetric-cell-divisions-and-the-patterning-of-stomata/)

Serna L., Fenoll C. (1997) – Tracing the ontogeny of stomatal clusters in Arabidopsis with molecular markers. – Plant Journal 12: 747–755 – DOI: 10.1046/j.1365-313X.1997.12040747.x – CrossRefMedline  Google Scholar – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1997.12040747.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/31/molecular-markers-for-the-ontogeny-of-stomatal-clusters/)

Serna L., Fenoll C. (2000) – Stomatal development in Arabidopsis: how to make a functional pattern. – Trends in Plant Science, vol. 5, p. 458-460. – DOI: http://dx.doi.org/10.1016/S1360-1385(00)01782-9 – CrossRefMedline – http://www.cell.com/trends/plant-science/pdf/S1360-1385(00)01782-9.pdf – (On our blog : https://plantstomata.wordpress.com/2017/04/01/a-functional-pattern-in-stomatal-development/)

Serna L., Fenoll C. (2000) -Stomatal development and patterning in Arabidopsis leaves. Physiol. Plant 109, 351–358. – DOI: 10.1034/j.1399-3054.2000.100317.x – CrossRef – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.2000.100317.x/abstract;jsessionid=6B3A508DDACA77A0E9847C827771D9E7.f02t03 – (On our blog : https://plantstomata.wordpress.com/2017/04/01/stomatal-development-and-patterning/)

Serna L., Fenoll C. (2002) – Reinforcing the idea of signalling in the stomatal pathway – Trends in Genetics 18(12): 597-600 – ISSN :0168-9525 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1ab19e7e-90d8-33ee-92e2-9d30a0f6b6ef – (On our blog : https://plantstomata.wordpress.com/2017/10/07/reinforcing-the-idea-of-signalling-in-the-stomatal-pathway/)

Serna L., Torres-Contreras J., Fenoll C. (2002) – Specification of stomatal fate in Arabidopsis: evidences for cellular interactions – New Phytologist  Volume 153: 399–404 – DOI: 10.1046/j.0028-646X.2001.00343.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00343.x/full – (On our blog : https://plantstomata.wordpress.com/2016/03/30/cellular-interactions-and-stomatal-fate/)

Serna L., Torres-Contreras J., Fenoll C. (2002) – Clonal analysis of stomatal development and patterning in Arabidopsis leaves. – Developmental Biology. 2002; 241:24–33. – CrossRefMedlineWeb of Science – https://www.researchgate.net/publication/11574420_Clonal_Analysis_of_Stomatal_Development_and_Patterning_in_Arabidopsis_Leaves – (On our blog : https://plantstomata.wordpress.com/2016/09/28/clonal-analysis-of-stomatal-development-and-patterning/)

Serrano E. E., Zeiger E., Hagiwara S. (1988) – Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proceedings of the National Academy of Sciences, USA 85, 436–440.

Setterfield G. (1957) – Fine structure of guard cell walls in Avena coleoptile – Can. J. Bot. 35: 791-793.

Shabala S. (2013) – Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops – Annals of Botany, 112(7): 1209–1221,- https://doi.org/10.1093/aob/mct205 – https://academic.oup.com/aob/article/112/7/1209/154610/Learning-from-halophytes-physiological-basis-and – (On our blog : https://plantstomata.wordpress.com/2017/09/30/controlling-stomata-aperture-and-optimizing-water-use-efficiency-by-reducing-stomatal-density/)

Shabala S., Hariadi Y., Jacobsen S.-E. (2013) – Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density.- J. Plant Physiol. 170, 906–914. doi: 10.1016/j.jplph.2013.01.014 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0176161713000588 – (On our blog : https://plantstomata.wordpress.com/2017/04/02/genotypic-differences-in-salinity-tolerance-and-stomatal-density/)

Shabala L., Mackay A., Tian Y., Jacobsen S. E., Zhou D. W.,Shabala S. (2012) – Oxidative Stress Protection and Stomatal Patterning as Components of Salinity Tolerance Mechanism in Quinoa (Chenopodium quinoa) – Physiologia Plantarum, Vol. 146, No. 1, 2012, 26-38. – http://dx.doi.org/10.1111/j.1399-3054.2012.01599.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2012.01599.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/04/03/salinity-induced-reduction-in-stomatal-density-is-a-fundamental-mechanism-to-optimize-water-use-efficiency/)

Shackel K. A., Brinckmann E. (1984) – In situ measurement of epidermal cell turgor, leaf water potential and gas exchange in Tradescantia virginiana L. – Plant Physiology78, 66–70.

Shafer J. I. Jr. (1936) – Interrelationships of stomatal aperture, light, and carbon dioxide content of leaves – Cornell University Thesis.

Shah G. L., Danaiah V., Arunakumari P. (1977) – Observations on the effects of Morphactin EMD 7301 and EMD 7311 on the number, size, morphology and ontogeny of cotyledonary stomata of Abelmoschus esculentus Moench. – Biologia Plantarum (Praha) 19(6): 401-404 – (On our blog : https://plantstomata.wordpress.com/2017/08/25/effects-of-morphactin-emd-7301-and-emd-7311-on-cotyledonary-stomata-of-okra/)

Shah S. S., Stebbins G. L. (1962) – Change in division in stomatal initials of Hordeum vulgare induced by 2-mercaptoethanol – Amer. J. Bot. 49: 667 –

Shang Y., Dai C., Lee M. M., Kwak J. M., Nam K. H. (2016) – BRI1-Associated Receptor Kinase 1 Regulates Guard Cell ABA Signaling Mediated by Open Stomata 1 in Arabidopsis – Molecular Plant 9(3): 447-460 – DOI10.1016/j.molp.2015.12.014 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5cc0ac09-ffca-3356-88f4-fa6ae77f84e1/tab/summary – (On our blog : https://plantstomata.wordpress.com/2017/10/06/bak1-regulates-aba-induced-stomatal-closure-in-guard-cells/)

Sharkey T. D., Ogawa T. (1987) – Stomatal responses to light.  In Stomatal Function, ed. E. Zeiger, G. Farquhar, I. Cowan, pp. 195-208 – Stanford, CA, Stanford Univ. Press.

Sharkey T. D., Raschke K. (1980) – Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. – Plant Physiol 65: 291-297.

Sharkey T. D., Raschke K. (1981) – Separation and measurement of direct and indirect effects of light on stomata. – Plant Physiol. 68:33–40. – 

Sharma G. K. (1972) – Environmental modification of leaf epidermis and morphological features in Verbena canadensis – Southwestern Nat. 17: 221-228 –

Sharma G. K., Butler J. (1975) – Environmental pollution.  Leaf cuticular patterns in Trifolium repens L. – Ann. Bot. 39: 1087-1090 –

Sharma G. K., Dunn D. B. (1968) – Effects of environment on cuticular features in Kalanchoe fedschenkoi – Bull. Torr. bot. Club 95: 464-473 –

Sharma S. S., Sen D. D. (1976) – Effect of different sugars on stomatal behaviour in Merremia aegyptia (L.) Urban and M. dissecta Hallier F. – Biol. Plant. 18: 81-87.

Sharpe P. J. H. (1973) – Adaxial and abaxial stomatal resistance of cotton in the field – Agron. J. 65: 570-574.

Shaw M. (1954) – Chloroplasts in the stomata of Allium cepa L. – New Phytol. 53. 344-348.

Shaw M. (1958) – The physiology of stomata II. The apparent absence of chlorophyll, photosynthesis, and a normal response to light in the stomatal cells of an albino barley – Canad. Jour. Bot. 36: 575-579.

Shaw M., Maclachlan G. A. (1954) – The physiology of stomata. I. Carbon dioxide fixation in guard cells. – Can. J. Bot. 32(6): 784-794 – https://doi.org/10.1139/b54-067 – http://www.nrcresearchpress.com/doi/abs/10.1139/b54-067 – (On our blog : https://plantstomata.wordpress.com/2017/09/21/co2-fixation-in-stomata/)

She X. P., Song X. G., He J. M. (2004) – Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba. – Acta Botanica Sinica 46, 1292–1300.

Shekhar S. (2015) – How does the ascorbate level regulate the stomatal movement in monocot plant during environmental stress? – https://www.researchgate.net/post/How_does_the_ascorbate_level_regulate_the_stomatal_movement_in_monocot_plant_during_environmental_stress – (On our blog : https://plantstomata.wordpress.com/2017/04/03/is-there-any-correlation-between-the-level-of-ascorbate-and-stomatal-movement/)

Shen L., Sun P., Bonnell V. C., Edwards K. J., Hetherington A. M., McAinsh M. R., Roberts M. R. (2015) – Measuring stress signaling responses of stomata in isolated epidermis of graminaceous species.- Front. Plant Sci. 6:533. doi: 10.3389/fpls.2015.00533 –  http://journal.frontiersin.-org/article/10.3389/fpls.2015.00533/full – (On our blog – https://plantstomata.wordpress.com/2016/01/11/stomata-in-isolated-epidermis-of-graminaceous-species/)

Sheriff D. W. (1977) – Evaporation sites and distillation in leaves – Ann. Bot. 41: 1081-1082 – (On our blog : https://plantstomata.wordpress.com/2017/08/25/evaporation-sites-and-distillation-in-leaves/)

Sheriff D. W. (1977) – Where is humidity sensed when stomata respond to it directly ?- Ann. Bot. 41: 1083-1084 – (On our blog : https://plantstomata.wordpress.com/2017/09/01/stomatal-responses-to-humidity-5/)

Sheriff D. W. (1979) – Stomatal aperture and the sensing of the environment by guard cells – Plant, Cell and Environment –  2, Issue 1, March 1979, 15–22 –DOI: 10.1111/j.1365-3040.1979.tb00769.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1979.tb00769.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/04/06/stomata-and-the-environment-2/)

Sheriff D. W. (1984) – Epidermal transpiration and stomatal responses to humidity: some hypotheses explored. – Plant, Cell and Environment 7, 669677. – CrossRef |

Sheriff D. W., Kaye P. E. (1977) – Response of diffusive conductance to humidity in a drought avoiding and a drought resistant (in terms of stomatal response) legume – Ann. Bot. 41: 653-655 –

Shi C., Qi C., Ren H., Huang A., Hei S., She X. (2015) – Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis – Plant J. 2015 Apr, 82(2): 280-301. – doi: 10.1111/tpj.12815 – PubMed Abstract | CrossRef Full Text | Google Scholar – (http://www.ncbi.nlm.nih.gov/pubmed/25754244) – http://onlinelibrary.wiley.com/doi/10.1111/tpj.12815/abstract – (On our blog : https://plantstomata.wordpress.com/2017/04/03/ethylene-mediates-brassinosteroid-induced-stomatal-closure/)

Shi K., Li X., Zhang H., Zhang G., Liu Y., Zhou Y., Xia X., Chen Z., Yu J. (2015) – Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato -New Phytologist –

Shimada T., Sugano S. S., Hara-Nishimura I. (2011) – Positive and negative peptide signals control stomatal density – Cellular and Molecular Life Sciences (2011) 68: 2081-2088 –

Shimazaki K. (1989) – Ribulosebisphosphate carboxylase activity and photosynthetic O2evolution rate in Vicia guard cell protoplasts. Plant Physiology 1989;91:459-463. –

Shimazaki K.Doi M.Assmann S. M.Kinoshita T. (2007) – Light regulation of stomatal movements – Annual Review of Plant Biology. 58: 219-247.,  – doi:10.1146/annurev.arplant.57.032905.105434 – PubMed Abstract | CrossRef Full Text | GoogleScholar – CrossRefMedline – http://www.annualreviews.org/doi/10.1146/annurev.arplant.57.032905.105434 – (On our blog : https://plantstomata.wordpress.com/2017/04/05/blue-and-red-light-dependent-stomatal-opening/)

Shimazaki K.-I., Gow C. H., Kinoshita T. (1999) – Involvement of intracellular CA2+ in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba. – Physiol. Plant. 105: 554-561.

Shimazaki K.-I., Gotow K., Sakaki T., Kondo N. (1983)High respiratory activity of guard cell protoplasts from Vicia faba L. – Plant Cell Physiol 24: 1049-1056 – DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076607 – Google Scholar – https://academic.oup.com/pcp/article-abstract/24/6/1049/1858924 – (On our blog : https://plantstomata.wordpress.com/2017/07/31/high-respiratory-activity-of-stomata-protoplasts/)

Shimazaki K., Iino M., Zeiger E. (1986) – Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. – Nature 319, 324326 (1986) -doi:10.1038/319324a0 – CASISIArticlehttp://www.nature.com/nature/journal/v319/n6051/abs/319324a0.html?foxtrotcallback=true – (On our blog : https://plantstomata.wordpress.com/2017/07/28/chemi-osmotic-extrusion-of-protons-blue-light-and-stomatal-movement/)

Shimazaki K., Kinoshita T., Nishimura M. (1992) – Involvement of Ca2+/calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping of guard cell protoplast from Vicia faba L. – Plant Physiology 99: 1416–1421.

Shimazaki K.-I., Terada J., Tanaka K., Kondo N. (1989) – Calvin-Benson cycle enzymes in guard cell protoplasts from Vicia faba L. – Plant Physiol. 90: 1057-1064.

Shimazaki K., Zeiger E. (1985) – Cyclic and non-cyclic photophosphorylation in isolated guard cell chloroplasts from Vicia faba L. – Plant Physiol. 78: 211-214 –

Shimono H., Nakamura H., Hasegawa T., Okada M. (2013) – Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. – Glob. Change Biol. 19, 2444–2453. doi: 10.1111/gcb.12214 – PubMed Abstract | CrossRef Full Text | Google Scholar

Shimshi D. (1963) – Effect of chemical closure of stomata on transpiration in varied soil and atmospheric environments – Plant Physiol. 38: 709-712 –

Shimshi D. (1963) – Effect of soil moisture and phenylmercuric acetate upo, stomatal aperture, transpiration, and photosynthesis – Plant Physiol. 38: 713-721 –

Shimshi D. (1967) – Leaf chlorosis and stomatal aperture. – New Phytol. 66, 455–461. doi: 10.1111/j.1469-8137.1967.tb06024.x – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1967.tb06024.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/28/the-effect-of-leaf-chlorosis-on-stomatal-behaviour/)

Shirakawa M., Ueda H., Nagano A. J., Shimada T., Kohchi T., HaraNishimura I. (2014). -FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis. – Plant Cell 26, 4039-4052 – 

Shirakawa M., Ueda H., Shimada T. (2016) – FAMA: A Molecular Link between Stomata and Myrosin Cells -Trends in Plant Science, In Press Corrected Proof  – DOI: http://dx.doi.org/10.1016/j.tplants.2016.07.003 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(16)30075-9?rss=yes – (On our blog : https://plantstomata.wordpress.com/2016/07/29/how-fama-operates-the-generation-of-myrosin-cells-and-stomata/)

Shiv K., Ila P. (2014) –  Stomatal analysis in Cassia occidentalis L. in response to automobile pollution along Roadsides in Meerut city, India –  Int. Res. J. of Sci. & Engg., 2014; 2 (5):167-170.- http://oaji.net/articles/2014/731-1409862820.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/stomata-and-pollution/)

Shope J. C., DeWald D. B., Mott K. A. (2003) – Changes in surface area of intact guard cells are correlated with membrane internalization – Plant Physiology 133, 1314-1321. – doi:  10.1104/pp.103.027698 – [PMC free article][PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC281626/ – (On our blog : https://plantstomata.wordpress.com/2017/04/06/plasma-membrane-in-stomata-is-reversibly-internalized-to-maintain-cell-integrity/)

Shope J. C., Peak D., Mott K. A. (2008) – Stomatal responses to humidity in isolated epidermes. – Plant, Cell and Environment 31: 1290-1298

Shpak E. D., McAbee J. M., Pillitteri L. J., Torii K. U. (2005) – Stomatal patterning and differentiation by synergistic interactions of receptor kinases. – Science 309: 290–293. – Abstract/FREE Full Text Google Scholar –View ArticlePubMed – http://science.sciencemag.org/content/309/5732/290?ijkey=a061a0cdb1d934059dc68174286074f559286e5d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/04/06/patterning-and-differentiation-of-stomata-and-erecta-er-family-leucine-rich-repeat-receptor-like-kinases/)

Shyu C. (2015) – Mutants in Plant Genetics – Mutant Millets from the Donald Danforth Plant Science Center – http://mutantmillets.org/2015/01/23/mutants-in-plant-genetics/ – (On our blog : https://plantstomata.wordpress.com/2016/01/30/stomata-in-mutants/).

Shtein I., Popper Z., Harpa-Saad S. (2017) – Permanently open stomata of aquatic Angiosperms display modified cellulose crystallinity patterns – Plant signaling & behavior · July 2017 – DOI: 10.1080/15592324.2017.1339858 – https://www.ncbi.nlm.nih.gov/pubmed/28718691 – (On our blog : https://plantstomata.wordpress.com/2017/07/27/the-pattern-of-cellulose-crystallinity-in-stomata-of-floating-plants/)

Sibbernsen E., Mott K. A. (2010) – Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells. – Plant Physiol. 153:1435–1442. – doi: 10.1104/pp.110.157685. – Abstract/FREE Full Text – https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=%22Sibbernsen%20E%22%5Bau%5D&dispmax=50 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/a-vapor-phase-signal-between-the-mesophyll-and-stomata/)

Siebke K., Weis E. (1995) – Assimilation images of leaves of Glechoma hederacea: Analysis of non‐synchronous stomata related oscillations. – Planta196,155–165. 

Siegel R. S., Xue S., Murata Y., Yang Y., Nishimura N., Wang A., Schroeder J. I. (2009) – Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K channels in Arabidopsis guard cells. Plant J. 59, 207–220. – doi: 10.1111/j.1365-313X.2009.03872.x – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827207/ – (On our blog : https://plantstomata.wordpress.com/2017/04/13/calcium-dependent-aba-induction-of-stomatal-closure/)

Sierp H. (1933) – Untersuchungen über die Öffnungsbewegungen der Stomata in Verschiedenen Spektralbezirken – Flora N.S. 28: 269-285.

Silva E. C., Nogueira R. J., Vale F. H., Araújo F. P. D., Pimenta M. A.  (2009) – Stomatal changes induced by intermittent drought in four umbu tree genotypes. – Brazilian Journal of Plant Physiology 21, 33–42. – CrossRef –  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202009000100005&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/04/13/drought-and-stomatal-responses-in-spondias-tuberosa-trees-umbu/)

Simon-Wolcsanszky E., Molnaros I. (1964) – Der Aufbau der Maisepidermis, die Veränderungen ihrer Spaltöffnungszahl unter der Wirkung der ökologischen Faktoren. I. – Acta Bot. Acad. Sci. Hungaricae 10(3-4): 351-368 – (On our blog : https://plantstomata.wordpress.com/2017/08/27/changes-in-the-number-of-stomata-in-relation-to-environmental-factors-in-german/)

Simon-Wolcsanszky E., Molnaros I. (1971) – Der Aufbau der Maisepidermis, die Veränderungen ihrer Spaltöffnungszahl unter der Wirkung der ökologischen Faktoren. II. – Acta Bot. Acad. Sci. Hungaricae 17(3-4): 439-461 – (On our blog : https://plantstomata.wordpress.com/2017/08/27/changes-in-stoma-number-in-different-ecological-conditions-in-german/)

Singh A. P. (1977) – The subcellular organization of stomatal initials in sugarcane leaves: the guard and subsidiary mother cells – Can. J. Bot. 55(22): 2801-2809 – (On our blog : https://plantstomata.wordpress.com/2017/08/25/subcellular-organization-of-stomatal-initials/)

Singh A. P., Shaw M., Hollins G. (1976) – Preprophase bands of microtubules in developing stomatal complexes of sugarcane – Cytologia

Singh A. P., Srivastava L. M. (1973) – The fine structure of pea stomata – Protoplasma 76: 61-82. – Google Scholar – https://link.springer.com/article/10.1007%2FBF01279673?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/07/28/the-structure-and-cytology-of-the-stomata-of-pea/)

Singh S. K., Badgujar G., Reddy V., Fleisher D. H., Bunce J. A. (2013) – Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. – Journal of Plant Physiology. 170(9): 801-813 – DOI10.1016/j.jplph.2013.01.001 – https://www.infona.pl/resource/bwmeta1.element.elsevier-f42d3a31-616d-3f08-8e0e-220107f61ce0 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/co2-diffusion-across-stomata-photo-biochemical-processes-and-p-nutrition/)

Sirichandra C., Wasilewska A., Vlad F., Valon C., Leung J. (2009) – The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. – J Exp Bot 2009, 601439-1463. – doi:10.1093/jxb/ern340 pmid:19181866 – Abstract/FREE Full Text – PubMed – https://www.ncbi.nlm.nih.gov/pubmed/19181866?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2017/04/14/an-emerging-signalling-complex-critical-for-modulating-the-stomatal-aperture-in-response-to-environmental-stimuli/)

Sitholey R. V., Pandey Y. N. (1971) – Giant stomata. – Annals of Botany 35: 641-642 –DOI: https://doi.org/10.1093/oxfordjournals.aob.a084508 – Online Google Scholar – https://academic.oup.com/aob/article-abstract/35/3/641/104147/Giant-Stomata – (On our blog : https://plantstomata.wordpress.com/2017/07/28/abnormally-large-stomata-on-leaves-of-mangifera-and-limonia/)

Sivadjian J. (2014) – Sur la vitesse de la réaction des stomates à la suppression brusque de la lumière – Soc. Bot. France 436-439 – http://dx.doi.org/10.1080/00378941.1956.10837794 – http://www.tandfonline.com/doi/abs/10.1080/00378941.1956.10837794?src=recsys – (On our blog : https://plantstomata.wordpress.com/2017/08/29/effects-of-light-on-the-reaction-speed-of-stomata-in-french/)

Skelton R., Brodribb T., McAdam S., Mitchell P. (2017) – Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland – New Phytologist · June 2017 – DOI: 10.1111/nph.14652 – https://www.researchgate.net/publication/317648885_Gas_exchange_recovery_following_natural_drought_is_rapid_unless_limited_by_loss_of_leaf_hydraulic_conductance_evidence_from_an_evergreen_woodland – (On our blog : https://plantstomata.wordpress.com/2017/06/25/severe-drought-caused-major-declines-in-leaf-water-potential-elevated-foliar-aba-concentrations-and-reduced-stomatal-conductance-and-assimilation-rates/)

Slavik B. (1963) – The distribution pattern of transpiration rate, water saturation deficit, stomata number and size, photosynthetic and respiration rate in the area of the tobacco leaf blade – Biol. Plantarum 5: 143-153 –

Slot M., Winter K. (2017) – In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species – Plant, Cell & Environment – Browse  Accepted Articles  – doi: 10.1111/pce.13071. – http://onlinelibrary.wiley.com/doi/10.1111/pce.13071/abstract – (On our blog : https://plantstomata.wordpress.com/2017/09/20/relationships-of-biochemical-and-stomatal-controls-of-photosynthesis/)

Slootweg G., van Meeteren U. (1991) – Transpiration and stomatal conductance of roses cv. Sonia grown with supplemental lighting – Acta Hort. 298: 119-125 –

Small J., Clarke M.I., Crosbie-Baird J. (1942) – pH-phenomena in relation to stomatal opening. II. Proc. Roy. Soc. Edinburgh B 61: 233-266.

Small J., Maxwell K. M. (1939) – pH-phenomena in relation to stomatal opening. I. Coffea arabica and some other species – Protoplasma 32: 272-283.

Smart L. B., Cameron K. D., Bennett A. B. (2000) – Isolation of genes predominantly expressed in guard cell and epidermal cell of Nicotiana glauca. – Plant Molecular Biology42,857–869. –

Smith B. (2016) – Does grass hold the secret to more efficient crops? – Cosmos 2016-05 – https://cosmosmagazine.com/biology/change-the-shape-of-plant-mouths-to-feed-the-world – (On our blog : https://plantstomata.wordpress.com/2017/09/20/from-grass-stomata-to-better-crops/)

Smirnov O., Anatoliy K., Taran N., Kosyk O. (2014)  –  Buckwheat stomatal traits under aluminium toxicity – Modern Phytomorphology 6: 15–18, 2014 – (On our blog)

Smith D. L., Watt W. M. (1986) – Lithocysts, trichomes, hydathodes and stomata in leaves of Pilea cadierei Gagnep. and Guill. (Urticaceae). – Annals of Botany 58: 155–166. – DOI:-https://doi.org/10.1093/oxfordjournals.aob.a087193 – Abstract/FREE Full Text – https://academic.oup.com/aob/article-abstract/58/2/155/137678/Distribution-of-Lithocysts-Trichomes-Hydathodes?ijkey=5d03e63166fbf8c8ac32d57615caa4653298d2ab&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/04/15/stomata-in-leaves-of-pilea-urticaceae/)

Smith H. B. ( 1941) – Variation and Correlation of Stomatal Frequency and Transpiration Rate in Phaseolus vulgaris – American Journal of Botany 28(8): 722-725 – http://www.jstor.org/stable/2436972?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/10/03/stomatal-frequency-and-transpiration-rate/)

Smith R. Y.Greenwood D. R.Basinger J. F. (2010) – Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. – Palaeogeography, Palaeoclimatology, Palaeoecology 2010;293:120131. – http://doi.org/10.1016/j.palaeo.2010.05.006 – Google Scholar – http://www.sciencedirect.com/science/article/pii/S003101821000283X – (On our blog : https://plantstomata.wordpress.com/2017/04/14/paleoatmospheric-pco2-and-stomatal-frequency-of-ginkgo/)

Smith S., Weyers J. D. B., Berry W. G. (1989) – Variation in stomatal characteristics over the lower surface of Commelina communis leaves. – Plant, Cell and Environment 12: 653–659 –

Smith W. K., Young D. R., Carter G. A., Hadley J. L., McNaughton G. M. (1984) – Autumn stomatal closure in six conifer species of the Central Rocky Mountains  – Oecologia (Berlin) (1 984) 63 : 337-242  – http://library.wrds.uwyo.edu/wrp/84-23/84-23.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/03/seasonal-stomatal-closure/)

Snaith P. J., Mansfield T. A. (1982) – Control of the CO2 responses of stomata by indol-3–ylacetic acid and abscisic acid. – Journal of Experimental Botany 33,360365 – DOI: https://doi.org/10.1093/jxb/33.2.360 – CrossRefCAS |- https://academic.oup.com/jxb/article-abstract/33/2/360/634320/Control-of-the-Co2-Responses-of-Stomata-by-Indol?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/07/31/iaa-aba-and-co2-responses-of-stomata/)

Snaith P. J., Mansfield T. A. (1982) – Stomatal sensitivity to abscisic acid: can it be defined. – Plant, Cell and Environment 5: 309311 – DOI: 10.1111/1365-3040.ep11572699 – CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11572699/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/31/stomatal-responses-to-abscisic-acid/)

Snaith P. J., Mansfield T. A. (1984) – Studies of the inhibition of stomatal opening by naph-1-ylacetic acid and abscisic acid. – Journal of Experimental Botany 35, 14101418 – DOI: https://doi.org/10.1093/jxb/35.10.1410 – CrossRef |CAS |- https://academic.oup.com/jxb/article-abstract/35/10/1410/512579/Studies-of-the-Inhibition-of-Stomatal-Opening-by?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/07/28/inhibition-of-stomatal-opening-by-naph-1-ylacetic-acid-and-aba/)

Snaith P. J., Mansfield T. A. (1985) – Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm. – J. Exp. Bot. 36: 937-944, 1985.

Snir A., Gurevitz M., Marcus Y. (2006) – Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea – Photosynthesis Research 90(3): 233-242 – DOI10.1007/s11120-007-9142-8 – https://www.infona.pl/resource/bwmeta1.element.springer-84263340-b589-3de4-9ae1-f16dcef7902e – (On our blog : https://plantstomata.wordpress.com/2017/10/16/alterations-in-stomatal-behavior-induce-a-daily-rhythm-in-photosynthesis-of-aerial-leaves/)

Soar C. J., Speirs J., Maffei S. M., Loveys B. R. (2004) – Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv. Shiraz: molecular and physiological studies investigating their source – Functional Plant Biology 31(6) 659–669 – http://dx.doi.org/10.1071/FP03238 – http://www.publish.csiro.au/?paper=FP03238 – http://www.publish.csiro.au/fp/FP03238 – (On our blog : https://plantstomata.wordpress.com/2017/04/15/molecular-and-physiological-studies-on-gradients-in-stomatal-conductance/)

Soar C. J., Speirs J., Maffei S. M., Penrose A. B., McCarthy M. G., Loveys B. R. (2006) – Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: apparent links with ABA physiology and gene expression in leaf tissue – Australian Journal of Grape and Wine Research, Volume 12, Issue 1, April 2006,  2–12 – DOI: 10.1111/j.1755-0238.2006.tb00038.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.2006.tb00038.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/04/14/stomatal-response-to-vpd-in-grape-vitis-vinifera/)

Sokolov V., Shumnyi V., Tsonev Ts., Stanev V., Danailov Zh., Dobrinova K. (1988) – Frequency, size and functional characteristics of the stomata in relation to heterosis in pea.- Izvestia Sibirskogo-Otdeleniya-Akademii-Nauk-SSSR,- Biologicheskikh-Nauk, (14/2):89-94. 3 of 6 in CAB Abstract. 1989.

Sokolovski S., Blatt M. R. (2004) – Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. – Plant Physiology 136, 4275–4284. – doi: http://dx.doi.org/10.1104/pp.104.050344 – CrossRef | CAS | PubMed – http://www.plantphysiol.org/content/136/4/4275 – (On our blog : https://plantstomata.wordpress.com/2017/04/14/no-directly-modifies-the-k-channel-or-a-closely-associated-regulatory-protein-in-stomata/)

Sokolovski S., Blatt M. R. (2007) – Nitric oxide and plant ion channel control. In Nitric Oxide in Plant Growth, Development and Stress Physiology (Lamattina L. and Polacco J.C., eds). – Berlin: Springer, pp. 153172. – CrossRef – https://link.springer.com/chapter/10.1007%2F7089_2006_089 – (On our blog : https://plantstomata.wordpress.com/2017/04/15/nitric-oxide-and-stomata/)

Sokolovski S., Hills A., Gay R., Blatt M. R. (2008) – Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. – Mol Plant 1347358 – CrossRefPubMedGoogle Scholar

Sokolovski S., Hills A., Gay R., Garcia-Mata C., Lamattina L., Blatt M. R. (2005)Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells – The Plant Journal2005;43:520-529. –DOI: 10.1111/j.1365-313X.2005.02471.x – CrossRefMedline Google ScholarWiley Online LibraryPubMedCAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2005.02471.x/full – (On our blog : https://plantstomata.wordpress.com/2017/04/15/ion-channel-control-by-nitric-oxide-and-abscisic-acid-in-stomata/)

Solmaz I., Sari N., Dasgan Y., Aktas H., Yetisir H., Unlu H., (2011) – The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids – Journal of Food, Agriculture & Environment 9(3&4): 172-176 – http://world-food.net/download/journals/2011-issue_3_4/001(2).pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/20/salinity-and-stomata/)

Song X.-G., She X.-P., Guo L.-Y., Meng Z.-N., Huang A.-X. (2008) – MAPK kinase and CDP kinase modulate hydrogen peroxide levels during dark-induced stomatal closure in guard cells of Vicia faba. – Bot. Stud. 49:323–334. – Google Scholar – http://ejournal.sinica.edu.tw/bbas/content/2008/4/Bot494-04.pdf – (On our blog : https://plantstomata.wordpress.com/2017/07/31/mapk-kinase-cdp-kinase-and-h2o2-during-dark-induced-stomatal-closure/)

Song X.-G., She X.-P., He J.-M., Huang C., Song T.-s. (2006) – Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. – Funct. Plant Biol. 33, 573–583. – doi: 10.1071/FP05232 – CrossRef Full Text | Google Scholar – http://www.publish.csiro.au/fp/FP05232 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/hydrogen-peroxide-cytokinin-auxin-light-and-stomata/)

Song X. G., She X. P., Yue M., Liu Y. E., Wang Y. X., Zhu X.,Huang A. X. (2014). – Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba. – Russ. J. Plant Physiol. 61, 390–396. – doi: 10.1134/S1021443714020150 – CrossRef Full Text | Google Scholar – https://link.springer.com/article/10.1134%2FS1021443714020150 – (On our blog : https://plantstomata.wordpress.com/2017/04/16/cuao-mediated-h2o2-production-is-involved-in-ethylene-induced-stomatal-closure/)

Song Y., Miao Y., Song, C.P. (2014) – Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol. 201: 1121–1140. – DOI: 10.1111/nph.12565 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12565/full – (On our blog : https://plantstomata.wordpress.com/2017/04/03/the-role-of-ros-as-signal-molecules-in-controlling-stomatal-movement/)

Song Y., Xiang F., Zhang G., Miao Y., Miao C.Song C.-P. (2016) – Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana – Front. Plant Sci., 19 February 2016 | http://dx.doi.org/10.3389/fpls.2016.00181 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00181/full – (On our blog : https://plantstomata.wordpress.com/2016/03/28/aba-and-several-stomatal-mutants/)

Soni D. K. , Ranjan S.Singh R., Khare P. B., Pathre U. V., Shirke P. A. (2012) -Photosynthetic characteristics and the response of stomata to environmental determinants and ABA in Selaginella bryopteris, a resurrection spike moss species – Plant Science Vol. 191-192, 43-52 – http://dx.doi.org/10.1016/j.plantsci.2012.04.011 – http://www.sciencedirect.com/science/article/pii/S0168945212000842 – (On our blog : https://plantstomata.wordpress.com/2016/08/31/stomatal-regulation-and-stomatal-conductance-in-selaginella/)

Speckman G. J., Post J., Dijkstra H. (1965) – Length of stomata as an indicator for polyploidy in rye-grasses. Euphytica 14: 225–228.

Speirs J., Binney A., Collins M., Edwards E., Loveys B. (2013) – Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). – Journal of Experimental Botany 64, 1907–1916 – DOI: https://doi.org/10.1093/jxb/ert052 – [PMC free article][PubMed] – http://jxb.oxfordjournals.org/content/64/7/1907 – https://academic.oup.com/jxb/article/64/7/1907/580763/Expression-of-ABA-synthesis-and-metabolism-genes – (On our blog : https://plantstomata.wordpress.com/2017/04/16/expression-of-aba-synthesis-and-metabolism-genes-associated-with-stomatal-conductance/)

Spence R. D. (1987) – The problem of variability in stomatal responses, particularly aperture variance, to environmental and experimental conditions – New Physiol. 107(2): 303–315. – DOI: 10.1111/j.1469-8137.1987.tb00182.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1987.tb00182.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-aperture-as-a-characteristic-response-to-environmental-and-experimental-conditions/)

Spence R. D., Sharpe P. J. H., Powell R. D., Rogers C. A. (1983) – Epidermal and guard cell interactions on stomatal aperture in epidermal strips and intact leaves – Ann. Bot. 52: 1-12 – (On our blog : https://plantstomata.wordpress.com/2017/08/31/stomatal-aperture-and-aperture-variability/)

Spence R. D., Sharpe P. J. H., Powell R. D., Wu H. (1984) – Response of guard cells to temperature at different concentrations of carbon dioxide in Vicia faba L. – New Phytol. 97, 129–144. – doi: 10.1111/j.1469-8137.1984.tb04117.x – CrossRef Full Text | Google Scholar

Spence R. D., Wu H., Sharpe  P. J. H., Clark G. (1986) – Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells –DOI: 10.1111/1365-3040.ep11611639 –  Plant Cell Environ., 9: 197-202 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11611639/abstract;jsessionid=122B7453F856981C5FAD9E12A81B4128.f02t04 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/water-stress-and-the-mechanical-properties-of-small-stomata/)

Sperry J. S. (1986) – Relationship of xylem embolism to xylem pressure potential, stomata! closure, and shoot morphology in the palm Rhapis excelsa. – Plant Physio!. 80: 110-116 –

Sperry J. S. (2004) – Coordinating stomatal and xylem functioning – an evolutionary perspective. – New Phytol. 2004;162: 568–570. doi:10.1111/j.1469-8137.2004.01072.x  –

Sperry J. S., Alder N. N., Eastlack S. E. (1993) – The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation.- J Exp Bot 44: 1075–1082 – DOI:https://doi.org/10.1093/jxb/44.6.107 – Google Scholar CrossRef – https://academic.oup.com/jxb/article-abstract/44/6/1075/594712/The-Effect-of-Reduced-Hydraulic-Conductance-on?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/07/27/reduced-hydraulic-conductance-stomatal-conductance-and-xylem-cavitation/)

Sperry J. S., Wang Y., Wolfe B. T., Mackay D. S., Anderegg W. R. L., McDowell N. G., Pockman W. T. (2016) – Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits – New Phytologist 2016 – DOI: 10.1111/nph.14059 – https://www.researchgate.net/publication/304330127_Pragmatic_hydraulic_theory_predicts_stomatal_responses_to_climatic_water_deficits – (On our blog : https://plantstomata.wordpress.com/2016/09/10/a-supply-demand-theory-for-water-limited-stomatal-behavior/)

Spinner H. (1936) – Stomates et altitude – Ber. Schweitzer. Bot. Ges. 46: 12-27 –

Squire G.R. (1979) – The response of stomata of pearl millet (Pennisetum typhoides S. and H.) to atmospheric humidity. – J. Exp. Bot. 118, 925–933. – Google Scholar

Squire G. R., Mansfield T. M. (1972) – A simple method of isolating stomata on detached epidermis by low pH treatment: Observations of the importance of subsidiary cells. – New Phytol. 71: 1033 – Google Scholar – 

Srivastava A.Lu Z. M.Zeiger E. (1995) – Modification of guard-cell properties in advanced lines of Pima cotton bred for higher yields and heat-resistance. – Plant Science 1995;108:125131. – Google Scholar – http://www.sciencedirect.com/science/article/pii/016894529504140P – (On our blog : https://plantstomata.wordpress.com/2017/07/31/modification-of-stomata-properties/)

Srivastava A., Singh A. P. (1972) – Stomatal structure in corn leaves – J. Ultrastr. Res. 39: 345-363 –

Srivastava A., Zeiger E. (1995a) – The inhibitor of zeaxanthin formation, dithithreitol, inhibits blue-light-stimulated stomatal opening in Vicia faba. – Planta 196, 450-457. – CrossRef |- https://link.springer.com/article/10.1007%2FBF00203642 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/dithithreitol-inhibits-blue-light-stimulated-stomatal-opening/)

Srivastava A., Zeiger E. (1995b) – Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal aperture in Vicia faba leaves. – Plant, Cell and Environment 18, 813817 – DOI: 10.1111/j.1365-3040.1995.tb00586.x – Wiley Online Library |- http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00586.x/full – (On our blog : https://plantstomata.wordpress.com/2017/07/27/zeaxanthin-is-well-suited-to-function-as-a-molecular-photosensor-in-stomatal-movements/)

Srivastava L. M., Singh A. P. (1972) – Stomatal structure in corn leaves – J. Ultrastruct. Res. 39: 345-363 – https://doi.org/10.1016/S0022-5320(72)90028-7 – Google Scholarhttp://www.sciencedirect.com/science/article/pii/S0022532072900287 – (On our blog : https://plantstomata.wordpress.com/2017/07/27/stomatal-structure-in-relation-to-the-mechanism-of-stomatal-opening-and-closing/)

Srivastava N., Gonugunta V., Puli M., Raghavendra A. (2009). – Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. – Planta 229:757–765.

Stadler R., Büttner M., Ache P., Hedrich R., Ivashikina N., Melzer M., Shearson S. M., Smith S. M., Sauer N. (2003). – Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. – Plant Physiol. 133, 528–537. – doi: 10.1104/pp.103.024240 – PubMed Abstract | CrossRef Full Text | Google Scholar – Abstract/FREE Full Text – http://www.plantphysiol.org/content/133/2/528 – (On our blog : https://plantstomata.wordpress.com/2017/04/16/a-function-of-atstp1-in-monosaccharide-import-into-stomata-during-the-night-and-a-possible-role-in-osmoregulation-during-the-day/)

Ståhlfelt M. G. (1927) – Die photischen Reaktionen im Spaltöffnungsmechanismus. – Flora 121: 236-272 – Google Scholar

Stålfelt M. G. (1929a) Die Abhängigkeit der Spaltöffnungsreaktionen von der Wasserbilanz. – Planta 8: 287–340. CrossRef

Stålfelt M. G. (1929b) – Pulsierende Blattgewebe. – Planta7,720–734. – CrossRef

Stålfelt M. G. (1932) – Der stomatäre Regulator der pflanzlichen Transpiration. – Planta 17: 22-85 – Google Scholar

Stålfelt M. G. (1935) – Die Spaltöffnungsweite als Assimilationsfaktor – Planta 23: 715-759

Stålfelt M. G. (1955) – The stomata as a hydrophotic regulator of the water deficit of the plant. – Physiologia Pl, 8, 572-592 – Wiley Online Library |

Stålfelt M. G. (1956) – Die Physiologie der Spaltöffnungsbewegungen. – Handbuch der Pflanzen-physiologie (W. Ruhland) Bd.III, 351.- Google Scholar

Stålfelt M. G. (1956) – Die stomatäre Transpiration und die Physiologie der Spaltöffnungen. – Handb. d. Pflanz. Physiol. III, Berlin-Heidelberg-New York 1956: 351-426.

Stålfelt M. G. (1957) – The water output of the guard cells of the stomata – Physiol. Plant. 10: 752-773.

Stålfelt M. G. (1959) – Sonstige Reizreaktionen der Spaltöffnungen. – Handbuch der Pflanzenphysiologie (W. Ruhland) Bd. XVII,1, 468. – Google Scholar

Stålfelt M. G. (1960) – Licht und Spaltöffnungsweite. In: W. Ruhland, Handb. Pflanzenphysiol. 5(2): 79-99 –

Stålfelt M. G. (1962) – The effect of temperature on opening of the stomatal cells – Physiol. Plant. 15 : 772-779.

Stålfelt M. G.(1963) – Diurnal dark reactions in the stomatal movements. – Physiologia Plantarum 16,756–766. 

Stålfelt M. G.(1964) – Reactions participating in the photoactive opening of the stomata – Physiologia Pl. 17 : 838.

Stålfelt M. G.(1966) – The role of the epidermal cells in the stomatal movements – Physiologia Plantarum 19: 241-256 –

Stålfelt M. G.(1967) – Die Funktion der Stomata bei partiell gesperrter Transpiration – Protoplasma (Wien) – 64: 452-459.

Stange A., Hedrich R., Roelfsema M. R. G. (2010) –  Ca2+-dependent activation of guard cell anion channels, triggered by hyperpolarization, is promoted by prolonged depolarization – The Plant Journal, 2010, 62, 2, 265-276 – DOI: 10.1111/j.1365-313X.2010.04141.x – Wiley Online LibraryCrossRefMedline Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04141.x/full – (On our blog : https://plantstomata.wordpress.com/2017/04/19/cytosolic-ca2elevation-can-activate-s-type-anion-channels-in-intact-guard-cells-through-a-fast-signalling-pathway/)

Staxén I., Pical C., Montgomery L. T., Gray J. E., Hetherington A. M., McAinsh M. R. (1999)Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. – Proceedings of the National Academy of Sciences, USA 1999;96:1779-1784. –  CrossRef |PubMed | – http://www.pnas.org/content/96/4/1779 – (On our blog : https://plantstomata.wordpress.com/2017/04/24/a-role-for-pi-plc-in-the-generation-of-aba-induced-oscillations-in-ca2cyt-in-stomata/)

Steduto P., Albrizio R., Giorio P., Sorrentino G. ( 2000) – Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity – Environmental and Experimental Botany 44(3): 243-255 – https://doi.org/10.1016/S0098-8472(00)00071-X – http://www.sciencedirect.com/science/article/pii/S009884720000071X – (On our blog : https://plantstomata.wordpress.com/2017/10/04/stomatal-and-non-stomatal-limitations-to-photosynthesis-of-sunflower-under-salinity/)

Steinberger A. L. (1922) – Über Regulation des osmotischen Wertes in den Schliesszellen von Luft- und Wasserspalten – Biolog. Zentralbl. 42:

Steinthorsdottir M., Porter A. S., Holohan A., Kunzmann L., Collinson M., McElwain J. C. (2016) –  Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary – Clim. Past, 12, 439-454, doi:10.5194/cp-12-439-2016, 2016. – http://www.clim-past.net/12/439/2016/ – (On our blog : https://plantstomata.wordpress.com/2017/01/20/fossil-plant-stomata-indicate-decreasing-atmospheric-co2/)

Steinthorsdottir M., Wohlfarth B., Kylander M. E., Blaauw M., Reimer P. J. (2013) – Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions – Science Direct – Quaternary Science Reviews Volume 68, 15 May 2013, 43–58 – http://www.sciencedirect.com/science/article/pii/S0277379113000553 – (On our blog : https://plantstomata.wordpress.com/2016/04/24/stomatal-proxy-method-and-co2-concentrations/)

Steppe K,, Dzikiti S,, Lemeur R,, Milford J. R. (2006) – Stomatal oscillations in orange trees under natural climatic conditions. – Annals of Botany 2006b;92:831-835. – Google Scholar – https://academic.oup.com/aob/article/97/5/831/220237/Stomatal-Oscillations-in-Orange-Trees-under – (On our blog : https://plantstomata.wordpress.com/2017/04/24/stomatal-oscillations-persisting-under-natural-climatic-conditions/)

Sternberg L. d. S. L., Manganiello L. M. ( 2014) – Stomatal pore size and density in mangrove leaves and artificial leaves: effects on leaf water isotopic enrichment during transpiration – Functional Plant Biology 41(6): 648-658 – https://doi.org/10.1071/FP13235 – http://www.publish.csiro.au/fp/fp13235 – (On our blog : https://plantstomata.wordpress.com/2017/10/03/stomatal-pore-size-and-density-in-mangrove-leaves-and-artificial-leaves/)

Stevens R. A., Martin E. S. (1978) – Structural and functional aspects of stomata I. Developmental studies in Polypodium vulgare – Planta 142: 307-316 –

Streck N. A. (2003) –  Stomatal response to water vapour deficit; an unsolved issue. Revista Brasileira Agrociência 9: 317–322 – DOI: HTTP://DX.DOI.ORG/10.18539/CAST.V9I4.649 – https://periodicos.ufpel.edu.br/ojs2/index.php/CAST/article/view/649 – (On our blog : https://plantstomata.wordpress.com/2017/09/05/stomatal-response-to-vpd-is-still-a-controversial-issue/)

Strugger S., Weber F. (1925) – Stärkeabbau in Mesophyll- und Schließzellen. – Ber. dtsch. bot. Ges.43, 431. – Google Scholar

Strugger S., Weber F. (1926) – Zur Physiologie der Stomata-Nebenzellen – Ber. d. Deutsch. Bot. Ges. 44:

Strzyz P. (2017) – Forcing cell polarity – Nature Reviews Molecular Cell Biology(2017)doi:10.1038/nrm.2017.34 – http://www.nature.com/nrm/journal/vaop/ncurrent/full/nrm.2017.34.html – (On our blog : https://plantstomata.wordpress.com/2017/03/30/cell-polarity-in-stomatal-lineage/)

Sugano S.S.Shimada T.Imai Y.Okawa K.Tamai A.Mori M.Hara-Nishimura I.  (2010) – Stomagen positively regulates stomatal density in Arabidopsis. – Nature 463:241244. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/27/conceptual-advancement-in-understanding-stomatal-development/)

Sugiyama Y., Uraji M., Watanabe-Sugimoto M, Okuma E., Munemasa S., Shimoishi Y., Nakamura Y., Mori I. C., Iwai S., Murata Y. (2012 – FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells – J Exp Bot (2012) 63 (3): 1357-1365. – DOI: https://doi.org/10.1093/jxb/err369 – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/err369 – (On our blog : https://plantstomata.wordpress.com/2017/03/30/fia-functions-as-an-early-signal-component-upstream-of-aapk-activation-in-aba-signalling-but-does-not-function-in-meja-signalling-in-stomata/)

Suh S., Park J., Lee Y. (1998) – Possible involvement of phospholipase A2 in light signal transduction of guard cells of Commelina communis. – Physiologia Plantarum 104, 306–310 – DOI: 10.1034/j.1399-3054.1998.1040303.x – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1998.1040303.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/21/pla2-functions-as-a-signal-transducer-for-both-blue-and-red-light-in-stomata/)

Suh S. J., Wang Y. F., Frelet A., Leonhardt N., Klein M., Forestier C., Mueller-Roeber B., Cho M. H., Martinoia E., Schroeder J. I. (2007)The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. Journal of Biological Chemistry 2007;282:1916-1924. – 

Suhita D., Kolla V. A., Vavasseur A., Raghavendra A. S. (2003) – Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid.- Plant Sci 164: 481–488

Suhita D., Raghavendra A.S., Kwak J.M., Vavasseur A. (2004) – Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. – Plant Physiol. 134:1536–1545. – doi: 10.1104/pp.103.032250 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS – http://www.plantphysiol.org/content/134/4/1536.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/27/cytoplasmic-alkalization-and-ros-production-during-mj-or-aba-signal-transduction-in-stomata/)

Sun L.R., Hao F.S., Lu B.S., Ma L.Y. (2010). – AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. – Plant Signal. Behav. 5:1022–1024.

Sun X., Kang X., Ni M. (2012) – Hypersensitive to red and blue 1 and its modification by protein phosphatase 7 are implicated in the control of Arabidopsis stomatal aperture. – PLoS Genet.8:e1002674. doi: 10.1371/journal.pgen.1002674 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002674 – (On our blog : https://plantstomata.wordpress.com/2017/04/24/hypersensitive-to-red-and-blue-1-hrb1-and-protein-phosphatase-7-pp7-and-the-control-of-stomatal-aperture/)

Sun Y., Guo H., Yuan L., Wei J., Zhang W., Ge F.  (2015) – Plant stomatal closure improves aphid feeding under elevated CO2 – Global Change Biology 21: 2739–2748. – doi:10.1111/gcb.12858 – (On our blog : https://plantstomata.wordpress.com/2015/10/02/stomata-and-aphid-infestation/)

Sun Y., Lv D., Wang W., Xu W., Wang L., Miao C., Lin H. H. (2015) – Lipoxygenase 2 functions in exogenous nitric oxide-induced stomatal closure in Arabidopsis thaliana – Functional Plant Biology – http://dx.doi.org/10.1071/FP15151

Sun Z., Jin X., Albert R., Assmann S. M. (2014). – Multi-level modeling of light-induced stomatal opening offers new insights into its regulation by drought. – PLoS Comp. Biol.10:e1003930. – doi: 10.1371/journal.pcbi.1003930 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003930 – (On our blog : https://plantstomata.wordpress.com/2017/04/24/modeling-of-light-induced-stomatal-opening/)

Sussmilch F. C., Atallah N., Brodribb T. J., McAdam S. A. (2017) – Abscisic acid (ABA) and key proteins in its perception and signalling pathways are ancient, but their roles have changed through time – Plant signaling & behavior · August 2017 – DOI: 10.1080/15592324.2017.1365210 – https://www.researchgate.net/publication/319293630_Abscisic_acid_ABA_and_key_proteins_in_its_perception_and_signalling_pathways_are_ancient_but_their_roles_have_changed_through_time?discoverMore=1 – (On our blog https://plantstomata.wordpress.com/2017/08/28/aba-and-key-proteins-and-their-effects-ion-stomata/)

Sussmilch F. C., Brodribb T. J., McAdam S. A. (2017) – What are the evolutionary origins of stomatal responses to abscisic acid in land plants? – Journal of Integrative Plant Biology 59: 240–260 – DOI10.1111/jipb.12523 – https://www.infona.pl/resource/bwmeta1.element.wiley-jipb-v-59-i-4-jipb12523 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/strong-evidence-to-support-a-gradualistic-model-for-stomatal-evolution/)

Sutton F., Paul S. S., Wang X.-Q., Assmann S. M. (2000) Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopous laevis oocytes. – Plant Physiology 124:223230. – doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​124.​1.​223– CrossRef |PubMed |CAS | – http://www.plantphysiol.org/content/124/1/223 – (On our blog : https://plantstomata.wordpress.com/2017/04/24/mesophyll-cells-and-guard-cells-use-distinct-and-different-receptor-types-andor-signal-transduction-pathways-in-aba-regulation-of-k-channels-in-stomata/)

Swarthout D., Hogan C. M. (2012) – Stomata – The Encyclopedia of Earth – (On our blog : https://plantstomata.wordpress.com/2015/04/23/structure-and-physiology-of-stomata/)

Sweet K. J., Peak D., Mott K. A. (2017) – Stomatal heterogeneity in responses to humidity and temperature: Testing a mechanistic model – Plant, Cell & Environment – DOI: 10.1111/pce.13051 – (On our blog : https://plantstomata.wordpress.com/2017/08/05/stomatal-heterogeneity-in-responses-to-humidity-and-temperature/)

Szyroki A., Ivashikina N., Dietrich P., Roelfsema M. R. G., Ache P., Reintanz B., Deeken R. Godde M., Felle H., Steinmeyer R., Palme K., Hedrich R. (2001) KAT1 is not essential for stomatal opening. – Proceedings of the National Academy of Sciences, USA 98: 29172921. – CrossRef |PubMed |CAS |- http://www.pnas.org/content/98/5/2917 – (On our blog : https://plantstomata.wordpress.com/2017/04/24/multiple-k-channel-transcripts-exist-in-guard-cells-and-kat1-is-not-essential-for-stomatal-action/)

Tagawa T. (1938) – Further studies on the influence of the water temperature on the water absorption and the stomatal aperture – Journ. Facul. Agric. Hokkal. Imp. Univ. Sapporo 45, Pt. I: 1-33.

Takahashi Y., Ebisu Y., Kinoshita T., Doi M., Okuma E., Murata Y., Shimazaki K. (2013) – bHLH Transcription Factors That Facilitate K+ Uptake During Stomatal Opening Are Repressed by Abscisic Acid Through Phosphorylation. – Sci Signal. 2013 Jun 18 6(280):ra48. doi: 10.1126/scisignal.2003760 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://stke.sciencemag.org/content/6/280/ra48 – (On our blog : https://plantstomata.wordpress.com/2017/04/24/the-aks-family-of-bhlh-transcription-factors-facilitates-stomatal-opening-through-the-transcription-of-genes/)

Takahashi S., Monda K., Negi J., Konishi F., Ishikawa S., Hashimoto-Sugimoto M., Goto N., Iba K. (2015) – Natural Variation in Stomatal Responses to Environmental Changes among Arabidopsis thaliana Ecotypes – PLoS ONE 10(2): e0117449. – doi:10.1371/journal.pone.0117449 (http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117449– (On our blog : https://plantstomata.wordpress.com/2015/10/02/stomatal-responses-to-environmental-changes-2/).

Takahashi Y., Ebisu Y., Shimazaki K.-I. (2017) – Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors. – Plant Physiol 174: 815–822 –

Takemiya A.Doi A.Yoshida S.Okajima K.Tokutomi S.Shimazaki K.-I. (2016) – Reconstitution of an Initial Step of Phototropin Signaling in Stomatal Guard Cells – Plant Cell Physiol (2016) 57 (1):152-159.- doi: 10.1093/pcp/pcv180 – http://pcp.oxfordjournals.org/content/57/1/152.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/22/an-initial-step-of-phototropin-signaling-in-stomatal-guard-cells/)

Takemiya A., Kinoshita T., Asanuma M., Shimazaki K.-i. (2006)Protein phosphatase 1 positively regulates stomatal opening in response to blue light in Vicia faba. – Proceedings of the National Academy of Sciences, USA 2006;103:13549-13554. – Abstract/FREE Full TextCASPubMedArticle – https://www.ncbi.nlm.nih.gov/pubmed/16938884?dopt=Abstract&holding=npg – (On our blog : https://plantstomata.wordpress.com/2017/07/27/pp1-functions-downstream-of-phototropins-and-upstream-of-the-h-atpase-in-the-blue-light-signaling-pathway-of-stomata/)

Takemiya A.Sugiyama N.Fujimoto H.Tsutsumi T.Yamauchi S.Hiyama A.Tada Y.Christie J. M.Shimazaki K.-i. (2013) –  Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening – Nature Communications 4 – doi:10.1038/ncomms3094  – Medline – http://www.nature.com/ncomms/2013/130628/ncomms3094/full/ncomms3094.html – https://www.nature.com/articles/ncomms3094 – (On our blog : https://plantstomata.wordpress.com/2017/05/01/blus1-functions-as-a-phototropin-substrate-and-primary-regulator-of-stomatal-control/)

Takemiya A., Yamauchi S., Yano T., Ariyoshi C., Shimazaki K. (2013) – Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. – Plant Cell. Physiol. 54, 2435 (2013) – doi: 10.1093/pcp/pcs073 – CASPubMedArticle – PubMed Abstract | CrossRef Full Text | Google Scholar – https://academic.oup.com/pcp/article-lookup/doi/10.1093/pcp/pcs073 – (On our blog : https://plantstomata.wordpress.com/2017/07/21/prsl1-functions-as-a-regulatory-subunit-of-pp1-and-regulates-blue-light-signaling-in-stomata/)

Taksinamanee A., Srilaong V., Uthairatanakij A., Kanlavanarat S., (2006) – Comparison of hydro-cooling and forced-air cooling on stomata closing at the pedicel of red hot chili cv. ‘superhot’ – SHS Acta Horticulturae 712: IV International Conference on Managing Quality in Chains – The Integrated View on Fruits and Vegetables Quality – DOI:  10.17660/ActaHortic.2006.712.108 – http://www.actahort.org/books/712/712_108.htm(On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-closing-at-the-pedicel-of-red-hot-chili-for-keeping-the-quality-after-harvest/)

Tal M. (1966) – Abnormal stomatal behavior in wilty mutants of tomato. Plant Physiol 41:1387-1391.

Tal M., Imber D., Itai C. (1970) Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. – Plant Physiology 46: 367–372.

Talbott L. D., Hammad J. W., Harn L. C., Ngy-uyen V. H., Patel J., Zeiger E. (2006) – Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement – Plant Cell Physiol. 47: 332-339.

Talbott L. D., Rahveh E., Zeiger E. (2003) – Relative humidity is a key factor in the acclimation of the stomatal response to CO2. – J. Exp. Bot.54(390): 2141-2147 – DOI: https://doi.org/10.1093/jxb/erg215 – (CrossRef, Medline, ISI) – Abstract/FREE Full Text – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erg215 – (On our blog : https://plantstomata.wordpress.com/2017/05/01/stomatal-sensitivity-to-co2/)

Talbott L. D., Srivastava A., Zeiger E. (1996) – Stomata from growth-chamber-grown Vicia faba have an enhanced sensitivity to CO2. – Plant, Cell and Environment 19,11881194 – DOI: 10.1111/j.1365-3040.1996.tb00434.x – Wiley Online Library |PubMed | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00434.x/full – (On our blog : https://plantstomata.wordpress.com/2017/07/28/acclimation-to-environmental-conditions-alters-the-sensitivity-of-stomata-to-co2/)

Talbott L. D., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88, 887–895. – doi: 10.1104/pp.88.3.887 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/88/3/887 – (On our blog : https://plantstomata.wordpress.com/2017/07/19/light-quality-and-osmoregulation-in-stomata/)

Talbott L. D., Zeiger E. (1993) – Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light. – Plant Physiol. 102, 1163–1169 -PMID: 12231893, PMCID: PMC158901 – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12231893 – (On our blog : https://plantstomata.wordpress.com/2017/07/21/light-quality-modulates-alternative-mechanisms-of-osmotic-accumulation-in-stomata/)

Talbott L. D., Zeiger E. (1996) – Central roles for potassium and sucrose in guard-cell osmoregulation. – Plant Physiol. 111, 1051–1057 -PMID: 12226347 PMCID: PMC160980 – DOI: https://doi.org/10.1104/pp.111.4.1051 – PubMed Abstract | Google Scholar – http://www.plantphysiol.org/content/111/4/1051.short – (On our blog : https://plantstomata.wordpress.com/2017/07/19/potassium-and-sucrose-in-stomata-osmoregulation/)

Talbott L. D., Zeiger E. (1998) – The role of sucrose in guard cell osmoregulation – J. Exp. Bot. 49: 329-337 – CrossRefGoogle Scholar

Talbott L. D., Shimayevich I. J., Chung Y., Hammad J. W., Zeiger E. (2003) – Blue light and phytochrome-mediated stomatal opening the npq1 and phot1 phot2 mutants of Arabidopsis. – Plant Physiol. 133:1522–1529 – CrossRefPubMed