The evolution of the stomatal apparatus

Figure 3.Cryo-scanning electron micrographs of freeze-fractured hornwort gametophytes (a–c) and sporophytes (d–i): Anthoceros agrestis (a,c,d–f); Folioceros fusiformis (b); Leiosporoceros dussii (g); Megaceros enigmaticus (h); Dendroceros granulatus (i). Sections through thalli showing mucilage-filled cavities (asterisk). (cNostoc colony. (d,g) Intercellular spaces are initially liquid-filled (asterisk) but become gas-filled (e, arrowed) following stomatal opening. (f) Columella with gas-filled (asterisk) intercellular spaces. (h,i) Young (h) and mature (i) sporophytes of astomate taxa, showing complete absence of intercellular spaces in the assimilatory layers which collapse and dry (i). Scale bars: (a,b) 200 µm; (d,e,g) 50 µm; (c,f,h,i) 20 µm.

The evolution of the stomatal apparatus: intercellular spaces and sporophyte water relations in bryophytes—two ignored dimensions

by Duckett J. G., Pressel S. (2017)

Jeffrey G. Duckett, Silvia Pressel,

In Philosoph. Transactions Royal Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0498

https://royalsocietypublishing.org/doi/full/10.1098/rstb.2016.0498

Figure 4.Cryo-scanning electron micrographs of freeze-fractured moss sporophytes: Physcomitrella patens (a,b); Physcomitrium pyriforme(c,d); Lyellia crispa (e,f). (a,c) Young sporophytes with liquid-filled (asterisk) intercellular spaces. (e) Gas (arrowed) gradually replaces their initially liquid-filled content following stomatal opening, as evidenced by the presence of intercellular spaces only partially filled with liquid (asterisk in f). Liquid is first lost from the substomatal cavities (b; S, stoma) until the entire intercellular space system becomes gas-filled (d). Scale bars: (c,d) 100 µm; (a,e) 50 µm; (b,d) 20 µm.

Abstract

Cryo-scanning electron microscopy shows that nascent intercellular spaces (ICSs) in bryophytes are liquid-filled, whereas these are gas-filled from the outset in tracheophytes except in the gametophytes of Lycopodiales.

ICSs are absent in moss gametophytes and remain liquid-filled in hornwort gametophytes and in both generations in liverworts. Liquid is replaced by gas following stomatal opening in hornworts and is ubiquitous in moss sporophytes even in astomate taxa.

Figure 5.Cryo-scanning electron micrographs of freeze-fractured moss sporophytes: Polytrichum juniperinum (a,b); Mnium hornum (c); Atrichum undulatum (d); Pogonatum aloides (e,f). (a,b) Unopened (a) and open (b) stoma subtended by a gas-filled intercellular space. (c) Sunken stoma subtended by a liquid-filled intercellular space. (d–f) In astomate taxa, intercellular spaces are also initially liquid-filled (asterisk, e) and the same process of liquid replacement by gas occurs in their fully expanded capsules (d,f). Scale bars: (f) 200 µm; (a–e) 20 µm.

New data on moss water relations and sporophyte weights indicate that the latter are homiohydric while X-ray microanalysis reveals an absence of potassium pumps in the stomatal apparatus.

The distribution of ICSs in bryophytes is strongly indicative of very ancient multiple origins. Inherent in this scenario is either the dual or triple evolution of stomata. The absence, in mosses, of any relationship between increases in sporophyte biomass and stomata numbers and absences, suggests that CO2 entry through the stomata, possible only after fluid replacement by gas in the ICSs, makes but a minor contribution to sporophyte nutrition. Save for a single claim of active regulation of aperture dimensions in mosses, all other functional and structural data point to the sporophyte desiccation, leading to spore discharge, as the primeval role of the stomatal apparatus.

This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.

Advertisements

Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s