BIBLIOGRAPHY OF STOMATA: PHYSIOLOGY, BIOCHEMISTRY-ECOLOGY-CYTOLOGY M – Z

 

 

Ma Y.-L., Niu J., Zhang W., Wu X. (2017) – Hydrogen Sulfide May Function Downstream of Hydrogen Peroxide in Mediating Darkness-induced Stomatal Closure in Vicia faba – Functional Plant Biology – https://doi.org/10.1071/FP17274 – http://www.publish.csiro.au/fp/FP17274 – (On our blog :  https://plantstomata.wordpress.com/2017/12/04/h2s-is-involved-in-darkness-induced-stomatal-closure-and-acts-downstream-of-h2o2/ )

Ma Y. L., She X. P., Yang S. S. (2012) – Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H2O2) levels in guard cells in Vicia faba – Science China Life Sciences 55(11): 974-983 – DOI10.1007/s11427-012-4386-8 –https://www.infona.pl/resource/bwmeta1.element.springer-7f5d9a25-3c26-304a-8786-944d63ee107a – (On our blog : https://plantstomata.wordpress.com/2017/10/22/darkness-induced-s1p-synthesis-causing-cytosolic-alkalization-and-subsequent-h2o2-production-finally-leads-to-stomatal-closure/ )

Ma Y., She X., Yang S. (2013) – Cytosolic alkalization-mediated H2O2 and NO production are involved in darkness induced stomatal closure in Vicia faba. – Can. J. Plant Sci. 93, 119–130. – doi: 10.4141/cjps2012-040 – CrossRef | CAS |http://www.nrcresearchpress.com/doi/abs/10.4141/cjps2012-040  – (On our blog :- https://plantstomata.wordpress.com/2016/07/30/h2o2-and-no-production-are-involved-in-darkness-induced-stomatal-closure/ )

MacAlister C. A., Bergmann D. C. (2007)  – Stomatal Patterning – eLS. Edited by Anonymous. John Wiley & Sons, Ltd; 2001. – Encyclopedia of Life Sciences. – DOI: 10.1002/9780470015902.a0020125 – http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0020125/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/05/mechanisms-that-lead-to-pattern-and-cell-fate-acquisition-in-stomata/ )

 

MacAlister C. A., Bergmann D. C. (2011) – Sequence and function of bHLHs required for stomatal development in Arabidopsis are deeply conserved in land plants – Evolution and Development 13:182-192. -10.1111/j.1525-142X.2011.00468.x. – PMID: 21410874 – Publisher Full Text |PubMed Central Full Text) – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139685/?tool=pubmed – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/17011 )

MacAlister C. A.Ohashi-Ito K.Bergmann D. C. (2007) – Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445537540. – CrossRefPubMedGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/30/speechless-spch-encoding-a-basic-helix-loop-helix-bhlh-transcription-factor-for-stomatal-lineage/)

Machida Y., Lin C., Tamanoi F. (2014) – Signaling Pathways in Plants, Volume 35, 1st Edition, eBook ISBN: 9780128020159, Academic Press, 298 pp., in The Enzymes2.4 Light-Controlled Stomatal Opening and Development – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stoma – (On our blog : https://plantstomata.wordpress.com/2018/01/07/light-controlled-stomatal-opening-and-development/ )

Macho A. P., Boutrot F., Rathjen J. P., Zipfel, C. (2012) – Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. – Plant Physiol. 159: 1845–1856. – doi: 10.1104/pp.112.199810 – https://www.researchgate.net/publication/228064322_ASPARTATE_OXIDASE_plays_an_important_role_in_Arabidopsis_stomatal_immunity – (On our blog : https://plantstomata.wordpress.com/2016/10/18/stomatal-immunity-and-aspartate-oxidase/ )

MacRobbie E. A. C. (1980) – Osmotic measurements on stomatal cells of Commelina communis L. – J. Membr. Biol. 53: 189-198. – DOI: 10.1007/BF01868824 –https://www.researchgate.net/publication/246987913_Osmotic_measurements_on_stomatal_cells_of_Commelina_communis_L – (On our blog : https://plantstomata.wordpress.com/2016/11/05/osmotic-measurements-on-stomata/ )

MacRobbie E. A. C. (1981) – Ionic relations of stomatal guard cells – In : Stomatal Physiology, (Ed. by P. G.Jarvis & T. A.Mansfield), pp. 5170.- Cambridge University Press. Cambridge) – Google Scholar – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/ion-movements-and-stomata/ )

MacRobbie E. A. C. (1982) Chloride Transport in Stomatal Guard Cells – Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 299(1097), The Binding and Transport of Anions in Living Tissues (Dec. 1, 1982), pp. 469-481 – https://www.jstor.org/stable/2395789?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/17/chloride-transport-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1988) – Control of ion fluxes in stomatal guard cells – Botanica Acta 101: 140-148. – DOI: 10.1111/j.1438-8677.1988.tb00025.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1988.tb00025.x/abstract – (https://plantstomata.wordpress.com/2016/12/01/ion-fluxes-in-stomatal-guard-cells/ )

MacRobbie E. A. C. (1993) – Ca2+ and cell signalling in guard cells – Semin Cell Biol 4:113122 – http://dx.doi.org/10.1006/scel.1993.1014 – CrossRefMedlineGoogle Scholar – http://www.sciencedirect.com/science/article/pii/S1043468283710147 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-and-cell-signalling-in-stomata/ )

MacRobbie E. A. (1998) – Signal transduction and ion channels in guard cells. – Philos. Trans. R Soc. Lond. [B], 353: 1475–1488 –

MacRobbie E. (2006) – Control of volume and turgor in stomatal guard cells. – J. Membr. Biol. 210, 131. – doi: 10.1007/s00232-005-0851-7 –

MacRobbie E. A. C., Smyth W. D. (2010) – Effects of fusicoccin on ion fluxes in guard cells – New Phytol 186:636-647. – DOI: 10.1111/j.1469-8137.2010.03209.x –https://www.researchgate.net/publication/42344067_Effects_of_fusicoccin_on_ion_fluxes_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2016/10/18/fusicoccins-effect-on-ion-fluxes-in-stomata/ )

Madhavan S., Chrominiski A., Smith B. N. (1983) – Effect of ethylene on stomatal opening in tomato and carnation leaves. – Plant Cell Physiol. 24, 569–572. – 

Maercker U. (1965) – Zur Kenntnis der Transpiration der Schliesszellen – Protoplasma 60:61–78. – doi:10.1007/BF01248129 –http://link.springer.com/article/10.1007/BF01248129 – https://plantstomata.wordpress.com/2016/10/18/25426/ )

 

Maierhofer T., Diekmann M., Offenborn J. N., Lind C., Bauer H., Hashimoto K., et al. (2014) – Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. – Sci. Signal. 7:ra86. – doi: 10.1126/scisignal.2005703 –

Maier-Maercker U. (1989) – Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst by fumigation with ozone – Trees 3: 57-64 –

Maier-Maercker U., Koch W. (1991) – Experiments on the control capacity of stomata of Picea abies (L.) Karst after fumigation by ozone and in environmentally damaged material – Plant, Cell and Environment 14: 175-184 –

Majernik O., Mansfield T. A. (1970) – Effects of SO2 pollution on stomatal movements in Vicia faba – Phytopathologische Zeitschrift 71: 123-128 –

Majernik O., Mansfield T. A. (1971) – Direct effect of SO2 pollution on the degree of opening of stomata – Nature 227: 377-378 –

 

Malcheska F., Ahmad A., Batool S., Müller H. M., Ludwig-Müller J., Kreuzwieser J., Randewig D., Hänsch R., Mendel R. R., Hell R., et al. (2017) – Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. – Plant Physiol 174: 798–814 – http://www.plantphysiol.org/content/174/2/798 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/xylem-derived-sulfate-seems-to-be-a-chemical-signal-of-drought-that-induces-stomatal-closure/)

Males J., Griffiths H. (2017) – Stomatal biology of CAM plants. – Plant Physiol 174: 550–560 – http://www.plantphysiol.org/content/174/2/550 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-functional-biology-of-cam-plant-stomata/)

Males J., Griffiths H. (2017) – Specialized stomatal humidity responses underpin ecological diversity in C3 bromeliads – Plant, Cell & Environment, doi: 10.1111/pce.13024. – http://onlinelibrary.wiley.com/doi/10.1111/pce.13024/full – (on our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-humidity-responses-and-ecological-diversity-in-c3-bromeliads/ )

Mansfield T. A. (1976) – Chemical control of stomata1 movements – Philosophical Transactions of the Royal Society, London B273: 541-550 –

Mansfield T. A. (1986) – The physiology of stomata: new insights into old problems – In: Steward, F.C. (Ed.). Plant Physiology, a treatise, Vol IX. Academic Press, Orlando, 155-224 –

Mansfield T. A. (1998) – Stomata and plant water relations: does air pollution create problems? – Environmental Pollution 101 (1998) 1-l 1  – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomata-and-plant-water-relations-does-air-pollution-create-problems.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-pollution-and-plant-water-relations/ )

Mansfield T. A., Freer-Smith P. H. (1984) – The role of stomata in resistance mechanisms. In: Koziol, M.J., Whatley, F.R. (Eds.). Gaseous air pollutants and plant metabolism. Butterworths, London, pp. 131-146 –

Mansfield T. A., Hetherington A. M., Atkinson C. J. (1990) – Some current aspects of stomatal physiology. – Annu. Rev. Plant Physiol.  – Plant Mol. Biol. 41, 55–75. – doi: 10.1146/annurev.pp.41.060190.000415 –

Mansfield T. A.Majernik O. (1970) – Can stomata play a part in protecting plants against air pollutants? – Environmental Pollution 1970;1:149154. – doi:10.1016/0013-9327(70)90015-7 – http://www.sciencedirect.com/science/article/pii/0013932770900157 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomata-and-protection-against-air-pollutants/ )

Mansfield T. A.Willmer C. M. (1969) – Stomatal responses to light and carbon dioxide in the hart’s-tongue fern, Phyllitis scolopendrium Newm. – New Phytol. 68 : 63-66. – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomata-light-and-co2/ )

Manzoni S.Vico G.Katul G.Fay P. A.Polley W.Palmroth S., Porporato A. (2011) – Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates – Functional Ecology 25456467. -doi: 10.1111/j.1365-2435.2010.01822.x –Wiley Online Library | https://nicholas.duke.edu/people/faculty/katul/fec_1822_Rev_EV.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/08/31221/ )

Manzoni S.Vico G.Palmroth S., Porporato A. , Katul G. (2013) – Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture – Advances in Water Resources Volume 62, Part A,  90–105 – http://dx.doi.org/10.1016/j.advwatres.2013.09.020 –http://www.sciencedirect.com/science/article/pii/S0309170813001814 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-conductance-under-dynamic-soil-moisture/ )

 

Mao J., Zhang Y. C., Sang Y., Li Q. H., Yang H. Q. (2005) – From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 102, 12270–12275. – doi: 10.1073/pnas.0501011102 –

Mao Z.-J., Wang Y.-J., Wang X.-W., Voronin P. Y. (2004) – Effect of doubled CO2 on morphology: Inhibition of stomata development in growing birch (Betula platyphylla Suk.) leaves – Russ J Plant Physiol (2005) 52: 171. https://doi.org/10.1007/s11183-005-0025-6 – https://link.springer.com/article/10.1007/s11183-005-0025-6 – (On our blog : https://plantstomata.wordpress.com/2018/02/05/doubled-co2-concentration-exerts-a-morphotropic-effect-on-differentiation-of-young-epidermal-tissue/ )

Marais D. L. D., Auchincloss L. C., Sukamtoh E., McKay J. K., Logan T., Richards J. H., et al. (2014) – Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. – Proc. Natl. Acad. Sci. U.S.A. 111, 2836–2841. doi: 10.1073/pnas.1321429111 –

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989) – The generation and consolidation of a radial array of cortical microtubules in developing guard cells of Allium cepa L. – Planta 179: 516–529 – DOI: 10.1007/BF00397591 –https://www.researchgate.net/publication/258348454_The_generation_and_consolidation_of_a_radial_array_of_cortical_microtubules_in_developing_guard_cells_of_Allium_cepa_L – (On our blog : https://plantstomata.wordpress.com/2016/10/18/25436/ )

Marc J. , Mineyuki Y. , Palevitz B. A.  (1989) – A planar microtubule-organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules –Planta. 179(4): 530-40. – doi: 10.1007/BF00397592. –https://www.ncbi.nlm.nih.gov/pubmed/24201776 – (On our blog : https://plantstomata.wordpress.com/2016/10/19/experimental-depolymerization-and-reassembly-of-microtubules-in-stomata/ )

Marc J., Palevitz B. A. (1990) – Regulation of the spatial order of cortical microtubules in developing guard cells of Allium – Planta 182: 626–634 – doi:10.1007/BF02341041 –  http://link.springer.com/article/10.1007/BF02341041 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/cortical-microtubules-in-developing-guard-cells/ )

Marias D. (2015) – Accurately measuring cavitation resistance to understand how plants cope with drought – Botany One Jan 10, 2018 – https://www.botany.one/2015/03/accurately-measuring-cavitation-resistance-to-understand-how-plants-cope-with-drought/ – (On our blog : https://plantstomata.wordpress.com/2018/01/10/cavitation-resistance-is-crucial-to-coping-with-and-surviving-drought/ )

Marom Z., Shtein I., Bar-On B. (2017) – Stomatal Opening: The Role of Cell-Wall Mechanical Anisotropy and Its Analytical Relations to the Bio-composite Characteristics – Frontiers in Plant Science  8: 2061-  – DOI=10.3389/fpls.2017.02061 – https://www.frontiersin.org/articles/10.3389/fpls.2017.02061/full – (On our blog : https://plantstomata.wordpress.com/2018/01/31/cell-wall-mechanical-anisotropy-and-stomatal-opening/ )

Marten I.Busch H.Raschke K.Hedrich R. (1993) – Modulation and block of the plasma membrane anion channel of guard cells by stilbene derivatives – Eur Biophys J 21:403408. – Web of ScienceGoogle Scholar –http://cel.webofknowledge.com/InboundService.do?product=CEL&SID=Z2xW27ed8sTOsZMc3ZE&UT=WOS%3AA1993KM49400004&SrcApp=Highwire&action=retrieve&Init=Yes&SrcAuth=Highwire&Func=Frame&customersID=Highwire&IsProductCode=Yes&mode=FullRecord – (On our blog : https://plantstomata.wordpress.com/2016/10/20/stilbene-derivatives-and-the-plasma-membrane-anion-channel-of-stomata/ )

 

Marten H., Hyun T., Gomi K., Seo S., Hedrich R., Roelfsema M. R. (2008) – Silencing of NtMPK4 impairs CO-induced stomatal closure, activation of anion channels and cytosolic Casignals in Nicotiana tabacum guard cells. – Plant J. 55, 698–708. – doi: 10.1111/j.1365-313X.2008.03542.x

Marten H., Konrad K. R., Dietrich P., Roelfsema M. R. G., Hedrich, R. (2007) – Plant Physiol. 143, 28–37. – doi: 10.1104/pp.106.092643 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – http://www.plantphysiol.org/content/143/1/28.long – (On our blog : https://plantstomata.wordpress.com/2016/10/18/ca2-aba-and-plasma-membrane-anion-channels-in-stomata/ )

Marten I., Zeilinger C., Redhead C., Landry D. W., Al-Awqati Q., Hedrich R. (1992) – Identification and modulation of a voltagedependent anion channel in the plasma membrane of guard cells by high-affinity ligands – EMBO J 11: 3569-3575 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556815/ – (On our blog : https://plantstomata.wordpress.com/2016/10/29/a-voltagedependent-anion-channel-in-the-plasma-membrane-of-guard-cells-stomata/ )

Martin C., Glover B.J. (2007) – Functional aspects of cell patterning in aerial epidermis – http://dx.doi.org/10.1016/j.pbi.2006.11.004 –http://www.sciencedirect.com/science/article/pii/S1369526606001853 – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-patterning-of-stomata-and-trichomes-in-different-plant-species/ )

Martin E. S., Donkin M. E., Stevens R. A. (1983) – Stomata. Edward Arnold, London.

Martin L., Jacquet H., Renaud J., Cotelle V., Giacalone C., Vavasseur A., Leonhardt N. (2012) – Guard cell plasma membrane H+- ATPases: highly regulated proton pumps to control gas exchange – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/three-isoforms-of-the-plasma-membrane-h-atpases-in-the-stomatal-movement-regulation/ )

Martinez-Vilalta J., Garcia-Forner N. (2016) – Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept – Plant, Cell & Environment – DOI: 10.1111/pce.12846 – Accepted, unedited articles published online and citable. – http://onlinelibrary.wiley.com/doi/10.1111/pce.12846/abstract;jsessionid=412556820134C849930721AF4E74DE29.f02t03 – (On our blog : https://plantstomata.wordpress.com/2016/10/16/stomatal-behaviour-and-hydraulic-transport-under-drought/ )

Martin-StPaul N.Delzon S.Cochard H. (2017) – Plants resistance to drought relies on early stomata closure – http://biorxiv.org/content/early/2017/01/10/099531 – (https://plantstomata.wordpress.com/2017/01/13/drought-tolerance-and-stomatal-closure/ )

Martin-StPaul N.Delzon S.Cochard H. (2017) – Plants resistance to drought depends on timely stomatal closure – Ecol Lett, 20: 1437–1447. doi:10.1111/ele.12851 – http://onlinelibrary.wiley.com/doi/10.1111/ele.12851/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/15/the-functional-coordination-between-stomata-and-hydraulic-traits/ )

Martin C. E., Peters E. A. (1984) – Functional stomata of the atmospheric epiphyte Tillandsia usneoides – Bot. Gaz. 145(4): 502-5047 – Martin_BotGaz_145_502-507.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/functional-stomata-in-tillandsia-usneoides/ )

Mäser P., Leonhardt N., Schroeder J. I. (2003) – The Clickable Guard Cell: Electronically linked Model of Guard Cell Signal Transduction Pathways – Schroeder lab home page  –  – http://labs.biology.ucsd.edu/schroeder/clickablegc.html – http://www.bioone.org/doi/suppl/10.1199/tab.0114?file=10.1199_tab.0099.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/model-of-guard-cell-signal-transduction-pathways-stomata/ )

Masle J. (2012) – From roots to stomata  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/stomata-and-novel-networks-for-concerted-responses-to-stress/ )

Masle J., Gilmore S. R., Farquhar G. D. (2005) – The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. – Nature 436: 866870. – DOI: 10.1038/nature03835  – https://www.researchgate.net/publication/7737627_The_ERECTA_gene_regulates_plant_transpiration_efficiency_in – (On our blog : https://plantstomata.wordpress.com/2016/10/18/plant-transpiration-ef%EF%AC%81ciency-the-erecta-gene-and-stomata/ )

Matrosova A. (2015) – New Insights into the Regulation of Stomatal Movements by Red Light, Carbon Dioxide and Circadian Rhythms  – Doctoral Thesis Swedish University of Agricultural Sciences Umeå 2015 – https://pub.epsilon.slu.se/12812/1/matrosova_a_151113.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/18/requirement-of-both-ztl-and-ost1-in-the-regulation-of-guard-cell-turgor-and-suggestion-of-a-direct-link-between-the-circadian-clock-and-ost1-activity/ )

 

Matsuo N.Ozawa K.Mochizuki T. (2010) – Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems – Plant and Soil 335(1): 349-361 – DOI: 10.1007/s11104-010-0423-1 – https://www.scopus.com/record/display.uri?eid=2-s2.0-77956874424&origin=inward&txGid=18753fd66f4441b72bab306d3a39df7e – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-conductance-in-rice/ )

Matteoni J. A., Sinclair W. A., (1983) – Stomatal closure in plants infected with mycoplasmalike organisms – Phytopathology 73: 398-402 –https://www.apsnet.org/publications/phytopathology/backissues/Documents/1983Articles/Phyto73n03_398.PDF – (On our blog : https://plantstomata.wordpress.com/2017/11/20/stomata-and-foliar-infections/ )

Matthews J. S. A.Vialet-Chabrand S. R. M.Lawson T. (2017) – Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss – 

Mawson B. T. (1993) – Modulation of photosynthesis and respiration in guard and mesophyll cell protoplasts by oxygen concentration – Plant, Cell and Environment1993 a;16:207214. – DOI: 10.1111/j.1365-3040.1993.tb00862.x – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1993.tb00862.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/photosynthesis-and-respiration-in-guard-and-mesophyll-cell-protoplasts/ )

Mawson B. T. (1993) – Regulation of blue-light-induced proton-pumping by Vicia faba L guard-cell protoplasts—energetic contributions by chloroplastic and mitochondrial activities – Planta 1993b191:293301. – doi:10.1007/BF00195685 –Google Scholar – http://link.springer.com/article/10.1007/BF00195685 – (On our blog : https://plantstomata.wordpress.com/2017/01/08/blue-light-induced-proton-pumping-by-guard-cell-protoplasts/ )

Maynard J. C.Mertz S. M. Jr.Arntzen C. J.Payne W. W. (1974) – Abnormal Guard Cell Development in an Olive Necrotic Mutant of Maize – American Journal of Botany 61(6): 580-584  – CrossRefGoogle Scholar – https://www.jstor.org/stable/2441680?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/17/ontogeny-of-the-stomatal-complex-is-abnormal-in-a-mutant-variety-of-zea-mays/ )

McAdam S. A. M., Brodribb T. J. (2011) – Passive origins of stomatal control in vascular plants – Science 331: 582–585 – DOI: 10.1126/science.1197985 – [Google Scholar] [CrossRef] [PubMed] – http://science.sciencemag.org/content/331/6017/582 –  (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-and-a-fundamental-transition-from-passive-to-active-metabolic-control-of-plant-water-balance/ )

McAdam S.A.M., Brodribb T. J. (2015) – Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community – Plant, Cell & Environment Volume 38, Issue 3, March 2015, Pages: 423–432. – doi: 10.1111/pce.12398. Epub 2014 Aug 6. – PMID: 24995884. – https://www.ncbi.nlm.nih.gov/pubmed/24995884 – (On our blog : https://plantstomata.wordpress.com/2016/10/20/seasonal-stomatal-behaviour-in-a-monsoonal-plant-community/ )

McAdam E. L., Brodribb T. J., McAdam S.A.M. (2017) – Does ozone increase ABA levels by non-enzymatic synthesis causing stomata to close? – Plant, Cell and Environment 40, 741–747 – doi: 10.1111/pce.12893 – http://www.brodribblab.org.au/wp-content/uploads/2017/05/Does-ozone-increase-ABA-levels-by-non%E2%80%90enzymatic-synthesis-causing-stomata-to-close.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/ozone-exposure-aba-and-stomatal-closure/ )

McAinsh M. R. (2000) – Calcium signalling in stomatal guard cells – Biochemical Society Transactions 28(3): A57 – http://www.research.lancs.ac.uk/portal/en/publications/-(84e1d9a4-9d2f-45db-b9f5-646a46ba8530).html – (On our blog : https://plantstomata.wordpress.com/2018/01/17/calcium-signalling-in-stomatal-guard-cells/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Abscisic acid- induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. – Nature 343: 186–188. – doi: 10.1038/343186a0 – http://www.research.lancs.ac.uk/portal/en/publications/abscisic-acidinduced-elevation-of-guard-cell-cytosolic-ca2-precedes-stomatal-closure(36cb6e8c-e5e8-43ee-ae9b-0dea3cbb78e7)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-induces-a-rapid-increase-in-guard-cell-cytosolic-free-ca2-this-increase-precedes-stomatal-closure/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1991) – Partial inhibition of ABA-induced stomatal closure by calcium channel blockers. – Proc. R. Soc. B Biol. Sci. 243, 195–201. – doi: 10.1098/rspb.1991.0031 – CrossRef Full Text | Google Scholar –http://rspb.royalsocietypublishing.org/content/243/1308/195 – https://plantstomata.wordpress.com/2016/11/04/calcium-channel-blockers-aba-and-stomatal-closure/ )

McAinsh M. R, Brownlee C., Hetherington A. M. (1992) – Visualizing changes in cytoplasmic free Ca2+during the response of stomatal guard cells to abscisic acid – Plant Cell411131122. – doi: http://dx.doi.org/10.1105/tpc.4.9.1113 – CrossRef |PubMed | –http://www.plantcell.org/content/4/9/1113.abstract – (On our blog : Plant Cell411131122. – doi: http://dx.doi.org/10.1105/tpc.4.9.1113 – CrossRef |PubMed | –http://www.plantcell.org/content/4/9/1113.abstract – https://plantstomata.wordpress.com/2016/11/05/aba-induced-turgor-loss-in-guard-cells-is-a-ca2-dependent-process/ )

McAinsh M. R., Brownlee C., Hetherington A. M. (1997) – Calcium ions as second messengers in guard cell signal transduction – Plant Physiology 1997;100:16-29. – DOI: 10.1111/j.1399-3054.1997.tb03451.x – Wiley Online Library |CrossRefGoogle Scholar – CrossRef |PubMed |CAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03451.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-role-of-ca2-based-signal-transduction-in-stomatal-guard-cells/ )

McAinsh M. R., Clayton H., Mansfield T. A., Hetheringto, A. M. (1996) – Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. – Plant Physiol. 111, 1031–1042. – Plant Physiology 111: 10311042.  – PubMedCASWeb of Science – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12226345 – (On our blog : https://plantstomata.wordpress.com/2016/11/10/stomatal-behavior-in-oxidative-stress/ )

McAinsh M. R., Webb A. A. R., Taylor J. E., Hetherington A. M. (1995) – Stimulus-induced oscillations in guard-cell cytosolic-free calcium – Plant Cell 7: 12071219. – doi: http://dx.doi.org/10.1105/tpc.7.8.1207 – CrossRef |PubMed |CAS | –http://www.plantcell.org/content/7/8/1207 – (On our blog : https://plantstomata.wordpress.com/2017/01/09/oscillations-in-guard-cell-cytosolic-free-calcium/ )

McAusland L., Dumbrell A., Baker N. R., Lawson T. (2012) – Fluctuations in stomatal behaviour: impacts on carbon gain and water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/fluctuations-in-stomatal-behaviour/ )

 

McCormick S. (2017) – A 3-dimensional biomechanical model of guard cell mechanics – The Plant Journal 92(1): 3-4 – DOI: 10.1111/tpj.13665 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13665/abstract;jsessionid=BE068827E2606E5DB2C82F356C97941D.f02t04 – https://www.sciencedaily.com/releases/2017/09/170921101743.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/13/an-unexpected-stiffening-in-the-guard-cell-end-regions-preventing-stomata-increasing-in-length-as-they-open/ )

McCree K. J. (1974) – Changes in stomatal response characteristics of grain sorghum produced by water stress during growth – Crop Sci. 1974;14:273–278. – doi:10.2135/cropsci1974.0011183X001400020032x –https://dl.sciencesocieties.org/publications/cs/abstracts/14/2/CS0140020273?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-response-characteristics-in-water-stress-conditions/ )

McElwain J. C. (2013) – Evolution of Stomatal Function – UCD Dublin – https://www.ucd.ie/plantpalaeo/evol_stomatal_function.html – (On our blog : https://plantstomata.wordpress.com/2017/11/18/the-function-of-land-plant-stomata-over-evolutionary-time/ )

McGinley M. A. (2012) – Stomatal function and CAM photosynthesis – Slideshare, TechnologyBusiness Feb 23, 2012 – https://www.slideshare.net/MarkMcGinley/stomatal-function-and-cam-photosynthesis – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cam-photosynthesis/

McKee S. (2018) – How Plants Breathe: The Stimulating Story of Stomata – Maximum Yield February 8, 2018 – https://www.maximumyield.com/how-plants-breathe-the-stimulating-story-of-stomata/2/3827 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66556 )

McLachlan D. H., Kopischke M., Robatzek, S. (2014) – Gate control: guard cell regulation by microbial stress. – New Phytol. 203, 1049–1063. –

 

McLachlan D. H., Lan J., Geilfus C.-M., Dodd A. N., Larson T., Baker A., Hõrak H., Kollist H., He Z., Graham I., Mickelbart M. V., Hetherington A. M. (2016) – The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening – Current Biology 26(5): 707-712 – DOI10.1016/j.cub.2016.01.019 –https://www.infona.pl/resource/bwmeta1.element.elsevier-099d1c17-a54c-32e5-be39-24c8080a077d – (On our blog : https://plantstomata.wordpress.com/2017/10/25/light-induced-stomatal-opening/ )

McNaughton K., Jarvis P. G. (1991) – Effects of spatial scale on stomatal control of transpiration – Agric. Forest Meterol. 54, 279–301 (1991) – doi:10.1016/0168-1923(91)90010-N – http://www.sciencedirect.com/science/article/pii/016819239190010N – (On our blog : https://plantstomata.wordpress.com/2016/11/04/26883/ )

Meckel T., Gall L., Semrau S., Homann U., Thiel G. (2007) – Guard Cells Elongate: Relationship of Volume and Surface Area during Stomatal Movement – Biophys J. 92(3): 1072–1080 – doi:  10.1529/biophysj.106.092734 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779957 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/an-elongation-of-the-guard-cells-during-stomatal-movement/ )

Medeiros D. B., Daloso D. M., Fernie A. R., Nikoloski Z., Araújo W. L. (2015) – Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. – Plant Cell Environ. 38, 1457–1470. – doi: 10.1111/pce.12517

Medeiros D. B.Martins S. C. V.Cavalcanti J. H. F.Daloso D. M.Martinoia E.Nunes-Nesi A.Fábio M. DaMattaFernie A. R.Araújo W. L. (2016) – Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance – 

Mediavilla S., Escudero A. (2003) – Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity – Tree Physiol 23: 987–996 –https://www.ncbi.nlm.nih.gov/pubmed/12952785 – https://plantstomata.wordpress.com/2016/11/10/stomatal-responses-to-drought-2/ )

Medlyn B. E. et al. (2001) – Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–164 –

Meidner H. (1968) – The Comparative Effects of Blue and Red Light on the Stomata of Allium cepa L. and Xanthium pennsylvanicum – Journal of Experimental Botany 19(1): 146–151 – https://doi.org/10.1093/jxb/19.1.146 – https://academic.oup.com/jxb/article-abstract/19/1/146/447351?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/16/blue-light-may-promote-stomatal-opening-by-its-effect-on-enzymes/ )

Meidner H., Bannister P. (1979) – Pressure and solute potentials in stomatal cells of Tradescantia virginiana – J Exp Bot 30 255–265. – doi: 10.1093/jxb/30.2.255 –http://jxb.oxfordjournals.org/content/30/2/255.abstract – https://plantstomata.wordpress.com/2016/11/10/pressure-and-solute-potentials-in-stomata/ )

Meidner H., Mansfield T. A. (1965) – Stomatal responses to illumination – Biol. Reviews 40, Issue 4: 483–508 – DOI: 10.1111/j.1469-185X.1965.tb00813.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1965.tb00813.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/effects-of-environmental-factors-on-stomatal-movements/

Meidner H., Mansfield T. A. (1968) – Physiology of stomataNew York, NYMcGraw-Hill. -, Google Scholar

 

Meinzer F. C., Goldstein G., Holbrook N.M.,Jackson P., Cavelier J. (1993) – Stomatal and environmental control of transpiration in a lowland tropical forest tree – Plant, Cell and Environment 16: 429-436 – Stomatal_and_environmental_control_of_tr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-and-environmental-control-of-transpiration/ )

Meinzer F. C., Hinckley T. M., Ceulemans R. (1997) – Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy – Plant, Cell Environ. 20(10): 1301- 1308. – DOI: 10.1046/j.1365-3040.1997.d01-18.x –http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-18.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/10/27481/ )

Melhorn V., Matsumi K., Koiwai H., Ikegami K., Okamoto M., Nambara E. (2008) –  Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. – J. Plant Res. 121, 125–131. – 10.1007/s10265-007-0127-7 – [PubMed][Cross Ref] – 

Melotto M., Underwood W., He S. Y. (2008) – Role of stomata in plant innate immunity and foliar bacterial diseases. – Annu. Rev. Phytopathol. 46, 101–122. – doi: 10.1146/annurev.phyto.121107.104959 – http://www.annualreviews.org/doi/abs/10.1146/annurev.phyto.121107.104959 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/microbial-and-environmental-regulation-of-stomatal-closure/ )

 

Melotto M., Underwood W., Koczan J., Nomura K., He S. Y. (2006) – Plant stomata function in innate immunity against bacterial invasion. – Cell 126, 969–980 (2006) – doi: 10.1016/j.cell.2006.06.054 – CAS – Article – PubMed – http://www.cell.com/cell/abstract/S0092-8674(06)01015-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867406010154%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/09/23/stomata-act-as-a-barrier-against-bacterial-infection/)

Melotto M., Zhang L. , Oblessuc P. R. , He S. Y. (2017) – Stomatal defense a decade later. – Plant Physiol 174: 561–571 – http://www.plantphysiol.org/content/174/2/561 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/significant-understanding-of-the-basic-mechanisms-of-stomatal-defense/)

Mendes K. R., Marenco R.  A. (2010) – Leaf traits and gas exchange in saplings of native tree species in the Central Amazon – Scientia Agricola, 67:624-632. – http://dx.doi.org/10.1590/S0103-90162010000600002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162010000600002 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-conductance-gs-in-saplings-of-native-tree-species/ )

Meng F. (2007) – ABA Contents in the Guard-Cell Symplast and Guard-Cell Apoplast Are Not Correlated with Stomatal Aperture Size under Three Conditions of Water Sufficiency – Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-2485 – FSU_migr_etd-2485 (IID) – http://diginole.lib.fsu.edu/islandora/object/fsu%3A180678 – https://plantstomata.wordpress.com/2017/11/13/aba-and-stomatal-aperture/ )

Meng X., Chen X., Mang H., Liu C., Yu X., Gao X., Torii K. U., He P., Shan L. (2015) – Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning – Current Biology 252361-2372 – doi:  10.1016/j.cub.2015.07.068 – [PubMed Abstract] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714584/ – (On our blog : https://plantstomata.wordpress.com/2017/12/17/serk-family-receptor-like-kinases-in-stomatal-patterning/ )

Menke U, Renault N, Mueller‐Roeber B. (2000) – StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline‐rich proteins – Plant Physiology 122,677–686. – doi:http://dx.doi.org/10.1104/pp.122.3.677 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/122/3/677.abstract?ijkey=c25910eb9cbd456ca3b67dd31d90f0cb1e7047de&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/01/26490/ )

Merilo E., Jõesaar I., Brosché M., Kollist H. (2014) – To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors. – New Phytol. 202, 499–508. –  doi: 10.1111/Nph. 12667 –

 

Merilo E., Laanemets K., Hu H., Xue S., Jakobson L., Tulva I., et al. (2013) – PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness- and CO2-induced stomatal regulation. – Plant Physiol. 162, 1652–1668. –

 

Merilo E., Yarmolinsky D., Jalakas P., Parik H., Tulva I., Rasulov B., Kilk K., Kollist H. (2017) – Stomatal VPD response: There is more to the story than ABA – Plant Physiol. 2017: 1532-1548 -DOI: http://dx.doi.org/10.1104/pp.17.0091 – [Google Scholar] [CrossRef] [PubMed]  – http://www.ncbi.nlm.nih.gov/pubmed/28986421 – – https://www.bioportfolio.com/resources/pmarticle/1861501/Stomatal-VPD-response-there-is-more-to-the-story-than-ABA.html – (On our blog : https://plantstomata.wordpress.com/2017/12/17/origin-and-role-of-aba-in-stomatal-regulation/ )

Merlaen B., De Keyser E., Van Labeke M.-C. (2017) – Effect of GA, SA and JA on PIP Aquaporin Expression in Fragaria x ananassa Leaves – SCIENCE ACROSS BOUNDARIES ABSTRACTS: SEB Annual Meeting Gothenburg 2017: 37, Goteborg, Zweden, 3/07/17 – http://pure.ilvo.vlaanderen.be/portal/en/publications/effect-of-ga-sa-and-ja-on-pip-aquaporin-expression-in-fragaria-x-ananassa-leaves(cccf1527-e44b-407c-850a-38b671e91b72)/export.html – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-and-the-effect-of-ga-sa-and-ja-on-pip-aquaporin-expression/

Merlot S., Leonhardt N., Fenzi F., Valon C., Costa M., Piette L., et al. (2007) – Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. – EMBO J. 26, 3216–3226. –

Merlot S., Mustilli A. C., Genty B., North H., Lefebvre V., Sotta B., et al. (2002) – Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. – Plant J. Cell Mol. Biol. 30, 601–609. – doi: 10.1046/j.1365- 313X.2002.01322.x –

 

Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K. A. S., et al. (2010) -AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. – Plant J. 63: 1054–1062. – doi: 10.1111/j.1365-313X.2010.04302.x –

 

Meyers A. (2017) – MIT researchers create plants that glow – Boston Globe 2017-12-14 –https://www.bostonglobe.com/metro/2017/12/14/mit-researchers-create-plants-that-glow/BWSXklirU8N78UcFJiXstL/story.html – (On our blog : https://plantstomata.wordpress.com/2017/12/15/plants-that-glow-at-mit/ )

Meza-Canales I. D., Meldau S., Zavala J. A., Baldwin I. T. (2016) – Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception – Plant, Cell & Environment – DOI: 10.1111/pce.12874 – Accepted manuscript online: 7 December 2016 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12874/abstract – (https://plantstomata.wordpress.com/2016/12/08/herbivore-attack-and-stomatal-conductance/ )

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) –  Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany 57: 373-380 –

Miedema H., Assmann S. M. (1996) – A membrane-delimited effect of internal pH on the K+outward rectifier of Vicia faba guard cells. – J. Mem. Biol. 154, 227–237. -10.1007/s002329900147 – [PubMed] [Cross Ref] –

Miller A. (2016) – Guard cells regulate gas and moisture exchange – https://asknature.org/strategy/guard-cells-regulate-gas-and-moisture-exchange/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-regulate-gas-and-moisture-exchange/ )

Miller J. (2017) – Modeling guard cell-to-leaf scales with OnGuard2 – Plant Cell 10.1105/tpc.17.00694 – https://plantae.org/modeling-guard-cell-to-leaf-scales-with-onguard2/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-single-framework-to-understand-stomatal-physiology-in-greater-detail/ )

Milne R. (2016) – Image highlight: stomata pores – The Royal Society Publishing Blog  Nov. 7, 2016 – https://blogs.royalsociety.org/publishing/image-highlight-stomata-pores/ – (On our blog : https://plantstomata.wordpress.com/2018/01/12/stomata-pores/ )

Miner G. L., Bauerle W. L., Baldocchi D. D. (2016) – Estimating the sensitivity of stomatal conductance to photosynthesis: A review – Plant, Cell & Environment – DOI: 10.1111/pce.12871 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12871/abstract – (https://plantstomata.wordpress.com/2016/12/13/sensitivity-of-stomatal-conductance-to-photosynthesis/ )

Minguet-Parramona C.Wang Y.Hills A.Vialet-Chabrand S.Griffiths H.Rogers S.Lawson T.Lew V. L.Blatt M. R. (2016) – An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells – Plant Physiol. 1703342 – DOI: https://doi.org/10.1104/pp.15.01607 – Abstract/FREE Full TextGoogle Scholar –http://www.plantphysiol.org/content/170/1/33 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/ca2-oscillations-for-stomatal-closure-and-ion-transport-in-guard-cells/ )

Minnocci A., Panicucci A., Sebastiani L., Lorenzini G., Vitagliano C. (1999) – Physiological and morphological responses of olive plants to ozone exposure during a growing season – Tree Physiology 19, 391–397 – © 1999 Heron Publishing—-Victoria, Canada – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.417.7142&rep=rep1&type=pdf– (On our blog : https://plantstomata.wordpress.com/2018/02/06/o3-induced-reduction-in-transpiring-stomatal-surface-in-olive-trees/ )

Mino Y., Matsuhita Y., Sakai R. (1987) – Effect of coronatine on stomatal opening in leaves of braodbean and italian ryegrass – Ann Phytopath Soc Japan 53: 53–55 –https://www.jstage.jst.go.jp/article/jjphytopath1918/53/1/53_1_53/_pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/effect-of-coronatine-on-stomatal-opening/ )

Minorsky P. (2017) – Origin and Role of ABA in Stomatal Regulation – https://plantae.org/origin-and-role-of-aba-in-stomatal-regulation/ – (On our blog : https://plantstomata.wordpress.com/2017/11/19/aba-in-regulation-of-stomatal-movements/ )

Minorsky P. (2017) – Clathrin and Stomatal Function – Plantae blog –https://plantae.org/clathrin-and-stomatal-function/ – (On our blog : https://plantstomata.wordpress.com/2017/11/27/the-functions-of-clathrin-and-syp121-affect-stomatal-function/ )

Mirzaie-Nodoushan H., Ghamari-Zare A., Tavousi Rad F., Yousefifard M. (2015) – Inducing genetic variation in growth related characteristics of poplar germplasm, by producing inter-specific hybrids between P. albaand P. euphratica – Silvae Genetica 64, 5–6 (2015) – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomata-in-inter-specific-hybrids-between-p-alba-and-p-euphratica/ )

Miskin K. E., Rasmusson D. C., Moss D. N. (1972) – Inheritance and physiological effects of stomatal frequency in barley – Crop Science 12: 780-783. –doi:10.2135/cropsci1972.0011183X001200060019x –https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060780?access=0&view=pdf – https://plantstomata.wordpress.com/2016/11/01/stomatal-frequency-in-barley/ )

Misra B. B., Acharya B. R., Granot D., Assmann S. M.,  Chen S . (2015) – The guard cell metabolome: functions in stomatal movement and global food security – Front Plant Sci 6; 334 – doi:  10.3389/fpls.2015.00334 – PMC4436583 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4436583/ – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-guard-cell-metabolome-functions-in-stomatal-movement/ )

Misra B. B., de Armas E., Tong Z., Chen S. (2015) – Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate – PLoS ONE 10(12): e0144206. – https://doi.org/10.1371/journal.pone.0144206 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144206 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/metabolomic-responses-of-guard-cells-and-mesophyll-cells-to-bicarbonate/ )

Miyazaki A. (2014) – Plant growth enhanced through promotion of pore opening – Phys.org 2014-03 – http://phys.org/news/2014-03-growth-pore.html – (On our blog : https://plantstomata.wordpress.com/2016/08/09/plant-growth-and-promotion-of-pore-opening-in-stomata/ )

Miyazawa S.-I., Livingston N. J., Turpin D. H. (2006) – Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides) – Journal of Experimental Botany 57: 373380. – PMID:16172139DOI:10.1093/jxb/eri278 –https://www.ncbi.nlm.nih.gov/pubmed/16172139 – (On our blog : https://plantstomata.wordpress.com/2016/09/29/stomatal-development-and-stomatal-conductance-of-mature-leaves-in-poplar/ )

Mochizuki A., Sueoka N. (1955) – Genetic studies on the number of plastid in stomata. I. Effects of autopolyploidy in sugar beets – Cytologia 20, No. 4, 358-366 – http://doi.org/10.1508/cytologia.20.358 – https://www.jstage.jst.go.jp/article/cytologia1929/20/4/20_4_358/_article – (On our blog : https://plantstomata.wordpress.com/2016/11/14/27587/ )

Monda K.Araki H.Kuhara S.,Ishigaki G.Akashi R.Negi J.Kojima M.Sakakibara H.Takahashi S.Hashimoto-Sugimoto M.Goto N.Iba K. (2016) – Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture – 

Monteith J. L. (1995) – A reinterpretation of stomatal responses to humidity – Plant, Cell and Environment 18,357–364. – DOI: 10.1111/j.1365-3040.1995.tb00371.x – Wiley Online Library | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00371.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/01/stomatal-responses-to-humidity-3/ )

Monteith J. L., Szeicz G., Waggoner P. E. (1965) – The Measurement and Control of Stomatal Resistance in the Field – Journal of Applied Ecology 2(2) : 345-355 – DOI: 10.2307/2401484 – https://www.jstor.org/stable/2401484?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/29/measurement-and-control-of-stomatal-resistance-in-the-field/ )

Montillet J. L., Hirt H. (2013) – New checkpoints in stomatal defense. – Trends Plant Sci. 18, 295–297. – 10.1016/j.tplants.2013.03.007 – [PubMed] [Cross Ref] – 

Montillet J. L., Leonhardt N., Mondy S., Tranchimand S., Rumeau D., Boudsocq M., et al. (2013) – An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. – PLoS Biol. 11:e1001513. – doi: 10.1371/journal.pbio.1001513 –

Mori I., Murata Y. (2011) – ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. – J. Plant Res. 124, 477–487. – doi: 10.1007/s10265-011- 0435-9 – PubMed Abstract | CrossRef Full Text | Google Scholar –http://link.springer.com/article/10.1007%2Fs10265-011-0435-9 – (On our blog : https://plantstomata.wordpress.com/2016/11/11/aba-signaling-in-stomata-2/ )

 

Mori I. C., Murata Y., Yang Y. Z., Munemasa S., Wang Y. F., Andreoli S., Tiriac H.Alonso J. M.Harper J. F.Ecker J. R., Kwak J. M., Schroeder J. I.  (2006) – CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2 + -permeable channels and stomatal closure. – PLoS Biol. 4:e327. – doi: 10.1371/journal.pbio.0040327 – pmid:17032064 – CrossRefMedline – CrossRef | PubMed | CAS | – https://www.ncbi.nlm.nih.gov/pubmed/17032064 – (On our blog : https://plantstomata.wordpress.com/2016/11/14/cpk6-and-cpk3-cdpks-aba-and-stomatal-closure/ )

Mori I. C., Muto S. (1997) – Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. – Plant Physiol. 113, 833–839. – Google ScholarCrossRefAbstractMedline – PubMed Abstract | Google Scholar –https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=12223647 – (On our blog : https://plantstomata.wordpress.com/2016/11/24/aba-and-a-48-kilodalton-protein-kinase-in-stomatal-protoplasts/ )

 

Mori I. C., Pinontoan R., Kawano T., Muto S. (2001) – Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. – Plant Cell Physiol. 42, 1383–1388. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/11773531 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/involvement-of-reactive-oxygen-species-in-signal-transduction-in-sa-induced-stomatal-closure/ )

Mori I. C., Uozumi N., Muto S. (2000) – Phosphorylation of the inward-rectifying potassium channel KAT1 by ABR kinase in Vicia guard cell – Plant and Cell Physiology2000;41:850-856. – Abstract/FREE Full Text – CrossRef | PubMed | CAS | –http://pcp.oxfordjournals.org/content/41/7/850.abstract?ijkey=e21d47298d062f959117cbcb070cfebf17d0c143&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/abr-kinase-phosphorylates-the-inward-rectifying-kchannel-in-response-to-treatment-of-stomatal-guard-cells-with-aba/ )

Moriana A. F., Villalobos J., Fereres E. (2002) – Stomatal and photosynthethic responses of olive (Olive europaea L.) leaves to water. – Plant, Cell Environ. 25: 395-405 –

Morison J. I. L. (1985) – Sensitivity of stomata and water use efficiency to high CO2 –  Plant, Cell and Environment 8467474. –Wiley Online Library | –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1985.tb01682.x/full – (https://plantstomata.wordpress.com/2016/11/27/co2-stomata-and-water-use-efficiency/

Morison J. I. L. (1987) – Intercellular CO2 concentration and stomata1 response to CO2. In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (Eds.). Stomata1 Function. Stanford University Press, California, pp. 229-251 – 

Morison J. I. L. (1998) – Stomatal response to increased CO2concentration – Journal of Experimental Botany 49443452. – http://jxb.oxfordjournals.org/content/49/Special_Issue/443 – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-sensitivity-of-plants-grown-in-different-co2-concentrations/ )

Morison J. I. L., Gifford R. M. (1983) – Stomatal sensitivity to carbon dioxide and humidity. A comparison of two C3 and C4 grass species – Plant Physiol. 71:789–796. – doi: http://dx.doi.org/10.1104/pp.71.4.789 – Abstract/FREE Full Text –http://www.plantphysiol.org/content/71/4/789.abstract?ijkey=cc55c7551ba49662b4448cd371092f668a51927d&keytype2=tf_ipsecsha – https://plantstomata.wordpress.com/2016/11/11/stomata-co2-and-humidity/ )

Morris R., Woolfenden H. (2018) – How do plants breathe ? – JIC 17 January 2018 – https://www.jic.ac.uk/news-and-events/blog-copy/2018/01/how-do-plants-breathe/ – (On our blog : https://plantstomata.wordpress.com/2018/02/15/66561/ )

Morsucci R., Curvetto N., Delmastro S.(1991) – Involvement of cytokinins and adenosine 3′,5′-cyclic monophosphate in stomatal movement in Vicia faba – Plant Physiol. Biochem. 29: 537-547, 1991. –  https://eurekamag.com/research/007/487/007487174.php – (On our blog : https://plantstomata.wordpress.com/2016/11/25/cytokinins-and-adenosine-3%E2%80%B25%E2%80%B2-cyclic-monophosphate-in-stomatal-movement/ )

Morsucci R., Curvetto N., Delmastro S.(1992) – High concentration of adenosine or kinetin riboside induces stomatal closure in Vicia faba, probably through inhibition of adenylate cyclase – Plant Physiol. Biochem. 30: 383-388, 1992. –https://eurekamag.com/research/007/398/007398046.php – https://plantstomata.wordpress.com/2016/11/11/adenosine-or-kinetin-riboside-induces-stomatal-closure/ )

Mott K. A. (1988) – Do stomata respond to CO2 concentrations other than intercellular? – Plant Physiol. 86 200–203. – Abstract/FREE Full Text – CrossRef |PubMed | –http://www.plantphysiol.org/content/86/1/200.abstract?ijkey=dc59583300881ff958ec03d17e92af3a61841e1d&keytype2=tf_ipsecsha – (https://plantstomata.wordpress.com/2016/11/27/stomata-intercellular-co2-concentration-and-co2-concentration-at-the-surface-of-the-leaf-and-in-the-stomatal-pore/ )

Mott K. A. (2007) – Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves – Plant, Cell and Environment 30: 1444-1449. – DOI: 10.1111/j.1365-3040.2007.01720.x – https://www.researchgate.net/publication/5948120_Leaf_hydraulic_conductivity_and_stomatal_responses_to_humidity_in_amphistomatous_leaves – (On our blog : https://plantstomata.wordpress.com/2016/11/25/stomatal-responses-to-humidity-in-amphistomatous-leaves/ )

Mott K. A. (2012) – Stomatal responses to humidity and temperature are consistent with a vapor-phase mechanism – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-responses-to-humidity-and-temperature/ )

 

Mott K.A., Denne F., Powell J. (1997) – Interactions among stomata in response to perturbations in humidity – Plant Cell Environ. 20 (9): 1098–1107 -DOI: 10.1046/j.1365-3040.1997.d01-138.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-138.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomata-responding-to-perturbations-in-humidity/ )

Mott K. A., Gibson A. C., O’Leary J. W. (1982) – The adaptive significance of amphistomatic leaves – Plant, Cell & Environment 5, 455–460.-DOI: 10.1111/1365-3040.ep11611750 – CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11611750/abstract;jsessionid=81D3541DAB67DFFA4699036AD4F759B6.f01t04 – (https://plantstomata.wordpress.com/2016/12/01/the-effect-of-developing-stomata-on-the-upper-surface-as-well-as-the-lower/ )

Mott K. A., Parkhurst D. F. (1991) – Stomatal responses to humidity in air and helox – Plant, Cell & Environment – Volume 14Issue 5 : 509–515, June 1991. –DOI: 10.1111/j.1365-3040.1991.tb01521.x – CrossRefWiley Online Library | http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01521.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/air-humidity-helox-and-stomata/ )

Mott K. A., Peak D. (2007) – Stomatal patchiness and task-performing networks – Annals of Botany 99: 219-226. – doi:  10.1093/aob/mcl234https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2802990/ – https://plantstomata.wordpress.com/2016/11/06/stomatal-patchiness-and-networks/ )

Mott K. A., Peak D. (2013) – Testing a vapour-phase model of stomatal responses to humidity – Plant, Cell & Environment 36936944. – DOI: 10.1111/pce.12026 – Wiley Online Library | CAS – http://onlinelibrary.wiley.com/doi/10.1111/pce.12026/full – (On our blog : https://plantstomata.wordpress.com/2017/01/13/stomatal-responses-to-humidity-4/ )

Mott K. A.Sibbernsen E. D., Shope J. C. (2008) – The role of the mesophyll in stomatal responses to light and CO2 – Plant, Cell & Environment 3112991306. – DOI: 10.1111/j.1365-3040.2008.01845.x – Wiley Online Library | PubMed | CAS | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01845.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-co2-and-light-occurs-in-response-to-a-signal-generated-by-the-mesophyll/ )

Mott K. A., Takemoto J. Y. (1989) – Syringomycin, a bacterial phytotoxin, closes stomata – Plant Physiol. 90: 1435–1439 – DOI: https://doi.org/10.1104/pp.90.4.1435  – [PMC free article] [PubMed] – http://www.plantphysiol.org/content/90/4/1435 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/syringomycin-and-aba-activate-the-same-k-export-system-in-stomata/ )

Mrinalini T.Latha Y. K.Raghavendra A. S.Das V. S. R. (1982) – Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis – New Phytology 91413418. – doi:10.1111/j.1469-8137.1982.tb03320.x –Wiley Online Library | CrossRefWeb of ScienceGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1982.tb03320.x/full – (https://plantstomata.wordpress.com/2016/11/27/bicarbonate-fusicoccin-and-stomatal-opening/ )

Muchow R. C., Sinclair T. R. (1989) – Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench – Plant, Cell and Environment 12, 425–431. – DOI: 10.1111/j.1365-3040.1989.tb01958.x – CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01958.x/abstract – (https://plantstomata.wordpress.com/2016/11/27/stomatal-density-and-stomatal-size-among-genotypes-of-sorghum/ )

Muir C. D. (2015) – Making pore choices: repeated regime shifts in stomatal ratio – Proc. Royal Soc. B 282(1813) :   – DOI: 10.1098/rspb.2015.1498 – http://rspb.royalsocietypublishing.org/content/royprsb/282/1813/20151498.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-ratio-hypostomy-and-amphistomy/ )

Muir C. D. (2017) – Light and growth form interact to shape stomatal ratio among British angiosperms – New Phytologist Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14956 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14956/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/31/light-and-growth-form-stomatal-ratio-hypostomy-and-amphistomy/)

Muir C. D.Conesa M. A.Galmés J. (2015) – Independent evolution of ab- and adaxial stomatal density enables adaptation –  – doi: https://doi.org/10.1101/034355 –https://www.biorxiv.org/content/early/2015/12/15/034355 –https://www.biorxiv.org/content/biorxiv/early/2015/12/15/034355.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/independent-evolution-of-stomatal-function-on-each-leaf-surface/ )

Mukhtar N., Hameed M., Ashraf M., Ahmed R., (2013) – Modifications in stomatal structure and function in Cenchrus ciliaris L. and Cynodon dactylon (L.) pers. in response to cadmium stress – Pakistan Journal of Botany 45(2): 351-357 – https://www.pakbs.org/pjbot/PDFs/45(2)/01.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/the-effect-of-cadmium-on-modifications-in-stomatal-structure-and-function/ )

Müller-Röber B., Sonnewald U., Willmitzer L. (1993) – Expression cassette and plasmids for a guard cell specific expression and their use for the introduction of transgenic plant cells and plants – International Patent Application No. WO 93/18169. –https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1993018169 – (https://plantstomata.wordpress.com/2016/12/01/the-transcriptional-regulatory-starter-region-for-a-guard-cell-specific-gene-expression/ )

Mumm P., Imes D., Martinoia E., Al-Rasheid K. A. S., Geiger D.,  Marten I.,  Hedrich R. (2013) – C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1 – Molecular Plant 6(5): 1550-1563 – http://www.zora.uzh.ch/id/eprint/87851/ – (On our blog : https://plantstomata.wordpress.com/2018/01/19/c-terminus-mediated-voltage-gating-of-guard-cell-anion-channel-quac1-stomata/ )

Munemasa S., Hossain M. A., Nakamura Y., Mori I. C., Murata Y. (2011) – The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. – Plant Physiol. 155, 553–561. – doi: 10.1104/pp.110.162750 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=20978156 – (https://plantstomata.wordpress.com/2016/12/01/cpk6-functions-as-a-positive-regulator-of-meja-signaling-in-arabidopsis-stomata/

Munemasa S., Mori I. C., Murata Y. (2011) – Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. – Plant Signal. Behav. 6, 939–941. – doi: 10.4161/psb.6.7.15439 –  [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/21681023 – (On our blog : https://plantstomata.wordpress.com/2017/01/13/meja-signaling-and-signal-crosstalk-between-meja-and-aba-pathways-in-stomata/ )

Munemasa S., Muroyama D., Nagahashi H., Nakamura Y., Mori I. C., Murata Y. (2013) – Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. – Front. Plant Sci. 4:472. – 10.3389/fpls.2013.00472 – [PMC free article] [PubMed] [Cross Ref] – 

 

Munemasa S., Oda K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Murata Y. (2007) – The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. – Plant Physiol. 143, 1398–1407 – doi: 10.1104/pp.106.091298 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – [PMC free article] [PubMed]. – http://www.plantphysiol.org/content/143/3/1398.long – (On our blog : https://plantstomata.wordpress.com/2017/01/18/hormonal-signaling-interaction-between-aba-and-meja-in-stomata/ )

Munns R., King R. W. (1988) – Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants – Plant Physiol. 88: 703-708. –CrossRef |PubMed |CAS – https://www.ncbi.nlm.nih.gov/pubmed/16666371 – (https://plantstomata.wordpress.com/2016/12/01/inhibitory-activity-of-stomatal-transpiration-was-triggered-partly-by-leaf-water-deficit-and-partly-by-root-water-deficit/ )

 

Murata Y., Mori I. C., Munemasa S. (2015) – Diverse stomatal signaling and the signal integration mechanism. – Annu. Rev. Plant Biol. 66, 369–392. – doi: 10.1146/annurev-arplant-043014-114707 –

 

Murata Y., Pei Z. M., Mori I. C., Schroeder J. I. (2001) – Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. – Plant Cell 13: 2513–2523. –

 

Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. (2002) – Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. – Plant Cell 14, 3089–3099 (2002). – doi: 10.1105/tpc.007906 – CAS – Article – PubMed – PubMed Central – http://www.plantcell.org/lens/plantcell/14/12/3089 – (On our blog : https://plantstomata.wordpress.com/2016/03/29/ost1-protein-kinase-and-stomatal-movement/)

Mutiibwa D., Irmak S. (2013) – Transferability of jarvis-type models developed and re-parameterized for maize to estimate stomatal resistance of soybean: analyses on model calibration, validation, performance, sensitivity, and elasticity – Biological Systems Engineering: Papers and Publications. 400. –http://digitalcommons.unl.edu/biosysengfacpub/400 – http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1402&context=biosysengfacpub – (On our blog : https://plantstomata.wordpress.com/2017/11/05/stomatal-resistance-of-soybean/ )

Nabity P. D.Haus M. J.Berenbaum M. R., DeLucia E. H. (2013) – Leaf-galling Phylloxera on grapes reprograms host metabolism and morphology – 

Nadeau J. A., Sack F. D. (2002) – Stomatal Development in Arabidopsis – The Arabidopsis Book  1: e0066. 2002 – https://doi.org/10.1199/tab.0066 – http://www.bioone.org/doi/abs/10.1199/tab.0066 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/stomatal-development-in-arabidopsis-3/ )

Nadeau J. A., Sack F. D. (2002) – Control of stomatal distribution on the Arabidopsis leaf surface – Science 296: 1697–1700. – DOI: 10.1126/science.1069596 – Abstract/FREE Full Text Google Scholar – View ArticlePubMed – http://science.sciencemag.org/content/296/5573/1697.abstract?ijkey=61fdf63a0df9f80f6399baa35458f421570c77ef&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/10/25/control-of-stomatal-distribution/ )

Nadeau J. A., Sack F. D. (2003) – Stomatal development: cross talk puts mouths in place – Trends in Plant Science 8: 294–299. – http://dx.doi.org/10.1016/S1360-1385(03)00102-X – CrossRefMedlineWeb of Science  – http://www.sciencedirect.com/science/article/pii/S136013850300102X – (On our blog : https://plantstomata.wordpress.com/2016/10/25/stomatal-patterning-2/ )

Naidoo G., Von Willert D. J. (1994) – Stomatal oscillations in the mangrove Avicennia germinans – Functional Ecology 8: 651–657. – CrossRef – https://www.jstor.org/stable/2389928?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/01/18/stomatal-oscillations-in-a-mangrove/ )

Nakamura R. L., McKendree W. L., Hirsch R. E., Sedbrook J. C., Gaber R. F., Sussman M. R. (1995) – Expression of an Arabidopsis potassium channel gene in guard cells. – Plant Physiol. 109, 371–374. – doi: 10.1104/pp.109.2.371 – Plant Physiology 109, 371–374. – doi: http://dx.doi.org/10.1104/pp.109.2.371 – Abstract – http://www.plantphysiol.org/content/109/2/371.abstract?ijkey=689d58408d6b9a54709eb09fb192130693cc858f&keytype2=tf_ipse – (On our blog : https://plantstomata.wordpress.com/2017/01/25/a-potassium-channel-gene-in-stomata/ )

Nardini A., Salleo S. (2000) – Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? – Trees 15: 14–24 – doi:10.1007/s004680000071 – http://link.springer.com/article/10.1007%2Fs004680000071 – (On our blog : https://plantstomata.wordpress.com/2017/01/25/stomata-and-sensing-or-preventing-xylem-cavitation/ )

Naulin P. I., Valenzuela G., Estay S. A. (2016) – New Phytologist, Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14305 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14305/abstract – https://plantstomata.wordpress.com/2016/11/08/point-pattern-analysis-and-size-point-and-disc-null-models-for-stomata-distribution/ )

Negi J.Matsuda O.Nagasawa T.Oba Y.Takahashi H.Kawai-Yamada M.Uchimiya H.Hashimoto M.Iba K. (2008) – CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells – Nature 452: 483-486 – doi: 10.1038/nature06720 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar – Medline– http://www.nature.com/nature/journal/v452/n7186/full/nature06720.html – (On our blog : https://plantstomata.wordpress.com/2017/01/25/co2-regulator-slac1-and-its-homologues-in-stomata/ )

 

Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., et al. (2008) – Nitric oxide, stomatal closure, and abiotic stress. – J. Exp. Bot. 59, 165–176. – doi: 10.1093/jxb/erm293 –

Neill S. J., Desikan R., Clarke A., Hancock, J. T. (2002) – Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. – Plant Physiol. 128: 13–16. – doi: 10.1104/pp.010707 – CrossRef | CAS | PubMed |FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/128/1/13 – (https://plantstomata.wordpress.com/2017/01/26/aba-signaling-in-stomata-and-nitric-oxide/ )

Nelson S. D., Mayo J. M. (1975) – The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp. – Canadian Journal of Botany, 1975, 53(1): 1-7 –  https://doi.org/10.1139/b75-001 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-001 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/guard-cell-chlorophyll-is-not-necessary-for-stomatal-functioning-2/ )

New Phytologist Symposium Nr. 29 (2012) – Stomata 2012 — https://www.newphytologist.org/symposia/29 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/65558 )

Ng C. K. Y., Carr K., McAinsh M. R., Powell B., Hetherington A. M. (2001) – Drought-induced guard cell signal transduction involves sphingosine- 1-phosphate. – Nature 410, 596–599. doi: 10.1038/35069092 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.nature.com/nature/journal/v410/n6828/full/410596a0.html – (https://plantstomata.wordpress.com/2017/01/26/sphingosine-1-phosphate-and-stomata/ )

Ng C.K.-Y., McAinsh M.R., Gray J.E., Hunt L., Leckie C.P., Mills L., Hetherington A.M.(2001) – Calcium-based signalling systems in guard cells – New Phytol. 151: 109-120 – DOI: 10.1046/j.1469-8137.2001.00152.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2001.00152.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/07/calcium-based-signalling-pathways-have-been-identified-in-stomata/ )

 

Ni D. A. (2012) – Role of vacuolar invertase in regulating Arabidopsis stomatal opening – Acta Physiol. Plant. 34: 2449–2452. – doi: 10.1007/s11738-012-1036-5 – CrossRef Full Text | Google Scholar  – https://link.springer.com/article/10.1007/s11738-012-1036-5 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-aperture-correlated-with-vacuolar-invertase/ )

Niglas A., Alber M., Suur K., Jasinska A. K., Kupper P., Sellin A. (2015) – Does increased air humidity affect stomatal morphology and functioning in hybrid aspen? – Botany 93: 243–250 – dx.doi.org/10.1139/cjb-2015-0004 – http://www.nrcresearchpress.com/cjb – (On our blog : https://plantstomata.wordpress.com/2018/02/04/air-humidity-stomatal-morphology-and-functioning/ )

 

Nir I.Shohat H.Panizel I.Olszewski N. E.Aharoni A.Weiss D. (2017) – The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure – 

 

Nomura H., Komori T., Kobori M., Nakahira Y., Shiina T. (2008) – Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. – Plant J. 53, 988–998. –

Nonami H., Schulze E.‐D., Ziegler H. (1990) – Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential – Planta 183, 57–64. – doi: 10.1007/BF00197567. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/24193533 – (https://plantstomata.wordpress.com/2017/01/26/stomatal-movement-in-response-to-air-humidity/ )

 

Noormets A., Sober A., Pell E. J., Dickson R. E., Podila G. K., Sôber J., Isebrands J. G., Karnosky D. F. (2001) – Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3 – Plant Cell Environ. 24, 327–336. doi: 10.1046/j.1365-3040.2001.00678.x – CrossRef Full Text | Google Scholar – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.4303&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/17/stomatal-and-non-stomatal-limitation-to-photosynthesis-when-exposed-to-elevated-co2-and-or-o3/ )

Novick K. A., Miniar C. F., Vose J. M. (2016) – Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory – Plant, Cell & Environment 39(3): 583-596 – Station ID: JRNL-SRS-39doi: 10.1111/pce.12657 – – https://www.srs.fs.fed.us/pubs/50416 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/a-model-linking-stomatal-optimization-and-cohesion-tension-theory-2/ )

Nunes-Nesi A., Carrari F., Gibon Y., Sulpice R., Lytovchenko A., Fisahn J.,  Graham J., Ratcliffe R. G, Sweetlove L. J, Fernie A. R. (2007) – Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function – Plant J. 50, 1093–1106. doi: 10.1111/j.1365-313X.2007.03115.x – PubMed Abstract | CrossRef Full Text | Google Scholar https://www.ncbi.nlm.nih.gov/pubmed/17461782 – (On our blog : https://plantstomata.wordpress.com/2017/12/17/deficiency-of-mitochondrial-fumarase-activity-impairs-photosynthesis-via-an-effect-on-stomatal-function/ )

Nutman F. J. (1937) – Studies of the physiology of Coffea arabica. II. Stomatal movement in relation to photosynthesis under natural conditions – Ann. Bot. n.S. 1(4): 682-693. – https://doi.org/10.1093/oxfordjournals.aob.a083497 –https://academic.oup.com/aob/article-abstract/1/4/681/90618?redirectedFrom=fulltext – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64987 )

Obulareddy N., Panchal S., Melotto M. (2013) – Guard cell purification and RNA isolation suitable for high throughput transcriptional analysis of cell- type responses to biotic stresses. -;Mol. Plant Microbe Interact. 26, 844–849. – doi: 10.1094/MPMI-03-13-0081-TA –

O’Carrigan A., Hinde E., Lu N., Xu X.-Q., Duan H., Huang G., Mak M., Belotti B., Chen Z.-H. (2014) – Effects of light irradiance on stomatal regulation and growth of tomato – Environ. Exp. Bot. 98, 65–73. doi: 10.1016/j.envexpbot.2013.10.007 –CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/S0098847213001512 – (https://plantstomata.wordpress.com/2017/01/26/stomata-as-physiological-markers-for-assessment-of-performance-of-plants/ )

 

Ogaya R., Llorens L., J. Peñuelas J. (2011) – Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime – Acta Oecologica 37: 381-385 – http://www.creaf.uab.es/Global-Ecology/Pdfs_UEG/2011%20ActaOecol.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/20/density-and-length-of-stomata-in-living-fossil-trees-2/ )

Ohashi-Ito K.Bergmann D. C. (2006) – Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. – Plant Cell 1824932505. – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/18/10/2493.abstract?ijkey=2b5f61553059c587dce02e954964848c45dd4412&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/08/15/fama-and-stomatal-development/)

Ohsumi A., Hamasaki A., Nakagawa H., et al. (2008) – Response of Leaf Photosynthesis to Vapor Pressure Difference in Rice (Oryza sativa L) Varieties in Relation to Stomatal and Leaf Internal Conductance. Plant Production Science. 11(2): 184.

Ohsumi A.Kanemura T.Homma K.Horie T.Shiraiwa T. (2007) – Genotypic variation of stomatal conductance in relation to stomatal density and length in rice (Oryza sativa L.) – Plant Prod Sci 10322328 – Google Scholar

Okamoto M., Tanaka Y., Abrams S. R., Kamiya Y., Seki M., Nambara E. (2009) – High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis – Plant Physiol. 149(2): 825-834 – doi: http://dx.doi.org/10.1104/pp.108.130823 – (CrossRef,Medline). – Abstract/FREE Full Text – http://dx.doi.org/10.1104/pp.108.130823 – (On our blog :  https://plantstomata.wordpress.com/2016/10/31/high-humidity-induces-aba-8%E2%80%B2-hydroxylase-in-stomata/ )

Okuma E., Jahan M.S., Munemasa S., Hossain M.A., Muroyama D., Islam M.M., Ogawa K., Watanabe-Sugimoto M., Nakamura Y., Shimoishi Y., Mori I.C., Murata Y. (2011) – Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis – J. Plant Physiol. 168: 2048–2055. – doi: 10.1016/j.jplph.2011.06.002 –PubMed Abstract |Pubmed Full Text , CrossRef Full Text | Google Scholar –http://www.sciencedirect.com/science/article/pii/S0176161711002768 – (On our blog : https://plantstomata.wordpress.com/2016/10/31/aba-induced-stomatal-closure-by-glutathione/ )

Oljača R., Govedar Z., Hrkić Z. (2008) – Air pollution effects on percentage of stomata in leaves at tested species horse chestnut and birch in Banja Luka conditions. – Bulletin of the Faculty of Forestry 98: 155-166 – http://www.doiserbia.nb.rs/img/doi/0353-4537/2008/0353-45370898155O.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/air-pollution-effects-on-percentage-of-stomata-in-trees/ )

Omasa K., Hashimoto Y., Kramer P. J., Strain B. R., Aiga I., Kondo J. (1985) – Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO2 – Plant Physiology 84: 748–752. –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1074843/ – (On our blog : https://plantstomata.wordpress.com/2016/10/31/continuous-observation-of-individual-stomata-under-the-microscope/ )

Omasa K., Onoe M. (1984) – Measurement of stomatal aperture by digital image processing – Plant and Cell Physiology 25: 1379–1388. – DOI:https://doi.org/10.1093/oxfordjournals.pcp.a076848 – Abstract/FREE Full Text – https://academic.oup.com/pcp/article-abstract/25/8/1379/1811066/Measurement-of-Stomatal-Aperture-by-Digital-Image?ijkey=cda0d53df21790a0c1f7259b1d57ade20030bf32&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/01/29/digital-image-processing-for-measurement-of-stomatal-aperture/ )

Onoe T., Tani T., Minagawa S., Sagawa H. (1987) – Ultrastructural changes of stomata in relation to specificity of rust fungi – Molecular Determinants of Plant Diseases – Nishimura S. et al (Eds.) – Jap. Sci. Soc. Tokyo /Springer Verlag, Berlin 29-45 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/stomatal-response-to-rust-infection/ )

Onwueme I. C., Johnston M. (2000) – Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro – Experimental Agriculture 36: 509-516. – DOI: https://doi.org/10.1017/S0014479700001071 – https://www.cambridge.org/core/journals/experimental-agriculture/article/influence-of-shade-on-stomatal-density-leaf-size-and-other-leaf-characteristics-in-the-major-tropical-root-crops-tannia-sweet-potato-yam-cassava-and-taro/64ABAA0DDD9E69191D1EC2AD23977F0E – (On our blog : https://plantstomata.wordpress.com/2017/01/29/stomatal-density-in-tropical-root-crops/ )

Ooba M., Takahashi H. (2003) – Effect of asymmetric stomatal response on gas-exchange dynamics – Ecological Modelling 1646582.  – http://dx.doi.org/10.1016/S0304-3800(03)00012-7 – http://www.sciencedirect.com/science/article/pii/S0304380003000127 – (On our blog : https://plantstomata.wordpress.com/2017/01/29/asymmetric-stomatal-response-on-gas-exchange-dynamics/ )

Oosterhuis D. M., Walker S. (1987) – Stomatal resistance measurement as an indicator of water deficit stress in wheat and soybeans – S. Afr. J. Plant Soil 4(3): 1132-120 – https://doi.org/10.1080/02571862.1987.10634956 –http://www.tandfonline.com/doi/abs/10.1080/02571862.1987.10634956 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomatal-resistance-measurement-is-a-potentially-useful-and-reliable-plant-indicator-of-crop-water-stress/ )

Oren R.Sperry J. S.Ewers B. E.Pataki D. E.Phillips N., Megonigal J. P. (2001) – Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects – Oecologia 1262129. – doi:10.1007/s004420000497 – CrossRef  – http://link.springer.com/article/10.1007%2Fs004420000497 – (https://plantstomata.wordpress.com/2017/01/31/canopy-stomatal-conductance-and-vapor-pressure-deficit/ )

Oren R., Sperry J. S., Katul G. G., Pataki D. E., Ewers B. E., Phillips N., Schäfer K. V. R. (1999) – Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit – Plant Cell Environ. 22(12): 1515-1526  –DOI: 10.1046/j.1365-3040.1999.00513.x – (CrossRefISI) , Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1999.00513.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/31/stomatal-sensitivity-to-vapour-pressure-deficit/ )

Ormrod D. J., Renney A. J. (1968) – A survey of weed leaf stomata and trichomes – Can. J. Plant Sci. 48: 197-209 – http://www.nrcresearchpress.com/doi/pdf/10.4141/cjps68-034 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/54983 )

Osborne C. P., Taylor S., Franks P., Ripley B., Pasquet-Kok J., Scoffoni C., Sack L., Spriggs B., Christin P.A., Edwards E., Woodward I. (2012) – The significance of C4 photosynthesis for stomatal patterning and behaviour  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/c4-photosynthesis-and-stomatal-patterning-and-behaviour/ )

Osonubi O., Davies W. J. (1980) – The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity – Oecologia (Berlin) 46: 1–6. – DOI: 10.1007/BF00346957 – http://link.springer.com/article/10.1007/BF00346957 – (On our blog :https://plantstomata.wordpress.com/2017/01/31/plant-water-stress-and-stomatal-control-of-gas-exchange/ )

Ou X., Gan Y., Chen P., Qiu M., Jiang K., Wang G. (2014) – Stomata prioritize their responses to multiple biotic and abiotic signal inputs. – PLoS ONE 9:e101587. – 10.1371/journal.pone.0101587 – [PMC free article] [PubMed] [Cross Ref] – 

Outlaw W. H. Jr (1989) – Critical examination of the quantitative evidence for and against photosynthetic CO2 fixation by guard cells – Physiol. Plant. 77, 275–281. – doi: 10.1111/j.1399-3054.1989.tb04981.x – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1989.tb04981.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/02/the-evidence-for-and-against-photosynthetic-co2-fixation-by-stomata/ )

Outlaw W. H. Jr (2003) – Integration of cellular and physiological functions of guard cells. – Crit. Rev. Plant Sci. 22, 503–529. – doi: 10.1080/713608316 – CrossRef-Google Scholar – http://www.tandfonline.com/doi/abs/10.1080/713608316 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomata-and-an-overview-of-cellular-mechanisms-that-are-involved-in-turgor-regulation/ )

 

Outlaw W. H. Jr., De Vlieghere-He X. (2001) – Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean – Plant Physiology 126: 1716–1724. – CrossRef, CAS – http://www.plantphysiol.org/content/plantphysiol/126/4/1716.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-transpiration-rate/ )

Outlaw W. H., Lowry O. H. (1977) – Organic acid and potassium accumulation in guard cells during stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 74, 4434–4438. – [PMC free article] [PubMed] –

Outlaw W. H., Manchester J., Dicamelli C. A., Randall D. P., Rapp B., Veith G. M. (1979) – Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. – Proc. Natl. Acad. Sci. USA 76: 6371-6375 – 

Outlaw W. H., Mayne B. C., Zenger V. E., Manchester J. (1981) – Presence of both photosystems in guard cells of Vicia faba L. – Plant Physiol. 67: 12–16. – doi: 10.1104/pp.67.1.12 –

 

Outlaw W. H. Jr., Zhang S., Hite D. R. C., Thistle A. B. (1996) – Stomata: Biophysical and Biochemical Aspects – In: Baker N.R. (eds) Photosynthesis and the Environment. Advances in Photosynthesis and Respiration, vol 5., 241-259,  Springer, Dordrecht –https://link.springer.com/chapter/10.1007/0-306-48135-9_9#citeas – https://plantstomata.wordpress.com/2017/12/18/biophysics-and-biochemistry-of-stomata/ )

Padoan D., Mossad A., Chiancone B., Germana M. A., Khan P. S. S. V. (2013) – Ploidy levels in Citrus clementina affects leaf morphology, stomatal density and water content – Theoretical and Experimental Plant Physiology, 25(4): 283-290 – http://dx.doi.org/10.1590/S2197-00252013000400006. – http://www.scielo.br/pdf/txpp/v25n4/06.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/increase-in-ploidy-level-caused-an-effect-on-stomatal-characteristics/ )

Paiva E. A. S. (2017) – How does the nectar of stomata-free nectaries cross the cuticle? – Acta Bot. Bras. vol.31 no.3 Belo Horizonte July/Sept. 2017 – http://dx.doi.org/10.1590/0102-33062016abb0444 – http://www.scielo.br/scielo.php?pid=S0102-33062017000300525&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2017/10/30/nectar-release-in-stomata-free-nectaries/ )

Paiva E. A., Lemos-Filho J. P., Oliveira D. M. (2006) – Imbition of Swietenia macrophylla (Meliaceae) seeds: The role of stomata – Ann. Bot. 98: 213-217. – doi:  10.1093/aob/mcl090 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803541/ – (On our blog : https://plantstomata.wordpress.com/2017/02/04/permanently-opened-stomata-in-the-seed-coat-play-a-significant-role-in-seed-imbibition/ )

Palevitz B. A., Hepler P. K. (1976) – Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: The role of microtubules and ion accumulation – Planta 132: 71. – https://doi.org/10.1007/BF00390333 – https://link.springer.com/article/10.1007/BF00390333#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/18/the-role-of-microtubules-and-ion-accumulation-in-stomata/ )

Palevitz B. A., Hepler P. K. (1985) – Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow – Planta 164: 473–479. – doi:10.1007/BF00395962 – CrossRef –http://link.springer.com/article/10.1007%2FBF00395962 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/dye-coupling-of-stomatal-cells/ )

Pallaghy C. K. (1971) – Stomatal movement and potassium transport in epidermal strips of Zea mays-effect of CO2 . – Planta 101, 287–295. – doi: 10.1007/Bf00398115 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar.- https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=24488473&dopt=abstractplus – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomatal-movement-potassium-transport-and-co2/ )

 

Pallaghy C. K., Fischer R. A.( 1974) – Metabolic aspects of stomatal opening and ion accumulation by guard cells in Vicia faba – Z. f. Pflanzenphysiol. 71: 332–344 – https://doi.org/10.1016/S0044-328X(74)80040-1 –http://www.sciencedirect.com/science/article/pii/S0044328X74800401 – https://plantstomata.wordpress.com/2017/12/18/metabolic-aspects-of-stomatal-opening-and-ion-accumulation/ )

Pallardy S.G., Kozlowski T. T. (1979) – Frequency and length of stomata of 21 Populus clones – Canadian Journal of Botany 57: 2519-2523 –

Pallas J. E. (1966) – Mechanisms of Guard Cell Action – The Quarterly Review of Biology 41(4): 365-383 – https://doi.org/10.1086/405157 – PMID: 5341597 – http://www.journals.uchicago.edu/doi/abs/10.1086/405157?journalCode=qrb – (On our blog : https://plantstomata.wordpress.com/2018/01/19/biochemical-changes-involved-in-opening-and-closing-of-stomata/ )

Pallas J. E., Kays S. J. (1982) – Inhibition of photosynthesis by ethylene-a stomatal effect – Plant Physiol. 70, 598–601. – doi: 10.1104/pp.70.2.598 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS – http://www.plantphysiol.org/content/70/2/598 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/ethylene-influenced-the-conductance-of-abaxial-stomata/ )

Panchal S.Chitrakar R.Thompson B. K.Obulareddy N., Roy D.Hambright W. S.Melotto M. (2016) – Regulation of Stomatal Defense by Air Relative Humidity – Plant Physiology DOI: https://doi.org/10.1104/pp.16.00696 –http://www.plantphysiol.org/content/172/3/2021 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/high-humidity-suppressing-stomatal-defense-and-linked-to-hormone-signaling/ )

Pandey N., Archana (2009) – Boron-stress induced changes in water status and stomatal morphology in Zea maysL. and Catharanthus roseus L. – Indian Journal of Plant Physiology 14(3): 310-314  – ISSN : 0019-5502 – http://agris.fao.org/agris-search/search.do?recordID=IN2010001027 – (On our blog : https://plantstomata.wordpress.com/2017/11/18/reduced-stomatal-size-increased-stomatal-index-and-stomatal-opening-at-deficient-and-toxic-supply-of-boron/ )

Pandey S., Wang X.-Q., Coursol S. A., Assmann S. M. (2002) – Preparation and applications of Arabidopsis thaliana guard cell protoplasts – New Phytologist 153: 517–526. – DOI: 10.1046/j.0028-646X.2001.00329.x – CrossRef | CAS |– http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00329.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/how-to-elucidate-electrophysiological-biochemical-and-molecular-genetic-pathways-of-stomata-function/ )

Pandey S., Zhang W., Assmann, S. M. (2007) – Roles of ion channels and transporters in guard cell signal transduction. – FEBS Lett. 581, 2325–2336. doi: 10.1016/j.febslet.2007.04.008 –

 

Panteris E., Galatis B., Quader H., Apostolakis P. (2007) – Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum – Cell Motility and the Cytoskeleton 64: 531-548 –https://www.academia.edu/27006952/Cortical_actin_filament_organization_in_developing_and_functioning_stomatal_complexes_of_Zea_mays_and_Triticum_turgidum – (On our blog : https://plantstomata.wordpress.com/2017/12/18/cortical-actin-filament-organization-in-developing-and-functioning-stomatal-complexes/ )

Pantin F., Blatt M. R. (2018) – Stomatal Response to Humidity: Blurring the Boundary between Active and Passive Movement – 

Pantin F.Monnet F.Jannaud D.Costa J.M.Renaud J.Muller B.Simonneau T.Genty B. (2013) – The dual effect of abscisic acid on stomata – New Phytol 1976572 – CrossRefPubMedGoogle Scholar

Paoleti E., Gellini R. (1993) –  Stomatal density variation in beech and holm oak leaves collected over the last 200 years – Acta Oecologica 14: 173-178 –

Papanatsiou M., Amtmann A.Blatt M. R. (2016) – Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir – Plant Physiology DOI: https://doi.org/10.1104/pp.16.00850 – http://www.plantphysiol.org/content/172/1/254 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/stomatal-spacing-safeguards-stomatal-dynamics/ )

Papanatsiou M., Scuffi D., Blatt M. R., Garcia-Mata C. (2015) – Hydrogen Sulfide Regulates Inward-Rectifying K+Channels in Conjunction with Stomatal Closure – Plant Physiolog DOI: https://doi.org/10.1104/pp.114.256057 –http://www.plantphysiol.org/content/168/1/29 – https://plantstomata.wordpress.com/2017/11/06/h2s-closes-stomata/ )

Papazian S.Khaling E.Bonnet C.Lassueur S.Reymond P.Moritz T.Blande J. D.Albrectsen B. R. (2016) – Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure – Plant Physiology DOI: https://doi.org/10.1104/pp.16.01318 – http://www.plantphysiol.org/content/172/3/2057 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/central-metabolic-responses-and-stomatal-closure/ )

Pappas T., McManus P., Vanderveer P., Croxdale J. (1988) – Characterization of stomatal development in Dianthus chinensis – Canadian Journal of Botany, 1988, 66(1): 142-149 – https://doi.org/10.1139/b88-022 –http://www.nrcresearchpress.com/doi/abs/10.1139/b88-022 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-development-in-dianthus-chinensis-2/ )

Park G. E., Lee D. K., Kim K. W., Batkhuu N.-O.,  Tsogtbaatar J., Zhu J.-J., Jin Y., Pil Sun Park P. S., Hyun J. O., Kim H. S. (2016) – Morphological Characteristics and Water-Use Efficiency of Siberian Elm Trees (Ulmus pumila L.) within Arid Regions of Northeast Asia – Forests 7: 280-299 – doi:10.3390/f7110280 – www.mdpi.com/1999-4907/7/11/280/pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/stomatal-traits-and-aridity-gradients/ )

Park K. Y., Jung J. Y., Park J., Hwang J. U., Kim Y. W., Hwang I., et al. (2003) – A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. – Plant Physiol. 132, 92–98. – doi: 10.1104/pp.102.016964 –

Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) (2012) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – Publisher: The International Maize and Wheat Improvement Center, CIMMYT – https://www.researchgate.net/publication/268743172_Physiological_Breeding_II_A_Field_Guide_to_Wheat_Phenotyping – (On our blog : https://plantstomata.wordpress.com/2018/01/30/66106/ )

Patel J. D. (1978) – How should we interpret and distinguish subsidiary cells? – Bot J Linn Soc, 77:65-72. – DOI: 10.1111/j.1095-8339.1978.tb01373.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.1978.tb01373.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-concept-of-subsidiary-cells-of-stomata/ )

 

Patel J. D., Raju E. C., Fotedar R. L., Kothari H., Shah J. J. (1975) – Structure and histochemistry of stomata and epidermal cells in five species of Polypodiaceae – Ann. Bot. 38: 611-619 – DOI: 10.1093/oxfordjournals.aob.a084973 –https://www.jstor.org/stable/42753379?seq=1#page_scan_tab_contents – https://plantstomata.wordpress.com/2017/12/18/structure-and-histochemistry-of-stomata-in-ferns/ )

Paterson N. W., Weyers J. D. B., A’Brook R. (1988) – The effect of pH on stomatal sensitivity to abscisic acid – Plant Cell Environ. 11, 83-89. – DOI: 10.1111/1365-3040.ep11604886 – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11604886/full  – (On our blog : https://plantstomata.wordpress.com/2017/02/07/ph-and-stomatal-sensitivity-to-abscisic-acid/ )

Paterson N. W., Weyers J. D. B., Herdman L. (1988) – Relative control potential of abscisic acid, carbon dioxide and light in responses of Phaseolus vulgaris stomata – Physiol Plant. 2001 Mar;111(3):412-418 – PMID: 11240927 –https://www.ncbi.nlm.nih.gov/pubmed/11240927 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/relative-control-potential-of-aba-co2-and-light-in-responses-of-stomata/ )

Paterson N. W., Weyers J. D. B., Schildknecht H. (1987) – The Effects of a Turgorin on Stomatal Movement and Transpiration in Commelina communis L. – Journal of Plant Physiology 128(s 4–5):491–495 – DOI 10.1016/S0176-1617(87)80136-0 –http://www.sciencedirect.com/science/article/pii/S0176161787801360 – (On our blog : https://plantstomata.wordpress.com/2017/12/14/the-effects-of-a-turgorin-on-stomatal-movement/ )

Pavol E. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14, Issue 1, 29–42- doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 – (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/ )

Pavol E. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41, ISSN 0001-7124 – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/ )

Peak D., Mott K. A. (2011) – A new, vapour-phase mechanism for stomatal responses to humidity and temperature – Plant Cell Environ 34162178 – DOI: 10.1111/j.1365-3040.2010.02234.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02234.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/02/a-new-mechanism-for-stomatal-responses-to-humidity-and-temperature-2/

Peak D., Mott K. A. (2011) – Leafy Social Network: USU Scientists Study How Stomata Communicate – Utah State Today – University News (Nov.23, 2011) –http://www.usu.edu/ust/index.cfm?article=50552 – (On our blog : https://plantstomata.wordpress.com/2017/02/15/how-stomata-communicate-2/ )

Pearce D. W., Millard S., Bray D. F., Rood S. B. (2006) – Stomatal characteristics of riparian poplar species in a semi-arid environment – Tree Physiology, 26: 211-218. – http://dx.doi.org/10.1093/treephys/26.2.211 – CrossRefGoogle Scholar – https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/26.2.211 – (On our blog : https://plantstomata.wordpress.com/2017/02/07/stomatal-density-stomatal-conductance-and-climatic-conditions/ )

Pearson C. J. (1973) – Daily changes in stomatal aperture and in carbohydrates and malate within epidermis and mesophyll of leaves of Commelina cyanea and Vicia faba. – Aust. J. Biol. Sci. 26, 1035–1044 –

Pearson D. (2011) – Understanding the Abscisic Acid Pathway Using Guard Cell Specific Genes and the Anti-Aging Drug Spermidine – The University of Maryland McNair Scholars Undergraduate Research Journal 3: 174-193 – http://hdl.handle.net/1903/12468 –  https://drum.lib.umd.edu/handle/1903/12468 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/63317/ )

Pearson M., Mansfield T. A. (1993) – Interacting effects of ozone and water stress on the stomata1 resistance of beech (Fagus sylvatica L.) – New Phytologist 123: 351-358 –

Peat H. J., Fitter A. H. (1994) – A comparative study of the distribution and density of stomata in the British flora – Biological Journal of the Linnean Society, 52: 377-393. – DOI: 10.1111/j.1095-8312.1994.tb00999.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1994.tb00999.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/hypostomaty-amphistomaty-epistomaty-and-stomata-density/ )

Peel J. R., Mandujano Sanchez M. C., Lopez Portillo J., Golubov J. (2017) – Stomatal density, leaf area and plant size variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) along a salinity gradient in the Mexican Caribbean – Revista Biologia Tropical 66(2): – DOI: https://doi.org/10.15517/rbt.v65i2.24372 – https://revistas.ucr.ac.cr/index.php/rbt/article/view/24372 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/stomatal-density-is-inversely-related-to-leaf-area-and-salinity-may-increase-stomatal-density-by-causing-reduction-of-leaf-size/ )

Pei Z. M., Baizabal-Aguirre V. M., Allen G. J., Schroeder J. I. (1998) – A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells. – Proc. Natl. Acad. Sci. U.S.A. 95, 6548–6553. – doi: 10.1073/pnas.95.11.6548 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27872/ – (On our blog : https://plantstomata.wordpress.com/2017/02/18/a-k-channel-currentcytosolic-ca2-and-stomatal-movements/ )

Pei Z.-M., Ghassemian M., Kwak C., McCourt P., Schroeder J. I. (1998) – Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. – Science, 282: 287–290 –

Pei Z. M., Kuchitsu K., Ward J. M., Schwarz M., Schroeder J. I. (1997) – Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 Mutants. – Plant Cell 9: 409–423. – doi: 10.1105/tpc.9.3.409 –

 

Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J., et al. (2000) – Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. – Nature 406, 731–734. – doi: 10.1038/35021067 –

Pei Z. M., Ward J. M., Harper J. F., Schroeder J. I. (1996) – A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. – EMBO J. 15, 6564–6574. –

Peiter E., Maathuis F. J., Mills L. N., Knight H., Pelloux J., Hetherington A. M., et al. (2005) – The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. – Nature 434, 404–408. – doi: 10.1038/nature03381 –

Peligrino G. P. G., Wayan R. G. R., Escoton J. D. (2011) – Comparison of leaf stomata density of Rhoeo spathacea from polluted and non-polluted site in Cebu – BS Thesis Cebu University – http://www.herdin.ph/index.php/component/herdin/?view=research&cid=45629 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-density-in-leaves-from-a-polluted-and-a-non-polluted-site-in-cebu/ )

Pemadasa M. A. (1981) – Photocontrol of stomatal movements – Biol. Reviews Volume 56, Issue 4, 551–588 – DOI: 10.1111/j.1469-185X.1981.tb00359.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1981.tb00359.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/light-and-stomatal-movements/

Penfield S., Clements S., Bailey K. J., Gilday A. D., Leegood R. C., Gray J. E., et al. (2012) – Expression and manipulation of PHOSPHOENOLPYRUVATE CARBOXYKINASE 1 identifies a role for malate metabolism in stomatal closure. – Plant J.69, 679–688. – 10.1111/j.1365-313X.2011.04822.x – [PubMed] [Cross Ref] – 

 

Peng Z., Weyers J. D. B. (1994) – Stomatal sensitivity to abscisic acid following water deficit stress – Journal of Experimental Botany 45: 835–845 – https://doi.org/10.1093/jxb/45.6.835 – https://academic.oup.com/jxb/article-abstract/45/6/835/509011?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-sensitivity-to-aba-following-water-deficit-stress/ )

Pereira de Souza R., Vasconcelos Ribeiro R., Caruso Machado E., Ferraz de Oliveira R., Gomes da Silveira J. A. (2005) – Photosynthetic responses of young cashew plants to varying environmental conditions – Pesq. agropec. bras. vol.40 no.8 Brasília Aug. 2005 –http://dx.doi.org/10.1590/S0100-204X2005000800002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2005000800002&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/02/15/stomata-and-varying-environmental-conditions-2/ )

Perera L. K. R. R., Mansfield T. A., Malloch A. J. C. (1994) – Stomatal responses to sodium ions in Aster tripolium: a new hypothesis to explain salinity regulation in above-ground tissues – Plant, Cell & Environment 17(3): 335–340 – DOI: 10.1111/j.1365-3040.1994.tb00300.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00300.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-responses-to-sodium-ions/ )

Peschel S., Beyer M., Knoche M. (2003) – Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting – Scientia Horticulturae 97: 265–278 – Surface_characteristics_of_sweet_cherry.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/the-number-distribution-size-and-function-of-stomata-and-wettability-of-the-sweet-cherry/ )

Peterson K. M., Rychel A. L., Torii K. U. (2010) – Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development – The Plant Cell 

Petrova Y. (2012) – The effect of light intensity on the stomatal density of lavender, Lavandula angustifolia – Young Scientists Journal 2012(12): 89-93 – https://www.ysjournal.com/wp-content/uploads/Issue12/The-effect-of-light-intensity-on-the-stomatal-density-of-lavender-Lavandula-angustifolia.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/04/a-positive-correlation-between-stomatal-density-and-the-light-intensity/ )

Pharmawati M., Billington T., Gehring C. A. (1998) – Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent – Cell. Mol. Life Sci. 54: 272–276. – doi: 10.1007/s000180050149 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://link.springer.com/article/10.1007%2Fs000180050149 – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomata-responses-to-kinetin-and-natriuretic-peptides/ )

Pickard W. F. (1982) – Distribution of evaporation in the sub-stomatal chamber, the possibility of transpiration-linked pore narrowing, and the pathway of water near the site of evaporation – Ann. Bot. 49: 545–548. –https://eurekamag.com/research/000/859/000859348.php – (On our blog : https://plantstomata.wordpress.com/2017/02/16/evaporation-through-the-chamber-wall-adjacent-to-the-inner-aperture-of-the-stomatal-pore/ )

Pieruschka R., Huber G., Berry J. A. (2009) – Control of transpiration by radiation – PNAS 107(30): 13372–13377 – doi: 10.1073/pnas.0913177107 – http://www.pnas.org/content/107/30/13372.abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-regulation-of-leaf-and-canopy-transpiration-by-the-radiation-load/ )

Pietragalla J., Pask A. (2012) – Stomatal conductance – In: Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – CIIMMYT – Chapter 2 – http://www.plantstress.com/methods/Stomatal%20conductance%20measurement%20(wheat%20example%20-%20from%20CIMMYT).PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomatal-conductance/ )

Pillitteri L. J., Bogenschutz N. L., Torii K. U. (2008) – The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis – Plant Cell Physiol 49:934–943. – DOI:https://doi.org/10.1093/pcp/pcn067 – Abstract/FREE Full TextGoogle Scholar – https://academic.oup.com/pcp/article/49/6/934/1811933/The-bHLH-Protein-MUTE-Controls-Differentiation-of?ijkey=a82b0b2306ff4bfe69c873557ad45343c29fd352&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/02/16/the-bhlh-protein-mute-stomata-and-the-hydathode-pore/ )

Pillitteri L. J., Dong J. (2013) – Stomatal Development in Arabidopsis – The Arabidopsis Book, vol. 11, pp. e0162, June 2013. – doi:  10.1199/tab.0162 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711358/ – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomatal-development-2/ )

Pillitteri L. J.Sloan D. B.Bogenschutz N. L.Torii K. U. (2007) – Termination of asymmetric cell division and differentiation of stomata. – Nature 445501505. – CrossRefPubMedGoogle Scholar – http://www.nature.com/nature/journal/v445/n7127/full/nature05467.html – (On our blog : https://plantstomata.wordpress.com/2016/08/22/stomata-the-roles-of-bhlhs-in-cell-type-differentiation/)

Pillitteri L. J, Torii K. U. (2012) – Mechanisms of stomatal development – Annual Review of Plant Biology 63: 591–614. – CrossRefMedlineWeb of ScienceGoogle Scholar – http://www.annualreviews.org/doi/10.1146/annurev-arplant-042811-105451 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/mechanisms-of-stomatal-development/ )

Pilot G., Lacombe B., Gaymard F., Chérel I., Boucherez J., Thibaud J. B., Sentenac H. (2001) – Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. – J. Biol. Chem. 276, 3215–3221. – doi: 10.1074/jbc.M007303200 – http://www.jbc.org/content/276/5/3215.full – (On our blog : https://plantstomata.wordpress.com/2018/01/19/expression-of-the-twin-channel-subunits-kat1-and-kat2-in-stomata/ )

Plesch G., Ehrhardt T., Mueller-Roeber B. (2001) – Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. – Plant J. 28: 455– 464 –

Plumbe A. M., Willmer C. M. (1986) – Phytoalexins, water-stress and stomata – New Phytologist 102 (3): 375–384 – DOI: 10.1111/j.1469-8137.1986.tb00815.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1986.tb00815.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/the-effects-of-the-phytoalexins-on-stomatal-responses/ )

 

Poffenroth M., Green D. B., Tallman G. (1992) – Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light: analysis by high performance liquid chromatography. – Plant Physiol. 98, 1460–1471. – doi: 10.1104/pp.98.4.1460 – CrossRef |PubMed | – http://www.plantphysiol.org/content/98/4/1460 – (https://plantstomata.wordpress.com/2017/02/27/soluble-sugars-can-contribute-significantly-to-the-osmoregulation-of-stomatal-cells/ )

Pompelli M. F., Martins S. C. V., Celin E. F., Ventrella M. C., DaMatta F. M. (2010) – What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? – Braz. J. Biol. 70(4): 1083-1088 – http://www.scielo.br/pdf/bjb/v70n4/a25v70n4.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/24/influence-of-ordinary-epidermal-cells-and-stomata-on-the-leaf-plasticity-of-coffee/ )

Poole I.Weyers J. D. B.Lawson T.Raven J. A. (1996) – Variations in stomatal density and index: implications for palaeoclimatic reconstructions – Plant, Cell and Environment 19705712. – Wiley Online Library | CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00405.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/high-level-of-variation-in-stomatal-characters-occurs-both-within-and-between-leaves-of-a-tree/ )

 

Poole I.Weyers J. D. B.Lawson T.Raven J. A. (2000) – Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa – New Phytol. 145: 511–521 –Effect_of_elevated_CO2_on_the_stomatal_d.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-development-distribution-and-conductance-under-elevated-co2-concentration/ )

Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011) – Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress – Plant Biol. 13: 105–114 – doi: 10.1111/j.1438-8677.2010.00344.x – PubMed Abstract | CrossRef Full Text | Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.2010.00344.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/salicylic-acid-treatment-via-the-rooting-medium-interferes-with-stomatal-response/ )

Pospíšilová J. (1996) – Effect of air humidity on the development of functional stomatal apparatus – Biologia Plantarum 1996;38:197204. –  doi:10.1007/BF02873846 – (Google Scholar) – https://link.springer.com/article/10.1007%2FBF02873846?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/02/27/air-humidity-on-the-development-of-stomata/ )

Pospíšilová J.Šantrůček J. (1994) – Stomatal patchiness – Biologia Plantarum199436, 4, 481-510  – doi:10.1007/BF02921169 – CrossRefWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF02921169. – (On our blog : https://plantstomata.wordpress.com/2017/02/27/small-groups-of-stomata-on-a-single-leaf-blade-stomatal-patchiness/ )

Poudel M. S. (2013) – Responses of air humidity and light quality on growth and stomata function of greenhouse grown Rosa × hybrida – Department of Plant and Environmental Sciences (IPM), Norwegian University of Life Sciences, Ås, Norway  – –https://brage.bibsys.no/xmlui/bitstream/handle/11250/189591/madhu%20sudhan%20thesis.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2018/01/10/light-quality-can-be-used-a-tool-to-improve-the-stomata-function-under-high-rh/ )

Poulter B., Frank D. (2015) – Rising CO2 levels are changing how fast forests cycle water – The Conversation  – http://theconversation.com/rising-co2-levels-are-changing-how-fast-forests-cycle-water-40746 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/stomata-and-rising-co2-levels/ )

Priddy S. (2016) – Stomata: Tree Breath – The Blog – http://www.kibi.org/stomata-tree-breath/ – (On our blog : https://plantstomata.wordpress.com/2018/01/11/video-the-earth-has-lungs-watch-them-breathe/ )

Prokic L., Jovanovic Z., McAinsh M. R., Vucinic Z., Stikic R. (2006) – Species- dependent changes in stomatal sensitivity to abscisic acid mediated by external pH. – J. Exp. Bot. 57, 675–683. – doi: 10.1093/jxb/erj057 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erj057 – (On our blog : https://plantstomata.wordpress.com/2017/03/01/species-and-stomatal-sensitivity-to-aba/ )

 

Puli M. R., Raghavendra A. S. (2012) – Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cells in abaxial epidermis of Pisum sativum. – J. Exp. Bot. 63, 1349–1356. – doi: 10.1093/jxb/err364 –

 

Puli M. R., Rajsheel P., Aswani V., Agurla S., Kuchitsu K., Raghavendra A. S. (2016) – Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. – Planta 244, 831–841. – doi: 10.1007/s00425-016-2545-z –

Purcell C., Batke S., Yiotis C., Caballero R., Soh W. K., Murray M., McElwain J. C. (2018) – Increasing stomatal conductance in response to rising atmospheric CO2 – Annals of Botany mcx208 – https://doi.org/10.1093/aob/mcx208 – https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcx208/4823760?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-conductance-and-rising-atmospheric-co2/ )

Putra E.T.S., Zakaria W., Abdullah N.A.P., Saleh G. B. (2012) – Stomatal Morphology, Conductance and Transpiration of Musa sp. cv. Rastali in Relation to Magnesium, Boron and Silicon Availability – American Journal of Plant Physiology  7( 2): 84-96 – DOI: 10.3923/ajpp.2012.84.9 – http://docsdrive.com/pdfs/academicjournals/ajpp/2012/84-96.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/06/linear-relationships-between-stomatal-width-stomatal-conductance-and-transpiration-rate/ )

Pyakurel A., Wang J. (2014) – Leaf Morphological and Stomatal Variations in Paper Birch Populations along Environmental Gradients in Canada – American Journal of Plant Sciences, 5, 1508-1520. – doi: 10.4236/ajps.2014.511166.- http://www.scirp.org/journal/PaperInformation.aspx?PaperID=45954#.VR6cL5OUe6E – (On our blog : https://plantstomata.wordpress.com/2017/03/01/35120/ )

Qin X.-M., Bian M.-D., Yang Z.-M., Shi W.-L. (2015) – Tyrosine phosphorylation mediates starch metabolism in guard cell of Vicia faba – Published Online: 2015-06-23 –  DOIhttps://doi.org/10.1515/biolog-2015-0068 – https://www.degruyter.com/view/j/biolog.2015.70.issue-5/biolog-2015-0068/biolog-2015-0068.xml – (On our blog : https://plantstomata.wordpress.com/2018/01/19/tyrosine-phosphorylation-may-modulate-starch-degradation-in-guard-cells-and-regulate-the-stomatal-movement/ )

 

Raczka B., Duarte H. F., Koven C. D., Ricciuto D., Thornton P. E., Lin J. C., Bowling D. R. (2016) – An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5) – Biogeosciences 13(18): 5183-5204 – https://doi.org/10.5194/bg-13-5183-2016 – https://www.biogeosciences.net/13/5183/2016/ – (On our blog : https://plantstomata.wordpress.com/2017/11/24/isotope-observations-can-provide-important-information-related-to-stomatal-function/ )

Radin J. W.  (1984) – Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants – Plant Physiol 76:392–394 -doi: http://dx.doi.org/10.1104/pp.76.2.392 – PubMedCentralPubMedCrossRef – http://www.plantphysiol.org/content/76/2/392 – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-aba-and-cytokinins/ )

Radin J. W., Lu Z., Percy R. G., Zeiger E. (1994) – Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation – Proc. Natl. Acad. Sci. U.S.A. 91, 7217–7221. – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=11607487 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/genetic-variability-for-stomatal-conductance-and-temperature/ )

Radoglou K. M.Aphalo P. J.Jarvis P. G. (1992) – Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. – Annals of Botany 70,257264. –http://aob.oxfordjournals.org/content/70/3/257.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-conductance-elevated-co2-and-nutrient-supply/ )

Raghavendra A.S., Bhaskar Reddy K. (1987) – Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate – Plant Physiol. 83: 732-734, 1987. –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1056439/ – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-proline-aba-g-substances-and-methyl-jasmonate/ )

Raghavendra A. S., Gonugunta V. K., Christmann A., Grill E. (2010) – ABA perception and signaling. – Trends Plant Sci. 15, 395–401. – doi: 10.1016/j.tplants.2010.04.006 –

 

Raghavendra A. S., Murata Y. eds. (2017) – Editorial: Signal Transduction in Stomatal Guard Cells – Front. Plant Sci. 8:114. doi: 10.3389/fpls.2017.00114 – 9782889451678.PDF – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/247 )

Raghavendra A. S., Rao I. M., Das V. S. R. (1976) – Characterization of abscisic acid inhibition of stomatal opening in isolated epidermal strips – Plant Sci. Lett. 6, 111–115. – doi: 10.1016/0304-4211(76)90144-9 – CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/0304421176901449?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2017/03/03/aba-inhibition-of-stomatal-opening-in-isolated-epidermal-strips/ )

Raissig M. T.Abrash E.Bettadapur A.Vogel J. P.Bergmann D. C. (2016) – Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity – Proc Natl Acad Sci USA 11383268331 – Abstract/FREE Full TextGoogle Scholar  http://www.pnas.org/content/113/29/8326 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/the-stomatal-transcription-factor-module-is-a-prime-target-for-breeding-or-genome-modification-to-improve-plant-productivity/ )

Raissig M. T., Bergmann D. C. (2017) – The recipe for especially efficient stomata – VIDEO – Eurekalert AAAS – http://dx.doi.org/10.1126/science.aal3254 – https://www.eurekalert.org/multimedia/pub/135451.php – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-recipe-for-especially-efficient-stomata-video/ )

Raissig M. T., Matos J. L., Anleu Gil M. X., Kornfeld A., Bettadapur A., Abrash E., Allison H. R., Badgley G., Vogel J. P., Berry J. A., Bergmann D. C. (2017) – Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. – Science, doi:10.1126/science.aal3254

Rajagopal V., Patil K. D., Sumathykuttyamma B. (1986) – Abnormal Stomatal Opening in Coconut Palms Affected with Root (Wilt) Disease – Journal of Experimental Botany Vol. 37, No. 182 (September 1986), pp. 1398-1405 – https://www.jstor.org/stable/23691597?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/28/stomatal-regulation-is-significantly-impaired-in-diseased-palms/ )

Rajendra B. R., Mujeeb K. A., Bates L. S. (1978) – Relationships between 2X hordeum sp., 2X Secale sp. and 2X, 4X, 6X triticum spp. for stomatal frequency, size and distribution – Environ. Exp. Bot., 18: 33-37. –http://journals2.scholarsportal.info/details?uri=/00988472/v18i0001/33_rb2hs2fsfsad.xml – (https://plantstomata.wordpress.com/2016/12/03/stomatal-frequency-size-and-distribution/ )

Rajmohan A. (2014) – Comparing stomatal densities in sun and shade – BIOC52 – https://www.scribd.com/document/248523446/Comparing-stomatal-densities-in-sun-and-shade – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-densities-in-sun-and-shade/ )

Ramos L. J.Nayaranan K. R.McMillan R. T. Jr. (1992) – Association of stomatal frequency and morphology in Lycopersicon species with resistance to Xanthomonas campestris pv. vesicatoria – Plant Pathology 41(2): 157–164 –  Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.1992.tb02334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/correlations-between-stomatal-traits-and-the-number-of-bacterial-lesions/ )

Ramos L. J., Volin R. B. (1987) – Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria – Florida Agricultural Experiment Stations Journal Series No. 7355 – Phytopathology 77(9): 1311-1317 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Articles/Phyto77n09_1311.PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/06/role-of-stomatal-opening-and-frequency-on-infection-by-xanthomonas/ )

Ran J.-H., Shen T.-T., Liu W.-J., Wang X.-Q. (2013) – Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants – PLoS ONE 8, e78997 (2013). –https://www.ncbi.nlm.nih.gov/pubmed/24244399 – (https://plantstomata.wordpress.com/2016/12/03/the-bhlh-genes-involved-in-stomatal-development/ )

Rand R. H.Upadhyaya S. K.Cooke J. R., Storti D. W. (1981) – Hopf bifurcation in a stomatal oscillator – Journal of Mathematical Biology 12111. – doi:10.1007/BF00275199 – CrossRef – https://link.springer.com/article/10.1007%2FBF00275199 – (https://plantstomata.wordpress.com/2017/03/03/hopf-bifurcation-in-a-stomatal-oscillator/ )

Rao D. G., Vanaja M., Hebbar K. B., Venkateswarlu B. (1996) – Control of stomatal function by xylem exudates from stressed plants without a decrease in the leaf water potential: possible role for root signals ? – Proc. Indian natn. Sci. Acad. B62(4): 297-302 –http://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol62B_1996_4_Art08.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/control-of-stomatal-function-by-xylem-exudates/ )

Raschke K. (1965) – Die Stomata als Glieder eines schwingungsfähigen CO2‐Regelsystems Experimenteller Nachweis an Zea mays L. – Zeitschrift für Naturforschung 20b, 1261–1270. – https://www.degruyter.com/downloadpdf/j/znb.1965.20.issue-12/znb-1965-1219/znb-1965-1219.xml – (https://plantstomata.wordpress.com/2016/12/03/stomata-a-regulatory-system-stabilizing-the-co2-concentration-within-the-intercellular-spaces-of-leaves/ )

Raschke K. (1970) – Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. – Planta 91: 336–363. – doi: 10.1007/Bf00387507 –

 

Raschke K. (1976) – How stomata resolve the dilemma of opposing priorities – Phil Trans R Soc Lond 273: 551–560 – DOI: 10.1098/rstb.1976.0031 – CrossRefGoogle Scholar – http://rstb.royalsocietypublishing.org/content/273/927/551 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-opposing-priorities/ )

Raschke K. (2003) – Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate – Planta 217:651657 – doi:10.1007/s00425-003-1034-3 – CrossRef Medline Google Scholar – https://link.springer.com/article/10.1007%2Fs00425-003-1034-3 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/alternation-of-anion-conductance-in-stomata/ )

Raschke K., Shabahang M., Wolf R. (2003) – The slow and the quick anion conductances in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2 – Planta 217(4): 639-50 – DOI 10.1007/s00425-003-1033-4  – https://www.ncbi.nlm.nih.gov/pubmed/12712336 – (On our blog : https://plantstomata.wordpress.com/2017/03/06/anion-conductances-in-stomata/

Raskin I., Ladyman J. A. R. (1988) – Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata – Planta 1988;173:73-78. – doi:10.1007/BF00394490 – CrossRefMedlineWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF00394490 – (On our blog : https://plantstomata.wordpress.com/2016/12/03/aba-insensitive-stomata/ )

Rasmussen H. (1986) – Pattern formation and cell interactions in epidermal development of Anemarrhena asphodeloides (Liliaceae) – Nordic Journal of Botany 6:467–477.- DOI: 10.1111/j.1756-1051.1986.tb00903.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1756-1051.1986.tb00903.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/a-characteristic-pattern-of-stomata/ )

 Rathaiah Y. (1975) – Infection of Sugarbeet by Cercospora beticolain Relation to Stomatal Condition – Phytopathology 66: 737-740. – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1976Articles/Phyto66n06_737.PDF – (On our blog : https://plantstomata.wordpress.com/2016/12/27/cercospora-beticola-penetrates-sugarbeet-through-stomata/ )

Raven  J. A. (2002) – Selection Pressures on Stomatal Evolution – New Phytologist, 153: 371-386. – DOI: 10.1046/j.0028-646X.2001.00334.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomatal-evolution-2/ )

Raven J. A. (2014) – Speedy small stomata ? – Journal of Experimental Botany 65(6): 1415–1424 – https://doi.org/10.1093/jxb/eru032 – https://academic.oup.com/jxb/article/65/6/1415/588799 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/faster-opening-and-closing-of-smaller-than-of-larger-stomata/ )

Reckmann U., Scheibe R., Raschke K. (1990) – Rubisco activity in guard cells compared with the solute requirement for stomatal opening. – Plant Physiol. 92, 246–253. – 10.1104/pp.92.1.246 – [PMC free article] [PubMed] [Cross Ref] – 

Redmann R. E. (1985) – Adaptation of grasses to water stress – leaf rolling and stomate distribution – Annals of the Missouri Botanical Garden 72, No. 4, 1985 – 833–842 – CrossRef – http://www.jstor.org/stable/2399225?origin=crossref&seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomata-and-water-stress/ )

Reich P. B., Borchert R. (1988) – Changes with leaf age in stomatal function and water status of several tropical tree species – Biotropica 20(1): 60-69 –https://experts.umn.edu/en/publications/changes-with-leaf-age-in-stomatal-function-and-water-status-of-se – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-water-status-change-with-leaf-age/ )

Rhine J. B. (1924) – Clogging of Stomata of Conifers in Relation to Smoke Injury and Distribution – Botanical Gazette Vol. 78, No. 2 (Oct., 1924), pp. 226-232 – https://www.jstor.org/stable/2469885?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/30/smoke-injury-and-clogging-of-stomata/ )

Richards J. (2016) – New study of water-saving plants advances efforts to develop drought-resistant crops – EurekAlert 2016-12-05 –https://www.eurekalert.org/pub_releases/2016-12/drnl-nso120516.php – (https://plantstomata.wordpress.com/2016/12/07/29113/ )

Richardson F., Brodribb T. J., Jordan G. J. (2017) – Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand – Tree Physiology 37: 869–878 doi:10.1093/treephys/tpx073 – http://www.brodribblab.org.au/wp-content/uploads/2017/08/Amphistomatic-leaf-surfaces-independently-regulate-gas-exchange-in-response-to-variations-in-evaporative-demand.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/amphistomatic-leaf-surfaces-independently-regulate-gas-exchange/ )

Ridolfi M., Fauveau M. L., Label P., Garrec J. P., Dreyer E.. (1996) – Responses to water stress in an ABA-unresponsive hybrid poplar, Populus koreana × trichocarpa cv. Peace. I. Stomatal function. – New Phytol. 134: 445–454 –

Ridolfi M., Garrec J.-P. (2000) – Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves – Ann. For. Sci. 57(3): 209 – 218 – DOI: 10.1051/forest:2000112 – https://www.afs-journal.org/articles/forest/abs/2000/03/f0302/f0302.html – (On our blog : https://plantstomata.wordpress.com/2017/11/24/excess-al-associated-to-low-ca-and-mg-nutrition-lead-to-a-strong-stomatal-dysfonction/ )

Ridolfi M., Roupsard O., Garrec J. P., Dreyer E. (1996) – Effects of a calcium deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution – Annales des Sciences Forestières > 1996 > 53 > 2-3 > 325-335 – ISSN :0003-4312 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0234dd50-d101-38e8-8422-f8dd781d8c17 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/effects-of-a-calcium-deficiency-on-stomatal-conductance/ )

Rienmüller F., Beyhl D., Lautner S., Fromm J., Al-Rasheid K. A. S., Ache P., et al. (2010) -Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. – Plant Cell Physiol. 51, 1548–1554. – doi: 10.1093/pcp/pcq102 –

 

Robaina-Estévez S., Daloso D. M., Zhang Y., Fernie A. R., Nikoloski Z. (2017) – Resolving the central metabolism of Arabidopsis guard cells – Scientific Reports 7, Nt.: 8307 – doi:10.1038/s41598-017-07132-9 – https://www.nature.com/articles/s41598-017-07132-9 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/55316)

Robatzek S., Lozano-Duran R., Bourdais G., Zhou J. (2012) – Guarding the gates: Stomatal responses to pathogens – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomatal-responses-to-pathogens/ )

Robinson N., Preiss J. (1985) – Biochemical phenomena associated with stomatal function. – Physiol. Plantarum 64: 141-146 –

Robredo A., Pérez-Lopez U., Sainz de la Maza H., Gonzalez-Moro B., Lacuesta M., Mena-Petite A., Alberto Munoz-Rueda A. (2007) – Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis – Environmental and Experimental Botany 59 : 252–263 – Elevated_CO2_alleviates_the_impact_of_dr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/co2-drought-and-improvement-of-water-status-by-lowering-stomatal-conductance/ )

Roccío A., Elvira S., Sanz M. J., Emberson L., Gimeno B. S. (2007) – Parameterization of the Stomatal Component of the DO3SE Model for Mediterranean Evergreen Broadleaf Species – TheScientificWorldJOURNAL 7: 119-127 – doi:10.1100/tsw.2007.27 –

Rocha-Uriartt L., Marques Corta G., Gehlen G., Droste A., Schmitt J. L. (2014) – Morphometric differences of Microgramma squamulosa (Kaulf.) de la Sota (Polypodiaceae) leaves in environments with distinct atmospheric air quality – Anais da Academia Brasileira de Ciências 86(3):1137-46. – DOI: 10.1590/0001-3765201420130094 ·Source: PubMed – https://www.ncbi.nlm.nih.gov/pubmed/25014917 – (https://plantstomata.wordpress.com/2017/01/16/stomata-of-a-fern-in-environments-with-distinct-atmospheric-air-quality/ )

Roche D. (2015) – Stomatal conductance is essential for higher yield potential of C3 crops. – Crit. Rev. Plant Sci. 34, 429–453. – doi: 10.1080/07352689.2015.10 23677 –

Rodriguez J. L., Davies W. J. (1982) – The effects of temperature and ABA on stomata of Zea mays L. – J. Exp. Bot. 33, 977–987. – doi: 10.1093/jxb/33. 5.977 –

Roelfsema M. R., Hanstein S., Felle H. H., Hedrich R. (2002)  – CO2provides an intermediate link in the red light response of guard cells. – Plant J. 32, 65–75 –

Roelfsema M. R. G., Hedrich R. (2002) – Studying guard cells in the intact plant: modulation of stomatal movement by apoplastic factors. – New Phytol. 153, 425–431. – doi: 10.1046/j.1469-8137.2002.00344.x –

 

Roelfsema M. R., Hedrich R. (2005) – In the light of stomatal opening: new insights into ‘the Watergate.’ – New Phytol. 167, 665–691. – doi: 10.1111/j.1469- 8137.2005.01460.x –

 

Roelfsema M. R. G., Hedrich R. (2010) – Making sense out of Ca2+signals: their role in regulating stomatal movements. – Plant Cell Environ. 33, 305–321. –

 

Roelfsema M. R. G., Konrad K. R., Marten H., Psaras G. K.,Hartung W., Hedrich R.. (2006)- Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, COand abscisic acid –  Plant, Cell Environment 29: 15951605 – DOI: 10.1111/j.1365-3040.2006.01536.x – CrossRefMedlineGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01536.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-function-of-stomata-in-albino-leaf-patches/ )

Roelfsema M. R. G., Levchenko V., Hedrich R. (2004) – ABA depolarizes guard cells in intact plants through a transient activation of R- and S-type anion channels. – Plant Journal 37: 578588. – doi:10.1111/j.1365-313X.2003.01985.x pmid:14756768 – CrossRefMedlineWeb of ScienceGoogle Scholar  – https://www.ncbi.nlm.nih.gov/pubmed/14756768 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/aba-depolarizes-guard-cells-in-intact-plants/ )

Roelfsema M. R. G., Prins H. B. A. (1995) – Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana – Physiologia Plantarum 95: 373378 – DOI: 10.1111/j.1399-3054.1995.tb00851.x – Wiley Online Library |CAS | CrossRefGoogle Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1995.tb00851.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/effect-of-aba-on-stomatal-opening-in-abi-mutants-of-arabidopsis/ )

Roelfsema M. R. G., Prins H. B. A. (1997) – Ion channels in guard cells of Arabidopsis thaliana (L) Heynh – Planta 202 (1): 1827 – DOI: 10.1007/s004250050098 –https://link.springer.com/article/10.1007/s004250050098 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/arabidopsis-thaliana-stomata-provide-an-excellent-system-for-the-study-of-signal-transduction-processes/ )

Ronzier E.CorratgéFaillie C.Sanchez F.Prado K.BrièreC.Leonhardt N.Thibaud J. B.Xiong T. C. (2014) – CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening – Plant Physiol. 166314326 – doi:http://dx.doi.org/10.1104/pp.114.240226 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/166/1/314.long – ( On our blog : https://plantstomata.wordpress.com/2017/01/25/cpk13-reduces-stomatal-aperture-through-its-inhibition-of-the-guard-cell-expressed-kat2-and-kat1-channels/ )

Roos J., Bejai S., Oide S., Dixelius C. (2014) – RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity – PloS one 9, e88187 – doi:10.1371/journal.pone.0088187 –http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088187 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/rabgap22-contributes-to-stomata-immunity/ )

Roth-Nebelsick A. (2007) – Computer-based Studies of Diffusion through Stomata of Different Architecture – Annals of Botany 100: 23–32 – doi:10.1093/aob/mcm075 –  available online at http://www.aob.oxfordjournals.org – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Computer-based-Studies-of-Diffusion-through-Stomata-of-Different-Architecture.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/29/diffusion-through-stomata-of-different-architecture/ )

Roth-Nebelsick A., Grein M.Utescher T.Konrad W. (2012) – Stomatal pore length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange and CO2 reconstructionRev. Palaeobot. Palynol. 174106112. (doi:10.1016/j.revpalbo.2012.01.001) – CrossRefGeoRefWeb of ScienceGoogle Scholar

Roth-Nebelsick A., Hassiotou F., Veneklaas E. J. (2009) – Stomatal Crypts Have Small Effects on Transpiration: A Numerical Model Analysis – Plant Physiology 151: 2018–2027 –doi:  10.1104/pp.109.146969 –  http://www.plantphysiol.org/content/plantphysiol/151/4/2018.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomatal-crypts-and-reduction-of-transpiration/ )

Roychowdhury R., Sultana P., Tah J. (2011) – Morphological architecture of foliar stomata in M2 Carnation (Dianthus caryophyllus L.) genotypes using Scanning Electron Microscopy (SEM) – Electronic Journal of Plant Breeding 2(4): 583-588 – ISSN 0975-928X –https://core.ac.uk/download/pdf/25899308.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/foliar-stomata-in-m2-carnation-dianthus-caryophyllus-l-genotypes/ )

Royer D. L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Rev. Palaeobot. Palynol. 144 (1-2): 1 – 28. – http://dx.doi.org/10.1016/S0034-6667(00)00074-9 – http://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Royer%202001.pdf – (https://plantstomata.wordpress.com/2016/12/09/paleoatmospheric-co2-concentration-and-stomata/ )

Rui Y., Anderson C. T. (2016) – Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis – 

Rui Y.Xiao C.Yi H.Kandemir B.Wang J. Z.Puri V. M.Anderson C. T. (2017) – POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in Arabidopsis thaliana – The Plant Cell 

Rusconi F., Simeoni F., Francia P., Cominelli E., Conti L., Riboni M., Simoni L., Martin C. R., Tonelli C., Galbiati M. (2013) –  The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. – J Exp Bot 64(11): 3361-3371 –

Russo G., De Angelis P., Mickle J. E., Lumaga Barone M. R. (2014) – Stomata morphological traits in two different genotypes of Populus nigra L. – Italian Society of Silviculture and Forest Ecology – iForest (early view) – doi: 10.3832/ifor1104-007 – https://www.researchgate.net/publication/282683703_Stomata_morphological_traits_in_two_different_genotypes_of_Populus_nigra_L – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1165 )

Saadabi A. M. A., El-Amin A.-N. (2011) – Effects of Environmental Pollution (Auto-Exhaust) on the Micro-Morphology of Some Ornamental Plants from Sudan – Environmental Research Journal 5(2): 38-41 – DOI: 10.3923/erj.2011.38.41 – https://www.medwelljournals.com/abstract/?doi=erj.2011.38.41 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/environmental-pollution-auto-exhaust-and-stomata/ )

Saadu R. O., Abdulrahaman A. A., Oladele F. A. (2009) – Stomatal complex types and transpiration rates in some tropical tuber species – African Journal of Plant Science Vol. 3 (5), pp. 107-112 – Available online at http://www.academicjournals.org/AJPS –http://www.academicjournals.org/article/article1380095359_Saadu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomata-and-transpiration-rates-in-tuber-species/ )

Sachs T. (1974) – The developmental origin of stomata pattern in Crinum – Bot. Gaz. 135314–318 – Google Scholar – https://www.jstor.org/stable/2474226?seq=1#page_scan_tab_contents – https://plantstomata.wordpress.com/2017/12/18/developmental-origin-of-stomatal-pattern/ )

Sack F. D. – The Sack Lab – https://www.botany.ubc.ca/people/fred-sack – (On our blog : https://plantstomata.wordpress.com/2018/01/22/the-fred-d-sack-lab/ )

Sack F. D., Chen J. C. (2009) – Pores in place – Science 323:592-593 – Invited Perspective

Sack L., Buckley T. N. (2016) – The Developmental Basis of Stomatal Density and Flux – 

Sack L., John G. P., Buckley T. N. (2018) – ABA Accumulation in Dehydrating Leaves Is Associated with Decline in Cell Volume, Not Turgor Pressure – 

Sack L., Scoffoni C. (2012) – Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM) –J. Vis. Exp. (70), e4179, doi:10.3791/4179 (2012). – https://www.jove.com/video/4179/measurement-leaf-hydraulic-conductance-stomatal-conductance-their – (On our blog : https://plantstomata.wordpress.com/2018/02/15/method-for-simultaneously-measurement-of-leaf-hydraulic-conductance-kleaf-and-stomatal-conductance-gs-for-transpiring-excised-leaves/ )

Sagaram M., Lombardini L. (2007) – Variation in Leaf Anatomy of Pecan Cultivars from Three Ecogeographic Locations – JASHS 132(5): 592-596 – http://journal.ashspublications.org/content/132/5/592.full – (On our blog : https://plantstomata.wordpress.com/2018/01/27/stomatal-density-and-stomatal-index-in-pecan-cultivars/

Sakaki T., Satoh A., Tanaka K., Omasa K., Shimazaki K.-I. (1995) – Lipids and fatty acids in guard-cell protoplasts from Vicia faba leaves – Phytochemistry 40: 1065–1070 – DOI: 10.1016/0031-9422(95)00272-9 – https://www.sciencedirect.com/science/article/pii/0031942295002729 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/lipids-and-fatty-acids-in-stomata/ )

Sakurai N., Akiyama M., Kuraishi S. (1986) – Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings – Plant and Cell Physiology 27: 1177-1185 – https://doi.org/10.1093/oxfordjournals.pcp.a077202 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/irreversible-effects-of-water-stress-on-growth-and-stomatal-development-in-cotyledons/ )

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., et al. (2012) – MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure. – Biosci. Biotechnol. Biochem. 76, 1785–1787. –

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., et al. (2013) – Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells. – Plant Biol. (Stuttg.) 15, 436–442. –

 

Salas J. A., Sanabria M. E., Pire R. (2001) – Variación en el índice y densidad estomática en plantas de tomate (Lycopersicon esculentum Mill.) sometidas a tratamientos salinos. – Bioagro 13(3): 99-104  – http://www.redalyc.org/articulo.oa?id=85713302 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/modification-of-stomatal-index-and-density-in-tomato-plants/ )

Saleh H., Thind  S. K.  (2015) – Physiology of Cell Membranes, Stomata And Photosynthetic Pigments of Rice (Oryza sativa L.) Under High Temperature – International Journal of Scientific Research 4(6) – 8179 – DOI : 10.15373/22778179 – https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/articles.php?val=NTc2NA==&b1=65&k=17 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/physiology-of-stomata-under-high-temperature/ )

Salisbury E. J. (1927) – On the causes and ecological significance of stomatal frequency with special reference to the woodland flora. – Philosophical Transactions of the Royal Society of London B Biological Sciences 216: 1-65 –

Sallanon H., Laffray D., Coudret A. (1993) – Ultrastructure and functioning of guard cells of in vitro cultured rose plants – Plant Physiol. Biochem. 29: 333-339 –https://geoscience.net/research/002/269/002269301.php – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomata-of-in-vitro-cultured-rose-plants/ )

Salomé P. A. (2017) – This ICE/SCRM Melts in the Dark: Light-Dependent COP1-Mediated Protein Degradation in Stomatal Formation – The Plant Cell DOI: https://doi.org/10.1105/tpc.17.00870– http://www.plantcell.org/content/29/11/2680?rss=1 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/light-dependent-cop1-mediated-protein-degradation-in-stomatal-formation/ )

Sanchez C., Fischer G., Sanjuanelo D. W. (2013) – Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer] – Agron. colomb., 31, (1): 38-47 – ISSN electrónico 2357-3732 – ISSN impreso 0120-9965 – https://revistas.unal.edu.co/index.php/agrocol/article/view/35800/47061 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-behavior-in-fruits-and-leaves/ )

Santakumari M., Fletcher R. A. (1987) – Reversal of triazole-induced stomatal closure by gibberellic acid and cytokinins in Commelina benghalensis – Physiol. Plant. 71: 95-99, 1987 – DOI: 10.1111/j.1399-3054.1987.tb04623.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1987.tb04623.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/20/triazole-induced-stomatal-closure-ga-and-cytokinins/ )

Santamaria, J. M.Davies W. J.Atkinson C. J. (1993) – Stomata of micropropagated Delphinium plants respond to abscisic acid (ABA), CO2, light and water potential but fail to close fully – Journal of Experimental Botany, 44 (1). pp. 99-107. ISSN 1460-2431 – http://www.research.lancs.ac.uk/portal/en/publications/stomata-of-micropropagated-delphinium-plants-respond-to-abscisic-acid-aba-co2-light-and-water-potential-but-fail-to-close-fully(774441ae-ef2f-4eb5-99a2-9b8b213f5996).html – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1321 )

Santelia D., Lawson T. (2016) – Rethinking Guard Cell Metabolism – Plant Physiology DOI: https://doi.org/10.1104/pp.16.00767 –http://www.plantphysiol.org/content/172/3/1371 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/multiple-processes-and-plasticity-in-guard-cell-metabolism-of-stomata/ )

Santelia D., Lunn J. E. (2017) – Transitory starch metabolism in guard cells: unique features for a unique function. – Plant Physiol 174: 539–549 – DOI: 10.1104/pp.17.00211 – http://www.plantphysiol.org/content/174/2/539 – (On our blog : https://plantstomata.wordpress.com/2018/01/02/transitory-starch-metabolism-in-stomata/)

Santrucek J et al. (2014) – Stomatal and pavement cell density linked to leaf internal CO2concentration. – Ann. Bot. 114191202. – (doi:10.1093/aob/mcu095) – Abstract/FREE Full TextGoogle Scholar

Sanz L. C., Fernández-Maculet J. C., Gómez E., Vioque B., Olías J. M. (1993) – Effect of methyl jasmonate on ethylene biosynthesis and stomatal closure in olive leaves – Phytochemistry 33: 285-289 – https://doi.org/10.1016/0031-9422(93)85504-K –https://www.sciencedirect.com/science/article/pii/003194229385504K – (On our blog : https://plantstomata.wordpress.com/2017/12/20/meja-caused-stomatal-closure/ )

Saravanavel R., Ranganathan R., Anantharaman P. (2011) – Effect of Sodium Chloride on Photosynthetic Pigments and Photosynthetic Characteristics of Avicennia officinalis Seedlings – Recent Res. Sci. Technol. 3(4) –https://scienceflora.org/journals/index.php/rrst/article/view/665 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/effect-of-nacl-on-stomatal-conductance-in-avicennia/ )

Sarsag M., Ünal M. (2004) – The effects of Sultan 70 WG on stomatal function – Biotechnol. & Biotechnol. Eq. 18/2004/2: 104-111 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/herbicide-effects-on-stomatal-function/ )

Sarwar A. K. M. Golam, Karim M. A., Rana S. M. A. Masud (2013) – Influence of stomatal characteristics on yield and yield attributes of rice – J. Bangladesh Agril. Univ. 11(1): 47–52 – ISSN 1810-3030  – http://ageconsearch.umn.edu/bitstream/209746/2/18207-65562-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-and-rice-yield/ )

Sasaki T., Mori I. C., Furuichi T., Munemasa S., Toyooka K., Matsuoka K., et al. (2010) – Closing plant stomata requires a homolog of an aluminum-activated malate transporter. – Plant Cell Physiol. 51, 354–365. – doi: 10.1093/pcp/pcq016 –

 

Sato N. (1985) – Lipid biosynthesis in epidermal, guard and mesophyll cell protoplasts from leaves of Vicia faba L. – Plant Cell Physiol. 26: 805–811 – DOI: 10.1093/oxfordjournals.pcp.a076974 – https://link.springer.com/chapter/10.1007/978-1-4684-5263-1_100 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/epidermal-and-guard-cells-are-quite-different-in-ability-to-synthesize-long-chain-fatty-acids-in-stomata-of-broad-bean/ )

Sato H., Kumagai T. O., Takahashi A., Katul G. (2015) – Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO2-enriched climate conditions – J. Geophys. Res. Biogeosci. 120, 979–988. – doi: 10.1002/2014JG002838 – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1002/2014JG002838/full – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomatal-conductance-response-to-humidity/ )

Savchenko T., Kolla V. A., Wang C. Q., Nasafi Z., Hicks D. R., Phadungchob B., et al. (2014) – Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. – Plant Physiol. 164, 1151–1160. – 10.1104/pp.113.234310 – [PMC free article] [PubMed] [Cross Ref] – 

Sawinski K., Mersmann S., Robatzek S., Böhmer, M. (2013) – Guarding the green: pathways to stomatal immunity. – Mol. Plant Microbe Interact. 26, 626–632. – doi: 10.1094/Mpmi-12-12-0288-Cr –

 

Sayed S. A. (1997) – Effect of cadmium and kinetin on transpiration rate, stomatal opening and leaf relative water content in safflower plants – Journal of Islamic Academy of Sciences. 10(3): 73-80 – https://www.journalagent.com/ias/pdfs/IAS_10_3_73_80.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/20/cadmium-mediated-reduction-in-transpiration-rate-stomatal-opening-and-leaf-turgidity-are-reversed-by-kinetin/ )

Scarth G. W., Shaw M. (1951) – Stomatal Movement and Photosynthesis in Pelargonium. II. Effects of Water Deficit and of Chloroform: photosynthesis in guard cells – Plant Physiol. 26: 581-597 – https://www.jstor.org/stable/4258451?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/20/effect-of-water-deficit-and-chloroform-on-stomatal-movement/ )

Schaller J., Paschold P. J. (2009) – Stomata-characteristics and responses to soil drought indicating a cultivar specific drought stress susceptibility in asparagus – European Journal of Horticultural Science 74(4): 145-151 – http://0-search.ebscohost.com.catalog.library.colostate.edu/login.aspx?direct=true&AuthType=cookie,ip,url,cpid&custid=s4640792&db=lah&AN=20093259465&site=ehost-live – https://agwaterconservation.colostate.edu/library/stomata-characteristics-and-responses-to-soil-drought-indicating-a-cultivar-specific-drought-stress-susceptibility-in-asparagus/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-and-responses-to-soil-drought-in-asparagus/ )

Scheibe R., Rechmann U., Hedrich R., Raschke K. (1990) – Malate dehydrogenase in guard cells of Pisum sativum – Plant Physiol. 93: 1358-1364 – DOI: https://doi.org/10.1104/pp.93.4.1358 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062680/ – (On our blog : https://plantstomata.wordpress.com/2017/12/20/the-malate-requirement-for-stomatal-opening-in-the-light-malate-dehydrogenase-in-guard-cells/ )

Schellenberg B., Ramel C., Dudler R. (2010) – Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition – Mol. Plant Microbe Interact. 23: 1287–1293 –  doi: 10.1094/MPMI-04-10-0094. – https://www.ncbi.nlm.nih.gov/pubmed/20831408 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/inhibition-of-stomatal-immunity-by-syringolin-a/ )

Scherzer S., Maierhofer T., Al-Rasheid K. A. S., Geiger D., Hedrich, R. (2012) – Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. – Mol. Plant 5, 1409–1412. – doi: 10.1093/mp/sss084 –

Schletz R. (2008) – Stomata Densities of Developing and Mature Leaves of Geraniums – ESSAI: Vol. 6, Article 42. – http://dc.cod.edu/essai/vol6/iss1/42 – https://dc.cod.edu/cgi/viewcontent.cgi?article=1084&context=essai – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomata-densities-of-developing-and-mature-leaves/ )

Schlüter U.Muschak M.Berger D.Altmann T. (2003) – Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes – J Exp Bot 54867874 – CrossRefPubMedGoogle Scholar

 

Schnabl V., Ziegler H. (1977) – The mechanism of stomatal movement in Allium cepa L. – Planta 136: 37-43 – doi: 10.1007/BF00387922. –https://www.ncbi.nlm.nih.gov/pubmed/24420224 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/starch-and-the-mechanism-of-stomatal-movement/ )

Schoch P. G., Zinsou C., Sibi M. (1980) – Dependence of the stomatal index on environmental-factors during stomatal differentiation in leaves of vigna-sinensis l.1. effect of light-intensity. – J. Exp. Bot. 31, 1211–1216.-  doi:10.1093/jxb/31.5.1211 – https://academic.oup.com/jxb/article-abstract/31/5/1211/454079?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/01/dependence-of-the-stomatal-index-on-environmental-factors/ )

 

Schroeder J. I. (1988) – K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells – J. Gen. Physiol. 92: 667–683 – DOI: 10.1085/jgp.92.5.667 –PubMed – https://www.ncbi.nlm.nih.gov/pubmed/3235976 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/a-prominent-role-for-ikin-and-ikout-channels-in-k-transport-across-the-plasma-membrane-of-guard-cells-in-stomata-of-vicia/ )

Schroeder  J. I. (1992) – Plasma membrane ion channel regulation during abscisic acid-induced closing of stomata – Philos. Trans. R. Soc. Lond. 338: 83-89 – DOI: 10.1098/rstb.1992.0131 – http://rstb.royalsocietypublishing.org/content/338/1283/83 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/plasma-membrane-ion-channel-regulation-and-stomatal-closure/ )

Schroeder  J. I. (2003) – Knockout of the guard cell Kout channel and stomatal movements – PNAS 100(9): 4976–4977 – doi/10.1073/pnas.1031801100 – http://www.pnas.org/content/100/9/4976.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/kout-channels-function-in-mediating-stomatal-closing-and-turgor-reduction-in-plant-cells/ )

Schroeder J. I., Allen G. J., Hugouvieux V., Kwak,J. M., Waner D. (2001) – Guard cell signal transduction. – Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 627–658. – doi: 10.1146/annurev.arplant.52.1.627 –

 

Schroeder  J. I., Hagiwara S. (1989) – Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells – Nature 338, 427–443. – doi: 10.1038/338427a0 – CrossRef Full Text, – CrossRefWeb of ScienceGoogle Scholar – https://www.nature.com/articles/338427a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/ca2-dependent-regulation-of-stomatal-movements/ )

Schroeder J. I., Hagiwara S. (1990) – Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels – Proc. Natl. Acad. Sci. U.S.A. 87: 9305–9309.  – doi: 10.1073/pnas.87.23.9305 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – http://www.pnas.org/content/87/23/9305.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/aba-activation-of-ca2-permeable-ion-channels-in-the-plasma-membrane-of-guard-cells/ )

Schroeder J. I., Hedrich R., Fernandez J. M. (1984) – Potassium-selective single channels in guard cell protoplasts of Vicia faba. – Nature 312, 361–362. – doi: 10.1038/312361a0 –

 

Schroeder J. I., Keller B. U. (1992) – 2 types of anion channel currents in guard-cells with distinct voltage regulation. – Proc. Natl. Acad. Sci. U.S.A. 89, 5025–5029. –

Schroeder J. I., Kwak J. M., Allen G. J. (2001) – Guard cell abscisic acid signaling and engineering drought hardiness in plants – Nature 410: 327–330. – doi: 10.1038/35066500 –PubMed Abstract | CrossRef Full Text | Google ScholarMedline, – http://www.nature.com/nature/journal/v410/n6826/full/410327a0.html – ( https://plantstomata.wordpress.com/2017/01/25/engineering-stomatal-responses-to-control-co2-intake-and-plant-water-loss/ )

Schroeder J. I., Munemasa S., Hauser F., Hu H., Kim T.-H., Brandt B., Nishimura N., Israelsson-Nordstrom M., Boisson-Dernier A., Brodsky D. (2012) – Guard cell CO2 and abscisic acid signal transduction network – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomata-co2-and-aba-signal-transduction-network/ )

 

Schroeder J. I., Raschke K., Neher E. (1987) – Voltage dependence of K+ channels in guard cell protoplasts – Proceedings of the National Academy of Sciences, USA1987;84:4108-4112 –http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Voltage-dependence-of-K–channels-in-guard-cell-protoplasts.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/voltage-dependence-of-k-channels-in-guard-cell-protoplasts/ )

Schuler M. L.Sedelnikova O. V.Walker B. J.Westhoff P.Langdale J. A. (2018) – SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency – 

Schulz-Lessdorf B., Lohse G., Hedrich R. (1996) – GCAC1 recognizes the pH gradient across the plasma membrane: a pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism – The Plant J. 10: 993-1004 – DOI: 10.1046/j.1365-313X.1996.10060993.x –http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1996.10060993.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/21/gcac1-is-strongly-modulated-by-atp-and-protons-this-channel-is-capable-of-sensing-changes-in-the-energy-status-acid-metabolism-and-the-h-atpase-activity-of-guard-cells/ )

Schulze D. E., Hall A. E. (1982) – Stomatal responses, water loss and CO2assimilation rates of plant. In O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler (eds.), Physiological Plant Ecology, II Encyclopedia of Plant Physiology, 12B, Springer Verlag, Berlin, pp. 181-230.

Schulze E. D.Kelliher F. M.Korner C.Lloyd J.Leuning R. (1994) – Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. – Annu. Rev. Ecol. Syst. 25: 629660 – DOI: 10.1146/annurev.es.25.110194.003213 –ISIArticle –https://www.jstor.org/stable/2097327?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/21/maximum-stomatal-conductance-ecosystem-surface-conductance-carbon-assimilation-rate-and-plant-nitrogen-nutrition/ )

Schulze E. D., Lange O. L., Evenari M., Kappen L., Buschbom U. (1973) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance – Oecologia (Berl.) 17 : 159-170 – DOI: 10.1007/BF00345424 – DOI: 10.1007/BF00346278 – https://link.springer.com/article/10.1007/BF00346278 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/the-role-of-air-humidity-and-leaf-temperature-in-controlling-stomatal-resistance-under-desert-conditions/ )

Schulze E. D., Lange O. L., Kappen L., Buschbom U., Evenari M. (1973) – Stomatal response to changes in temperature at increasing water stress – Planta 110: 29–42 – doi: 10.1007/BF00386920 – https://link.springer.com/article/10.1007/BF00386920 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/stomatal-response-to-changes-in-temperature-at-increasing-water-stress/ )

Schulze E. D., Lange O. L., Kappen L., Evenari M., Buschbom U. (1975) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. – Oecologia (Berl.) 18 : 219-233 – DOI: 10.1007/BF00345424 –https://www.ncbi.nlm.nih.gov/pubmed/28308679 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/controlling-stomatal-resistance-under-desert-conditions-significance-of-leaf-water-status-and-internal-co2-concentration/ )

Schürmann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora 147: 471-520 – https://ac.els-cdn.com/S036716151731981X/1-s2.0-S036716151731981X-main.pdf?_tid=12c86a7c-e736-11e7-b153-00000aab0f26&acdnat=1513960689_dff4a08cb2065fa088a5515db1fc3a5f – (On our blog : https://plantstomata.wordpress.com/2017/12/22/influence-of-water-and-light-on-the-development-of-stomata-initials-in-german/ )

Schwabe W. W. (1952) – Effects of photoperiodic treatment on stomatal movement – Nature (Lond.) 169: 1053-1054 – DOI: 10.1038/1691053a0 –https://www.nature.com/articles/1691053a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/the-effects-of-day-length-treatments-on-stomatal-movement/ )

Schwartz A. (1985) – Role of Ca and EGTA on Stomatal Movements in Commelina communis L. – Plant Physiol. 79: 1003–1005 –

Schwartz A.Ilan N.Assmann S. M. (1991) – Vanadate inhibition of stomatal opening in epidermal peels of Commelina communis – Planta 183: 590596 – DOI: 10.1007/BF00194281 – https://link.springer.com/article/10.1007/BF00194281#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/22/vanadate-inhibition-of-stomatal-opening/ )

Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. (1994) – Inhibition of inward K+channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. – Proc. Natl. Acad. Sci. U.S.A. 91, 4019–4023. -, [PMC free article] [PubMed] –

Schwartz A., Zeiger E. (1984) – Metabolic energy for stomatal opening-roles of photophosphorylation and oxidative-phosphorylation – Planta 161129136 – DOI: 10.1007/BF00395472 –  Google Scholar CrossRef PubMed  – https://link.springer.com/article/10.1007/BF00395472 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/photophosphorylation-and-oxidative-phosphorylation-for-stomatal-movements/ )

Schymanski S. J., Or D., Zwieniecki M. (2013) – Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations – PLoS ONE 8, e54231 – doi:10.1371/ journal.pone.0054231 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054231 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/65176/ )

Schymanski S. J., Singer T., Or D. (2017) – Linking stomata geometries and densities to leaf gas exchange – new opportunities and old pitfalls – Geophysical Research Abstracts 19, EGU2017-11526 – http://meetingorganizer.copernicus.org/EGU2017/EGU2017-11526.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/29/linking-stomata-geometries-and-densities-to-leaf-gas-exchange/ )

Scuffi D., Álvarez C., Laspina N., Gotor C., Lamattina L., Garcia-Mata C. (2014) – Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. – Plant Physiol. 166, 2065–2076. – doi: 10.1104/pp.114.245373 –

Seethaler S. (2006) – UCSD Study Reveals How Plants Respond to Elevated Carbon Dioxide – UCSD News – http://ucsdnews.ucsd.edu/archive/newsrel/science/sCO2plants.asp – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-plants-and-stomata-respond-to-elevated-carbon-dioxide/ )

 

Scuffi D., Lamattina L., Garcia-Mata C. (2016) – Gasotransmitters and Stomatal Closure: Is There Redundancy, Concerted Action, or Both? – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:277. – doi: 10.3389/fpls.2016.00277- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/gasotransmitters-and-stomatal-closure-2/ )

Scuffi D., Núñez Á., Laspina N., Gotor C., Lamattina L., Garcia-Mata C. (2014) – Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate ABA-dependent stomatal closure. – Plant Physiol. 245373, 114. – 10.1104/pp.114.245373- [PMC free article] [PubMed] [Cross Ref] – 

Segev R., Nannapaneni R., Sindurakar P., Kim H., Read H., Lijek S. (2015) – The Effect of the Stomatal Index on the Net Rate of Photosynthesis in the Leaves of Spinacia oleraceaVinca minorRhododendron sppEpipremnum aureum, and Hedera spp. –  Journal of Emerging Investigators 2018 – https://www.emerginginvestigators.org/articles/the-effect-of-the-stomatal-index-on-the-net-rate-of-photosynthesis-in-the-leaves-of-i-spinacia-oleracea-i-i-vinca-minor-i-i-rhododendron-spp-i-i-epipremnum-aureum-i-and-i-hedera-spp-i – (On our blog : https://plantstomata.wordpress.com/2018/01/23/correlation-between-stomatal-index-and-photosynthesis/ )

Sellin A. (2001) – Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. – Tree Physiology 21:879888 – DOI: 10.1093/treephys/21.12-13.879 – https://www.ncbi.nlm.nih.gov/pubmed/11498335 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/hydraulic-and-stomatal-adjustment-of-trees-to-environmental-stress/ )

Sen D. N., Harsha L. N. (1974) – Ecophysiological studies on stomatal regulation in Allium cepa L. and Asphodelus tenuifolius Cav. – Flora 163: 14-25 – DOI: 10.1016/S0367-2530(17)31074-5 – https://ac.els-cdn.com/S0367253017310745/1-s2.0-S0367253017310745-main.pdf?_tid=5548ae14-e7bf-11e7-8185-00000aab0f01&acdnat=1514019641_df39a1a59be5adad76dd9e986e7f1457 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/ecophysiological-studies-on-stomatal-regulation/ )

Serna L, Fenoli C. (2000) – Stomatal development in Arabidopsis: how to make a functional pattern – Trends in Plant Science  5: 458-460 –

Serrano E. E., Zeiger E., Hagiwara S. (1988) – Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts – Proceedings of the National Academy of Sciences, USA 85: 436–440 – PMCID: PMC279564 – http://www.pnas.org/content/85/2/436 – https://plantstomata.wordpress.com/2017/12/23/red-light-stimulates-an-electrogenic-proton-pump-in-guard-cells-and-guard-cell-chloroplasts-modulate-this-response/ )

Shackel K. A., Brinckmann E. (1984) – In situ measurement of epidermal cell turgor, leaf water potential and gas exchange in Tradescantia virginiana L. – Plant Physiology 78: 66–70 – DOI: https://doi.org/10.1104/pp.78.1.66 – http://www.plantphysiol.org/content/78/1/66 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/little-direct-relation-between-stomatal-humidity-response-and-epidermal-water-status/ )

Shackel K. A., Novello V., Sutter E.G. (1990) – Stomatal Function and Cuticular Conductance in Whole Tissue-cultured Apple Shoots – J. AMER. SOC HORT. SCI. 115(3):468-472. – http://journal.ashspublications.org/content/115/3/468.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cuticular-conductance/ )

Shahinnia F., Le Roy J., Laborde B., Sznajder B., Kalambettu P., Mahjourimajd S., Tilbrook J., Fleury D. (2016) – Genetic association of stomatal traits and yield in wheat grown in low rainfall environments – BMC Plant Biology 16:150 – DOI 10.1186/s12870-016-0838-9 – https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/s12870-016-0838-9?site=bmcplantbiol.biomedcentral.com – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-traits-and-yield-in-wheat-grown-in-low-rainfall-environments/ )

Shang Y., Dai C., Lee M. M., Kwak J. M., Nam K. H. (2015) – BRI1- Associated Receptor Kinase 1 regulates guard cell ABA signaling mediated by Open Stomata 1 in Arabidopsis. – Mol. Plant 9, 447–460. –

 

Shanmughavel P. (1995) – Effect of cement dust on stomata structure – Ecology, Environment and Conservation Paper 01(14): 7-9 –http://www.envirobiotechjournals.com/article_abstract.php?aid=2441&iid=84&jid=3 – (On our blog : https://plantstomata.wordpress.com/2017/11/28/effect-of-cement-dust-on-stomata/ )

Sharghi K. (2008) – Stanford researchers investigate how plants adapt to climate – Stanford Report, November 24, 2008 – https://news.stanford.edu/news/2008/december3/stomata-120308.html – (On our blog : https://plantstomata.wordpress.com/2018/01/24/development-of-stomata-can-be-altered-on-the-fly-to-better-enable-the-plant-to-cope-with-environmental-conditions/ )

Sharkey T. D., Raschke K. (1981) – Separation and measurement of direct and indirect effects of light on stomata – Plant Physiol. 68:33–40. – DOI: 10.2307/3670169 – https://www.jstor.org/stable/4266838?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/direct-and-indirect-effects-of-light-on-stomata/ )

Sharma G. K., Butler J. (1975) – Environmental pollution.  Leaf cuticular patterns in Trifolium repens L. – Ann. Bot. 39: 1087-1090 – DOI: 10.1093/oxfordjournals.aob.a085028 – https://www.jstor.org/stable/42756344?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/stomatal-size-density-and-environmental-pollution/ )

 Sharma S. S., Sen D. N. (1976) – Effect of different sugars on stomatal behaviour in Merremia aegyptia (L.) Urban and M. dissecta Hallier F. – Biol. Plant. 18: 81-87 – https://doi.org/10.1007/BF02923141 – https://link.springer.com/article/10.1007/BF02923141 – https://plantstomata.wordpress.com/2017/12/27/effect-of-different-sugars-on-stomatal-behaviour/ )

Sharpe P. J. H. (1973) – Adaxial and abaxial stomatal resistance of cotton in the field – Agron. J. 65: 570-574 – doi:10.2134/agronj1973.00021962006500040014x –https://dl.sciencesocieties.org/publications/aj/abstracts/65/4/AJ0650040570?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/26/65210/ )

Shaw M. (1954) – Chloroplasts in the stomata of Allium cepa L. – New Phytol. 53. 344-348 – DOI: 10.1111/j.1469-8137.1954.tb05244.xhttp://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1954.tb05244.x/asset/j.1469-8137.1954.tb05244.x.pdf?v=1&t=jbp4maps&s=983c0c7145ac87817841a5f2ae61221022301050 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/65220/ )

Shaw M. (1958) – The physiology of stomata II. The apparent absence of chlorophyll, photosynthesis, and a normal response to light in the stomatal cells of an albino barley – Canad. Jour. Bot. 36: 575-579 – https://doi.org/10.1139/b58-052 –http://www.nrcresearchpress.com/doi/abs/10.1139/b58-052?journalCode=cjb1 – https://plantstomata.wordpress.com/2017/12/27/normal-light-sensitive-stomatal-cells-contain-functional-chloroplasts/ )

She X.-P., Song, X.-G. (2008) – Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells. – J. Integr. Plant Biol. 50, 1539–1548. – doi: 10.1111/j.1744-7909.2008.00716.x –

 

Shen L., Sun P., Bonnell V. C., Edwards K. J., Hetherington A. M., McAinsh M. R., Roberts M. R. (2015) – Measuring stress signaling responses of stomata in isolated epidermis of graminaceous species. – Front. Plant Sci. 6:533. – doi: 10.3389/fpls.2015.00533 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stress-signaling-responses-of-stomata/ )

 

Sheriff D. W. (1984) – Epidermal transpiration and stomatal responses to humidity: some hypotheses explored. – Plant, Cell and Environment 7:669677 – DOI: 10.1111/1365-3040.ep11571796 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11571796/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/27/stomatal-responses-to-humidity-6/ )

Sheriff D. W., Kaye P. E. (1977) – Response of diffusive conductance to humidity in a drought avoiding and a drought resistant (in terms of stomatal response) legume – Ann. Bot. 41: 653-655 – https://doi.org/10.1093/oxfordjournals.aob.a085335 –https://academic.oup.com/aob/article-abstract/41/3/653/236398?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/27/response-of-diffusive-conductance-to-humidity/ )

Shi C., Qi C., Ren H. Y., Huang A. X., Hei S. M., She X. P. (2015) – Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis – The Plant Journal 82: 280–301 – DOI: 10.1111/tpj.12815 – CrossRef , CAS, –https://www.semanticscholar.org/paper/Ethylene-mediates-brassinosteroid-induced-stomatal-Shi-Qi/3e99dcbdf377e8475c93d2a74f9f601673bd54ea – (On our blog : https://plantstomata.wordpress.com/2017/12/27/ethylene-mediates-brassinosteroid-induced-stomatal-closure-2/ )

Shi K., Li X., Zhang H., Zhang G., Liu Y., Zhou Y., Xia X., Chen Z., Yu J. (2015) – Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato – New Phytologist 208(2):342-53. – doi: 10.1111/nph.13621 –https://www.ncbi.nlm.nih.gov/pubmed/26308648 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/the-signaling-pathway-for-elevated-co2-induced-stomatal-movement/ )

Shi W. L., Jia W. S., Liu X., Zhang S. Q. (2004) – Protein tyrosine phosphatases involved in signaling of the ABA-induced H2O2 generation in guard cells of Vicia faba L. – Chinese Sci. Bull. 49: 1841-1846 –

Shi W. L., Liu X., Jia W. S., Zhang S. Q. (2005) – Protein tyrosine phosphatases mediate the signaling pathway of stomatal closure of Vicia faba L. – J. Integr. Plant Biol. 47: 319-326 –

Shi Y. C., Fu Y. P., Liu W. Q. (2012) – NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate – Plant Physiology and Biochemistry 51: 26-30 – DOI10.1016/j.plaphy.2011.09.014 –https://www.infona.pl/resource/bwmeta1.element.elsevier-9d0315d5-6aa2-360b-8e5c-b0ef0593b56f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/dha-induced-h-2-o-2-generation-via-activation-of-nadph-oxidase-results-in-stomatal-closure/ )

Shimada T., Sugano S. S., Hara-Nishimura I. (2011) – Positive and negative peptide signals control stomatal density – Cellular and Molecular Life Sciences (2011) 68: 2081-2088 – DOI: 10.1007/s00018-011-0685-7 – https://link.springer.com/article/10.1007/s00018-011-0685-7 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/recent-research-progress-in-the-peptide-signaling-of-stomatal-development/)

Shimazaki K.-i. (xxxx) – Molecular Mechanism of Blue Light Response in Stomatal Guard Cells – Light Sensing in Plants (Phototropin): 185-192 – DOI10.1007/4-431-27092-2_21 – https://www.infona.pl/resource/bwmeta1.element.springer-ec0d1399-4b76-31e2-b985-39aece10e5c7 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/blue-light-response-in-stomatal-guard-cells/ )

Shimazaki K.-i. (1989) – Ribulosebisphosphate carboxylase activity and photosynthetic O2evolution rate in Vicia guard cell protoplasts – Plant Physiology 91: 459-463. – DOI: https://doi.org/10.1104/pp.91.2.459 – http://www.plantphysiol.org/content/91/2/459 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-guard-cells-fix-co2-photosynthetically/)

Shimazaki K., Doi M., Assmann S. M., Kinoshita T. (2007) – Light regulation of stomatal movement. – Annu. Rev. Plant Biol. 58, 219–247. – doi: 10.1146/annurev.arplant.57.032905.105434

 

Shimazaki K.-i., Goh C. H., Kinoshita T. (1999) – Involvement of intracellular CA2+ in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba – Physiol. Plant. 105: 554-561 – DOI: 10.1034/j.1399-3054.1999.105322.x – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1999.105322.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/a-stimulus-specific-ca2-signal-for-stomatal-opening/)

Shimazaki K., Iino M., Zeiger E. (1986) – Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. – Nature 319, 324–326. – doi: 10.1038/319324a0 –

 

Shimazaki K.-i., Kinoshita T., Nishimura M. (1992) – Involvement of Ca2+/calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping of guard cell protoplast from Vicia faba L. – Plant Physiology 99: 1416–1421 — DOI: 10.1104/pp.99.4.1416 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080641/ – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cam-and-ca2-cam-dependent-myosin-light-chain-kinase-are-the-components-of-the-signal-transduction-process-in-blue-light-dependent-proton-pumping-in-stomata/)

Shimazaki K.-i., Sugiyama N., Takemiya A. (2012) – Signaling in stomatal guard cells in response to blue light – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/signaling-in-stomatal-guard-cells-in-response-to-blue-light/ )

Shimazaki K.-i., Terada J., Tanaka K., Kondo N. (1989) – Calvin-Benson cycle enzymes in guard cell protoplasts from Vicia faba L. – Plant Physiol. 90: 1057-1064 – PMCID: PMC1061843 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061843/ –  (On our blog : https://plantstomata.wordpress.com/2017/12/31/calvin-benson-cycle-enzymes-in-guard-cell-protoplasts-of-stomata/)

Shimazaki K.-i., Zeiger E. (1985) – Cyclic and non-cyclic photophosphorylation in isolated guard cell chloroplasts from Vicia faba L. – Plant Physiol. 78: 211-214 – https://doi.org/10.1104/pp.78.2.211 – http://www.plantphysiol.org/content/78/2/211 – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cyclic-and-non-cyclic-photophosphorylation-in-isolated-guard-cell-chloroplasts-of-stomata/)

Shimoda S., Maruyama A. (2014) – Rice varietal differences in responses of stomatal gas exchange to supplemental nitrogen application – Photosynthetica 52(3,): 397-

Shimono H., Nakamura H., Hasegawa T., Okada M. (2013) – Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice – Glob. Change Biol. 19, 2444–2453. doi: 10.1111/gcb.12214 – PubMed Abstract | CrossRef Full Text | Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/gcb.12214/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/28/canopy-evapotranspiration-rate-leaf-stomatal-conductance-and-open-air-co2-elevation/ )

Shimshi D. (1963) – Effect of chemical closure of stomata on transpiration in varied soil and atmospheric environments – Plant Physiol. 38: 709-712 –http://www.plantphysiol.org/content/plantphysiol/38/6/709.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/28/effect-of-chemical-closure-of-stomata-on-transpiration/ )

Shimshi D. (1963) – Effect of soil moisture and phenylmercuric acetate upon stomatal aperture, transpiration, and photosynthesis – Plant Physiol. 38: 713-721 – PMCID: PMC550000 –http://www.plantphysiol.org/content/plantphysiol/38/6/713.full.pdf – (On our blog :  https://plantstomata.wordpress.com/2017/12/29/the-control-of-stomatal-opening-by-chemical-treatment/)

Shirakawa M., Ueda H., Nagano A. J., Shimada T., Kohchi T., HaraNishimura I. (2014) – FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis – Plant Cell 26: 4039-4052 – DOI: 10.1105/tpc.114.129874 – https://www.ncbi.nlm.nih.gov/pubmed/25304202 – (On our blog : https://plantstomata.wordpress.com/2017/12/29/a-common-regulatory-pathway-that-determines-two-distinct-cell-types-in-leaves-epidermal-guard-cells-stomata-and-inner-tissue-myrosin-cells/)

Shiv K., Ila P. (2014) – Stomatal analysis in Cassia occidentalis L. in response to automobile pollution along Roadsides in Meerut city, India – Int. Res. J. of Sci. & Engg., 2014; 2 (5):167-170.- http://oaji.net/articles/2014/731-1409862820.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/stomata-and-pollution/ )

Shope J. C., Peak D., Mott K. A. (2008) – Stomatal responses to humidity in isolated epidermes – Plant, Cell and Environment 31: 1290-1298 – DOI: 10.1111/j.1365-3040.2008.01844.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01844.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-responses-to-humidity-in-isolated-epidermes/)

Shpak E. D.McAbee J. M.Pillitteri L. J.Torii K. U. (2005) – Stomatal patterning and differentiation by synergistic interactions of receptor kinases. – Science 309290293. – Abstract/FREE Full TextGoogle Scholar – http://science.sciencemag.org/content/309/5732/290?ijkey=a061a0cdb1d934059dc68174286074f559286e5d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/04/06/patterning-and-differentiation-of-stomata-and-erecta-er-family-leucine-rich-repeat-receptor-like-kinases/)

Plant Signaling & Behavior 12(7) – http://dx.doi.org/10.1080/15592324.2017.1339858 – http://www.tandfonline.com/doi/abs/10.1080/15592324.2017.1339858 – https://plantstomata.wordpress.com/2017/10/28/the-pattern-of-cellulose-crystallinity-in-stomata-of-floating-plants-2/

Shtein I., Shelef Y., Marom Z., Zelinger E., Schwartz A., Popper Z. A., Bar-On B., Harpaz-Saad S. (2017) – Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups – Annals of Botany, 119(6): 1021-1033 – https://doi.org/10.1093/aob/mcw275 – https://www.botany.one/2017/05/stomatal-cell-wall-composition-distinct-structural-patterns-different-phylogenetic-groups/ – https://plantstomata.wordpress.com/2017/10/31/stomatal-cell-wall-composition-cell-wall-patterns-in-stomata-and-stomatal-wall-strengthening-function/ )

Shukla S. N., Gangopadhyaya S. (1981) – Stomatal index and size of stomatal opening of rice cultivars varying in reaction to bacterial leaf blight – Proc. Indian natn. Sci. Acad. B47 (4): 557-559 – 20005a0c_557.pdfhttps://www.researchgate.net/profile/Dr_Tresina…/20005a0c_557.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-and-size-of-stomatal-opening-in-reaction-to-bacterial-leaf-blight/ )

Sibbernsen E., Mott K. A. (2010) – Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells – Plant Physiol. 153:1435–1442. – doi: 10.1104/pp.110.157685. – Abstract/FREE Full Text – https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=%22Sibbernsen%20E%22%5Bau%5D&dispmax=50 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/a-vapor-phase-signal-between-the-mesophyll-and-stomata/ )

Siebke K., Weis E. (1995) – Assimilation images of leaves of Glechoma hederacea: Analysis of non‐synchronous stomata related oscillations – Planta 196: 155–165 – https://doi.org/10.1007/BF00193229 –https://link.springer.com/article/10.1007/BF00193229 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/non%E2%80%90synchronous-stomata-related-oscillations/)

Siegel R. S., Xue S., Murata Y., Yang Y., Nishimura N., Wang A., et al. (2009) – Calcium elevation-dependent and attenuated resting calcium- dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+channels in Arabidopsis guard cells. – Plant J. 59, 207–220. – doi: 10.1111/j.1365- 313X.2009.03872.x –

 

Sierla M.Waszczak C.Vahisalu T.Kangasjärvi J. (2016) – Reactive Oxygen Species in the Regulation of Stomatal Movements – Plant Physiology 

Silva E. C., Nogueira R. J., Vale F. H., Araújo F. P. D., Pimenta M. A.  (2009) – Stomatal changes induced by intermittent drought in four umbu tree genotypes – Brazilian Journal of Plant Physiology 21, 33–42. – CrossRef –  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202009000100005&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/04/13/drought-and-stomatal-responses-in-spondias-tuberosa-trees-umbu/ )

Silva H.Sagardia S.Ortiz M.Franck N.Opazo M.Quiroz M.Baginsky C.Tapia C. (2014) – Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L) Burm f. as a function of water availability – Revista Chilena de Historia Natural201487:13 – https://doi.org/10.1186/s40693-014-0013-3 –https://revchilhistnat.biomedcentral.com/articles/10.1186/s40693-014-0013-3 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/water-availability-and-stomatal-traits/ )

Simmons A. R., Bergmann D. C. (2016) – Transcriptional control of cell fate in the stomatal lineage – Curr Opin Plant Biol. 2016 Feb;29:1-8. – doi: 10.1016/j.pbi.2015.09.008. – PMID: 26550955 – http://www.sciencedirect.com/science/article/pii/S136952661500148X – (On our blog : https://plantstomata.wordpress.com/2017/12/28/transcriptional-control-of-cell-fate-in-the-stomatal-lineage/)

Singh J., Kant S. (2007) – Impact of coal mining on leaf morphology and stomatal index of plants in Kalakote Range, Rajouri (J&K), India – Nature Environment and Pollution Technology © Technoscience Publications 6(4): 715-718 –http://www.neptjournal.com/upload-images/NL-30-30-(30)comB-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/21/impact-of-coal-mining-on-leaf-morphology-and-stomatal-index/ )

Sirichandra C., Wasilewska A., Vlad F., Valon C., Leung J. (2009) – The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action – Journal of Experimental Botany 60(5): 1439–1463 – https://academic.oup.com/jxb/article/60/5/1439/481377 -https://doi.org/10.1093/jxb/ern340 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/an-emerging-signalling-complex-critical-for-modulating-the-stomatal-aperture-in-response-to-environmental-stimuli-2/ )

Skrodzki C. J. A. (2017) – Unexpected Environmental Conditions Suggest Paleozoic Plant Morphological Gas Conductance Models – http://hdl.handle.net/2104/9431 – https://baylor-ir.tdl.org/baylor-ir/handle/2104/9431 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63948 )

Slavik B. (1963) – The distribution pattern of transpiration rate, water saturation deficit, stomata number and size, photosynthetic and respiration rate in the area of the tobacco leaf blade – Biol. Plantarum 5: 143-153 – https://doi.org/10.1007/BF02933646 –https://link.springer.com/article/10.1007%2FBF02933646?LI=true#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomata-number-and-size-photosynthetic-and-respiration-rate-in-tobacco-leaf-blade/)

Slootweg G., van Meeteren U. (1991) – Transpiration and stomatal conductance of roses cv. Sonia grown with supplemental lighting – Acta Hort. 298: 119-125 – DOI:  10.17660/ActaHortic.1991.298.12 –http://www.actahort.org/books/298/298_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomatal-behavior-of-nl-plants-and-sl-plants/)

Small J., Maxwell K. M. (1939) – pH-phenomena in relation to stomatal opening. I. Coffea arabica and some other species – Protoplasma 32: 272-283 – https://doi.org/10.1007/BF01796986 –https://link.springer.com/article/10.1007/BF01796986#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/ph-phenomena-in-relation-to-stomatal-opening/)

Small J., Clarke M.I., Crosbie-Baird J. (1942) – pH-phenomena in relation to stomatal opening. II-V. – Proc. Roy. Soc. Edinburgh B 61(3): 233-266 – https://doi.org/10.1017/S0080455X00011565 –https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-b-biological-sciences/article/xixph-phenomena-in-relation-to-stomatal-opening-iiv/11924EE3219C49CB2098CED7E634DA7F – (On our blog : https://plantstomata.wordpress.com/2017/12/29/the-closing-of-stomatal-pores-both-with-too-little-and-with-too-much-illumination/)

Smart L. B., Cameron K. D., Bennett A. B. (2000) – Isolation of genes predominantly expressed in guard cell and epidermal cell of Nicotiana glauca – Plant Molecular Biology 42857–869 – https://doi.org/10.1023/A:1006480107407 –https://link.springer.com/article/10.1023/A:1006480107407#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/isolation-of-genes-predominantly-expressed-in-guard-cells-stomata/)

Smith B. (2016) – Does grass hold the secret to more efficient crops? – Cosmos News Biology July 5, 2016 – https://cosmosmagazine.com/biology/change-the-shape-of-plant-mouths-to-feed-the-world – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-in-grasses-share-underlying-genes-with-broad-leafed-plants-implications/ )

Smith S., Weyers J. D. B., Berry W. G. (1989) – Variation in stomatal characteristics over the lower surface of Commelina communis leaves. – Plant, Cell and Environment 12: 653–659 – DOI: 10.1111/j.1365-3040.1989.tb01234.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01234.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/29/variation-in-stomatal-characteristics/)

Smith W. K., Young D. R., Carter G. A., Hadley J. L., McNaughton G. M. (1984) – Autumn stomatal closure in six conifer species of the Central Rocky Mountains – Oecologia (Berlin) (1 984) 63 : 337-242  – http://library.wrds.uwyo.edu/wrp/84-23/84-23.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/03/seasonal-stomatal-closure/ )

Snaith P. J., Mansfield T. A. (1982) – Control of the CO2 responses of stomata by indol-3-ylacetic acid and abscisic acid – Journal of Experimental Botany 33: 360-365 –

Snaith P. J., Mansfield T. A. (1985) – Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm – J. Exp. Bot. 36: 937-944 – https://doi.org/10.1093/jxb/36.6.937 –https://academic.oup.com/jxb/article-abstract/36/6/937/603950?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/29/responses-of-stomata-to-iaa-and-fusicoccin/)

Sobahan M. A., Akter N., Okuma E., Uraji M., Ye W., Mori I. C., et al. (2015) – Allyl isothiocyanate induces stomatal closure in Vicia faba. – Biosci. Biotechnol. Biochem. 79, 1737–1742. –

Sokolovski S., Blatt M. R. (2004) – Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. – Plant Physiol. 136, 4275–4284. – doi: 10.1104/pp.104.050344 –

Sokolovski S., Hills A., Gay R., Garcia-Mata C., Lamattina L., Blatt, M. R. (2005) – Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. – Plant J. 43: 520–529. – doi: 10.1111/j.1365-313X.2005.02471.x –

Song X., She X., He J., Huang C., Song T. (2006) – Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. – Funct. Plant Biol. 33, 573–583 -; 10.1071/FP05232 – [Cross Ref] – 

 

Song X.-G., She X.-P., Wang J., Sun Y.-C. (2011) – Ethylene inhibits darkness- induced stomatal closure by scavenging nitric oxide in guard cells of Vicia faba. – Funct. Plant Biol. 38, 767–777. – doi: 10.1071/FP11055 –

Song X. G., She X. P., Yue M., Liu Y. E., Wang Y. X., Zhu X., et al. (2014) – Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba. – Russ. J. Plant Physiol. 61, 390–396 – 10.1134/S1021443714020150 – [Cross Ref] – 

 

Song Y., Miao Y., Song C. P. (2014) – Behind the scenes: the roles of reactive oxygen species in guard cells. – New Phytol. 201, 1121–1140. – doi: 10.1111/nph.12565 –

 

Song Y., Xiang F.,  Zhang G. Miao Y., Miao C., Song C.-P.  (2016) – Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:181. doi: 10.3389/fpls.2016.00181 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/aba-stomatal-aperture-and-senescence/ )

Sosa-Flores V. P., Ramírez-Godina F., Benavides-Mendoza A., Ramírez H. (2014) – Study of morphological and histological changes in melon plants grown from seeds irradiated with UV-B – Journal of Applied Horticulture 16(3): 199-204 –http://horticultureresearch.net/journal_pdf/melon.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-frequency-stomatal-index-length-and-width-of-stomata-in-melon-plants-grown-from-seeds-irradiated-with-uv-b/ )

Spence R. D. (1987) – The problem of variability in stomatal responses, particularly aperture variance, to environmental and experimental conditions – New Physiol. 107(2): 303 – 315. – DOI: 10.1111/j.1469-8137.1987.tb00182.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1987.tb00182.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-aperture-as-a-characteristic-response-to-environmental-and-experimental-conditions/ )

Spence R. D., Sharpe P. J. H., Powell R. D., Wu H. (1984) – Response of guard cells to temperature at different concentrations of carbon dioxide in Vicia faba L. – New Phytol. 97, 129–144. – doi: 10.1111/j.1469-8137.1984. tb04117.x –

Sperry J. S., Venturas M. D., Anderegg W. R. I., Mencuccini M., Mackay D. S., Wang Y., Love D. M. (2016) – Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost – Plant, Cell and Environment – DOI: 10.1111/pce.12852 – Accepted, unedited articles published online – http://onlinelibrary.wiley.com/doi/10.1111/pce.12852/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/21/the-optimization-of-photosynthetic-gain-and-hydraulic-cost-to-predict-stomatal-responses/ )

 

Srivastava N., Gonugunta V., Puli M., Raghavendra, A. (2009) – Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. – Planta 229, 757–765. – doi: 10.1007/s00425-008-0855-5 –

Stadler R., Buttner M., Ache P., Hedrich R., Ivashikina N., Melzer M., et al. (2003) – Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. – Plant Physiol. 133, 528–537. – 10.1104/pp.103.024240 – [PMC free article] [PubMed] [Cross Ref] – 

Stevens R. A., Martin E. S. (1977) – New structure associated with stomatal complex of the fern Polypodium vulgare – Nature 265: 331–334 – doi:10.1038/265331a0 – https://www.nature.com/articles/265331a0 – (On our blog : https://plantstomata.wordpress.com/2018/01/13/new-structures-in-the-stomatal-complex-the-site-of-potassium-accumulation/ )

Street I. (2017) – Guard Cells Tolerating Heat – The Quiet Branches blog April 18, 2017 – https://thequietbranches.com/2017/04/18/guard-cells-tolerating-heat/ – (On our blog : https://plantstomata.wordpress.com/2018/01/19/65858/ )

 

Strobel D. W., Sundberg M. D. (1983) – Stomatal density in leaves of various xerophytes–a preliminary study – Journal of the Minnesota Academy of Science 49(2): 7-9 – ISSN : 0026-539X – http://mnmas.org/sites/default/files/198384V49N2_Strobel.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-density-in-various-xerophytes/ )

Suetsugu N., Takami T., Ebisu Y., Watanabe H., Iiboshi C., Doi M., Shimazaki K-i. (2014) – Guard Cell Chloroplasts Are Essential for Blue Light-Dependent Stomatal Opening in Arabidopsis – PLoS ONE9(9): e108374. – https://doi.org/10.1371/journal.pone.0108374 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108374 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-chloroplasts-provide-atp-and-or-reducing-equivalents-that-fuel-bl-dependent-stomatal-opening/ )

Sugano S. S.Shimada T.Imai Y.Okawa K.Tamai A.Mori M.Hara-Nishimura I. (2010) – Stomagen positively regulates stomatal density in Arabidopsis. – Nature 463241244. – CrossRefPubMedGoogle Scholar – http://www.nature.com/nature/journal/v463/n7278/full/nature08682.html – (On our blog : https://plantstomata.wordpress.com/2015/10/18/stomagen-and-stomatal-density/)

Suh S. J., Wang Y. F., Frelet A., Leonhardt N., Klein M., Forestier C., et al. (2007) – The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. – J. Biol. Chem. 282, 1916–1924. – doi: 10.1074/jbc.M6079 26200 –

 

Suhita D., Raghavendra A. S., Kwak J. M., Vavasseur A. (2004) – Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. – Plant Physiol. 134: 1536– 1545. – doi: 10.1104/pp.103.032250 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS –http://www.plantphysiol.org/content/134/4/1536.full.pdf – (https://plantstomata.wordpress.com/2016/12/27/cytoplasmic-alkalization-and-ros-production-during-mj-or-aba-signal-transduction-in-stomata/ )

Sun L. R., Hao F. S., Lu B. S., Ma L. Y. (2010) – AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. – Plant Signal. Behav. 5, 1022–1024. – doi: 10.4161/psb.5.8.12293 –

 

Sun W., Maseyk K., Lett C., Seibt U. (2018 ?) – Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh – Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-431, in review, 2017 – https://www.biogeosciences-discuss.net/bg-2017-431/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-control-of-leaf-fluxes-of-cos-and-co2/ )

Sun X., Kang X., Ni M. (2012) – Hypersensitive to red and blue 1 and its modification by protein phosphatase 7 are implicated in the control of Arabidopsis stomatal aperture. – PLoS Genet. 8: e1002674. – doi: 10.1371/journal.pgen.1002674 –

Sun Z., Jin X., Albert R., Assmann S. M. (2014) – Multi-level modeling of light-induced stomatal opening offers new insights into its regulation by drought. – PLoS Comp. Biol. PLOS Computational Biology 12(11): e1005181 – https://doi.org/10.1371/journal.pcbi.1005181 – PMC free article] [PubMed] [Cross Ref] – http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003930 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/light-induced-stomatal-opening-and-regulation-by-drought/ )

 

Suresh R., Foy C. D., Weidner J. R., (2008) – Effects of excess soil manganese on stomatal function in two soybean cultivars – Journal of Plant Nutrition 10(7): 749-760 – https://doi.org/10.1080/01904168709363606 –http://www.tandfonline.com/doi/pdf/10.1080/01904168709363606 – (On our blog : https://plantstomata.wordpress.com/2017/11/25/mn-toxicity-closed-stomata/ )

Sussmilch F. C., Brodribb T. J., McAdam S. A. (2017) – Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required – Journal of Experimental Botany – doi:10.1093/jxb/erx124 – http://www.brodribblab.org.au/wp-content/uploads/%20%202017/05/Up-regulation-of-NCED3-and-ABA-biosynthesis-occur-within-minutes-of-a-decrease-in-leaf-turgor-but-AHK1-is-not-required.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/decreased-leaf-turgor-triggers-de-novo-aba-biosynthesis-within-the-time-frame-of-the-stomatal-response-to-vpd/ )

Sussmilch F. C., McAdam S. A. (2017) – Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity – Plants 6(4): 54 – doi:10.3390/plants6040054 – the Special Issue Plant Adaptation to Climate Change)http://www.mdpi.com/2223-7747/6/4/54 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/aba-stomata-and-mechanisms-for-conserving-water-under-low-humidity/ )

Swift H. M. (1932) – Behavior of stomata – OREGON STATE AGRICULTURAL COLLEGE MSc Thesis – SwiftHarveyM1932.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/10/behavior-of-stomata-3/ )

Szyroki A., Ivashikina N., Dietrich P., Roelfsema M. R., Ache P., Reintanz B., et al. (2001) -KAT1 is not essential for stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 98, 2917–2921. – doi: 10.1073/pnas.051616698 –

 

Taiz L., Zeiger E. (1998) – Plant Physiology, 2nd Edn. Sunderland, MA: Sinauer Associates.

 

Taiz L., Zeiger E., Moeller I. M., Murphy A. (2015) – Plant Physiology and Development, Sixth Edition – Topic 10.4 – Phytochrome-mediated Responses in Stomata – http://6e.plantphys.net/index.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/phytochrome-mediated-responses-in-stomata/ )

Takahashi Y., Ebisu Y., Kinoshita T., Doi M., Okuma E., Murata Y., et al. (2013) – bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. – Sci. Signal. 6, ra48. – doi: 10.1126/scisignal.2003760 –

Takahashi Y., Kinoshita T., Shimazaki K. I. (2007) – Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA. – Plant Cell Physiol. 48, 1182–1191. – doi: 10.1093/pcp/pcm093 –

 

Takemiya A., Shimazaki K. (2010) – Phosphatidic acid inhibits blue light- induced stomatal opening via inhibition of protein phosphatase. – Plant Physiol. 153, 1555–1562. –

Takemiya A., Sugiyama N., Fujimoto H., Tsutsumi T., Yamauchi S., Hiyama A., Tada Y., Christie J. M., Shimazaki, K. (2013) – Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. – Nat Commun 4: 2094 –

Takemiya A., Yamauchi S., Yano,T., Ariyoshi C., Shimazaki K. (2013) – Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. – Plant Cell Physiol. 54: 24–35. – doi: 10.1093/pcp/pcs073 –

 

Takuya F., Tatsumi H., Sokabe M. (2008) – Mechano-sensitive channels regulate the stomatal aperture in Vicia faba – Biochemical and Biophysical Research Communications 366: 758–762 – Mechano-sensitive_channels_regulate_the.pdf –  (On our blog : https://plantstomata.wordpress.com/2017/12/14/mechano-sensitive-channels-regulate-the-stomatal-aperture/ )

Talbott L. D. (2006) – The Blue–Green Reversibility of the Blue-Light Response of Stomata – Plant Physiology and Development, Sixth Edition (Eds. Taiz L., Zeiger E., Moeller I. M., Murphy A.,© 2015 Sinauer Associates) – http://6e.plantphys.net/essay10.04.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/blue-light-response-of-stomata/ )

Talbott L. D., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88, 887–895. – 10.1104/pp.88.3.887 – [PMC free article] [PubMed] [Cross Ref] – 

Talbott L. D., Zeiger, E. (1993) – Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light. – Plant Physiol. 102: 1163–1169 –

Talbott L. D., Zeiger E. (1996) – Central roles for potassium and sucrose in guard-cell osmoregulation. – Plant Physiol. 111: 1051–1057 –

Talbott L. D., Zeiger E. (1998) – The role of sucrose in guard cell osmoregulation. – J. Exp. Bot. 49, 329–337. – doi: 10.1093/jexbot/49.suppl_1.329 –

Tallman G. (2004) – Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? – J. Exp. Bot. 55, 1963–1976. – 10.1093/jxb/erh212 –  [PubMed] [Cross Ref] – 

Tallman G. (2006) – Guard cell protoplasts: isolation, culture, and regeneration of plants. – Methods Mol. Biol. 318: 233–252. – doi: 10.1385/1-59259-959-1:233 – In : Plant Cell Culture Protocols – http://www.springerprotocols.com/Abstract/doi/10.1385/1-59259-959-1:233 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-culture-of-guard-cell-protoplasts/ )

 

Tallman G., Zeiger E. (1988) – Light quality and osmoregulation in Vicia guard cells: evidence for involvement of three metabolic pathways. – Plant Physiol. 88: 887–895. – doi: 10.1104/pp.88.3.887 –

Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2005) – Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. -; Plant Physiol. 138, 2337–2343.- 10.1104/pp.105.063503 – [PMC free article] [PubMed] [Cross Ref] – 

Tanaka Y., Sugano S. S., Shimada T., Hara-Nishimura I. (2013) – Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis – New Phytol, 198: 757–764. doi:10.1111/nph.12186 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12186/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/increased-stomatal-density-enhanced-leaf-photosynthetic-capacity-by-modulating-gas-diffusion/

 

Tanaka Y., Fujii K., Shiraiwa T. (2010) – Variability of Leaf Morphology and Stomatal Conductance in Soybean [Glycine max (L.) Merr.] Cultivars – Crop Science – 50(6): 2525-2532 – doi:10.2135/cropsci2010.02.0058 –https://dl.sciencesocieties.org/publications/cs/abstracts/50/6/2525 – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomatal-conductance-in-soybean-glycine-max/ )

Tang Y., Liang N. (2000) – Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes – Tree Physiology 20: 969–976 – https://www.ncbi.nlm.nih.gov/pubmed/11303572 – (On our blog : https://plantstomata.wordpress.com/2018/01/11/photosynthetic-induction-response-with-stomata-barely-responding-to-light-changes/ )

Tardieu F. (2016) – Too many partners in root–shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control? – New Phytologist Volume 212, Issue 4, December 2016, 802–804 – DOI: 10.1111/nph.14292 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14292/abstract . This article is a Commentary on Visentin et al.212: 954–963. – (On our blog : https://plantstomata.wordpress.com/2016/11/09/hydraulics-and-stomatal-control/ )

Tátrai Z. A., Sanoubar R., Pluhár Z., Mancarella S., Orsini F., Gianquinto G. (2015) – Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus – International Journal of Agronomy
2016 – ID 4165750, 8 pp. – http://dx.doi.org/10.1155/2016/4165750 –https://www.hindawi.com/journals/ija/2016/4165750/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63995 )

Taylor S. H., Franks P. J., Hulme S. P., Spriggs E., Christin P. A., Edwards E. J., Woodward F. I., Osborne C. P. (2012) – Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. – New Phytologist, 193(2), 387-396 – DOI: 10.1111/j.1469-8137.2011.03935.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03935.x/abstract – (On our blog :  https://wordpress.com/post/plantstomata.wordpress.com/65932 )

Tena G. (2015) – Stomatal development: Securing a lineage – Dev. Cell 33 , 136-149 –http://www.nature.com/articles/nplants201571 – (https://plantstomata.wordpress.com/2016/12/16/a-lineage-in-stomatal-development/ )

Thimann K. V., Satler S. (1979) – Relation between senescence and stomatal opening: senescence in darkness. – Proc. Natl. Acad. Sci. U.S.A. 76, 2770–2773. – doi: 10.1073/pnas.76.6.2770 –

Thimann K. V., Satler S. O. (1979) – Relation between leaf senescence and stomatal closure: senescence in light. – Proc. Natl. Acad. Sci. U.S.A. 76, 2295–2298. – doi: 10.1073/pnas.76.5.2295 –

Thomas D. S., Eamus D., Bell D. (1999) – Optimization theory of stomatal behaviour. II. Stomatal responses of several tree species of north Australia to changes in light, soil and atmospheric water content and temperature. – J. Exp. Bot. 50: 393–400 –

Thor K., Peiter, E. (2014) – Cytosolic calcium signals elicited by the pathogen- associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. – New Phytol. 204, 873–881. –

 

Tian M., Yu G., He N., Hou J. ( 2016) – Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors – Scientific Reports 6, Article number: 19703 (2016) – doi:10.1038/srep19703 –https://www.nature.com/articles/srep19703 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-traits-from-tropical-to-temperate-coniferous-forests/ )

Tian W., Hou C., Ren Z., Pan Y., Jia J., Zhang H., et al. (2015) – A molecular pathway for CO2 response in Arabidopsis guard cells. – Nat. Commun. 6:6057. – 10.1038/ncomms7057 – [PubMed] [Cross Ref] – https://www.nature.com/articles/ncomms7057 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/co2-response-in-guard-cells-stomata/ )

Tichá I., Radochová B., Kadleček P. (1999) – Stomatal Morphology during Acclimatization of Tobacco Plantlets to ex vitro Conditions – Biologia Plantarum 42(3): 469-474 – DOI10.1023/A:1002450210939 –https://www.infona.pl/resource/bwmeta1.element.springer-8c213c62-bf32-37bd-9448-939744b5cf2e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/stomatal-morphology-during-acclimatization/ )

Ting I. P.Loomis W. E. (1963) – Diffusion through stomates. Am. J. Bot. 50866872. – CrossRefWeb of ScienceGoogle Scholar

Tingey D. T., Hogsett W. E. (1985) – Water-stress reduces ozone injury via a stomata1 mechanism – Environmental Pollution 77: 944-947 –

Tinoco-Ojanguren C., Pearcy R. W. (1992) – Dynamics of stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory Piper species acclimated to high and low light. – Oecologia 92:222–228 –

Tinoco-Ojanguren C., Pearcy R. W. (1993) – Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. II. Stomatal versus biochemical limitations during photosynthetic induction. – Oecologia 94: 395–402 –

Tognetti R. (1997) – Stomatal numbers in holm oak (Quercus ilex L.) leaves grown in naturally and artificially CO 2 -enriched environments – https://www.academia.edu/30721351/Stomatal_numbers_in_holm_oak_Quercus_ilex_L._leaves_grown_in_naturally_and_artificially_CO_2_-enriched_environments – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-numbers-in-different-environment/ )

Torii K. U. (2012) – Cell-cell-communication and stomatal patterning – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/stomatal-patterning-and-differentiation/ )

Torii K. U. (2015) – Stomatal differentiation: the beginning and the end. – Curr. Opin. Plant Biol. 28, 16–22. – doi: 10.1016/j.pbi.2015.08.005 –

 

Torii Lab (2012) – Research – Stomatal development – http://faculty.washington.edu/ktorii/stomata.html – (On our blog : https://plantstomata.wordpress.com/2017/11/08/stomatal-development-torii-lab/ )

Torre S., Fjeld T., Gislerod H. R., Moe R. (2003) – Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity – J. Amer. Hort. Sci. 128(4): 598-602 – http://journal.ashspublications.org/content/128/4/598.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/65132/ )

Trafton A. (2017) – Sensors applied to plant leaves warn of water shortage – http://news.mit.edu/2017/sensors-applied-plant-leaves-warn-water-shortage-1108 – (On our blog : https://plantstomata.wordpress.com/2017/11/08/monitoring-stomatal-movements-continuously/ )

Tseng T.-S., Whippo C., Hangarter R. P., Briggs, W. R. (2012) – The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. – Plant Cell 24, 1114–1126. – doi: 10.1105/tpc.111.092130 –

Tucker S. C. (1974) – Dedifferentiated Guard Cells in Magnoliaceous Leaves – Science 185(4149): 445-447 – DOI: 10.1126/science.185.4149.445 – http://science.sciencemag.org/content/185/4149/445 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/division-of-guard-cells-is-particularly-unusual-stomata-in-magnoliaceous-taxa/ )

 

Turrell F. M. (1947) – Citrus leaf stomata, structure, composition, and pore size in relation to penetration of liquids – Bot. Gaz. 108: 476-483 –http://www.journals.uchicago.edu/doi/abs/10.1086/335435 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64420 )

TutorVista (2010) – Video: Structure And Working Of Stomata – https://www.youtube.com/watch?v=IlmgFYmbAUg – (On our blog : https://plantstomata.wordpress.com/2017/11/10/video-on-stomata/ )

Tyutereva E. , Dmitrieva V. , Shavarda A., Voitsekhovskaja O. (2017) – Stomata control is changed in chlorophyll b-free barley mutant – Functional Plant Biology (Accepted article) – http://www.publish.csiro.au/FP/justaccepted/FP17056 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-chlorophyll-b-free-barley-mutant-and-its-stomata/)

Uddling J., Hogg A. J., Teclaw R. M., Mary Anne Carroll M. A., Ellsworth D. S. (2010) – Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment – Environmental Pollution 158: 2023–2031 –Stomatal_uptake_of_O3_in_aspen_and_aspen.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-uptake-of-o3/ )

Ueno K., Kinoshita T., Inoue S., Emi T., Shimazaki K. (2005) – Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. – Plant Cell Physiol. 46, 955–963. – doi: 10.1093/pcp/pci104 –

 

Uraji M., Katagiri T., Okuma E., Ye W., Hossain M. A., Masuda C., et al. (2012) – Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. – Plant Physiol. 159, 450–460. – doi: 10.1104/pp.112. 195578 –

Urban J., Ingwers M. W., McGuire M. A., Teskey R. O. (2017) – Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra – Journal of Experimental Botany 68(7): 1757–1767 – doi:10.1093/jxb/erx052 – https://www.ncbi.nlm.nih.gov/pubmed/28338959 – (On our blog : https://plantstomata.wordpress.com/2018/01/12/higher-leaf-temperature-opens-stomata-and-decouples-net-photosynthesis-from-stomatal-conductance/ )

 

Vahisalu T., Kollist H., Wang Y. F., Nishimura N., Chan W. Y., Valerio G., et al. (2008) – SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. – Nature 452, 487–491. -doi: 10.1093/jxb/erx052. –

Van De Water P. K. (2016) – Pinus monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems – American Geophysical Union, Fall General Assembly 2016, abstract id. PP51A-2292 – http://adsabs.harvard.edu/abs/2016AGUFMPP51A2292V – (On our blog : https://plantstomata.wordpress.com/2018/02/05/changes-in-needle-cell-size-and-stomata-over-the-past-100-years-of-rising-co2/ )

Vahisalu T., Puzorjova I., Brosche, M., Valk, E., Lepiku, M., Moldau, H., et al. (2010) – Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. – Plant J. 62, 442–453. –

Van Hoof T. B., Kürschner W. M., Wagner F., Visscher H. (2006) – Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase – Plant Ecol 183: 237 – https://doi.org/10.1007/s11258-005-9021-3 – https://link.springer.com/article/10.1007/s11258-005-9021-3 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-response-to-the-anthropogenic-atmospheric-co2-increase/ )

Van Houtte H., Vandesteene L., Lopez-Galvis L., Lemmens L., Kissel E., Carpentier S., et al. (2013) – Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. – Plant Physiol. 161, 1158–1171. – doi: 10.1104/pp.112.211391 –

 

Vani T., Raghavendra A. S. (1989) – Tetrazolium Reduction by Guard Cells in Abaxial Epidermis of Vicia faba: Blue Light Stimulation of a Plasmalemma Redox System – Plant Physiol. (1989) 90, 59-62 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061677/pdf/plntphys00640-0069.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/21/an-nadh-dependent-flavin-mediated-electron-transport-system-operates-in-the-plasmalemma-of-stomata/ )

Van Ieperen W. (2012) – Plant morphological and developmental responses to light quality in a horticultural context – Acta Hortic. 956: 131-139 – DOI: 10.17660/ActaHortic.2012.956.12 – https://doi.org/10.17660/ActaHortic.2012.956.12 –http://www.actahort.org/books/956/956_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/11/21/light-quality-in-horticulture-and-stomatal-behavior/ )

Vatén A., Bergmann D. C. (2012) – Mechanisms of stomatal development: an evolutionary view – Evodevo 3(1):11. – DOI10.1186/2041-9139-3-11 – PMID: 22691547 – http://evodevojournal.biomedcentral.com/articles/10.1186/2041-9139-3-11 – (On our blog : https://plantstomata.wordpress.com/2017/01/21/stomatal-developmental-pathways-at-morphological-and-molecular-levels/ )

Vauzia S., Chairul M., Auzar S. (2016) – Stomata characteristics and chlorophyll content in two plant species regenerating with sprout and seeds after burning at Peat Swamp Forest in Batang Alin-Indonesia – Journal of Chemical and Pharmaceutical Research  8(1): 356-361 – ISSN : 0975-7384  – http://www.jocpr.com/articles/stomata-characteristics-and-chlorophyll-content-in-two-plant-speciesregenerating-with-sprout-and-seeds-after-burning-at.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomata-in-anthocephalus-rubiaceae-and-mallotus-euphorbiaceae/ )

Vavasseur A., Raghavendra A. S. (2005) – Guard cell metabolism and CO2 sensing. – New Phytol. 165, 665–682. – doi: 10.1111/j.1469-8137.2004. 01276.x –

 

Verduin J. (1949) – Diffusion through multiperforate septa. – In Photosynthesis in plants(eds J FranckW Loomis), pp. 95112Ames, IAIowa State College Press. – Google Scholar

Vialet-Chabrand S. R. M., Hills A., Wang Y., Griffiths H., Lew V., Lawson T., Blatt M. R., Rogers S. (2017) – Global sensitivity analysis of OnGuard models identifies key hubs for transport interaction in stomatal dynamics. – Plant Physiol 174: 680–688 – http://www.plantphysiol.org/content/174/2/680 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/onguard-models-and-transport-interaction-in-stomatal-dynamics/)

Vialet-Chabrand S. R. M., Matthews J. S. A., McAusland L., Blatt M. R., Griffiths H., Lawson T. (2017) – Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. -; Plant Physiol 174: 603–613 – http://www.plantphysiol.org/content/174/2/603 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/temporal-dynamics-of-stomatal-behavior/)

Vico G., Manzoni S., Palmroth S., Katul G. (2011) – Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes – New Phytol. 192, 640–652. doi: 10.1111/j.1469-8137.2011.03847.x –PubMed Abstract | CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03847.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-opening-and-closing-delays/ )

Vilela B., Pagès M., Riera M. (2015) – Emerging roles of protein kinase CK2 in abscisic acid signaling. – Front. Plant Sci. 6:966. – doi: 10.3389/fpls.2015. 00966 –

 

Vinnakota R., Ramakrishnan A. M.,Samdani A., Venugopal M. A., Ram B. S., S. Krishnan N., Murugesan D., Sankaranarayanan K. (2016) – A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.) – Protoplasma 253(6): 1593-1597 – DOI10.1007/s00709-015-0916-0 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S00709-015-0916-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/a-comparison-of-aquaporin-function-in-mediating-stomatal-aperture-gating/ )

von Groll U.Berger D.Altmann T. (2002) – The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. – Plant Cell1415271539. – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/14/7/1527.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/sdd1-and-stomatal-development/)

Vráblová M., Vrábl D., Hronková M., Kubásek J., Šantrůček J. (2017) – Stomatal function, density and pattern, and CO2 assimilation in Arabidopsis thaliana tmm1and sdd1-1 mutants – Plant Biol J, 19: 689–701. doi:10.1111/plb.12577 – http://onlinelibrary.wiley.com/doi/10.1111/plb.12577/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/stomatal-function-density-and-pattern-and-co2-assimilation/ )

Waadt R., Manalansan B., Rauniyar N., Munemasa S., Booker M. A., Brandt B., et al. (2015) – Identification of open stomata1-interacting proteins reveals interactions with sucrose non-fermenting1-related protein Kinases2 and with Type 2A protein phosphatases that function in abscisic acid responses. – Plant Physiol. 169: 760–779 – doi: 10.1104/pp.15.00575 – http://www.plantphysiol.org/content/169/1/760 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-roles-of-regulatory-pp2aa-subunits-and-catalytic-pp2ac-subunits-in-aba-responses/ )

Wagg S., Mills G., Hayes F., Wilkinson S., Davies W. J. (2013) – Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris – Environmental Pollution 175: 82-91 – http://dx.doi.org/10.1016/j.envpol.2012.11.027 – https://www.sciencedirect.com/science/article/pii/S0269749112005052?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-responses-and-ozone/ )

 

Waggoner P. E. (1965) – Relative effectiveness of change in upper and lower stomatal openings – Crop Sci. 5: 291 –https://dl.sciencesocieties.org/publications/cs/abstracts/5/4/CS0050040291?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/16/effectiveness-of-change-in-upper-and-lower-stomatal-openings/ )

Waggoner P. E., Monteith J. L., Szeicz G. (1964) – Decreasing Transpiration of Field Plants by Chemical Closure of Stomata – Nature 201: 97–98 – doi:10.1038/201097b0 – https://www.nature.com/articles/201097b0 – (On our blog : https://plantstomata.wordpress.com/2018/01/05/chemical-closure-of-stomata-and-the-decrease-of-transpiration/ )

Waggoner P. E., Zelitch I. (1965) – Transpiration and the stomata of leaves – Science 150(3702): 1413-1420 – DOI: 10.1126/science.150.3702.1413 – http://science.sciencemag.org/content/150/3702/1413 – (On our blog : https://plantstomata.wordpress.com/2018/01/06/stomata-and-transpiration/ )

Wallin G., Sklrby L. (1992) – The influence of ozone on the stomata1 and nonstomatal limitation of photosynthesis in Norway spruce, Picea abies (L.) Karst, exposed to soil moisture deficit – Trees Structure and Function 6: 128-l 36 –

Wang H.Ngwenyama N.Liu Y.Walker J. C.Zhang S. (2007) – Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. – Plant Cell 196373 – doi: 10.1105/tpc.106.048298 – Abstract/FREE Full TextGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2015/03/14/environmentally-responsive-mitogen-activated-protein-kinases/)

Wang J., Lu W., Tong Y., Yang Q. (2016) – Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light – Front. Plant Sci., 10 March 2016 | http://dx.doi.org/10.3389/fpls.2016.00250 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00250/full – (On our blog : https://plantstomata.wordpress.com/2016/03/28/8946/ )

Wang M., Yuan F., Hao H., Zhang Y., Zhao H., Guo A., et al. (2013) – BolOST1, an ortholog of Open Stomata 1 with alternative splicing products in Brassica oleracea, positively modulates drought responses in plants. – Biochem. Biophys. Res. Commun. 442, 214–220. – doi: 10.1016/j.bbrc.2013.11.032 –

Wang P., Du Y., Hou Y. J., Zhao Y., Hsu C. C., Yuan F., et al. (2015) – Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. U.S.A. 112, 613–618. doi: 10.1073/pnas.1423 481112 –

Wang P., Du Y., Zhao X., Miao Y., Song C.-P. (2012) – The MPK6-ERF-ROSE7/GCC-box complex modulates oxidative gene transcription and ROS signaling in Arabidopsis thaliana – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-mpk6-erf-rose7-gcc-box-complex-in-stomata/ )

 

Wang P., Song C. P. (2008) – Guard-cell signalling for hydrogen peroxide and abscisic acid. – New Phytol. 178, 703–718. – doi: 10.1111/j.1469-8137.2008.02431.x –

Wang R. S., Pandey S., Li S., Gookin T. E., Zhao Z., Albert R., et al. (2011) – Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. – BMC Genomics 12:216. – doi: 10.1186/1471-2164-12-216

 

Wang W., Liu Z., Bao L.-J., Zhang S.-S., Zhang C.-G., Li X., Li H.-X., Zhang X.-L., Bones A. M., Yang Z., Chen Y.-L. (2017) – The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening. – Plant Physiol 174: 717–731 – http://www.plantphysiol.org/content/174/2/717 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/the-ropgef2-rop7-rop2-pathway-and-the-red-light-induced-stomatal-opening/)

Wang W.-H., Chen J., Liu T.-W., Chen J., Han A.-D., Simon M., Dong X.-J., He J.-X., Zheng H.-L. (2013) – Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis – Journal of Experimental Botany, Vol. 65, No. 1, pp. 223–234, 2014 – doi:10.1093/jxb/ert362 –http://jxb.oxfordjournals.org/content/65/1/223.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cas-stomatal-movement-wue-and-drought-tolerance/ )

Wang W. H., Yi X. Q., Han A. D., Liu T. W., Chen J., Wu F. H., et al. (2011) – Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. – J. Exp. Bot. 63, 177–190. – doi: 10.1093/jxb/err259 –

Wang X. Q., Ullah H., Jones A. M., Assmann S. M. (2001) – G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. –Science 292, 2070–2072. -; 10.1126/science.1059046 – [PubMed] [Cross Ref] – 

Wang Y.Hills A.Vialet-Chabrand S.Papanatsiou M.Griffiths H.Rogers S.Lawson T.Lew V. L.Blatt M. R. (2017) – Unexpected Connections between Humidity and Ion Transport Discovered Using a Model to Bridge Guard Cell-to-Leaf Scales – Plant Cell 2929212935 – DOI: https://doi.org/10.1105/tpc.17.00694 – http://www.plantcell.org/content/29/11/2921?ijkey=615d52f6f112083b64a7d81e76985c6f96eb7ef4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/66246/ )

Wang Y.Papanatsiou M., Eisenach C., Karnik R., Williams M., Hills A., Lew V. L.Blatt M. R. (2012) – Systems Dynamic Modeling of a Guard Cell Cl Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration – Plant Physiol 160:19561967 – DOI: https://doi.org/10.1104/pp.112.207704 – http://www.plantphysiol.org/content/160/4/1956?ijkey=cfc390beba20130ff1b1ff8b2c4ebc6af21a8836&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/emergent-homeostatic-network-regulating-stomatal-transpiration/

Ward J. M., Schroeder J. I. (1994) – Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. – Plant Cell 6, 669–683. – doi: 10.1105/tpc.6.5.669 –

Watkins J. M.,  Chapman J. M.Muday G. K. (2017) – Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture – 

Watkins J. M., Hechler P. J., Muday G. K. (2014) – Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. – Plant Physiol. 164, 1707–1717. – 10.1104/pp.113.233528 – [PMC free article] [PubMed] [Cross Ref] –

Webb A. A. R., McAinsh M. R., Mansfield T. A., Hetherington A. M. (1996) – Carbon dioxide induces increases in guard cell cytosolic free calcium – The Plant Journal 9: 297-304 –

 

Webb A. A. R., Robertson F.C. (xxxx) – Calcium Signals in the Control of Stomatal Movements – Signaling and Communication in Plants – Coding and Decoding of Calcium Signals in Plants : 63-77 – DOI10.1007/978-3-642-20829-4_5 –https://www.infona.pl/resource/bwmeta1.element.springer-3c4ccf7e-1905-3015-bb6b-ab137434ab7e – (On our blog : https://plantstomata.wordpress.com/2017/10/24/calcium-is-an-important-regulator-of-stomatal-movements/ )

Wege S., De Angeli A., Droillard M. J., Kroniewicz L., Merlot S., Cornu D., et al. (2014) – Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid. – Sci. Signal. 7:ra65. –

 

Wehr R., Commane R., Munger J. W., McManus J. B., Nelson D. D., Zahniser M. S., Saleska S. R., Wofsy S. C. (2017) – Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake – Biogeosciences, 14, 389–401 – doi:10.5194/bg-14-389-2017 – http://www.biogeosciences.net/14/389/2017/ –  https://www.biogeosciences.net/14/389/2017/bg-14-389-2017.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/30/dynamics-of-canopy-stomatal-conductance/ )

Wei P.-C., Zhang X.-Q., Zhao P., Wang X.-C. (2011) – Regulation of stomatal opening by the guard cell expansin AtEXPA1 – Plant Signaling & Behavior 6(5): 740-742 – http://dx.doi.org/10.4161/psb.6.5.15144 – http://www.tandfonline.com/doi/abs/10.4161/psb.6.5.15144 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-expansins-regulate-stomatal-movement/ )

Weinl S., Held K., Schlucking K., Steinhorst L., Kuhlgert S., Hippler M., et al. (2008) – A plastid protein crucial for Ca2 + -regulated stomatal responses. – New Phytol 179, 675–686. –

Weise A., Lalonde S., Kuhn C., Frommer W. B., Ward J. M. (2008) – Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. – Plant Mol. Biol. 68, 251–262. – 10.1007/s11103-008-9366-9 – [PubMed] [Cross Ref] – 

Wellburn F. A. M., Gounaris I., Wellburn A. R. (1984) – Carbohydrate reserves and plant growth substance sensitivity in plastids, stomata and statocytes during shoot development – Israel Journal of Botany 33(2-4): 237-252 – http://www.tandfonline.com/doi/abs/10.1080/0021213X.1984.10677001 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/carbohydrate-reserves-and-plant-growth-substance-sensitivity-in-plastids-and-stomata/

Weryszko-Chmielewska E., Michałojć Z. (2009) – Anatomical features of leaves of sweet pepper (Capsicum annuum L.) fed with calcium using foliar nutrition – ACTA AGROBOTANICA 62(2): 155–164 – 1627-3991-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomata-in-leaves-of-sweet-pepper-fed-with-calcium-using-foliar-nutrition/ )

 

Weyers J. D. B., Fitzsimons P. J. (1982) – The non-osmotic volume of Commelina guard cells – Plant, Cell and Environment 5( 5): 417–421 – DOI: 10.1111/j.1365-3040.1982.tb00942.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1982.tb00942.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/13/the-non-osmotic-volume-of-stomatal-guard-cells/ )

Weyers J. D. B., Fitzsimons P. J., Mansey G. M., Martin E. S. (1983) – Guard cell protoplasts-aspects of work with an important new research tool – Physiol. Plant. 58: 331-339 – Guard_cell_protoplasts_-_Aspects_of_work.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/aspects-of-gcp-research-and-contributions-of-gcps-towards-an-understanding-of-the-stomatal-mechanism/ )

Weyers J. D. B., Hillman J. R. (1977) – Uptake and Distribution of Abscisic Acid in Commelina Leaf Epidermis – Planta 144: 167-172 –Uptake_and_distribution_of_abscisic_acid.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/stomata-and-the-uptake-and-distribution-of-aba/ )

Weyers J. D. B., Hillman J. R. (1979) – Sensitivity of Commelina Stomata to Abscisic Acid – Planta 146: 623-628 – Sensitivity_of_Commelina_stomata_to_absc.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/sensitivity-of-stomata-to-aba/ )

Weyers J. D. B., Johansen L. G. (1985) – Accurate estimation of stomatal aperture from silicone rubber impressions – New Phytol. 101: 109-115 –Accurate_Estimation_of_Stomatal_Aperture.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/accurate-estimation-of-stomatal-aperture-from-silicone-rubber-impressions/ )

Weyers J. D. B.Patterson N. W. (1987) – Responses of Commelina stomata in vitro – Journal of Experimental Botany 38: 631–641 – DOI: 10.1093/jxb/38.4.631 –https://www.researchgate.net/publication/31454608_Responses_of_Commelina_communis_Stomata_In_Vitro – (On our blog : https://plantstomata.wordpress.com/2017/12/14/responses-of-stomata-in-vitro/ )

Weyers J. D. B.Patterson N. W. (1992) – Quantitative assessment of hormone sensitivity changes with reference to stomata’ responses to abscisic acid – In: Karssen C.M., van Loon L.C., Vreugdenhil D. (eds) : Progress in Plant Growth Regulation. Current Plant Science and Biotechnology in Agriculture, vol 13:  Springer, Dordrecht – DOI https://doi.org/10.1007/978-94-011-2458-4_25 – https://link.springer.com/chapter/10.1007/978-94-011-2458-4_25 – https://plantstomata.wordpress.com/2017/12/13/quantifying-hormone-sensitivity-using-stomatal-responses-to-aba-as-a-test-system/ )

Weyers J. D. B., Travis A. J. (1981) – Selection and preparation of leaf epidermis for experiments on stomatal physiology. – J. Exp. Bot. 32, 837–850. – doi: 10.1093/jxb/32.4.837 –

Wille A. C., Lucas W. J. (1984) – Ultrastructural and histochemical studies on guard cells – Planta 160: 129-142 – https://doi.org/10.1007/BF00392861- https://link.springer.com/article/10.1007/BF00392861#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/17/ultrastructural-and-histochemical-studies-on-stomata/ )

 

Williams M. (2017) – Small Pores with a Big Impact –   – https://plantae.org/blog/plant-physiology-focus-issue-on-stomata-published/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/small-pores-with-a-big-impact/ )

Willmer C.M. (1993) – The evolution, structure and functioning of stomata – Botanical Journal of Scotland 46(3): 433-445 – https://doi.org/10.1080/03746609308684805 – http://www.tandfonline.com/doi/pdf/10.1080/03746609308684805 – (On our blog : https://plantstomata.wordpress.com/2017/11/30/stomatal-structure-and-functioning/ )

Willmer C. M., Don R., Parker W. (1978) – Levels of short-chain fatty acids and of abscisic acid in water-stressed and non-stressed leaves and their effects on stomata in epidermal strips and excised leaves. – Planta 139, 281–287. – 10.1007/BF00388642 –  [PubMed][Cross Ref] – 

Willmer C.M., Fricker M. (1996) – Stomata – In : Topics in Plant Functional Biology: 2 – Eds. M. Black and B. Charlwood – Springer-Science+ Business Media B. V. – https://books.google.be/books?id=9sjoCAAAQBAJ&pg=PA12&lpg=PA12&dq=stomata&source=bl&ots=tIpu1rPm39&sig=YGbF_YtCyNa-YR3F8_QWpf3UugI&hl=en&sa=X&ved=0ahUKEwiS3e-4ocbYAhVMmbQKHcY3DWw4HhDoAQgoMAA#v=onepage&q=stomata&f=false – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-3/ )

Willmer C.M., Pallas J. E. Jr. (1973) – A survey of stomatal movements and associated potassium fluxes in the plant kingdom – Canadian Journal of Botany 51(1): 37-42 – https://doi.org/10.1139/b73-006 – http://www.nrcresearchpress.com/doi/abs/10.1139/b73-006?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/01/28/stomatal-movements-and-associated-potassium-fluxes/ )

Willmer C.M., Sexton R. (1979) – Stomata and plasmodesmata – Protoplasma 100: 113 –  https://doi.org/10.1007/BF01276305 – https://link.springer.com/article/10.1007/BF01276305#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomata-and-plasmodesmata/ )

Wolf A., Anderegg W. R. L., Pacala S. W. (2016)  – Optimal stomatal behavior with competition for water and risk of hydraulic impairment – PNAS October 31, 2016 –http://www.pnas.org/content/early/2016/10/27/1615144113.short – (On our blog : https://plantstomata.wordpress.com/2016/11/06/optimal-stomatal-behavior/

Wolz K. J., Wertin T. M., Abordo M., Wang D., Leakey A. D. B. (2017) – Diversity in stomatal function is integral to modelling plant carbon and water fluxes – Nature Ecology & Evolution 1: 1292–1298(2017) – doi:10.1038/s41559-017-0238-z –https://www.nature.com/articles/s41559-017-0238-z – (On our blog : https://plantstomata.wordpress.com/2017/11/24/diversity-in-stomatal-function/ )

Woods D. B., Turner N. C. (1971) – Stomatal responses to changing light by four tree species of varying shade tolerance. – New Phytol. 70: 77–84 –

Woodruff D., Meinzer F. C., McCulloh K. A. (2009) – Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer – Journal of Experimental Botany 61(1):203-210 – https://www.ncbi.nlm.nih.gov/pubmed/19933710 – (on our blog : https://plantstomata.wordpress.com/2016/11/06/stomatal-sensitivity-to-leaf-to-air-vapour-pressure-deficit/ )

Woodward F. I. (1987) – Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels – Nature 327: 617–618 -doi:10.1038/327617a0 | CrossRef | – CrossRef Web of Science – Google Scholar –https://www.nature.com/nature/journal/v327/n6123/abs/327617a0.html – (On our blog : https://plantstomata.wordpress.com/2017/07/23/increases-in-co2-from-pre-industrial-levels-and-stomatal-density/ )

Woodward F. I. (1998) – Do plants really need stomata? – Journal of Experimental Botany 49: 471-480. – Google Scholar  CrossRef –http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Do-plants-really-need-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/do-plants-really-need-stomata/ )

Woodward F. I. (2012) – Stomata – a global view  – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-global-view-on-stomata/ )

Woodward F. I., Kelly C. K. (1995) – The influence of CO2 concentration on stomatal density – New Phytologist 131: 311-327 – http://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1995.tb03067.x/asset/j.1469-8137.1995.tb03067.x.pdf?v=1&t=jd6h95wl&s=df4433366e7bdeb84775b67a8c73c5d4c03837ca – (On our blog : https://plantstomata.wordpress.com/2018/02/02/co2-concentration-and-stomatal-density-2/ )

Woolfenden H. C., Bourdais G., Kopischke M., Miedes E., Molina A., Robatzek S., Morris R. J. (2017) – A computational approach for inferring the cell wall properties that govern guard cell dynamics – The Plant Journal: Accepted, unedited articles published online and citable. – DOI: 10.1111/tpj.13640 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13640/abstract – (On our blog : https://plantstomata.wordpress.com/2017/07/29/proper-stomatal-dynamics-builds-on-two-key-properties-of-the-cell-wall-namely-anisotropy-in-the-form-of-hoop-reinforcement-and-strain-stiffening/ )

Wu H.-C, Huang Y.-C., Stracovsky L., Jinn T.-L. (2017) – Pectin methylesterase is required for guard cell function in response to heat – Plant Signaling & Behavior  12(6) – http://dx.doi.org/10.1080/15592324.2017.1338227 http://www.tandfonline.com/doi/full/10.1080/15592324.2017.1338227?src=recsys – (On our blog : https://plantstomata.wordpress.com/2017/10/28/the-significant-role-of-pme34-in-heat-tolerance-through-the-regulation-of-stomatal-movement/ )

Wu S.., Maseyk K., Lett C., Seibt U. (2018 ?) – Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh – Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-431, in review, 2017 – https://www.biogeosciences-discuss.net/bg-2017-431/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-control-of-leaf-fluxes-of-cos-and-co2/ )

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – Stomatal movement – guard cell physiology – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/stomatal-movements/ )

Würzburg University (Germany) – Department of Botany I – Plant Physiology and Biophysics (xxxx) – Prof. R. Hedrich – ABA action and receptors – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof-dr-rainer-hedrich/stomata-guard-cell-action/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-action-and-receptors-in-stomata/ )

Wynn J. G. (2003) – Towards a physically based model of CO2-induced stomatal frequency response – New Phytol. 157: 394–398 –Towards_a_physically_based_model_of_CO2-.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/a-physically-based-model-of-co2-induced-stomatal-frequency-response/ )

Xia X. J., Gao C. J., Song L. X., Zhou Y. H., Shi K., Yu J. Q. (2014) -. Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. – Plant Cell Environ. 37, 2036–2050. – 10.1111/pce.12275 – [PubMed][Cross Ref] – 

Xie S., Luo X. (2003) – Effect of leaf position and age on anatomical structure, photosynthesis, stomatal conductance and transpiration of Asian pear – Bot. Bull. Acad. Sin. (2003) 44: 297-303 – https://ejournal.sinica.edu.tw/bbas/content/2003/4/bot444-06.html – (On our blog : https://plantstomata.wordpress.com/2018/01/13/leaf-position-and-age-stomatal-conductance-and-transpiration-of-asian-pear/ )

Xie X., Wang Y., Williamson L., Holroyd G. H., Tagliavia C., Murchie E., Theobald J., Knight M. R., Davies W. J., Leyser H. M. O., Hetherington A. M. (2006) – The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. – Curr. Biol. 16: 882–887 – DOI: https://doi.org/10.1016/j.cub.2006.03.028 – http://www.cell.com/current-biology/fulltext/S0960-9822(06)01324-8?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982206013248%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2018/02/02/genes-for-the-stomatal-response-to-reduced-atmospheric-relative-humidity/ )


Xie Y., Mao Y., Duan X., Zhou H., Lai D., Zhang Y., Shen W. (2016)
– Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness – Plant Physiology 

 

Xie Y., Mao Y., Zhang W., Lai D., Wang Q., Shen W. (2014) – Reactive oxygen species-dependent nitric oxide production contributes to hydrogen- promoted stomatal closure in Arabidopsis. – Plant Physiol. 165, 759–773. – doi: 10.1104/pp.114.237925 –

 

Xinhua (2017) – Grass stomata seen as possible lead to crops better surviving climate change – http://news.xinhuanet.com/english/2017 – 03/17/c_136135449.htm – (On our blog : https://plantstomata.wordpress.com/2017/10/30/these-findings-may-lead-to-producing-other-plants-with-four-celled-stomata/ )

Xiong D.Douthe C.Flexas J. (2017) – Differential coordination of stomatal conductance, mesophyll conductance and leaf hydraulic conductance in response to changing light across species – Plant Cell Environ2017. – https://doi.org/10.1111/pce.13111 –http://onlinelibrary.wiley.com/doi/10.1111/pce.13111/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/10/differential-coordination-of-stomatal-conductance/ )

Xu B.-s., Zhang R.-h. ( 2002) – Study on chlorophyll content and stomata morphology of Pïnus massoniana – Chemistry and Industry of Forest Products 22(3): 59-61  – http://www.cifp.ac.cn/EN/abstract/abstract94.shtml – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-density-is-negatively-correlated-with-stomata-diameter-in-pinus/ )

Xu Z., Jiang Y., Jia B., Zhou G. (2016) – Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors – Front. Plant Sci., 13 May 2016 | https://doi.org/10.3389/fpls.2016.00657 – https://www.frontiersin.org/articles/10.3389/fpls.2016.00657/full – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-stomata-respond-to-elevated-co2-levels-and-environmental-factors/ )

Xu Z.Zhou G. (2008) – Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grassJ. Exp. Bot. 5933173325. – Abstract/FREE Full TextGoogle Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ern185 – (On our blog : https://plantstomata.wordpress.com/2017/06/15/stomatal-density-and-size/)

Xue S., Hu H., Ries A., Merilo E., Kollist H., Schroeder J. I. (2011) – Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. – EMBO J. 30, 1645–1658. –

 

Xue S., Yang P. (2005) – Effects of La 3+ on inward K + channels at plasma membrane in guard cells – Science in China Series B Chemistry 48(2):143-147 –https://www.researchgate.net/publication/244742609_Effects_of_La_3_on_inward_K_channels_at_plasma_membrane_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2017/12/14/effects-of-la-3-on-inward-k-channels-at-plasma-membrane-in-guard-cells/ )

Yaaran A., Negin B., Moshelion M. (2017) – Role of guard-cell ABA in determining maximal stomatal aperture and prompt vapor-pressure-deficit response – Biorxiv – doi: https://doi.org/10.1101/218719 – https://www.biorxiv.org/content/early/2017/11/13/218719 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/aba-maximal-stomatal-aperture-and-prompt-vapor-pressure-deficit-response/ )

Yamashita T. (1952) – Influences of potassium supply upon various properties and movement of guard cell. – Sielboldia Acta Biollogy 1, 51–70 –

Yamauchi S., Takemiya A., Sakamoto T., Kurata T.Tsutsumi T.Kinoshita T., Ken-ichiro Shimazaki K.-i. (2016) – The Plasma Membrane H+-ATPase AHA1 Plays a Major Role in Stomatal Opening in Response to Blue Light – Plant Physiology DOI: https://doi.org/10.1104/pp.16.01581 – http://www.plantphysiol.org/content/171/4/2731 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/aha1-plays-a-major-role-in-stomatal-opening-in-response-to-blue-light/ )

Yamazaki D., Yoshida S., Asami T., Kuchitsu K. (2003) – Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. – Plant J. 35: 129–139. – 10.1046/j.1365-313X.2003.01782.x –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/12834408 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/visualization-of-the-aba-perception-sites-and-the-nature-of-membrane-associated-aba-receptors-in-stomata/ )

Yan F., Sun Y., Song F., Liu F. (2012) – Differential responses of stomatal morphology to partial root-zone drying and deficit irrigation in potato leaves under varied nitrogen rates – Scientia Horticulturae 145: 76-83 – https://doi.org/10.1016/j.scienta.2012.07.026 – https://www.sciencedirect.com/science/article/pii/S0304423812003573 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/partial-root-zone-drying-prd-reduces-plant-water-use-via-modulating-stomatal-morphology-under-high-n-rate/

Yang D. L.Shi Z.Bao Y.Yan J.Yang Z.Yu H.Li Y.Gou M.Wang S.Zou B.Xu D.Ma Z.Kim J.Hua J. (2017) – Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity – Plant Physiology 

Yang H. M., Zhang X. Y., Tang Q.-L., Wang G.-X. (2006) – Extracellular calcium is involved in stomatal movement through the regulation of water channels in broad bean – Plant Growth Regulation 50(1): 79-83 – DOI10.1007/s10725-006-9128-0 –https://www.infona.pl/resource/bwmeta1.element.springer-6f95dbbd-1b60-3c0e-baed-9c2cbcc6471f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/extracellular-calcium-and-the-regulation-of-water-channels-in-stomatal-movement/ )

Yang M., Sack F. D. (1995) – The too many mouths and four lips mutations affect stomatal production in Arabidopsis. – Plant Cell 7, 2227–2239. – doi: 10.1105/tpc.7.12.2227 –

 

Yang X. et al. (2017) – Drought-resistant plant genes could accelerate evolution of water-use efficient crops – https://phys.org/news/2017-12-drought-resistant-genes-evolution-water-use-efficient.html#jCp – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomata-cam-plants-water-use-efficiency-and-drought-resistant-plant-genes/ )

Yang Y., Costa A., Leonhardt N., Siegel R. S., Schroeder J. I. (2008) – Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool – Plant Methods2008 4:6 –– https://doi.org/10.1186/1746-4811-4-6 – https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-4-6 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/isolation-of-a-strong-arabidopsis-guard-cell-promoter-and-its-potential-as-a-research-tool/ )

Ye W., Adachi Y., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2015) – Open stomata 1 kinase is essential for yeast elicitor-induced stomatal closure in Arabidopsis. – Plant Cell Physiol. 56, 1239–1248. –

Ye W., Hossain M. A., Munemasa S., Nakamura Y., Mori I. C., Murata, Y. (2013) – Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells. – J. Plant Physiol. 170, 1212–1215. –

 

Ye W., Murata Y. (2016) – Microbe Associated Molecular Pattern Signaling in Guard Cells – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2016) – Front. Plant Sci. 7:583. doi: 10.3389/fpls.2016.00583- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/recent-findings-in-signaling-underlying-mamp-induced-stomatal-movement/ )

Ye W., Muroyama D., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Calcium-dependent protein kinase, CPK6, positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. – Plant Physiol. 163, 591–599. – doi: 10.1104/pp.113.224055 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/163/2/591.full.pdf+html – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk6-yel-and-stomatal-movement/ )

 

Yekondi S., Liang F.-C., Okuma E., Radziejwoski A., Mai H.-W., Swain S., Singh P., Gauthier M., Chien H.-C., Murata Y., Zimmerli L. (2017) – Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure – New Phytol. doi:10.1111/nph.14953 –http://onlinelibrary.wiley.com/doi/10.1111/nph.14953/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-role-of-lecrk-v-2-and-lecrk-vii-1-in-stomatal-immunity/ )

Yin Y., Adachi Y., Ye W., Hayashi M., Nakamura Y. KinoshitaT., Mori I. C., Murara Y. (2013) – Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. – Plant Physiol. 163, 600–610 (2013). – CAS – Article – PubMed – PubMed Central – http://www.plantphysiol.org/content/163/2/600 – (On our blog : https://plantstomata.wordpress.com/2017/06/17/aba-perception-mechanisms-and-stomata/)

Yocum L. E. (1935) – The stomata and transpiration of oaks – Plant Physiology 10(4): 795-801, DOI: https://doi.org/10.1104/pp.10.4.795 – http://www.plantphysiol.org/content/plantphysiol/10/4/795.full.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/35085 )

Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Shinozaki K. (2005) – The Regulatory Domain of SRK2E/OST1/SnRK2.6 Interacts with ABI1 and Integrates Abscisic Acid (ABA) and Osmotic Stress Signals Controlling Stomatal Closure in Arabidopsis – J Biol Chem 28153105318 – doi:10.1074/jbc.M509820200 – http://www.jbc.org/content/281/8/5310?ijkey=4d73b99bc49e061c5740fbd1b42af0114a33c6ed&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/02/02/the-direct-interaction-between-srk2e-ost1-and-abi1-through-domain-ii-plays-a-critical-role-in-the-control-of-stomatal-closure/

Young J. J., Mehta S., Israelsson M., Godoski J., Grill E., Schroeder J. I. (2006) – CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2 + -independent phase, and CO2 insensitivity of the gca2 mutant. – Proc. Natl. Acad. Sci. U.S.A. 103, 7506–7511 –

Young T., Turner S., Torau S., Stanley B., Murphy K., Lee E., Kenney K., Hoffmaster R., Foster L., Cavanaugh B., Brunot R., Bradford K., (2004) – How environmental factors affect stomatal density and chlorophyll in trees – https://www.frostburg.edu/fsu/assets/File/clife/rmsc/FinalPapers/2004/Stoma%202004.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/how-environmental-factors-affect-stomatal-density/ )

 

Yu H.Chen X.Hong Y. Y.Wang Y.Xu P.Ke S. D.Liu H. Y.Zhu J. K.Oliver D. J.Xiang C. B. (2008) – Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. – Plant Cell 2011341151 – https://doi.org/10.1105/tpc.108.058263 – Abstract/FREE Full TextGoogle Scholar – http://www.plantcell.org/content/early/2008/04/30/tpc.108.058263https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390749/ – (On our blog : https://plantstomata.wordpress.com/2018/01/02/hd-start-protein-confers-drought-tolerance-with-improved-root-system-and-reduced-stomatal-density/)

Yu Y., Assmann S. M. (2014) – Metabolite transporter regulation of ABA function and guard cell response. – Mol. Plant 7, 1505–1507. – 10.1093/mp/ssu093 – [PubMed] [Cross Ref] – 

Yuan L.-m., Qiu M., Wang P., Wang Z.-q., Yang J.-c. (2006) – Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes – Scientia Agriucultura Sinica 39(5): 902-909 – Structure Characteristics of Stomata in Leaves and Vascular Bundles in Culms of Transgenic Rice Expressing C4 Photosynthesis Enzymes.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/density-and-area-of-the-stomata-in-leaves-of-transgenic-rice-lines/ )

Zait Y.Shapira O.Schwartz A. (2017) – The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves – Plant, Cell & Environment4011431152. doi: 10.1111/pce.12907.- http://onlinelibrary.wiley.com/doi/10.1111/pce.12907/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/blue-light-increased-xylem-epidermis-water-supply-and-stomatal-movement/ )

Zarafshar M., Akbarinia M., Askari H., Hosseini S. M., Rahaie M., Struve D., Striker G. G. (2014) – Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana) – Biotechnol. Agron. Soc. Environ. 18(3): 353-366 – http://www.pressesagro.be/base/text/v18n3/353.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/16/stomata-and-soil-water-deficit-in-seedlings-of-wild-pear/ )

Zeiditoolabi N., Daraie-Mofrad A., Direkvandy S., Mosavi Rad H., Romiani-Karami A. (2011) – Effect of plant density on the stomata morphological structure and forage yield in three species of forage yield vetch (Viciasp.) under dry farming conditions of Khorramabad – jdas  3 (5) : 17-32 – http://jdas.shahed.ac.ir/browse.php?a_code=A-10-1-28&slc_lang=en&sid=1 – http://jdas.shahed.ac.ir/article-1-143-en.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/effect-of-plant-density-on-the-stomata-morphological-structure-and-forage-yield/ )

Zeiger E. (1984) – Blue light and stomatal function – In: Senger H. (eds) Blue Light Effects in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg, pp. 484-494. – DOI: https://doi.org/10.1007/978-3-642-69767-8_54 – Online ISBN978-3-642-69767-8 – https://link.springer.com/chapter/10.1007/978-3-642-69767-8_54#citeas – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomata-are-remarkably-sensitive-to-photon-fluxes-and-light-quality/ )

Zeiger E. (1990) – Light perception in guard cells – Plant Cell Environ 13: 739–744  -doi:10.1111/j.1365-3040.1990.tb01088.x – CrossRefGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01088.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/light-perception-in-stomata/ )

Zeiger E., Farquhar G. D., Cowan.I. R.  (Eds) (1987) – Stomatal Function – Stanford University Press, Stanford, California, 491 pp. –http://www.rhizopon.com/images/stomatal%20function-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-function-3/ )

Zeiger E., Hepler P. K. (1977) – Light and stomatal function: blue light stimulates swelling of guard cell protoplasts – Science 196: 887-889 – DOI: 10.1126/science.196.4292.887 – http://science.sciencemag.org/content/196/4292/887 – (On our blog : https://plantstomata.wordpress.com/2017/11/25/blue-light-stimulates-swelling-of-stomatal-protoplasts/ )

Zeiger E., Zhu J. (1998) – Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells. – J. Exp. Bot. 49, 433–442 10.1093/jxb/49.Special_Issue.433 – [Cross Ref] – 

Zelitch I. (1963) – Stomata and water relations in plants – Advanced Science Seminar on the Physiology and Biochemistry of Leaf Stomata – Conn. Agric. Expt. Sta.,  Bull. 664. 116 pp – http://www.ct.gov/caes/lib/caes/documents/publications/bulletins/b664.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/22/stomata-and-water-relations/ )

Zeng W., He S. Y. (2010) – A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. – Plant Physiol. 153, 1188–1198. – doi: 10.1104/pp.110.157016 –

Zeng W., Melotto M., He S. Y. (2010) – Plant stomata: a checkpoint of host immunity and pathogen virulence. – Curr. Opin. Biotechnol. 21, 599–603 – doi: 10.1016/j.copbio.2010.05.006 –

Zhang H. (2012) – Using soil drying as a regulative tool to enhance crop water use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/a-controlled-soil-drying-can-enhance-whole-plant-senescence-and-crop-water-use-efficiency/ )

Zhang H., Fang Q., Zhang Z., Wang Y., Zheng X. (2009) – The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. – J. Exp. Bot. 60, 3109–3122. – doi: 10.1093/jxb/erp146 –

Zhang J.-Y., He S.-B., Li L., Yang H.-Q. (2014) – Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll – PNAS 2014 111 (29) E3015E3023; – doi:10.1073/pnas.1400542111 – http://www.pnas.org/content/111/29/E3015.full – (On our blog : https://plantstomata.wordpress.com/2018/01/20/auxin-signaling-in-mesophyll-to-coordinate-stomatal-development-with-photosynthesis/

 

Zhang T., Chen S., Harmon A. C. (2014) – Protein phosphorylation in stomatal movement. – Plant Signa. Behav. 9:e972845. – doi: 10.4161/ 15592316.2014.972845 –

Zhang W., He S. Y., Assmann S. M. (2008) – The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. – Plant J. 56, 984–996. –

Zhang W., Jeon B. W., Assmann S. M. (2011) – Heterotrimeric G-protein regulation of ROS signaling and calcium currents in Arabidopsis guard cells. – J. Exp. Bot. 62, 2371–2379. – doi: 10.1093/jxb/erq424 –

 

Zhang W., Nilson S. E., Assmann S. M. (2008) – Isolation and whole-cell patch clamping of Arabidopsis guard cell protoplasts. – CSH Protoc. 2008:pdb prot5014. – doi: 10.1101/pdb.prot5014 – http://cshprotocols.cshlp.org/content/2008/6/pdb.prot5014.abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/19/isolation-and-whole-cell-patch-clamping-of-guard-cell-protoplasts-stomata/ )

Zhang X., Dong F. C., Gao J. F., Song C. P. (2001) – Hydrogen peroxide- induced changes in intracellular pH of guard cells precede stomatal closure. – Cell Res. 11, 37–43. – doi: 10.1038/sj.cr.7290064 –

 

Zhang X., Takemiya A., Kinoshita T., Shimazaki K. (2007) – Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. – Plant Cell Physiol. 48, 715. –

Zhang X., Wang H., Takemiya A., Song C., Kinoshita T., Shimazaki K. (2004) – Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts. – Plant Physiol. 136, 4150–4158. –

Zhang X., Zhang L., Dong F., Gao J., Galbraith D. W., Song C. P. (2001) – Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. – Plant Physiol. 126, 1438–1448.-

Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., et al. (2009) – Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. – Plant Cell 21, 2357–2377. – doi: 10.1105/tpc.108.062992 –

Zhao L. , Sack F. D. (1999) –  Ultrastructure of stomatal development in Arabidopsis (Brassicaceae) leaves. – Amer J Botany 86: 929-939 – http://www.amjbot.org/content/86/7/929.full – (On our blog : https://plantstomata.wordpress.com/2018/01/29/ultrastructure-of-stomatal-development-2/ )

Zhao W., Sun Y., Kjelgren R., Liu X. (2015) – Response of Stomatal Density and Bound Gas Exchange in Leaves of Maize to Soil Water Deficit – Plants, Soils, and Climate Faculty Publications. Paper 732 –  http://digitalcommons.usu.edu/psc_facpub/732 – https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1731&context=psc_facpub – (On our blog : https://plantstomata.wordpress.com/2018/02/04/response-of-stomatal-density-and-bound-gas-exchange-to-soil-water-deficit/ )

Zhao X., Li Y. Y., Xiao H. L., Xu C. S., Zhang, X. (2013) – Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba guard cells. – J. Integr. Plant Biol. 55, 527–536. – doi: 10.1111/jipb.12038 –

Zhao X., Yang Y., SHhen, Z., Zhang H., Wang G., Gan Y. (2006) – Stomatal clustering in Cinnamomum camphora – South African Journal of Botany 72: 565-569 –

Zhao Z., Assmann S. M. (2011) – The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. –  J. Exp. Bot. 62, 5179–5189. – 10.1093/jxb/err223 – [PMC free article][PubMed] [Cross Ref] – 

Zhao Z., Stanley B. A., Zhang W., Assmann S. M. (2010) – ABA-Regulated G Protein Signaling in Arabidopsis Guard Cells: A Proteomic Perspective – J. Proteome Res.20109 (4), pp 1637–1647 – DOI10.1021/pr901011h – http://pubs.acs.org/doi/abs/10.1021/pr901011h – (On our blog : https://plantstomata.wordpress.com/2018/01/17/aba-regulated-g-protein-signaling-in-stomata/ )

Zhao Z. X., Zhang W., Stanley B. A., Assmann S. M. (2008) – Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. – Plant Cell 20, 3210–3226. – doi: 10.1105/tpc.108.063263 –

Zheng Z. L., Nafisi M., Tam A., Li H., Crowell D. N., Chary S. N., Schroeder J. I., Shen J.,  Yang Z. (2002) – Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. – Plant Cell 14(11): 2787-2797 –

 

Zhou Y., Vroegop-Vos I., Schuurink R. C., Pieterse C. M. J. , Van Wees S. C. M. (2017) – Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine – Front. Plant Sci., 16 May 2017 | https://doi.org/10.3389/fpls.2017.00700 –https://www.frontiersin.org/articles/10.3389/fpls.2017.00700/full – (On our blog : https://plantstomata.wordpress.com/2017/10/29/co2-aba-accumulation-and-stomatal-responsiveness-to-coronatine/ )

Zhou X. F., Jin Y. H., Yoo C. Y., Lin X.-L., Kim W.-Y., Yun D.-J., Bressan R. A.,  Hasegawa P. M., Jin J. B. (2013) – CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis – Plant Physiol. 162, 1030–1041  –http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DC%2BC3sXps1OqsLo%3D&md5=9148d023de1dca6c9f9e0f7c9e793052 – (https://plantstomata.wordpress.com/2016/12/07/cych1-regulates-blue-light-mediated-stomatal-opening-by-controlling-reactive-oxygen-species-homeostasis/ )

Zhu M., Dai S., Zhu N., Booy A., Simons B., Yi S., et al. (2012) – Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. – J. Proteome Res. 11, 3728–3742. – 10.1021/pr300213k – [PubMed] [Cross Ref] – 

Zhu M., Jeon B. W., Geng S., Yu Y., Balmant K., Chen S., et al. (2016) – Preparation of epidermal peels and guard cell protoplasts for cellular, electrophysiological, and -omics assays of guard cell function. – Methods Mol. Biol. 1363, 89–121. – doi: 10.1007/978-1-4939-3115-6_9 –

Zhu M., Simons B., Zhu N., Oppenheimer D. G., Chen S. (2010) – Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. – J. Proteomics 73: 790–805. – doi: 10.1016/j.jprot.2009.11.002

Zhu M. Zhang T.Ji W.Silva-Sanchez C.Song W.-y.Assmann S. M.Harmon A. C.Chen S. 2017) – Redox regulation of a guard cell SNF1-related protein kinase in Brassica napus, an oilseed crop – 

Zhu M., Zhu N., Song W.-Y., Harmon A. C., Assmann S. M., Chen S. (2014) – Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. – Plant J. 78, 491–515. – doi: 10.1111/tpj.12490 –

 

Zhu Y., Ge X. M., Wu M. M., Li X., He J. M. (2014) – The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis. – Plant Sci. 215–216, 84–90. – doi: 10.1016/j.plantsci.2013.11.010 –

 

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – Discovery of synthetic small molecules that enhance the number of stomata: C–H functionalization chemistry for plant biology – Chemical Communications 69 (2017) – DOI: 10.1039/C7CC04526C – http://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc04526c#!divAbstract – https://plantstomata.wordpress.com/2017/09/18/synthetic-small-molecules-that-enhance-the-number-of-stomata/ )

Ziadi A., Uchida N., Kato H., Hisamatsu R., Sato A., Hagihara S., Itami K., Torii K. U. (2017) – More mouths can be fed by boosting number of plant pores – https://phys.org/news/2017-09-mouths-fed-boosting-pores.html – (On our blog : https://plantstomata.wordpress.com/2017/10/31/more-mouths-can-be-fed-with-more-stomata/ )

Zia-Khan S., Spreer W., Pengnian Y., Zhao X., Othmanli H., He X., Müller J. (2015) – Effect of Dust Deposition on Stomatal Conductance and Leaf Temperature of Cotton in Northwest China – Water 2015, 7, 116-131; doi:10.3390/w7010116 – water-07-00116.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/dust-deposition-stomatal-conductance-and-leaf-temperature/ )

Ziegler D. J., Friedman C. R. (2017) – Morphology and stomatal density of developing Arceuthobium americanum (lodgepole pine dwarf mistletoe) fruit: a qualitative and quantitative analysis using environmental scanning electron microscopy – Botany, 2017, 95(3): 347-356 – https://doi.org/10.1139/cjb-2016-0187 &#8211 – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2016-0187 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/stomata-in-arceuthobium-santalaceae/ )

Zou J., Wei F., Wang C., Wu J., Ratnasekera D., Liu W., et al. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+- mediated stomatal regulation in response to drought stress. – Plant Physiol. 154, 1232–1243. –

Zou J.-J., Li X.-D., Ratnasekera D., Wang C., Liu W.-X., Song L.-F., et al. (2015) – Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. – Plant Cell 27, 1445–1460.  – doi: 10.1105/tpc.15.00144 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantcell.org/content/27/5/1445.full.pdf+html – (https://plantstomata.wordpress.com/2016/12/10/cpk8-functions-in-aba-mediated-stomatal-regulation-in-responses-to-drought-stress-through-regulation-of-cat3-activity/ )

Zou J. J.,Wei F. J.Wang C.Wu J. J.Ratnasekera D.Liu W. X.WuW. H. (2010) – Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress – Plant Physiol 15412321243 – doi:http://dx.doi.org/10.1104/pp.110.157545 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/154/3/1232.abstract?ijkey=96f00ed7a9553111d6de0afaa2cd6a829c05317e&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/12/10/cpk10-plays-important-roles-in-aba-and-ca2-mediated-regulation-of-stomatal-movements/ )

 

Advertisements