BIBLIOGRAPHY OF STOMATA: PHYSIOLOGY, BIOCHEMISTRY-ECOLOGY-CYTOLOGY A-L

Aasamaa K., Sõber A. (2001) – Hydraulic conductance and stomatal sensitivity to changes of leaf water status in six deciduous tree species – Biol. Plant. 44: 65–73 –

Aasamaa K., Sõber A. (2011) – Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. – Environ. Exp. Bot. 71(1): 72-78 – CrossRef (http://dx.doi.org/10.1016/j.envexpbot.2010.10.013) – http://www.sciencedirect.com/science/article/pii/S009884721000211X – (On our blog : https://plantstomata.wordpress.com/2015/09/05/stomatal-sensitivities-to-all-the-most-important-environmental-factors/).

Aasamaa K., Söber A. (2011) – Responses of stomatal conductance to simultaneous changes in two environmental factors – Tree Physiology, 2011, 31, 8, 855-864 – doi: 10.1093/treephys/tpr078 – http://treephys.oxfordjournals.org/content/31/8/855 – (On our blog : https://plantstmata.wordpress.com/2016/03/22/stomatal-conductance-and-environmental-factors/)

Aasamaa K., Söber A., Hartung W., Ninemets Ü. (2002) – Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees – Tree Physiol. 22: 267–276 – PMID: 11874723 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1031.7309&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/18/rate-of-stomatal-opening-in-relation-to-leaf-aba-concentration/ )

Aasamaa K., A. Söber A., Rahi M. (2001) –  Leaf Anatomical Characteristics Associated with Shoot Hydraulic Conductance, Stomatal Conductance and Stomatal Sensitivity to Changes of Leaf Water Status in Temperate Deciduous Trees – Australian Journal of Plant Physiology, Vol. 28, No. 8, 2001, pp. 765-774. – https://www.researchgate.net/publication/248887614_Leaf_anatomical_characteristics_associated_with_shoot_hydraulic_conductance_and_stomatal_sensitivity_to_changes_of_leaf_water_status_in_temperate_deciduous_trees – (On our blog : https://plantstomata.wordpress.com/2016/09/13/stomatal-conductance-and-stomatal-sensitivity/)

Abak K.Yanmaz R. (1985) – Investigation on the stomatal density in certain pepper lines and their F1 hybrids – Capsicum Newsletter 4: 22 – Google Scholar – (Article not found)

Abbruzzese G., Beritognolo I., Muleo R., Piazzai M., Sabatti M., Mugnozza G. S., Kuzminsky E. (2009) – Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress –  Environmental and Experimental Botany 66: 381–388 – http://www.academia.edu/31391598/Leaf_morphological_plasticity_and_stomatal_conductance_in_three_Populus_alba_L._genotypes_subjected_to_salt_stress – (On our blog : https://plantstomata.wordpress.com/2017/11/17/63895/)

Abdulrahaman A.A. (2009) – Morphological and epidermal adaptations to water stress in some ornamental plant species. Ph.D. Thesis, University of Ilorin, Ilorin, Nigeria. (No abstract)

Abdulrahaman A. A., Oladele F. A. (2008) – Global warming and stomatal complex types. Ethnobotanical Leaflets, 12: 553-556 – (On our blog : https://plantstomata.wordpress.com/2016/05/03/stomata-and-global-warming-2/)

Abdulrahaman A. A., Oladele F. A. (2011) – Anatomical Basis for Optimal Use of Water for Maintenance of Some Mesophytic Plants. Insight Botany, 1: 28-38
DOI: 10.5567/BOTANY-IK.2011.28.38 – http://insightknowledge.co.uk/fulltext/?doi=BOTANY-IK.2011.28.38 – (On our blog : https://plantstomata.wordpress.com/2016/03/27/8634/)

Abraham P. E., Yin H., Borland A. M., Weighill D., Lim S. D., Cestari De Paoli H., Engle N., Jones P. C., Agh R., Weston D. J., Wullschleger S. D., Tschaplinski T., Jacobson D., Cushman J. C., Hettich R. L., Tuskan G. A., Yang X. (2016) – Transcript, protein and metabolite temporal dynamics in the CAM plant Agave – Nature Plants 2, Article number: 16178 (2016) – doi:10.1038/nplants.2016.178 – http://www.nature.com/articles/nplants2016178 – (On our blog : https://plantstomata.wordpress.com/2016/12/07/stomatal-openingclosing-and-drought-resistance-in-cam-plants/)

Abrash E., Anleu Gil M. X., Matos J. L., Bergmann D. C. (2018) – Conservation and divergence of YODA MAPKKK function in regulation of grass epidermal patterning – Development. pii: dev.165860 – doi: 10.1242/dev.165860 – PMID: 29945871 – https://www.ncbi.nlm.nih.gov/pubmed/?term=29945871 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71752 )

Abrash E. B., Bergmann D. C. (2009) – Asymmetric cell divisions: A view from plant development. – Dev. Cell. 2009;16:783–796. – https://doi.org/10.1016/j.devcel.2009.05.014 – [PubMed] – http://www.sciencedirect.com/science/article/pii/S1534580709002160 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/asymmetric-cell-division-and-generation-of-cellular-diversity-and-higher-level-patterns/)

Abrash E., Bergmann D. C. (2010) – Regional specification of stomatal production by the putative ligand CHALLAH. – Development (2010) 137:447–455.  -10.1242/dev.040931. – http://dev.biologists.org/content/137/3/447 – (On our blog : https://plantstomata.wordpress.com/2016/03/28/chal-and-the-epfs-both-act-through-er-family-receptors-to-repress-stomatal-production/)

Abrash E., Lampard G. R. (2010) – A view from the top: new ligands controlling stomatal development in Arabidopsis. – New Phytol 186:561–564. – DOI: 10.1111/j.1469-8137.2010.03265.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03265.x/full – (On our blog : https://plantstomata.wordpress.com/2016/09/13/new-ligands-controlling-stomatal-development/)

Acharya B., Assmann S. (2009) – Hormone interactions in stomatal function. Plant Mol. Biol. 69, 451–462. doi: 10.1007/s11103-008-9427-0 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/09/05/phytohormones-and-the-effects-of-their-interactions-on-stomata/)

Acharya B. R., Jeon B. W., Zhang W., Assmann S. M. (2013) – Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. – New Phytol. 200, 1049–1063. doi: 10.1111/nph.12469 – PubMed Abstract | CrossRef Full Text | Google Scholar – MedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/05/03/ost1-as-a-critical-limiting-component-in-aba-regulation-of-stomatal-apertures/)

Ache P., Bauer H., Kollist H., Al‐Rasheid K. A. S., Lautner S., Hartung W., Hedrich R. (xxxx) – Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non‐invasive pressure probe measurements – The Plant Journal 62(6): 1072-1082 – DOI10.1111/j.1365-313X.2010.04213.x – https://www.infona.pl/resource/bwmeta1.element.wiley-tpj-v-62-i-6-tpj4213 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-action-directly-feeds-back-on-leaf-turgor/)

Ache P., Becker D., Ivashikina N., Dietrich P., Roelfsema M. R., Hedrich R. (2000) – GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K1-selective, K1-sensing ion channel. – FEBS Lett 486: 93–98 – DOI: 10.1016/S0014-5793(00)02248-1 – http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(00)02248-1/full – (On our blog : https://plantstomata.wordpress.com/2017/12/02/gork-represents-the-molecular-entity-for-depolarization-induced-potassium-release-from-guard-cells/)

Ackerson R. C. (1980) – Stomatal Response of Cotton to Water Stress and Abscisic Acid as Affected by Water Stress History – Plant Physiology 1980 vol. 65 no. 3 455-459 – doi: http://dx.doi.org/10.1104/pp.65.3.455 – http://www.plantphysiol.org/content/65/3/455 – (On our blog : https://plantstomata.wordpress.com/2016/05/05/stomatal-response-of-cotton-to-water-stress-and-aba/)

Addington R. N., Mitchell R. J., Oren R., Donovan L. A. (2004) – Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustriis – Tree Physiology 24: 561–569 –

Adebooye O. C., Hunsche M., Noga G., Lankes C. (2012) – Morphology and density of trichomes and stomata of Trichosanthes cucumerina (Cucurbitaceae) as affected by leaf age and salinity – Turk. J. Bot. 36: 328-335 – doi:10.3906/bot-1107-8 – http://dergipark.gov.tr/download/article-file/122286 – (On our blog : https://plantstomata.wordpress.com/2018/01/14/leaf-age-and-salinity-morphology-and-density-of-trichomes-and-stomata/ )

Addington R. N., Donovan L. A., Mitchell R. J., Vose J. M., Pecot S. D., Jack S. B., Hacke U. G., Sperry J. S., Oren R. (2006) – Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats – Plant, Cell & Environment 29, Issue 4, April 2006, 535–545 – DOI: 10.1111/j.1365-3040.2005.01430.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01430.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stomatal-conductance-in-xeric-and-mesic-habitats/)

Addington R. N., Mitchell R. J., Oren R., Donovan L. A. (2004) – Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. – Tree Physiol. 24(5): 561-569 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/04/stomata-and-vapor-pressure-deficit/).

Adrian J., Chang J., Ballenger C., Bargmann B., Alassimone J., Davies K. A., Lau S., Matos J. L., Hachez C., Lanctot A., Vatén A., Birnbaum K. D., Bergmann D. C. (2015) – Transcriptome Dynamics of the Stomatal Lineage: Birth, Amplification, and Termination of a Self-Renewing Population – Developmental Cell 33(1):107-118 · April 2015- DOI: 10.1016/j.devcel.2015.01.025 – Source: PubMed – https://www.researchgate.net/publication/274729494_Transcriptome_Dynamics_of_the_Stomatal_Lineage_Birth_Amplification_and_Termination_of_a_Self-Renewing_Population – (On our blog : https://plantstomata.wordpress.com/2017/01/21/transcriptome-dynamics-of-the-stomatal-lineage/)

Agarwal P. (2017) – Insights into the regulation of stomatal density and its pattern – Ph.D. Entrance – Interview Schedule – http://dpmb.ac.in/index.php?mact=News,cntnt01,detail,0&cntnt01articleid=29&cntnt01returnid=90 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-regulation-of-stomatal-density-and-its-pattern/)

Aguirre J. F., Ruiz L. P., Kohashi-Shibata J., Trejo C. L., Acosta-Gallegos J. (1999) – Morphological observations on the leaf surface of Phaseolus vulgaris L. and their possible relationship to stomatal response. – Annu. Rep. Bean Improvement Cooperative, 1999; 42: 75-76 – https://naldc.nal.usda.gov/download/IND23288524/PDF – (On our blog : https://plantstomata.wordpress.com/2017/10/12/size-and-frequency-of-stomata-and-the-capacity-of-stomata-to-react-under-conditions-of-dehydration/)

Agurla S., Gayatri G., Raghavendra A. S. (2014) – Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. – Nitric Oxide 43, 89–96. doi: 10.1016/j.niox.2014.07.004 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/05/nitric-oxide-no-as-a-link-between-stomatal-closure-and-plant-innate-immunity/)

Agurla S., Raghavendra A. S. (2016) – Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:1332. – doi: 10.3389/fpls.2016.01332- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/convergence-and-divergence-of-signaling-components-during-stomatal-closure/ )

Ahmed F. E.Abusam S. M. A.Ahmed E. E. A. (2010) – The bases of Blepharis sp. Adaptation to water-limited environment – Asian J. Crop Sci. 21219 – DOI: 10.3923/ajcs.2010.12.19 – CrossRefGoogle Scholar – http://www.scialert.net/abstract/?doi=ajcs.2010.12.19 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/stomatal-conductance-and-density-in-blepharis/ )

Ahuja I., de Vos R. C. H., Rohloff J., Stoopen G. M., Halle K. K., Ahmad S. J. N., Hoang L., Hall R. D., Bones A. M. (2016) – Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle – Scientific Reports 6, Article number: 38990 (2016) – doi:10.1038/srep38990 – (https://plantstomata.wordpress.com/2016/12/26/the-glucosinolate-myrosinase-system-and-the-cuticle/)

Aidoo M. K., Quansah L., Galkin E., Batushansky A., Wallach R., Moshelion M., Bonfil D. J., Fait A. (2017) – A combination of stomata deregulation and a distinctive modulation of amino acid metabolism are associated with enhanced tolerance of wheat varieties to transient drought – Metabolomics 13(11): 1-13 – DOI10.1007/s11306-017-1267-y – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11306-017-1267-Y – (On our blog : https://plantstomata.wordpress.com/2017/10/15/drought-and-a-combination-of-stomata-deregulation-and-a-distinctive-modulation-of-amino-acid-metabolism/)

Ainsworth, E.A., Rogers, A. (2007) – The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions – Plant Cell Environ. 30: 258-270. (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01641.x/abstract) – (On our blog : https://plantstomata.wordpress.com/2016/02/04/response-of-photosynthesis-and-stomatal-conductance-to-rising-co2/).

Ajayan K. V., Babu R. L., Bayakka P. B. (2015) – Variability of Stomatal Index and Chlorophyll Content in four species of Solanaceae Members – Int. Res. J. Biological Sci. 4(2), 16-20 – http://www.isca.in/IJBS/Archive/v4/i2/3.ISCA-IRJBS-2014-215.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/02/variability-of-stomatal-index-and-chlorophyll-content-in-solanaceae/ )

Akbarian M. R., Tabari M., Akbarinia M., Zarafshar M., Meave J. A., Yousefzadeh H., Sattarian A. B. (2011) – Effects of elevational gradient on leaf and stomatal morphology of Caucasian alder (Alnus subcordata) in the Hyrcanian forest, Iran – Folia Oecologica38.1.2011): 17.  – http://search.proquest.com/openview/8291dfe8a8c04d77829f1d894836deb7/1?pq-origsite=gscholar&cbl=29663 – (On our blog : https://plantstomata.wordpress.com/2016/05/16/the-effect-of-altitude-on-the-whole-leaf-and-stomatal-morphology/)

Akita K., Hasezawa S. Higaki T. (2013) – Breaking of plant stomatal one-cell-spacing rule by sugar solution immersion. – PLoS ONE 8, e72456 – https://doi.org/10.1371/journal.pone.0072456 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072456 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomatal-spacing-distribution-sucrose-solution-immersion-and-stomatal-clusters/)

Akita K., Hasezawa S. Higaki T. (2018) – Cortical microtubules and fusicoccin response in clustered stomatal guard cells induced by sucrose solution immersion – Plant Signaling & Behavior 13(Issue 4) https://doi.org/10.1080/15592324.2018.1454815 – https://www.tandfonline.com/doi/abs/10.1080/15592324.2018.1454815 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/immersion-treatment-with-sucrose-solution-perturbed-the-one-cell-spacing-of-stomata-but-not-the-cortical-microtubule-organization-required-to-open-stomatal-pores/

Akita S., Moss D. N. (1972) – Differential stomatal response between C3 and C4 species to atmospheric CO2 concentration and light – Crop Science 12: 789-793 – doi:10.2135/cropsci1972.0011183X001200060022x – https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060789 – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-response-c3-and-c4-species-co2-and-light/ )

Akter N., Okuma E., Sobahan M. A., Uraji M., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2013) – Negative regulation of methyl jasmonate-induced stomatal closure by glutathione in Arabidopsis – J. Plant Growth Regul. 32, 208–215 – 10.1007/s00344-012-9291-7 – [Cross Ref] – https://link.springer.com/article/10.1007%2Fs00344-012-9291-7 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/glutathione-and-stomatal-closure-2/

Akter N., Sobahan M. A., Hossain M. A., Uraji M., Nakamura Y., Mori I. C., et al. (2010) – The involvement of intracellular glutathione in methyl jasmonate signaling in Arabidopsis guard cells – Biosci. Biotechnol. Biochem. 74: 2504–2506 – doi: 10.1271/bbb.100513 –

Akter N., Sobahan M. A., Uraji M., Ye W., Hossain M. A., Mori I. C., et al. (2012) – Effects of depletion of glutathione on abscisic acid- and methyl jasmonate-induced stomatal closure in Arabidopsis thaliana – Biosci. Biotechnol. Biochem. 76: 2032–2037 – doi: 10.1271/bbb.120384 – https://www.ncbi.nlm.nih.gov/pubmed/23132563 – (On our blog : https://plantstomata.wordpress.com/2018/08/14/depletion-of-gsh-enhances-aba-and-meja-induced-stomatal-closure/ )

Al Afas N., Marron N., Ceulemans R. (2006) – Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. – Environ. Exp. Bot. 58: 279-286. – http://www.sciencedirect.com/science/article/pii/S0098847205001656?np=y – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomatal-characteristics-affect-biomass-production/)

Al-Ani T. A., Bierhuizen J. F. (1971) – Stomatal resistance, transpiration, and relative water content as influenced by soil moisture stress – Acta Bot. Neerl. 20(3): 318-326. – (On our blog : https://plantstomata.wordpress.com/2017/04/18/stomatal-resistance-can-be-used-as-a-tool-by-which-the-soil-water-plant-relationship-can-be-predicted/)

Aliniaeifard S., Matamoros M. P., van Meeteren U. (2014) – Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? – Physiol. Plant. 152: 688-699 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/04/stomatal-malfunctioning/).

Aliniaeifard S., van Meeteren U. (2013) – Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? – J. Exp. Bot. 64(12): 3551-3566 (CrossRef, Medline).PubMed Abstract  – (On our blog : https://plantstomata.wordpress.com/2015/09/06/long-term-low-vapour-pressure-deficit-vpd-and-stomata/).

Aliniaeifard S., Van Meeteren U. (2016) – Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning – J. Exp. Bot. (2014) 65 (22):6529-6542.doi: 10.1093/jxb/eru370 – http://jxb.oxfordjournals.org/content/65/22/6529.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/26/stomatal-responses-to-closing-stimuli-after-long-term-exposure-to-low-vpd/)

Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. – Plant Cell, 6, 319328. – CrossRef | [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/03/09/rapid-effects-of-abscisic-acid-in-commelina-stomata/).

Allaway W. G. (1973) – Accumulation of malate in guard cells of Vicia faba during stomatal opening – Planta 110: 63-70 – https://link.springer.com/article/10.1007%2FBF00386923?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/12/02/malate-accumulating-in-guard-cells-and-potassium-when-stomata-open-in-the-light/)

Allaway W. G. (1981) – Anions in stomatal operation. – In Stomatal Physiology. Edited by P. G. Jarvis and T. A. Mansfield p. 71-86. Cambridge University Press, Cambridge (Article not found)

Allaway W. G., Hsiao T. C. (1973) – Preparation of rolled epidermis of Vicia faba so that stomata are the only viable cells: analysis of guard cell potassium by flame photometry – Aust. J. Biol. Sci. 26: 309-318 – https://doi.org/10.1071/BI9730309 – http://www.publish.csiro.au/bi/BI9730309 – (On our blog : https://plantstomata.wordpress.com/2017/12/02/stomata-are-the-only-viable-cells-in-rolled-epidermis/)

Allaway W. G., Mansfield T. A. (1967) – Stomatal responses to changes in carbon dioxide concentration in leaves treated with 3–(4–chlorophenyl)–1, I-dimethylurea. – New Phytol., 66, 57. – DOI: 10.1111/j.1469-8137.1967.tb05986.x – Wiley Online LibraryCASWeb of Science® – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1967.tb05986.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomata-and-co2-in-leaves/)

Allaway W. G., Mansfield T. A.(1970) – Experiments and observations on the aftereffect of wilting on stomata of Rumex sanguineus. – Canad. J. Bot. 48, 513–521 (1970) – Doi: 10.1139/b70-072 – http://www.nrcresearchpress.com/doi/abs/10.1139/b70-072 – (On our blog : https://plantstomata.wordpress.com/2016/11/13/the-aftereffect-of-wilting-on-stomata/)

Allaway W. G., Milthorpe F. L. (1976) – Structure and functioning of stomata – In TT Kozlowski, ed, Water Deficits and Plant Growth, Vol 4 – Soil Water Measurement, Plant Responses, and Breeding for Drought Resistance. Academic Press, New York, pp 57–102.(No abstract)

Allaway W. G., Setterfield G. (1972) – Ultrastructural observations of guard cells of Vicia faba and Allium porrum – Can. J. Bot. 50: 1405–1413 – DOI: 10.1139/b72-169 – Google Scholar – http://www.nrcresearchpress.com/doi/abs/10.1139/b72-169 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/microstructures-in-stomata/)

Allègre M., Daire X., Heloir M. C., Trouvelot S., Mercier L., Adrian M. et al. (2007) – Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. – New Phytol. 2007;173:832–840. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/17286831 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomatal-deregulation-by-plasmopara-viticola-infection/)

Allègre M.Héloir M.-C.Trouvelot S.Daire X.Pugin A.Wendehenne D., Marielle Adrian M. (2009) – Are Grapevine Stomata Involved in the Elicitor-Induced Protection Against Downy Mildew? – Molecular plant-microbe interactions 22(8): 977-986 – https://doi.org/10.1094/MPMI-22-8-0977 – https://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-22-8-0977 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/grapevine-stomata-and-the-elicitor-induced-protection-against-downy-mildew/)

Allen G. J., Amtmann A., Sanders D. (1998) – Calcium-dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles. – J. Exp. Bot. 49 (Spec. Issue): 305-318 – http://www.jstor.org/stable/23695964?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/02/calcium-dependent-and-calcium-independent-k-mobilization-channels-in-stomatal-vacuoles/)

Allen G. J., Chu S. P., Harrington C. L., Schumacher K., Hoffmann T., Tang Y. Y., Grill E.,Schroeder J. I. (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. – Nature 411: 10531057. CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/07/stomatal-movements-and-guard-cell-calcium-oscillation-parameters/)

Allen G. J., Chu S. P., Schumacher K., Shimazaki C. T., Vafeados D., Kemper A., Hawke S. D.,Tallman G., Tsien R. Y., Harper J. F., Chory J., Schroeder J. I. (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3mutant. – Science 289: 23382342. – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/10/stimulus-specific-calcium-oscillations-are-necessary-for-stomatal-closure/).

Allen G. J., Kuchitsu K., Chu S. P. Murata Y., Schroeder J. I. (1999)Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. – Plant Cell 11: 1785–1798 – CrossRef |PubMedAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/03/10/aba-induced-cytoplasmic-calcium-rises-in-stomata/).

Allen G. J., Kwak J. M., Chu S. P., Llopis J., Tsien R. Y., Harper J. F., Schroeder J. I. (1999) – Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells.Plant Journal 19: 735738. – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/07/cameleon-calcium-indicator-in-arabidopsis-stomata/).

Allen G. J., Sanders D. (1994) – Two voltage‐gated, calcium release channels coreside in the vacuolar membrane of broad bean guard cells – The Plant Cell 6 : 685-694 – DOI: https://doi.org/10.1105/tpc.6.5.685 – http://www.plantcell.org/content/6/5/685.short – (On our blog : https://plantstomata.wordpress.com/2018/09/06/two-voltage%e2%80%90gated-calcium-release-channels-coreside-in-the-vacuolar-membrane-of-stomata/ )

Allen G. J., Sanders D. (1996) Control of ionic currents in guard cell vacuoles by cytoplasmic and luminal calcium. – Plant J., 10, 10551069. – Wiley Online Library |PubMed | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/ionic-currents-in-guard-cell-vacuoles/).

Allen M. T., Pearcy R. W.  (2000) –  Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. – Oecologia, 122: 470-478. (http://cat.inist.fr/?aModele=afficheN&cpsidt=1403013). – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomatal-behavior-in-a-seasonally-dry-tropical-rain-forest/).

Almeida B. K. (2017) – Comparison of Navel and Laminar Stomata Morphology and Stomatal Conductance in the White Water Lily, Nymphaea odorata (Nymphaeaceae) – FIU Bio Honors 77 (Undergraduate Honors Theses. 77. ) – http://digitalcommons.fiu.edu/bio_honors/77/ – (On our blog : https://plantstomata.wordpress.com/2018/02/05/although-navel-and-laminar-stomata-differ-morphologically-in-nymphaea-odorata-they-do-not-differ-in-stomatal-conductance/ )

Alonso R., Elvira S., Sanz M. J., Emberson L., Gimeno B. S. (2007) – Parameterization of the stomatal component of the DO3SE model for Mediterranean evergreen broadleaf species – The Scientific World 7: 119-127 –

Alonso R., Elvira S., Sanz M. J., Gerosa G., Emberson L. D., Bermejo V., Gimeno B. S. (2008) – Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes – Environmental Pollution 155: 473–480 – doi: 10.1016/j.envpol.2008.01.032 – Epub 2008 Mar 14 – https://www.ncbi.nlm.nih.gov/pubmed/18342418 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/a-parameterization-of-the-stomatal-component-of-the-do3se-model-to-estimate-ozone-fluxes/ )

Al-Rawahy S. H., Al-Amri H., Al-Hinai A., Sherwani N. (2007) – Growth and stomatal conductance of Prosopis cineraria (Ghaff Tree) exposed to sulphur dioxide. – Asian J. Plant Sci., 6: 673-677. (http://scialert.net/abstract/?doi=ajps.2007.673.677) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomatal-conductance-and-so2/).

Altamura M. M., Zaghi D., Salvi G., De Lorenzo G., Bellincampi D. (1998) – Oligogalacturonides stimulate pericycle cell wall thickening and cell divisions leading to stoma formation in tobacco leaf explants – Planta 204(4): 429-436 – journal ISSN :0032-0935 – https://www.infona.pl/resource/bwmeta1.element.springer-93f5681c-7c0e-3280-9c27-f5178ef57117 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/oligogalacturonides-stimulate-cell-divisions-leading-to-stoma-formation/)

Alves de Sena J.O., Zaidan H. A., Castro P. R. C. (2007) – Transpiration and stomatal resistance variations of perennial tropical crops under soil water availability conditions and water deficit. – Brazilian Arch. Biol. Technol., 50: 225-230 – (On our blog : https://plantstomata.wordpress.com/2016/05/05/stomatal-resistance-variations-of-perennial-tropical-crops/)

Alvim P. de T. (1946) – A influência do umidecimento des folhas sôbre a abertura dos estômatos – Revista Ceres 7: 141-152 (Article not found)

Alvim P. de T. (1949) – A actividad e fotossintética das células guardas – Lilloa 19: 5-10. (Article not found)

Alvim P. de T. (1949) – Studies on the mechanism of stomatal behavior – Amer. Journ. Bot. 36: 781-791. – (On our blog : https://plantstomata.wordpress.com/2017/04/18/38657/)

Alvim P. de T. (1951) – The influence of the green mesophyll in stomatal movement – Plant Physiol.  1951: 206-209 – (On our blog : https://plantstomata.wordpress.com/2017/04/18/green-mesophyll-and-stomatal-movement/)

Alwerdt J. L., Gibson D. J., Ebbs S. D., Wood A. J. (2006) – Intraspecific interactions in Arabidopsis thaliana and the stomatal mutants tmm1-1 and sdd1-2. – Biol Plantarum 50(2): 205–209 – https://link.springer.com/article/10.1007%2Fs10535-006-0008-2?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/12/02/intraspecific-interactions-in-stomatal-mutants-tmm1-1-and-sdd1-2/)

Aminian R., Mohammadi S., Hoshmand S. A., Khodambashi M. (xxxx) – The genetic analysis of stomatal frequency and size, stomatal conductance, photosynthetic rate and yield in wheat (Triticum aestivum L.) using substitution lines series – https://shigen.nig.ac.jp/ewis/article/html/82/article.html – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-frequency-stomatal-size-stomatal-conductance-photosynthetic-rate-and-yield/ )

Amodeo G., Escobar A., Zeiger E. (1994) – A Cationic Channel in the Guard Cell Tonoplast of Allium cepa – Plant Physiol.  105(3): 999–1006 – PMCID: PMC160751 – PMID: 12232260 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160751/ – (On our blog : https://plantstomata.wordpress.com/2018/08/16/a-cationic-channel-in-the-guard-cell-tonoplast-of-stomata/ )

Amodeo G., Srivastava A., Zeiger E. (1992) – Vanadate inhibits blue light-stimulated swelling of Vicia guard cell protoplasts – Plant Physiol. 100: 1567-1570 – PMCID: PMC1075821 – PMID: 16653159– http://www.plantphysiol.org/content/plantphysiol/100/3/1567.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/18/vanadate-inhibits-blue-light-stimulated-swelling-of-stomatal-protoplasts/ )

Amodeo G., Talbott L. D., Zeiger E. (1996) – Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation – Plant Cell Physiol. 37: 575–579 – doi: 10.1093/oxfordjournals.pcp.a028983 – https://academic.oup.com/pcp/article/37/5/575/1818430 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/use-of-potassium-and-sucrose-by-stomata/ )

Amsbury S., Hunt L., Elhaddad N., Baillie A., Lundgren M., Verhertbruggen Y., Scheller H. V., Knox J. P., Fleming A. J., Gray J. E. (2016) – Stomatal function requires pectin de-methyl-esterification of the guard cell wall. – Curr Biol 26: 2899–2906 – ISSN1879-0445 – 10.1016/j.cub.2016.08.021 – https://desmarais-lab.mit.edu/publications/stomatal-function-requires-pectin-de-methyl-esterification-guard-cell-wall – (On our blog : https://plantstomata.wordpress.com/2017/11/13/a-pectin-methylesterase-gene-pme6-highly-expressed-in-guard-cells-is-required-for-stomatal-function/)

An Y., Liu L., Chen L., Wang L. (2016) – ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells – Front. Plant Sci., 11 April 2016 | http://dx.doi.org/10.3389/fpls.2016.00482 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00482/full – (On our blog : https://plantstomata.wordpress.com/2016/04/12/ala-aba-and-stomatal-movements/)

An Z. F., Jing W., Liu Y. L., Zhang W. H. (2008) – Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. – J. Exp. Bot. 59, 815–825. doi: 10.1093/jxb/erm370 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/05/cuao-in-vicia-faba-guard-cells-is-an-essential-enzymatic-source-for-h2o2-production-in-aba-induced-stomatal-closure/)

Anav A., De Marco A., Proietti C., Alessandri A., Dell’Aquila A., Cionni I., Friedlingstein P., Khvorostyanov D., Menut L., Paoletti E., Sicard P., Sitch S., Vitale M. (2016) – Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. – Global Change Biol, 22: 1608–1627. doi:10.1111/gcb.13138 – http://onlinelibrary.wiley.com/doi/10.1111/gcb.13138/abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/31/ozone-risk-assessment-and-stomatal-uptake-pody/)

Anav A., Liu Q., De Marco A., Proietti C., Savi F., Paoletti E., Piao S. (2017) – The role of plant phenology in stomatal ozone flux modeling – Glob. Change Biol. 24: 235–248 – https://doi.org/10.1111/gcb.13823 – https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13823 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/improved-estimates-of-stomatal-ozone-fluxes-require-a-better-representation-of-plant-phenology-in-the-models-used-for-o3-risk-assessment/ )

Anav A., Proietti C., Menut L., Carnicelli S., De Marco A., Paoletti E. (2018 ?) – Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone – Atmospheric Chemistry-and Physics (Accepted for review: 29 Nov 2017 ) – https://doi.org/10.5194/acp-2017-1057 – https://www.atmos-chem-phys-discuss.net/acp-2017-1057/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/sensitivity-of-stomatal-conductance-to-soil-moisture/ )

Anderson B. E., Ward J. M., Schroeder J. I. (1994) – Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. – Plant Physiology 104(4): 1177–1183 – DOI: https://doi.org/10.1104/pp.104.4.1177 – http://www.plantphysiol.org/content/104/4/1177.short – (On our blog : https://plantstomata.wordpress.com/2017/12/02/intracellular-aba-alone-does-not-suffice-to-inhibit-stomatal-opening/)

Anderson C. T., Yue R. (2016) – Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis thalianaPlant Physiology January 4, 2016 pp.01066.2015 – doi: http://dx.doi.org/10.1104/pp.15.01066 – http://www.plantphysiol.org/content/early/2016/01/04/pp.15.01066 – (On our blog : https://plantstomata.wordpress.com/2016/04/24/cellulose-and-xyloglucan-in-the-walls-of-stomatal-guard-cells/)

Ando E., Kinoshita T. (2018) – Red Light-Induced Phosphorylation of Plasma Membrane H+-ATPase in Stomatal Guard Cells – Plant Physiology – DOI: https://doi.org/10.1104/pp.18.00544 – http://www.plantphysiol.org/content/178/2/838 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/red-light-induced-pm-h-atpase-phosphorylation-in-guard-cells-promotes-stomatal-opening-in-whole-leaves-2/ )

Ando E.Ohnishi M.Wang Y.Matsushita T.Watanabe A.,Hayashi Y.Fujii M.Ma J. F.Inoue S.Kinoshita T. (2013) – TWIN SISTER OF FTGIGANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis – Plant Physiol 16215291538 – DOI: https://doi.org/10.1104/pp.113.217984 – http://www.plantphysiol.org/content/162/3/1529?ijkey=215e17cafb15c9d6315d76b6c05ce4d5f88407a4&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/10/06/photoperiodic-flowering-components-tsf-gi-and-co-positively-affect-stomatal-opening-2/ )

Andrés Z., Pérez-Hormaeche J., Leidi E. O., Schlücking K., Steinhorst L.,  McLachlan D. H., Schumacher K., Hetherington A. M., Kudla J., Cubero B., Pardo J. M. (2014) – Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake – PNAS | Published online – PNAS 111(17): E1806–E1814 –  doi: 10.1073/pnas.1320421111 – http://www.pnas.org/content/111/17/E1806 – (On our blog : https://plantstomata.wordpress.com/2017/11/29/regulation-of-stomatal-aperture-by-tonoplast-k-uptake/)

Anonymous (2014) – Difference between stomata and hydathodes (water stomata) – http://www.majordifferences.com/2014/12/difference-between-stomata-and.html – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomata-and-hydathodes-water-stomata/)

Anonymous (2016) – An amino acid controls plants’ breath – Phys.Org 2016-12-06 – http://phys.org/news/2016-12-amino-acid.html – (On our blog : https://plantstomata.wordpress.com/2016/12/07/the-role-of-calcium-in-the-opening-and-closing-of-stomata/)

Anonymous (x) – Structure, Function, and Density of Stomata – http://www.kcvs.ca/site/projects/physics_files/sem/resources/stomata.html# – (On our blog : https://plantstomata.wordpress.com/2018/08/15/structure-function-and-density-of-stomata/ )

Anonymous (x) – SimSphere Workbook – Chapter 9 – Prifysgol Aberystwyth University – https://www.aber.ac.uk/en/iges/research-groups/earth-observation-laboratory/research/simsphere/workbook/chapter-9/  – (On our blog – https://plantstomata.wordpress.com/2016/04/07/about-stomatal-resistance-and-stomatal-humidity-resonse/)

Anonymous (x) – Transpiration – Water Movement through Plants – Transpiration – Factors Affecting Rates of Transpiration – Plant & Soil Sciences eLibrary (PRO) – https://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1092853841&topicorder=6 – (On our blog : https://plantstomata.wordpress.com/2018/01/07/factors-affecting-rates-of-transpiration/ )

Anonymous – Universität Würzburg (x) – Guard cell function under salt stress conditions – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/dr_rosalia_deeken/guard_cell_function_under_salt_stress_conditions/ – (On our blog : https://plantstomata.wordpress.com/2017/11/13/salt-stress-conditions-and-stomatal-function-project/)

Antunes W. C., Provart N. J., Williams T. C., Loureiro M. E. (2012) – Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity – Plant Cell Environ. 35(4): 747-759 – PMID: 21999376 – http://www.cagef.utoronto.ca/changes-in-stomatal-function-and-water-use-efficiency-in-potato-plants-with-altered-sucrolytic-activity/ – (On our blog : https://plantstomata.wordpress.com/2017/11/25/the-important-role-that-sucrose-breakdown-may-play-in-stomatal-function/)

Aphalo P. J., Jarvis P. G. (1993) – The boundary layer and the apparent responses of stomatal conductance to wind speed and to the mole fractions of CO2 and water vapour in the air. – Plant, Cell and Environment 16, 771783. – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/03/14/7100/)

Aphalo P. J., Jarvis P. G. (1993) – An analysis of Ball’s empirical model of stomatal conductance – Annals of Botany 72: 321–327 –

Aphalo P. J., Jarvis P. G. (1993) – Separation of direct and indirect responses of stomata to light: results from a leaf inversion experiment at constant intercellular CO2 molar fraction – Journal of Experimental Botany 44: 791-800 –

Apostolakos P., Galatis B. (1987) – Induction, polarity and spatial control of cytokinesis in some abnormal subsidiary cell mother cells of Zea mays – Protoplasma 140: 26-42  – https://doi.org/10.1007/BF01273253 https://plantstomata.wordpress.com/2018/08/15/particular-structural-features-established-in-guard-cell-mother-cells-affect-stomatal-morphogenesis/ ) 

Apostolakos P., Galatis B. (1998) – Probable cytoskeleton involvement in stomatal pore formation in Asplenium nidus L. – Protoplasm 203: 48–57 – DOI: 10.1007/BF01280586 – https://link.springer.com/article/10.1007%2FBF01280586 – (On our blog : https://plantstomata.wordpress.com/2018/08/25/this-stomatal-pore-formation-is-a-unique-process-which-is-probably-restricted-to-ferns/ )

Apostolakos P., Galatis B. (1999) – Microtubule and Actin Filament Organization during Stomatal Morphogenesis in the Fern Asplenium nidus. II. Guard Cells –New Phytologist 141(2): 209-223 – https://www.jstor.org/stable/2588554?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/08/15/particular-structural-features-established-in-guard-cell-mother-cells-affect-stomatal-morphogenesis/ )

Apostolakos P., Livanos P., Giannoutsou E., Panteris E., Galatis B. (2018) – The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division – Annals of Botany, mcx193, https://doi.org/10.1093/aob/mcx193 – https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcx193/4810445 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cross-talk-during-subsidiary-cell-formation-in-zea-mays-components-orchestrating-cell-polarization-and-asymmetric-division/ )

Apostolakos P., Livanos P., Galatis B. (2009) – Microtubule involvement in the deposition of radial fibrillar callose arrays in stomata of the fern Asplenium nidus L. – Cell Motility and the Cytoskeleton 66: 342–349 – doi: 10.1002/cm.20366 – https://www.ncbi.nlm.nih.gov/pubmed/19363785 – (On our blog : https://plantstomata.wordpress.com/2018/08/25/deposition-of-significant-callose-quantities-in-guard-cells-of-stomata/ )

Apostolakos P., Livanos P., Nikolakopoulou T. L., Galatis B. (2009) – The role of callose in guard-cell wall differentiation and stomatal pore formation in the fern Asplenium nidus – Ann Bot.104(7): 1373–1387 – doi:  10.1093/aob/mcp255 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778399/– (On our blog : https://plantstomata.wordpress.com/2018/08/15/callose-in-guard-cell-wall-differentiation-and-stomatal-pore-formation/

Apostolakos P., Livanos P., Nikolakopoulou T. L., Galatis B. (xxxx) – Callose implication in stomatal opening and closure in the fern Asplenium nidus – New Phytologist 186(3):  623 – 635 – DOI10.1111/j.1469-8137.2010.03206.x – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-186-i-3-nph3206 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/callose-participates-in-stomatal-movement/)

Apostolakos P., Panteris E., Galatis B. (1997) – Microtubule and actin filament organization during stomatal morphogenesis in the fern Asplenium nidus I: Guard cell mother cell – Protoplasma 198: 93–106 – https://doi.org/10.1007/BF01282135 – https://link.springer.com/article/10.1007/BF01282135#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-morphogenesis-in-the-fern-asplenium-nidus-i-guard-cell-mother-cell/ )

Apostolakos P., Panteris E., Galatis B. (2008) – The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays – Cell Motil Cytoskeleton 65(11): 863-875 – doi: 10.1002/cm.20308 – https://www.ncbi.nlm.nih.gov/pubmed/18785264 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/phospholipases-c-and-d-in-the-asymmetric-division-of-subsidiary-cell-mother-cells/ )

Apple M. E., Olszyk D. M., Ormrod D. P., Lewis J., Southworth D., Tingey D.T. (2000) – Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature – Int J Plant Sci. 2000 Jan;161(1):127-132. (http://www.ncbi.nlm.nih.gov/pubmed/10648202) – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomata-of-douglas-fir-needles-exposed-to-climate-change/).

Appleby R. F., Davies W. J. (1983) -The structure and orientation of guard cells in plants showing stomatal responses to changing vapour pressure difference – Ann. Bot. 52(4): 459-468 – https://doi.org/10.1093/oxfordjournals.aob.a086601 – https://academic.oup.com/aob/article-abstract/52/4/459/183309?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/08/15/guard-cells-and-stomatal-responses-to-changing-vapour-pressure-difference/ )

Arango-Velez A., Zwiazek J. L., Thomas B. R., Tyree M. T. (2011) – Stomatal factors and vulnerability of stem xylem to cavitation in poplars – Physiologia Plantarum 143: 154-165 –

Araújo W. L., Nunes-Nesi A., Osorio S., Usadel B., Fuentes D., Nagy R., Balbo I.Lehmann M.Studart-Witkowski C.Tohge T., Martinoia E.Jordana X.DaMatta F. M. Fernie A. R. (2011) – Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. – Plant Cell 23, 600–627 – doi: 10.1105/tpc.110.081224 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantcell.org/content/23/2/600 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/antisense-inhibition-of-the-iron-sulphur-subunit-of-succinate-dehydrogenase-and-stomatal-aperture/ )

Araújo W. L.Fernie A. R.Nunes-Nesi A. (2011) Control of stomatal aperture: a renaissance of the old guard. – Plant Signaling & Behavior 613051311 – DOI 10.4161/psb.6.9.16425 – CrossrefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/21847028 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/the-involvement-of-environmental-signals-such-as-light-the-concentration-of-atmospheric-co2-and-endogenous-plant-hormones-in-stomatal-aperture/

Archana J. S., Valon C.,  Leung J.(2011) – A brand new START: abscisic acid perception and transduction in the guard cell – Sci. Sign. 2011:Vol. 4, Issue 201, pp. re4 – DOI: 10.1126/scisignal.2002164 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/07/the-role-of-aba-in-stomata/)

Arend M., Schnitzler J.-P., Ehlting B., Hänsch R., Lange T., Rennenberg H., Himmelbach A., Grill E., Fromm J. (2009) – Expression of the Arabidopsis Mutant abi1Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars – Plant Physiology December 2009 vol. 151 no. 4 2110-2119. (https://plantstomata.wordpress.com/2015/03/03/a-role-for-aba-in-regulating-stomatal-development/). (On our blog : https://plantstomata.wordpress.com/2015/03/03/a-role-for-aba-in-regulating-stomatal-development/).

Arends J. (1925) – Über den Einfluss chemischer Agenzien auf Stärkegehalt und osmotischen Wert der Spaltöffnungsschliesszellen – Planta 1: 84-115 – (On our blog : https://plantstomata.wordpress.com/2017/04/19/effect-of-chemical-substances-on-starch-and-osmotic-value-of-stomata/)

Arens T. (1968) – Radial Strukturen in den Stomata von Ouratea spectabilis (Mart.) Engl. – Protoplasma 66: 403-411 – https://link.springer.com/article/10.1007/BF01255867 – (On our blog : https://plantstomata.wordpress.com/2017/08/19/radial-structures-in-the-stomata-of-ouratea-ochnaceae-in-german/)

Armendariz A. L., Talano M. A., Villasuso A. L., Travaglia C., Racagni G. E., Reinoso H., Agostini E. (2016) – Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean – Plant Physiology and Biochemistry 103: 45-52 – DOI10.1016/j.plaphy.2016.02.041 – https://www.infona.pl/resource/bwmeta1.element.elsevier-a6914dd4-211d-3c8d-aa20-d5637f4afcf8 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/arsenic-induces-rapid-and-significant-stomatal-closure/)

Armstrong F., Leung J., Grabov A., Brearley J., Giraudat J., Blatt M.R.(1995) – Sensitivity to abscisic acid of guard cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. – Proc. Natl Acad. Sci. USA, 92, 95209524. – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2015/10/09/the-role-of-abi1-1-a-mutant-arabidopsis-gene-in-stomata/).

Arnaud D., Hwang, I. (2015) – A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. – Mol. Plant 8, 566–581. doi: 10.1016/j.molp.2014.10.012 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/07/pathways-to-regulate-stomatal-defenses-to-bacterial-pathogens/)

Arntzen C. J., Haugh M., Bobick S. (1973) – Induction of stomatal closure by Helminthosporium maydis pathotoxin – Plant Physiol. 52: 569-574. – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC366548/ – (On our blog : https://plantstomata.wordpress.com/2017/12/04/64468/)

Arve L. E, Terfa M. T., Gislerød H. R., Olsen J. E., Torre S. (2013) – High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. – Plant Cell. Environ.36(2): 382-392 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/05/stomata-and-the-aba-regulation-in-rose-leaves/).

Arve L. E, Torre S., Olsen J. E, Tanino K. K. (2011) – Stomatal Responses to Drought Stress and Air Humidity – “Abiotic Stress in Plants – Mechanisms and Adaptations”, book edited by Arun Shanker and B. Venkateswarlu, ISBN 978-953-307-394-1, (2011) – (http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/stomatal-responses-to-drought-stress-and-air-humidity). – (On our blog : https://plantstomata.wordpress.com/2015/04/11/stomata-and-drought/).

Asai N., Nakajima N., Kondo N., Kamada H. (1999) – The effect of osmotic stress on the solutes in guard cells of Vicia faba L. – Plant Cell Physiol 40:843–849 CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/16/osmotic-stress-and-stomata/)

Asai N., Nakajima N., Tamaoki M., Kamada H., Kondo N. (2000) – Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement. – Plant Cell Physiol 41:10–15 CrossRef PubMed – (On our blog : https://plantstomata.wordpress.com/2016/03/18/role-of-malate-synthesis-in-stomata/)

Ask Nature (2008-2015) – Guard cells regulate gas and moisture exchange: plants – © 2008-2015 The Biomimicry Institute. (http://www.asknature.org/strategy/8c389105f450bb568e1eed4725c4c195#.VQasDRDF-6F) – (On our blog : https://plantstomata.wordpress.com/2015/03/08/guard-cell-turgor-regulation-and-whole-plant-responses/).

Asl L. K., Dhondt S., Boudolf V., Beemster G. T., Beeckman T., Inzé D., Govaerts W., De Veylder L. (2011) – Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells – Plant Physiology (2011) 156: 2172-2183 – http://www.plantphysiol.org/content/early/2011/06/21/pp.111.181180 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/distinct-division-and-expansion-patterns-for-pavement-and-guard-cells/)

Aslam M. , Zamir M. S. I. , Anjum S. A. , Khan I., Tanveer M. (2015) – An investigation into morphological and physiological approaches to screen maize (Zea mays L.) hybrids for drought tolerance – Cereal Research Communications 43(1): 41-51 (2015) – https://doi.org/10.1556/CRC.2014.0022 – http://akademiai.com/doi/abs/10.1556/CRC.2014.0022 – (On our blog : https://plantstomata.wordpress.com/2017/12/04/the-maize-hybrid-32-f-10-showed-a-better-stomatal-conductance-gs/)

Aslani F., Bernard F., Mirzajani F., Hadian J. (2015) – Comparison of in vitro seeds and shoot tips colchicine treatment methods on of Thymus daenensis Celak via the study of morphological features of stomata and cellular DNA content – jppf. 2015; 3 (10) :1-8. (http://www.jispp.ir/browse.php?a_id=151&sid=1&slc_lang=en) – (On our blog : https://plantstomata.wordpress.com/2015/04/12/stomata-and-induction-of-polyploidy/).

Aslantaş R., Karakurt H. (2009) – The effects of altitude on stomata number and some vegetative growth parameters of some apple cultivars. – Research Journal of Agriculture and Biological Sciences 5, 853–857 – http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2009/853-857.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/05/the-effects-of-altitude-on-stomata-number/)

Assmann S. M. (1988) – Enhancement of the Stomatal Response to Blue Light by Red Light, Reduced Intercellular Concentrations of CO2, and Low Vapor Pressure Differences – Plant Physiology 87(1): 226-231 – doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​87.​1.​226 – http://www.plantphysiol.org/content/plantphysiol/87/1/226.full.pdf  – (On our blog : https://plantstomata.wordpress.com/2016/03/22/stomatal-response-to-blue-light/)

Assmann S. M. (1992) –  Effects of light quality during development on the morphology and stomatal physiology of Commelina communis – Oecologia 92(2):188-195 · November 1992 – DOI: 10.1007/BF00317363 – https://www.researchgate.net/publication/226608952_Effects_of_light_quality_during_development_on_the_morphology_and_stomatal_physiology_of_Commelina_communis – (On our blog : https://plantstomata.wordpress.com/2016/07/26/the-specific-stomatal-response-to-blue-light-is-plastic/)

Assmann S. M. (1993) Signal transduction in guard cells. – Annual Review of Cell Biology 9: 345375 – doi: 10.1146/annurev.cb.09.110193.002021 – CrossRef |PubMed  – https://www.annualreviews.org/doi/10.1146/annurev.cb.09.110193.002021 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/signal-transduction-in-stomata/ )

Assmann S. M. (1999) The cellular basis of guard cell sensing of rising CO2 – Plant, Cell & Environment 22: 629637 – Wiley Online Library |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/guard-cell-sensing-of-rising-co2-2/)

Assmann S. M. (2003) – OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. – Trends Plant Sci. 8, 151153. – CrossRef |PubMed |CAS – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/23/the-ost1-gene-and-stomatal-opening/)

Assmann S.M. (2010) Abscisic acid signal transduction in stomatal responses. In Plant Hormones. Biosynthesis, Signal Transduction, Action! Ed. Davies P.J. Springer,Dordrecht, pp 399426Google Scholar (no abstract).

Assmann S. M., Armstrong F. (1999) – Hormonal regulation of ion transporters: the guard cell system. – In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 337-361. Elsevier, Amsterdam 1999. (Article not found)

Assmann S. M., Baskin T. I. (1998) – The function of guard cells does not require an intact array of cortical microtubules – Journal of Experimental Botany 49: 163–170 – https://doi.org/10.1093/jxb/49.319.163 – https://academic.oup.com/jxb/article/49/319/163/576443 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/intact-microtubule-arrays-are-not-invariably-required-for-stomatal-function/ )

Assmann S. M., Grantz D. A. (1990) – Stomatal response to humidity in sugarcane and soybean: effect of vapour pressure difference on the kinetics of the blue light response. – Plant, Cell & Environment, 13: 163–169. – doi:10.1111/j.1365-3040.1990.tb01288.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1990.tb01288.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/epidermal-rather-than-bulk-leaf-water-status-mediates-the-vpd-effect-on-stomatal-kinetics/)

Assmann S. M., Jegla T. (2016) – Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. – Curr. Opin. Plant Biol. 33, 157–167. – doi: 10.1016/j.pbi.2016.07.003 – http://europepmc.org/abstract/med/27518594 – (On our blog : https://plantstomata.wordpress.com/2018/01/19/recent-insights-on-stomatal-responses-to-light-aba-and-co2/ )

Assmann S. M., Lee D. M., Markus P. (1992) – Rapid stomatal response to red-light in Zea mays. – Photochem Photobiol. 56: 685–689.- doi:10.1111/j.1751-1097.1992.tb02222.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1751-1097.1992.tb02222.x/full – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-response-to-red-light/)

Assmann S. M., Schwartz A. (1992) – Synergistic effect of light and fusicoccin on stomatal opening – Epidermal Peel and Patch Clamp Experiments – Plant Physiol. 98, 1349–1355. – doi: 10.1104/pp.98.4.1349 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080356/ – (On our blog : https://plantstomata.wordpress.com/2018/02/11/effect-of-light-and-fusicoccin-on-stomatal-opening/ )

Assmann S. M., Shimazaki K. I. (1999) – The multisensory guard cell. Stomatal responses to blue light and abscisic acid. – Plant Physiol. 119(3): 809-815 (337-361 ?) .- CrossRefPubMed | FREE Full Text http://www.plantphysiol.org/content/119/3/809.full?ijkey=7a12ea1668efa214d91fef46a8c6bc1a4ed58734&keytype2=tf_ipsecsha -(On our blog : https://plantstomata.wordpress.com/2015/09/07/opening-of-stomata-by-blue-light-and-closure-of-stomata-by-aba/).

Assmann S. M., Simoncini L., Schroeder J. I.  (1985) – Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. – Nature 318: 285–287 – DOI: 10.1038/318285a0 – https://www.nature.com/articles/318285a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/05/blue-light-activates-electrogenic-ion-pumping-in-guard-cell-protoplasts/)

Assmann S. M., Snyder J. A., Lee Y-R. J. (2000) – ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. – Plant Cell Environ. 23(4): 387-395  – (CrossRef). –  Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2015/09/07/mutants-of-arabidopsis-with-a-wild-type-stomatal-response-to-humidity/).

Assmann S. M., Wang X.-Q. (2001) From milliseconds to millions of years: guard cells and environmental responses. Current Opinion in Plant Biology 4: 421428. – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/07/how-stomata-guard-cells-respond-to-abscisic-acid-and-blue-light/)

Assmann S. M., Zeiger E. (1985) – Stomatal responses to CO2 in Paphiopedilum and Phragmipedium – role of the guard cell chloroplast – Plant Physiol. 77: 461–464 – DOI: https://doi.org/10.1104/pp.77.2.461 – http://www.plantphysiol.org/content/77/2/461 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/involvement-of-guard-cell-chloroplasts-in-the-stomatal-response-to-co2/ )

Assmann S. M., Zeiger E. (1987) – Guard cell bioenergetics – In Stomatal Function,, ed. E. Zeiger, G. Farquhar, I. R. Cowan, pp. 163-194 – Stanford, CA: Stanford Univ. Press – (Article not found).

Assouline S., Or D. (2015) – Plant water use efficiency over geological time—evolution of leaf stomata configurations affecting plant gas exchange. – PLOS ONE 10(4): e0127015. https://doi.org/10.1371/journal.pone.0127015 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067757 – (On our blog : https://plantstomata.wordpress.com/2017/12/05/evolution-of-leaf-stomata-configurations/)

Aston M. J. (1976) – Variation of stomatal diffusive resistance with ambient humidity in sunflower (Helianthus annuus) – Aust. J. Plant Physiol. 3: 489-502. – Google Scholar – http://www.publish.csiro.au/fp/PP9760489 – (On our blog : https://plantstomata.wordpress.com/2017/02/01/stomatal-diffusive-resistance-and-ambient-humidity/)

Aston M. J. (1978) – Differences in the behaviour of adaxial and abaxial stomata of amphistomatous sunflower leaves: Inherent or environmental ? – Functional Plant Biology 5: 211-218 – DOI 10.1071/PP9780211 – https://www.researchgate.net/publication/262994181_Differences_in_the_Behaviour_of_Adaxial_and_Abaxial_Stomata_of_Amphistomatous_Sunflower_Leaves_Inherent_or_Environmental – (On our blog : https://plantstomata.wordpress.com/2017/12/05/adaxial-and-abaxial-stomata-of-amphistomatous-sunflower-leaves/)

Atkinson C. J. (1991) – The flux and distribution of xylem sap calcium to adaxial and abaxial epidermal tissue in relation to stomatal behaviour. – J Exp Bot 42: 987–993 – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/19/xylem-sap-ca-to-act-as-a-regulator-of-stomatal-behaviour/).

Atkinson C. J. (2014) Is xylem sap calcium responsible for reducing stomatal conductance after soil liming? – Plant and Soil, 2014, 382, 1-2, 349 – http://link.springer.com/article/10.1007%2Fs11104-014-2180-z – (On our blog : https://plantstomata.wordpress.com/2016/03/19/calcium-and-reduction-of-stomatal-conductance/)

Atkinson C. J., Mansfield T. A.Davies W. J. (1990) Does calcium in xylem sap regulate stomatal conductance? New Phytologist, 1990, 116, 1, 19-27 – DOI: 10.1111/j.1469-8137.1990.tb00506.x  –CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1990.tb00506.x/full – (On lour blog : https://plantstomata.wordpress.com/2016/03/19/calcium-and-regulation-of-stomatal-conductance/)

Atkinson C. J., Mansfield T. A., Kean A. M., Davies W. J. (1989) Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. – New Phytologist 111: 917. – Wiley Online Library |CrossRef– http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1989.tb04212.x/full – (On our blog : https://plantstomata.wordpress.com/2016/03/18/control-of-stomatal-aperture-by-calcium/)

Atkinson C. J., Mansfield T. A., McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Interactions Of Calcium With Abscisic-Acid In The Control Of Stomatal Aperture. – Biochemie Und Physiologie Der Pflanzen 186, 333-339. – http://www.sciencedirect.com/science/article/pii/S0015379611802283 – (On our blog : https://plantstomata.wordpress.com/2016/03/19/ca-aba-and-stomatal-aperture/)

Atkinson C .J., Wookey P. A., Mansfield T. A. (1991) – Atmospheric pollution and the sensitivity of stomata on barley leaves to abscisic acid and carbon dioxide – New Phytologist 117: 535-541 – DOI: 10.1111/j.1469-8137.1991.tb00958.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1991.tb00958.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/11/pollution-aba-co2-and-stomata/ )

Atwell B. J. (1999) – Plants in Action – Macmillan Education AU, 1999 – Reference – 664 pp. – https://books.google.be/books/about/Plants_in_Action.html?id=chWs4ewSzpEC&redir_esc=yhttp://plantsinaction.science.uq.edu.au/edition1/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/plants-in-action-book/ )

Atwell B. J., Kriemann P. E., Turnbull C. G. N., Eamus D., Bieleski R. L., Farquhar G. (Eds.) – (1999) – Stomatal structure and function – In: Plants in Action, Adaptation in Nature, Performance in Cultivation – MacMillan Education Australia, Melbourne. – http://plantsinaction.science.uq.edu.au/edition1/?q=content/15-2-1-stomatal-structure-and-function – (On our blog : https://plantstomata.wordpress.com/2015/07/19/2224/)

Aubert Y.Vile D.Pervent M.Aldon D.Ranty B.Simonneau T.Vavasseur A.Galaud J. (2010) – RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana – Plant & Cell Physiol. – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/rd20-participates-in-stomatal-control/ )

Aubry S., Aresheva O., Reyna-Llorens I., Smith-Unna R. D., Hibberd J. M., Genty B. (2016) – A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra – Plant Physiol. 170: 1345–1357 – doi: 10.1104/pp.15.01203 – https://www.ncbi.nlm.nih.gov/pubmed/26818731?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-specific-transcriptome-signature-for-guard-cells-from-a-c4-plant/ )

Augé R. M., Green C. D., Stodola A. J. W., Saxton A. M., Olinick J. B., Evans R. M. (2000) –  Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in a natural habitat. – New Phytol. 145: 483-500 – DOI: 10.1046/j.1469-8137.2000.00604.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2000.00604.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/05/correlations-of-stomatal-conductance-with-hydraulic-and-chemical-factors/

Aulik I. (    ) – Stomatal, cuticular water loss and photosynthetic acclimation in response to irradiance – Thesis Aarhus University – http://library.au.dk/fileadmin/www.bibliotek.au.dk/fagsider/jordbrug/Specialer/Isaac_Aulik_Thesis.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/20/the-plasticity-of-stomatal-anatomy-and-functionality/)

Avissar R., Pielke R. A. (1991) – The impact of plant stomatal control on mesoscale atmospheric circulations – Agric For Meteorol. 54: 353–372 –  doi: 10.1016/0168-1923(91)90013-G. – https://www.sciencedirect.com/science/article/pii/016819239190013G – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-control-and-mesoscale-atmospheric-circulations/ )

Aylor D. E., Parlange J.-Y;, Krikorian A. D. (1973) – Stomatal mechanics – Amer. J. Bot. 60: 163-171 – https://www.jstor.org/stable/2441103?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/a-model-of-stomatal-movement/)

Azevedo Neto A. D. de, Tarquinio Prisco J., Enéas-Filho J., Feitosa de Lacerda C., Vieira Silva J., Alves da Costa P. H., Gomes-Filho E. (2004) – Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes (Efeito do estresse salino sobre o crescimento, resposta estomática e acúmulo de solutos em diferentes genótipos de milho) – Braz. J. Plant Physiol. 16(1) – http://dx.doi.org/10.1590/S1677-04202004000100005 – http://www.scielo.br/scielo.php?pid=S1677-04202004000100005&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2017/10/03/effects-of-salt-stress-on-stomatal-response/)

Azoulay-Shemer T., Bagheri A.Wang C.Palomares A.Stephan A. B.Kunz H. H.Schroeder J. I. (2016) – Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing – Plant Physiology 171788798 – DOI: https://doi.org/10.1104/pp.15.01662 – http://www.plantphysiol.org/content/171/2/788?ijkey=6d80179965eddc18728ca24d0822c2c8a86fff8d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/19/the-roles-of-starch-biosynthesis-for-high-co2-induced-stomatal-closing/ )

Azoulay-Shemer T., Palomares A., Bagheri A., Israelsson-Nordstrom M., Engineer C. B., Bargmann B. O. R., Stephan A. B., Schroeder J. I. (2015) – Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2– and ABA-induced stomatal closing. – Plant J. 83, 567–581. doi: 10.1111/tpj.12916 – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/tpj.12916/abstract – (On our blog : https://plantstomata.wordpress.com/2015/06/24/the-role-of-guard-cell-photosynthesis-in-stomatal-conductance-responses/)

Babu, R. H., Savithramma, N. (2014) – Studies on stomata of some selected grass species of Poaceae and Cyperaceae – World Journal of Pharmacy and Pharmaceutical Sciences Vol 3, Issue 7, 1268-1279, 2014. (http://isindexing.com/isi/papers/1416559462.pdf). –www.wjpps.com/download/article/1404210729.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/19/stomata-in-poaceae-and-cyperaceae-2/).

Baby S. Johnson A. J., Zachariah F. J., Hussain A. A. (2017) – Nepenthes pitchers are CO2-enriched cavities, emit CO2 to attract preys – Scientific Reports 7, Article number: 11281 (2017) | – https://www.nature.com/articles/s41598-017-11414-7 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/modified-stomata-in-nepenthes-pitchers/

Bagheri A. (2014) – The role of Starch Metabolism and Guard Cell Photosynthesis in CO₂ Regulation of Stomatal Conductance – UC San Diego Electronic Theses and Dissertations – https://escholarship.org/uc/item/3rv3m6j3 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/co%e2%82%82-regulation-of-stomatal-conductance/)

Bagic T. (1981) – Investigations of stomata of three oak species with light and scanning electron microscope – Acta Bot. Croat. 40: 85-90 – ISSN 0365—0588 – https://hrcak.srce.hr/file/233602 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/stomata-in-quercus-fagaceae-3/)

Bagic T., Krstin L., Rosa J., Popovic Z. (2005) – Epicuticular wax on stomata of damaged silver fir trees [Abies alba Mill.] – Acta Societatis Botanicorum Poloniae 74: 2 – ISSN :0001-6977 – https://www.infona.pl/resource/bwmeta1.element.agro-article-43eb1b32-0feb-4c64-af01-60ec95ee9d46 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/epicuticular-wax-on-stomata/)

Baier M., Gimmler H., Hartung W. (1990) – The permeability of the guard cell plasma membrane and tonoplast. – J. Exp. Bot. 41: 351-358 – https://doi.org/10.1093/jxb/41.3.351 – https://www.jstor.org/stable/23695179?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/the-permeability-of-the-guard-cell-plasma-membrane-and-tonoplast/)

Bailey R. (2017) – Plant Stomata Function – Thought Co. – https://www.thoughtco.com/plant-stomata-function-4126012 – (On our blog : https://plantstomata.wordpress.com/2017/11/10/stomata-function/)

Bak G., Lee E. J., Lee Y., Kato M., Segami S., Heven S., Maeshima M., Hwang J. U., Lee Y. (2013) – A role of phosphatidylinositol 3,5-bisphosphate in vacuolar structure change in guard cells of closing stomata. – Plant Cell 25:2202–2216 – CrossRef PubMed PubMedCentral – (On our blog : https://plantstomata.wordpress.com/2016/03/19/rapid-aba-induced-stomatal-closure-requires-ptdins35p2/)

Baker N. R., Oxborough K., Lawson T., Morison J. I. L. (2001) – High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves – Journ. Experim. Bot. 52(356): 615-621 – (On our blog : https://plantstomata.wordpress.com/2018/10/05/photosynthetic-activities-in-stomatal-guard-cells/ )

Bakker J. C. (1991) – Effects of humidity on stomatal density and its relation to leaf conductance. – Scientia Hort. 48: 205-212 – https://doi.org/10.1016/0304-4238(91)90128-L – https://www.sciencedirect.com/science/article/pii/030442389190128L – (On our blog : https://plantstomata.wordpress.com/2017/12/06/stomatal-density-and-size-as-affected-by-humidity-do-not-significantly-influence-leaf-conductance/)

Balcerowicz, M., Hoecker, U. (2014) – Auxin – a novel regulator of stomata differentiation – Trends in Plant Science,Volume 19, Issue 12, December 2014, Pages 747–749.(http://www.sciencedirect.com/science/article/pii/S1360138514002684) – (On our blog : https://plantstomata.wordpress.com/2015/02/07/stomata-and-auxin/).

Bald J. G. (1952) – Stomatal droplets and the penetration of leaves by plant pathogens – Amer. J. Bot. 39(2): 97-99 – (On our blog : https://plantstomata.wordpress.com/2017/05/06/stomatal-droplets-on-gladiolus-leaves-induce-the-germ-tubes-of-pleospora-to-infect-the-leaf/)

Baldocchi D. D. (1994)  – An analytical solution for coupled leaf photosynthesis and stomatal conductance models – Tree Physiology 14, 10691079. – DOI:https://doi.org/10.1093/treephys/14.7-8-9.1069 – CrossRef – https://academic.oup.com/treephys/article-abstract/14/7-8-9/1069/1727768/An-analytical-solution-for-coupled-leaf?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/02/06/coupled-leaf-photosynthesis-and-stomatal-conductance-equations/)

Baldocchi D. D., Luxmoore R. J., Hatfield L. (1991) – Discerning the forest from the trees: an essay on scaling canopy stomatal conductance – Agric For Meteorol 54: 197–226 – https://doi.org/10.1016/0168-1923(91)90006-C – https://www.sciencedirect.com/science/article/pii/016819239190006C – (On our blog : https://plantstomata.wordpress.com/2018/10/01/scaling-canopy-stomatal-conductance/ )

Ball J. T., Woodrow I. E., Berry J. A. (1987) – A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions – Progress in Photosynthetic Research 4: 221228 – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/14/7119/).

Ball M. C., Farquhar G. D. (1984) – Photosynthetic and stomatal responses of the Grey Mangrove, Avicennia marina, to Transient Salinity Conditions – Plant Physiology 74(1). – DOI: https://doi.org/10.1104/pp.74.1.7 – http://www.plantphysiol.org/content/74/1/7.short – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-responses-to-transient-salinity-conditions/)

Ball M. C., Farquhar G. D. (1984) – Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions – Plant Physiology 74, 16. – doi: http://dx.doi.org/10.1104/pp.74.1.1 – CrossRefCAS – http://www.plantphysiol.org/content/74/1/1 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/stomatal-responses-of-two-mangrove-species-to-long-term-salinity-and-humidity-conditions/)

Ballard T., Peak D., Mott K. (2018) – Blue and red light effects on stomatal oscillations – Functional Plant Biology – https://doi.org/10.1071/FP18104 – http://www.publish.csiro.au/fp/FP18104 – (On our blog : https://plantstomata.wordpress.com/2018/10/27/blue-and-red-light-effects-on-stomatal-oscillations/ )

Balmant K. M., Zhang T., Chen S. (2016) – Protein Phosphorylation and Redox Modification in Stomatal Guard Cells – Front. Physiol. 7:26 – http://dx.doi.org/10.3389/fphys.2016.00026 – http://journal.frontiersin.org/article/10.3389/fphys.2016.00026/full – (On our blog : https://plantstomata.wordpress.com/2016/03/31/ptms-that-modify-molecular-components-in-stomata/)

Bange G. G. J. (1953) – On the quantitative explanation of stomatal transpiration – Acta Bot. Neerl. 2 (3): 253-297 – (On our blog : https://plantstomata.wordpress.com/2017/06/05/quantitative-explanation-of-stomatal-transpiration/)

Bannister P. (1964) – Stomatal responses of heath plants to water deficits – J. Ecol. 52: 151-158 – https://www.jstor.org/stable/2257789?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/06/stomatal-responses-to-water-deficits/)

Barbacka M. (1994) – Reconstruction of stomata in Komlopteris Barbacka and Pachypteris Brongniart and their adaptation to climate. -Ann. Hist.-Nat. Mus. nat. Hungar. 86. 05-11. SEM. Was Thinnfeldia. Stomata not a xeromorphic adaptation.

Barber J. L., Kurt P. B., Thomas G. O., Kerstiens G., Jones K. C. (2002) – Investigation into the Importance of the Stomatal Pathway in the Exchange of PCBs between Air and Plants – Environ. Sci. Technol.  36204282-4287 – DOI:10.1021/es025623m –https://cdn-pubs.acs.org/doi/full/10.1021/es025623m#citing – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-stomatal-effect-on-the-rate-of-exchange-of-pcbs-between-hemerocallis-leaves-and-air/ )

Barbieri G., Vallone S., Orsini F., Paradiso R., De Pascale S., Negre-Zakharov F., and A. Maggio A. (2012) – Stomatal Density and Metabolic Determinants Mediate Salt Stress Adaptation and Water Use Efficiency in Basil (Ocimum basilicum L.) – Journal of Plant Physiology, Vol. 169, No. 17, 2012, pp. 1737-1746. – http://dx.doi.org/10.1016/j.jplph.2012.07.001 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/stomatal-density-salt-stress-adaptation-and-water-use-efficiency/)

Barbour M. M., Buckley T. N. (2007) – The stomatal response to evaporative demand persists at night in Ricinus communis plants with high nocturnal conductance – Plant, Cell and Environment 30: 711–721 – DOI: 10.1111/j.1365-3040.2007.01658.x – https://www.ncbi.nlm.nih.gov/pubmed/17470147 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-response-to-evaporative-demand-persists-at-night-in-plants-with-high-nocturnal-conductance/ )

Barbour M. M., Cernusak L. A., Whitehead D., Griffin K. L., Turnbull M. H., Tissue D. T., Farquhar G. D. (2005) – Nocturnal stomatal conductance and implications for modeling δ18O of Leaf-respired CO2 in temperate tree species – Functional Plant Biology 32: 1107-1121 – https://pdfs.semanticscholar.org/ca0a/fc8a77d69d86712f0d00fc834e51d2a20a67.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/10/significant-water-loss-through-stomata-for-all-species-at-some-time-for-some-leaves-during-the-night/ )

Bareja B. G. (2013) – Types of Transpiration in Plants: Stomatal,
Cuticular and Lenticular – Crops Review  – http://www.cropsreview.com/types-of-transpiration.html – (On our blog : https://plantstomata.wordpress.com/2017/11/10/stomatal-cuticular-and-lenticular-transpiration/)

Baroli I.Price G. D.Badger M. R.von Caemmerer S. (2008) – The Contribution of Photosynthesis to the Red Light Response of Stomatal Conductance – BIOENERGETICS AND PHOTOSYNTHESIS –  DOI: https://doi.org/10.1104/pp.107.110924 – http://www.plantphysiol.org/content/146/2/737.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/04/14/the-red-light-response-of-stomatal-conductance-is-independent-of-the-concurrent-photosynthetic-rate-of-the-guard-cells/ )

Barradas V. L.Jones H. .GClark J. A. (1994) – Stomatal responses to changing irradiance in Phaseolus vulgaris L. – J Exp Bot 45931936 – https://doi.org/10.1093/jxb/45.7.931 – https://academic.oup.com/jxb/article-abstract/45/7/931/503719 – (On our blog : https://plantstomata.wordpress.com/2018/10/30/the-effects-of-air-temperature-leaf-air-vapour-pressure-differences-and-water-deficit-on-stomatal-responses-to-changing-irradiance/

Barragán V., Leidi E. O., Andrés Z., Rubio L., De Luca A., Fernández J. A., Cubero B., Pardo J. M. (2012) – Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis – The Plant Cell 24: 1127–1142 – DOI: https://doi.org/10.1105/tpc.111.095273 – http://www.plantcell.org/content/24/3/1127 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/tonoplast-localized-nhx-proteins-are-essential-for-active-k-uptake-at-the-tonoplast-for-turgor-regulation-and-for-stomatal-function/ )

Barrs H. D. (1971) – Cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions. – Ann. Rev. Plant Physiol. 22, 223–236 – https://doi.org/10.1146/annurev.pp.22.060171.001255 – Google Scholar – http://www.annualreviews.org/doi/abs/10.1146/annurev.pp.22.060171.001255 – (On our blog : https://plantstomata.wordpress.com/2017/12/06/cyclic-variations-in-stomatal-aperture-under-constant-environmental-conditions/)

Barrs H. D., Klepper B. (1968) – Cyclic Variations in Plant Properties under Constant Environmental Conditions – Physiologia Plantarum 21(4): 711–730 – DOI: 10.1111/j.1399-3054.1968.tb07295.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1968.tb07295.x/abstract– (On our blog : https://plantstomata.wordpress.com/2017/12/06/64517/)

Bartlett M. K.Klein T.Jansen S.Choat B., Sack L. (2016) – The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought – PNAS 
PNAS November 2, 2016 – http://www.pnas.org/content/early/2016/11/01/1604088113.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/04/plant-stomatal-hydraulic-and-wilting-responses-to-drought/)

Barton K. (2007) – Making Holes in Leaves: Promoting Cell State Transitions in Stomatal Development – The Plant Cell April 2007 vol. 19 no. 4 1140-1143 – doi: http://dx.doi.org/10.1105/tpc.107.051177 – http://www.plantcell.org/content/19/4/1140.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/how-stomata-are-built/)

BASF (sponsored paper) (2018) – Take the Stress Out of Heat and Drought Stress – AGPRO May 18, 2018 – https://www.agprofessional.com/article/take-stress-out-heat-and-drought-stress – (On our blog : https://plantstomata.wordpress.com/2018/05/21/headline-amp-fungicide-and-stomata/

Basu S., Ramegowda V, Kumar A., Pereira A. (2016) – Plant adaptation to drought stress [version 1; referees: 3 approved]. F1000Research 2016, 5(F1000 Faculty Rev):1554
(doi: 10.12688/f1000research.7678.1) – https://f1000research.com/articles/5-1554/v1 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/decreased-stomatal-conductance-in-response-to-drought-stress/)

Bates G.W., Rosenthal D.M., Sun J., Chattopadhyay M., Peffer E., Yang J., Ort D.R., Jones A.M. (2012) – A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. – PloS one 7, e49641 – https://doi.org/10.1371/journal.pone.0049641 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049641 – (On our blog : https://plantstomata.wordpress.com/2017/12/06/the-guard-cell-transcriptome-and-its-modulation-by-sucrose/)

Bates L. M., Hall A. E. (1981) – Stomatal closure with soil water depletion not associated with changes in bulk leaf water status – Oecologia 50: 62-65 –

Batista Florindo J., Landini G., Almeida Filho H., Martinez Bruno O. (2015) – Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia zebrina – Journal of Physics: Conference Series, Volume 633, Issue 1, article id. 012113 (2015). – 10.1088/1742-6596/633/1/012113 – http://adsabs.harvard.edu/abs/2015JPhCS.633a2113B – (On our blog : https://plantstomata.wordpress.com/2017/07/26/a-method-for-the-analysis-of-the-stomata-distribution-patterns/)

Batool S. , Uslu V. V., Rajab H., Herschbach C., Rennenberg H., Geiger D., Hedrich R., Hell R., Wirtz M. (2017) – Sulfate is an important trigger of abscisic acid biosynthesis and stomata closure – 25th International Symposium of the International Scientific Centre of Fertilizers Significance of Sulfur in High-Input Cropping Systems Groningen (The Netherlands), September 5-8, 2017 – https://ojs.openagrar.de/index.php/BerichteJKI/article/viewFile/8423/7746 – (On our blog : https://plantstomata.wordpress.com/2017/10/29/sulfate-aba-biosynthesis-and-stomata-closure/)

Batos, B., Vilotic, D., Orlovic, S. and Miljkovic, D. (2010) – Inter and Intra-Population Variation of Leaf Stomatal Traits of Quercus robur L. in Northern Serbia. – Archives of Biological Sciences, 62, 1125-1136. – (http://dx.doi.org/10.2298/ABS1004125B) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/variation-of-stomatal-characteristics/).

Bauer H., Ache P., Lautner S., Fromm J., Hartung W., Al-Rasheid K. A. S., Sonnewald S., Sonnewald U., Kneitz S., Lachmann N., Mendel R. R., Bittner F., Hetherington A. M., Hedrich R. (2013) – The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. – Curr. Biol.23(1): 53-57 – doi: 10.1016/j.cub.2012.11.022(CrossRef, Medline).[PubMed]- (On our blog : https://plantstomata.wordpress.com/2015/09/07/guard-cells-operate-the-entire-aba-biosynthesis-pathway/).

Bauer H.Ache P.Wohlfart F.Al-Rasheid K. A. S.Sonnewald S.Sonnewald U.Kneitz S.Hetherington A. M.Hedrich R. (2013) – How do stomata sense reductions in atmospheric relative humidity? – Mol Plant 6(5)17031706 – DOI10.1093/mp/sst055 – CrossRefPubMedGoogle Scholar – https://www.infona.pl/resource/bwmeta1.element.elsevier-a8b9e7a5-c164-384c-9874-839ea980a69f – (On our blog : https://plantstomata.wordpress.com/2017/10/10/how-do-stomata-sense-reductions-in-atmospheric-relative-humidity/)

Bauly J. M., Sealy I. M., Macdonald H., Brearley J., Dröge S., Hillmer S., Robinson D. G., Venis M. A., Blatt M. R., Lazarus C. M., Napier R. M. (2000) – Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. – Plant Physiol. 124: 1229-1238 – PMCID: PMC59221 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59221/ – (On our blog : https://plantstomata.wordpress.com/2017/12/07/overexpression-of-auxin-binding-protein-enhances-the-sensitivity-of-guard-cells-to-auxin/)

Bayramzadeh, V. (2011) – Stomatal Characteristics of Fagus orientalis Lipsky in Geographically Separated Locations in the Caspian Forests of Northern Iran. – Research Journal of Environmental Sciences, 5, 836-840  (http://dx.doi.org/10.3923/rjes.2011.836.840) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/variations-in-stomatal-characteristics-stomatal-density-and-stomatal-pore-length-in-fagus/)

Beadle C. L., Neilson R. E., Talbot H., Jarvis P. G. (1985) – Stomatal conductance and photosynthesis in a mature scots pine forest. I. Diurnal, seasonal and spatial variation in shoots – Journal of Applied Ecology 22: 557–571 –

Beardsel M. F., Cohen D. (1975) – Relationships between Leaf Water Status, Abscisic Acid Levels, and Stomatal Resistance in Maize and Sorghum. – Plant Physiol. 56, 207–212 (1975). – http://www.plantphysiol.org/content/56/2/207 – (On our blog : https://plantstomata.wordpress.com/2016/05/07/drought-aba-and-stomatal-resistance/)

Beaulieu J. M., Leitch I. J., Patel S., Pendharkar A., Knight C. A. (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. – New Phytologist 179:975986.-doi: 10.1111/j.1469-8137.2008.02528.x. Epub 2008 Jun 28. –  CrossRef, PubMed – (On our blog : https://plantstomata.wordpress.com/2016/05/07/genome-size-cell-size-and-stomatal-density-2/)

Becker D., Zeilinger C., Lohse G., Depta H., Hedrich R. (1993) – Identification and biochemical characterization of the plasma‐membrane proton ATPase in guard cells of Vicia faba L. – Planta 190: 44-50 – https://doi.org/10.1007/BF00195673 – https://link.springer.com/article/10.1007/BF00195673 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/characterization-of-the-plasma%e2%80%90membrane-proton-atpase-in-stomata/ )

Becraft P. W. (1999) Development of the leaf epidermis. – Current Topics in Developmental Biology 451–40. – Medline – https://www.ncbi.nlm.nih.gov/pubmed/10332602?dopt=Abstract (On our blog : https://plantstomata.wordpress.com/2017/01/07/development-of-the-epidermis/)

Beerling D. J. (1993) – Changes in the stomatal density of Betula nana leaves in response to increases in atmospheric carbon dioxide concentrations since the last glacial. – Special Papers in Palaeontology 49: 181-187. (Article not found)

Beerling D. J. (1998) – Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L. trees exposed in situ for three years to elevated CO2 and temperature. – Acta Oecologica 18, 697–712 – https://doi.org/10.1016/S1146-609X(97)80052-5 – http://www.sciencedirect.com/science/article/pii/S1146609X97800525 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/the-response-of-time-integrated-water-use-efficiency-uwe-and-stomatal-density-to-co2-enrichment-and-climate-change/)

Beerling D. J. (1999) –  Stomatal density and index: theory and application.  In: JONES, T. P. & ROWE, N. P. (eds.) Fossil Plants and Spores: modern techniques. – Geological Society, London 251-256. – (Article not found)

Beerling D. J. (2015) – Gas valves, forests and global change: a commentary on Jarvis (1976) ‘The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field’ – Philosoph. Transactions B, R Soc Lond B Biol Sci., 370 Issue: 1666 – pii: 20140311. doi: 10.1098/rstb.2014.0311 – https://www.ncbi.nlm.nih.gov/pubmed/25750234 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/microscopic-turgor-operated-gas-valves-on-leaf-surfaces-stomata-facilitate-gas-exchange-between-the-plant-and-the-atmosphere/)

Beerling D. J., Birks H. H., Woodward F. I. (1995) – Rapid late‐glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves – J. Quaternary Sci. – https://doi.org/10.1002/jqs.3390100407 – https://onlinelibrary.wiley.com/doi/full/10.1002/jqs.3390100407 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/using-the-relationship-between-leaf-stomatal-density-and-atmospheric-co2-concentration/ )

Beerling D. J., Chaloner W. (1992) – Stomatal density as an indicator of atmospheric CO2 concentration – The Holocene 2: 71-78 – DOI: 10.1177/095968369200200109 –http://journals.sagepub.com/doi/abs/10.1177/095968369200200109 – (On our blog : https://plantstomata.wordpress.com/2017/09/14/stomatal-density-as-an-indicator-of-atmospheric-co2-concentration/)

Beerling D. J., Chaloner W. (1993) – The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur lammas leaves – Annals of Botany 71: 231–235 – doi: 10.1006/anbo.1993.1029CrossRef | CAS |  – (On our blog : https://plantstomata.wordpress.com/2016/05/07/co2-temperature-change-and-stomatal-density/)

Beerling D. J., Chaloner W. (1993) – Evolutionary responses of stomatal density to global CO2 change – Biological Journal of the Linnean Society 48(4):  – https://doi.org/10.1111/j.1095-8312.1993.tb02096.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1095-8312.1993.tb02096.x– (On our blog : https://plantstomata.wordpress.com/2018/03/30/evolutionary-responses-of-stomatal-density-to-global-co2-change/ )

Beerling D. J., Chaloner W. (1993) – Stomatal density responses of Egyptian Olea europaea L. leaves to COchange since 1327 BC. – Ann Bot 71: 431–435 – doi: 10.1006/anbo.1993.1056 – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/05/07/responses-of-stomatal-density-to-co2-change/)

Beerling D. J., Chaloner W. (1994) – Atmospheric CO2 changes since the last glacial maximum-evidence from the stomata1 density record of fossil leaves – Review of Palaeobotany and Palynology 81: 1 l-17 – https://doi.org/10.1016/0034-6667(94)90123-6 – https://www.sciencedirect.com/science/article/pii/0034666794901236 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/to-combine-the-use-of-fossil-leaves-with-the-long-term-ice-core-record-of-co2-changes/ )

Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A. and Tooley, M.J. (1993) – Stomatal Density Responds to the Glacial Cycle of Environmental Change. – Proceedings of the Royal Society B: Biological Sciences, 251, 133-138.
(http://dx.doi.org/10.1098/rspb.1993.0019) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/stomatal-density-and-environmental-change/).

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J., Woodward F. (1992) – Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and post-glacial time. – Philos. Trans. R. Soc. London B, 251(1331): 133-138 – DOI: 10.1098/rspb.1993.0019 – https://www.jstor.org/stable/55890?seq=1#page_scan_tab_contents – (On our blog :  https://wordpress.com/post/plantstomata.wordpress.com/54552

Beerling D. J., Franks P. J. (2009) – Evolution of stomatal function in ‘lower’ land plants. New Phytologist 183(4): 921-925 – DOI: 10.1111/j.1469-8137.2009.02973.x – (CrossRef, Medline). – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.02973.x/full – (On our blog : https://plantstomata.wordpress.com/2016/12/29/stomatal-function-in-lower-land-plants/)

Beerling D. J., Kelly C. K. (1997) – Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data –  American Journal of Botany 84(11): 1572–1583 – https://onlinelibrary.wiley.com/doi/pdf/10.2307/2446619 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/future-changes-in-stomatal-density-as-a-possible-result-of-anthropogenically-related-co2-increases-may-be-possible/ )

Beerling D. J., McElwain J. C., Osborne C. P. (1998) – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – Journal of Experimental Botany, Vol. 49, No. 326, pp. 1603–1607 – http://jxb.oxfordjournals.org/content/49/326/1603.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/stomatal-responses-to-changes-in-atmospheric-co2-concentrations/)

Beerling D. J., Royer D. L. (2002) – Reading a CO2 signal from fossil stomata – New Phytologist 153: 387-397 – DOI; 10.1046/j.0028-646X.2001.00335.x – https://www.academia.edu/33539371/Reading_a_CO2_signal_from_fossil_stomata – (On our blog : https://plantstomata.wordpress.com/2017/12/08/reading-a-co2-signal-from-fossil-stomata/)

Beerling D. J., Woodward F. I. (1995) – Stomatal responses of variegated leaves to CO2 enrichment. – Annals of Botany 75: 507–511 – https://doi.org/10.1006/anbo.1995.1052 – https://www.sciencedirect.com/science/article/pii/S0305736485710529 – (On our blog : https://plantstomata.wordpress.com/2017/12/07/the-magnitude-of-stomatal-density-and-index-responses-to-co2-concentrations/)

Beerling D. J., Woodward F. I. (1996) – Stomatal density responses to global environment change -In: Stanhill G. (eds) – Advances in Bioclimatology 4: 171-221 – Springer, Berlin, Heidelberg, – https://link.springer.com/chapter/10.1007/978-3-642-61132-2_4 – (On our blog : https://plantstomata.wordpress.com/2017/12/08/stomatal-density-responses-to-global-environment-change/)

Belhadj S., Derridj A., Moriana A., Gijon M. D. C., Mevy J. P., Gauquelin T. (2011) – Comparative Analysis of Stomatal Characters in Eight Wild Atlas Pistachio Populations (Pistacia atlantica Desf.; Anacardiaceae). – International Research Journal Plant Science 2:  60-69 – https://www.academia.edu/4694701/Comparative_analysis_of_stomatal_characters_in_eight_wild_atlas_pistachio_populations – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66545 )

Belin C.de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A., Giraudat J., Barbier-Brygoo H., Thomine S. (2006) – Identification of features regulating OST1 kinase activity and OST1 function in guard cells. – Plant Physiol 141:13161327. – doi: http://dx.doi.org/10.1104/pp.106.079327 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/07/ost1-kinase-activity-and-ost1-function-in-stomata/)

Bellasio C., Quirk J., Buckley T. N., Beerling D. J. (2017) – A dynamic hydro-mechanical and biochemical model of stomatal conductance for C4 photosynthesis – Plant Physiology  – DOI: 10.1104/pp.17.00666 – https://www.researchgate.net/publication/318721627_A_dynamic_hydro-mechanical_and_biochemical_model_of_stomatal_conductance_for_C4_photosynthesis?discoverMore=1 – (On our blog : https://plantstomata.wordpress.com/2017/08/07/a-model-of-stomatal-conductance-for-c4-photosynthesis/)

Ben-Asher J., Tsuyuki I., Bravdo B. A., Sagih M. (2006) – Irrigation of grapevines with saline water. I. Leaf area index, stomatal conductance, transpiration and photosynthesis. – Agricultural Water Management 83: 13-21 – DOI 10.1016/j.agwat.2006.01.002 – http://www.sciencedirect.com/science/article/pii/S0378377406000047 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64539)

Bennett K. J., Rook D. A. (1978) – Stomatal and mesophyll resistances in two clones of Pinus radiana D. Don known to differ in transpiration and survival rate – Aust. J. PLant Physiol. 5: 231-238 – (Article not found)

Berger D., Altmann T. (2000) – A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana – Genes & Dev 14: 1119–1131 – DOI: 10.1101/gad.14.9.1119 – Abstract/FREE Full Text – http://genesdev.cshlp.org/content/14/9/1119.full.html – (On our blog : https://plantstomata.wordpress.com/2016/05/07/the-sdd1-gene-and-stomata/)

Berger F., Linstead P., Dolan L., Haseloff J. (1998) – Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermal patterning – Dev. Biol., 1998, vol. 194: 226-234 – Google ScholarCrossRefPubMed – https://www.infona.pl/resource/bwmeta1.element.elsevier-c187e580-b09f-387b-a5fb-b8534dbf46f9 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/stomata-patterning-on-the-hypocotyl/)

Bergmann Lab – Introduction to stomatal development – http://web.stanford.edu/group/bergmann/cgi-bin/bergmannlab/research – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-development-3/)

Bergmann D. C. (2003) – Integrating signals in stomatal development.- Curr. Opin. Plant Biol. 7: 1-7. – PMID: 14732438 – https://doi.org/10.1016/j.pbi.2003.10.001 – https://www.sciencedirect.com/science/article/pii/S1369526603001304 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/how-the-signals-that-regulate-stomatal-development-are-integrated/)

Bergmann D. C. (2004) – Integrating signals in stomatal development. – Curr. Opin. Plant Biol. 7, 26–32. – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/03/28/need-for-models-that-explain-how-the-signals-that-regulate-stomatal-development/)

Bergmann D. C. (2005) – Stomatal patterning: how do cells choose their fate? – Biologist Volume 52 Number 3, July 2005: 138-143 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.7879&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/27/how-do-we-know-whether-plants-have-an-optimal-density-of-stomata/)

Bergmann D. C. (2006) – Stomatal development: from neighbourly to global communication – Current Opinion in Plant Biol.  9(5): 478-483 – https://doi.org/10.1016/j.pbi.2006.07.001 – PMID: 16890476  – Google ScholarCrossRef – https://www.sciencedirect.com/science/article/pii/S1369526606001099 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/from-neighbourly-to-global-communication-in-stomatal-development/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. I. Key issues in plant development – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-1.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/key-issues-in-plant-development-stomata/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. II: Stomata as a model for stem cells – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-2.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-as-a-model-for-stem-cells/)

Bergmann D. C. (2017) – Bergmann Lab – http://web.stanford.edu/group/bergmann/cgi-bin/bergmannlab/publications – (On our blog : https://plantstomata.wordpress.com/2017/11/01/bergmann-lab-publications/)

Bergmann D. C., Abrash E., Davies K., Liu T., MacAlister C., Matos J., Ohashi-Ito K. (2012) – Here for the long haul: Organizing principles and innovations in stomatal development – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/organizing-principles-and-innovations-in-stomatal-development/ )

Bergmann D. C., Clare D.Samuels L.Kiss J. Z. (2017) – A Celebration of Fred David Sack – Plant Physiology DOI: https://doi.org/10.1104/pp.16.01832 – http://www.plantphysiol.org/content/174/2/470 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/tribute-to-f-d-sack-in-special-focus-issue-on-stomata/)

Bergmann D. C., Lukowitz W., Somerville C. R. (2004) – Stomatal development and pattern controlled by a MAPKK kinase – Science 304: 1494–1497 – 10.1126/science.1096014. – Abstract/FREE Full Text – View ArticlePubMed – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/08/mapkk-kinase-and-stomata-2/)

Bergmann D. C., Sack F. D. (2007) – Stomatal development – Annual review of plant biology 58: 163-181 – DOI: 10.1146/annurev.arplant.58.032806.104023  – CrossRefMedlineWeb of Science Google Scholar – http://dx.doi.org/10.1146/annurev.arplant.58.032806.104023 – (On our blog : https://plantstomata.wordpress.com/2015/09/07/mechanisms-and-genes-underlying-stomatal-development-3/)

Berkowitz G.Zhang X.Mercie R.Leng Q.Lawton M. (2000) – Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes. – Plant Cell Physiol 41: 785790 – DOI: https://doi.org/10.1093/pcp/41.6.785 – Abstract/FREE Full Text – https://academic.oup.com/pcp/article/41/6/785/1923323/Co-Expression-of-Calcium-Dependent-Protein-Kinase – (On our blog : https://plantstomata.wordpress.com/2017/02/01/calcium-dependent-protein-kinase-with-the-inward-rectified-guard-cell-k-channel-kat1-and-stomata/)

Bernacchi C. J., Kimball B. A.Quarles D. R.Stephen P. Long S. P., –Ort D. R. (2006) – Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration – Plant Physiology January 2007 vol. 143 no. 1 134-144 – doi: http://dx.doi.org/10.1104/pp.106.089557 – http://www.plantphysiol.org/content/143/1/134 – (On our blog : https://plantstomata.wordpress.com/2016/09/06/decreases-in-stomatal-conductance-of-soybean/)

Bernacchi C. J., Leaky A. D. B., Heady L. E., Morgan P. B., Dohleman F. G., Mcgrath J. M., Gillespie K. M., Wittig V. E., Rogers A., Long S. P., Ort D. R. (2006) – Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions – Plant Cell Environ. 29: 2077–2090 – DOI: 10.1111/j.1365-3040.2006.01581.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01581.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/09/variation-in-photosynthesis-and-stomatal-conductance/)

Berry J. (2017) – How improved valves let grasses “breathe,” cope with climate change – https://carnegiescience.edu/news/how-improved-valves-let-grasses-%E2%80%9Cbreathe%E2%80%9D-cope-climate-change – (On our blog https://plantstomata.wordpress.com/2017/10/29/grass-stomata/)

Berry J.A., Beerling D.J., Franks P.J. (2010) – Stomata: key players in the earth system, past and present – Curr. Opin. Plant Biol. 13: 232–239 – CrossRefMedlineGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/11/03/26795/)

Berryman C. A., Eamus D., Duff G. A. (1994) – Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. – Journal of Experimental Botany 45, 539–546 – https://doi.org/10.1093/jxb/45.5.539 – https://academic.oup.com/jxb/article-abstract/45/5/539/434778?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-responses-to-a-range-of-variables/)

Bertoni G. (2009) – Integration of signaling pathways in stomatal development. – Plant Cell 21: 2542 – DOI: https://doi.org/10.1105/tpc.109.210910 – http://www.plantcell.org/content/21/9/2542 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/signaling-pathways-in-stomatal-development/)

Bertsch A. (1969) – Die Diffusionswiderstand der Spaltöffnungen; ein Vergleich des CO2-Gaswechsels von Blättern mit und ohne Epidermis -The diffusion resistance of stomata: a comparison between the CO2-exchange of normal and stripped leaves – Planta 87: 102-109 – https://link.springer.com/article/10.1007/BF00386969 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/the-diffusion-resistance-of-stomata/)

Bertsch A., Domes W. (1969) – CO2-Gaswechsel amphistomatischer Blätter. I. Der Einfluss unterschiedlicher Stomaverteilungen der beiden Blattepidermen auf den CO2-Transport – Planta 85: 183-193. – (On our blog : https://plantstomata.wordpress.com/2017/05/17/co2-exchange-in-amphistomatic-leaves-i-the-influence-of-the-distribution-of-stomata-on-both-leaf-surfaces-upon-co2-transport-in-german/)

Bessey C. E. (xxxx) – Some considerations upon the function of stomata – Science 7: 13-16 – (On our blog : https://plantstomata.wordpress.com/2017/04/28/functions-of-stomata/)

Bethke P., Drew M. (1992) – Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. – Plant Physiology 99: 219-226 – http://www.plantphysiol.org/content/plantphysiol/99/1/219.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/19/progressive-exposure-to-nacl-salinity-and-stomatal-behavior/ )

Beyer A. (1929) – Über Tropfenbildung in den Schliesszellen der Spaltöffnungen von Tradescantia zebrina – Bot. Arch. 26: – Akad. Verlagsges., 1929, 36 pp.

Beyschlag W., Eckstein J. (1998) – Stomatal Patchiness – In: Behnke HD., Esser K., Kadereit J.W., Lüttge U., Runge M. (eds) Progress in Botany. Progress in Botany, vol 59: 283-298 – Springer, Berlin, Heidelberg – https://link.springer.com/chapter/10.1007/978-3-642-80446-5_10#citeas – (On our blog : https://plantstomata.wordpress.com/2017/09/30/stomatal-patchiness-2/)

Beyschlag W., Eckstein J. (2001) – Towards a Causal Analysis of Stomatal Patchiness. The Role of Stomatal Size Variability and Hydrological Heterogeneity – Acta Oecologica, Vol. 22, No. 3, 2001, pp. 161-173. – http://dx.doi.org/10.1016/S1146-609X(01)01110-9 – (On our blog : https://plantstomata.wordpress.com/2016/05/08/stomatal-patchiness/)

Beyschlag W., Pfanz H. (1992) – A fast method to detect the occurrence of nonhomogenous distribution of stomatal aperture in heterobaric plant leaves. Experiments with Arbutus unedo L. during the diurnal course – Oecologia 82: 52–55 –

Beyschlag W., Pfanz H., Ryel R. J. (1992) – Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. – Planta. 1992 Jul;187(4):546-53. doi: 10.1007/BF00199976. – PMID: 24178151 – https://www.ncbi.nlm.nih.gov/pubmed/24178151 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-patchiness-in-evergreen-sclerophylls/)

Bhandari M. C., Sen D. N. (1973) – Role of epidermal cell turgor on stomatal regulation in isolated epidermal peelings of Citrullus colocynthis Linn. (Schard.) – Biochem. Physiol. Pflanzen 164: 180-187 (Article not found)

Bhat W. A. (2015) – Study of transient response of plant leaf using infrared imaging and effect of light on stomatal opening – BEST 2015 ,Indian Institute of Science (IISc Bangalore) – Dept. of Bioengineering and Biosciences -IIT GUWAHATI – http://www.be.iisc.ernet.in/BESTReports/WaseemBhat.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/effect-of-light-on-stomatal-opening/)

Bhatti M. A., Felsot A. S., Parker R., Mink G. (1998) – Leaf photosynthesis, stomatal resistance, and growth of wine grapes (Vitis vinifera L.) after exposure to simulated chlorsulfuron drift. – J. Environ. Sci. Health – Part B: Pestic. Food Contam. Agric. Wastes 33: 67-81 – http://www.tandfonline.com/doi/abs/10.1080/03601239809373130 – (On our blog : https://plantstomata.wordpress.com/2018/02/19/exposure-to-simulated-chlorsulfuron-drift-and-stomatal-resistance/ )

Bhave N. S., Veley K. M., Nadeau J. A., Lucas J. R., Bhave S. L., Sack F. D. (2009) – TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems. – Planta 229:357– 367. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/08/too-many-mouths-and-stomatal-development/)

Bhawsar S. (2011) – Stomata and water cycle – Biotech Articles 2011-01-27 – https://www.biotecharticles.com/Biology-Article/Stomata-and-Water-Cycle-604.html – (On our blog : https://plantstomata.wordpress.com/2017/10/28/stomata-and-water-cycle/)

BHC (2004) – Modified Organism Potato Modified for Increased Stomata Density [Online]. Available at: https://bch.cbd.int/database/record.shtml?documentid=100293

Bishnoi N. R., Krishnamoorthy H. N. (1992) – Effect of Waterlogging and Gibberellic Acid on Leaf Gas Exchange in Peanut (Arachis hypogaea L.) – Journal of Plant Physiology 139(4): 503-505 – https://doi.org/10.1016/S0176-1617(11)80502-X – https://www.sciencedirect.com/science/article/pii/S017616171180502X – (On our blog : https://plantstomata.wordpress.com/2018/09/14/waterlogging-gibberellic-acid-and-stomatal-diffusive-resistance/ )

Bishnoi N. R., Krishnamoorthy H. N. (1993) – Effect of gibberellic acid on stomatal diffusive resistance and photosynthesis in waterlogged peanut plants – Biologia Plantarum 35: 467-471 – https://doi.org/10.1007/BF02928528 – https://link.springer.com/article/10.1007/BF02928528 – (On our blog : https://plantstomata.wordpress.com/2018/09/14/gibberellic-acid-and-stomatal-diffusive-resistance/ )

Black C. R., Black V. J. (1979) – The effects of low concentrations of sulphur dioxide on stomata1 conductance and epidermal cell survival in field bean (Vicia faba L.) – Journal of Experimental Botany 30: 291-298 – https://www.jstor.org/stable/23688826?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-conductances-increased-by-exposure-to-so2/ )

Black C.R., Squire G.R. (1979) – Effects of atmospheric saturation deficit on the stomatal conductance of pearl millet (Pennisetum typhoides S. and H.) and Groundnut (Arachis hypogea L.). – J. Exp. Bot. 118: 935–45 (1979) – DOI: https://doi.org/10.1093/jxb/30.5.935 – Google Scholar – https://academic.oup.com/jxb/article-abstract/30/5/935/450295/Effects-of-Atmospheric-Saturation-Deficit-on-the – (On our blog : https://plantstomata.wordpress.com/2017/02/01/atmospheric-saturation-deficit-and-stomatal-conductance/)

Blackman P. G., Davies W. J. (1983) –  The effects of cytokinins and ABA on stomatal behaviour of maize and Commelina. – J. Exp. Bot. 34: 1619-1626 – https://doi.org/10.1093/jxb/34.12.1619 – https://academic.oup.com/jxb/article-abstract/34/12/1619/599232?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/effects-of-cytokinins-and-aba-on-stomatal-behaviour/)

Blackman P. G., Davies W. J. (1984) – Modification of the CO2 responses of maize stomata by abscisic acid and by naturally-occurring and synthetic cytokinins. – Journal of Experimental Botany 35, 174179 – https://doi.org/10.1093/jxb/35.2.174 – CrossRefCAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/21/co2-aba-cytokinins-and-stomata/)

Blackman P. G., Davies W.J. (1984) – Age-related changes in stomatal response to cytokinins and abscisic acid. – Ann. Bot. 54: 121-125 – https://doi.org/10.1093/oxfordjournals.aob.a086765 – https://academic.oup.com/aob/article-abstract/54/1/121/116161?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/09/cytokinins-reversed-the-effect-of-aba-on-stomata/)

Blakemore, E. (2015) – Creating Drought-Tolerant Plants By Hacking Their Natural Responses – http://www.smithsonianmag.com/smart-news/scientists-can-program-plants-be-more-drought-tolerant-180954159/?no-ist – (On our blog).

Blanke M. M., Belcher A. R. (1989) – Stomata of apple leaves cultured in vitro – Plant Cell Tissue Organ Cult. 19: 85-89 – https://link.springer.com/article/10.1007/BF00037780 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomata-of-apple-leaves-cultured-in-vitro/)

Blanke M. M., Cooke D. T. (2004) – Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves – Plant Growth Regul. 42: 153–160 – Google Scholar – CrossRef – https://link.springer.com/article/10.1023/B:GROW.0000017489.21970.d4 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/effects-of-flooding-and-drought-on-stomatal-activity/)

Blatt M. R. (1985) Extracellular potassium activity in attached leaves and its relation to stomatal function. – Journal of Experimental Botany 36: 240251. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/03/21/k-and-stomata/)

Blatt M. R. (1987) –  Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes.- Planta 170(2): 272–287 – doi: 10.1007/BF00397898. –https://link.springer.com/article/10.1007/BF00397898 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/electrical-characteristics-of-stomatal-guard-cells/)

Blatt M. R. (1987) Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “Electrogenic” transport revealed by current-voltage and difference-current-voltage analysis. – J. Membrane Biol. 98: 257–274 – https://link.springer.com/article/10.1007/BF01871188 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/electrical-characteristics-of-stomatal-guard-cells-the-contribution-of-atp-dependent-electrogenic-transport/)

Blatt M. R. (1988) – Potassium-dependent bipolar gating of potassium channels in guard cells.- J. Membrane Biol. 102:235–246 – https://doi.org/10.1007/BF01925717 – https://link.springer.com/article/10.1007/BF01925717#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/09/bipolar-gating-of-k-channels-in-guard-cells/)

Blatt M. R. (1988) – Mechanisms of fusicoccin action: a dominant role for secondary transport in a higher-plant cell – Planta 174187200 – DOI: 10.1007/BF00394771 – https://www.ncbi.nlm.nih.gov/pubmed/24221475?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/30/fusicoccin-plays-a-dominant-role-for-secondary-transport-in-stomata/

Blatt M. R. (1990) – Potassium channel currents in intact stomatal guard cells: Rapid enhancement by abscisic acid. – Planta 180: 445-455 – DOI 10.1007/BF00198799 –https://link.springer.com/article/10.1007/BF01160403 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/k-channel-currents-in-intact-stomata/)

Blatt M. R. (1991) – Ion channel gating in plants: physiological implications and integration for stomatal function. – Journal of Membrane Biology 124: 95112 – PMID: 1662287 – CrossRef |PubMed |CAS |https://link.springer.com/article/10.1007/BF01870455 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/7057)

Blatt M. R. (1992) – K+ channels of stomatal guard cells: Characteristics of the inward rectifier and its control by pH. – J. Gen. Physiol. 99, 615644. – CrossRefPubMedCAS | – (On our blog : https://plantstomata.wordpress.com/2015/10/09/k-channels-of-stomatal-guard-cells/)

Blatt M.R. (1999) – Reassessing roles for Ca2+ in guard cell signalling. – J. Exp. Bot.50, 989999. – CrossRefCAS | – (On our blog : https://plantstomata.wordpress.com/2016/05/09/stomata-ca2-in-guard-cell-signalling/)

Blatt M. R. (2000) Ca2+ signalling and control of guard-cell volume in stomatal movements – Curr. Opinion Plant Biol 3: 196204 – CrossRefMedline Google Scholar – http://dx.doi.org/10.1016/S1369-5266(00)80065-5 – http://www.sciencedirect.com/science/article/pii/S1369526600800655?np=y&npKey=e7d461eaa74355a375dec534bedb8747eb9c7dc3379a3a8515f2046bf2415553 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-signalling-and-stomatal-movements/)

Blatt M. R. (2000) – Cellular signaling and volume control in stomatal movements in plants. – Annual Review of Cell and Developmental Biology 16: 221241 – doi: 10.1146/annurev.cellbio.16.1.221 – CrossRef |PubMed |CASMedline – (On our blog : https://plantstomata.wordpress.com/2015/09/08/understanding-of-guard-cell-signaling/).

Blatt M. R. (2002) Towards understanding vesicle traffic and the guard cell model. New Phytologist 153: 405413. – Wiley Online Library |CAS | – http://www.brodribblab.org.au/wp-content/uploads/2017/08/Small-Pores-with-a-Big-Impact.pdf – (On our blog : https://plantstomata.wordpress.com/2016/03/07/stomata-guard-cells-and-vesicular-trafficking/)

Blatt M. R. (2016) – Plant Physiology: Redefining the Enigma of Metabolism in Stomatal Movement – Current Biology 26(3): R107-R109 – DOI10.1016/j.cub.2015.12.025 – https://www.infona.pl/resource/bwmeta1.element.elsevier-68875018-026c-36e7-9b28-b94879f68d03 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/guard-cells-also-metabolise-starch-to-accelerate-opening-of-stomata/)

Blatt M. R., Armstrong (1993) –  K+ channels of stomatal guard cells: abscisic acid evoked control of the outward rectifier mediated by cytoplasmic pH. – Planta, 191,330341. – CrossRef | CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/k-channels-of-stomatal-guard-cells-2/).

Blatt M. R., Brodribb T. J.Torii K. U. (2017) – Small Pores with a Big Impact – Plant Physiology DOI: https://doi.org/10.1104/pp.17.00642 – http://www.plantphysiol.org/content/174/2/467 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/focus-issue-on-stomata-the-first-dedicated-to-the-evolution-development-and-physiology-of-guard-cells/)

Blatt M. R., Clint G. M. (1989) – Mechanisms of fusicoccin action:  kinetic modification and inactivation of potassium channels in guard cells. – Planta 178: 509–523 – doi: 10.1007/BF00963821. – https://link.springer.com/article/10.1007/BF00963821 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/mechanisms-of-fusicoccin-action-in-stomata/)

Blatt M. R., Garcia-Mata C., Sokolowski S. (2007) – Membrane transport and Ca2+ oscillations in guard cells. In S Mancuso, S Shabala, eds, Rhythms in Plants: Phenomenology, Mechanisms, and Adaptive Significance. Springer, Berlin, pp 115–134

Blatt M. R., Grabov A.  (1997) – Signalling gates in abscisic acid-mediated control of guard cell ion channels –  Physiol. Plantarum Vol. 100, Issue 3 July 1997 , 481–490 – DOI: 10.1111/j.1399-3054.1997.tb03052.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03052.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/01/a-remarkably-complex-network-layering-positive-and-negative-controls-with-the-ion-channels-that-facilitate-ion-fluxes-for-stomatal-movement/)

Blatt M. R., Grabov A., Brearley J., Hammond-Kosack K., Jones J. D.  (1999) – K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction – Plant J 19453462  –

Blatt M. R., Gradmann D. (1997) – K+-sensitive gating of the K+outward rectifier in Vicia guard cells – J Membr Biol 158241256 – 

Blatt M.R., Thiel G. (1994) – K+ channels of stomatal guard cells: Bimodal control of the K+inward-rectifier evoked by auxin. – Plant J. 5: 55–68 [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/03/21/k-channels-of-stomatal-guard-cells-and-auxin/)

Blatt M. R., Thiel G., Trentham D. R. (1990) – Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,54risphosphate. – Nature 346,766-769.- (Article not found)

Blatt M. R., Wang Y., Leonhardt N., Hills A. (2014) –  Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells – Journal of Plant Physiology, 2014, 171, 9, 770-778 – doi:10.1016/j.jplph.2013.09.014 – http://www.sciencedirect.com/science/article/pii/S017616171300401X – (On our blog : https://plantstomata.wordpress.com/2016/05/09/onguard-and-stomatal-guard-cell-physiology/)

Blatt M. R., Wang Y., Papanastiou M., Eisenach C., Karnik R., Lew V. L., Chen Z., Baetz U., Amtmann A., Hills A. (2012) – Quantitative systems modelling of the stomatal guard cell yields unexpected and emergent behaviours – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/the-onguard-model-and-stomatal-behavior/ )

Boccalandro H. E., Giordano C. V., Ploschuk E. L., Piccoli P. N., Bottini R., Casal J. J.
(2012) – Phototropins but not cryptochromes mediate the blue light-specific
promotion of stomatal conductance, while both enhance photosynthesis and
transpiration under full sunlight. – Plant Physiology 158: 14751484 – doi: 10.1104/pp.111.187237. Epub 2011 Dec 6. – https://www.ncbi.nlm.nih.gov/pubmed/22147516 – (On our blog : https://plantstomata.wordpress.com/2017/12/09/phototropins-but-not-cryptochromes-mediate-the-blue-light-speci%ef%ac%81c-promotion-of-stomatal-conductance/)

Boetsch J., Chin J., Croxdale J. (1995) – Arrest of stomatal initials in Tradescantia is linked to the proximity of neighboring stomata and results in the arrested initials acquiring properties of epidermal cells. Dev Biol 1995, 168:28-38. (PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2017/02/17/arrested-stomatal-initials-and-stomatal-neighbors/).

Boetsch J., Chin J., Ling M., Croxdale J. (1996) – Elevated carbon dioxide affects the patterning of subsidiary cells in Tradescantia stomatal complexes. – Journal of Experimental Botany 47925–932 – https://doi.org/10.1093/jxb/47.7.925 – Google Scholar https://academic.oup.com/jxb/article/47/7/925/580389 – (On our blog : https://plantstomata.wordpress.com/2018/04/12/regulating-stomatal-conductance-in-response-to-elevated-co2-without-changing-the-relative-number-of-stomata/ )

Bolliger R. (1959) – Entwicklung und Struktur der Epidermisaussenwand bei einigen Angiospermenblättern – J. Ultrastructure Research 3: 105-130 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/epidermis-and-cuticula-in-angiosperms-in-german/)

Bonan G. B., Williams M., Fisher R. A., Oleson K. W. (2014) – Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum – Geosci. Model Dev., 7, 2193–2222, 2014 –  doi:10.5194/gmd-7-2193-2014 – https://www.geosci-model-dev.net/7/2193/2014/gmd-7-2193-2014.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-conductance-models-3/)

Bond B. J., Kavanaugh K. L. (1999) – Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential – Tree Physiol. 19: 503–510 –

Bonis N. R., Van Konijnenburg-van Cittert J. H. A., Kürschner W. M. (2010) – Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris – Palaeogeography, Palaeoclimatology, Palaeoecology 295: 146-161 –

Boorse G. Tallman G. (1999)  Guard cell protoplasts. Isolation, culture, and regeneration of plants. – Methods of Molecular Biology 111243–257 – DOI 10.1385/1-59259-583-9:243 – Medline – PubMed – https://www.researchgate.net/publication/13209967_Guard_Cell_Protoplasts_Isolation_Culture_and_Regeneration_of_Plants – (On our blog : https://plantstomata.wordpress.com/2017/12/11/guard-cell-protoplasts-and-adjustment-of-stomatal-dimensions/)

Bopp M., Bock G. (1961) – Die Reaktion der Schliesszellen bei einigen panaschierten Pflanzen – Ber. Deutsch. Bot. Ges. LXXIV (4) : 125-134 – (On our blog : https://plantstomata.wordpress.com/2017/04/22/effect-of-chlorophyll-content-on-stomatal-movement-in-variegated-plants-in-german/)

Borel C., Frey A., Marion-Poll A., Tardieu F., Simonneau T. (2001) – Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought ? – Plant Cell Environ. 24: 477-489 – DOI: 10.1046/j.1365-3040.2001.00698.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2001.00698.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/11/engineering-aba-biosynthesis-and-modification-of-stomatal-response-to-drought/)

Borel C., Simonneau T., This D., Tardieu F. (1997) – Stomatal conductance and ABA concentration in the xylem sap of barley lines of contrasting genetic origins. – Australian journal of plant physiology 24 (5): 607-615 – DOI 10.1071/PP96097 – https://www.researchgate.net/publication/229422914_Stomatal_Conductance_and_ABA_Concentration_in_the_Xylem_Sap_of_Barley_Lines_of_Contrasting_Genetic_Origins – (On our blog : https://plantstomata.wordpress.com/2017/12/11/stomatal-conductance-and-aba-concentration/)

Borthakur D., Saikia J., Roy S. (2017) – Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency – Journ. Plant Physiol. & Breeding 7(1): 121-131 – http://breeding.tabrizu.ac.ir/article_6365.html – (On our blog : https://plantstomata.wordpress.com/2018/05/08/stomatal-density-an-important-selection-criterion/ )

Boudolf V.Barrôco R.de Almeida Engler J., Verkest A., Beeckman T., Naudts M., Inzé D., De Veylder L. (2004) – B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana – The Plant Cell April 2004 vol. 16 no. 4 945-955 – http://dx.doi.org/10.1105/tpc.021774 – http://www.plantcell.org/content/16/4/945.abstract – (On our blog : https://plantstomata.wordpress.com/2015/08/25/b1-type-cyclin-dependent-kinases-and-stomata-in-arabidopsis/)

Bowling D. J. F. (1976) Malate-switch hypothesis to explain the action of stomata. – Nature 262: 393–394 – doi:10.1038/262393a0 – Google Scholar – https://www.nature.com/articles/262393a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/malate-switch-hypothesis-to-explain-the-action-of-stomata/)

Bowling D. J. F. (1987) Measurement of the apoplastic activity of K+ and Cl in the leaf epidermis of Commelina communis in relation to stomatal activity. – Journal of Experimental Botany 38: 13511355. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/03/21/apoplastic-activity-of-k-and-cl-and-stomata/)

Bowling D. J. F., Edwards A. (1984) – pH gradients in the stomatal complex of Tradescantia virginiana. – Journal of Experimental Botany 35 : 1641–1645 – https://doi.org/10.1093/jxb/35.11.1641 – https://academic.oup.com/jxb/article-abstract/35/11/1641/719683 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/ph-gradients-in-the-stomatal-complex/)

Bowman J. L. (2011) – Stomata: Active Portals for Flourishing on Land – Current Biology 21(14): 540-541 – DOI10.1016/j.cub.2011.06.021 – https://www.infona.pl/resource/bwmeta1.element.elsevier-30ed66d7-875e-3268-bd9f-edf4c55b60da – (On our blog : https://plantstomata.wordpress.com/2017/10/12/early-land-plants-could-actively-control-stomata/)

Bradbury D., Ennis W. B. Jr. (1952) – Stomatal closure in kidney bean plants treated with ammonium 2,4-dichlorophenoxyacetate – Amer. J. Bot. 39: 324-328 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-and-24-d/)

Bradford K. J., Sharkey T. D., Farquhar G. D. (1983) – Gas exchange, stomatal behaviour, and d13C values of the flacca tomato mutant in relation to abscisic acid. – Plant Physiol 72 245–250 – DOI: https://doi.org/10.1104/pp.72.1.245 –  [PMC free article] [PubMed] – http://www.plantphysiol.org/content/72/1/245.short – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-behavior-in-flacca-a-mutant-of-tomato/).

Brady K. (x) – Challenging a Fine Balance – Dept. Biol. Univ. Washington. –  (http://www.biology.washington.edu/newsletter/sum12/Keiko%20Torii.html) – (On our blog : https://plantstomata.wordpress.com/2016/02/16/could-stomatal-patterning-be-manipulated-for-agricultural-purposes/)

Brandt B., Brodsky D.E.Xue S.Negi J.Iba K.Kangasjärvi J.Ghassemian M.Stephan A. B.Hu H.Schroeder J. I. (2012) – Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action – Proc Natl Acad Sci USA 1091059310598  – https://doi.org/10.1073/pnas.1116590109 – http://www.plantphysiol.org/content/178/1/441 – (On our blog : https://plantstomata.wordpress.com/2018/09/10/reconstitution-of-aba-activation-of-slac1-anion-channel-by-cpk6-and-ost1-kinases-in-stomata/

Brandt B., Munemasa S., Wang C., Nguyen D., Yong T., Yang P. G., Poretsky E., Belknap T. F., Waadt R., Alemán F., Schroeder J. I. (2015) –  Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells, eLife, 2015, 4  – http://elifesciences.org/content/4/e03599v1 – (On our blog : https://plantstomata.wordpress.com/2015/10/23/ca-aba-and-stomata/)

Braune W., Hartung W., Oelmüller R., Fischer W. (2000) – Functional Stomata in Non-photosynthetic, Non-ABA Accumulating leaves of a Gymnocladus Albino – Journal of Plant Physiology 15(5-6): 695-703 – DOI10.1016/S0176-1617(00)80234-5 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5f38faaf-58e6-39b6-92a1-1819611e3fe2 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/functional-stomata-giant-pores-in-non-photosynthetic-albino-leaves/)

Brearley J., Venis M. A., Blatt M. R . (1997) – The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. – Planta 203: 145–154 CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/21/co2-k-and-anion-channels-and-stomata/)

Bréda N., Cochard H., Dreyer E., Granier A. (1993) – Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress – Annals of Forest Science 50: 571–582 – DOI: 10.1051/forest:19930606 – https://www.afs-journal.org/articles/forest/abs/1993/06/AFS_0003-4312_1993_50_6_ART0006/AFS_0003-4312_1993_50_6_ART0006.html – (On our blog : https://plantstomata.wordpress.com/2018/10/10/transpiration-stomatal-conductance-and-vulnerability-to-cavitation/ )

Bredmose N. B., Nielsen K. L. (2009) – Controlled atmosphere storage at high CO2 and low O2 levels affects stomatal conductance and influence root formation in Kalanchoe cuttings – Scientia Horticulturae 122(1): 91-95 – DOI10.1016/j.scienta.2009.03.017 – https://www.infona.pl/resource/bwmeta1.element.elsevier-fb0f6431-3393-3d61-8300-daf3f07cc927 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/stomatal-conductance-and-high-co2-and-low-o2-levels/)

Brennan J. (2017) – How Does CO2 Affect the Opening of Stomata? – Sciencing 2017-04-25 – https://sciencing.com/co2-affect-opening-stomata-20980.html – (On our blog : https://plantstomata.wordpress.com/2017/09/26/co2-and-the-opening-of-stomata/)

Bresta P., Nikolopoulos D., Economou G., Vahamidis P., Lyra D., Karamanos A.,  Karabourniotis G. (2011) – Modification of water entry (xylem vessels) and water exit (stomata) orchestrates long term drought acclimation of wheat leaves – Plant and Soil 347(1-2): 179-193 – DOI10.1007/s11104-011-0837-4 – https://www.infona.pl/resource/bwmeta1.element.springer-d529decb-208f-3557-a9c3-072cf8f9cc8a – (On our blog : https://plantstomata.wordpress.com/2017/10/08/modification-of-water-entry-xylem-vessels-and-water-exit-stomata-orchestrates-long-term-drought-acclimation/)

Bright J., Desikan R., Hancock J. T., Weir I. S., Neill S. J. (2006) –  ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. – The Plant Journal 45: 113122 – PMID:16367958; http://dx.doi.org/10.1111/j.1365-313X.2005.02615.x – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2015/09/08/strong-inter-relationship-between-aba-endogenous-h2o2-and-no-induced-stomatal-closure/)

Brillada C., Jiameng Zheng J., Rovira-Diaz E., Rojas-Pierce M., Kruger F., Askani J. C., Schumacher K. (2018) – Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants – Proceedings of the National Academy of Sciences – DOI: 10.1073/pnas.1807763115 – https://news.ncsu.edu/2018/08/hops-in-vacuole-fusion/ – (On our blog : https://plantstomata.wordpress.com/2018/08/23/vacuoles-control-the-opening-and-closing-of-stomata/ )

Brindley H. M. (1990) – Fluxes of 86Rb+ in “isolated” guard cells of Vicia faba L. – Planta 181: 432–439 – https://www.jstor.org/stable/23380579?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/11/fluxes-of-86rb-in-stomata/)

Bringmann M., Bergmann D. C. (2013) – Stomatal Patterning. – Encyclopedia of Life Sciences. – DOI:10.1002/9780470015902.a0024691 – http://www.els.net/WileyCDA/ElsArticle/refId-a0020125.html – (On our blog : https://plantstomata.wordpress.com/2017/11/01/stomatal-patterning-3/)

Bringmann M., Bergmann D. C. (2017) – Tissue-wide mechanical forces influence the polarity of stomatal stem cell in Arabidopsis. – Curr. Biol. 27(6): 877-883 – http://dx.doi.org/10.1016/j.cub.2017.01.059 – https://www.infona.pl/resource/bwmeta1.element.elsevier-29084113-17b4-344d-95cd-7f91a36e79fb – (On our blog : https://plantstomata.wordpress.com/2017/10/22/mechanical-forces-influence-the-polarity-of-stomatal-stem-cells/)

Broadley M. R., Escobar-Gutierrez A. J., Burns A., Burns I. G. (2001) –  Nitrogen-limited growth of lettuce is associated with lower stomatal conductance – New Phytol. 152: 97–106 – https://doi.org/10.1046/j.0028-646x.2001.00240.x – https://www.jstor.org/stable/1353584?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/10/01/nitrogen-limited-growth-and-lower-stomatal-conductance/

Brock A. K., Willmann R., Kolb D., Grefen L., Lajunen H. M., Bethke G., Lee J., Nürnberger T., Gust A. A. (2010) – The Arabidopsis Mitogen-Activated Protein Kinase Phosphatase PP2C5 Affects Seed Germination, Stomatal Aperture, and Abscisic Acid-Inducible Gene Expression – Plant Physiol. 153, 1098–1111. doi: 10.1104/pp.110.156109 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/09/pp2c5-and-stomatal-aperture/)

Brodribb Lab Publications: https://wordpress.com/post/plantstomata.wordpress.com/64256

Brodribb T. J. (2012) – Passive valves or metabolic mouths? The evolution of stomatal physiology – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/the-ecological-atmospheric-and-physiological-implications-of-a-stomatal-evolutionary-model/ )

Brodribb T. J., Anfodillo T.  (2015) –  Transport efficiency through uniformity: Organization of veins and stomata in angiosperm leaves – New Phytologist 209(1) – DOI 10.1111/nph.13577 – https://www.researchgate.net/publication/280585417_Transport_efficiency_through_uniformity_Organization_of_veins_and_stomata_in_angiosperm_leaves – (On our blog : https://plantstomata.wordpress.com/2018/01/20/organization-of-veins-and-stomata-in-angiosperm-leaves/ )

Brodribb T. J., Hill R. S. (1997) –  Imbricacy and stomatal wax plugs reduce maximum leaf conductance in southern hemisphere conifers. – Australian Journal of Botany 45, 657–668. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/05/09/imbricacy-stomatal-wax-plugs-and-leaf-conductance/)

Brodribb T. J., Holbrook N. M. (2003) – Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. – Plant Physiology 132(4): 2166–2173 – DOI: https://doi.org/10.1104/pp.103.023879 – CrossRef CAS – http://www.plantphysiol.org/content/132/4/2166 – (On our blog : https://plantstomata.wordpress.com/2017/12/11/what-triggers-stomatal-closure-during-leaf-desiccation/)

Brodribb T. J., Holbrook N. M. (2004) – Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670 (CrossRef).– (On our blog : https://plantstomata.wordpress.com/2015/09/08/behaviour-of-stomata-in-pteridophytes-and-angiosperms/).

Brodribb T. J., Holbrook N. M. (2004) – Diurnal depression of leaf hydraulic conductance in a tropical tree species – Plan, Cell and Environment 2004;27:820-827. – CrossRef Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/09/08/diurnal-patterns-of-hydraulic-conductance-in-a-tropical-tree-species/).

Brodribb T. J., Holbrook N. M., Edwards E. J., Guttiérrez M. V. (2003) – Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees – Plant Cell Environ. 26(3): 443–450 – DOI: 10.1046/j.1365-3040.2003.00975.x– http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.00975.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/09/stomatal-closure-leaf-turgor-and-xylem-vulnerability/)

Brodribb T. J., Jordan G.J. (2008) – Internal coordination between hydraulics and stomatal control in leaves. Plant Cell Environ. 31: 1557-1564 ) – Wiley Online Library – PubMed – CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/09/stomatal-control-in-leaves-and-hydraulics/).

Brodribb Lab – Stomatal Function and Evolution – http://www.brodribblab.org.au/research-areas/stomatal-function-and-evolution/ – (On our blog : https://plantstomata.wordpress.com/2017/01/03/stomatal-function-and-evolution-at-the-brodribb-lab/)

Brodribb T. J., McAdam S. A. M. (2011) – Passive origins of stomatal control in vascular plants. Science 331: 582-585 – doi: 10.1126/science.1197985. Epub 2010 Dec 16. – PMID: 21163966 – Free Article – (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/09/different-behavior-of-stomata-in-early-vascular-plants-and-seed-plants/).

Brodribb T. J., McAdam S. A. M. (2012) – Stomatal (mis)behaviour – Tree Physiol. 31(10): 1039-1040 – doi: 10.1093/treephys/tpr100. – Epub 2011 Sep 24. – PMID: 21949027 – https://www.ncbi.nlm.nih.gov/pubmed/21949027 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/stomatal-misbehaviour/ )

Brodribb T. J., McAdam S. A. M. (2013) – Abscisic acid mediates a divergence in the drought response of two conifers. – Plant Physiol. 2013 Jul;162(3):1370-7. doi: 10.1104/pp.113.217877. Epub 2013 May 24. – PMID: 23709665 – http://www.brodribblab.org.au/wp-content/uploads/2014/05/ABA-and-drought-response-Plant-Phys-Brodribb-McAdam.pdf – (On our blog : https://plantstomata.wordpress.com/2016/02/19/two-contrasting-mechanisms-of-stomatal-regulation/).

Brodribb T. J., McAdam S. A. M. (2013) – Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling. – PLoS One. 2013 Nov 20;8(11):e82057. doi: 10.1371/journal.pone.0082057. eCollection 2013. – PMID: 24278470 – Free PMC Article – (On our blog : https://plantstomata.wordpress.com/2016/02/19/unique-responsiveness-of-angiosperm-stomata/).

Brodribb T. J., McAdam S. A. M. (2015) – Evolution in the smallest valves (stomata) guides even the biggest trees – Tree Physiol. 35(5): 451-452 – doi: 10.1093/treephys/tpv042 – PMID:-26041093 – https://academic.oup.com/treephys/article/35/5/451/1642114 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/different-ways-sister-species-respond-to-water-stress/ )

Brodribb T. J., McAdam S. A. M. (2017) – Evolution of the stomatal regulation of plant water content – Plant Physiology 174(2) · April 2017 – DOI: 10.1104/pp.17.00078 – https://www.researchgate.net/publication/316111982_Evolution_of_the_stomatal_regulation_of_plant_water_content – (On our blog : https://plantstomata.wordpress.com/2017/06/25/the-function-of-early-stomata/)

Brodribb T. J., McAdam S. A. M., Carins Murphy M. R. (2017) – Xylem and Stomata, Coordinated Through Time and Space – Plant Cell and Environment 40: 872-880 – DOI: 10.1111/pce.12817 – https://www.researchgate.net/publication/306271326_Xylem_and_Stomata_Coordinated_Through_Time_and_Space – (On our blog : https://plantstomata.wordpress.com/2016/08/20/evolution-in-xylem-and-stomatal-function-and-their-interaction/)

Brodribb T. J., McAdam S. A. M., Jordan G. J., Field T. S. (2009) – Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants – New Phytol. 183(3): 839-847 – doi: 10.1111/j.1469-8137.2009.02844.x. Epub 2009 Apr 23. – PMID: 19402882 – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/10/stomatal-responsiveness-to-co2-and-optimization-of-wue/)

Brodribb T. J., McAdam S. A., Jordan G. J., Martins S. C. ( 2014) – Conifer species adapt to low-rainfall climates by following one of two divergent pathways. – Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14489-93. doi: 10.1073/pnas.1407930111. Epub 2014 Sep 22. – https://www.ncbi.nlm.nih.gov/pubmed/25246559 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/the-simple-way-conifers-evolved-to-cope-with-water-shortage-a-critical-interaction-between-xylem-and-stomatal-tissues/)

Brosché M., Merilo E., Mayer F ., Pechter  P., Puzörjova I., Brader G ., Kangasjärvi J., Kollist H. (2010) – Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. – Plant Cell Environ. 2010 Vol 33: 914-925 – DOI: 10.1111/j.1365-3040.2010.02116.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02116.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/10/the-role-of-stomata-in-regulating-o3-entry-and-damage/)

Brown K. W., Rosenberg N. J. (1970) – Influence of leaf age, illumination, and upper and lower surfaces on stomatal resistance of sugar beet (Beta vulgaris) leaves – Agron. J. 62: 20-24 – doi:10.2134/agronj1970.00021962006200010007x – https://dl.sciencesocieties.org/publications/aj/abstracts/62/1/AJ0620010020?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/12/influence-of-leaf-age-illumination-and-upper-and-lower-surfaces-on-stomatal-resistance/ )

Brown P. H., Outlaw W. H. (1982) – Effect of Fusicoccin on Dark 14CO2 Fixation by Vicia faba Guard Cell Protoplasts – Plant Physiol. 70(6): 1700–1703 – DOI: https://doi.org/10.1104/pp.70.6.1700 – [PMC free article][PubMed] – http://www.plantphysiol.org/content/plantphysiol/70/6/1700.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/12/effect-of-fusicoccin-on-dark-14co2-fixation-by-stomatal-protoplasts/

Brown W. V., Johnson S. C. (1962) – The fine structure of the grass guard cell – Am. J. Bot. 49: 110-115 – https://www.jstor.org/stable/2439025?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/11/13/structure-of-grass-stomata/)

Brownlee C. (2001) – The long and the short of stomatal density signals. -Trends Plant Sci 6:441-442. – DOI: http://dx.doi.org/10.1016/S1360-1385(01)02095-7 – CrossRefMedlineWeb of Science – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/The-long-and-the-short-of-stomatal-density-signals.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/09/the-density-and-patterning-of-stomata-in-response-to-environmental-stimuli/)

Brüggemann L., Dietrich P., Becker D., Dreyer I., Palme K., Hedrich R. (1999) – Channel‐mediated high‐affinity K+ uptake into guard cells from Arabidopsis – Proceedings of the National Academy of Sciences USA 96: 3298-3302  -PMID: 10077678 PMCID: PMC15936 – https://www.ncbi.nlm.nih.gov/pubmed/10077678 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71187 )

Brüggemann L., Dietrich P., Dreyer I., Hedrich R. (1999) – Pronounced differences between the native K+ channels and KAT1 and KST1 alpha‐subunit homomers of guard cells – Planta 207: 370-376 – PMID: 9951733 – https://www.ncbi.nlm.nih.gov/pubmed/9951733 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/differences-between-the-native-k-channels-and-kat1-and-kst1-alpha%e2%80%90subunit-homomers-of-stomata/ )

Brugnoli E., Lauteri M. (1991) – Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes – Plant Physiology DOI: https://doi.org/10.1104/pp.95.2.628 – http://www.plantphysiol.org/content/plantphysiol/95/2/628.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/30/effects-of-salinity-on-growth-and-stomatal-conductance/)

Brun W. A. (1962) – Rhythmic stomatal opening responses in banana leaves – Physiol. Plant. 15: 623-630 – DOI: 10.1111/j.1399-3054.1962.tb08110.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1962.tb08110.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/19/rhythmic-stomatal-opening-responses/ )

Bruns H. N. (2016) – Flag Leaf Photosynthesis and Stomatal Function of Grain Sorghum as Influenced by Changing Photosynthetic Photon Flux Densities – International Journal of Agronomy 2016, Article ID 1363740, 6 pp. – http://dx.doi.org/10.1155/2016/1363740 – https://www.hindawi.com/journals/ija/2016/1363740/ – (On our blog : https://plantstomata.wordpress.com/2017/11/27/stomatal-function-of-grain-sorghum/)

Bucher S. F., Auerswald K., Grün-Wenzel C., Higgins S. I., Garcia Jorge J., Römermann C. (2017) – Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate – Flora 229: 107-115 – DOI10.1016/j.flora.2017.02.011 – https://www.infona.pl/resource/bwmeta1.element.elsevier-d3f42e76-ec23-32b1-9ab2-5bbdb53fa470 – (On our blog : https://plantstomata.wordpress.com/2017/10/09/stomatal-traits-such-as-size-density-or-distribution-as-indicators/)

Buckley T. N. (2005) – The control of stomata by water balance. – New Phytol. 168(2): 275-292 – doi: 10.1111/j.1469-8137.2005.01543.x –  (CrossRefMedlineGoogle ScholarWiley Online Library |PubMed |CAS).- http://dx.doi.org/10.1111/j.1469-8137.2005.01543.x – (On our blog : https://plantstomata.wordpress.com/2015/08/25/stomata-and-water-balance/).

Buckley T. N. (2008) – The role of stomatal acclimation in modelling tree adaptation to high CO2. – Journal of Experimental Botany 59:19511961 – DOI 10.1093/jxb/erm234 – CrossRefPubMed |- CAS |- https://www.ncbi.nlm.nih.gov/pubmed/18000018 – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-acclimation-in-modelling-tree-adaptation-to-high-co2/ )

Buckley T. N. (2016) – Stomatal responses to humidity: has the ‘black box’ finally been opened? Commentary – Plant, Cell & Environment Volume 39, Issue 3: 482–484 – http://buckleylab.ucdavis.edu/wp-content/uploads/sites/511/2018/01/buckley-2016-commentary-on-MacAdam-et-al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/19/black-box-of-stomatal-closure-some-mechanism-is-needed-to-amplify-guard-cell-turgor-loss-to-produce-stomatal-closure/

Buckley T. N. (2017) – Modeling stomatal conductance. – Plant Physiol 174: 572–582 – DOI: https://doi.org/10.1104/pp.16.01772 – http://www.plantphysiol.org/content/174/2/572 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/models-of-stomatal-conductance-3/)

Buckley T. N., Farquhar G. D., Mott K. A. (1997) – Qualitative effects of patchy stomatal conductance distribution features on gas exchange calculations. – Plant, Cell & Environment 20(7): 867880 – DOI: 10.1046/j.1365-3040.1997.d01-128.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-128.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/patchy-stomatal-conductance-distribution-features-and-gas-exchange/)

Buckley T. N., Farquhar G. D., Mott K. A. (1999) – Carbon-water balance and patchy stomatal conductance – Oecologia 118: 132143 – https://doi.org/10.1007/s004420050711 – CrossRef – https://link.springer.com/article/10.1007/s004420050711#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/19/carbon-water-balance-and-patchy-stomatal-conductance/ )

Buckley T. N.John G. P.Scoffoni C.Sack L. (2017) – The Sites of Evaporation within Leaves – Plant Physiology 

Buckley T. N., Martorell S., Diaz‐Espejo A., Tomàs M., Medrano H. (xxxx) – Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera) – Plant, Cell & Environment 37(12): 2707 – 2721 – DOI10.1111/pce.12343 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-37-i-12-pce12343 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/is-stomatal-conductance-optimized-over-both-time-and-space-in-plant-crowns/)

Buckley T. N., Mott K. A. (2000) – Stomatal responses to non-local changes in PFD: evidence for long-distance hydraulic interactions – Plant, Cell and Environment 23: 301-309 – https://doi.org/10.1046/j.1365-3040.2000.00552.x – Wiley Online Library – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Stomatal-responses-to-non-local-changes-in-PFD–evidence-for-long-distance-hydraulic-interactions.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/27/stomatal-responses-to-non-local-changes/ )

Buckley T.N., Mott K.A. (2002) – Dynamics of stomatal water relations during the humidity response: implications of two hypothetical mechanisms. – Plant Cell Environ. 25: 407–419. – Wiley Online Library Google Scholar – http://onlinelibrary.wiley.com/doi/10.1046/j.0016-8025.2001.00820.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/10/dynamics-of-stomatal-water-relations/)

Buckley T. N., Mott K. A. (2002) – Stomatal water relations and the control of hydraulic supply and demand – In: Esser K., Lüttge U., Beyschlag W., Hellwig F. (eds) Progress in Botany. Progress in Botany (Genetics — Physiology — Systematics — Ecology), Springer, Berlin, Heidelberg 63: 309325 – CrossRef – DOI: https://doi.org/10.1007/978-3-642-56276-1_12 – https://link.springer.com/chapter/10.1007/978-3-642-56276-1_12#citeas – (On our blog : https://plantstomata.wordpress.com/2018/08/27/stomatal-water-relations/

Buckley T.N., Mott K.A. (2013) – Modelling stomatal conductance in response to environmental factors – Plant Cell Environ, 36: 1691–1699. doi:10.1111/pce.12140 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12140/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/stomatal-conductance-and-environmental-factors-2/)

Buckley T. N., Mott K. A., Farquhar G. D. (2003) – A hydromechanical and biochemical model of stomatal conductance. – Plant, Cell and Environment 26: 1767-1786. – DOI: 10.1046/j.1365-3040.2003.01094.x – CrossRef  Google Scholar – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.01094.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/01/07/models-of-stomatal-conductance-2/)

Buckley T. N., Sack L., Farquhar G. D. (2016) – Optimal plant water economy – DOI: 10.1111/pce.12823 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12823/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/20/plant-water-economy/)

Buckley T. N., Sack L., Gilbert M. E. (2011) – The role of bundle sheath extensions and life form in stomatal responses to leaf water status. – Plant Physiology 156, 962973 – DOI: https://doi.org/10.1104/pp.111.175638 –  CrossRefCAS – http://www.plantphysiol.org/content/156/2/962 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/understanding-dynamic-stomatal-responses-to-water-status/ )

Buckley T. N., Turnbull T. L., Adams M. A. (2012) – Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data. – Plant, Cell & Environment 35:16471662 – DOI: 10.1111/j.1365-3040.2012.02515.x – Wiley Online Library – https://www.ncbi.nlm.nih.gov/pubmed/22486530 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/simple-models-for-stomatal-conductance/ )

Budzan J. (1998) – Chloroplast number in stomata guard cells as a distinctive character of Galinsoga parviflora Pav. [2n-16] and Galinsoga ciliata [Rafin.] blake [2n-32] – Prace Naukowe Uniwersytetu Śląskiego w Katowicach 1998: 1696 – ISSN :0208-6336 – https://www.infona.pl/resource/bwmeta1.element.agro-article-391e655a-47b4-48e1-8683-782212781dc7 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/chloroplast-number-in-stomata-guard-cells-as-a-distinctive-character-of-galinsoga-species/)

Bunce J. A. (1992) – Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of CO2 – Plant, Cell and Environment 15(5): 541-549 – DOI: 10.1111/j.1365-3040.1992.tb01487.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01487.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/19/stomatal-conductance-and-elevated-concentration-of-co2/ )

Bunce J.A. (1997) – Does transpiration control stomatal responses to water vapour pressure deficit? – Plant Cell Environ. 20: 131–135. – CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/11783/

Bunce  J. A. (1998) – Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration – Plant, Cell & Environ. 21: 115–120 – https://doi.org/10.1046/j.1365-3040.1998.00253.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1998.00253.x – (On our blog : https://plantstomata.wordpress.com/2018/08/29/humidity-and-short-term-responses-of-stomatal-conductance/ )

Bunce J. A. (2000) – Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field – Global Change Biology 6: 371-382 – https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=40374&content=PDF – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-responses-to-light-humidity-and-temperature-at-3-co2-concentrations/ )

Bunce J. A. (2001) – Direct and acclamatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field – Global Change Biology 7: 323-331 – DOI: 10.1046/j.1365-2486.2001.00406.x – Google Scholar CrossRef – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.2001.00406.x – (On our blog : https://plantstomata.wordpress.com/2018/08/29/responses-of-stomatal-conductance-to-elevated-co2/ )

Bunce J. A. (2004) – Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. – Oecologia, 140(1): 1-10 – DOI: 10.1007/s00442-003-1401-6 – https://www.ncbi.nlm.nih.gov/pubmed/14557864 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/co2-effects-on-stomatal-responses-to-the-environment/ )

Bunce J. A. (2006) – How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits? – Plant Cell Environ. 29: 1644–1650 – DOI 10.1111/j.1365-3040.2006.01541.x – Google Scholar CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01541.x/full – (On our blog : https://plantstomata.wordpress.com/2018/02/21/leaf-hydraulics-limiting-stomatal-conductance/ )

Bunce J. A. (2007) – Low carbon dioxide concentrations can reverse stomatal closure during water stress. Physiol. Plant. 130, 552–559. doi: 10.1111/j.1399-3054.2007.00937.x – CrossRef Full Text | Google Scholar – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/7062 )

Bunce J. A. (2010) – Variable responses of mesophyll conductance to substomatal carbon dioxide concentration in common bean and soybean – Photosynthetica 48507512 – https://doi.org/10.1007/s11099-010-0067-7 – https://link.springer.com/article/10.1007/s11099-010-0067-7#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/11/variable-responses-of-mesophyll-conductance-to-substomatal-carbon-dioxide-concentration/

Bunce J. A. (2012) – Using New Gas Exchange Methods to Estimate Mesophyll Conductance and Non-stomatal Inhibition of Photosynthesis Caused by Water Deficits – HortScience 47(6): 687-690 – http://hortsci.ashspublications.org/content/47/6/687.full – (On our blog : https://plantstomata.wordpress.com/2018/09/23/new-gas-exchange-methods-to-estimate-mesophyll-conductance-and-non-stomatal-inhibition-of-photosynthesis/

Bundy, M. G. R., Kosentka P. K., Willet A. H., Zhang L., Miller E., Shpak E. D. (2016) – A Mutation in the Catalytic Subunit of the Glycosylphosphatidylinositol Transamidase Disrupts Growth, Fertility, and Stomata Formation – 

Bureau IMAC (2016) – Importance of humidity for plant growth – Anthura May 2016 – https://www.anthura.nl/growing-advise/82466/?lang=en – (On our blog : https://plantstomata.wordpress.com/2018/01/24/keeping-the-stomata-open/ )

Burghardt M., Riederer M. (2003) – Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. – J. Environ. Biol., 54: 1941-1949 – (On our blog : https://plantstomata.wordpress.com/2016/05/12/cuticular-transpiration-and-stomatal-closure/ )

Burkhardt J., Eichert T. (2001) – Stomatal uptake as an important factor in foliar nutrition. In: Plant Nutrition. W.J. Horst et al. (Eds). Kluwer Academic Publisher, Dordrecht, Boston, London. (Article not found)

Burnett E. C., Desikan R., Moser R. C., Neill S. J. (2000) – ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. – J. Exp. Bot. 51, 197–205. doi: 10.1093/jexbot/51.343.197 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/aba-ambp-kinase-and-stomata/ )

Burrows F. J., Milthorpe F. L. (1976) – Stomatal conductance in gas exchange control. In T. T. Kozlowski, ed. Water deficits and Plant Growth, Vol. 4, Acad. Press New York, pp. 103-152 – (Article not found)

Burschka C., Lange O. L., Hartung W.  (1985) – Effects of abscisic acid on stomatal conductance and photosynthesis in leaves of intact Arbutus unedo plants under natural conditions – Oecologia 67: 593-595 –

Busby C. H., Gunning B. E. S. (1980) – Observations on preprophase bands of microtubules in uniseriate hairs, stomatal complexes of sugar cane, and Cyperus root meristems – European Journal of Cell Biology 21: 214–223 – PMID: 7398662 – https://www.ncbi.nlm.nih.gov/pubmed/7398662 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/preprophase-bands-of-microtubules-in-stomatal-complexes/ )

Busby C. H., Gunning B. E. S. (1984) – Microtubules and morphogenesis in stomata of the water fern Azolla: an unusual mode of guard cell and pore development – Protoplasma 22: 108–119 – https://doi.org/10.1007/BF01279443 – https://link.springer.com/article/10.1007%2FBF01279443#citeas – (On our blog : https://plantstomata.wordpress.com/2018/09/04/an-unusual-mode-of-stomata-development/ )

Busch F. (2013) – Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain – Photosynthesis Research 119(1-2):131-40 –  doi: 10.1007/s11120-013-9805-6. – CrossRef – https://www.ncbi.nlm.nih.gov/pubmed/23483292 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-current-knowledge-of-the-red-light-response-of-stomata/ )

Büssis D., von Groll U., Fisahn J., Altmann T. (2006) – Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. – Funct Plant Biol 33: 1037–1043. – doi: 10.1071/FP06078 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/stomatal-aperture-stomatal-density-and-growth-light-conditions/ )

Bussotti F., Grossoni P. (1997) – European and Mediterranean oaks (Quercus L.; Fagaceae): SEA4 characterization of the micromorphology of the abaxial leaf surface – Bot. J. Linn. Soc. 124: 183-198 – https://watermark.silverchair.com/j.1095-8339.1997.tb01789.x.pdf? – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomata-in-european-and-mediterranean-oaks-quercus/ )

Butterfass T. (1961) – Das Verhalten der Chloroplastenzahlen in den Schliesszellenpaaren von Zuckerrüben verschiedener Ploidiestufen vom Keimling bis zur blühenden Pflanze – Züchter 31: 62-71. (Article not found)

Buttery B. R.Gaynor J. D.Buzell R. I.Mactavish D. C.Armstrong R. J. (1992) – The effects of shading on kaempferol content and leaf characteristics of five soybean lines – Physiologia Plantarum, 86: 279–284 –  doi:10.1034/j.1399-3054.1992.860213.x – CrossRef Google Scholar – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1992.860213.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-relationship-between-quantities-of-k9-and-stomatal-density/

Caballero A., Roca E. (2018) – The importance of stomata – Stoller Blog – http://plantphysiologyblog.com/wp-content/uploads/2018/05/THE-IMPORTANCE-OF-STOMATA.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/08/the-importance-of-stomata/ )

Cach-Pérez M. J., Andrade J. L., Cetzal-Ix W., Reyes-García C. (2016) – Environmental influence on the inter- and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula – Botanical Journal of the Linnean Society – Early View (Online Version of Record published before inclusion in an issue) – DOI: 10.1111/boj.12398 – http://onlinelibrary.wiley.com/doi/10.1111/boj.12398/abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/25/stomata-in-epiphytic-bromeliads/ )

Cai S., Chen G., Wang Y., Huang Y., Marchant D. B., Wang Y., Yang Q., Dai F., Hills A., Franks P. J., Nevo E., Soltis D., Soltis P., Sessa E., Wolf P. G., Xue D., Zhang G. P., Pogson B. J., Blatt M. R. Chen Z.-H. (2017) – Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns – Plant Physiology · February 2017 – DOI: 10.1104/pp.16.01848 – https://www.researchgate.net/publication/313950886_Evolutionary_Conservation_of_ABA_Signaling_for_Stomatal_Closure_in_Ferns?focusedCommentId=58b76d7382999cd4be08f8b7 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/aba-signaling-for-stomatal-closure-in-ferns/)

Cai S., Papanatsiou M., Blatt M. R., Chen Z.-H. ( 2017) – Speedy grass stomata: Emerging molecular and evolutionary features – Molecular Plant 10(7): 909–1018 – http://www.sciencedirect.com/science/article/pii/S1674205217301685– https://www.researchgate.net/publication/317508978_Speedy_Grass_Stomata_Emerging_Molecular_and_Evolutionary_Features – (On our blog : https://plantstomata.wordpress.com/2017/06/12/speedy-grass-stomata/) – https://wordpress.com/post/plantstomata.wordpress.com/41088 )

Cai T., Dang Q.-L. (2002) – Effects of soil temperature on parameters of a coupled photosynthesis–stomatal conductance model – Tree Physiology 22: 819–827 –

Caine R. S., Chater C. C., Kamisugi Y., Cuming A. C., Beerling D. J.,Gray J. E.,  Fleming A. J. (2016) – An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens – 

Caine R. S., Yin X., Sloan J., Harrison E. L., Mohammed U., Fulton T., Biswal A. K., Dionora J., Chater C. C., Coe R. A., Bandyopadhyay A., Murchie E. H., Swarup R., Quick W. P., Gray J. E. (2018) – Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions – New Phytol. Online Version of Record  – https://doi.org/10.1111/nph.15344 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15344 – (On our blog : https://plantstomata.wordpress.com/2018/07/26/rice-plants-with-fewer-stomata-are-drought-tolerant-and-more-conservative-in-their-water-use/ )

Caird M. A., Richards J. H., Donovan L. A. (2007) – Night-time stomatal conductance and transpiration in C3 and C4 plants. – Plant Physiol. 143(1): 4 – 10 – DOI 10.1104/pp.106.092940 – http://www.plantphysiol.org/content/plantphysiol/143/1/4.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/20/c3-and-c4-plants-nighttime-stomatal-conductance/ )

Caligaris F. (2017) – Stomata And Wounds: The Constant Dilemma Of Pathogen Infection – Global Engage (blog) – Feb. 2017 – http://www.global-engage.com/agricultural-biotechnology/stomata-and-wounds-constant-dilemma-pathogen-infection/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/pathogen-infection-penetration-through-stomata-and-wounds/)

Camargo M.A.B. (2009) –  Stomatal characteristics in tree species of Central Amazonia. Dissertação de Mestrado, Instituto Nacional de Pesquisas da Amazônia (INPA)/Universidade Federal do Amazonas, Manaus, Amazonas. 52 pp. [in Portuguese]

Camargo M. A. B. , Marenco R. A. (2011) – Density, Size and Distribution of Stomata in 35 Rainforest Tree Species in Central Amazonia. – Acta Amazonica, 41, 205-212. (http://dx.doi.org/10.1590/S0044-59672011000200004) – (On our blog : https://plantstomata.wordpress.com/2015/10/18/stomata-in-rainforest-trees/).

Campany C. E., Tjoelker M. G., von Caemmerer S., Duursma R. A. (2016) – Coupled Response of Stomatal and Mesophyll Conductance to Light Enhances Photosynthesis of Shade Leaves under Sunflecks – Plant, Cell & Environment, Accepted, unedited articles published online – DOI: 10.1111/pce.12841 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12841/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/12/stomatal-and-mesophyll-conductance/)

Campbell D. H. (1881) – On the development of the stomata of Tradescantia and Indian corn – The American Naturalist 15(10): 761-766 – https://www.jstor.org/stable/2448863?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/01/16/stomata-in-tradescantia-and-indian-corn/ )

Campos H., Trejo C., Pena-Valdivia C. B., Garcia-Nava R., Conde-Martinez F. V.,  Cruz-Ortega M. R. (2014) – Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: delayed restoration of photosynthesis during recovery. – Environ. Exp. Bot. 98, 56–64. doi: 10.1016/j.envexpbot.2013.10.015 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/stomatal-and-non-stomatal-limitations/)

Camposeo S., Palasciano M., Vivaldi G. A., Godini A. (2011) – Effect of increasing climatic water deficit on some leaf and stomatal parameters of wild and cultivated almonds under Mediterranean conditions – Sci Hortic 127: 234–241 –

Cao Z., Huang B., Wang Q., Xuan W., Ling T., Zhang B., Chen X., Nie L., Shen W. (2007) – Involvement of carbon monoxide produced by heme oxygenase in ABA- induced stomatal closure in Vicia faba and its proposed signal transduction pathway. – Chin. Sci. Bull. 52, 2365–2373 – doi: 10.1007/s11434-007-0358-y – https://link.springer.com/article/10.1007/s11434-007-0358-y – (On our blog : https://plantstomata.wordpress.com/2018/02/21/co-produced-by-ho-is-involved-in-aba-induced-stomatal-closure/ )

Capellades M., Fontarneau R., Carulla C., Debergh P. (1990) – Environment influences anatomy of stomata and epidermal cells in tissue-cultured Rosa multiflora – J. Amer. Soc. Hort. Sci. 115: 141-145 – http://journal.ashspublications.org/content/115/1/141.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/effect-of-environment-on-stomata/)

Cardon Z. G.Berry J. A. (1992) – Effects of O2 and CO2 concentration in the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. – Plant Physiology 9912381244 – DOI: https://doi.org/10.1104/pp.99.3.1238 – CrossRef | PubMed| – http://www.plantphysiol.org/content/99/3/1238 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/both-o2-and-co2-can-serve-as-sinks-for-atp-and-nadph/ )

Cardon Z. G.Berry J. A., Woodrow I. E. (1994) – Dependence of the extent and direction of average stomatal response in Zea mays L. and Phaseolus vulgaris L. on the frequency of fluctuations in environmental stimuli – Plant Physiology 105: 1007-1013 – PMID: 12232261 – PMCID: PMC160752 – https://www.ncbi.nlm.nih.gov/pubmed/12232261 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/fluctuations-in-light-and-co2-and-their-frequency-can-be-critical-in-determining-time-averaged-stomatal-conductance-under-unstable-environmental-conditions/ )

Cardon Z. G., Mott K. A., Berry J. A. (1994) – Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated using gas-exchange techniques – Plant, Cell &Environment 17(9): 995-1007 – DOI: 10.1111/j.1365-3040.1994.tb02033.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb02033.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/dynamics-of-patchy-stomatal-movements/)

Carins Murphy M. R., Dow G. J., Jordan G. J., Brodribb T. J. (2017) – Vein density is independent of epidermal cell size in Arabidopsis mutants – Functional Plant Biology – http://dx.doi.org/10.1071/FP16299 – published online 9 January 2017 – https://www.researchgate.net/publication/312162425_Vein_density_is_independent_of_epidermal_cell_size_in_Arabidopsis_mutants – (On our blog : https://plantstomata.wordpress.com/2017/01/12/densities-of-leaf-minor-veins-and-stomata/)

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2014) – Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. – Plant, Cell & Environment 37, 124–131. – doi: 10.1111/pce.12136. Epub 2013 Jun 10. – PMID: 23682831 – (CrossRef | CAS | – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-37-i-1-pce12136 – (On our blog : https://plantstomata.wordpress.com/2015/01/30/stomata-during-leaf-acclimation/).

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2016) – Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade – Annals of Botany · August 2016 – Annals of Botany · August 2016 – DOI: 10.1093/aob/mcw167 – http://aob.oxfordjournals.org/content/early/2016/08/27/aob.mcw167.abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/03/cell-expansion-stomata-and-veins/)

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2017) – Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms – PLoS ONE 12(9): 1-18 – http://paperity.org/p/84413381/ferns-are-less-dependent-on-passive-dilution-by-cell-expansion-to-coordinate-leaf-vein–  http://en.hebut.findplus.cn/?h=articles&db=aph&an=125368852 – (On lour blog : https://plantstomata.wordpress.com/2017/09/29/passive-dilution-by-cell-expansion-to-coordinate-leaf-vein-and-stomatal-spacing/)

Carins Murphy M. R., McAdam S., Brodribb T. J. (2016) – Xylem and Stomata, Coordinated Through Time and Space – Plant Cell & Environment 2016 – DOI: 10.1111/pce.12817 – http://www.brodribblab.org.au/publication/xylem-and-stomata-coordinated-through-time-and-space/ – (On our blog : https://plantstomata.wordpress.com/2017/10/30/xylem-and-stomatal-tissues-maintain-a-safe-level-of-leaf-hydration/)

Carlson J. E.Adams C. A., Holsinger K. E. (2015) – Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub – Ann Bot (2016) 117 (1): 195-207.doi: 10.1093/aob/mcv146 – http://aob.oxfordjournals.org/content/117/1/195 – (On our blog : https://plantstomata.wordpress.com/2016/04/11/context-dependent-benefits-of-stomatal-density/)

Carpenter S., Smith N. (1975) – Stomatal distribution and size in southern Appalachian hardwoods – Can J Bot 53: 1153–1156

Carr D. J., Carr S. G., Jahnke R. (1980) – Intercellular strands associated with stomata: stomatal pectic strands – Protoplasma 102: 177-182 – https://doi.org/10.1007/BF01276958 – https://link.springer.com/article/10.1007/BF01276958#citeas – (On our blog : https://plantstomata.wordpress.com/2017/01/08/stomatal-pectic-strands/ )

Carter R., Woolfenden H., Baillie A., Amsbury S., Carroll S., Healicon E., Sovatzoglou S., Braybrook S., Gray J. E., Hobbs J., Morris R. J. , Fleming A. J. (2017) – Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells – Current Biology 27(19)2974-2983.e2 – DOI10.1016/j.cub.2017.08.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0b732584-2905-38fd-9987-52c0aeaa6897 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/new-insight-into-the-mechanics-of-stomatal-function/)

Cartwright H. N., Humphries J. A. , Smith L. G. (2009) – PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize – Science 323: 649–651 – DOI | 10.1126/science.1161686 – https://scinapse.io/papers/2067937627 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/pan1-and-an-extrinsic-signal-that-polarizes-asymmetric-smc-divisions-toward-gmcs-in-stomata/

Case S. (2004) – Leaf stomata as bio indicators : Stimulating Student Research   American Biology Teacher 68(2): 88-91 –  https://eric.ed.gov/?id=EJ745303 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/stomata-as-bioindicators/ )

Casson S. A., Franklin K. A., Gray J. E., Grierson C. S., Whitelam G. C., Hetherington A. M. (2009) – Phytochrome B and PIF4 regulate stomatal development in response to light quantity. – Current Biology 19: 229234 – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/13/phytochrome-b-and-pif4-light-quantity-and-stomatal-development/)

Casson S., Gray J. E. (2008) – Influence of environmental factors on stomatal development. – New Phytol.  178: 9–23 – DOI: 10.1111/j.1469-8137.2007.02351.x  –  CrossRefGoogleScholar – (http://www.ncbi.nlm.nih.gov/pubmed/18266617) – (On our blog : https://plantstomata.wordpress.com/2015/09/13/changes-in-the-environment-and-stomatal-development/).

Casson S.A., Hetherington A.M. (2010) – Environmental regulation of stomatal development. – Current Opinion in Plant Biology 13, 90-95. – http://dx.doi.org/10.1016/j.pbi.2009.08.005 – (On our blog : https://plantstomata.wordpress.com/2016/05/13/environmental-cues-for-stomata/)

Castorina G., Fox S., Tonelli C., Galbiati M., Conti L. (2016) – A novel role for STOMATAL CARPENTER 1 in stomata patterning – BMC Plant BiologyBMC series – open, inclusive and trusted 2016 16:172 – https://doi.org/10.1186/s12870-016-0851-z – https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0851-z – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-carpenter-1-in-stomata-patterning/)

Çavuşoğlu K., Kılıç S., Kabar K. (2007) – Effects of pretreatments of some growth regulators on the stomata movements of barley seedlings grown under saline (NaCl) conditions – Plant Soil Environ. 53(12): 524–528 – http://www.agriculturejournals.cz/ N.publicFiles/00478.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/06/effects-of-growth-regulators-on-the-stomata-movements-under-nacl-conditions/)

Cernusak L. A., Ubierna N., Jenkins M. W., Garrity S. R., Rahn T., Powers H. H., Hanson D. T., Sevanto S., Wong S. C., McDowell N. G., FarquharG. D. (2018) – Unsaturation of vapour pressure inside leaves of two conifer species – Scientific Reports 8, Article number: 7667 – https://www.nature.com/articles/s41598-018-25838-2 – (On our blog : https://plantstomata.wordpress.com/2018/09/21/stomatal-conductance-and-unsaturation-of-vapour-pressure-inside-leaves/ )

Ceulemans R. I., Hinckley T. M., Impens I. (1989) – Stomatal response of hybrid poplar to incident light, sudden darkening and leaf excision – Physiologia Plantarum, Copenhagen 75(2): 174-182 –

Ceulemans R. I., Impens I., Lemeur R., Moermans R., Samsuddin Z. (1978) – Water movement in the soil-poplar-atmosphere system. I. Comparative study of stomatal morphology and anatomy, and the influence of stomatal density and dimensions on the leaf diffusion characteristics in different poplar clones 13: 1-12 –

Ceulemans R. I., Van Praet L., Jiang X. N. (1995) – Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus) – New Phytologist 131: 99-107 – Google Scholar CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1995.tb03059.x/full – (On our blog : https://plantstomata.wordpress.com/2018/01/03/effects-of-co2-enrichment-leaf-position-and-clone-on-stomatal-index/ )

Chabot J. F., Chabot B. (1977) – Ultrastructure of the epidermis and stomatal complex of balsam fir (Abies balsamea) – Can. J. Bot. 55:1064-1075 – https://doi.org/10.1139/b77-125http://www.nrcresearchpress.com/doi/10.1139/b77-125 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/stomatal-complex-of-balsam-fir-abies-balsamea/ )

Chaffey N. (2001) – Stomata, down but not out – Trends in Plant Science 6(4): 144 – ISSN :1360-1385 – https://www.infona.pl/resource/bwmeta1.element.elsevier-05137a69-c74b-3c45-bf5d-8c8165d6e816 – (On our blog : https://plantstomata.wordpress.com/2017/10/10/stomata-down-but-not-out/)

Chaffey N. (2016) – A fresh look at guard cell walls – AoB Blog http://aobblog.com/2016/03/fresh-look-guard-cell-walls/ – (On our blog https://plantstomata.wordpress.com/2016/04/27/the-role-played-by-cellulose-microfibrils-within-the-walls-of-the-guard-cells-in-stomatal-opening/)

Chakravorty D., Trusov Y., Zhang W., Acharya B. R., Sheahan M. B., McCurdy D. W.,  Assmann S. M., Botella J. R. (2011) –  An atypical heterotrimeric G protein γ subunit is involved in guard cell K(+) channel regulation and morphological development in Arabidopsis thaliana –  Plant J. 67(5): 840-851 – DOI: 10.1111/j.1365-313X.2011.04638.x – https://www.ncbi.nlm.nih.gov/pubmed/21575088 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/a-g-protein-%ce%b3-subunit-agg3-that-modulates-morphological-development-and-aba-regulation-of-stomatal-aperture/ )

Charlton W. (1990) Differentiation in leaf epidermis of Chlorophytum comosum Baker – Annals of Botany 66567–578 – DOI 10.1093/oxfordjournals.aob.a088066 – Abstract/FREE Full Text – https://www.jstor.org/stable/42758356 – (On our blog : https://plantstomata.wordpress.com/2018/02/20/the-distribution-of-guard-mother-cell-formation/

Chasan R. (1995) – New openings into stomata. – Plant Cell. 7: 1113-1115 – DOI: https://doi.org/10.1105/tpc.7.8.1113 http://www.plantcell.org/content/plantcell/7/8/1113.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/23/new-openings-into-stomata/) – General paper regarding studying of external signals altering cell behaviour.

Chater C. C., Caine R. S., Fleming A. J., Gray J. E. (2017) – Origin and evolution of stomatal development. – Plant Physiology 174: 624–638 – DOI: 10.1104/pp.17.00183 – http://www.plantphysiol.org/content/174/2/624 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/the-story-of-stomatal-development-and-patterning-across-land-plant-evolution/)

Chater C. C., Caine R. S, Tomek M., Wallace S., Kamisugi Y., Cuming A. C., Lang D., MacAlister C. A., Casson S., Bergmann D. C., Decker E., Frank W., Gray J. E., Fleming A., Reski R., Beerling D. J. (2016) – Origin and function of stomata in the moss Physcomitrella patens – Nature Plants 2: 16179 – doi: 10.1038/nplants.2016.179 – PMID: 27892923 – https://www.ncbi.nlm.nih.gov/pubmed/?term=Chater+CC%2C+Caine+RS%2C+Tomek+M%2C+Wallace+S%2C+Kamisugi+Y%2C+Cuming – (On our blog : https://plantstomata.wordpress.com/2018/10/05/origin-and-function-of-stomata-in-a-moss/ )

Chater C. C., Gray J. E., Beerling D. J. (2013) – Early evolutionary acquisition of stomatal control and development gene signalling networks. – Curr Opin Plant Biol 16: 638–646 – DOI 10.1016/j.pbi.2013.06.013 – https://www.ncbi.nlm.nih.gov/pubmed/23871687 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/stomatal-responses-probably-originated-early-in-land-plant-evolution/ )

Chater C., Kamisugi Y., Movahedi M., Fleming A., Cuming A. C. Gray J. E., Beerling D. J. (2011) – Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. – Curr Biol 2011, 21:1025-1029.  -10.1016/j.cub.2011.04.032.(PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/09/13/stomatal-behavior-in-early-land-plants-and-flowering-plants/).

Chater C., Oliver J., Casson S., Gray J. E. (2014) – Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. – New Phytol. 2014 Apr;202(2):376-391. doi: 10.1111/nph.12713. Epub 2014 Mar 10. – https://www.researchgate.net/publication/260680150_Putting_the_brakes_on_Abscisic_acid_as_a_central_environmental_regulator_of_stomatal_development – (On our blog : https://plantstomata.wordpress.com/2016/04/07/aba-and-stomatal-traits/)

Chater C., Peng K., Movahedi M., Dunn J. A., Walker H. J., Liang Y.-K., McLachlan D. H., Casson S., Isner J. C., Wilson J., Neill S. J., Hedrich R., Gray J. E,  Hetherington A. M. (2015) – Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling – Current Biology Volume 25, Issue 20, 2709–2716 – DOI: http://dx.doi.org/10.1016/j.cub.2015.09.013 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/13/elevated-co2-induced-responses-in-stomata/).

Cheeseman J. M. (1991) – PATCHY: simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. – Plant, Cell & Environment 14: 593599 – https://doi.org/10.1111/j.1365-3040.1991.tb01530.x – Wiley Online Library – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1991.tb01530.x – (On our blog : https://plantstomata.wordpress.com/2018/04/13/the-effects-of-stomatal-patchiness-on-photosynthetic-co2-exchange-studies/ )

Chel’cova L. P. (1957) – Cytological data on the development of leaf stomata in wheat. – Dokl. Akad. Nauk SSSR (NS). 113. 1372-5. – [Seen in Napp-Zinn, K. 1974 Blatt.

Chen C., Xiao Y.-G., Li X., Ni M. (2012) – Light-regulated stomatal aperture in Arabidopsis – Molecular Plant 5(3): 566572 – DOI10.1093/mp/sss039 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1a464cb0-a4ee-35d9-bb65-f06e996eccc1 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/light-regulated-stomatal-aperture/)

C.-Y. ChenB. J. Howlett

Chen D., Cao Y., Li H., Kim D., Ahsan N., Thelen J., Stacey G. (2017) – Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture – Nature Communications 8, Article number: 2265 (2017) – doi:10.1038/s41467-017-02340-3 – https://www.nature.com/articles/s41467-017-02340-3 – (On our blog : https://plantstomata.wordpress.com/2018/01/02/dorn1-regulates-stomatal-closure-and-bacterial-defense/)

Chen D.-H., Acharya B., Liu W., Zhang W. (2013) –  Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks – Plants, 2013, 2, 4, 615 – doi:10.3390/plants2040615 – http://www.mdpi.com/2223-7747/2/4/615/pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/13/calcium-and-actin-in-stomata/)

Chen L., Dodd I. C., Davies W. J., Wilkinson S. (xxxx) – Ethylene limits abscisic acid‐ or soil drying‐induced stomatal closure in aged wheat leaves – Plant, Cell & Environment 36(10): 1850 – 1859 – DOI10.1111/pce.12094 – https://www.infona.pl/resource/bwmeta1.element.wiley-pce-v-36-i-10-pce12094 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/diminished-stomatal-responses-to-soil-moisture-deficit-in-older-leaves/)

Chen L.Q., Cheng-Sen L., Chaloner W. G., Beerling D. J., Sun Q-G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. – Am J Bot 88:1309–1315. – https://core.ac.uk/download/pdf/245608.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/21/the-stomatal-density-and-index-of-fossil-ginkgo-leaves/)

Chen S., Assmann S. (2018) – Deciphering the guard cell metabolome in plant pathogen defense – https://fsrio.nal.usda.gov/fsrio/research-projects/deciphering-guard-cell-metabolome-plant-pathogen-defense – (On our blog : https://plantstomata.wordpress.com/2018/10/08/deciphering-the-stomatal-metabolome-in-plant-pathogen-defense/ )

Chen T., Wu H., Wu J., Fan X., Li X., Lin Y. (2017) – Absence of OsβCA1 causes CO2 deficit and affects leaf photosynthesis and stomatal response to CO2 in rice – Plant J. – Accepted Author Manuscript. doi:10.1111/tpj.13497 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13497/abstract – (On our blog https://plantstomata.wordpress.com/2017/02/01/os%CE%B2ca1-and-stomatal-response/ )

Chen Y.-H., Hu L., Punta M., Bruni R., Hillerich B., Kloss B., Rost B., Love J., Siegelbaum S. A., Hendrickson W. A. (2010) – Homologue structure of the SLAC1 anion channel for closing stomata in leaves – Nature 467, 1074–1080  – doi:10.1038/nature09487 – http://www.nature.com/nature/journal/v467/n7319/full/nature09487.html – (On our blog : https://plantstomata.wordpress.com/2017/09/17/a-bacterial-homologue-of-slac1-for-closing-stomata/)

Chen Y.-L., Huang R., Xiao Y.-M., Lü P., Chen J., Wang X.-C. (2004) – Extracellular Calmodulin-Induced Stomatal Closure Is Mediated by Heterotrimeric G Protein and H2O2 – Plant Physiology 136: 4096–4103 – Extracellular_Calmodulin-Induced_Stomata.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64726)

Chen Y.-L., Zhang X. Q., Chen J., Wang X.-C. (2003) – Existence of extracellular CaM in abaxial epidermis of Vicia faba L. and its role in regulation of stomatal movements – Acta Bot Sin 45:40–46 – https://europepmc.org/abstract/cba/361042 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/endogenous-extracellular-cam-promotes-stomatal-closure-and-inhibits-stomatal-opening/ )

Chen Z., Gallie D. R. (2004) – The ascorbic acid redox state controls guard cell signaling and stomatal movement. – Plant Cell. 2004;166(1):1143–1162. [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/07/16/the-asc-redox-state-and-stomatal-movements/)

Chen Z.-H., Blatt M. R. (2010) – Membrane Transport in Guard Cells – eLS. -DOI: 10.1002/9780470015902.a0021630 – http://www.els.net/WileyCDA/ElsArticle/refId-a0021630.html – (On our blog : https://plantstomata.wordpress.com/2018/01/17/membrane-transport-in-guard-cells-stomata/ )

Chen Z.-H., Chen G., Dai F., Wang Y., Hills A., Ruan Y.-L., Zhang G., Franks P. J., Nevo E., Blatt M. R. (2016) Molecular Evolution of Grass Stomata – Trends in Plant Science  22: 124–139 – http://dx.doi.org/10.1016/j.tplants.2016.09.005 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(16)30159-5?rss=yes – (On our blog https://plantstomata.wordpress.com/2017/09/27/the-evolutionary-development-of-grass-stomata-2/)

Chen Z. H., Eisenach C., Xu X.-Q., Hills A., Blatt M. R. (2012) – Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis – Plant Methods 8(1): 15 – https://doi.org/10.1186/1746-4811-8-15 – https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-8-15 – (On our blog : https://plantstomata.wordpress.com/2018/01/17/a-reliable-set-of-procedures-for-voltage-clamp-analysis-of-guard-cells/ )

Chen Z. C., Feng J. X., Wan X. C. (2018) – Stomatal Behaviours of Aspen (Populus tremuloides) Plants in Response to Low Root Temperature in Hydroponics – Russ J Plant Physiol 65: 512-517 – https://doi.org/10.1134/S1021443718040106 – https://link.springer.com/article/10.1134/S1021443718040106#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/11/stomatal-behaviour-in-response-to-low-root-temperature-in-hydroponics/ )

Chen Z. H., Hills A., Bätz U., Amtmann A., Lew V. L., Blatt M. R. (2012) – Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. – Plant Physiol 159: 1235–1251 – doi:10.1104/pp.112.197350 – CrossRefCAS – http://researchdirect.westernsydney.edu.au/islandora/object/uws:13280 – (On our blog : https://plantstomata.wordpress.com/2017/11/12/the-onguard-model-providing-a-framework-for-systems-analysis-of-stomatal-guard-cells/)

Chen Z.-H., Hills A., Lim C. K., Blatt M. R. (2010) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+concentration and protein phosphorylation – The Plant Journal, 2010, 61, 5, 816-825 – Wiley Online Library, CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/21/guard-cell-anion-channels-ca2-and-proteins/)

Chen Z.-H., Wang Y. W.-W., Babla M., Zhao C., Garcia-Mata C., Sani E., Differ C., Mak M., Hills A., Amtmann A., Blatt M. R. (2015) – Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis – New Phytologist 209(4): 1456–1469 – DOI: 10.1111/nph.13714 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13714/full – (On our blog : https://plantstomata.wordpress.com/2017/07/30/potassium-nutrition-and-nitrogen-metabolism-in-the-nia1nia2-mutant-affecting-stomatal-function/)

Chin J. C., Wan Y., Smith J.Croxdale J. (1995) – Linear aggregations of stomata and epidermal cells in Tradescantia leaves: evidence for their group patterning as a function of the cell cycle – Developmental Biology 16739–46 – DOI: 10.1006/dbio.1995.1059 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/7883077 – (On our blog : https://plantstomata.wordpress.com/2017/09/15/linear-aggregations-of-stomata-and-epidermal-cells/ )

Cho J., Oki T. (2012) – Application of temperature, water stress, CO2 in rice growth models – Rice (N Y). 2012; 5: 10 –  doi:  10.1186/1939-8433-5-10 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520833/– (On our blog : https://plantstomata.wordpress.com/2018/08/29/stomata-and-application-of-temperature-water-stress-co2-in-rice-growth-models/

Cho S.-O., Wick S. M. (1989) – Microtubule orientation during stomatal differentiation in grasses –  Journal of Cell Science 92: 581–594 – http://jcs.biologists.org/content/joces/92/4/581.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/05/changing-orientation-of-microtubules-during-formation-of-stomata/

Cho S.-O., Wick S. M. (1990) – Distribution and function of actin in the developing stomatal complex of winter rye (Secale cereale cv. Puma) – Protoplasma 157: 154-164 – https://doi.org/10.1007/BF01322648 – https://link.springer.com/article/10.1007%2FBF01322648#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/16/actin-in-the-developing-stomatal-complex-of-winter-rye/ )

Cho S.-O., Wick S. M. (1991) – Actin in the developing stomatal complex of winter rye: a comparison of actin antibodies and Rh-phalloidin labeling of control and CB-treated tissues – Cell Motility and Cytoskeleton 19: 25–36 – https://doi.org/10.1002/cm.970190105 – https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970190105 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/actin-in-the-developing-stomatal-complex/

Chodat F. (1940) – Mesure du degré d’ouverture des stomates par la méthode de flottaison à l’acétone – C. R. Soc. Phys. & Hist. Nat.; Genève 57: 247-252 – (On our blog : https://plantstomata.wordpress.com/2017/06/08/measuring-the-aperture-of-stomata-by-keeping-them-floating-in-acetone/)

Choi Y., Lee Y., Jeon B. W., Staiger C. J., Lee Y. (2008) – Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. – Plant, Cell & Environment 31: 366–377 – DOI: 10.1111/j.1365-3040.2007.01769.x– | CrossRef | CAS | open url image1– https://www.ncbi.nlm.nih.gov/pubmed/18088331 – (On our blog : https://plantstomata.wordpress.com/2018/02/21/ptdins3p-and-ptdins4p-regulate-actin-dynamics-in-guard-cells/ )

Choudhury B. J., Monteith J. L. (1986) – Implications of stomatal response to saturation deficit for the heat balance of vegetation – Agric Forest Meteorol 36: 215–225 – https://doi.org/10.1016/0168-1923(86)90036-5 – https://www.sciencedirect.com/science/article/pii/0168192386900365 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/implications-of-stomatal-response-to-saturation-deficit-for-the-heat-balance-of-vegetation/ )

Christmann A., Moes D., Himmelbach A., Yang Y., Tang Y., Grill E. (2006) – Integration of Abscisic Acid Signalling into Plant Responses – Plant Biology Volume 8, Issue 3, pages 314–325 – DOI: 10.1055/s-2006-924120 – http://onlinelibrary.wiley.com/wol1/doi/10.1055/s-2006-924120/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/01/aba-action-enforces-a-sophisticated-regulation-at-all-levels-in-stomata/ )

Ciha A.J., Brun W. A.  (1975) –  Stomatal size and frequency in soybeans. – Crop. Sci., pp: 309-313. – doi:10.2135/cropsci1975.0011183X001500030008x – https://dl.sciencesocieties.org/publications/cs/abstracts/15/3/CS0150030309?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/04/stomatal-size-and-frequency-in-glycine-max-fabaceae/ )

Clark D. G., Hecht H., Curtis O. F., Shafer J. I. (1941) – Stomatal behavior in inbred and hybrid maize – Am. J. Bot. 28: 537-541 – (On our blog : https://plantstomata.wordpress.com/2017/06/13/stomatal-behavior-in-inbred-and-hybrid-maize/)

Clark G., Fraley D., Steinebrunner I., Cervantes A., Onyirimba J., Liu A., Torres J., Tang W., Kim J., Roux S. J. (2011) – Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis – Plant Physiol. 156: 1740–1753 – PMID:21636723; http://dx.doi.org/10.1104/pp.111.174466 – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/21636723 – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ectoapyrases-and-extracellular-nucleotides-play-key-roles-in-regulating-stomatal-functions/

Clark G., Darwin C., Mehta V., Jackobs F., Perry T., Hougaard K., Roux S. (2013) – Effects of chemical inhibitors and apyrase enzyme further document a role for apyrases and extracellular ATP in the opening and closing of stomates in Arabidopsis. – Plant Signal. Behav. 8: e26093 – DOI 10.4161/psb.26093 – PubMed – PubMed Central – https://www.ncbi.nlm.nih.gov/pubmed/23989340 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/apyrases-and-extracellular-atp-in-the-opening-and-closing-of-stomata/ )

Clayson C., García-Ruiz I., Costea M. (2014) – Diversity, evolution, and function of stomata bearing structures in Cuscuta (dodders, Convolvulaceae): From extrafloral nectar secretion to transpiration in arid conditions – Perspectives in Plant Ecology, Evolution and Systematics 16(6): 310-321 – DOI10.1016/j.ppees.2014.08.004 – https://www.infona.pl/resource/bwmeta1.element.elsevier-48d0e5d2-3627-3cba-baed-419c7c43b05f – (On our blog : https://plantstomata.wordpress.com/2017/10/11/stomata-bearing-structures-in-cuscuta-dodders-convolvulaceae/)

Cleary A. L. (1995) – F-actin redistributions at the division site in living Tradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin –  Protoplasma 185: 152-1965 –  https://doi.org/10.1007/BF01272855 – https://link.springer.com/article/10.1007%2FBF01272855#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/16/f-actin-redistributions-at-the-division-site-in-stomatal-complexes/ )

Cleary A. L. (1996) – Regulation of cell division during formation of stomatal complexes: Importance of the cytoskeleton, cell plate realignments and the cell wall. In: The Symposium of the Construction of Cytoskeletal Arrays in Plant Cells. Osaka University, Osaka, pp 13–15

Cleary A. L. (2000) – Actin in formation of stomatal complexes. – In: Staiger C., Baluska F., Volkmann D., Barlow P., eds. – Actin: a dynamic framework for multiple plant cell functions – Dordrecht, The Netherlands: Kluwer Academic Publishers, 411–426 – Google Scholar – CrossRef – Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 89) – https://link.springer.com/chapter/10.1007/978-94-015-9460-8_23 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/distribution-and-function-of-actin-during-stomatogenesis/ )

Cleary A. L., Brown R. C., Lemmon B. E. (1992) – Establishment of division plane and mitosis in monoplastidic guard mother cells of Selaginella – Cell Motility and Cytoskeleton 23: 89–101 – https://doi.org/10.1002/cm.970230202 – https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970230202 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/establishment-of-division-plane-and-mitosis-in-monoplastidic-guard-mother-cells/ )

Cleary A. L., Brown R. C., Lemmon B. E. (1993) – Organisation of microtubules and actin filaments in the cortex of differentiating Selaginella guard cells – Protoplasma 177: 37–44 –

Cleary A. L., Hardham A. R. (1989) -Microtubule organization during development of stomatal complexes in Lolium rigidum – Protoplasma 149: 67–81 –

Cleary A. L., Hardham A. R. (1990) – Reinstatement of microtubule arrays from cortical nucleating sites in stomatal complexes of Lolium rigidum following depolymerisation of microtubules by oryzalin and high pressure – Plant Cell Physiol. 31: 903-915 – http://pcp.oxfordjournals.org/content/31/7/903.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/22/mts-in-gcs-of-developing-stomata-are-nucleated-in-the-cell-cortex/)

Cleary A. L., Mathesius U. (1996) – Rearrangements of F-actin during stomatogenesis visualised by confocal microscopy in fixed and permeabilised Tradescantia leaf epidermis – Botanica Acta 109: 15–24 –

Clifford S. C.Black C. R.Roberts J. A.Stronach I. M.Singleton-Jones P. R.,Mohamed A. D.Azam-Ali S. N. (1995) – The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut (Arachis hypogaea L.) – Journal of Experimental Botany 46: 847-852 – https://doi.org/10.1093/jxb/46.7.847- Abstract/FREE Full Text – https://academic.oup.com/jxb/article-abstract/46/7/847/570200?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/22/co2-and-drought-on-stomatal-frequency/

Cochard H., Coll L., Le Roux X., Ameglio T. (2002) – Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. – Plant Physiol. 128:282–290.- doi: http://dx.doi.org/10.1104/pp.010400 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/128/1/282 – (On our blog https://plantstomata.wordpress.com/2016/04/16/effects-of-plant-hydraulics-on-stomatal-closure-during-water-stress/ )

Cochard Y. Bréda N., Granier A. (1996) – Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? – Ann. Sci. For. 53: 197–206 –

Cochrane T. T., Cochrane T. A. (2009) – The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. – Plant Signal Behav. 4: 240–243 – DOI 10.4161/psb.4.3.7955 – CrossRef PubMed PubMedCentral Google Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652541/ – (On our blog : https://plantstomata.wordpress.com/2018/02/22/potassium-and-the-osmotic-mechanism-of-stomata-aperture-modulation/

Cochrane T. T., Cochrane T. A. (2009) – Differences in the way potassium chloride and sucrose solutions effect osmotic potential of significance to stomata aperture modulation – Plant Physiology and Biochemistry 47(3) : 205-209 – DOI10.1016/j.plaphy.2008.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-9a83c017-3172-3fe4-8ccb-28d82e63c4a9 – (On our blog https://plantstomata.wordpress.com/2017/10/12/stomata-aperture-modulation-is-closely-linked-to-the-osmotic-properties-of-its-guard-cell-solution-solutes/)

Cockburn W., Ting I. P., Stenberg L. O. (1979) – Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. – Plant Physiol. 63: 1029–1032 – CrossRefPubMedGoogle Scholar – http://www.plantphysiol.org/content/plantphysiol/63/6/1029.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/23/stomatal-behavior-and-internal-co2-concentration/ )

Collatz G. J., Grivet C., Ball J. T., Berry J. A. (1991) – Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer – Agricultural and Forest Meteorology 54 – 107-136 – https://doi.org/10.1016/0168-1923(91)90002-8 – https://www.sciencedirect.com/science/article/pii/0168192391900028 – (On our blog : https://plantstomata.wordpress.com/2018/10/01/regulation-of-stomatal-conductance/ )

Collins J. W. M., Shpak E. D. (2014) – Novel Mutations That Affect Stomata Development in Arabidopsis thaliana – http://trace.tennessee.edu/utk_eureca/2014/artsandsciences/13/ – (On our blog : https://plantstomata.wordpress.com/2018/01/31/novel-mutations-that-affect-stomata-development/ )

Collins M. J., Fuentes S., Barlow E. W. R. (2010) – Partial rootzone drying and deficit irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric grapevines – Funct. Plant Biol.37: 128–138 – https://doi.org/10.1071/FP09175 – Google Scholar CrossRef – http://www.publish.csiro.au/fp/fp09175 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/how-alternative-irrigation-strategies-affects-stomatal-response-to-atmospheric-vapour-pressure-deficit/ )

Colosanti J., Cho S.-O., Wick S., Sundaresan V. (1993) – Localization of the functional p34cdc2 homolog of maize in root tip and stomatal complex cells: association with predicted division sites – Plant Cell 5: 1101–1111 – DOI: 10.1105/tpc.5.9.1101 – https://www.ncbi.nlm.nih.gov/pubmed/12271098 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71664 )

Cominelli E., Galbiati M., Albertini A., Fornara F., Conti L., Coupland G., Tonelli C. (2011) – DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter – BMC Plant Biol. 2011 Nov 16;11:162. doi: 10.1186/1471-2229-11-162 – https://www.ncbi.nlm.nih.gov/pubmed/22088138 – (On our blog : https://plantstomata.wordpress.com/2018/09/07/new-promoter-modules-as-useful-tools-for-manipulating-gene-expression-in-stomata/ )

Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N., Dellaporta S. L., Tonelli C. (2005) – A guard-cell-specific myb transcription factor regulates stomatal movements and plant drought tolerance.-  Curr. Biol., 15: 1196-1200 -DOI: http://dx.doi.org/10.1016/j.cub.2005.05.048http://www.cell.com/current-biology/abstract/S0960-9822(05)00563-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982205005634%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2016/05/13/atmyb60-and-stomatal-movements/)

Comstock J. P. (2002) – Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. – J. Exp. Bot. 53(367): 195-200 –  (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/14/the-control-of-stomatal-conductance-and-transpiration/).

Comstock J. P., Ehleringer J. R. (1993) – Stomatal response to humidity in common bean (Phaseolus vulgaris): Implications for maximum transpiration rate, water-use efficiency and productivity. – Australian Journal of Plant Physiology 20, 669691. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/03/14/stomatal-response-to-humidity-in-common-bean/)

Comstock J., Mencuccini M. (1998) Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub. – Plant, Cell & Environment 21: 10291038. – Wiley Online Library |PubMed | – (On our blog : https://plantstomata.wordpress.com/2015/09/14/leaf-water-potential-and-stomatal-conductance-gs/)

Cong X., Jing H., Lin N., Xia Z., Huang M., Jiang X. (2015) – Boron deficiency affects cell morphology and structure of young leaves of radish – Acta Physiologiae Plantarum 37(11): 1-10 – DOI10.1007/s11738-015-2004-7 – https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S11738-015-2004-7 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/b-deficiency-severely-affects-the-rhythmic-stomatal-closing-and-opening/)

Cooke J. R., De Baerdemaeker J. G., Rand R. H., Mang H. A. (1976) – A finite element shell analysis of guard cell deformations. – Trans ASAE (Am Soc Agric Eng) 19 1107–1121. – http://audiophile.tam.cornell.edu/randpdf/guardcel.pdf // https://www.researchgate.net/publication/274492871_A_Finite_Element_Shell_Analysis_of_Guard_Cell_Deformations //  – (On our blog : https://plantstomata.wordpress.com/2016/11/22/guard-cell-deformations/)

Cooper M. J., Digby P. J., Cooper P. J. (1972) – Effects of plant hormones on the stomata of barley : A study of the interaction between abscisic acid and kinetin – Planta 105: 43-49 –  doi: 10.1007/BF00385162. – https://link.springer.com/article/10.1007/BF00385162 – (On our blog : https://plantstomata.wordpress.com/2018/02/23/interaction-between-aba-and-kinetin-in-barley-stomata/ )

Copeland E. B. (1902) – The mechanism of stomata – Ann. Bot. 16 (2): 327-364 – (On our blog : https://plantstomata.wordpress.com/2017/06/18/the-mechanism-of-stomata/)

Cornell University – Institute of Biotechnology – Guard cells surrounding a pore in a plant leaf (picture) : Olympus BX-50 fluorescence microscope – http://www.biotech.cornell.edu/guard-cells-surrounding-pore-plant-leaf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/stomatal-guard-cells-picture/ )

Cornic G. (2000) – Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis – Trends in Plant Science 5: 187–188 – DOI:https://doi.org/10.1016/S1360-1385(00)01625-3 – https://www.cell.com/trends/plant-science/fulltext/S1360-1385(00)01625-3 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/drought-stress-photosynthesis-and-decreasing-stomatal-aperture/ )

Cornic G., Miginiac E. (1983) – Nonstomatal inhibition of net CO2 uptake by (±) abscisic acid in Pharbitis nil – Plant Physiol. 73: 529–533 –

Cornish K., Radin J. W., Turcotte E. L., Lu Z., Zeiger E. (1991) – Enhanced photosynthesis and stomatal condutance of pima cotton (Gossypium barbadense L.) bred for increased yield – Plant Physiology, Lancaster 97(2): 484-489 –

Cornish K., Zeevaart J. A. (1986) – Abscisic acid accumulation by in situ and isolated guard cells of Pisum sativum L. and Vicia faba L. in relation to water stress. – Plant Physiol. 81: 1017–1021. – DOI: https://doi.org/10.1104/pp.81.4.1017 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/81/4/1017.short – (On our blog : https://plantstomata.wordpress.com/2018/02/23/aba-accumulation-in-relation-to-water-stress/

Corratgé-Faillie C., Ronzier E., Sanchez F., Prado K., Kim J.-H., Lanciano S., Leonhardt N., Lacombe B., Xiong T. C. (2017) – The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33. FEBS Lett. 2017, 591, 1982–1992. – [Google Scholar] [CrossRef] [PubMed] –

Corrêa F. F., Pereira M. P., Madail R. H., Santos B. R., Barbosa S., Castro E. M., Pereira F. J. (2017) – Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae) – Braz J Biol. 77(1): 52-59. -doi: 10.1590/1519-6984.09715 – Epub 2016 Jul 4 – https://www.ncbi.nlm.nih.gov/pubmed/27382995 – (On our blog : https://plantstomata.wordpress.com/2018/09/09/leaves-from-low-density-populations-showed-higher-stomatal-density-and-index/ )

Correia M. J., Rodrigues M. L., Ferreira M. I., Pereira J. S. (1997) – Diurnal changes in the relationship between stomatal conductance and abscisic acid in the xylem sap of field grown peach trees. – J. exp. Bot. 48: 1727-1736 – http://www.jstor.org/stable/23695730 – (On our blog : https://plantstomata.wordpress.com/2018/02/23/stomatal-conductance-and-aba-in-xylem-sap/ )

Cosgrove D. J., Hedrich R. (1991) – Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. – Planta 186(1): 143–153 – DOI:10.1007/BF00201510 – https://www.ncbi.nlm.nih.gov/pubmed/11538499 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stretch-activated-sa-channels-influence-volume-and-turgor-regulation-of-stomata/ )

Costa J. M.Monnet F.Jannaud D.Leonhardt N.Ksas B.Reiter I. M.Pantin F.Genty B. (2015) – OPEN ALL NIGHT LONG: The Dark Side of Stomatal Control – Plant Physiology ) –0.1104/pp.114.253369 – http://www.plantphysiol.org/content/167/2/289 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/dedicated-regulators-enforce-nighttime-stomatal-closure/)

Cottele V., Forestier C., Vavasseur A. (1996) – A reassessment of the intervention of calmodulin in the regulation of stomatal movement – Physiol Plant 98: 619–628 – https://doi.org/10.1111/j.1399-3054.1996.tb05719.x –  https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1996.tb05719.x – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ca2%e2%80%90-or-a-ca2%e2%80%90cam%e2%80%90dependent-protein-kinase-plays-a-central-role-in-the-regulation-of-stomatal-movement/ )

Cotelle V., Leonhardt N. (2016) – 14-3-3 Proteins in Guard Cell Signaling – Front. Plant Sci. 6:1210. –  http://dx.doi.org/10.3389/fpls.2015.01210 – http://journal.frontiersin.org/article/10.3389/fpls.2015.01210/full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/the-roles-of-14-3-3-proteins-in-stomata/)

Cotelle V., Pierre J. N., Vavasseur A. (1999) – Potential strong regulation of guard cell phosphoenolpyruvate carboxylase through phosphorylation – J. Exp. Bot. 335:777783 – https://www.jstor.org/stable/23696231?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/phosphorylation-and-stomatal-regulation/ )

Couot-Gastelier J. (1989) – Les microtubules des cellules stomatiques: implication dans le mouvement des stomates – Bull. Soc. bot. Fr. Actual. bot, 136: 111-112 – https://doi.org/10.1080/01811789.1989.10826944 – https://www.tandfonline.com/doi/abs/10.1080/01811789.1989.10826944 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/le-mouvement-des-stomates-in-french/ )

Couot-Gastelier J., Laffray D., Louguet P. (1984) – Étude comparée de l’ultrastructure des stomates ouverts et fermés chez le Tradescantia virginiana. – Can. J. Bot. 62: 1505–1512 – https://doi.org/10.1139/b84-200 – Google Scholar – http://www.nrcresearchpress.com/doi/abs/10.1139/b84-200 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/ultrastructure-of-open-and-closed-stomata-in-french/ )

Couot-Gastelier J., Louguet P. (1985) – Variations ultrastructurales comparées des mitochondries dans les cellules de garde des stomates ouverts et fermés – C. R. Acad. Sc. Paris, 301: 89-93
Couot-Gastelier J., Louguet P. (1985) – Localisation ultrastructurale de la phosphatase acide dans les cellules stomatiques de Tradescantia virginiana L – Cytobios, 43: 87-95
Couot-Gastelier J., Louguet P. (1987) – Etude comparée de la structure foliaire et de l’ultrastructure des stomates chez deux cultivars de Pelargonium × hortorum, l’un chlorophyllien et l’autre mutant à feuilles blanches, vertes ou panachées – Can. J. Bot, 65: 340-347
Couot-Gastelier J., Louguet P. (1989) – Synthèse d’ A.R.N. et de protéines dans les stomates ouverts et fermés chez deux cultivars de Pelargonium × hortorum l’un chlorophyllien et l’autre mutant à feuilles blanches – Bull. Soc. bot. Fr. lettres bot, 136: 91-102

Couot-Gastelier J., Louguet P. (1992) – Effet de la colchicine sur les mouvements des stomates et l’ultrastructure des cellules stomatiques de Tradescantia virginiana – Bulletin Soc.  Bot. France, Lettres Botaniques 139: 345–356 –

Coursol S., Stunff H., Lynch D. V., Gilroy S., Assmann S. M., Spiegel S. (2005) – Arabidopsis sphingosine kinase and the effects of phytosphingosine- 1-phosphate on stomatal aperture. – Plant Physiol. 137: 724–737 – doi: 10.1104/pp.104.055806 – https://www.ncbi.nlm.nih.gov/pubmed/15665242 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/arabidopsis-sphingosine-kinase-phytosphingosine-1-phosphate-and-stomatal-aperture/ )

Coursol S., Fan L.-M., Le Stunff H., Spiegel S., Gilroy S., Sarah M. Assmann S. M. (2003)– Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins – Nature 423: 651–654 –  DOI: 10.1038/nature01643  – CrossRef Medline PubMed Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/16/sphingolipid-signalling-in-stomata/).

Cousins A. B., Baroli I., Badger M. R., Ivakov A., Lea P. J., Leegood R. C., et al. (2007) – The role of phosphoenolpyruvate carboxylase during C4 photosynthetic isotope exchange and stomatal conductance. – Plant Physiol. 145: 1006–1017 – doi: 10.1104/pp.107.103390 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/145/3/1006 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/pepc-ec-4-1-1-31-c4-photosynthesis-and-stomatal-opening/ )

Cousson A. (2000) – Analysis of the sensing and transducing processes implicated in the stomatal responses to carbon dioxide in Commelina communis L. – Plant Cell Environ 23: 487–495 – CrossRef Google Scholar – http://onlinelibrary.wiley.com/store/10.1046/j.1365-3040.2000.00561.x/asset/j.1365-3040.2000.00561.x.pdf;jsessionid=717BBEDB1AC0BC119C4845CEB99B153E.f02t03?v=1&t=je43qgzb&s=f09851f2a5f36dfe45e1ae78583288e4b435f290 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/sensing-and-transducing-processes-implicated-in-the-stomatal-responses-to-co2/

Cousson A. (2001) – Pharmacological evidence for the implication of both cyclic GMP-dependent and -independent transduction pathways within auxin-induced stomatal opening in Commelina communis (L.). – Plant Sci. 161: 249-258 – (Article not found)

Cousson A. (2003) – Pharmacological evidence for a positive influence of the cyclic GMP-independent transduction on the cyclic GMP-mediated Ca2+-dependent pathway within the Arabidopsis stomatal opening in response to auxin – Plant Sci. 164, 759–767. – doi: 10.1016/S0168-9452(03)00062-1 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/09/19/the-arabidopsis-stomatal-opening-in-response-to-auxin/).

Cousson A. (2003) – Two potential Ca2+-mobilising processes depend on the abscisic acid concentration and growth temperature in the Arabidopsis stomatal guard cell. – J. Plant Physiol.160, 493–501. doi: 10.1078/0176-1617-00904 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/02/15/5559/).

Cousson A., Vavasseur A. (1998) – Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic GMP-mediated induction of stomatal opening by auxin in Commelina communis L. – Planta 206: 308-314 – https://doi.org/10.1007/s004250050405 – https://link.springer.com/article/10.1007/s004250050405#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/27/cyclic-gmp-mediated-induction-of-stomatal-opening-by-auxin/ )

Cousson A., Vavasseur A. (1998) – Two potential Ca2+-dependent transduction pathways in stomatal closing in response to abscisic acid. – Plant Physiology and Biochemistry 36: 257–262 – DOI 10.1016/S0981-9428(97)86883-0 – https://www.sciencedirect.com/science/article/pii/S0981942897868830 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/stomatal-closing-in-response-to-aba-closing-signal-transduced-through-different-pathways/ )

Coxworth B. (2017) – Leaf-zapping sensors know when plants need water – New Atlas Nov. 10, 2017 – https://newatlas.com/plant-water-leaf-sensor/52150/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/an-electrically-conductive-ink-containing-carbon-nanotubes-printed-across-a-single-stomata-to-form-an-electrical-circuit/ )

Cowan I. R. (1972) – Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. – Planta 106, 185219 – https://doi.org/10.1007/BF00388098 – CrossRef – https://link.springer.com/article/10.1007/BF00388098#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/26/oscillations-in-stomatal-conductance/ )

Cowan I. (1977) – Stomatal behaviour and the environment -In: Preston RD, Woolhouse HW (eds) Advances in Botanical Research, vol 4: 117–228 – Academic Press, London,  – Google Scholar – https://www.sciencedirect.com/science/article/pii/S0065229608603705 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/stomatal-behaviour-and-the-environment/ )

Cowan I. R. (1994) – As to the mode of action of the Guard Cells in dry air – In Ecophysiology of Photosynthesis (eds E.D. Schulze & M.M. Caldwell), 100: 205–229. – Springer-Verlag, New York – https://link.springer.com/chapter/10.1007%2F978-3-642-79354-7_10 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/stomatal-closure-in-dry-air/ )

Cowan I. R., Farquhar G. D. (1977) – Stomatal function in relation to leaf metabolism and environment. – Symposium for the Society of Experimental Biology 31: 471-505. – PubMed CAS – https://dge.carnegiescience.edu/publications/berry/AnnRev2012/_%20of%20the%20Society%20for%20Experimental%20Biology%201977%20Cowan.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-in-relation-to-leaf-metabolism-and-environment/)

Cowan I. R., Raven J. A., Hartung W., Farquhar G. D. (1982) – A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves – Functional Plant Biology 9(4): 489-498 – https://www.researchgate.net/publication/262959873_A_Possible_Role_for_Abscisic_Acid_in_Coupling_Stomatal_Conductance_and_Photosynthetic_Carbon_Metabolism_in_Leaves – (On our blog : https://plantstomata.wordpress.com/2018/02/27/aba-and-coupling-stomatal-conductance-and-photosynthetic-carbon-metabolism/

Cowan I. R., Troughton J. H. (1971) – The relative role of stomata in transpiration and assimilation – Planta 97(4): 325-336 – doi: 10.1007/BF00390212 – https://www.ncbi.nlm.nih.gov/pubmed/24493277 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/the-ways-in-which-transpiration-and-assimilation-depend-on-stomatal-aperture/ )

Coyne P. I., Bingham G. E. (1982) – Variation in photosynthesis and stomatal conductance in an ozone-stressed Ponderosa pine stand: light response – For Sci 28: 257–273 – https://doi.org/10.1093/forestscience/28.2.257 – https://www.osti.gov/biblio/5689435 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/variation-in-photosynthesis-and-stomatal-conductance-light-response-of-trees/ )

Creese, C., Oberbauer, S., Rundel, P., Sack, L. (2014) – Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances – New Phytologist (2014) 204: 92–104. (http://www.ncbi.nlm.nih.gov/pubmed/25077933) – (On our blog : https://plantstomata.wordpress.com/2015/09/20/coordination-of-hydraulic-and-photosynthetic-signaling-networks-modulating-fern-stomatal-responses/).

Croft P. J., Shulman M. D., Avissar R. (1993) – Cranberry Stomatal Conductivity -HORTSCIENCE 28(11): 1114-1116 – http://hortsci.ashspublications.org/content/28/11/1114.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/04/19/cranberries-behave-as-xeromorphic-plants-stomatal-conductivity/ )

Croxdale J. L. (1998) – Stomatal patterning in monocotyledons: Tradescantia as a model system. – Journal of Experimental Botany 49279–292 – DOI 10.1093/jexbot/49.suppl_1.279 – CrossRefWeb of ScienceGoogle Scholar – https://www.jstor.org/stable/23695962?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/27/the-current-stomatal-patterning-theories-and-understanding-it-in-the-future/ )

Croxdale J. L. (2000) – Stomatal patterning in angiosperms. – Am. J. Bot. 87, 1069–1080. – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/08/30/a-theory-of-stomatal-patterning-on-angiosperm-leaves/)

Croxdale J., Smith J., Yandell B., Johnson J. B. (1992) – Stomatal patterning in Tradescantia: an evaluation of the cell lineage theory. – Dev Biol. 149(1):158-167. – PMID: 1728585 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.9831&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-patterning-and-the-cell-lineage-theory-2/ )

Cuevas E., Baeza P., Lissarrague J. R. (2006) – Variation in stomatal behaviour and gas exchange between mid-morning and mid-afternoon of north-south oriented grapevines (Vitis vinifera L. cv. Tempranillo) at different levels of soil water availability – Scientia Horticulturae 108: 173–180 –

Cui X. H., Wang X. C. (2007) – Involvement of Vicia faba L. aquaporin in regulation of stomatal movement by microfilament –  Plant Physiology Communications 43: 61–64 – https://www.researchgate.net/publication/287528824_Involvement_of_Vicia_faba_L_aquaporin_in_regulation_of_stomatal_movement_by_microfilament – (On our blog : https://plantstomata.wordpress.com/2018/09/13/aquaporin-might-be-involved-in-stomatal-movement-regulated-by-fusicoccin-and-microfilament/

Cukrova V., Avratovscukova N. (1968) – Photosynthetic activity, chlorophyll content and stomata characteristics in diploid and polyploid types of Datura stramonium L. – Photosynthetica 2 (4): 227-237 – (On our blog : https://plantstomata.wordpress.com/2017/06/22/stomata-in-datura-stramonium/)

Currier H. R., Pickering E. R., Foy C. L. (1964) – Relation of stomatal penetration to herbicidal effects using fluorescent dye as a tracer – Weeds 12: 301-303 – DOI: 10.2307/4040760 – https://www.jstor.org/stable/4040760?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/agreement-between-degree-of-stomatal-opening-and-tracer-uptake/ )

Curvetto N., Darjania L., Delmastro S. (1994) – Effect of two cAMP analogs on stomatal opening in Vicia faba: possible relationship with cytosolic calcium concentration – Plant Physiol. Biochem. 32: 365-372 – (No abstract available)

Cvetkovska M., Dahal K., Alber N. A., Jin C., Cheung M., Vanlerberghe G. C. (2014) – Knockdown of mitochondrial alternative oxidase induces the “stress state” of signaling molecule pools in Nicotiana tabacum, with implications for stomatal function. – New Phytol. 203, 449–461 – doi: 10.1111/nph.12773 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12773/full – (On our blog : https://plantstomata.wordpress.com/2018/02/26/mitochondrial-alternative-oxidase-induces-the-stress-state-of-signaling-molecule-pools-and-stomatal-function/ )

Czech K. (1869) – Ueber die Funktion der Stomata – Bot. Zeitung 27(48-49): 801-808 ; 817-823. – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/41129 )

Dai Q. S., Peng A.Q., Chavez, Vergara B. S. (1995) – Effects of UVB radiation on stomatal density and opening in rice (Oryza sativa L.). – Ann. Bot., 76: 65-70 – (On our blog https://plantstomata.wordpress.com/2016/05/16/uvb-radiation-and-stomatal-density-and-opening/)

Dai Z., Edwards G. E., Ku M. S. B. (1992) – Control of photosynthesis and stomatal conductance in Ricinus communis L. (Castor Bean) by leaf to air vapor pressure deficit – Plant Physiol. 99; 1426–1434 – doi: 10.1104/pp.99.4.1426 – http://www.plantphysiol.org/content/99/4/1426 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/control-of-stomatal-conductance-by-leaf-to-air-vapor-pressure-deficit/ )

Dale J. E. (1961) – Investigations into the stomatal physiology of upland cotton – Ann. Bot. 25: 39-52 – DOI 10.1093/oxfordjournals.aob.a083731 – https://www.jstor.org/stable/42907568?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/stomatal-physiology-of-upland-cotton/ )

Dale J. E. (1961) – Investigations into the stomatal physiology of upland cotton: 2. Calibration of the Infiltration Method against Leaf and Stomatal Resistances – Ann. Bot. 25: 39-52 – https://www.jstor.org/stable/42907576?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/02/26/use-of-the-infiltration-method-for-deriving-estimates-of-stomatal-resistance/ )

Daley M. J., Phillips N. G. (2006) – Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest -Tree Physiol. 26(4): 411-419 – PMID: 16414920 – PubMed – https://www.ncbi.nlm.nih.gov/pubmed/16414920 – (On our blog : https://plantstomata.wordpress.com/2018/03/20/nighttime-transpiration-and-stomatal-conductance/ )

Daloso D. M., Antunes W. C., Pinheiro D. P., Waquim J. P., Araujo W. L., Loureiro M. E., Fernie A. R., Williams T. C. (2015) – Tobacco guard cells fix CO2 by both Rubisco and PEPcase while sucrose acts as a substrate during light-induced stomatal opening. – Plant Cell Environ. 38, 2353–2371. – doi: 10.1111/pce.12555 – https://www.ncbi.nlm.nih.gov/pubmed/25871738 – (On our blog : https://plantstomata.wordpress.com/2018/02/26/rubisco-pepcase-sucrose-and-stomatal-behavior/ )

Daloso D. M., Dos Anjos L., Fernie A. R. (2016) – Roles of sucrose in guard cell regulation – New Phytologist 211: 809-818 – doi:10.1111/nph.13950 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13950/abstract – (On our blog : https://plantstomata.wordpress.com/2016/04/07/sucrose-and-guard-cell-metabolism-and-stomatal-regulation/)

Daloso D. M., Medeiros D. B., dos Anjos L., Yoshida T., Araújo W. L., Fernie A. R. (2017) – Metabolism within the specialized guard cells of plants. – New Phytol. doi:10.1111/nph.14823 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14823/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/06/metabolism-within-the-specialized-guard-cells-of-plants/ )

Daloso D. M., Williams T. C., Antunes W. C., Pinheiro D. P., Muller C., Loureiro M. E., Fernie A. R. (2015) – Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic – New Phytol. 209(4): 1470–1483 – doi: 10.1111/nph.13704 [Epub ahead of print] – http://onlinelibrary.wiley.com/doi/10.1111/nph.13704/full – (On our blog : https://plantstomata.wordpress.com/2018/02/27/the-role-of-sucrose-in-stomatal-function-is-primarily-energetic/ )

DaMatta F. M., Godoy A. G., Menezes-Silva P. E., Martins S. C., Sanglard L. M., Morais L. E., Torre-Neto A., Ghini R. (2016) – Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. – J. Exp. Bot. 67, 341–352 – doi: 10.1093/jxb/erv463 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/26503540 – (On our blog : https://plantstomata.wordpress.com/2018/02/27/disentangling-stomatal-mesophyll-and-biochemical-limitations/ )

Damour G., Simonneau T., Cochard H., Urban L. (2010) – An overview of models of stomatal conductance at the leaf level. – Plant Cell Environ. 33:1419–1438. – MedlineWeb of ScienceGoogle Scholar – (On our blog https://plantstomata.wordpress.com/2016/05/16/models-of-stomatal-conductance/ )

Dang Q.-L., Margolis H. A., Collatz G. J. (1998) – Parameterization and testing of a coupled photosynthesis-stomatal conductance model for boreal trees – Tree Physiology 18: 141–153 –

Danve C., Castroverde M. (2018) – CDL1-OST1 Interaction as a Focal Point of Brassinosteroid-Abscisic Acid Hormone Signaling Crosstalk – The Plant Cell DOI: https://doi.org/10.1105/tpc.18.00603 – http://www.plantcell.org/content/30/8/1668?rss=1 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/interaction-between-the-br-associated-cdg1-like1-cdl1-and-aba-associated-open-stomata1-ost1/ )

Danyanandan P., Kauffman P. B. (1975) – Stomatal movements associated with potassium fluxes – Am. J. Bot. 62: 221-231 – doi:10.1002/j.1537-2197.1975.tb12347.x – http://onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1975.tb12347.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/potassium-fluxes-and-stomatal-movements/ )

Danzer J., Mellott E., Bui A. Q., Le B. H., Martin P., Hashimoto M., Perez-Lesher J., Chen M., Pelletier J. M., Somers D. A., Goldberg R. B., Harada J. J. (2015) – Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development – Plant Physiology 

Darwin F. (1897) – Observations on stomata by a new method. -Proc Cambridge Phil Soc 9: 303-308 –

Darwin F. (1898) – Observations on stomata – Phil. Transactions Roy. Soc. London B 190: 531-561 – https://archive.org/stream/philtrans04647888/04647888_djvu.txt  – (On our blog : https://plantstomata.wordpress.com/2016/10/24/observations-on-stomata-francis-darwin-1898/)

Darwin F. (1916) – On the relation between transpiration and stomatal aperture – Phil. Trans. Roy. Soc. London B 207 : 413-437 –DOI: 10.1098/rstb.1916.0009 – http://rstb.royalsocietypublishing.org/content/207/335-347/413 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/transpiration-and-stomatal-aperture/ )

Darwin F., Pertz D. F. M. (1911) – On a new method of estimating the aperture of stomata – Proc. Roy. Soc. London B 84: 136-149 – http://rspb.royalsocietypublishing.org/content/84/569/136 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/estimating-the-aperture-of-stomata/ )

Daszkowska-Golec A., Szarejko I. (2013) –  Open or close the gate stomata action
under the control of phytohormones in drought stress conditions. – Frontiers in
Plant Science 4. -doi: 10.3389/fpls.2013.00138. – https://www.frontiersin.org/articles/10.3389/fpls.2013.00138/full – (On our blog : https://plantstomata.wordpress.com/2017/11/07/stomata-movements-and-phytohormones-in-drought-stress/)

Davenport D. C. (1966) – Effect of phenylmercuric acetate on transpiration and growth  of small plots of grass – Nature 212: 801-802 (No abstract available).

Davenport D. C., Fischer M. A., Hagan  R. M. (1971) – Retarded stomatal closure by phenylmercuric acetate – Physiol. Plant. 24: 330-336 – doi:10.1111/j.1399-3054.1971.tb03499.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1971.tb03499.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/pma-is-retarding-all-stomatal-movements-that-are-osmotically-induced/ )

Davies K. A., Bergmann D. C. (2014) – Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential. – Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15585-90. – doi: 10.1073/pnas.1411766111  – PMID: 25304637 – http://www.pnas.org/content/111/43/15585.full – (On our blog : https://plantstomata.wordpress.com/2018/02/27/functional-specialization-of-stomatal-bhlhs-through-modification-of-dna-binding-and-phosphoregulation-potential/ )

Davies W. J. (1976) – Stomatal Responses to Water Stress and Light in Plants Grown in Controlled Environments and in the Field – Crop Science 17(5): 735-740 – doi:10.2135/cropsci1977.0011183X001700050015x – https://dl.sciencesocieties.org/publications/citation-manager/prev/zt/cs/17/5/CS0170050735 – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomatal-responses-to-water-stress-and-light/ )

Davies W. J. (1978) – Some effects of abscisic acid and water stress on stomata of Vicia faba L. – J. Exp. Bot. 29: 175-182, 1978 – https://doi.org/10.1093/jxb/29.1.175 – https://academic.oup.com/jxb/article-abstract/29/1/175/494514/Some-Effects-of-Abscisic-Acid-and-Water-Stress-on?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/18/effects-of-aba-and-water-stress-on-stomata/)

Davies W. J., Gill K., Halliday G. (1978) – The Influence of Wind on the Behaviour of Stomata of Photosynthetic Stems of Cytisus scoparius (L.) Link – Annals of Botany 42(181): 1149-1154 – https://www.jstor.org/stable/42764099?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/09/13/influence-of-wind-on-the-behaviour-of-stomata/ )

Davies W. J., Kozlowski T. T. (1974) Stomatal responses of five woody angiosperms to light intensity and humidity – Canad. Journ. Bot. 52(7): 1525-1534 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-responses-of-trees-to-light-intensity-and-humidity/)

Davies W. J., Kozlowski T. T. (1975) Stomatal responses to changes in light intensity as influenced by plant water stress – For. Sci. 21: 129–133 –

Davies W. J., Kozlowski T. T. (1977) Variations among woody plants in stomatal conductance and photosynthesis during and after drought – Plant Soil 46: 435–444 –

Davies W. J., Kozlowski T. T., Pereira J. S. (1974) Effect of wind on transpiration and stomatal aperture of woody plants.  Int. Plant Physiol. Symp. Mech. Plant Growth, Massey Univ., Palmerston North, New Zealand – (Abstract not available).

Davies W. J., Wilkinson S., Loveys B. (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture.New Phytologist 153: 449460. – Wiley Online Library |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/stomatal-control-by-chemical-signalling/)

Davies W. J. Wilson J. A., Sharp R. E., Osonubi O. (1980) – Control of stomatal behaviour in water stressed plants. In: Stomatal Physiology (eds.) P.G. Jarvis, and T.A. Mansfield). C.U.P., London  (1980) – Google Scholar – (Abstract not available).

Davis A. R., Gunning B. E. S. (1991) – The modified stomata of the floral nectary of Vicia faba L. – 1. Development, anatomy and ultrastructure – https://doi.org/10.1007/BF01322777 – https://link.springer.com/article/10.1007/BF01322777#citeas – (On our blog : https://plantstomata.wordpress.com/2018/02/27/development-anatomy-and-ultrastructure-of-modified-stomata/ )

Davis A. R., Gunning B. E. S. (1991) – The modified stomata of the floral nectary of Vicia faba L. – 2. Stomatal number and distribution as selection criteria for breeding for high nectar sugar production – Acta Hortic. 288, 329-334
DOI: 10.17660/ActaHortic.1991.288.53 – https://www.ishs.org/ishs-article/288_53 – (On our blog : https://plantstomata.wordpress.com/2018/02/27/stomatal-number-and-distribution-as-selection-criteria-for-breeding-for-high-nectar-sugar-production/ )

Davis A. R., Gunning B. E. S. (1993) – The modified stomata of the floral nectary of Vicia faba L. – Bot. Acta. 106: 241–253 – DOI: 10.1111/j.1438-8677.1993.tb00747.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.1993.tb00747.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/27/modified-stomata-do-not-have-a-regulatory-role-in-nectar-secretion-by-flowers-of-vicia-faba/

Dayanandan P., Barnabas A. D., Jayakumar P. S., Christopher J. (1986) – Observations on peculiar air passages in the stems of Gloriosa superba L. and Iphigenia indica Kunth – Curr. Sci. 55(5): 235-238 – Gloriosa_-_included_stomata.pdf.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/peculiar-air-passages-and-included-stomata-in-the-stems-of-gloriosa/)

Dayanandan P., Kaufman P. B. (1975) – Stomatal movements associated with potassium fluxes. – Am J Bot 62: 221–231 – CrossRefGoogle Scholar – STOMATAL_MOVEMENTS_ASSOCIATED_WITH_POTAS.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64758)

Dayer S.,  Perez Peña J., Gindro K.,  Torregrosa L.,  Voinesco F.,  Martínez L.,  Prieto J. A.,  Zufferey V. (2017) – Changes in leaf stomatal conductance, petiole hydraulics and vessel morphology in grapevine (Vitis vinifera cv. Chasselas) under different light and irrigation regimes – Functional Plant Biologyhttps://doi.org/10.1071/FP16041 – http://www.publish.csiro.au/fp/FP16041 – (On our blog : https://plantstomata.wordpress.com/2017/05/02/not-only-plant-water-status-but-also-the-light-environment-at-the-leaf-level-affect-leaf-and-petiole-hydraulics/)

de Almeida Filho H. A., Bruno O. M. (2018) – Plants with purple abaxial leaves: A repository of metrics from stomata distribution – bioRxiv – doi: http://dx.doi.org/10.1101/294553 – https://www.biorxiv.org/content/biorxiv/early/2018/04/04/294553.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/21/a-repository-of-metrics-from-stomata-distribution/ )

de Almeida Filho H. A. (2018) – Amazing green stomata at purple abaxial surface leave of a unknown species. (No reference).

de Almeida Filho H. A. (2018) – Green stomata on the purple abaxial surface of the leaf from a dicotyledon plant found in the gardens of the usp-s˜ao carlos university.,(No reference)

de Almeida Filho H. A. (2018) – Stomata of a completely purple dicotyledonous plant found in the gardens of usp-s˜ao carlos

de Almeida Filho H. A., Machicao J., Bruno O. M. (2017) – Geometric plasticity at leaves from Ctenanthe oppenheimiana probed by measure of distances between stomata – In Journal of Physics: Conference Series, 936: 012094. IOP Publishing – DOI: 10.1088/1742-6596/936/1/012094 – http://iopscience.iop.org/article/10.1088/1742-6596/936/1/012094 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/plasticity-induced-by-environmental-adaptations-are-measurable-using-the-distance-between-neighbor-stomata/ )

De Angeli A., Zhang J., Meyer S., Martinoia E. (2013) – AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. – Nat Commun 4:1804 –  CrossRef PubMed PubMedCentral – http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2815.html – (On our blog : https://plantstomata.wordpress.com/2016/03/27/atalmt9-is-controlling-stomata-aperture/)

Deans R. M., Brodribb T. J., Busch F. A., Farquhar G. D. (2018) – Plant water‐use strategy mediates stomatal effects on the light induction of photosynthesis – New Phytologist – Accepted, unedited articles published online and citable – https://doi.org/10.1111/nph.15572 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15572?af=R – (On our blog : https://plantstomata.wordpress.com/2018/11/09/plant-water%e2%80%90use-strategy-mediates-stomatal-effects-on-the-light-induction-of-photosynthesis/ )

Deans R. M., Brodribb T. J., McAdam S. A. M. (2017) – An integrated hydraulic-hormonal model of conifer stomata predicts water stress dynamics – Plant Physiol. (2017) – DOI: 10.1104/pp.17.00150 – (On our blog : https://plantstomata.wordpress.com/2017/03/27/a-hydraulic-hormonal-model-for-conifer-stomata/)

de Boer H. J. (2016) – Plant acclimation and adaptation to CO2: lessons from optimality theory and implications for leaf gas exchange – www.lsce.ipsl.fr/Phocea/Vie_des_labos/Seminaires/index.php?id=87 – Bat 701, P 17C, LSCE Orme des Merisiers – (On our blog : https://plantstomata.wordpress.com/2017/11/16/changes-in-stomatal-number-and-size-by-acclimation-and-adaptation-to-co2/)

de Boer H. J., Lammertsma E. I., Wagner-Cremer F., Wassen M. J., Lotter A. F., Dilcher D. L., Dekker S. C. (2012) – Optimisation of maximal stomatal conductance in subtropical vegetation under rising CO2 – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/maximal-stomatal-conductance-gsmax-in-subtropical-vegetation-under-rising-co2/ )

de Boer H. J., Price C. A., Wagner-Cremer F., Dekker S. C., Franks P. J., Veneklaas E. J. (2016) – Optimal allocation of leaf epidermal area for gas exchange – New Phytologist –New Phytologist (Impact Factor: 7.67). 03/2016; DOI: 10.1111/nph.13929 – (On our blog : https://plantstomata.wordpress.com/2016/03/16/allocation-of-leaf-epidermal-space-to-stomata/).

de Dios V. R., Turnbull M. H., Barbour M. M., Ontedhu J., Ghannoum O., Tissue D. T. (2013) – Soil phosphorus and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis – Tree Physiology 33: 1206–1215 – doi: 10.1093/treephys/tpt091 – https://www.ncbi.nlm.nih.gov/pubmed/24271087 – (On our blog : https://plantstomata.wordpress.com/2018/10/11/effect-of-soil-phosphorus-and-endogenous-rhythms-on-nocturnal-stomatal-conductance/ )

Defraeye T., Derome D., Verboven P., Carmeliet J., Nicolai B. (2014) – Cross-scale modelling of transpiration from stomata via the leaf boundary layer – Annals of Botany 114 (4), 711-723. – http://dx.doi.org/10.1093/aob/mct313 – https://lirias.kuleuven.be/bitstream/123456789/439813/2/Defraeye+et+al._2014_Cross-scale+modelling+of+transpiration+from+stomata+via+the+leaf+boundary+layer.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/08/transpiration-from-stomata-via-the-leaf-boundary-layer/)

Deger A. G., Scherzer S., Nuhkat M., Kedzierska J., Kollist H., Brosche M., Unyayar S., Boudsocq M., Hedrich R., Roelfsema M. R. G. (2015) – Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure – New Phytologist 208(1): 162-173 – DOI: 10.1111/nph.13435 – https://helda.helsinki.fi/handle/10138/209596 – (On our blog : https://plantstomata.wordpress.com/2017/11/08/slac1-type-anion-channels-and-flagellin-induced-stomatal-closure/)

Dehnel G. S. (1960) – Response of stomata to wounding. – Bot. Gazette 122: 124-130 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42754)

De Kauwe M. G., Kala J., Lin Y.-S., Pitman A. J., Medlyn B. E., Duursma R. A., … Miralles D. G. (2015) – A test of an optimal stomatal conductance scheme within the CABLE land surface model – Geoscientific Model Development 8: 431–452 –

Delf E. M. (1911) – Transpiration and behaviour of stomata in halophytes – Ann. Bot., London, 25 (98): 485–505 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42680)

Delgado D., Alonso-Blanco C., Fenoll C., Mena M. (2011) – Natural Variation in Stomatal Abundance of Arabidopsis thaliana Includes Cryptic Diversity for Different Developmental Processes – Annals of Botany 107: 1247–1258 –  http://dx.doi.org/10.1093/aob/mcr060 – (On our blog : https://plantstomata.wordpress.com/2016/05/17/variation-in-stomatal-abundance-and-diversity-for-different-developmental-processes/ )

Delgado D., Ballesteros I., Mena M., Fenoll C. (2012a) – Roles of CONSTITUTIVE
PHOTOMORPHOGENIC 10 in Arabidopsis stomata development. – Plant Signaling & Behavior 7: 990993 – DOI 10.4161/psb.20995 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474701/ – (On our blog : https://plantstomata.wordpress.com/2018/02/28/roles-of-cop-10-in-stomatal-development/ )

Delgado D., Ballesteros I., Torres-Contreras J., Mena M., Fenoll C. (2012b) – Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in
Arabidopsis stomatal lineage development. – Planta 236: 447461 – doi: 10.1007/s00425-012-1617-y – Epub 2012 Mar 11. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/22407427 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/speci%ef%ac%81c-roles-for-cop10-in-stomatal-lineage-development/ )
Del Pozo A., Pérez P., Morcuende R., Alonso A., Martinez-Carrasco R. (xxxx) – Acclimatory responses of stomatal conductance and photosynthesis to elevated CO2 and temperature in wheat crops grown at varying levels of N supply, in a Mediterranean environment – https://core.ac.uk/download/pdf/36030068.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/acclimatory-responses-of-stomatal-conductance-and-photosynthesis-to-elevated-co2-and-temperature/ )
Delucia E. H. (1986) – Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings – Tree Physiol., 2: 143–154 – PMID: 14975849 – https://www.ncbi.nlm.nih.gov/pubmed/14975849?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/effect-of-low-root-temperature-on-stomatal-conductance/ )

Delwiche M. J., Cooke J. R. (1977) – An analytical model of the hydraulic aspects of stomatal dynamics – Journal of Theoretical Biology 69(1):  113-141 – https://doi.org/10.1016/0022-5193(77)90391-5 – CrossRef |PubMed |CAS | – https://www.sciencedirect.com/science/article/pii/0022519377903915 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/analytical-model-of-the-hydraulic-aspects-of-stomatal-dynamics/ )

de Marcos A., Houbaert A., Triviño M., Delgado D., Martín-Trillo M., Russinova E., Fenoll C., Mena M. (2017) – A mutation in the bHLH domain of the SPCH transcription factor uncovers a BR-dependent mechanism for stomatal development. – Plant Physiol 174: 823–842 – 

de Marcos A., Triviño M., Fenoll C., Mena M. (2016) – Too many faces for TOO MANY MOUTHS? – New Phytol. 210: 779–785 – DOI:  10.1111/nph.13827 –  [PubMed] [Cross Ref] – https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13827 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/too-many-faces-for-too-many-mouths/

de Marcos A., Triviño M., Pérez-Bueno M. L., Ballesteros I., Barón M., Mena M., Fenoll C. (2015) – Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata – Frontiers in Plant Science – http://journal.frontiersin.org/article/10.3389/fpls.2015.00456 – (On our blog : https://plantstomata.wordpress.com/2016/01/17/stomataless-plants-in-arabidopsis/)

De Michelle D. W., Sharpe P. J. H. (1971) – A model of stomatal action: Its agronomic and ecological significance. – Pap. No. 71-589 – Winter meeting, – Am. Soc. Agric. Eng., Chicago, III, Dec. – (No abstract available).

De Michelle D. W., Sharpe P. J. H. (1973) – An analysis of the mechanics of guard cell motion. – J. Theor. Biol. 41: 77–96 – [PubMed].- (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42694).

De Michelle D. W., Sharpe P. J. H. (1974) – A parametric analysis of the anatomy and physiology of the stomata – Agric. Meterology 14: 229-241 – (On our blog : https://plantstomata.wordpress.com/2017/07/04/anatomy-and-physiology-of-the-stomata/)

Deng M., Li Q., Shuting Y., Liu Y.-c., Xu J. (2013) – Comparative morphology of leaf epidermis in the genus Lithocarpus and its implication in leaf epidermal feature evolution in Fagaceae – Plant Systematics and Evolution 299(3) – https://www.researchgate.net/publication/257447723_Comparative_morphology_of_leaf_epidermis_in_the_genus_Lithocarpus_and_its_implication_in_leaf_epidermal_feature_evolution_in_Fagaceae – (On our blog : https://plantstomata.wordpress.com/2018/04/24/stomata-in-lithocarpus-fagaceae/ )

Derevyanchuk M., Kretynin S., Iakovenko O., Litvinovskaya R., Zhabinskii V., Martinec J., Blume Y., Khripach V., Kravets V. (2017) – Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress – Steroids 117: 16-24 – DOI10.1016/j.steroids.2016.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-03ba2aa2-b3c3-3855-9965-3775c75928fd – (On our blog : https://plantstomata.wordpress.com/2017/10/22/brassinosteroids-cause-closure-of-stomata/)

Desai M. C. (1937) – Effect of certain nutrient deficiencies on stomatal behavior – Plant Physiology 12: 253-289 – (0n our blog : https://plantstomata.wordpress.com/2017/06/24/nutrient-deficiencies-and-stomata/)

Desclos-Theveniau M., Arnaud D., Huang T. Y., Lin G. J., Chen W. Y., Lin Y. C., et al. (2012) – The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. – PLoS Pathog. 8:e1002513. – doi: 10.1371/journal.ppat.1002513 – http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002513 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/mechanisms-to-reverse-bacteria-mediated-stomatal-closure/ )

Desikan R.Cheung M.K., Bright J., Henson D., Hancock J. T., Neill S. J. (2004) – ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. – J. Exp. Bot. 55, 205–212. – 10.1093/jxb/erh033 –  [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/14673026 – (On our blog : https://plantstomata.wordpress.com/2018/02/28/the-exact-interaction-between-the-various-signalling-components-in-response-to-h2o2-and-no-in-stomata-remains-to-be-established/ )

Desikan R.Cheung M.K.Clarke A.Golding S.Sagi M.Fluhr R.Rock C.Hancock J.Neill S. (2004)Hydrogen peroxide is a common signal for darkness- and ABA-induced stomatal closure in Pisum sativum. – Funct. Plant Biol. 31: 913920. – CrossRef  – http://www.publish.csiro.au/?paper=FP04035 – (On our blog : https://plantstomata.wordpress.com/2015/10/11/hydrogen-peroxide-and-stomatal-closure-2/ )

Desikan R., Griffiths R., Hancock J., Neill S. (2002) – A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. – Proc. Natl. Acad. Sci. U.S.A. 99, 16314–16318. doi: 10.1073/pnas.252461999 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/17/nr-mediated-no-synthesis-is-required-for-aba-induced-stomatal-closure/)

Desikan R., Horák J., Chaban C., Mira-Rodado V., Witthöft J., Elgass K., Grefen C., Cheung M. K., Meixner A. J., Hooley R., Neill S. J., Hancock J. T., Harter K. (2008) – The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. – PLoS ONE 3:e2491. – doi: 10.1371/journal.pone.0002491  – http://eprints.uwe.ac.uk/8292 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002491 – (On our blog : https://plantstomata.wordpress.com/2018/03/02/ahk5-acts-to-integrate-multiple-signals-via-h2o2-homeostasis/ )

Desikan R., Last K., Harrett-Williams R., Tagliavia C., Harter K., Hooley R., Hancock J. T., Neill S. J. (2006) – Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis – The Plant Journal 47: 907–916 – DOI: 10.1111/j.1365-313X.2006.02842.x – CrossRef | CAS| – http://www.publish.csiro.au/fp/FP17180 – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.02842.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/02/ethylene-induced-stomatal-closure/ )

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985) – Synergism between calcium ions and abscisic acid in preventing stomatal opening. – New Phytol. 100: 473–482 – DOI 10.1111/j.1469-8137.1985.tb02795.x – http://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1985.tb02795.x/asset/j.1469-8137.1985.tb02795.x.pdf?v=1&t=je8ayguh&s=14bf149a4328bef2bd6c02b45cc6603631b6fad1 – (On our blog : https://plantstomata.wordpress.com/2018/03/01/ca2-and-aba-in-preventing-stomatal-opening/ )

De Silva D. L. R., Cox R. C., Hetherington A. M., Mansfield T. A. (1986) – The role of abscisic acid and calcium in determining the behaviour of adaxial and abaxial stomata. New Phytologist 104, 4151. – Wiley Online LibraryCASCrossRef – (On our blog : https://plantstomata.wordpress.com/2016/05/17/aba-ca-and-stomata/ )

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985b) – Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid –  New Phytologist 101,555563. – CrossRefCAS | – (On our blog https://plantstomata.wordpress.com/2016/05/17/calcium-calmodulin-and-stomata/ )

De Silva D. L. R., Honour S. J., Mansfield T. A. (1996) Estimations of apoplastic concentrations of K+ and Ca2+ in the vicinity of stomatal guard cells. – New Phytologist 134: 463469. – Wiley Online Library |CAS – (On our blog : https://plantstomata.wordpress.com/2016/03/14/stomata-and-apoplastic-concentrations-of-k-and-ca2/).

De Silva D. L. R., Mansfield T. A. (1994) –  The stomatal physiology of calcicoles in relation to calcium delivered in the xylem sap. – Proceedings of the Royal Society of London Series B 257: 8185. – CrossRef – (On our blog : https://plantstomata.wordpress.com/?s=stomatal+physiology+of+calcicoles )

De Silva D. L. R., Mansfield T. A., McAinsh M. R. (2001) –  Changes in stomatal behaviour in the calcicole Leontodon hispidus due to the disruption by ozone of the regulation of apoplastic Ca2+ by trichomes – Planta

Des Marais D. L., Auchincloss L. C., Sukamtoh E., Mckay J. K., Logan T., Richards J. H., Juenger T. E. (2014) – Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proc. Natl. Acad. Sci. U.S.A. 111, 2836–2841. doi: 10.1073/pnas.1321429111 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/08/01/mpk12-affects-wue-and-reveals-link-between-stomata-size-and-aba/ )

de Villiers A. J.von Teichman I.van Rooyen M. W.Theron G. K. (1996) – Salinity-induced changes in anatomy, stomatal counts and photosynthetic rate of Atriplex semibaccata R. Br. – South African Journal of Botany  62(5): 270-276  – https://doi.org/10.1016/S0254-6299(15)30656-6 – http://www.sciencedirect.com/science/article/pii/S0254629915306566 – (On our blog : https://plantstomata.wordpress.com/2017/10/02/salinity-induced-changes-in-stomatal-numbers/)

Devireddy A. R.Zandalinas S. I.Gómez-Cadenas A.Blumwald E.Mittler R. (2018) – Coordinating the overall stomatal response of plants: Rapid leaf-to-leaf communication during light stress – Sci. Signal. 11, Issue 518, eaam9514 – DOI: 10.1126/scisignal.aam9514 – http://stke.sciencemag.org/content/11/518/eaam9514 – (On our blog : https://plantstomata.wordpress.com/2018/02/22/the-overall-stomatal-response-rapid-leaf-to-leaf-communication-during-light-stress/ )

Dewar R. C. (1995) – Interpretation of an empirical model for stomatal conductance in terms of guard cell function – Plant, Cell & Environment 18: 365372 – DOI 10.1111/j.1365-3040.1995.tb00372.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00372.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/01/an-empirical-model-for-stomatal-conductance-in-terms-of-guard-cell-function/ )

Dewar R. C. (2002) – The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. – Plant, Cell & Environment 25, 13831398 – DOI: 10.1046/j.1365-3040.2002.00909.x –  Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00909.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/02/a-new-model-of-stomatal-conductance-combining-the-ball-berry-leuning-bbl-and-tardieu-davies-td-models/ )

Dewar R. C., Mauranen A., Mäkelä A., Hölttä T., Medlyn B., Vesala T. (2017) – New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis – New Phytologist, Online Version of Record published before inclusion in an issue – doi:10.1111/nph.14848 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14848/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/31/the-covariation-of-stomatal-mesophyll-and-hydraulic-conductances/)

Dhir B., Mahmooduzzafar, Siddiqi T.O., Iqbal M. (2001) – Stomatal and photosynthetic responses of Cichorium intybus leaves to sulfur dioxide treatment at different stages of plant development. – J. Plant Biol., 44: 97-102. (http://link.springer.com/article/10.1007%2FBF03030282) – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/3600).

Diekmann W., Hedrich R., Raschke K., Robinson D. G. (1993) – Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells. – J. Exp. Bot. 44: 1569–1577 – https://doi.org/10.1093/jxb/44.10.1569 – https://academic.oup.com/jxb/article-abstract/44/10/1569/459454?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/01/osmocytosis-and-vacuolar-fragmentation-in-stomata/

Dietrich P., Hedrich R. (1994) – Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel. – Planta 195: 301–304 – https://doi.org/10.1007/BF00199690 – Google Scholar – https://link.springer.com/article/10.1007/BF00199690#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/01/different-gating-modes-of-gcac1-the-guard-cell-anion-channel/)

Dietrich P., Dreyer I., Wiesner P., Hedrich R. (1998) – Cation sensitivity and kinetics of guard cell potassium channels differ among species – Planta 205: 277-287 – https://doi.org/10.1007/s004250050322 – https://link.springer.com/article/10.1007%2Fs004250050322 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/diversification-of-guard-cell-channels-contributes-to-species-specific-variations-in-the-control-of-stomatal-aperture/ )

Dietrich P., Sanders D., Hedrich R. (2001) – The role of ion channels in light‐dependent stomatal opening – Journal of Experimental Botany 52(363): 1959–1967 – https://doi.org/10.1093/jexbot/52.363.1959 – https://academic.oup.com/jxb/article/52/363/1959/488441 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/recent-progress-in-molecular-aspects-of-ion-channel-regulation-in-stomata/ )

Ding S.Zhang B., Qin F. (2015) – Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation – The Plant Cell October 27, 2015 tpc.15.00321 – doi: http://dx.doi.org/10.1105/tpc.15.00321 – http://www.plantcell.org/content/early/2015/10/27/tpc.15.00321.abstract#aff-1 – (On our blog : https://plantstomata.wordpress.com/2016/03/31/rzfp34chyr1-a-ubiquitin-e3-ligase-regulates-stomatal-movement/)

Ding Z. J., Yan J. Y.Xu X. Y.Yu D. Q.Li G. X.Zhang S. Q.Zheng S. J. (2014) – Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis –  79(1): 13-27 – doi: 10.1111/tpj.12538 – Epub 2014 Jun 5 – https://www.ncbi.nlm.nih.gov/pubmed/24773321 – https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.12538 – (On our blog : https://plantstomata.wordpress.com/2018/10/16/wrky46-plays-dual-roles-in-regulating-plant-responses-to-drought-and-salt-stress-and-light-dependent-stomatal-opening/ )

Dingkuhn M., Audebert A. Y., Jones M. P., Etienne K., Sow A. (1999) – Control of stomatal conductance and leaf rolling in Oryza sativa and O. glaberrima upland rice -Field Crops Research 61: 223–236 – http://dx.doi.org/10.1016/S0378-4290(98)00165-8 – http://agritrop.cirad.fr/247421/ – (On our blog : https://plantstomata.wordpress.com/2018/10/16/control-of-stomatal-conductance-and-leaf-rolling/ )

Di Matteo G., Riccardi M., Righi F., Fusaro E. (2012) – Inter- and intraspecific variations in bud phenology, foliar morphology, seasonal stomatal conductance and carbon isotopic composition in Cedrus libani and C. atlantica – Trees 26(4) · August 2012 – DOI: 10.1007/s00468-012-0692-9 – https://www.researchgate.net/publication/257431522_Inter-_and_intraspecific_variations_in_bud_phenology_foliar_morphology_seasonal_stomatal_conductance_and_carbon_isotopic_composition_in_Cedrus_libani_and_C_atlantica – (On our blog : https://plantstomata.wordpress.com/2016/07/26/seasonal-stomatal-conductance-in-cedrus/)

Distefano A. M., Garcia-Mata C., Lamattina L., Laxalt A. M. (2008) – Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. – Plant Cell Environ. 31, 187–194. doi: 10.1111/j.1365-3040.2007.01756.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our  blog : https://plantstomata.wordpress.com/2016/05/18/plc-and-pld-derived-pa-and-stomatal-closure/)

Distefano A. M., Garcia-Mata C., Lamattina L., Laxalt A. M. (2008) – Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. – Plant Cell Environ. 31: 187–194. – doi: 10.1111/j.1365- 3040.2007.01756.x – https://www.ncbi.nlm.nih.gov/m/pubmed/17996010/ – (On our blog : https://plantstomata.wordpress.com/2018/03/05/plc-and-pld-derived-pa-represents-a-downstream-component-of-no-signalling-cascade-during-stomatal-closure/ )

Distéfano A. M., Scuffi D., García-Mata C., Lamattina L., Laxalt A. M. (2012) – Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. – Planta 236: 1899–1907 – doi: 10.1007/s00425-012-1745-4 – https://link.springer.com/article/10.1007/s00425-012-1745-4 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/pld%ce%b4-is-downstream-of-no-and-h2o2-in-aba-induced-stomatal-closure/ )

Dittberner H.Korte A.Mettler-Altmann T.Weber A.Monroe G., de Meaux J. (2018) – Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana – BioRxiv – doi: https://doi.org/10.1101/253021 – https://www.biorxiv.org/content/early/2018/01/24/253021 – (On our blog : https://plantstomata.wordpress.com/2018/02/10/morphological-and-physiological-variants-in-stomata-contribute-to-genetic-variance-in-water-use-efficiency/ )

Dittrich P., Raschke K. (1977) – Malate metabolism in isolated epidermis of Commelina communis L. in relation to stomatal functioning – Planta 134: 76–82 – doi: 10.1007/BF00390098 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/24419583 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/malate-metabolism-and-stomatal-functioning/ )

Dittrich P., Raschke K. (1977) – Uptake and metabolism of carbohydrates by epidermal tissue – Planta 134: 83-90 – https://doi.org/10.1007/BF00390099 – https://link.springer.com/article/10.1007%2FBF00390099 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/uptake-and-metabolism-of-carbohydrates-by-epidermal-tissue/ )

Dobrenz A. K., Wright L. N., Humphrey A. B., Massengale M. A., Kneebone W. R. (1969) – Stomata density and its relationship to water-use efficiency  of Blue Panicgrass (Panicum antidotale Retz.) – Crop Sci. 9: 354-357 – doi:10.2135/cropsci1969.0011183X000900030033x – https://dl.sciencesocieties.org/publications/cs/abstracts/9/3/CS0090030354 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/stomata-density-and-water-use-efficiency-wue/ )

Dodd I. C. (2003) – Hormonal interactions and stomatal responses. – J. Plant Growth Regul. 22, 32–46. doi: 10.1007/s00344-003-0023-x – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/18/hormonal-factors-and-stomatal-behavior/)

Dodd I. C. (2013) – Abscisic acid and stomatal closure: a hydraulic conductance conundrum? – New Phytol, 197: 6–8. doi:10.1111/nph.12052 – This article is corrected by: Errata: Corrigendum – Volume 198, Issue 4, 1290, Article first published online: 4 April 2013 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12052/abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/18/12401/)

Dodge B. O. (1903) – Effect of the Orange-Rusts of Rubus on the development and distribution of stomata – Journ. Agric. Res. XXV(11): 495-501 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42740)

Doheny-Adams T. (2013) – Manipulating stomatal density affects plant growth, yield and drought tolerance – Thesis (Ph.D.) – uk.bl.ethos.577420 – University of Sheffield UK – http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577420 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/manipulating-stomatal-density/)

Doheny-Adams T., Hunt L., Franks P. J., Beerling D. J., Gray J. E. (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. – Proceedings of the Royal Society B, 367: 547–555. – http://rstb.royalsocietypublishing.org/content/367/1588/547 – (On our blog : https://plantstomata.wordpress.com/2016/05/18/manipulation-of-stomatal-density/)

Doi M., Kitagawa Y., Shimazaki K.-I. (2015) – Stomatal Blue Light Response Is Present in Early Vascular Plants – Plant Physiology October 2015 vol. 169 no. 2 1205-1213 – doi: http://dx.doi.org/10.1104/pp.15.00134 – http://www.plantphysiol.org/content/169/2/1205.abstract#fn-5 – (On our blog : https://plantstomata.wordpress.com/2016/03/22/stomatal-blue-light-response/)

Doi M.Shigenaga A.Emi T.Kinoshita T.Shimazaki K. (2004) – A transgene encoding a blue-light receptor, phot1, restores blue-light responses in the Arabidopsis phot1 phot2 double mutant – J Exp Bot 55517523 – DOI: 10.1093/jxb/erh044 – https://www.ncbi.nlm.nih.gov/pubmed/14739272?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/06/phot1-is-an-essential-component-for-all-blue-light-responses-in-planta-mediating-stomatal-opening/

Doi M., Shimazaki K.-I. (2008) – The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells – Plant Physiol 147: 922–930 – DOI: https://doi.org/10.1104/pp.108.118950 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/18/adiantum-stomata-lack-sensitivity-to-co2-in-the-dark/)

Doi M., Wada M., Shimazaki K.-I. (2006) – The fern Adiantum capillus-veneris lacks stomatal responses to blue light. – Plant Cell Physiol. 47:748–755. – Abstract/FREE Full Text – CASPubMedArticle – (On our blog : https://plantstomata.wordpress.com/2016/05/18/adiantum-capillus-veneris-lacks-stomatal-responses-to-blue-light/ )

Dolman A. J., Gash J. H. C., Roberts J., Shuttleworth W. J. (1991) – Stomatal and surfaceconductance of tropical rainforest – Agricultural and Forest Meteorology 54(2–4): 303-318 – https://doi.org/10.1016/0168-1923(91)90011-E – https://www.sciencedirect.com/science/article/pii/016819239190011E – (On our blog : https://plantstomata.wordpress.com/2018/09/26/stomatal-and-surface-conductance-of-tropical-rainforest/ )

Dolman A. J., Van Den Burg G. J. (1988) – Stomatal behavior in an oak canopy – Agric For Meteorol 43: 99–108 – https://doi.org/10.1016/0168-1923(88)90085-8 – https://www.sciencedirect.com/science/article/pii/0168192388900858 – (On our blog : https://plantstomata.wordpress.com/2018/10/02/stomatal-conductance-in-an-oak-canopy/ )

Domec J.-C., Noormets A., King J. S., Sun G. E., McNulty S. G., Gavazzi M. J., Boggs J. L., Treasure E. A. (2009) – Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. – Plant Cell Environ. 32(8): 980-991 (CrossRef, Medline, ISI). – (On our blog : https://plantstomata.wordpress.com/2015/09/22/stomatal-conductance-and-its-sensitivity-to-vapour-pressure-deficit/ ).

Domec J.-C.., Palmroth S., Ward E., Maier C. A., Therezien M., Oren R. (2009) – Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. – Plant, Cell Environ. 32: 1500-1512 – Acclimation_of_leaf_hydraulic_conductanc.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/13/acclimation-of-stomatal-conductance-to-long-term-growth-in-elevated-co2-and-n-fertilization/)

Domec J.-C., Scholz F. G., Bucci S. J., Meinzer F. C., Goldstein G. V., Villalobos-Vega R. (2006) – Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status – Plant Cell Environ292635 – DOI: 10.1111/j.1365-3040.2005.01397.x – Google Scholar CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01397.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/05/impact-of-root-xylem-embolism-on-stomatal-control-of-plant-water-status/ )

Domec J.-C., Warren J. M., Meinzer F. C., Brooks J. R., Coulombe R. (2004) – Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution – Oecologia September 2004, Volume 141, Issue 1, pp 7-16 – http://link.springer.com/article/10.1007%2Fs00442-004-1621-4 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/root-xylem-embolism-and-stomatal-closure/ )

Domes W., Bertsch A. (1969) – CO2-exchange in amphistomatic leaves. 2. A comparison between the diffuse CO2-exchange of both leaf surfaces of Zea mays and the viscous flow of volume in the porometer – Planta 86: 84-91 – doi: 10.1007/BF00385307 – https://www.ncbi.nlm.nih.gov/pubmed/24515745 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/the-correlation-between-the-diffusive-co2-exchange-of-the-lower-surface-and-the-porometer-flow-is-not-significant/ )

Dong J., Bergmann D. C. (2010) – Stomatal patterning and development. – Curr Top Dev Biol 2010, 91:267-297. (PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/09/22/components-in-signaling-pathways-required-for-cell-fate-and-pattern-of-stomata/).

Dong J., MacAlister C. A., Bergmann D. C. (2009) –  BASL controls asymmetric cell division in Arabidopsis – Cell. 2009, 137: 1320-1330 – 10.1016/j.cell.2009.04.018. – PubMed CentralView ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/2016/05/19/basl-and-stomata-2/)

Doohan M. E., Palevitz B. A. (1980) – Microtubules and coated vesicles in guard-cell protoplasts of Allium cepa L. – Planta 149: 389–401 – DOI | 10.1007/BF00571175 – https://scinapse.io/papers/2042757836 – (On our blog : https://plantstomata.wordpress.com/2018/09/13/microtubules-and-coated-vesicles-in-guard-cell-protoplasts-of-stomata/

Dörffling K., Streich J., Kruse W., Muxfeldt B. (1977) Abscisic acid and the after-effect of water stress on stomatal opening potential – Zeitschrift für Pflanzenphysiologie 81 (1): 43 – 56 – https://doi.org/10.1016/S0044-328X(77)80036-6 – CrossRef – https://www.sciencedirect.com/science/article/pii/S0044328X77800366 – (On our blog : https://plantstomata.wordpress.com/2018/03/05/the-after-effect-of-wilting-on-stomatal-opening-is-caused-primarily-by-the-increased-level-of-aba/ )

Dornhoff G. M., Shibles R. (1976) – Leaf morphology and anatomy in relation to CO2 exchange rate of soybean leaves – Crop Sci. 16: 377-381 – doi:10.2135/cropsci1976.0011183X001600030015x – https://dl.sciencesocieties.org/publications/cs/abstracts/16/3/CS0160030377?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/05/characteristics-internal-to-the-cell-as-opposed-to-resistances-related-to-stomata-intercellular-space-or-cell-surfaces-are-regulating-co2-exchange-rate-cer/ )

Douhovnikoff V.Taylor S. H.Hazelton E. L. G. Smith C., O’Brien J. (2016) – Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America – AoB PLANTS (2016) : plw006doi: 10.1093/aobpla/plw006 – http://aobpla.oxfordjournals.org/content/8/plw006

Dow G. J. (2014) – The physiological consequences of altering stomatal development in plants — lessons from Arabidopsis – Environmental Science and Engineering Seminar, May 7, 2014. (http://www.gps.caltech.edu/content/environmental-science-and-engineering-seminar-271) – (On our blog : https://plantstomata.wordpress.com/2015/10/11/altering-the-density-and-pattern-of-stomata/).

Dow G. J. (2017) – Current Research of Graham DOW – https://www.bu.edu/biology/people/profiles/graham-dow/ – (On our blog : https://plantstomata.wordpress.com/2017/09/19/graham-dows-research-on-stomata/)

Dow G. J. (2017) – Spatial and temporal relationships between stomatal development and function in a temperate forest canopy – Conference – https://www.eventscribe.com/2017/ASPB/ajaxcalls/PresentationInfo.asp?efp=RU9TU0FaVlEzNDcz&PresentationID=276732&rnd=0.916164 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/relationships-between-stomatal-development-and-function-in-a-temperate-forest-canopy/)

Dow G. J. (2017) – Plant Biology: Rethinking Structure–Function Relationships in Guard Cells – Curr. Biol. 27(19): 1069–1071 – http://dx.doi.org/10.1016/j.cub.2017.08.028 – http://www.cell.com/current-biology/fulltext/S0960-9822(17)31066-7?elsca1=etoc&elsca2=email&elsca3=0960-9822_20171009_27_19_&elsca4=Cell%20Press – (On our blog : https://plantstomata.wordpress.com/2017/10/10/structure-function-relationships-in-stomata/)

Dow G. J., Bergmann D. C. (2014) – Patterning and processes: how stomatal development defines physiological potential. – Current Opinion in Plant Biology 21: 67-74 – doi: 10.1016/j.pbi.2014.06.007 – PMID: 25058395 – https://www.sciencedirect.com/science/article/pii/S1369526614000946 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-development-defines-physiological-potential/ )

Dow G. J., Bergmann D. C., Berry J. A.  (2014) – An integrated model of stomatal development and leaf physiology. – New Phytologist. 201: 1218-1226 – DOI: 10.1111/nph.12608 – PMID: 24251982 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12608/abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/15/model-of-stomatal-development-and-leaf-physiology/ )

Dow G. J., Berry J. A., Bergmann D. C. (2013) – The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana – New Phytologist 201(4): 1205–1217 – doi: 10.1111/nph.14746. Epub 2017 Aug 21. PMID: 28833173
– http://onlinelibrary.wiley.com/doi/10.1111/nph.12586/full – (On our blog : https://plantstomata.wordpress.com/2016/11/08/developmental-mechanisms-that-enforce-stomatal-spacing/)

Dow G. J., Berry J. A., Bergmann D. C. (2017) – Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange. – New Phytol. 2017 Oct;216(1):69-75. – doi: 10.1111/nph.14746. – Epub 2017 Aug 21. – PMID: 28833173 http://onlinelibrary.wiley.com/doi/10.1111/nph.14746/full – (On our blog : https://plantstomata.wordpress.com/2018/01/15/stomata-specific-regulators-can-alter-mesophyll-properties/ )

Downton W. J. S., Grant W. J. R., Robinson S. P. (1985) – Photosynthetic and stomatal responses of spinach leaves to salt stress. – Plant Physiol 77: 85-88 – DOI: https://doi.org/10.1104/pp.78.1.85 – http://www.plantphysiol.org/content/78/1/85.short – (On our blog : https://plantstomata.wordpress.com/2017/10/02/stomatal-responses-of-spinach-leaves-to-salt-stress/)

Downton W. J. S., Loveys B. R., Grant W. J. R. (1988) – Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. – New Phytologist 108: 263–266  -doi:10.1111/j.1469-8137.1988.tb04161.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1988.tb04161.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-closure-can-account-for-non-stomatal-inhibition-of-photosynthesis-by-aba/ )

Downton W. J. S., Loveys B. R., Grant W. J. R. (1988) – Non-uniform stomatal closure by water stress causes putative non-stomatal inhibition of photosynthesis. – New Phytol. 110: 503-509 – DOI: 10.1111/j.1469-8137.1988.tb00289.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1988.tb00289.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/06/non-uniform-stomatal-closure-can-account-for-non-stomatal-inhibition-of-photosynthesis-in-plants-experiencing-water-stress/

Downton W. J. S., Loveys B. R., Grant W. J. R. (1990) – Salinity effects on the stomatal behaviour of grapevine – New Phytol 116(3): 499–503 – DOI: 10.1111/j.1469-8137.1990.tb00535.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1990.tb00535.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/02/salinity-effects-on-stomatal-behaviour/)

Drake B. G. (2001) Global change and stomatal research – the 21st century agenda.- New Phytologist 152: 372374. – DOI: 10.1046/j.0028-646X.2001.00293.x – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/05/19/12581/)

Drake P. L., Froend R. H., Franks P. J.(2013) – Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. – Journal of Experimental Botany 64, 495–505.| CrossRef | CAS | PubMed | – (On our blog : https://plantstomata.wordpress.com/2015/09/23/leaves-with-higher-rates-of-gas-exchange-have-smaller-stomata-and-faster-dynamic-characteristics/).

Drawert H. (1952) – Der fluorescenzoptische Nachweis von Chloroplasten in den Schliesszellen von Allium cepa L. – Flora, Jena 139: 329-332 – https://ac.els-cdn.com/S036716151731340X/1-s2.0-S036716151731340X-main.pdf?_tid=5d0026a6-f1c9-465a-a8cd-43ca63243e2c&acdnat=1520328084_5692a4271da51f4cf6b83964c02e1663 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/chloroplasts-in-the-guard-cells-of-onion-in-german/ )

Drell D., Vogel J. (2017) – Grasses: The Secrets behind Their Stomatal Success – Joint Genome Institute March 29, 2017 – https://jgi.doe.gov/brachypodium-grasses-secrets-behind-stomatal-success/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-with-unique-subsidiary-cells/ )

Drennan P. M., Goldsworthy D., Buswell A. (2009) – Marginal and laminar hydathode-like structures in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. – Flora204(3): 210-219 – DOI10.1016/j.flora.2008.01.013 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0763b153-3675-3a95-bedc-56afc2d54e4e – (On our blog : https://plantstomata.wordpress.com/2017/10/07/hydathode-like-structures-in-the-leaves-of-myrothamnus-myrothamnaceae/)

Drew A. P., Bazzaz F. A. (1979) – Response of stomatal resistance and photosynthesis to night temperature in Populus deltoides. – Oecologia (Berlin) 41 : 89-98 – doi: 10.1007/BF00344839 – https://www.ncbi.nlm.nih.gov/pubmed/28310362 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/stomatal-resistance-and-photosynthesis-in-relation-to-night-temperature/ )

Driscoll S., Prins A., Olmos E., Kunert K., Foyer C. (2006) – Specification of Adaxial and Abaxial Stomata, Structure and Photosynthesis to CO2 Enrichment Maize Leaves, – Journal of Experimental Botany, Vol. 57, No. 2, 2006, pp. 381-390.- http://dx.doi.org/10.1093/jxb/erj030 – https://academic.oup.com/jxb/article/57/2/381/489968 – (On our blog : https://plantstomata.wordpress.com/2016/05/19/12595/)

Dry P. R., Loveys B. R. (1999) Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried – Vitis 38: 151156  – https://www.researchgate.net/publication/285728594_Grapevine_shoot_growth_and_stomatal_conductance_are_reduced_when_part_of_the_root_system_is_dried – (On our blog : https://plantstomata.wordpress.com/2018/09/13/stomatal-conductance-is-reduced-when-part-of-the-root-system-is-dried/ )

Du Z., Aghoram K., Outlaw W. H. (1997) – RESEARCH REPORT – In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid – Archives of Biochemistry and Biophysics 337(2): 345-350 – DOI10.1006/abbi.1996.9790 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1c712925-86b7-37fd-9bc8-0f1b76d6d726 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/regulatory-posttranslational-modification-of-a-guard-cell-protein-that-is-specifically-implicated-in-stomatal-movements/)

Du M., Zhai Q., Deng L., Li S., Li H., Yan L., Huang Z.Wang B.Jiang H.Huang T.Li C.-B.Wei J.Kang L.Li J.Li C. (2014) – Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. – Plant Cell 26, 3167–3184. – doi: 10.1105/tpc.114.128272 – http://www.plantcell.org/content/early/2014/07/08/tpc.114.128272 – (On our blog : https://plantstomata.wordpress.com/2018/03/06/nac-proteins-differentially-regulate-pathogen-induced-stomatal-closure-and-reopening-through-distinct-mechanisms/ )

Du Q. S.Fan X. W.Wang C. H.Huang R. B. (2011) – A Possible CO(2) Conducting and Concentrating Mechanism in Plant Stomata SLAC1 Channel – PLoS One. 2011 6(9):e24264. Epub 2011 Sep 13 – doi: 10.1371/journal.pone.0024264 – https://www.ncbi.nlm.nih.gov/pubmed/21931667 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71995

Dubbe D. R., Farquhar G. D., Rasche K. (1978) – Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata – Plant Physiol. 62: 413-417 –  DOI: https://doi.org/10.1104/pp.62.3.413 – https://www.ncbi.nlm.nih.gov/pubmed/16660528 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/aba-co2-stomata-and-the-gains-of-the-feedback-loops/

Dubovskaya L. V., Bakakina Y. S., Kolesneva E. V., Sodel D. L., McAinsh M. R., Hetherington A. M., Volotovski ID. (2011) – cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. – New Phytol. 191, 57–69. – http://dx.doi.org/10.1111/j.1469-8137.2011.03661.x – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/m/pubmed/21371039/ – (On our blog : https://plantstomata.wordpress.com/2018/03/07/signalling-events-during-cgmp-dependent-aba-induced-stomatal-closure/

Dufour L. (1885) – Influence de la lumière sur le nombre des stomates des feuilles – Bull. Soc. bot. France 32: 385-391 – DOI: 10.1080/00378941.1885.10828378 – https://www.tandfonline.com/doi/pdf/10.1080/00378941.1885.10828378 (No abstract found)

Dugger W. M., Taylor O. C., Cardiff E., Thompson C. R. (1962) – Stomatal action in plants as related to damage from photochemical oxidants – Plant Physiol. 37: 487-491 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC549820/?page=1 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/stomatal-opening-is-not-the-primary-controlling-factor-in-predisposing-plants-to-injury-from-ozone-and-pan/ )

Dumont J., Cohen D., Gerard J., Jolivet Y., Dizengremel P., Le Thiec D. (2014) – Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes – Plant, Cell & Environment 37(9): 2064-2076.  – DOI: 10.1111/pce.12293 – http://www.ccacoalition.org/en/resources/distinct-responses-ozone-abaxial-and-adaxial-stomata-three-euramerican-poplar-genotypeshttps://www.ncbi.nlm.nih.gov/pubmed/24506578 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/distinct-responses-to-ozone-of-stomata/)

Dumont J., Spicher F., Montpied P., Dizengremel P., Jolivet Y., Le Thiec D., (2013) Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigragenotypes. – Environ Pollut. 173: 85-96. – doi: 10.1016/j.envpol.2012.09.026 – https://www.ncbi.nlm.nih.gov/pubmed/23202637 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/effects-of-ozone-on-stomatal-responses-to-environmental-parameters/)

Dunlap, J.M., Stettler, R.F. (2001) – Variation in Leaf Epidermal and Stomatal Traits of Populus trichocarpa from Two Transects across the Washington Cascades – Canadian Journal of Botany 79: 528-536 – https://doi.org/10.1139/b01-029 – http://www.nrcresearchpress.com/doi/abs/10.1139/b01-029 – (On our blog : https://plantstomata.wordpress.com/2018/03/17/stomatal-traits-of-populus-trichocarpa/ )

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. I. Preliminary stiudies on the effect of light and carbon dioxide.-  New Phytologist 97(2): 115 – (Article not found).

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. II. Characterization of the response to different concentrations of KCl and CO2 – New Phytologist 1984, 97, 2, 121-128 –  DOI: 10.1111/j.1469-8137.1984.tb04116.x – Wiley Online Library – (On our blog : https://plantstomata.wordpress.com/2016/05/25/bentazone-may-effect-stomatal-movement/ )

Dunleavy P. J., Ladley P. D. (1995) – Stomatal responses of Vicia faba L. to indole acetic acid and abscisic acid. – J. Exp. Bot. 46: 95-100 – https://doi.org/10.1093/jxb/46.1.95 – https://academic.oup.com/jxb/article-abstract/46/1/95/535985?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/17/stomatal-responses-to-iaa-and-aba/ )

Düring H. (1987) – Stomatal responses to alterations of soil and air humidity in grapevines – Vitis 26: 9–18 –

Düring H. (2003) – Stomatal and mesophyll conductances control CO2 transfer to chloroplasts in leaves of grapevine (Vitis vinifera L.) – Vitis 42: 65–68 (Article not found)

Düring H., Loveys B. R. (1996) – Stomatal patchiness of field-grown Sultana leaves: Diurnal changes and light effects – Vitis 35: 7-10 – ISSN 2367-4156 – https://www.vitis-vea.de/admin/volltext/e036649.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomatal-patchiness-of-field-grown-grape-leaves/ )

Duursma R. A., Blackman C. J., Lopéz R., Martin-StPaul N. K., Cochard H., Medlyn B. E. (2018) – On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls – New Phytol. Online Version of Record before inclusion in an issue – https://doi.org/10.1111/nph.15395 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15395?af=R – (On our blog : https://plantstomata.wordpress.com/2018/08/26/the-leaf-minimum-conductance-and-closure-of-stomata/ )

Dzierzynska A. (2006) – The role of cytoskeleton in stomata functioning – Acta Physiologiae Plantarum 28(1): 59–79 – ISSN :0137-5881 – https://www.infona.pl/resource/bwmeta1.element.agro-article-ae3638cb-851d-498a-b174-a69ef3835e75 – (On our blog : https://plantstomata.wordpress.com/2017/10/17/role-of-cytoskeleton-in-stomata-functioning/)

Eamus D. (1986) – Further evidence in support of an interactive model in stomatal control. – J. Exp. Bot. 37: 657-665 – https://doi.org/10.1093/jxb/37.5.657 – https://academic.oup.com/jxb/article-abstract/37/5/657/448803?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/07/an-interactive-model-in-stomatal-control/ )

Eamus D. (1987) – Stomatal behaviour and leaf water potential of chilled and water-stressed Solanum melongena, as influenced by growth history – Plant, Cell and Environment 10(8): 649–654 – DOI: 10.1111/j.1365-3040.1987.tb01847.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1987.tb01847.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/07/stomatal-behaviour-and-leaf-water-potential-of-chilled-and-water-stressed-plants/

Eamus D., Barnes J. D., Mortensen L., Ro-Poulsen H., Davison A. W. (1990) – Persistent stimulation of CO2 assimilation and stomata1 conductance by summer ozone fumigation in Norway spruce – Environmental Pollution 63: 365-379 – https://doi.org/10.1016/0269-7491(90)90141-X – https://www.sciencedirect.com/science/article/pii/026974919090141X – (On our blog : https://plantstomata.wordpress.com/2018/03/08/summer-ozone-fumigation-and-stimulation-of-co2-assimilation-and-stomatal-conductance/ )

Eamus D., Berryman C. A., Duff G. A. (1993) – Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO2 of Maranthes corymbosa, a tropical monsoon rain forest species – Australian Journal of Plant Physiology 20(6): 741-755 – DOI 10.1071/PP9930741 – http://www.publish.csiro.au/FP/PP9930741?CFID=35700333&CFTOKEN=c8fd4b214bc49e50-B1A57161-B1A9-F2E2-3D61C0C8994204E5 – (On our blog : https://plantstomata.wordpress.com/2018/03/30/stomatal-conductance-and-chlorophyll-responses-to-elevated-co2/ )

Eamus D., Narayan A. D. (1989) – The influence of prior water stress and abscisic acid foliar spraying on stomatal responses to CO2, IAA, ABA, and calcium in leaves of Solanum melongena. – J. Exp. Bot. 40: 573-579 – DOI 10.1093/jxb/40.5.573 – https://academic.oup.com/jxb/article-abstract/40/5/573/603414?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/08/influence-of-a-water-stress-or-foliar-aba-spraying-pretreatment-on-stomatal-responses-to-water-loss-exogenous-aba-iaa-ca2-and-co2/ )

Eamus D., Taylor D. T., Macinnis-Ng C. M. O., Shanahan S., De Silva L. (2008) – Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. – Plant Cell Environ. 31(3): 269-277 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/24/mechanistic-model-of-stomatal-behaviour-and-stomatal-conductance/ ).

Easlon H. M., Carlisle E., McKay J., Bloom A. (2015) – Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis thaliana? – Plant Physiol. 167, 793–799 – doi: 10.1104/pp.114.245241 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.plantphysiol.org/content/167/3/793 – (On our blog : https://plantstomata.wordpress.com/2018/03/07/does-low-stomatal-conductance-increases-growth-nitrate-assimilation-and-nitrogen-utilization-at-elevated-co2-concentration/ )

Easlon H. M., Richards J. H. (2009) – Photosynthesis affects following night leaf conductance in Vicia faba. – Plant Cell Environ. 32:58–63. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/19/photosynthesis-and-night-time-stomatal-opening/)

Ebel R., Duan X., Still D., Auge R. (1997) – Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil – New Phytol. 135: 755–761 – DOI: 10.1046/j.1469-8137.1997.00674.x – http://onlinelibrary.wiley.com/store/10.1046/j.1469-8137.1997.00674.x/asset/j.1469-8137.1997.00674.x.pdf?v=1&t=jehedgzu&s=712b12f302f7a6a07419d480174e9f7a6bab630d– (On our blog : https://plantstomata.wordpress.com/2018/03/07/is-xylem-aba-concentration-altered-by-mycorrhizal-symbiosis-of-cowpea-plants-grown-in-drying-soil/

Ebrahim S., Usha K., Singh B. (2012) – Plant architectural traits and their role in defense mechanism against malformation in mango (Mangifera indica L.) – Scientia Horticulturae 139: 25-31 – DOI10.1016/j.scienta.2012.02.025 – https://www.infona.pl/resource/bwmeta1.element.elsevier-d300469e-594a-3b3d-9a26-febbf576e955 – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-and-their-role-in-defense-mechanism-against-malformation-in-mango/)

Eckerson  S. H. (1908) – The number and size of the stomata – Botanical Gazette, 46(3): 221–224 –

Eckert M., Kaldenhoff R. (2000) – Light‐induced stomatal movement of selected Arabidopsis thaliana mutants – Journal of Experimental Botany 51: 1435-1442 – https://doi.org/10.1093/jexbot/51.349.1435 – https://academic.oup.com/jxb/article/51/349/1435/509252 – (On our blog : https://plantstomata.wordpress.com/2018/09/14/light%e2%80%90induced-stomatal-movement/ )

Eckstein J., Beyschlag W., Mott K. A., Ryel R. J. (1996) – Changes in photon flux can induce stomatal patchiness – Plant, Cell & Environment 19(9): 1066-1074 – DOI: 10.1111/j.1365-3040.1996.tb00213.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00213.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/changes-in-photon-flux-can-induce-stomatal-patchiness/)

Eckstein J. et al. (1998) – Abscisic acid is not necessarily required for the induction of patchy stomatal closure – J. Exp. Biol. 49: 611–616 –

Eckstein J. et al. (1996) – Changes in photon flux can induce stomatal patchiness – Plant Cell Environ. 19: 1066–1074 –

Edwards A., Bowling D. J. F. (1985) Evidence for a CO2 Inhibited Proton Extrusion Pump in the Stomatal Cells of Tradescantia virginiana – J. Exp. Bot. (1985) 36 (1): 91-98.doi: 10.1093/jxb/36.1.91 – http://jxb.oxfordjournals.org/content/36/1/91.abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/20/effect-of-co2-on-the-electrical-potential-difference-of-stomata/)

Edwards D., Axe L. (1992) – Stomata and mechanics of stomatal functioning in some early land plants – Courier Forschungsinstitut Seckenberg 147: 59-73 – http://orca.cf.ac.uk/id/eprint/10835 – Presented at: International Symposium on Palaeobotany “Anatomical Investigations of Plant Fossils”: 3rd International Senckenberg Conference, Frankfurt am Main, Germany, 1990. Published in: Schaarschmidt, F. ed.International Symposium on Palaeobotany “Anatomical Investigations of Plant Fossils”: 3rd International Senckenberg Conference Frankfurt am Main 1990. – (No abstract available)

Edwards D., Kerp H., Hass H. (1998) – Stomata in early land plants: an anatomical and ecophysiological approach – J Exp Bot 49 (Suppl 1)255-278 – DOI: 10.1093/jexbot/49.suppl_1.255 – Web of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/19/stomata-in-rhynie-chert/ )

Edwards M. C., Bowling D. J. F. (1984) An electrophysiological study of the stomatal complex of Tradescantia virginiana. – J. Exp. Bot. 35: 562–567 – https://doi.org/10.1093/jxb/35.4.562 – Google Scholar – https://www.jstor.org/stable/23690938?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/07/a-massive-increase-in-k-activity-on-stomatal-closure/ )

Edwards M. C., Bowling D. J. F. (1986) The growth of rust germ tubes towards stomata in relation to pH gradients. – Physiological and Molecular Plant Pathology 29: 185196. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/05/20/uredospore-germ-tubes-ph-gradients-and-locating-stomata/ )

Edwards M. C., Meidner H. (1978)Stomatal responses to humidity and the water potentials of epidermal and mesophyll tissue. – J. Exp. Bot. 29: 771-780 – https://doi.org/10.1093/jxb/29.3.771 – https://academic.oup.com/jxb/article-abstract/29/3/771/435642?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/08/stomatal-responses-to-humidity-and-the-water-potentials-of-epidermal-and-mesophyll-tissue/ )

Edwards M. C., Meidner H. (1979) – Direct Measurements of Turgor Pressure Potentials : IV. Naturally occurring pressures in guard cells and their relation to solute and matric potentials in the epidermis – J. Exp. Bot. 30: 829-837 – https://doi.org/10.1093/jxb/30.4.829https://academic.oup.com/jxb/article-abstract/30/4/829/493808/Direct-Measurements-of-Turgor-Pressure?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/08/26/pressures-in-stomata-and-their-relation-to-solute-and-matric-potentials/)

Edwards M. C., Meidner H., Sheriff D. W. (1976) – Direct Measurements of Turgor Pressure Potentials of Guard Cells. II.The mechanical advantage of subsidiary cells, the Spannungsphase, and the optimum leaf water deficit – J. Exp. Bot. 27 (1): 163-171 – doi: 10.1093/jxb/27.1.163 –  CrossRef – http://jxb.oxfordjournals.org/content/27/1/163 – (On our blog : https://plantstomata.wordpress.com/2016/11/06/turgor-pressure-potentials-of-guard-cells-ii/)

Edwards M. C., Smith G. N., Bowling D. J. F. (1988) – Guard cells extrude protons prior to stomatal opening: a study using fluorescence microscopy and pH micro-electrodes. – Journal of Experimental Botany 39: 1541–1547 – https://doi.org/10.1093/jxb/39.11.1541 – CrossRefGoogle Scholar – https://academic.oup.com/jxb/article-abstract/39/11/1541/595904 – (On our blog : https://plantstomata.wordpress.com/2018/03/08/guard-cells-extrude-protons-prior-to-stomatal-opening/

Eensalu E., Kupper P., Sellin A., Rahi M., Sober A., Kull O. (2008) – Do stomata operate at the same relative opening range along a canopy profile of Betula pendula? – Functional Plant Biology 35, 103–110.| CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-morphology-can-principally-be-important-for-photosynthesis-limitation-2/ ).

Egea G., Verhoef A., Vidale P. L. (2011) – Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. – Agricultural and Forest Meteorology 151, 13701384. – https://doi.org/10.1016/j.agrformet.2011.05.019 – CrossRef – https://www.sciencedirect.com/science/article/pii/S0168192311001778 – (On our blog : https://plantstomata.wordpress.com/2018/03/08/water-stress-in-coupled-photosynthesis-stomatal-conductance-models/ )

Ehrler W. L. (1971) – Periodic nocturnal stomatal opening of Citrus in a steady environment – Physiol. Plant. 25: 488-492 – DOI: 10.1111/j.1399-3054.1971.tb01478.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1971.tb01478.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/10/several-20-minute-periods-of-pronounced-nocturnal-stomatal-opening-in-a-steady-environment/

Ehonen S., Yarmolinsky D., Kollist H., Kangasjärvi J. (2018) – Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata – Antioxid Redox Signal. – doi: 10.1089/ars.2017.7455 – https://www.ncbi.nlm.nih.gov/pubmed/29237281 – (On our blog : https://plantstomata.wordpress.com/2018/03/28/reactive-oxygen-species-photosynthesis-and-environment-in-the-regulation-of-stomata/ )

Eisele J. F., Fäßler F., Bürgel P. F., Chaban C. (2016) – A Rapid and Simple Method for Microscopy-Based Stomata Analyses – PLoS ONE 11(10): e0164576. – https://doi.org/10.1371/journal.pone.0164576 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164576 – (On our blog : https://plantstomata.wordpress.com/2018/01/07/microscopy-based-stomata-analyses/ )

Eisenach C., Baetz U., Huck N. V., Zhang J., De Angeli A., Beckers G., Martinoia E. (2017) – Vacuolar Anion Channel in Stomatal Movement – Plant Cell https://doi.org/10.1105/tpc.17.00452 – https://plantae.org/almt4/ – (On our blog : https://plantstomata.wordpress.com/2017/11/16/a-dephosphorylated-active-channel-is-required-for-stomatal-closure/)

Eisenach C., Baetz U., Huck N. V., Zhang J., De Angeli A., Beckers G. J. M., Martinoia E. (2017) – ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis – Plant Cell 292552-2569 – http://www.plantcell.org/content/29/10/2552– (On our blog : https://plantstomata.wordpress.com/2018/10/04/almt4-mediates-mal2%e2%88%92efflux-during-aba-induced-stomatal-closure-and-its-activity-depends-on-phosphorylation/ )

Eisenach C., Chen Z.-H., Grefen C., Blatt M. R. (2012) The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth – The Plant Journal, 2012,69, 2, 241 – DOI: 10.1111/j.1365-313X.2011.04786.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04786.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/21/syp121-stomatal-closure-and-k-channel-activity/)

Eisenach C., De Angeli A. (2017) – Ion transport at the vacuole during stomatal movements. – Plant Physiol 174(2): 520–530 – DOI: https://doi.org/10.1104/pp.17.00130 – http://www.plantphysiol.org/content/174/2/520 – (On our blog https://plantstomata.wordpress.com/2017/11/11/ion-transport-at-the-vacuole-during-stomatal-movements/)

Eisinger W., Bogomolni R. A., Taiz L. (2003) – Interaction between a blue-green reversible photoreceptor and separate UV-B receptor in stomatal guard cells – Am. J. Bot. 90: 1560–1566 – doi: 10.3732/ajb.90.11.1560 – https://www.ncbi.nlm.nih.gov/pubmed/21653331 – (On our blog : https://plantstomata.wordpress.com/2018/09/15/a-model-for-a-photoreceptor-network-that-regulates-stomatal-opening/ )

Eisinger W., Ehrhardt D., Briggs W. (2012) – Microtubules are essential for guard-cell function in Vicia and Arabidopsis. – Molecular plant 5, 601-610 – https://doi.org/10.1093/mp/sss002 – http://www.sciencedirect.com/science/article/pii/S1674205214600095 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/an-active-role-of-microtubules-in-stomatal-function/)

Eisinger W. R., Kirik V., Lewis C., Ehrhardt D. W., Briggs W. R. (2012) – Quantitative changes in microtubule distribution correlate with guard cell function in Arabidopsis. – Molecular plant 5: 716-725. – doi: 10.1093/mp/sss033. Epub 2012 Apr 5. – https://www.ncbi.nlm.nih.gov/pubmed/22492121 – (On our blog : https://plantstomata.wordpress.com/2018/03/17/changes-in-microtubule-distribution-correlate-with-guard-cell-function-of-stomata/ )

Eisinger W., Swartz T. E., Bogomolni R. A., Taiz L. (2000) – The UV action spectrum for stomatal opening in broad bean – Plant Physiol. 122: 99–105 – DOI: https://doi.org/10.1104/pp.122.1.99 – http://www.plantphysiol.org/content/122/1/99 – (On our blog : https://plantstomata.wordpress.com/2018/09/17/uv-action-spectrum-for-stomatal-opening/ )

Ekanayake I. J., De Jong J. P. (1992) – Stomatal Response of some Cultivated and Wild Tuber-bearing Potatoes in Warm Tropics as Influenced by Water Deficits – Ann. Bot. 70, (1): 53-60 – https://academic.oup.com/aob/article-abstract/70/1/53/129100?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/03/27/water-deficits-and-stomatal-response/ )

Ekanayake I. J., Ortiz R., Vuylsteke D. R. (1998) – Leaf stomatal conductance and stomatal morphology of Musa germplasm – Euphytica 99: 221-229 –  https://doi.org/10.1023/A:1018311912407 https://link.springer.com/article/10.1023/A:1018311912407#citeas – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-traits-indicated-that-the-resistance-to-bs-disease-is-due-to-non-stomatal-mechanisms/)

Elagoz V., Hahn S. S., Manning W. J. (2006) –  Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity – Environmental Pollution 140: 395-405 – https://doi.org/10.1016/j.envpol.2005.08.024 – https://www.sciencedirect.com/science/article/pii/S0269749105004070 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/o3-has-the-potential-to-affect-stomatal-plasticity/ )

Elias P. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14, Issue 1, 29–42- doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 -(Via Submission Form – Personal Communication) –  (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/)

Elias P. (1979) – Leaf diffusion resistance pattern in an oak-hornbeam forest – Biologia Plantarum 21(1) : 1-8 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-resistance-patterns/)

Elias P. (1979) – Stomatal activity within the crown of tall deciduous trees under forest conditions – Biologia Plantarum (Praha) 21(4): 266-274 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/variation-in-stomatal-activity-within-the-crown-of-tall-deciduous-trees/)

Elias P. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41, ISSN 0001-7124 – (Via Submission Form – Personal Communication) – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/)

Elias P. (1995) – Stomata density and size of apple tress growing in irrigated and non-irrigated conditions. – Biologia Bratislava 50: 115-118 – https://www.researchgate.net/publication/311588964_Stomata_density_and_size_of_apple_trees_growing_in_irrigated_and_non_irrigated_conditions – (On our blog : https://plantstomata.wordpress.com/2018/03/10/stomatal-density-affected-by-water-status-of-apple-trees-in-the-period-of-vegetative-growth/ )

Eliáš P., Huzulák J. (1975) – Hustota prieduchov v korune javora polného (Acer campestre L.). (The density of stomata in the crown of Acer campestre L.) – Acta Mus. Silesiae, Ser. Dendrol., Opava, 25: 129–135. – Google Scholar – (Article not found)

Eliáš P.,  Kozinka V. (1976) – Stomata in the leaves of Asperula odorata L. and Pulmonaria officinalis L. subsp.maculosa (Hayne) Gams.- Biológia, Bratislava, 31: 33–40. – Google Scholar – https://plantstomata.wordpress.com/2017/07/04/stomata-in-asperula-and-pulmonaria/ )

Elliott-Kingston C., Haworth M., Yearsley J. M., Batke S. P., Lawson T., McElwain J. C. (2016) – Does size matter ?  Atmospheric CO2 may be a stronger driver of stomatal closing than stomatal size in taxa that diversified under low CO2 – Frontiers in Plant Sciences 7, Art. 1253 – https://books.google.be/books?id=P885DwAAQBAJ&pg=PA149&lpg=PA149&dq=plant+stomatal+morphology&source=bl&ots=q0_qjXjVvM&sig=G4vl38bJTpZ3RyyXdH1PE17DDzM&hl=en&sa=X&ved=0ahUKEwjp8827_sLXAhVEZFAKHb1jDIc4ChDoAQhlMA0#v=onepage&q=plant%20stomatal%20morphology&f=false – (On our blog : https://plantstomata.wordpress.com/2017/11/23/co2-and-stomatal-closing/)

Ellsworth D. S. (2000) – Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy – Tree Physiol. 20: 435–445 – https://doi.org/10.1093/treephys/20.7.435 – https://academic.oup.com/treephys/article/20/7/435/1690949 – (On our blog : https://plantstomata.wordpress.com/2018/10/19/seasonal-co2-assimilation-and-stomatal-limitations/ )

Else M. A., Coupland D., Dutton L., Jackson M. B. (2001) – Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap – Physiologia Plantarum 111: 46–54 – https://doi.org/10.1034/j.1399-3054.2001.1110107.x – https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1110107.x – (On our blog : https://plantstomata.wordpress.com/2018/09/15/decreased-root-hydraulic-conductivity-reduces-leaf-water-potential-and-initiates-stomatal-closure/ )

Else M. A., Janowiak F., Atkinson C. J., Jackson M. B. (2009) – Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants – Annals of Botany 103: 313–323 – doi:10.1093/aob/mcn208 – Root_signals_and_stomatal_closure_in_rel.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64808)

Else M. A., Tiekstra A. E., Croker S. J., Davies W. J., Jackson M. B. (1996) Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. – Plant Physiology 112: 239247. – PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2015/08/10/stomatal-closure-in-flooded-tomato-plants/)

El-Sharkawy M. A. (1984) – Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange – Crop Science 24: 497-502 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/effects-of-air-humidity-and-water-stress-on-stomatal-conductance/)

El-Sharkawy M. A. (1984) – Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species – Crop Science 24:503-507 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/differing-sensitivity-of-stomata-to-air-humidity/)

El-Sharkawy M. A. (1984) – Stomatal characteristics among cassava cultivars and their relation to gas exchange – Experimental Agriculture 20:67-76 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomata-in-cassava-cultivars-manihot-esculenta-euphorbiaceae/)

El-Sharkawy M. A. (1985) – Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species – Photosynthesis Research 7: 137-149 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomatal-response-to-air-humidity-and-its-relation-to-stomatal-density/)

El-Sharkawy M. A. (1986) – Differential response of stomata to air humidity in the parasitic mstletoe (Phthirusa pyrifolia) and its host, mandarine orange (Citrus reticulata) – Photosynthesis Research 9: 333-343 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/response-of-stomata-to-air-humidity-in-a-parasitic-mistletoe-and-its-host/)

El-Sharkawy M. A. (1988) – The humidity factor in stomatal control and its effect on crop productivity – Biological Control of Photosynthesis : Marcelle R., Clijsters H., Van Poucke M. (eds.) 187-198 – Martinus Nijhoff Publishers, Dordrecht, The Netherlands – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/stomatal-responses-to-changes-in-air-humidity/)

El-Sharkawy M. A. (1990) – Effect of humidity and wind on leaf conductance of field grown cassava – Rev. Bras. Fisiol.Vegetal 2(2): 17-22 – Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/15/effect-of-humidity-and-wind-on-stomata-of-cassava-manihot-esculenta-euphorbiaceae/)

El-Sharkawy M. A. (2006) – International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics – PHOTOSYNTHETICA 44 (4): 481-512, 2006 – El-Sharkawy 2498 nfAB-corrected (17).pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/19/stomatal-sensitivity-and-responses-to-environmental-stresses-in-the-tropics/)

El-Sharkawy M. A. (2016) – Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops – PHOTOSYNTHETICA 54 (2): 161-184 – DOI: 10.1007/s11099-016-0204-z -Author’s submission – (On our blog : https://plantstomata.wordpress.com/2017/11/16/photosynthetic-research-for-increasing-agricultural-productivity/)

El-Sharkawy M. A., Hesketh J. D. (1964) – Effect of stomatal differences among species on leaf photosynthesis – Crop Sci. 4: 619-621 – https://dl.sciencesocieties.org/publications/cs/abstracts/4/6/CS0040060619?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/10/effect-of-stomatal-differences-on-leaf-photosynthesis/ )

Elvira S., Alonso R., Gimeno B. S. (2007) – Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake – Environmental Pollution 146: 617-623 – https://doi.org/10.1016/j.envpol.2006.08.008 – https://www.sciencedirect.com/science/article/pii/S0269749106004878 – (On our blog : https://plantstomata.wordpress.com/2018/10/16/ozone-uptake-and-stomatal-conductance/ )

Emberson L., Ashmore M., Cambridge H., Simpson D., Tuovinen J.-P. (2000) – Modelling stomatal ozone flux across Europe – Environ. Pollut. 109: 403–413 – https://doi.org/10.1016/S0269-7491(00)00043-9 – https://eurekamag.com/pdf/003/003500975.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/17/modelling-stomatal-ozone-flux/ )

Emberson L. D., Wieser G., Ashmore M. R. (2000) – Modelling of stomatal conductance and ozone flux of Norway spruce: Comparison with field data – Environmental Pollution 109: 393–402 – https://doi.org/10.1016/S0269-7491(00)00042-7 – https://www.sciencedirect.com/science/article/pii/S0269749100000427 – (On our blog : https://plantstomata.wordpress.com/2018/10/20/an-assessment-of-the-stomatal-component-of-the-model-described-by-emberson-et-al-2000/ )

Emi T., Kinoshita T., Sakamoto K., Mineyuki Y., Shimazaki K. (2005) – Isolation of a protein interacting with Vfphot1a in guard cells of Vicia faba – Plant Physiol. 138: 1615–1626 – DOI: https://doi.org/10.1104/pp.104.052639 – http://www.plantphysiol.org/content/138/3/1615 – (On our blog : https://plantstomata.wordpress.com/2018/09/15/vfpip-may-act-as-a-downstream-component-of-phototropin-vfphot1a-in-blue-light-signaling-in-stomata/ )

Emi T., Kinoshita T., Shimazaki K. (2001) – Specific binding of vf14-3-3a isoform to the plasma membrane H+-ATPase in response to blue light and fusicoccin in guard cells of broad bean. – Plant Physiol. 125: 1115–1125 – PMCID: PMC64910 – [PMC free article] [PubMed] – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC64910/  – (On our blog : https://plantstomata.wordpress.com/2018/03/17/vf14-3-3a-may-play-a-key-role-in-the-activation-of-h-atpase-in-stomata-2/

Encyclopaedia Britannica – https://www.britannica.com/science/stomate – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomate-plant-anatomy/ )

Engineer (2017) – Sensors printed on leaves could tell farmers when to water crops – ENGINEER Nov. 9, 2017 – https://www.theengineer.co.uk/sensors-leaves-crops-water/ – (On our blog : https://plantstomata.wordpress.com/2018/01/23/sensors-to-be-the-earliest-indicator-of-drought-for-agricultural-applications/ )

Engineer C. B., Ghassemian M., Anderson J. C., Peck S. C., Hu H., Schroeder J. I. (2014) – Corrigendum: Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development – Nature 513: 246–250 – DOI: 10.1038/nature13452 – CAS PubMed Article – (On our blog : https://plantstomata.wordpress.com/2016/05/22/co2-control-of-stomatal-development-2/)

Engineer C. B., Hashimoto-Sugimoto M., Negi J., Israelsson-Nordström M., Azoulay-Shemer T., Rappel W.-J., Iba K.Schroeder J. I. (2015) –  CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions – Trends in Plant Science, 2015 – Volume 21, Issue 1, p16–30, January 2016 -DOI: http://dx.doi.org/10.1016/j.tplants.2015.08.014 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(15)00229-0 – (On our blog : https://plantstomata.wordpress.com/2016/03/30/co2-and-stomatal-conductance/)

England J. R., Attiwill P. M. (2011) – Changes in stomatal frequency, stomatal conductance and cuticle thickness during leaf expansion in the broadleaved evergreen species, Eucalyptus regnans – Trees 25: 987–996 – https://doi.org/10.1007/s00468-011-0573-7 – https://link.springer.com/article/10.1007/s00468-011-0573-7h– (On our blog : https://plantstomata.wordpress.com/2018/09/17/changes-in-stomatal-frequency-and-stomatal-conductance-during-leaf-expansion/ )

Enne V. (2017) – How do stomata work in photosynthesis ? – Sciencing – http://sciencing.com/do-stomata-work-photosynthesis-5498075.html – (On our blog : https://plantstomata.wordpress.com/2017/09/18/how-do-stomata-work/)

Epron D., Dreyer E. (1990) – Stomatal and non-stomatal limitations of photosynthesis by leaf water deficit in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data – Annales des Sciences Forestières 47: 435-450 –

Erban M. (1917) – Über die Verteilung der Spaltöffnungen in Beziehung zur Schlafstellung der Blätter -Plant Biology 34(10): 880-890 – DOI: 10.1111/j.1438-8677.1916.tb07103.x – (On our blog : https://plantstomata.wordpress.com/2017/06/28/distribution-of-stomata-in-german/)

ErdeiL., Szegletes Z., Barabás K. N., Pestenácz A., Fülöp K., Kalmár L., Kovács A., Tóth B., Dér A. (1998) – Environmental stress and the biological clock in plants: Changes of rhythmic behavior of carbohydrates, antioxidant enzymes and stomatal resistance by salinity – Journal of Plant Physiology 152(2–3): 265-271 – https://doi.org/10.1016/S0176-1617(98)80141-7 – http://www.sciencedirect.com/science/article/pii/S0176161798801417 – (On our blog : https://plantstomata.wordpress.com/2017/10/06/changes-of-rhythmic-behavior-of-stomatal-resistance-by-salinity/)

Esau K. (1941) – Inclusions in guard cells of tobacco affected with mosaic. – Hilgardia 13, 427–430 – DOI:10.3733/hilg.v13n08p427  – Google Scholar – http://hilgardia.ucanr.edu/Abstract/?a=hilg.v13n08p427 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/occurrence-of-inclusions-in-stomatal-guard-cells-of-virus-diseased-plants/

Escalona J. M., Flexas J., Medrano H. (1999) – Stomatal and non-stomatal limitations of photosynthesis under water stress in field grown grapevines – Australian Journal of Plant Physiology 26: 421-423 – https://doi.org/10.1071/PP99019 – http://www.publish.csiro.au/fp/PP99019 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-and-non-stomatal-limitations-of-photosynthesis-under-water-stress/ )

Escher P., Peuke A. D., Bannister P., Fink S., Hartung W., Jiang F., Rennenberg H. (2008) Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana) – Plant Physiology and Biochemistry, 2008, 46, 1, 64 – http://www.sciencedirect.com/science/article/pii/S0981942807001593 – (On our blog : https://plantstomata.wordpress.com/2016/05/22/12847/)

Esmaeilpour A., Van Labeke M.-C., Samson R., Boeckx P., Van Damme P. (2016) – Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio (Pistacia vera L.) cultivars under drought stress condition – Scientia Horticulturae 211: 158-166 – DOI10.1016/j.scienta.2016.08.026 – https://www.infona.pl/resource/bwmeta1.element.elsevier-c7e88755-ec30-3683-bbb3-2d257d6c6f01/tab/summary – (On our blog : https://plantstomata.wordpress.com/2017/10/06/variation-in-stomata-features-and-its-relationship-to-water-use-efficiency-under-drought-stress-condition/)

Esser J. E., Liao Y. J., Schroeder J. I. (1997) – Characterization of ion channel modulator effects on ABA- and malate-induced stomatal movements: strong regulation by kinase and phosphatase inhibitors, and relative insensitivity to mastoparans. – J. Exp. Bot. 48: 539–550 – DOI: 10.1093/jxb/48.Special_Issue.539 – Google Scholar – https://www.jstor.org/stable/23695631?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/10/aba-induced-stomatal-closings-were-abolished-by-kinase-inhibitors-and-enhanced-by-the-protein-phosphatase-inhibitor-okadaic-acid/

Estiarte M., Penuelas J., Kimball B. A., Idso S. B., LaMorte R. L., Pinter Jr. P. J., Wall G. W., Garcia R. L. (1994) – Elevated CO2 effects on stomatal density of wheat and sour orange trees – J. Exp. Bot. 45: 1665–1668 –

Eun S.-O., Bae S.-H., Lee Y. (2001) – Cortical actin filaments in guard cells respond differently to abscisic acid in wild-type and abil-1 mutant Arabidopsis – Planta 212: 466–469 – DOI: 10.1007/s004250000489 – https://www.ncbi.nlm.nih.gov/pubmed/11289613 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/pp2c-participates-in-aba-induced-actin-changes-in-stomata/ )

Eun S. O., Lee Y. (1997) – Actin filaments of guard cells are reorganized in response to light and abscisic acid – Plant Physiol. 115: 1491-1498 –  DOI: https://doi.org/10.1104/pp.115.4.1491 – http://www.plantphysiol.org/content/115/4/1491 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/actin-filaments-of-stomata-light-and-aba/ )

Eun S.-O., Lee Y. (2000) – Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells – Planta 210: 1014–1017 – DOI: 10.1007/s004250050711 – https://www.ncbi.nlm.nih.gov/pubmed/10872236 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/prevention-of-actin-filament-formation-and-or-depolymerization-of-actin-filaments-may-accelerate-the-stomatal-opening-process-in-response-to-fusicoccin/ )

European Medical Alliance (2017) – Stomata close during water deficit in response to abscisic acid – http://www.europeanmedical.info/osmotic-stress/stomata-close-during-water-deficit-in-response-to-abscisic-acid.html – (On our blog : https://plantstomata.wordpress.com/2017/09/20/water-deficit-aba-and-stomata/)

Evans L. S., Gmur N. F., Da Costa F. (1977) – Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain – Amer. J. Bot. 64(7): 903-913 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomata-and-lesion-development-by-acid-rain/)

Evans N. H. (2003) – Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. – Plant Physiol. 131: 8–11 – DOI: https://doi.org/10.1104/pp.014266 – http://www.plantphysiol.org/content/131/1/8 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/the-ability-of-me-ja-to-alter-the-properties-of-potassium-conductances-in-the-guard-cell-plasma-membrane-of-stomata/ )

Evans N. H., Hetherington A. M. (2001) – Plant physiology: the ups and downs of guard cell signalling. – Curr Biol 11: R92R94 – https://doi.org/10.1016/S0960-9822(01)00037-9 – CrossRefPubMedWeb of ScienceGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S0960982201000379 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/oscillations-in-the-cytosolic-free-calcium-concentration-of-guard-cells-are-necessary-for-stimulus-specific-stomatal-closure/ )

Ewers B. E., Gower S. T., Bond-Lamberty B., Wang C. K. (2005) – Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests – Plant, Cell and Environment 28, Issue 5, 660–678 – DOI: 10.1111/j.1365-3040.2005.01312.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01312.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stand-age-tree-species-canopy-transpiration-and-average-stomatal-conductance/)

Ewers B. E., Mackay D. S., Samanta S. (2007) – Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species – Tree Physiology 27: 11–24 – PMID: 17169902 – https://www.uwyo.edu/botany/_files/docs/plantecofizz/new-publications/24-ewers-et-al-2007.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/17/canopy-stomatal-conductance-control-of-leaf-water-potential/ )

Ewers B. E., Oren R. (2000) – Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements – Tree Physiol. 20: 579–589 – PMID: 12651422 – https://www.srs.fs.usda.gov/pubs/ja/ja_ewers002.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/19/the-calculation-of-stomatal-conductance-from-sap-flux-measurements/

Ewers B. E., Oren R., Johnsen K. H., Landsberg J. J. (2001) – Estimating maximum mean canopy stomatal conductance for use in models – Can. J. For. Res. 31: 198–207 – DOI: 10.1139/cjfr-31-2-198 – https://pdfs.semanticscholar.org/eff4/c91e7b1afffc8f2964cb59a1b84520cbeeaa.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/19/estimating-maximum-mean-canopy-stomatal-conductance-for-use-in-models/ )

Ewers B. E., Oren R., Kim H.-S., Bohrer G., Lai C.-T. (2007) – Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns – Plant, Cell and Environment, 30, Issue 4, April 2007, 483–496 – DOI: 10.1111/j.1365-3040.2007.01636.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01636.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/hydraulic-architecture-spatial-variation-in-light-and-stomatal-conductance-of-tree-branches/)

Ewers B. E., Oren R., Phillips N., Stromgren M., Linder S. (2001) – Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda. – Tree Physiology 21:841850 – https://doi.org/10.1093/treephys/21.12-13.841 – CrossRef |PubMedCAS | – https://academic.oup.com/treephys/article/21/12-13/841/1626108 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/canopy-stomatal-conductance-responses-to-water-and-nutrient-availabilities/ )

Ewers B. E., Oren R., Sperry J. S. (2000) – Root hydraulic conductance: a reflection of water balance and a constraint on canopy stomatal conductance – Plant Cell Environ. 23:  1055–1066 –

Ewert M. S., Outlaw W. H. Jr, Zhang S., Aghoram K., Riddle K. A. (2000) Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets. – Plant, Cell and Environment, 2000,23, 2, 195 – doi: 10.1046/j.1365-3040.2000.00539.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2000.00539.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/22/accumulation-of-mannitol-in-the-guard-cell-wall-of-stomata/)

Facette M. R., Park Y., Sultimantanapi D., Luo A., Cartwright H. N., Yang B.,  Bennett E. J., Sylvester A. W., Smith L. G. 2015) – The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize – Nature Plants, Art. 14024  -doi: 10.1038/nplants.2014.24. – https://www.nature.com/articles/nplants201424 – (On our blog : https://plantstomata.wordpress.com/2018/08/08/receptor-like-kinases-promote-mother-cell-polarity-and-subsequent-division-asymmetry-in-developing-maize-stomata/

Facette M. R., Smith L. G.(2012) – Division polarity in developing stomata. – Curr. Opin. Plant Biol. 15: 585–592 – http://dx.doi.org/10.1016/j.pbi.2012.09.013 –  [PubMed] – https://www.infona.pl/resource/bwmeta1.element.elsevier-a7d52571-17b3-36da-b4d0-f4e6c9d3a8fb – (On our blog : https://plantstomata.wordpress.com/2017/10/07/division-polarity-in-developing-stomata/)

Fairley-Grenot K., Assmann S. M. (1991) – Evidence for G-protein regulation of inward K+ channel current in guard-cells of fava-bean – Plant Cell 3: 1037–1044 – DOI: https://doi.org/10.1105/tpc.3.9.1037 – http://www.plantcell.org/content/3/9/1037?ijkey=c15d11e8f7e05d16c1837bc07c4d78f11f466ec8&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/09/05/ion-channel-regulation-by-environmental-stimuli-may-be-mediated-by-g-proteins-in-stomata/ )

Fairley-Grenot K., Assmann S. (1992) – Whole-cell K+ current across the plasma membrane of guard cells from a grass: Zea mays – Planta 186: 282–293 –  10.1007/BF00196258 – https://www.ncbi.nlm.nih.gov/pubmed/24186668 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/whole-cell-k-current-across-the-plasma-membrane-of-stomata/ )

Falik O., Mordoch Y., Quansah L., Fait A., Novoplansky A. ( 2011) – Rumor Has It…: Relay Communication of Stress Cues in Plants – PLOS One November 2, 2011 – https://doi.org/10.1371/journal.pone.0023625 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023625 – (On our blog : https://plantstomata.wordpress.com/2018/02/16/the-mechanisms-and-adaptive-implications-of-the-observed-communication-of-stress-cues/ )

Fan L.-M., Zhang W., Chen J.-G., Taylor J. P., Alan M., Jones A. M., Assmann S. M. (2008) – Abscisic acid regulation of guard-cell K+ and anion channels in Gβ- and RGS-deficient Arabidopsis lines – Current Issue, vol. 105 no. 24, 8476–8481, doi: 10.1073/pnas.0800980105 – http://www.pnas.org/content/105/24/8476.full – (On our blog : https://plantstomata.wordpress.com/2016/04/02/ion-channel-regulation-by-heterotrimeric-g-proteins-in-stomata/)

Fan L.-M., Zhao Z. X., Assmann S. M. (2004) – Guard cells: a dynamic signaling model. – Curr. Opin. Plant Biol. 7, 537546 (2004). – ISIPubMedArticleCAS – (On our blog : https://plantstomata.wordpress.com/2016/05/23/aba-blue-light-and-stomatal-regulation/)

Fanourakis D., Carvalho S. M. P., Almeida D. P. F., Heuvelink E. (2011) – Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. – Physiol. Plant. 142(3): 274-286 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/09/29/stomatal-functioning-and-air-humidity/ ).

Fanourakis D., Giday H., Milla R., Pieruschka R., Kjaer K. H., Bolger M., Vasilevski A., Nunes-Nesi A., Fiorani F.Ottosen C.-O. (2015) – Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides – Ann. Bot.-London 115: 555–565 – https://doi.org/10.1093/aob/mcu247 – CrossRef, Google Scholar – https://link.springer.com/article/10.1007/s11099-018-0847-z – (On our blog : https://plantstomata.wordpress.com/2018/09/24/stomatal-densities-drive-the-partitioning-of-conductance-between-leaf-sides/

Fanourakis D.Matkaris N.Heuvelink E.Carvalho S. M. P.(2010) – Effect of relative air humidity on the stomatal functionality in fully developed leaves. – Acta Horticulturae  8708388 – DOI 10.17660/ActaHortic.2010.870.8 – https://www.actahort.org/members/showpdf?booknrarnr=870_8 – (On our blog : https://plantstomata.wordpress.com/2018/03/10/stomata-from-fully-developed-rose-leaves-conserve-their-behaviour-independently-of-the-post-development-humidity-level/ )

Faraday C. D., Thomson W. W., Platt-Aloia K. A. (1982) – Comparative ultrastructure of guard cells of C3 , C4 , and CAM plants – in P. Ting, M. Gibbs (Eds.), I. Crassulacean acid metabolism, American Society of Plant Physiologists, Rockville, MD.: 18-30 – (No abstract found)

Farber M.Attia Z., Weiss D. (2016) – Cytokinin activity increases stomatal density and transpiration rate in tomato – J. Exp. Bot. (2016) 67 (22):6351-6362.doi: 10.1093/jxb/erw398 – http://jxb.oxfordjournals.org/content/67/22/6351.short?rss=1 – (On our blog : https://plantstomata.wordpress.com/2016/11/18/increase-of-stomatal-density-with-cytokinin/)

Fard A. N. S., Matamoros M. P., van Meeteren U. (2014) – Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? – Physiologia Plantarum 152 (2014)4. – ISSN 0031-9317 – p. 688 – 699 – http://dx.doi.org/10.1111/ppl.12216 – http://library.wur.nl/WebQuery/wurpubs/480271 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/stomatal-malfunctioning-under-low-vpd-conditions/)

Fares S., Matteucci G., Scarascia Mugnozza G., Morani A., Calfapietra C., Salvatori E., Fusano L., Manes F., Loreto F. (2013) – Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest – Atmospheric Environment 67: 242–251 –

Farmer S. (2016) – Open or Shut: How Trees Respond to Drought at the Leaf Level – USDA CompassLive – https://www.srs.fs.usda.gov/compass/2016/04/26/open-or-shut-how-trees-respond-to-drought-at-the-leaf-level/?doing_wp_cron=1516728235.2168309688568115234375 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-and-a-new-modeling-framework-linking-leaf-water-loss-and-carbon-gain/ )

Farquhar G. D. (1973) – A Study of the Response of Stomata to Perturbations of Environment. PhD Thesis. Australian National University, Canberra, Australia.

Farquhar G. D. (1977) – Stomatal function in relation to leaf metabolism and environment – Symp Soc Exp Biol 31: 471-505 – https://scholar.google.be/citations?view_op=view_citation&hl=en&user=YQKKTRYAAAAJ&citation_for_view=YQKKTRYAAAAJ:unp9ATQDT5gC  (no abstract)

Farquhar G. D. (1978) – Field found responses of stomata to humidity. – Australian Journal of Plant Physiology 5 : 787800. – CrossRef | – (On our blog : https://plantstomata.wordpress.com/2016/05/23/responses-of-stomatal-conductance-to-changes-in-humidity/)

Farquhar G.D., Buckley T.N., Miller J.M. (2002) – Optimal stomatal control in relation to leaf area and nitrogen. – Silva Fennica 36(3): 625–737 – http://www.metsantutkimuslaitos.fi/silvafennica/full/sf36/sf363625.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/11/optimal-stomatal-control-in-relation-to-leaf-area-and-nitrogen/ )

Farquhar G. D.Cowan I. R. (1974) – Oscillations in stomatal conductance. The influence of environmental gain – Plant Physiology 54: 769772 – DOI: https://doi.org/10.1104/pp.54.5.769 – CrossRef | PubMed |- http://www.plantphysiol.org/content/54/5/769 – (On our blog : https://plantstomata.wordpress.com/2018/03/12/the-influence-of-environmental-gain-and-the-oscillations-in-stomatal-conductance/ )

Farquhar G. D., Dubbe D. R., Rachke K. (1978) – Gain of the feedback loop involving carbon dioxide and stomata. – Plant Physiol. 62: 406–412 – PMID: 16660527 PMCID: PMC1092136 – DOI: https://doi.org/10.1104/pp.62.3.406 – CrossRefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/16660527 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/gain-of-the-feedback-loop-involving-co2-and-stomata/

Farquhar G. D., Schulze E. D., Kuppers M. (1980) – Responses to humidity by stomata of Nicotiana glauca L. and Corylus avellana L. are consistent with the optimization of carbon dioxide uptake with respect to water loss – Australian Journal of Plant Physiology 7: 315-327 – DOI: 10.1071/PP9800315 – https://www.cabdirect.org/cabdirect/abstract/19801958115 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomata-vary-their-apertures-so-as-to-keep-delta-e-delta-a-constant-which-optimizes-carbon-gain-with-respect-to-water-loss/ )

Farquhar G. D.Sharkey T. D. (1982) – Stomatal conductance and photosynthesis – Annual Review of Plant Physiology 33317345 – CrossRefCAS |Google Scholar – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.33.060182.001533?journalCode=arplant.1 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/stomatal-conductance-and-photosynthesis/ )

Farquhar G.D., Wong S.C. (1984) – An empirical model of stomatal conductance. – Australian Journal of Plant Physiology 11: 191209 – https://doi.org/10.1071/PP9840191 – CrossRefCAS |- http://www.publish.csiro.au/FP/PP9840191 – (On our blog :  https://plantstomata.wordpress.com/2018/04/13/an-empirical-model-of-stomatal-conductance/ )

Farquharson K. L. (2012) – Polarization of Subsidiary Cell Division in Maize Stomatal Complexes – Plant Cell DOI: https://doi.org/10.1105/tpc.112.241112 – http://www.plantcell.org/content/24/11/4313 – (On our blog : https://plantstomata.wordpress.com/2018/09/12/polarization-of-subsidiary-cell-division-in-stomata/ )

Fatemy F., Trinder P. K. E. , Wingfiel J. N., Evans K. (1985) – Effects of Globodera rostochiensis, water stress and exogenous abscisic acid on stomatal function and water use of Cara and Pentland Dell potato plants. – Revue Nematology. 8(3): 249- 255 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.3446&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/11/effects-of-nematod-infection-water-stress-and-exogenous-aba-on-stomatal-function/ )

Feild T. S., Zwieniecki M. A., Donoghue M. J., Holbrook N. M. (1998) – Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought – Proc Natl Acad Sci U S A. 95(24): 14256–14259 – PMCID: PMC24360 – PMID: 9826687 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC24360/ – (On our blog : https://plantstomata.wordpress.com/2018/06/09/stomatal-plugs-mist-and-drought/ )

Felle H. H., Hanstein S. (2002) – The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors. – Journal of Experimental Botany 53: 73–78 – PMID: 11741043 – https://www.ncbi.nlm.nih.gov/pubmed/11741043 – (On our blog : https://plantstomata.wordpress.com/2018/03/11/the-apoplastic-ph-of-the-substomatal-cavity-and-its-regulation-responding-to-different-stress-factors/

Felle H. H., Hanstein S., Steinmeyer R., Hedrich R. (2000) Dynamics of ionic activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness – The Plant Journal2000, 24, 3, 297-304 – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.2000.00878.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/23/ionic-activities-in-the-apoplast-of-the-sub-stomatal-cavity/)

Feng Z., Tang H., Uddling J., Pleijel H., Kobayashi K., Zhu J., … Guo W. (2012) – A stomatal ozone flux–response relationship to assess ozone-induced yield loss of winter wheat in subtropical China – Environmental Pollution – 164: 16–23 –

Fernandez O. A., Mujica B. (1973) – Effects of some environmental factors on the differentiation of stomata in Spirodela intermedia. – Bot. Gaz, 1973; 134: 117-121. (http://agris.fao.org/agris-search/search.do?recordID=US201303266932) – (On our blog : https://plantstomata.wordpress.com/2016/05/12/environmental-factors-and-the-differentiation-of-stomata/ )

Ferri M. G., Lex A. (1948) – Stomatal behaviour as influenced by treatment with β-naphthoxyacetic acid. – Contr. Boyce Thompson Inst. Pl. Res., 15, 283-290 – ISSN: 0006-8543 – CAS – http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=wiley&version=1%2E0&coi=1%3aCAS%3a528%3aDyaH1MXhslyqsA%253D%253D&md5=b2639abb226314e3a3fab96292aa343e – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-%ce%b2-naphthoxyacetic-acid/ )

Ferri M. G., Rachid M. (1949) – Further information on stomatal behaviour as influenced by treatment with hormone-like substances – Anais Acad. bras. Cienc, 21, 155. (Article not found)

Ferris R., Long L., Bunn S. M., Robinson K. M., Bradshaw H. D., Rae A. M., Taylor G. (2002) – Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar – Tree Physiol., 22: 633-640 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.567.1731&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-development-putative-quantitative-trait-loci-in-relation-to-elevated-co2-concentration/ )

Ferris R., Taylor G. (1994) – Stomatal characteristics of four native herbs following exposure to elevated CO2. – Annals of Botany 73: 477–453 – https://doi.org/10.1006/anbo.1994.1055 – https://www.sciencedirect.com/science/article/pii/S0305736484710559 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-exposure-to-elevated-co2/ )

Ferry R. J. (2008) – Stomata, subsidiary cells and implications – http://miosjournal.org/journal/2008/03/StomataSubsidiary.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-in-orchids-3/)

Field C. B. (1987) – Leaf-age effects of stomatal conductance. In: Zeiger GD, Farquhar GD, Cowan IR, editors. Stomatal function. Stanford: Stanford University Press –

Field C. B., Jackson R. B., Mooney H. A. (1995) – Stomatal responses to increased CO2: implications from the plant to the global scale – Plant Cell Environ. 18, 1214–1225 (1995) – DOI: 10.1111/j.1365-3040.1995.tb00630.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00630.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/06/stomatal-responses-to-increased-co2/)

Field K. J., Duckett J. G., Cameron D. D., Pressel S. (2015) – Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. – Annals of Botany, 115 (6). 915 – 922. – http://eprints.whiterose.ac.uk/86084/ – http://aob.oxfordjournals.org/content/115/6/915– (On our blog : https://plantstomata.wordpress.com/2016/04/10/stomata-in-non-vascular-land-plants-and-co2/)

Filmer A. (2018) – Sending a canopy-wide message in plants – News Blog: Plant Sciences, University of California, Davis April 2, 2018 – https://news.plantsciences.ucdavis.edu/2018/04/02/sending-a-canopy-wide-message-in-plants/ – (On our blog : https://plantstomata.wordpress.com/2018/10/09/sending-a-canopy-wide-message-in-plants/ )

Finkelstein R.R., Rock C.D. (2002) – Abscisic acid biosynthesis and response. In The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. American Society of Plant Biologists, Rockville, pp 1–52. – Google Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243367/ – (On our blog : https://plantstomata.wordpress.com/2018/03/13/aba-and-stomatal-regulation/ )

Finsinger W., Dos Santos T., McKey D. (2013) Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon – Geoscience 345: 350359 – DOI 10.1016/j.crte.2013.06.003  CrossrefGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S1631071313001120 – (On our blog : https://plantstomata.wordpress.com/2018/04/13/68039/ )

Finsinger W., Wagner-Cremer F. (2009) – Stomatal-based inference models for reconstruction of atmospheric CO2 concentration: a method assessment using a calibration and validation approach – Holocene 19: 757–764 – http://www.geocraft.com/WVFossils/Reference_Docs/Last_200_years_stomatal_changes_Finsinger_etal_2009.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomatal-based-inference-models-for-reconstruction-of-atmospheric-co2-concentration/ )

Fiorin L. (xxxx) – Spatial coordination between veins and stomata – Links water supply with water loss in leaves – Università degli Studi di Padova – http://paduaresearch.cab.unipd.it/5809/1/fiorin_lucia_tesi.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/06/spatial-coordination-between-veins-and-stomata/)

Fiorin L., Brodribb T. J., Anfodillo T. (2016) – Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. – New Phytol. 2016 Jan;209(1):216-27. doi: 10.1111/nph.13577. Epub 2015 Jul 30. – PMID: 262242 – https://www.researchgate.net/publication/280585417_Transport_efficiency_through_uniformity_Organization_of_veins_and_stomata_in_angiosperm_leaves – (On our blog : https://plantstomata.wordpress.com/2016/02/19/6153/).

Fischer R. A. (1968) – Stomatal opening: role of potassium uptake by guard cells. – Science. N.Y., 160: 784-785 – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2015/09/29/active-accumulation-of-potassium-and-stomatal-opening/)

Fischer R. A. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. I. Responses to light and to CO2-free air. – Plant Physiol. 43: 1947–1952 [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2015/09/29/independent-responses-in-stomatal-aperture-to-light-and-to-co2-free-air/).

Fischer R. A. (1970) – After effect of water stress on stomatal opening potential. II. Possible causes –  J. Exp. Bot. 21: 386–404 – https://doi.org/10.1093/jxb/21.2.386 – https://www.jstor.org/stable/23687209?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/13/after-effect-of-water-stress-on-stomatal-opening-potential-ii/ )

Fischer R. A. (1971) – Role of potassium in stomatal opening in the leaf of Vicia faba. – Plant Physiol. 47: 555–558 – DOI: https://doi.org/10.1104/pp.47.4.555 – http://www.plantphysiol.org/content/47/4/555 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/role-of-potassium-in-stomatal-opening/ )

Fischer R. A. (1972) – Aspects of potassium accumulation by stomata of Vicia faba. – Aust. J. Biol. Sci. 25:1107–1123 – http://www.publish.csiro.au/bi/pdf/bi9721107 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/aspects-of-k-accumulation-by-stomata/)

Fischer R. A., Hsiao T. C. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. II. Responses to KCl concentration and the role of potassium absorption – Plant Physiol. 43: 1953–1958 -DOI: https://doi.org/10.1104/pp.43.12.1947 – CrossRef | PubMed – http://www.plantphysiol.org/content/43/12/1947 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/stomatal-opening-in-isolated-epidermal-strips/ )

Fischer R. A., Hsiao T. C., Hagan R. M. (1970) – After effect of water stress on stomatal opening potential. I. Techniques and magnitudes – J. Exp. Bot. 21(2):    – DOI  10.1093/jxb/21.2.371 – https://www.researchgate.net/publication/31051272_After-effect_of_water_stress_on_stomatal_opening_potential_I_Techniques_and_magnitudes – (On our blog : https://plantstomata.wordpress.com/2018/03/13/after-effect-of-water-stress-on-stomatal-opening-potential-i/ )

Fischer R. A.Rees D.Sayre K. D.Lu Z. M.Condon A. G.Saavedra A. L. (1998) – Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies – Crop Sci 381467- 1475 – doi:10.2135/cropsci1998.0011183X003800060011x – CrossRef Google Scholar – |https://dl.sciencesocieties.org/publications/cs/abstracts/38/6/CS0380061467 – (On our blog : https://plantstomata.wordpress.com/2018/01/15/wheat-yield-higher-stomatal-conductance-photosynthetic-rate-and-cooler-canopies/

Fitzsimons P. J., Weyers J. D. B. (1986) – Volume changes of Commelina communis guard cell protoplasts in response to K+, light and CO2 – Physiologia Plantarum 66(3): 463–468 – DOI: 10.1111/j.1399-3054.1986.tb05952.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb05952.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/14/guard-cell-protoplasts-swelling-in-response-to-k-light-and-co2/)

Fitzsimons P. J., Weyers J. D. B. (1986) – Potassium ion uptake by swelling Commelina communis guard cell protoplasts – Physiologia Plantarum 66(3): 469–475 – DOI: 10.1111/j.1399-3054.1986.tb05953.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1986.tb05953.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/14/k-ion-uptake-by-swelling-guard-cell-protoplasts-in-stomata-of-commelina/)

Fitzsimons P. J., Weyers J. D. B. (1987) – Responses of Commelina communis guard cell protoplasts to abscisic acid. – J. Exp. Bot. 38: 992-1001 – https://doi.org/10.1093/jxb/38.6.992 – https://academic.oup.com/jxb/article-abstract/38/6/992/485888?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/14/responses-of-guard-cell-protoplasts-to-aba/)

Flanagan L. B., Jefferies R. L. (1988) – Stomatal limitation of photosynthesis and reduced growth of the halophyte, Plantago maritima L., at high salinity – Plant, Cell & Environment 11(4): 239–245 – DOI: 10.1111/j.1365-3040.1988.tb01142.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1988.tb01142.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/30/stomatal-limitation-of-photosynthesis-at-high-salinity/)

Flanagan L. B., Jefferies R. L. (1989) – Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity – Plant, Cell & Environment 12(5): 559–568 – DOI: 10.1111/j.1365-3040.1989.tb02129.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb02129.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/30/strong-nonuniform-stomatal-closure/)

Fleming A. (s.d.) – Cell wall mechanics and stomatal function – Leverhulme Trust Awards Made – https://www.leverhulme.ac.uk/awards-made/awards-focus/cell-wall-mechanics-and-stomatal-function – (On our blog : https://plantstomata.wordpress.com/2017/11/27/stomatal-function-and-cell-wall-mechanics/)

Flexas J., Bota J., Escalona J. M., Sampol B., Medrano H. (2002) – Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations – Funct. Plant Biol. 29: 461–471 – 10.1071/PP01119 – https://www.publish.csiro.au/FP/PP01119 – (On our blog : https://plantstomata.wordpress.com/2018/10/03/effects-of-drought-on-photosynthesis-and-stomatal-and-mesophyll-limitations/ )

Flexas J., Medrano H. (2002) – Drought-inhibition of photosynthesis in C-3 plants: Stomatal and non-stomatal limitations revisited – Ann Bot. 89: 183–189 – 10.1093/aob/mcf027 – https://app.dimensions.ai/details/publication/pub.1022610702 – (On our blog : https://plantstomata.wordpress.com/2018/10/17/stomatal-closure-is-the-earliest-response-to-drought-and-the-dominant-limitation-to-photosynthesis-at-mild-to-moderate-drought/ )

Florindo J. B., Landini G., Almeida Filho H., Martinez Bruno O. (2015) – Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia zebrina – J. Phys.: Conf. Ser. 633 012113 – doi:10.1088/1742-6596/633/1/012113 – http://iopscience.iop.org/article/10.1088/1742-6596/633/1/012113/pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/27/analysis-of-stomata-distribution-patterns/)

Fordham M. C.Harrison-Murray R. S.Knight L.Evered C. E. (2001) – Effects of leaf wetting and high humidity on stomatal function in leafy cuttings and intact plants of Corylus maxima. – Physiologia Plantarum 113233240 – http://www.ingentaconnect.com/content/mksg/ppl/2001/00000113/00000002/art00011 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/effects-of-leaf-wetting-and-high-humidity-on-stomatal-function/)

Forestier C., Bouteau F., Leonhardt N., Vavasseur A. (1998) – Pharmacological properties of slow anion currents in intact guard cells of Arabidopsis. Application of the discontinuous single-electrode voltage-clamp to different species. – Pflugers Archiv Eur J Physiol 436: 920–927 – DOI 10.1007/s004240050724 – CrossRefGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/9799408 – (On our blog : https://plantstomata.wordpress.com/2018/03/13/ion-channel-currents-in-intact-guard-cells-of-stomata-and-especially-of-slow-anion-channels/

Foschi M. L., Martínez L. E., Ponc M. T., Galmarini C. R., Bohanec B. (2013) – Effect of colchicine and amiprophos-methyl on the production of in vitro doubled haploid onion plants and correlation assessment between ploidy level and stomatal size – Rev. Fac. Cienc. Agrar., Univ. Nac. Cuyo vol.45 no.2 Mendoza dic. 2013. (http://www.scielo.org.ar/scielo.php?pid=S1853-86652013000200012&script=sci_arttext) – (On our blog : https://plantstomata.wordpress.com/2015/09/29/correlation-assessment-between-ploidy-level-and-stomatal-characteristics/).

Fotopoulos V., De Tullio M. C., Barnes J., Kanellis A. K. (2008) – Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling – J. Exp. Bot. 59: 729–737 – doi: 10.1093/jxb/erm359 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=18349048 – (On our blog : https://plantstomata.wordpress.com/2018/09/19/dha-acts-as-a-regulator-of-stomatal-dynamics/ )

Francia P., Simoni L., Cominelli E., Tonelli C., Galbiati M. (2008) – Gene trap-based identification of a guard cell promoter in Arabidopsis – Plant Signal Behav. 3(9): 684–686. – http://pubmedcentralcanada.ca/pmcc/articles/PMC2634557/ – (On our blog : https://plantstomata.wordpress.com/2017/11/12/the-cyp86a2-guard-cell-promoter-and-its-potential-for-gene-expression-in-stomata/)

Franco C. M. (1938) – Sôbre a fisiologia dos estômatos de cafeeiro Coffea arabica L. – Annais da Primeira Reuniao Sul-Americano de Botânica, Rio de Janeiro 3: 293-302 (Article not found).

Franco C. (1939) – Relation between chromosome number and stomata in Coffea. Botanical Gazette 100: 817-827 – https://www.jstor.org/stable/2471773?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomata-and-chromosome-number/ )

Franke W. (1964) – Role of guard cells in foliar absorption. – Nature. Lond., 202,1236. – CrossRef |ADS – (On our blog : https://plantstomata.wordpress.com/2016/05/23/stomatal-guard-cells-and-foliar-absorption/)

Franks P. J. (xxxx) – Research interests – http://sydney.edu.au/science/people/peter.franks.php – (On our blog : https://plantstomata.wordpress.com/2018/01/22/research-interests-of-peter-j-franks/ )

Franks P. J. (2003) – Use of the pressure probe in studies of stomatal function. – Journal of Experimental Botany 54, 1495-1504 – oai:researchonline.jcu.edu.au:13775 – http://trove.nla.gov.au/work/2873425?q&versionId=187635831+206889243 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/the-construction-and-use-of-the-pressure-probe-in-studies-relating-to-stomatal-function/)

Franks P. J. (2004) – Stomatal control and hydraulic conductance, with special reference to tall trees. – Tree Physiol 24 865–878 [PubMed]. – (On our blog : https://plantstomata.wordpress.com/2015/09/29/stomatal-control-in-tall-trees/).

Franks P. J. (2012) – Genome size as a constraint on productivity and water-use efficiency – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/13/genome-size-plant-productivity-and-water-use-efficiency/ )

Franks P. J. (2013) – Passive and active stomatal control: either or both? – New Phytologist, 198(2): 325-327. – http://onlinelibrary.wiley.com/doi/10.1111/nph.12228/abstract – http://onlinelibrary.wiley.com/store/10.1111/nph.12228/asset/nph12228.pdf;jsessionid=86FBD0E3A3AE75FC27989E2A067593B0.f02t03?v=1&t=jcncmcfn&s=e5bbc00257355a1524ae53ee4b7ec0b37a466fd7 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/passive-and-active-stomatal-control/ )

Franks P. J., Beerling D. J. (2009) – Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time – PNAS 106: 10343–10347 –

Franks P. J., Beerling D. J., Berner R. A. (2009) – Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. – Proceedings of the National Academy of Sciences, USA (2009) 106(10): 343–34 -doi: 10.1073/pnas.0904209106 – CrossRef | CAS | PubMed Article – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomatal-characteristics-over-geologic-time/).

Franks P. J., Berry J. A., Lombardozzi D. L., Bonan G. B. (2017) – Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling, and global models. – Plant Physiol 174: 583–602 – DOI: https://doi.org/10.1104/pp.17.00287 – http://www.plantphysiol.org/content/174/2/583 – (On our blog : https://plantstomata.wordpress.com/2017/11/06/future-efforts-must-focus-on-more-accurate-parameterization-of-stomatal-conductance-models/)

Franks P. J., Britton-Harper Z. J. (2016) – No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? – New Phytologist 211(3): 819 – 827 – DOI10.1111/nph.14020 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-211-i-3-nph14020 – (On our blog : https://plantstomata.wordpress.com/2017/10/07/a-universal-stomatal-control-mechanism-2/)

Franks P. J., Britton-Harper Z. J. (2016) – No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? – Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14020 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14020/abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/07/a-universal-stomatal-control-mechanism-2/)

Franks, P., Brodribb, T.J. (2005) – Stomatal control and water transport in the xylem.In: Holbrook, N. Michelle, and Zwieniecki, Macief A., (eds.) Vascular Transport in Plants. Physiological Ecology, 1 . Elsevier, Oxford, UK, pp. 69-89 – https://researchonline.jcu.edu.au/14422/ – (On our blog https://wordpress.com/post/plantstomata.wordpress.com/5201).

Franks P. J., Buckley T. N., Shope J. C., Mott K. A. (2001) – Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. – Plant Physiol 125 1577–1584 [PMC free article][PubMed] – (On our blog : https://plantstomata.wordpress.com/2015/09/30/stomata-microscopic-study-of-guard-cell-volume/).

Franks P. J., Casson S. (2014) – Connecting stomatal development and physiology.- New Phytologist 201(4), 1079-1082 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12673/abstract – (On our blog : https://plantstomata.wordpress.com/2015/09/30/stomatal-development-and-physiology/)

Special Commentary by Franks & Casson ‘Connecting stomatal development and physiology’ highlighting Graham’s two papers  http://onlinelibrary.wiley.com/doi/10.1111/nph.12673/full

Franks P. J., Cowan I. R., Farquhar G. D. (1997) – The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. – Plant, Cell and Environment 20, 142145.DOI: 10.1046/j.1365-3040.1997.d01-14.x – – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/05/23/feedforward-response-of-stomata-to-air-vapour-pressure-deficit/)

Franks P. J., Cowan I. R., Farquhar G. D. (1998) – A study of stomatal mechanics using the cell pressure probe. – Plant Cell Environ 21 94–100 – DOI: 10.1046/j.1365-3040.1998.00248.x – Google Scholar Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1998.00248.x/full – (On our blog : https://plantstomata.wordpress.com/2018/03/13/stomatal-mechanics-and-the-cell-pressure-probe/ )

Franks P. J., Cowan I. R., Tyerman S. D., Cleary A. L., Lloyd J., Farquhar G. D. (1995) – Guard cell pressure/aperture characteristics measured with the pressure probe. – Plant Cell Environ 18: 795–800 – doi:10.1111/j.1365-3040.1995.tb00583.x  – Wiley Online Library |http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00583.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/14/stomatal-behavior-and-the-pressure-probe/ )

Franks P. J., Doheny-Adams T. W., Britton-Harper Z. J., Gray J. E. (2015) – Increasing water-use efficiency directly through genetic manipulation of stomatal density – New Phytol.207: 188–195 – doi: 10.1111/nph.13347 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/03/09/stomatal-density-and-wue/).

Franks P. J., Drake P.L., Beerling D. J. (2009) – Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment, 2009; 32: 1737–1748. (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.002031.x/abstract) – AbstractFull Article (HTML)PDF(1027K)References – PubMed Article– (On our blog : https://plantstomata.wordpress.com/2015/09/30/3961/)

Franks P. J., Drake P. L., Froend R. H. (2007) – Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. – Plant, Cell and Environment 30: 19-30 – DOI 10.1111/j.1365-3040.2006.01600.x – Google Scholar CrossRef – https://www.ncbi.nlm.nih.gov/pubmed/17177873 – (On our blog : https://plantstomata.wordpress.com/2018/03/16/stomatal-control-mechanism-incorporating-variable-plant-hydraulic-conductance/ )

Franks P. J., Farquhar G. D. (2001) – The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. – Plant Physiol 125: 935–942 [PMC free article][PubMed] – CrossRefPubMed, CAS –  (On our blog : https://plantstomata.wordpress.com/2015/10/11/the-effect-of-exogenous-aba-on-stomata/)

Franks  P. J., Farquhar G. D. (2007) –  The mechanical diversity of stomata and its significance in gas-exchange control – Plant Physiology 143: 78–87 – doi: 10.1104/pp.106.089367 – PubMed Abstract | CrossRef Full Text | Google Scholar – (http://www.plantphysiol.org/content/143/1/78) – (On our blog : https://plantstomata.wordpress.com/2015/08/03/mechanical-diversity-of-stomata/)

Franks P. J., Leitch I., Ruszala E., Hetherington A., Beerling D. (2012) – Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philosophical Transactions of the Royal Society B. Biological Sciences, 367(1588): 537-546. – http://rstb.royalsocietypublishing.org/content/367/1588/537 – (On our blog : https://plantstomata.wordpress.com/2016/05/24/adaptation-of-stomata-to-co2/ )

Fraser L. H., Greenall A., Carlyle C., Turkington R., Friedman C. R. (2009) – Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. – Ann Bot- Lon 103:769–775 – doi: 10.1093/aob/mcn252 – PubMedArticle – (On our blog : https://plantstomata.wordpress.com/2015/10/02/the-plasticity-of-stomatal-density-changes-in-water-supply-and-temperature/ )

Frechilla S., Talbott L. D., Zeiger E. (2002) – The CO2 response of Vicia guard cells
acclimates to growth environment. – Journal of Experimental Botany 53(368): 545550 – https://doi.org/10.1093/jexbot/53.368.545 – https://academic.oup.com/jxb/article/53/368/545/577362 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/co2-responses-of-stomata-acclimate-to-growth-environment/ )

Frechilla S., Zhu J., Talbott L. D., Zeiger E. (1999) – Stomata from npq1, a zeaxanthin‐less Arabidopsis mutant, lack a specific response to blue light – Plant and Cell Physiology 40: 949-954 – DOI | 10.1093/oxfordjournals.pcp.a029627 – https://scinapse.io/papers/2156072438 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/stomata-from-npq1-lack-a-specific-response-to-blue-light/

Freeland R. O. (1948) – Photosynthesis in relation to stomatal frequency and distribution – Plant Physiology 23: 595-600 – DOI: https://doi.org/10.1104/pp.23.4.595 – http://www.plantphysiol.org/content/23/4/595 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/photosynthesis-stomatal-frequency-and-distribution/ )

Freudenberger H. (1940) – Die Reaktion der Schliesszellen auf Kohlensäure und Sauerstoff-Entzug – Protoplasma 35: Heft 1 – DOI 10.1007/BF02807306 – Thesis/dissertation – Berlin : Borntraeger, 1940.

Frey B., Scheidegger C., Gunthardt-Goerg M. S., Matyssek R. (1996) – The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital as image-analysis and X-ray microanalysis – New Phytologist 132: 135–143.| CrossRef | CAS | – (On our blog) : https://plantstomata.wordpress.com/2015/10/03/stomata-ozone-and-fertilizer/ )

Fricker M. D., Gilroy S., Read N. D., Trewavas A. J. (1991) – Visualisation and measurement of the calcium message in guard cells. – In: Molecular Biology of Plant Development. W. Schuch and G. Jenkins, editor. Cambridge University Press, Cambridge – Symp Soc Exp Biol. 45: 177-190 – https://www.ncbi.nlm.nih.gov/pubmed/1843407 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/the-calcium-message-in-stomata/ )

Fricker M. D., White N. (1990) – Volume measurements of guard cell vacuoles during stomatal movements using confocal microscopy. – Transactions of the Royal Microscopical Society 1: 345–358. (Article not found).

Fricker M. D., Willmer C. M. (1987) – Vanadate sensitive ATPase and phosphatase activity in guard cell protoplasts of Commelina – J. Exp. Bot. 38: 642–648 – https://doi.org/10.1093/jxb/38.4.642 – https://academic.oup.com/jxb/article-abstract/38/4/642/457629?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/09/18/atpase-and-phosphatase-activity-in-stomatal-protoplasts/ )

Fricker M. D., Willmer C. M. (1990) – Some properties of proton pumping ATPase at the plasma membrane and tonoplast of guard cells – Biochem. Physiol. Pflanzen 186: 301–308 – https://doi.org/10.1016/S0015-3796(11)80222-2 – https://ac.els-cdn.com/S0015379611802222/1-s2.0-S0015379611802222-main.pdf?_tid=3a9b974c-d577-411a-b8bf-4eed9d488ead&acdnat=1537294363_aab9f248c47abe7f470849568e671e06 – (On our blog : https://plantstomata.wordpress.com/2018/09/18/proton-pumping-atpase-at-the-plasma-membrane-and-tonoplast-of-stomata/ )

Fricker M. D., Willmer C. M. (1990) – Nitrate-sensitive ATPase activity and proton pumping in guard cell protoplasts of Commelina – J. Exp. Bot. 41(2): 193-198 – https://doi.org/10.1093/jxb/41.2.193 – https://academic.oup.com/jxb/article-abstract/41/2/193/498816?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/09/25/nitrate-sensitive-atpase-activity-and-proton-pumping-in-stomatal-protoplasts/ )

Friedl S. (2015) –  Stomata of Plants: Function, Definition & Structure – Video & Lesson Transcript | Study.com. [online] Study.com. – http://study.com/academy/lesson/stomata-of-plants-function-definition-structure.html

Frommhold I. (1971) – Ontogenetische und funktionelle Entwicklung der Stomata von Hafer (Avena sativa L.) – Biochem. Physiol. Pflanzen (BPP) 162: 410-416 – https://ac.els-cdn.com/S0015379617311654/1-s2.0-S0015379617311654-main.pdf?_tid=04595029-8657-423c-893f-5c5d509e5d8a&acdnat=1521046168_500ab3f8d4c0be3cd5451c5af634d376 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/ontogenetic-and-functional-development-of-stomata/ )

Fry K. E. (1965) – A study of transpiration and photosynthesis in relation to stomatal resisance and internal water potential in Douglas Fir. – Ph.D. thesis Univ. Washington.

Fry K. E., Walker R. B. (1967) – A pressure infiltration method for estimating stomatal opening in conifers – Ecology 48: 155-157- DOI: 10.2307/1933428 – https://www.jstor.org/stable/1933428?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/14/a-pressure-infiltration-method-for-estimating-stomatal-opening/ )

Fu Q. S. , Zhao B., Wang Y. J.. Ren S., Guo Y. D. (2010) – Stomatal development and associated photosynthetic performance of Capsicum in response to differential light availabilities – Photosynthetica 48: 189-198 –  https://doi.org/10.1007/s11099-010-0024-5 – https://link.springer.com/article/10.1007%2Fs11099-010-0024-5#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/14/stomatal-development-in-response-to-differential-light-availabilities/ )

Fuentes S., Canamero R. C., Serna L. (2012) – Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl  –  Int. J. Dev. Biol. 56: 675–680 – DOI10.1387/ijdb.120029ls – [PubMed] – https://www.semanticscholar.org/paper/Relationship-between-brassinosteroids-and-genes-co-Fuentes-Ca%C3%B1amero/11707d77f3e5fdb6f7ad40bb71fef8d1d69c5739 – (On our blog : https://plantstomata.wordpress.com/2018/03/14/differences-in-the-genetic-control-of-stomatal-development-between-cotyledons-or-leaves-and-hypocotyls/

Fuchs E. E., Livingston N. J. (1996) – Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii(Mirb) Franco] and alder [Alnus rubra (Bong)] seedlings. – Plant, Cell and Environment 19, 10911098. – DOI:10.1111/j.1365-3040.1996.tb00216.x – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/05/24/hydraulic-control-of-stomatal-conductance/ )

Fujino M. (1959) – Stomatal movement and active migration of potassium (in Japanese) – Kagaku 29: 660-661.

Fujino M. (1967) – Role of adenosinetriphosphate and adenosinetriphosphatase in stomatal movement – Sci. Bull. Fac. Educ. Nagasaki Univ. 18: 1–47 – kyoikuS18_001.pdfnaosite.lb.nagasaki-u.ac.jp/dspace/bitstream/10069/33158/1/kyoikuS18_001.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/15/atp-and-atp-ase-in-stomatal-movements/ )

Fujino M., Jinno N.
 (1972)
– The fine structure of the guard cell of Commelina communis L. – Sci. Bull., Fac. Educ. Nagasake Univ. (23), 101–111 – http://hdl.handle.net/10069/33029 – Google Scholar – kyoikuS23_101.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/14/the-ultrastructure-of-a-guard-cell-in-stomata/

Fujita T., Noguchi K., Terashima I. (2013) Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. – New Phytologist, 2013, 199, 2, 395 – DOI: 10.1111/nph.12261 – Wiley Online Library – (On our blog : https://plantstomata.wordpress.com/2016/05/24/apoplastic-mesophyll-signals-and-stomatal-responses-to-co2/ )

Fujiwara M., Yasuzawa M., Kojo K. H., Abe T., Yoshida S., Nakano T., Itoh R. D. (2018) – The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis – PLOS One13(2): e0192380. – https://doi.org/10.1371/journal.pone.0192380 – https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192380 – (On our blog : https://plantstomata.wordpress.com/2018/10/06/arabidopsis-arc5-and-arc6-mutations-differentially-affect-plastid-morphology-in-pavement-and-stomata/ )

Fukuda M., Hasezawa S., Asai N., Nakajima N., Kondo N. (1998) – Dynamic organization of microtubules in guard cells of Vicia faba L. with diurnal cycle – Plant Cell Physiology 39: 80–86 – https://www.ncbi.nlm.nih.gov/pubmed/9517004 – (On our blog : https://plantstomata.wordpress.com/2018/09/25/radially-organized-cortical-mts-of-guard-cells-may-control-diurnal-stomatal-movement/ )

Fukuda M., Hasezawa S., Nakajima N., Kondo N. (2000) – Changes in tubulin expression in guard cells of Vicia faba L. accompanied with dynamic organization of microtubules during the diurnal cycle – Plant Cell Physiology 41: 600–607 – https://www.ncbi.nlm.nih.gov/pubmed/10929943 – (On our blog :

Furukawa A., Park S.-Y., Fujinuma Y. (1990) – Hybrid poplar stomata unresponsive to changes in environmental conditions – Trees December 1990, Volume 4, Issue 4, pp 191-197 – http://link.springer.com/article/10.1007%2FBF00225315 – (On our blog https://plantstomata.wordpress.com/2016/05/24/factors-affecting-stomatal-conductance/ )

Gaastra P. (1959) – Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. – Meded. Landbouwhogeschool, Wageningen 59: 1–68 – https://books.google.be/books/about/Photosynthesis_of_Crop_Plants_as_Influen.html?id=uH9wHQAACAAJ&redir_esc=y – (On our blog : https://plantstomata.wordpress.com/2018/03/15/photosynthesis-light-co2-temperature-and-stomatal-diffusion-resistance/ )

Gaedeke N., Klein M., Kolukisaoglu U., Forestier C., Muller A., Ansorge M., Becker D.Mamnun Y., Kuchler K., Schulz B., Mueller-Roeber B., Martinoia E. (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO Journal 20: 18751887. – DOI: 10.1093/emboj/20.8.1875 – Wiley Online Library |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/05/24/atmrp5-and-stomatal-movement/)

Gago J.Daloso D de M.Figueroa C. M.Flexas J.Fernie A. R.Nikoloski Z. (2016) – Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach – Plant Physiol. 171265279 – 

Gago J., de Menezes Daloso D., Figueroa C. M., Flexas J., Fernie A. R., Nikoloski Z. (2016) – Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach – Plant Physiology 

Gailing O., Langenfeld-Heyser R., Polley A., Finkeldey R. (2008) – Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments – Global Change Biology, 14: 1934–1946 – https://doi.org/10.1111/j.1365-2486.2008.01621.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2486.2008.01621.x – (On our blog : https://plantstomata.wordpress.com/2018/05/08/quantitative-trait-loci-affecting-stomatal-density-and-growth/ )

Galatis B. (1974) – Ultastructural studies on stomatal development. PhD thesis, University of Athens, Greece.

Galatis B. (1977) – Differentiation of stomatal meristemoids and guard cell mother cells into guard-like cells in Vigna sinensis leaves after colchicine treatment. An ultrastructural and experimental approach. – Planta 136: 103–114 – doi: 10.1007/BF00396185 – Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/24420314 – (On our blog : https://plantstomata.wordpress.com/2018/03/15/colchicine-treatment-and-differentiation-of-stomatal-meristemoids/

Galatis B. (1980) – Microtubules and guard cell morphogenesis in Zea mays L. – Cell Sci. 45: 211-244 – http://jcs.biologists.org/content/joces/45/1/211.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/19/microtubules-play-a-critical-role-in-guard-cell-morphogenesis-of-stomata/ )

Galatis B. (1982) – The organization of microtubules in guard cell mother cells of Zea mays – Canadian Journal of Botany 60(7): 1148-1166 – https://doi.org/10.1139/b82-145 – http://www.nrcresearchpress.com/doi/10.1139/b82-145 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/organization-of-microtubules-in-guard-cell-mother-cells/ )

Galatis B., Apostolakos P. (1991) – Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings of Zea mays. – Protoplasma 165: 11–26 – CrossRefWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/05/24/aberrant-stomata-and-microtubules/)

Galatis B., Apostolakos P. (2004) – The role of the cytoskeleton in the morphogenesis and function of stomatal complexes – New Phytologist 161(3): 613-639 – DOI: 10.1046/j.1469-8137.2003.00986.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2003.00986.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cytoskeleton-in-the-morphogenesis-and-function-of-stomatal-complexes/ ) – https://wordpress.com/post/plantstomata.wordpress.com/65730

Galatis B., Apostolakos P. (2010) – A new callose function – Involvement in differentiation and function of fern stomatal complexes – Plant Signal Behav. 5(11): 1359–1364 – Published online  – doi:  10.4161/psb.5.11.12959 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115234/ – (On our blog : https://plantstomata.wordpress.com/2018/08/15/callose-and-differentiation-and-function-of-fern-stomatal-complexes/

Galatis B., Apostolakos P., Katsaros C. (1983) – Synchronous organization of two preprophase microtubule bands and final cell plate arrangement in subsidiary cell mother cells of some Triticum species – Protoplasma 117: 24–39 – https://doi.org/10.1007/BF01281781 – https://link.springer.com/article/10.1007%2FBF01281781 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/preprophase-microtubule-bands-and-final-cell-plate-arrangement-in-subsidiary-cell-mother-cells-of-stomata/ )

Galatis B., Apostolakos P., Katsaros C. (1983) – Microtubules and their organizing centres in differentiating guard cells of Adiantum capillus-veneris – Protoplasma 115: 176–192 – https://doi.org/10.1007/BF01279808 – https://link.springer.com/article/10.1007%2FBF01279808#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/17/microtubules-in-differentiating-stomata/ )

Galatis B., Apostolakos P., Katsaros C. (1984) – Positional inconsistency between preprophase microtubule band and final cell plate arrangement during subsidiary cell and hair cell formation in two Triticum species  – Canadian Journal of Botany 62: 343–359 – https://doi.org/10.1139/b84-053 – http://www.nrcresearchpress.com/doi/abs/10.1139/b84-053?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/preprophase-microtubule-band-and-final-cell-plate-arrangement-during-subsidiary-cell-formation-in-stomata/ )

Galatis B., Apostolakos P., Katsaros C., Loukari H. (1982) – Pre-prophase microtubule band and local wall thickening in guard cell mother cells of some Leguminosae – Ann. Bot. 50: 779-791 – https://doi.org/10.1093/oxfordjournals.aob.a086422 – https://academic.oup.com/aob/article-abstract/50/6/779/161078?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/03/19/the-organization-of-pre-prophase-microtubule-bands-pmbs-and-gmcs-becoming-detectably-thickened/ )

Galatis B., Apostolakos P., Palafoutas D. (1986) – Studies on the formation of ‘floating’ guard cell mother cells in Anemia

Galatis B.,  Mitrakos K. (1979) – On the differential divisions and preprophase microtubule bands involved in the development of stomata of Vigna sinensis L. – J. Cell Sci. 37: 11–37 – PMID: 479319 – https://www.ncbi.nlm.nih.gov/pubmed/479319 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/differential-divisions-and-preprophase-microtubule-bands-involved-in-the-development-of-stomata/ )

Galatis B.,  Mitrakos K. (1980) – The ultrastructural cytology of the differentiating guard cells of Vigna sinensis – Amer. J. Bot. 67: 1243-1261 – DOI: 10.2307/2442367 – https://www.jstor.org/stable/2442367?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/21/the-ultrastructural-cytology-of-stomata/ )

Galbiati M., Matus J. T., Francia P., Rusconi F., Cañón P., Medina C., Conti L., Cominelli E., Tonelli C., Arce-Johnson P. (2011) – The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress – BMC Plant Biology 11:142 – https://doi.org/10.1186/1471-2229-11-142 – https://bmcplantbiol.biomedcentral.com/articles/10.1186/1471-2229-11-142 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/vvmyb60-modulates-physiological-responses-in-stomata-2/ )

Galbiati M., Simoni L., Pavesi G., Cominelli E.,1 , Francia P., Vavasseur A., Nelson T., Bevan M., Tonelli C. (2008) – Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells – The Plant Journal (2008) 53, 750–762 –  doi: 10.1111/j.1365-313X.2007.03371.x – https://air.unimi.it/retrieve/handle/2434/40407/175510/Gene%20trap%20lines%20identify%20Arabidopsis%20genes.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/arabidopsis-genes-expressed-in-stomatal-guard-cells/ )

Galmés J., Flexas J., Savé R., Medrano H. (2007) –  Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery – Plant and Soil 290: 139-155 – DOI 10.1007/s11104-006-9148-6 – Google Scholar CrossRef – https://www.academia.edu/25508650/Water_relations_and_stomatal_characteristics_of_Mediterranean_plants_with_different_growth_forms_and_leaf_habits_responses_to_water_stress_and_recovery – (On our blog : https://plantstomata.wordpress.com/2018/03/15/different-growth-forms-and-leaf-habits-of-mediterranean-plants-water-relations-and-stomatal-characteristics/ )

Gan Y., Zhou L., Shen Z.-J., Shen Z.-X., Zhang Y.-Q., Wang G.-X. (2010) – Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants – Botanical Studies (2010) 51: 325-336. – http://ejournal.sinica.edu.tw/bbas/content/2010/3/Bot513-06.pdf – http://connection.ebscohost.com/c/articles/60102322/stomatal-clustering-new-marker-environmental-perception-adaptation-terrestrial-plants – (On our blog : https://plantstomata.wordpress.com/2016/10/24/stomatal-clustering-is-correlated-with-environmental-signals-2/)

Gangadhara M. (1973) – Effect of growth regulators on structure and development in Lagenaria leucantha (Duch.) Rusby – M. Sci. diss., S. P. Univ., India

Gangadhara M., Rao T. B., Inamdar J. A., Patel R. M. (1977) – Effect of growth regulators on the structure of cotyledonary and hypocotyledonary stomata of Gossypium herbaceum var. Digvijay – Phyton 18: 9-28 – https://www.zobodat.at/pdf/PHY_18_1_2_0009-0028.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/21/growth-regulators-and-stomata-of-gossypium/ )

Gao J., Wang N., Wang G. X. (2013)Saccharomyces cerevisiae induced stomatal closure mainly mediated by salicylhydroxamic acid- sensitive peroxidases in Vicia faba. – Plant Physiol. Biochem. 65, 27–31. – doi: 10.1016/j.plaphy.2013.01.008 – https://www.sciencedirect.com/science/article/pii/S0981942813000272 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/yeast-induces-stomatal-closure-mainly-mediated-by-salicylhydroxamic-acid-sensitive-peroxidases/ )

Gao J., Wang N., Xu S. S., Li Y., Wang Y., Wang G. X. (2013) – Exogenous application of trehalose induced H2O2 production and stomatal closure in Vicia faba. – Biologia Plantarum 57: 380384 – https://doi.org/10.1007/s10535-012-0285-x – https://link.springer.com/article/10.1007%2Fs10535-012-0285-x#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/21/trehalose-induces-h2o2-production-and-stomatal-closure/

Gao Q., Zhao P., Zeng X., Cai X., Shen W. (2002) – A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. – Plant, Cell & Environment 25:13731381 – https://doi.org/10.1046/j.1365-3040.2002.00926.x –  Wiley Online Library – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2002.00926.x – (On our blog : https://plantstomata.wordpress.com/2018/03/19/a-model-of-stomatal-conductance-to-quantify-the-relationship-between-leaf-transpiration-microclimate-and-soil-water-stress/ )

Gao Q., Zhao P., Zeng X., CAI X., Shen W. (2002) – A model of stomatal conductance to quantify relationship between leaf transpiration, microclimate and soil water stress – Plant, Cell and Environment 25: 1373-1381 – http://onlinelibrary.wiley.com/store/10.1046/j.1365-3040.2002.00926.x/asset/j.1365-3040.2002.00926.x.pdf;jsessionid=0C4FD8D4E020DF3DC0F996706AB8B81E.f03t02?v=1&t=j7jepxi1&s=b27aa1d8111383898ab6c89fceeb6ccdb9dd65a6 – (On our blog : https://plantstomata.wordpress.com/2017/09/13/a-model-of-stomatal-conductance/)

Gao X. Q., Chen J., Wei P., Ren F., Chen J., Wang X. (2008) – Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. – Plant Cell Rep. 27: 1655–1665 – doi: 10.1007/s00299-008-0581-2. Epub 2008 Jul 9 – https://www.ncbi.nlm.nih.gov/pubmed/18612643 – (On our blog :  https://plantstomata.wordpress.com/2018/03/21/actin-filaments-and-stomatal-aperture/ )

Gao X.-Q., Li C.-G., Wei P.-C., Zhang X.-Y., Chen J., Wang X.-C. (2005) – The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. – Plant Physiol. 139: 1207–1216 [PMC free article] [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/05/25/tonoplasts-in-guard-cells-are-important-for-stomatal-movement/)

Gao X.-Q., Wang X.-L., Ren F., Chen J., Wang X.-C. (2009) – Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement – Plant, Cell & Environment 32: 1108–1116 – doi: 10.1111/j.1365-3040.2009.01993.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2009.01993.x – (On our blog : https://plantstomata.wordpress.com/2018/08/16/the-interactive-function-of-actin-and-vacuole-in-stomatal-movement-regulation/

Gao X., Zou C., Wang L., Zhang F. (2006) – Silicon decreases transpiration rate and conductance from stomata of maize plants. – J. Plant Nutr., 29: 1637-2647. (http://www.tandfonline.com/doi/abs/10.1080/01904160600851494#.VREt3pPF-6E) – (On our blog : https://plantstomata.wordpress.com/2015/08/13/the-effect-of-silicon-on-stomata/).

Garcia-Amorena I., Wagner F., van Hoof T. B., Gomez Manzaneque F. (2006) – Stomata responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase; refining the stomatal-based CO2 proxy. – Rev. Palaebot. Palynol. 141: 303-312 – https://pdfs.semanticscholar.org/9c34/f061b72aedd6d669ed917a773abea6522690.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/19/stomata-responses-to-the-anthropogenic-atmospheric-co2-increase/ )

Garcia-Forner N., Adams H. D., Sevanto S., Collins A. D., Dickman L. T., Hudson P. J., Zeppel M. J., Jenkins M. W., Powers H., Martínez-Vilalta J., Mcdowell N. G..(2016) – Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation – Plant Cell Environ. 39: 38–49  – https://www.ncbi.nlm.nih.gov/pubmed/26081870?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/21/new-perspectives-for-stomatal-regulation/ )

Garcia-Mata C., Gay R.Sokolovski S.Hills A., Lamattina L.,  Blatt M. R. (2003) – Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. – Proc. Natl Acad. Sci. USA, 100, 1111611121. – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2015/10/04/stomata-and-nitric-oxide/)

Garcia-Mata C., Lamattina L. (2002) – Nitric oxide and abscisic acid cross talk in guard cells. – Plant Physiol. 128, 790–792. doi: 10.1104/pp.011020 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/25/no-and-aba-in-stomata/)

Garcia–Mata C., Lamattina L. (2003) – Abscisic acid, nitric oxide and stomatal closure – is nitrate reductase one of the missing links? – Trends. Plant Sci. 8: 20–26 – PMID: 12523996 – https://www.ncbi.nlm.nih.gov/pubmed/12523996 – (On our blog : https://plantstomata.wordpress.com/2018/10/18/nr-as-a-putative-component-in-the-signaling-cascade-of-aba-induced-stomatal-closure/ )

Garcia-Mata C., Lamattina L. (2007) – Abscisic acid (ABA) inhibits light- induced stomatal opening through calcium-and nitric oxide-mediated signaling pathways. – Nitric Oxide 17: 143–151. – doi: 10.1016/j.niox.2007.08.001 – https://www.sciencedirect.com/science/article/pii/S1089860307000973 – (On our  blog : https://plantstomata.wordpress.com/2018/04/16/calcium-and-nitric-oxide-mediated-signaling-pathways-aba-and-stomatal-opening/ )

Garcia-Mata C., Lamattina L. (2009) – Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress – Plant Physiology 150: 531-531 – DOI: https://doi.org/10.1104/pp.126.3.1196 – http://www.plantphysiol.org/content/126/3/1196 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/nitric-oxide-induces-stomatal-closure/ )

Garcia-Mata C., Lamattina L. (2010) – Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. – New Phytol. 188, 977–984. doi: 10.1111/j.1469-8137.2010.03465.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/25/h2s-in-stomata/ )

García-Mata C., Lamattina L. (2013) – Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. – Plant Sci. 201–202, 66–73. – doi: 10.1016/j.plantsci.2012.11.007 – https://www.sciencedirect.com/science/article/pii/S0168945212002403 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/gasotransmitters-are-guard-cell-signaling-molecules-and-regulators-of-leaf-gas-exchange-in-stomata/ )

Gardner M. J.Baker A. J.Assie J.-M.Poethig R. S.Haseloff J. P.Webb A. A. R. (2009) – GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression. – Journal of Experimental Botany 60, 213226. – doi: 10.1093/jxb/ern292 – Abstract/FREE Full Text – CrossRefMedlineGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/25/gal4-gfp-enhancer-trap-lines-and-stomatal-guard-cells/ )

Gargava A., Arya C., Raghavan S. R. (2016) – Smart Hydrogel-Based Valves Inspired by the Stomata in Plants – ACS Appl. Mater. Interfaces  8 (28): 18430–18438 – DOI: 10.1021/acsami.6b04625 – http://pubs.acs.org/doi/abs/10.1021/acsami.6b04625 – (On our blog : https://plantstomata.wordpress.com/2018/01/06/hydrogel-based-valves-inspired-by-stomata/ )

Garner D. B., Paolillo D. J. Jr. (1973) – On the functioning of stomata in Funaria – Bryologist 76: 423-427 – doi:10.2307/3241726 – https://www.jstor.org/stable/3241726?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/19/the-functioning-of-stomata-in-mosses/ )

Gautier H., Vavasseur A., Gans P,. Lasceve G. (1991) – Relationship between respiration and photosynthesis in guard cell and mesophyll cell protoplasts of Commelina communis L. – Plant Physiol. 95: 636–641 – PMID: 16668030 – PMCID: PMC1077579 – https://www.ncbi.nlm.nih.gov/pubmed/16668030 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/respiration-and-photosynthesis-in-stomatal-and-mesophyll-cell-protoplasts/ )

Gautier H., Vavasseur A., Lasceve G., Boudet A. M. (1992) – Redox processes in the blue light response of guard cell protoplasts of Commelina communis L. – Plant Physiol. 98: 34–38 –

Gay A. P., Hurd R.G. (1975) – The influence of light on stomatal density in the tomato – New Phytologist 75: 37-46 – https://doi.org/10.1111/j.1469-8137.1975.tb01368.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1975.tb01368.x – (On our blog : https://plantstomata.wordpress.com/2018/03/21/light-and-stomatal-density/ )

 Gayatri G., Agurla S., Raghavendra A. S. (2013) – Nitric oxide in guard cells as an important secondary messenger during stomatal closure. – Front. Plant Sci. 4:425. – doi: 10.3389/fpls.2013.00425 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed/24194741 – (On our blog : https://plantstomata.wordpress.com/2018/03/19/nitric-oxide-in-stomata-a-secondary-messenger-during-stomatal-closure/ )

Ge X.-M., Cai H.-L., Lei X., Zhou X., Yue M., He J.-M. (2015) – Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. – Plant J. 82, 138–150. – doi: 10.1111/tpj.12799 –  [PubMed] [Cross Ref] – https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.12799 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/g%ce%b1-mediates-ethylene%e2%80%90induced-stomatal-closure-via-h2o2-production/

Gedenk E. (2017) – Research team uses supercomputing to understand processes leading to increased drought resistance in food and fuel crops – https://phys.org/news/2017-04-team-supercomputing-drought-resistance-food.html – (On our blog : https://plantstomata.wordpress.com/2017/04/19/supercomputing-stomata-and-increased-drought-resistance-in-food-and-fuel-crops/)

Gehring C. A., Irving H. R., McConchie R. M., Parish R. W. (1997) – Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. – Ann. Bot. 80: 485-489 – https://doi.org/10.1006/anbo.1997.0471 – https://www.sciencedirect.com/science/article/pii/S0305736497904716 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/jasmonates-and-closure-of-stomata/ ),

Gehring C. A., McConchie R. M., Venis M. A., Parish R. W. (1998) – Auxin-binding-protein antibodies and peptides influence stomatal opening and alter cytoplasmic pH. – Planta 205: 581-586 – DOI: 10.1007/s004250050359 – https://www.ncbi.nlm.nih.gov/pubmed/9684362 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/auxin-binding-protein-antibodies-and-peptides-influence-stomatal-opening/ )

Geiger D., Maierhofer T., Al-Rasheid K. A., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C.Marten I.Grill E.Romeis T., Hedrich R. (2011) – Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. – Sci. Signal. 4:ra32. doi: 10.1126/scisignal.2001346 – PubMed Abstract | CrossRef Full Text | Google Scholar – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/05/25/the-guard-cell-anion-channel-slah3-and-the-receptor-rcar1-in-stomatal-closure/ )

Geiger D., Scherzer S., Mumm P., Marten I., Ache P., Matschi S., Liese A.Wellmann C.Al-Rasheid K. A.Grill E.et al. (2010) – Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. – Proc. Natl Acad. Sci. USA 107, 80238028 (2010). – doi: 10.1073/pnas.0912030107 – PubMedArticlePubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/26/slac1-cdpk-and-stomatal-guard-cells/ )

Geiger D.Scherzer S.Mumm P.Stange A.Marten I.Bauer H.Ache P.Matschi S.Liese A.Al-Rasheid K.A.Romeis T.Hedrich R. (2009) – Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair.- Proc. Natl. Acad. Sci. USA 106: 2142521430. – Abstract/FREE Full Text – http://www.pnas.org/content/106/50/21425.full – (On our blog : https://plantstomata.wordpress.com/2016/04/04/the-role-of-guard-cell-anion-channel-slac1-in-stomatal-movement/ )

Geisler M. J., Deppong D. O., Nadeau J. A., Sack F. D. (2003) – Stomatal neighbor cell polarity and division in Arabidopsis. – Planta 216: 571-579. (pdf) – (On our blog : https://plantstomata.wordpress.com/2016/05/26/stomatal-neighbor-cell-polarity-and-division/ )

Geisler M. J., Nadeau J., Sack F. D. (2000) – Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. – Plant Cell 12:2075– 2086. – Abstract/FREE Full Text – http://www.plantcell.org/content/12/11/2075.abstract – (On our blog : https://plantstomata.wordpress.com/2015/10/05/the-too-many-mouths-mutation-and-the-stomatal-spacing-pattern/ )

Geisler M. J., Sack F. D. (2002) – Variable timing of developmental progression in the stomatal pathway in Arabidopsis cotyledons. – New Phytol. 153, 469–476. – DOI: 10.1046/j.0028-646X.2001.00332.x – CrossRefWeb of Science – http://dx.doi.org/10.1046/j.0028-646X.2001.00332.x – (On our blog : https://plantstomata.wordpress.com/2016/05/27/timing-of-developmental-progression-in-the-stomatal-pathway/ )

Geisler M. J., Yang M., Sack F. D. (1998) – Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips. – Planta 205, 522–530. – CrossRefMedlineWeb of Science – http://dx.doi.org/10.1007/s004250050351 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/regulation-of-stomatal-initiation-and-patterning/ )

Geilfus C._M., Mithöfer A., Ludwig‐Müller J., Zörb C., Muehling K. H. (xxxx) – Chloride‐inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt‐stressed Vicia faba – New Phytologist 208(3): 803 – 816 – DOI10.1111/nph.13507 – https://www.infona.pl/resource/bwmeta1.element.wiley-nph-v-208-i-3-nph13507 – (On our blog : https://plantstomata.wordpress.com/2017/10/12/chloride%e2%80%90inducible-transient-apoplastic-alkalinizations-induce-stomata-closure/)

Geng S., Misra B. B., de Armas E., Huhman D. V., Alborn H. T., Sumner L. W., Chen S. (2016) – Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics – doi: 10.1111/tpj.13296 – (On our blog : https://plantstomata.wordpress.com/2016/08/09/co2-induced-stomatal-closure-is-mediated-by-ja-signaling/ )

Gepstein S., Jacobs M., Taiz L. (1982) – Inhibition of stomatal opening in Vicia faba epidermal tissue by vanadate and abscisic acid. – Plant Sci. Lett. 28: 63–72 – https://doi.org/10.1016/S0304-4211(82)80008-4 – Google Scholar – https://www.sciencedirect.com/science/article/pii/S0304421182800084 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/inhibition-of-stomatal-opening-by-vanadate-and-aba/ )

Getty Images (xxxx) – Pictures of stomata – https://www.gettyimages.be/fotos/stomata?sort=mostpopular&mediatype=photography&phrase=stomata – (On our blog : https://plantstomata.wordpress.com/2018/02/10/stock-photos-of-stomata/

Ghannoum O., Conroy J. P. Driscoll S. P., Paul M. J., Foyer C. H., Lawlor D. W. (2003) – Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses – New Phytologist 159: 599–608 – https://doi.org/10.1046/j.1469-8137.2003.00835.x – https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.1469-8137.2003.00835.x – (On our blog : https://plantstomata.wordpress.com/2018/09/26/inhibition-of-photosynthesis-in-the-four-c4-grasses-under-water-stress-is-dependent-mainly-on-biochemical-limitations/

Gharun M., Turnbull T., Pfautsch S., Adams M. (2015) – Stomatal structure and physiology do not explain differences in water use among montane eucalypts – Oecologia – April 2015, Volume 177, Issue 4, pp 1171-1181 – [http://link.springer.com/article/10.1007%2Fs00442-015-3252-3] – (On our blog : https://plantstomata.wordpress.com/2015/04/10/stomata-in-eucalyptus-dicots/).

Giannoutsou E., Apostolakos P., Galatis B. (2011) – Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses – Protoplasma. 248(2): 373-390. – doi: 10.1007/s00709-010-0180-2. – Epub 2010 Jul 20 – https://www.ncbi.nlm.nih.gov/pubmed/20644970 – (On our blog : https://plantstomata.wordpress.com/2018/01/16/cortical-endoplasmic-reticulum-aggregations-in-developing-stomatal-complexes/ )

Giannoutsou E., Apostolakos P., Galatis B. (2016) – Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays – Planta · July 2016 – DOI: 10.1007/s00425-016-2574-7 – https://www.researchgate.net/publication/305661902_Spatio-temporal_diversification_of_the_cell_wall_matrix_materials_in_the_developing_stomatal_complexes_of_Zea_mays – (On our blog : https://plantstomata.wordpress.com/2016/07/29/cell-wall-matrix-materials-in-developing-stomata/ )

Giday H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2013) Foliar abscisic acid content underlies genotypic variation in stomatal responsiveness after growth at high relative air humidity. – Ann. Bot. 112(9): 1857-1867 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/05/genotypic-variation-in-stomatal-responsiveness/).

Giday H. , Kjaer K. H., Fanourakis D., Ottosen C.-O. (2013) – Smaller stomata require less severe leaf drying to close: A case study in Rosa hydrida – Journal of Plant Physiology, 170(15): 1309 – 1316 – DOI10.1016/j.jplph.2013.04.007 – https://www.infona.pl/resource/bwmeta1.element.elsevier-3abdfcce-076f-343a-8772-9fa544e960bb – (On our blog : https://plantstomata.wordpress.com/2017/10/10/stomatal-size-and-intraspecific-variation-in-the-regulation-of-transpiration-upon-water-deprivation/)

Giday H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2014) – Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth.- J. Exp. Bot. 65(15): 4361-4370 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2015/10/05/a-growth-aba-related-threshold-for-stomatal-sensitivity-to-desiccation/).

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Imaging the release of calcium from organelles during stomatal closure. – Plant Cell 3: 333–344 – (Article not found)

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Role of calcium in signal transduction of Commelina guard cells – Plant Cell 3: 333344 – CrossRef |PubMedCAS | – http://www.ncbi.nlm.nih.gov/pubmed/12324599 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/ca-and-transduction-pathways-linking-aba-perception-to-stomatal-closure/)

Gilroy S., Read N. D., Trewavas A. J. (1990) – Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. – Nature 346: 769-771 – doi: 10.1038/346769a0 – https://www.nature.com/articles/346769a0 – (On our blog : https://plantstomata.wordpress.com/2018/03/21/ca2-and-insp3-may-act-as-second-messengers-leading-to-stomatal-closure/ )

Giménez C., Gallardo M., Thompson R. B. (2005) – Plant Water Relations – In : Encyclopedia of Soils in the Environment 2005: 231–238  – https://doi.org/10.1016/B0-12-348530-4/00459-8 – https://www.sciencedirect.com/science/article/pii/B0123485304004598 – https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stomatal-conductance – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66113 )

Gimenez-Ibanez S., Boter M., Ortigosa A., García-Casado G., Chini A., Lewsey M. G., Ecker J. R., Ntoukakis V., Solano R. (2016) – JAZ2 controls stomata dynamics during bacterial invasion – New Phytologist (2017): Online Version of Record – DOI: 10.1111/nph.14354 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14354/abstract;jsessionid=7CCDFADCAFE977E2DCD0A6C68A238DF3.f01t04 – (https://plantstomata.wordpress.com/2016/12/26/a-coi1-jaz2-myc234-anac195572-module-responsible-for-the-regulation-of-stomatal-aperture/)

Gindel I. (1969) – Stomatal number and size as related to soil moisture in tree xerophytes in Israel- Ecology 50: 263-267 – https://doi.org/10.2307/1934854 – https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1934854 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/stomatal-number-and-size-as-related-to-soil-moisture-in-tree-xerophytes/ )

Giorio P., Sorrentino G., D’Andria R. (1999) – Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit – Environ Exp Bot. 42(2): 95–104 – doi: 10.1016/S0098-8472(99)00023-4 – https://www.sciencedirect.com/science/article/abs/pii/S0098847299000234 – (On our blog : https://plantstomata.wordpress.com/2018/11/14/stomatal-behaviour-leaf-water-status-and-photosynthetic-response-under-water-deficit/ )

Gitz D. C., Liu-Gitz L., Britz S. J., Sullivan J. H. (2005) – Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars – Environmental and Experimental Botany 53: 343-355 – https://doi.org/10.1016/j.envexpbot.2004.04.005 – https://www.sciencedirect.com/science/article/pii/S0098847204000711 – (On lour blog : https://plantstomata.wordpress.com/2018/03/22/ultraviolet-b-effects-on-stomatal-density/ )

Givnish T. J. (1986) – Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. – In: On the economy of plant form and function (ed. T.J. Givnish ), pp. 171213. Cambridge University Press, Cambridge. (Article not found)

Glasgow University – Institute of Molecular, Cell and Systems Biology (xxxx) – Calcium signalling and ion channel regulation in guard cells – https://www.gla.ac.uk/researchinstitutes/biology/staff/michaelblatt/researchinterests/calciumsignallingandionchannelregulationinguardcells/ – (On our blog : https://plantstomata.wordpress.com/2018/01/17/calcium-signalling-and-ion-channel-regulation-in-stomata/ )

Glenn E. P., Nagler P. L., Morino K., Kevin R. Hultine K. R. (2013) – Phreatophytes under stress: transpiration and stomatal conductance of saltcedar (Tamarix spp.) in a high-salinity environment – Plant and Soil 371(1–2): 655–672 – https://link.springer.com/article/10.1007/s11104-013-1803-0 – (On our blog : https://plantstomata.wordpress.com/2017/10/03/stomatal-conductance-of-tamarix-in-a-high-salinity-environment/)

Glinka Z. (1971) – The effect of epidermal cell water potential on stomatal response to illumination of leaf discs of Vicia faba – Physiol. Plant. 24: 476-479 – https://doi.org/10.1111/j.1399-3054.1971.tb03521.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1971.tb03521.x – (On our blog : https://plantstomata.wordpress.com/2018/03/23/epidermal-cell-water-potential-and-stomatal-response/

Glinka Z., Meidner H. (1968) – The measurement of stomatal responses to stimuli in leaves and leaf discs. – J. exp. Bot., 19, 152. – CrossRef | – http://jxb.oxfordjournals.org/content/19/1/152 – (On our blog : https://plantstomata.wordpress.com/2016/05/27/13503/)

Glowacka K., Tretyn A., Gorecki R. J., Lee S. H. (2006) – EGTA inhibits floral induction of Pharbitis nil via its influence on gas exchange properties of stomata – Acta Physiologiae Plantarum 28: 5 – ISSN :0137-5881 – https://www.infona.pl/resource/bwmeta1.element.agro-article-65972cbe-3f0b-4cfb-8ffa-697e86dcafb5 – (On our blog : https://plantstomata.wordpress.com/2017/10/08/egta-inhibits-floral-induction-via-its-influence-on-stomata/)

Godoski J., Kuhn J. M., Schroeder J. I. (2011) – Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. – Nature Cell Biology 12, 87 – 93 (2010) Published online: 13 December 2009 –doi:10.1038/ncb2009 – CrossRef Medline Web of Science Google Scholar – http://www.nature.com/ncb/journal/v12/n1/fig_tab/ncb2009_F5.html – (On our blog : https://plantstomata.wordpress.com/2016/04/07/carbonic-anhydrases-function-early-in-the-co2-signalling-pathway-in-stomata/)

Goh C. H., Dietrich P., Steinmeyer R., Schreiber U., Nam H. G,. Hedrich R. (2002) – Parallel recordings of photosynthetic electron transport and K+-channel activity in single guard cells – Plant J. 32: 623–630 – DOI: 10.1046/j.1365-313X.2002.01451.x – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Parallel-recordings-of-photosynthetic-electron-transport-and-K–channel-activity-in-single-guard-cells-1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/20/parallel-recordings-of-photosynthetic-electron-transport-and-k-channel-activity-in-single-guard-cells-of-stomata/ )

Goh C. H., Kinoshita T., Oku T., Shimazaki K. I. (1996) – Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplast  – Plant Physiol. 111: 433–440 – https://www.jstor.org/stable/4277180?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/03/23/inhibition-of-blue-light-dependent-h-pumping-by-aba-in-stomatal-protoplasts/ )

Goh C.-H., Ko S.-M, Park Y.-I., Kim C.-S., Song K.-J. (2011) – Regulation of Dark-Induced Stomatal Closure in Arabidopsis Dynamin-Like Protein 1E (adl1e) Mutant Leaves – Journal of Plant Biology 54(2): 112-118 – DOI10.1007/s12374-011-9149-8 – https://www.infona.pl/resource/bwmeta1.element.springer-2f3d3081-d229-309b-933a-38c10a528b9a – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomatal-closure-in-the-dark-is-governed-by-cytosolic-atp-concentration-which-is-stimulated-by-mitochondrial-activity/)

Goh C.-H., Schreiber U., Hedrich R. (1999) – New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli – Plant, Cell Environ. 2:, 1057–1070 –

Goh C. J., Avadhani P. N., Loh C. S., Hanegraaf C., Arditti J. (1977) – Diurnal stomatal and acidity rhythms in orchid leaves – New Phytol. 78: 365-372 – DOI 10.1111/j.1469-8137.1977.tb04840.x – https://www.jstor.org/stable/2433361?seq=1#page_scan_tab_contents  – (On our blog : https://plantstomata.wordpress.com/2018/03/22/diurnal-stomatal-and-acidity-rhythms/ )

Gokbayrak Z., Dardeniz A., Bal M. (2008) – Stomatal density adaptation of grapevine to windy conditions – Trakia Journal of Sciences 6(1): 18-22 – http://tru.uni-sz.bg/tsj/Vol6N01_2008/Gokbayrak%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/29/stomatal-density-adaptation-to-windy-conditions/ )

Gollan T., Passioura J.B., Munns R. (1986) – Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves – Aust. J. Plant Physiol. 13: 459–464 – DOI 10.1071/PP9860459 – Google Scholar CrossRef – https://www.researchgate.net/publication/262994599_Soil_water_status_affects_the_stomatal_conductance_of_fully_turgid_wheat_and_sunflower_leaves_Aust_J_Plant_Physiol_13_459-464 – (On our blog : https://plantstomata.wordpress.com/2018/03/23/soil-water-status-affects-the-stomatal-conductance/ )

Gollan T.Schurr U., Schulze E.-D. (1992) – Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap – Australian Journal of Plant Physiology 13: 459464. – Wiley Online Library |PubMed |CAS |CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01488.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/27/stomatal-response-to-drying-soil/)

Golldack D., Li C., Mohan H., Probst N. (2014) – Tolerance to drought and salt stress in plants: unraveling the signaling networks – Front. Plant Sci., 22 April 2014 | https://doi.org/10.3389/fpls.2014.00151 – https://www.frontiersin.org/articles/10.3389/fpls.2014.00151/full – (On our blog : https://plantstomata.wordpress.com/2018/01/27/the-specific-role-of-stomatal-signaling/ )

Goltz S. M., Tanner C. B. (1972) – Seed onion temperatures and their effect on stomata – Hort. Scvience 7: 180-181 (Article not found)

Gomes Dias G. de M., Rodrigues Soares J. D., Pasqual M., Lara Silva R. A., de Almaida Rodrigues L. C., Pereira F. J., de Castro E. M. (2014) – Photosynthesis and leaf anatomy of Anthurium cv. Rubi plantlets cultured in vitro under different silicon (Si) concentrations – Australian J. Crop Sci. AJCS 8(8): 1160-1167 – ISSN:1835-2707 – https://pdfs.semanticscholar.org/8a93/4a54f0acbe7f9c8e0dc43496a05d41d552ed.pdf – (On our blog : https://plantstomata.wordpress.com/2018/10/04/photosynthesis-leaf-anatomy-and-stomata-of-plantlets-cultured-in-vitro-under-different-silicon-concentrations/ )

Gomez L. D., Gilday A., Feil R., Lunn J. E., Graham I. A. (2010) –  AtTPS1-mediated
trehalose 6-phosphate synthesis is essential for embryogenicand vegetative growth
and responsiveness to ABA in germinating seeds and stomatal guard cells – Plant
Journal 64:113 – doi: 10.1111/j.1365-313X.2010.04312.x. Epub 2010 Sep 7 – https://www.ncbi.nlm.nih.gov/pubmed/20659274 – (On our blog : https://plantstomata.wordpress.com/2018/03/24/tps1-gene-product-plays-an-essential-role-in-responsiveness-to-aba-in-stomata/

Gómez-Rodríguez O., Zavaleta-Mejía E., González-Hernández V. A., Livera-Muñoz M., Cárdenas-Soriano E. (2007) –  Physiological and morphological adaptations in tomato intercropped with Tagetes erecta and Amaranthus hypochondriacus – Rev. Fitotec. Mex. 30 (4): 421 – 428 – Disponible en: <http://www.redalyc.org/articulo.oa?id=61030409> ISSN 0187-7380 – http://www.redalyc.org/html/610/61030409/ – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-conductance-physiological-and-morphological-adaptations/)

Gomi K., Ogawa D., Katou S., Kamada H., Nakajima N., Saji H., Soyano T.Sasabe M.Machida Y.Mitsuhara I., Ohashi1 Y., Seo S. (2005) – A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. – Plant Cell Physiol. 46, 1902–1914. doi: 10.1093/pcp/pci211 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/28/ntmpk4-is-involved-in-ja-signaling-and-in-stomatal-movement/ )

Gonugunta V. K., Srivastava N., Puli M. R., Raghavendra A. S. (2008) – Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. – Plant Cell Environ. 31: 1717–1724 – doi: 10.1111/j.1365-3040.2008.01872.x –  [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/05/28/no-aba-and-stomatal-closure/ )

Gonugunta V. K., Srivastava N., Raghavendra A. S. (2009) – Cytosolic alkalinization is a common and early messenger preceding the production of ROS and NO during stomatal closure by variable signals, including abscisic acid, methyl jasmonate and chitosan. – Plant Signal. Behav. 4, 561–564. – doi: 10.4161/psb.4.6.8847 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688314/ – (On our blog : https://plantstomata.wordpress.com/2018/03/24/levels-of-reactive-oxygen-species-ros-nitric-oxide-no-and-cytosolic-calcium-ca2-increase-significantly-during-stomatal-closure/

Gonzalez-Fernandez I., Bermejo V., Elvira S., de la Torre D., Gonzalez A., Navarrete L., … Alonso R. (2013) – Modelling ozone stomatal flux of wheat under Mediterranean conditions – Atmospheric Environment 67: 149–160 –

Gonzales-Guzman M., Pizzio G.A., Antoni R., Vera-Sirera, Merilo E., Bassel G. W., Fernandez M. A., Holdsworth M. J., Perez-Amador M. A., Kollist H., Rodriguez P. L. (2012) – Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid – The Plant Cell Online 24: 2483-2496 – doi: 10.1105/tpc.112.098574 – https://www.ncbi.nlm.nih.gov/pubmed/22739828 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/arabidopsis-pyrpylrcar-receptors-play-a-major-role-in-quantitative-regulation-of-stomatal-aperture/)

Goodfellow J., Eamus D., Duff G. (1997) – Diurnal and seasonal changes in the impact of CO2 enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet–dry tropics of Australia – Tree Physiology 17: 291-299 – https://www.academia.edu/34058561/Diurnal_and_seasonal_changes_in_the_impact_of_CO2_enrichment_on_assimilation_stomatal_conductance_and_growth_in_a_long-term_study_of_Mangifera_indica_in_the_wet-dry_tropics_of_Australia – (On our blog : https://plantstomata.wordpress.com/2018/09/26/changes-in-the-impact-of-co2-enrichment-on-assimilation-stomatal-conductance-and-growth/ )

Göring H., Koshuchowa S., Deckert C. (1990) – Influence of gibberellic acid on stomatal movement – Biochem. Physiol. Pflanz. 186: 367-374 – https://doi.org/10.1016/S0015-3796(11)80235-0 – https://www.sciencedirect.com/science/article/pii/S0015379611802350 – (On our blog : https://plantstomata.wordpress.com/2018/09/26/influence-of-ga-on-stomatal-movement/

Gorton H. L. et al. (1988) – Repeated measurements of aperture for individual stomates – Plant Physiol. 89: 387–390 –

Gostin I. N. (2009) – Air Pollution Effects on the Leaf Structure of some Fabaceae Species – Not. Bot. Hort. Agrobot. Cluj 37(2): 57-63 – 3078-12994-2-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/30/air-pollution-and-stomata-of-some-fabaceae/)

Goto T., Matsuno T., Yoshida Y., Kageyama Y. (2002) – Photosynthetic, Evapotranspiratory and Leaf Morphological Properties of Chrysanthemum Grown under Root Restriction as Affected by Fertigation Frequency –