PHYSIO- BIBLIOGRAPHY P-S

Pääkkönen E., Paasisalo S., Holopainen T., Kärenlampi L. (1993) – Growth and stomatal responses of birch (Betula pendula Roth.) clones to ozone in open-air and chamber fumigations – New Phytologist 125: 615-623 – – https://doi.org/10.1111/j.1469-8137.1993.tb03911.x – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1993.tb03911.x – (On our blog : https://plantstomata.wordpress.com/2018/12/22/elevated-o3-concentrations-increased-diffusive-resistance-to-water-vapour-but-increased-the-stomatal-density/ )

Pääkkönen E., Vahala J., Pohjola M., Holopainen T., Kärenlampi L. (1998) – Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress – Plant Cell Environ. 21: 671–684 – https://doi.org/10.1046/j.1365-3040.1998.00303.x – https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.1998.00303.x – (On our blog : https://plantstomata.wordpress.com/2018/10/15/water-stress-and-physiological-stomatal-and-ultrastructural-ozone-responses/ )

Pääkkönen E., Holopainen T., Kärenlampi L. (1997) – Differences in growth, leaf senescence and injury, and stomatal density in birch (Betula pendula Roth) in relation to ambient levels of ozone in Finland – Environmental Pollution 96: 117-127 – https://doi.org/10.1016/S0269-7491(97)00034-1 –https://www.sciencedirect.com/science/article/pii/S0269749197000341 – (On our blog : https://plantstomata.wordpress.com/2018/12/22/differences-in-growth-leaf-senescence-and-injury-and-stomatal-density-in-relation-to-levels-of-ozone/ )

Padmanaban S. Chanroj S. Kwak J. M., Li X., Ward J. M., Sze H. (2007) – Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells – Plant Physiol. 144: 82–93 – DOI: https://doi.org/10.1104/pp.106.092155 – http://www.plantphysiol.org/content/144/1/82?ijkey=2215735f35ce47a423879d755585d22cb4d27a9b&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/10/10/one-chx-protein-plays-a-critical-role-in-osmoregulation-through-k-fluxes-and-possibly-ph-modulation-of-an-active-endomembrane-system-in-stomata/ )

Padoan D., Mossad A., Chiancone B., Germana M. A., Khan P. S. S. V. (2013) – Ploidy levels in Citrus clementina affects leaf morphology, stomatal density and water content – Theoretical and Experimental Plant Physiology, 25(4): 283-290 – http://dx.doi.org/10.1590/S2197-00252013000400006. – http://www.scielo.br/pdf/txpp/v25n4/06.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/14/increase-in-ploidy-level-caused-an-effect-on-stomatal-characteristics/ )

Paiva E. A. S. (2017) – How does the nectar of stomata-free nectaries cross the cuticle? – Acta Bot. Bras. vol.31 no.3 Belo Horizonte July/Sept. 2017 – http://dx.doi.org/10.1590/0102-33062016abb0444 – http://www.scielo.br/scielo.php?pid=S0102-33062017000300525&script=sci_arttext – (On our blog : https://plantstomata.wordpress.com/2017/10/30/nectar-release-in-stomata-free-nectaries/ )

Paiva E. A., Lemos-Filho J. P., Oliveira D. M. (2006) – Imbition of Swietenia macrophylla (Meliaceae) seeds: The role of stomata – Ann. Bot. 98: 213-217. – doi:  10.1093/aob/mcl090 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803541/ – (On our blog : https://plantstomata.wordpress.com/2017/02/04/permanently-opened-stomata-in-the-seed-coat-play-a-significant-role-in-seed-imbibition/ )

Pal A., Kulshreshta K., Ahmad K. J., Behl H. M. (2002) – Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? – Flora – Morphology, Distribution, Functional Ecology of Plants 97(1): 47-55 – https://doi.org/10.1078/0367-2530-00014https://www.sciencedirect.com/science/article/pii/S0367253004700067 – (On our blog : https://plantstomata.wordpress.com/2019/07/18/leaf-surface-characters-stomata-and-plant-resistance-to-auto-exhaust-pollution/ )

Palevitz B. A. (1981) – The structure and development of stomatal cells. In: Stomatal Physiology (Jarvis, P. G.,Mansfield, T. A., eds.), pp. 1–23. Cambridge Univ. Press – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA1&ots=rqSI3Dzsz3&sig=PTjN4t7pZEm1PZRcWbKHP1QJM9Q&redir_esc=y#v=onepage&q&f=false – (On our blog: https://plantstomata.wordpress.com/2018/11/29/structure-and-development-of-stomatal-cells-2/

Palevitz B. A. (1981) – Microtubules and possible microtubule nucleation centers in the cortex of stomatal cells as visualized by high voltage electron microscopy – Protoplasma 107: 115–125 – https://doi.org/10.1007/BF01275612https://link.springer.com/article/10.1007%2FBF01275612#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/10/microtubules-and-possible-microtubule-nucleation-centers-in-the-cortex-of-stomatal-cells/ )

Palevitz B. A. (1982) – The stomatal complex as a model of cytoskeletal participation in cell differentiation – in C.W. Lloyd (Ed.), The cytoskeleton in plant growth and development –  Academic Press, London : 346-376 (Article not found)

Palevitz B. A. (1986) – Division plane determination in guard mother cells of Allium: video-lapse analysis of nuclear movements and phragmoplast rotation in the cortex – Developmental Biology 117: 644–654 – https://doi.org/10.1016/0012-1606(86)90333-7 –https://www.sciencedirect.com/science/article/pii/0012160686903337 – (On our blog : https://plantstomata.wordpress.com/2018/12/22/division-plane-determination-in-stomatal-guard-mother-cells/ )

Palevitz B. A., Hepler P. K. (1974) – The control of the plane of division during stomatal differentiation in Allium. I. Spindle reorientation – Chromosoma 46: 297-326 – https://doi.org/10.1007/BF00284884https://link.springer.com/article/10.1007/BF00284884#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/spindle-reorientation-during-stomatal-differentiation-2/ )

Palevitz B. A., Hepler P. K. (1974) – The control of the plane of division during stomatal differentiation in Allium. II. Drug studies – Chromosoma 46: 327–341 – https://doi.org/10.1007/BF00284885https://link.springer.com/article/10.1007%2FBF00284885#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/14/the-control-of-the-plane-of-division-during-stomatal-differentiation/ )

Palevitz B. A., Hepler P. K. (1976) – Cellulose microfibril orientation and cell shaping in developing guard cells of Allium: The role of microtubules and ion accumulation – Planta 132: 71. – https://doi.org/10.1007/BF00390333 – https://link.springer.com/article/10.1007/BF00390333#citeas – (On our blog : https://plantstomata.wordpress.com/2018/01/18/the-role-of-microtubules-and-ion-accumulation-in-stomata/ )

Palevitz B. A., Hepler P. K. (1985) – Changes in dye coupling of stomatal cells of Allium and Commelina demonstrated by microinjection of Lucifer Yellow – Planta 164: 473–479. – doi:10.1007/BF00395962 – CrossRef –http://link.springer.com/article/10.1007%2FBF00395962 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/dye-coupling-of-stomatal-cells/ )

Palevitz B. A., Hodge L. D. (1984) – The endoplasmic reticulum in the cortex of developing guard cells: coordinate studies with chlorotetracycline and osmium ferricyanide – Dev Biol. 101(1): 147-159 – PMID: 6198223 – https://www.ncbi.nlm.nih.gov/pubmed/6198223 – (On our blog : https://plantstomata.wordpress.com/2018/08/16/the-endoplasmic-reticulum-becomes-asymmetrically-distributed-in-young-guard-cells-of-stomata/ )

Palevitz B. A., Mullinax B. J. (1989) – Developmental changes in the arrangement of cortical microtubules in stomatal cells of oat (Avena sativa L.) – Cell Motility and Cytoskeleton 13: 170–180 – https://doi.org/10.1002/cm.970130305https://onlinelibrary.wiley.com/doi/abs/10.1002/cm.970130305 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/changes-in-the-arrangement-of-cortical-microtubules-in-stomatal-cells/ )

Palevitz B. A., O’Kane D. J. (1981) – Epifluorescence and video analysis of vacuole motility and development in stomatal cells of Allium – Science 214: 443–445 – https://www.jstor.org/stable/1687396?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/08/18/epifluorescence-vacuole-motility-and-development-in-stomatal-cells/ )

Palevitz B. A., O’Kane D. J., Kobres R. E., Raikhel N. V. (1981) – The vacuole system in stomatal cells of Allium – Vacuole movements and changes in morphology in differentiating cells as revealed by epifluorescence, video and electron microscopy – Protoplasma 109: 23-55 – https://doi.org/10.1007/BF01287629 – https://link.springer.com/article/10.1007/BF01287629 – (On our blog : https://plantstomata.wordpress.com/2018/08/16/vacuoles-in-stomata-of-allium/ )

Pallaghy C. K. (1968) – Electrophysiological studies in guard cells of tobacco. Planta 80: 147–153 – https://doi.org/10.1007/BF00385590https://link.springer.com/article/10.1007/BF00385590#citeas – (On our blog : https://plantstomata.wordpress.com/2019/06/27/electrophysiological-studies-in-stomata/ )

Pallaghy C. K. (1971) – Stomatal movement and potassium transport in epidermal strips of Zea mays-effect of CO2 – Planta 101: 287–295 – doi: 10.1007/Bf00398115 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text | Google Scholar.- https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=24488473&dopt=abstractplus – (On our blog : https://plantstomata.wordpress.com/2017/02/04/stomatal-movement-potassium-transport-and-co2/ )

Pallaghy C. K., Fischer R. A.( 1974) – Metabolic aspects of stomatal opening and ion accumulation by guard cells in Vicia faba – Z. f. Pflanzenphysiol. 71: 332–344 – https://doi.org/10.1016/S0044-328X(74)80040-1http://www.sciencedirect.com/science/article/pii/S0044328X74800401 – https://plantstomata.wordpress.com/2017/12/18/metabolic-aspects-of-stomatal-opening-and-ion-accumulation/ )

Pallardy S.G., Kozlowski T. T. (1979) – Frequency and length of stomata of 21 Populus clones – Canadian Journal of Botany 57: 2519-2523 –  https://doi.org/10.1139/b79-298 –http://www.nrcresearchpress.com/doi/abs/10.1139/b79-298 – (On our blog : https://plantstomata.wordpress.com/2017/09/06/frequency-and-length-of-stomata-in-populus-clones/ )

Pallas J. E. (1994) – Guard cell starch retention and accumulation in the dark – Bot. Gaz. 125: 102-107 – https://doi.org/10.1086/336253https://www.journals.uchicago.edu/doi/abs/10.1086/336253?journalCode=botanicalgazette – (On our blog : https://plantstomata.wordpress.com/2018/11/10/stomatal-guard-cells-have-a-very-pronounced-ability-to-retain-starch-for-prolonged-periods-in-darkness/

Pallas J. E. (1966) – Mechanisms of Guard Cell Action – The Quarterly Review of Biology 41(4): 365-383 – https://doi.org/10.1086/405157 – PMID: 5341597 – http://www.journals.uchicago.edu/doi/abs/10.1086/405157?journalCode=qrb – (On our blog : https://plantstomata.wordpress.com/2018/01/19/biochemical-changes-involved-in-opening-and-closing-of-stomata/ )

Pallas J. E., Kays S. J. (1982) – Inhibition of photosynthesis by ethylene-a stomatal effect – Plant Physiol. 70, 598–601. – doi: 10.1104/pp.70.2.598 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS – http://www.plantphysiol.org/content/70/2/598 – (On our blog : https://plantstomata.wordpress.com/2017/02/04/ethylene-influenced-the-conductance-of-abaxial-stomata/ )

Pallas J. E., Mollenhauer H. H. (1972) – Physiological implications of Vicia faba and Nicotiana tabacum guard-cell ultrastructure – American Journal of Botany 59: 504–514 – https://doi.org/10.1002/j.1537-2197.1972.tb10124.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1537-2197.1972.tb10124.x – (On our blog : https://plantstomata.wordpress.com/2018/11/10/physiological-implications-of-stomatal-guard-cell-ultrastructure/ )

Pallas J. E., Mollenhauer H. H. (1972) – Electron Microscopic Evidence for Plasmodesmata in Dicotyledonous Guard Cells – Science, 175(4027), 1275-1276 – https://doi.org/10.1126/science.175.4027.1275 –https://app.dimensions.ai/details/publication/pub.1062504533 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/plasmodesmata-appear-functional-in-the-mechanism-of-stomatal-movements/ )

Pallas J. E., Wright B. G. (1973) – Organic acid changes in the epidermis of Vicia faba and their implication in stomatal movement – Plant Physiol 51: 588-590 – https://doi.org/10.1104/pp.51.3.588http://www.plantphysiol.org/content/51/3/588 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/organic-acid-production-in-the-epidermis-is-associated-with-stomatal-opening-2/ )

Palmer L. (2019) – A Glucose Transporter Promotes Stomatal Conductance and Photosynthesis – The Plant Cell, The Plant Cell: In a Nutshell  May 3, 2019 – https://plantae.org/research/a-glucose-transporter-promotes-stomatal-conductance-and-photosynthesis/?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plantae_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/06/14/glucose-transporter-cst1-promotes-stomatal-conductance-and-photosynthesis/ )

Panawala L. (2017) – Difference Between Guard Cells and Subsidiary Cells – I-PEDIAA – https://www.researchgate.net/publication/316617168_Difference_Between_Guard_Cells_and_Subsidiary_Cells – (On our blog : https://plantstomata.wordpress.com/2019/05/04/stomatal-guard-cells-and-subsidiary-cells/ )

Panchal S., Chitrakar R., Thompson B. K., Obulareddy N., Roy D., Hambright W. S., Melotto M. (2016) – Regulation of Stomatal Defense by Air Relative Humidity – Plant Physiology 172(3): – DOI: https://doi.org/10.1104/pp.16.00696 –http://www.plantphysiol.org/content/172/3/2021 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/high-humidity-suppressing-stomatal-defense-and-linked-to-hormone-signaling/ )

Pandey N., Archana (2009) – Boron-stress induced changes in water status and stomatal morphology in Zea maysL. and Catharanthus roseus L. – Indian Journal of Plant Physiology 14(3): 310-314  – ISSN : 0019-5502 – http://agris.fao.org/agris-search/search.do?recordID=IN2010001027 – (On our blog : https://plantstomata.wordpress.com/2017/11/18/reduced-stomatal-size-increased-stomatal-index-and-stomatal-opening-at-deficient-and-toxic-supply-of-boron/ )

Pandey R., Chacko P., Choudhary M. L. Prasad K. V., Pal M. (2007) – Higher than optimum temperature under CO2 enrichment influences stomata anatomical characters in rose (Rosa hybrida) – Scientia Horticulturae 113: 74–81 – https://doi.org/10.1016/j.scienta.2007.01.021 – CrossrefGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S0304423807000532 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/an-important-database-on-stomatal-anatomy-for-two-important-microclimates/ )

Pandey S., Wang X.-Q., Coursol S. A., Assmann S. M. (2002) – Preparation and applications of Arabidopsis thaliana guard cell protoplasts – New Phytologist 153: 517–526. – DOI: 10.1046/j.0028-646X.2001.00329.x – | CrossRef | CAS |– http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00329.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/how-to-elucidate-electrophysiological-biochemical-and-molecular-genetic-pathways-of-stomata-function/ )

Pandey S., Zhang W., Assmann, S. M. (2007) – Roles of ion channels and transporters in guard cell signal transduction – FEBS Lett. 581: 2325–2336 – doi: 10.1016/j.febslet.2007.04.008 – https://www.sciencedirect.com/science/article/pii/S0014579307003833 – (On our blog : https://plantstomata.wordpress.com/2018/06/10/stomatal-movement-is-facilitated-by-the-activity-of-ion-channels-and-ion-transporters/ )

Panter P. E. (2019) – Exploring the role of cell-wall pectin cross-linking in freezing tolerance and guard cell dynamics in Arabidopsis thalianaDoctoral thesis, Durham University – http://etheses.dur.ac.uk/12957/ – (On our blog : https://plantstomata.wordpress.com/2019/04/15/the-role-of-cell-wall-pectin-cross-linking-in-freezing-tolerance-and-stomatal-guard-cell-dynamics/ )

Panteris E., Achiati T., Daras G., Rigas S. (2018) – Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis – Molecules. 2018 Jun 6;23(6). pii: E1365 –  doi: 10.3390/molecules23061365 – https://www.ncbi.nlm.nih.gov/pubmed/29882773 – (On our blog : https://plantstomata.wordpress.com/2018/09/06/stomatal-complex-development-depends-on-cell-wall-mechanical-properties/ )

Panteris E., Apostolakos P., Galatis B. (2006) – Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position – Cell Motil Cytoskeleton. 63(11): 696-709 – PMID: 16986138 -DOI: 10.1002/cm.20155 – https://www.ncbi.nlm.nih.gov/pubmed/16986138 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/cytoskeletal-asymmetry-in-stomatal-subsidiary-cell-mother-cells/ )

Panteris E., Galatis B., Quader H., Apostolakos P. (2007) – Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum – Cell Motility and the Cytoskeleton 64: 531-548 –https://www.academia.edu/27006952/Cortical_actin_filament_organization_in_developing_and_functioning_stomatal_complexes_of_Zea_mays_and_Triticum_turgidum – (On our blog : https://plantstomata.wordpress.com/2017/12/18/cortical-actin-filament-organization-in-developing-and-functioning-stomatal-complexes/ )

Pantin F., Blatt M. R. (2018) – Stomatal Response to Humidity: Blurring the Boundary between Active and Passive Movement – Plant Physiol. 176 (1): 485-488 – DOI: https://doi.org/10.1104/pp.17.01699 – http://www.plantphysiol.org/content/176/1/485 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-response-to-humidity/

Pantin F., Monnet F., Jannaud D., Costa J.M., Renaud J., Muller B., Simonneau T., Genty B. (2013) – The dual effect of abscisic acid on stomata – New Phytol 197: 65–72  -DOI: 10.1111/nph.12013 – CrossRefPubMedGoogle Scholar – https://www.ncbi.nlm.nih.gov/pubmed/23106390 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/aba-promotes-stomatal-closure-in-a-dual-way-a-biochemical-effect-on-guard-cells-and-a-hydraulic-effect/

Pantin F., Renaud J., Barbier F. F., Vavasseur A., Le Thiec D., Rose C., Bariac T., Casson S. A., McLachlan D. H., Hetherington A. M., Muller B., Simonneau T. (2013) – Developmental Priming of Stomatal Sensitivity to Abscisic Acid by Leaf Microclimate – Current Biology – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/stomatal-sensitivity-to-aba-is-acquired-during-leaf-development-by-exposure-to-an-increasingly-dryer-atmosphere/

Pantoja 0., Willmer C. M . (1988) – Redox activity and peroxidase activity associated with the plasma membrane of guard cell protoplasts – Planta 174: 44-50 -DOI: 10.1007/BF00394872 – https://www.ncbi.nlm.nih.gov/pubmed/24221416 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/redox-activity-and-peroxidase-activity-associated-with-the-plasma-membrane-of-stomatal-guard-cell-protoplasts/ )

Paoletti E. (2005) – Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo – Environ. Pollut. 134: 439–445 – https://doi.org/10.1016/j.envpol.2004.09.011https://www.sciencedirect.com/science/article/pii/S0269749104003835 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/ozone-slows-stomatal-response-to-light-and-leaf-wounding/ )

Paoletti E., Gellini R. (1993) –  Stomatal density variation in beech and holm oak leaves collected over the last 200 years – Acta Oecologica 14: 173-178 – http://cat.inist.fr/?aModele=afficheN&cpsidt=3800365 – (On our blog : https://plantstomata.wordpress.com/2017/09/07/stomatal-density-reduced-over-the-last-200-years/ )

Paoletti E., Grulke N. E. (2005) – Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses – Environmental Pollution 137: 483–493 – https://doi.org/10.1016/j.envpol.2005.01.035https://www.sciencedirect.com/science/article/pii/S0269749105001223 – (On our blog : https://plantstomata.wordpress.com/2018/11/14/does-living-in-elevated-co2-ameliorate-tree-response-to-ozone/ )

Paoletti E., Grulke N. E. (2010) – Ozone exposure and stomatal sluggishness in different plant physiognomic classes – Environ. Pollut. 158: 2664–2671 – DOI: 10.1016/j.envpol.2010.04.024 – https://www.ncbi.nlm.nih.gov/pubmed/20537773 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/sluggish-stomatal-responses-are-suggested-to-be-both-an-effect-of-o3-exposure-and-a-reason-of-increased-o3-sensitivity-in-plants/ )

Paoletti E., Nourrisson G., Garrec J. P., Raschi A. (1998) – Modifications of the leaf surface structures of Quercus ilex L. in open, naturally CO2 enriched environments – Plant, Cell Environ. 21: 1071–1075 –

Papanatsiou M. (2019) – BLINKing stomata: an optogenetic approach to improve plant growth and water use Botany One July 19, 2019 – https://www.botany.one/2019/07/blinking-stomata-an-optogenetic-approach-to-improve-plant-growth-and-water-use/ – (On our blog : https://plantstomata.wordpress.com/2019/08/23/blinking-stomata/ )

Papanatsiou M., Amtmann A., Blatt M. R. (2016) – Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir – Plant Physiology 172(1) – DOI: https://doi.org/10.1104/pp.16.00850 – http://www.plantphysiol.org/content/172/1/254 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/stomatal-spacing-safeguards-stomatal-dynamics/ )

Papanatsiou M., Amtmann A., Blatt M. R. (2017) – Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency – J Exp Bot. 68(9): 2309–2315 – doi:  10.1093/jxb/erx072 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447881/ – (On our blog : https://plantstomata.wordpress.com/2018/03/19/is-stomatal-clustering-altering-guard-cell-dynamics-and-gas-exchange/

Papanatsiou M., Petersen J., Henderson L., Wang Y., Christie J. M., Blatt M. R. (2019) – Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth – Science 363, Issue 6434, 1456-1459 – DOI: 10.1126/science.aaw0046 – http://science.sciencemag.org/content/363/6434/1456 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/the-potential-of-enhancing-stomatal-kinetics-to-improve-water-use-efficiency-without-penalty-in-carbon-fixation/ )

Papanatsiou M., Scuffi D., Blatt M. R., Garcia-Mata C. (2015) – Hydrogen Sulfide Regulates Inward-Rectifying K+Channels in Conjunction with Stomatal Closure – Plant Physiolog 168(1) – DOI: https://doi.org/10.1104/pp.114.256057 –http://www.plantphysiol.org/content/168/1/29 – https://plantstomata.wordpress.com/2017/11/06/h2s-closes-stomata/ )

Papazian S., Khaling E., Bonnet C., Lassueur S., Reymond P., Moritz T., Blande J. D., Albrectsen B. R. (2016) – Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure – Plant Physiology 172(3) – DOI: https://doi.org/10.1104/pp.16.01318 – http://www.plantphysiol.org/content/172/3/2057 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/central-metabolic-responses-and-stomatal-closure/ )

Pappas T., McManus P., Vanderveer P., Croxdale J. (1988) – Characterization of stomatal development in Dianthus chinensis – Canadian Journal of Botany, 1988, 66(1): 142-149 – https://doi.org/10.1139/b88-022 –http://www.nrcresearchpress.com/doi/abs/10.1139/b88-022 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/stomatal-development-in-dianthus-chinensis-2/ )

Park G. E., Lee D. K., Kim K. W., Batkhuu N.-O.,  Tsogtbaatar J., Zhu J.-J., Jin Y., Pil Sun Park P. S., Hyun J. O., Kim H. S. (2016) – Morphological Characteristics and Water-Use Efficiency of Siberian Elm Trees (Ulmus pumila L.) within Arid Regions of Northeast Asia – Forests 7: 280-299 – doi:10.3390/f7110280 – www.mdpi.com/1999-4907/7/11/280/pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/stomatal-traits-and-aridity-gradients/ )

Park K. Y., Jung J. Y., Park J., Hwang J. U., Kim Y. W., Hwang I., Lee Y. (2003) – A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. – Plant Physiol. 132: 92–98. – doi: 10.1104/pp.102.016964 – https://www.ncbi.nlm.nih.gov/pubmed/12746515 – (On our blog : https://plantstomata.wordpress.com/2018/06/11/a-role-for-pi3p-in-aba-induced-ros-generation-and-stomatal-closing-2/ )

Park S. Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T. F., Alfred S. E., Bonetta D., Finkelstein R., Provart N. J., Desveaux D., Rodriguez P. L., McCourt P., Zhu J. K., Schroeder J. I., Volkman B. F., Cutler S. R. (2009) – Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins – Science 324(5930): 1068-1071 – doi: 10.1126/science.1173041 – Epub 2009 Apr 30 – https://www.ncbi.nlm.nih.gov/pubmed/19407142?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/aba-inhibits-type-2c-protein-phosphatases-via-the-pyr-pyl-family-in-stomata/ )

Parkhurst D. F. (1978) –  The adaptive significance of stomatal occurrence on one or both surfaces of leaves – Journal of Ecology 66: 367-383 – DOI: 10.2307/2259142 – https://www.jstor.org/stable/2259142?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/07/the-adaptive-significance-of-hypostomatous-and-amphistomatous-leaves/ )

Parlange J.-Y., Waggoner P. E. (1970) – Stomatal dimensions and resistance to diffusion – Plant Physiology 46: 337–342 -PMID: 16657461 – PMCID: PMC396590 – https://www.ncbi.nlm.nih.gov/pubmed/16657461 – (On our blog : https://plantstomata.wordpress.com/2018/11/13/stomatal-dimensions-and-resistance-to-diffusion-2/ )

Parlati A., Valkov V. T., D’Apuzzo E., Martins Alves L., Petrozza A., Summerer S., Costa A., Cellini F., Vavasseur A., Chiurazzi M. (2017) – Ectopic Expression of PII Induces Stomatal Closure in Lotus japonicus – Front. Plant Sci. – http://2lo.tatter.us/author/Alain-Vavasseur – (On our blog : https://plantstomata.wordpress.com/2018/09/07/ectopic-expression-of-pii-induces-stomatal-closure/ )

Parvathi K., Raghavendra A. S. (1995) – Bioenergetic processes in guard cells related to stomatal function – Physiol. Plant. 93: 146–154 – https://doi.org/10.1034/j.1399-3054.1995.930121.xhttps://eurekamag.com/pdf/002/002570353.pdf – (In our blog : https://plantstomata.wordpress.com/2018/11/14/bioenergetic-processes-in-guard-cells-related-to-stomatal-function/ )

Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) (2012) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – Publisher: The International Maize and Wheat Improvement Center, CIMMYT – https://www.researchgate.net/publication/268743172_Physiological_Breeding_II_A_Field_Guide_to_Wheat_Phenotyping – (On our blog : https://plantstomata.wordpress.com/2018/01/30/66106/ )

Passalia M. G. (2009) – Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina – Palaeogeography, Palaeoclimatology, Palaeoecology 273: 17-24 -https://doi.org/10.1016/j.palaeo.2008.11.010 – https://www.sciencedirect.com/science/article/pii/S0031018208006342 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/cretaceous-pco2-estimation-from-stomatal-frequency-analysis/ )

Pataki D. E., Oren R. (2003) – Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest – Adv. Water Res. 26: 1267–1278 – https://doi.org/10.1016/j.advwatres.2003.08.001 – https://www.sciencedirect.com/science/article/pii/S0309170803001179 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/species-differences-in-stomatal-control-of-water-loss-at-the-canopy-scale/ )

Pataki D. E., Oren R., Katul G., Sigmon J. T. (1998) -Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions – Tree Physiology 18: 307–315 – PMID: 12651370 – https://www.ess.uci.edu/~dpataki/reprints/18-307.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/19/stomatal-conductance-under-varying-atmospheric-and-soil-water-conditions/ )

Pataki D. E., Oren R., Phillips N. (1998) – Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area – J. Exp. Bot. 49: 871–878 – https://www.ncbi.nlm.nih.gov/pubmed/12651370 – (On our blog : https://plantstomata.wordpress.com/2018/11/17/responses-of-sap-flux-and-stomatal-conductance-to-stepwise-reductions-in-leaf-area/ )

Pataki D. E., Oren R., Smith W. K.(2000) – Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought –  Ecology 81: 2557–2566 – DOI: 10.2307/177474 – https://www.jstor.org/stable/177474?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/16/sap-flux-of-co-occurring-species-and-stomatal-movements-during-seasonal-soil-drought/ )

Pataki D.E., Oren R., Tissue D. T. (1998) – Elevated carbon dioxide does not affect average canopy stomata1 conductance of Pinus taeda L. – Oecologia 117: 47-52 – https://doi.org/10.1007/s004420050630https://link.springer.com/article/10.1007/s004420050630#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/elevated-co2-does-not-affect-average-canopy-stomatal-conductance-2/ )

Patané C. (2011) – Leaf area index, leaf transpiration and stomatal conductance as affected by soil water deficit and vpd in processing tomato in semi arid mediterranean climate – J Agron Crop Sci 197: 165–176 – https://doi.org/10.1111/j.1439-037X.2010.00454.x – https://onlinelibrary.wiley.com/doi/full/10.1111/j.1439-037X.2010.00454.x – (On our blog : https://plantstomata.wordpress.com/2018/11/16/mechanisms-regulating-stomatal-opening/ )

Patel J. D. (1978) – How should we interpret and distinguish subsidiary cells? – Bot J Linn Soc, 77:65-72. – DOI: 10.1111/j.1095-8339.1978.tb01373.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.1978.tb01373.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/29/the-concept-of-subsidiary-cells-of-stomata/ )

Patel J. D., Raju E. C., Fotedar R. L., Kothari H., Shah J. J. (1975) – Structure and histochemistry of stomata and epidermal cells in five species of Polypodiaceae – Ann. Bot. 38: 611-619 – DOI: 10.1093/oxfordjournals.aob.a084973 –https://www.jstor.org/stable/42753379?seq=1#page_scan_tab_contents – https://plantstomata.wordpress.com/2017/12/18/structure-and-histochemistry-of-stomata-in-ferns/ )

Paterson N. W., Weyers J. D. B., A’Brook R. (1988) – The effect of pH on stomatal sensitivity to abscisic acid – Plant Cell Environ. 11, 83-89. – DOI: 10.1111/1365-3040.ep11604886 – Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11604886/full  – (On our blog : https://plantstomata.wordpress.com/2017/02/07/ph-and-stomatal-sensitivity-to-abscisic-acid/ )

Paterson N. W., Weyers J. D. B., Herdman L. (1988) – Relative control potential of abscisic acid, carbon dioxide and light in responses of Phaseolus vulgaris stomata – Physiol Plant. 2001 Mar;111(3):412-418 – PMID: 11240927 –https://www.ncbi.nlm.nih.gov/pubmed/11240927 – (On our blog : https://plantstomata.wordpress.com/2017/12/13/relative-control-potential-of-aba-co2-and-light-in-responses-of-stomata/ )

Paterson N. W., Weyers J. D. B., Schildknecht H. (1987) – The Effects of a Turgorin on Stomatal Movement and Transpiration in Commelina communis L. – Journal of Plant Physiology 128(s 4–5):491–495 – DOI 10.1016/S0176-1617(87)80136-0 –http://www.sciencedirect.com/science/article/pii/S0176161787801360 – (On our blog : https://plantstomata.wordpress.com/2017/12/14/the-effects-of-a-turgorin-on-stomatal-movement/ )

Pattison R. (2015) – Guard cells: Finding a MATE – Nature Plants 1, Article number: 15010 – DOI: 10.1038/nplants.2015.10  – https://www.nature.com/articles/nplants201510 – (No abstract found)

Paudel I., Halpern M., Wagner Y., Raveh E., Yermiyahu U., Hoch G., Klein T. (2018) – Elevated CO2, compensates for drought effects in lemon saplings via stomatal down regulation, increased soil moisture, and increased wood carbon storage – Environ. Exp. Bot. 148: 117–127 – https://doi.org/10.1016/j.envexpbot.2018.01.004https://www.sciencedirect.com/science/article/abs/pii/S0098847218300285?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/08/01/elevated-co2-compensates-for-drought-effects-via-stomatal-down-regulation/ )

Pavol E. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14, Issue 1, 29–42- doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 – (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/ )

Pavol E. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41, ISSN 0001-7124 – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/ )

Pazourek J. (1970) – The effect of light intensity on stomatal frequency in leaves of Iris hollandica Hort var. wedgwood – Biol. Plant. (Prague) 12: 208-215 – (On our blog : https://plantstomata.wordpress.com/2017/09/08/the-effect-of-light-intensity-on-stomatal-frequency/ )

Peak D., Mott K. A. (2011) – A new, vapour-phase mechanism for stomatal responses to humidity and temperature – Plant Cell Environ 34: 162–178 – DOI: 10.1111/j.1365-3040.2010.02234.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02234.x/abstract – (On our blog : https://plantstomata.wordpress.com/2018/02/02/a-new-mechanism-for-stomatal-responses-to-humidity-and-temperature-2/

Peak D., Mott K. A. (2011) – Leafy Social Network: USU Scientists Study How Stomata Communicate – Utah State Today – University News (Nov.23, 2011) –http://www.usu.edu/ust/index.cfm?article=50552 – (On our blog : https://plantstomata.wordpress.com/2017/02/15/how-stomata-communicate-2/ )

Pearce D. W., Millard S., Bray D. F., Rood S. B. (2006) – Stomatal characteristics of riparian poplar species in a semi-arid environment – Tree Physiology 26: 211-218 – http://dx.doi.org/10.1093/treephys/26.2.211 – CrossRefGoogle Scholar – https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/26.2.211 – (On our blog : https://plantstomata.wordpress.com/2017/02/07/stomatal-density-stomatal-conductance-and-climatic-conditions/ )

Pearson C. J. (1973) – Daily changes in stomatal aperture and in carbohydrates and malate within epidermis and mesophyll of leaves of Commelina cyanea and Vicia faba. – Aust. J. Biol. Sci. 26, 1035–1044 – https://doi.org/10.1071/BI9731035 – – http://www.publish.csiro.au/BI/BI9731035 – (On our blog : https://plantstomata.wordpress.com/2017/08/18/daily-changes-in-stomatal-aperture/

Pearson C. J., Milthorpe F. L. (1974) – Structure, carbon dioxide fixation and metabolism of stomata – Aust. J. Plant Physiol. 1: 221–236 – https://doi.org/10.1071/PP9740221http://www.publish.csiro.au/fp/PP9740221 – (On our blog : https://plantstomata.wordpress.com/2018/11/12/structure-co2-fixation-and-metabolism-of-stomata/

Pearson D. (2011) – Understanding the Abscisic Acid Pathway Using Guard Cell Specific Genes and the Anti-Aging Drug Spermidine – The University of Maryland McNair Scholars Undergraduate Research Journal 3: 174-193 – http://hdl.handle.net/1903/12468 –  https://drum.lib.umd.edu/handle/1903/12468 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/63317/ )

Pearson M., Mansfield T. A. (1993) – Interacting effects of ozone and water stress on the stomata1 resistance of beech (Fagus sylvatica L.) – New Phytologist 123: 351-358 – https://doi.org/10.1111/j.1469-8137.1993.tb03745.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1993.tb03745.x – (On our blog : https://plantstomata.wordpress.com/2018/06/11/effects-of-ozone-and-water-stress-on-the-stomatal-resistance/ )

Peat H. J., Fitter A. H. (1994) – A comparative study of the distribution and density of stomata in the British flora – Biological Journal of the Linnean Society, 52: 377-393. – DOI: 10.1111/j.1095-8312.1994.tb00999.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1994.tb00999.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/02/07/hypostomaty-amphistomaty-epistomaty-and-stomata-density/ )

Pedersen O., Jorgensen L. B., Sand-Jensen K. (1997) – Through-flow of water in leaves of a submerged plant is influenced by the apical opening – Planta 202(1): 43-50 –

Peel J. R., Mandujano Sanchez M. C., Lopez Portillo J., Golubov J. (2017) – Stomatal density, leaf area and plant size variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) along a salinity gradient in the Mexican Caribbean – Revista Biologia Tropical 66(2): – DOI: https://doi.org/10.15517/rbt.v65i2.24372 – https://revistas.ucr.ac.cr/index.php/rbt/article/view/24372 – (On our blog : https://plantstomata.wordpress.com/2018/02/04/stomatal-density-is-inversely-related-to-leaf-area-and-salinity-may-increase-stomatal-density-by-causing-reduction-of-leaf-size/ )

Pei Z. M., Baizabal-Aguirre V. M., Allen G. J., Schroeder J. I. (1998) – A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells. – Proc. Natl. Acad. Sci. U.S.A. 95, 6548–6553. – doi: 10.1073/pnas.95.11.6548 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27872/ – (On our blog : https://plantstomata.wordpress.com/2017/02/18/a-k-channel-currentcytosolic-ca2-and-stomatal-movements/ )

Pei Z.-M., Ghassemian M., Kwak C., McCourt P., Schroeder J. I. (1998) – Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. – Science 282: 287–290 – DOI: 10.1126/science.282.5387.287 – http://science.sciencemag.org/content/282/5387/287.full – (On our blog : https://plantstomata.wordpress.com/2018/06/14/farnesyltransferase-in-aba-regulation-of-stomatal-anion-channels/ )

Pei Z. M., Kuchitsu K. (2005) – Early ABA signaling events in guard cells – Journal of Plant Growth Regulation 24: 296–307 – DOI: 10.1007/s00344-005-0095-x – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Early-ABA-Signaling-Events-in-Guard-Cells.pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/19/an-overview-of-the-cellular-and-molecular-mechanisms-underlying-aba-evoked-signaling-events-in-stomata/

Pei Z. M., Kuchitsu K., Ward J. M., Schwarz M., Schroeder J. I. (1997) – Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. – Plant Cell 9: 409–423 – doi: 10.1105/tpc.9.3.409 – http://www.plantcell.org/content/9/3/409 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/aba-signaling-pathways-and-roles-for-abi1-abi2-and-protein-kinases-and-phosphatases-in-stomata/ )

Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J., Grill E., Schroeder J. I. (2000) – Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. – Nature 406: 731–734. – doi: 10.1038/35021067 – https://www.nature.com/articles/35021067 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/aba-induced-h2o2-production-and-the-h2o-2-activated-ca2-channels-are-important-mechanisms-for-aba-induced-stomatal-closing/ )

Pei Z. M., Ward J. M., Harper J. F., Schroeder J. I. (1996) – A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. – EMBO J. 15: 6564–6574 – PMID: 8978683 – PMCID: PMC452481 – https://www.ncbi.nlm.nih.gov/pubmed/8978683 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/vcl-channels-may-provide-a-previously-unidentified-pathway-for-anion-uptake-into-vacuoles-required-for-stomatal-opening/ )

Pei Z. M., Ward J. M.,  Schroeder J. I. (1999) – Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles – Plant Physiology 121: 977-986 – https://doi.org/10.1104/pp.121.3.977 – http://www.plantphysiol.org/content/121/3/977 – (On our blog : https://plantstomata.wordpress.com/2018/11/19/vacuolar-ion-channels-in-guard-cells-play-important-roles-during-stomatal-movement-and-are-regulated-by-many-factors/ )

Peisker M. (1973) – CO2-Aufnahme, Transpiration und Blatttemperatur unter dem Einfluss von Anderungen der Stomataweite – Kulturpflanze 21: 97-109 –

Peiter E., Maathuis F. J., Mills L. N., Knight H., Pelloux J., Hetherington A. M., et al. (2005) – The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. – Nature 434: 404–408. – doi: 10.1038/nature03381 – https://www.nature.com/articles/nature03381 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/stomatal-movement-a-critical-role-of-intracellular-ca2-release-channels-in-the-physiological-processes-of-plants/ )

Peksen E., Peksen A. Gulumser A.. (2014) – Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions – Int. J. Curr. Microbiol. App. Sci 3 (2): 626–634 – https://www.researchgate.net/publication/260316270_Leaf_and_stomata_characteristics_and_tolerance_of_cowpea_cultivars_to_drought_stress_based_on_drought_tolerance_indices_under_rainfed_and_irrigated_conditions – (On our blog : https://plantstomata.wordpress.com/2018/11/20/stomata-characteristics-under-rainfed-and-irrigated-conditions/ )

Peligrino G. P. G., Wayan R. G. R., Escoton J. D. (2011) – Comparison of leaf stomata density of Rhoeo spathacea from polluted and non-polluted site in Cebu – BS Thesis Cebu University – http://www.herdin.ph/index.php/component/herdin/?view=research&cid=45629 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-density-in-leaves-from-a-polluted-and-a-non-polluted-site-in-cebu/ )

Pemadasa M. A. (1979) – Stomatal Responses to Two Herbicidal Auxins – Journal of Experimental Botany 30(2): 267–274 – https://doi.org/10.1093/jxb/30.2.267https://academic.oup.com/jxb/article-abstract/30/2/267/437390?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/08/28/naa-and-noxa-partly-supress-photoactive-stomatal-opening-by-arresting-starch-hydrolysis-and-potassium-accumulation-in-the-guard-cells-and-partly-by-disturbing-the-intercellular-co2-concentration/ )

Pemadasa M. A. (1979) – Movements of abaxial and adaxial stomata – New Phytologist 82: 69-80 – https://www.jstor.org/stable/2485077https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1979.tb07561.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/movements-of-abaxial-and-adaxial-stomata-2/ )

Pemadasa M. A. (1981) – Abaxial and adaxial stomatal behaviour and responses to fusicoccin on isolated epidermis of Commelina communis – New Phytologist 89: 373-384 – https://doi.org/10.1111/j.1469-8137.1981.tb02318.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1981.tb02318.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/abaxial-and-adaxial-stomatal-behaviour-and-responses-to-fusicoccin/ )

Pemadasa M. A. (1981) – Photocontrol of stomatal movements – Biol. Reviews 56(4): 551–588 – DOI: 10.1111/j.1469-185X.1981.tb00359.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1981.tb00359.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/18/light-and-stomatal-movements/

Pemadasa M. A. (1982) – Differential abaxial and adaxial stomatal responses to indole-3-acetic acid in Commelina communis – New Phytologist 90: 209-219 – https://doi.org/10.1111/j.1469-8137.1982.tb03253.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1982.tb03253.x – (On our blog : https://plantstomata.wordpress.com/2019/05/11/a-hormonal-basis-for-the-differential-adaxial-and-abaxial-stomatal-opening/ )

Pemadasa M. A. (1982) – Abaxial and adaxial stomatal responses to light of different wavelengths and to phenylacetic acid on isolated epidermis of Commelina communis L. –  J Exp Bot 33: 92–99 – https://doi.org/10.1093/jxb/33.1.92 –https://academic.oup.com/jxb/article-abstract/33/1/92/461798?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/11/stomatal-responses-to-light-of-different-wavelengths-and-to-paa/ )

Pemadasa M. A. (1982) – Effects of phenylacetic acid on abaxial and adaxial stomatal movements and its interaction with abscisic acid – New Phytol. 92: 21–30 – https://doi.org/10.1111/j.1469-8137.1982.tb03359.xhttps://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1982.tb03359.x – (On our blog : https://plantstomata.wordpress.com/2019/05/27/paa-and-abaxial-and-adaxial-stomatal-movements/ )

Pemadasa M. A., Koralege S. (1977) – Stomatal responses to 2,4-dinitrophenol – New Phytologist 78(3): 573-578 – https://doi.org/10.1111/j.1469-8137.1977.tb02160.x –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1977.tb02160.x – (On our blog : https://plantstomata.wordpress.com/2019/01/11/the-effect-of-24%E2%80%90dnp-on-stomatal-movement/ )

Peña-Rojas K., Aranda X., Fleck I. (2004) – Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought – Tree Physiol. 24(7): 813-822 DOI: 10.1093/treephys/24.7.813https://www.ncbi.nlm.nih.gov/pubmed/15123453 – (On our blog : https://plantstomata.wordpress.com/2019/08/30/stomatal-limitation-to-co2-assimilation-and-down-regulation-of-photosynthesis-in-response-to-slowly-imposed-drought/ )

Penfield S., Clements S., Bailey K. J., Gilday A. D., Leegood R. C., Gray J. E., Graham I. A. (2012) – Expression and manipulation of PHOSPHOENOLPYRUVATE CARBOXYKINASE 1 identifies a role for malate metabolism in stomatal closure. – Plant J.69, 679–688. – 10.1111/j.1365-313X.2011.04822.x – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/22007864 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/malate-metabolism-is-important-during-dark-induced-stomatal-closure-and-pepck-is-involved/

Peng S., Pang G., Xu J., Zhang Z. (2009) – Improvement of stomatal conductance models of rice under water saving irrigation treatment -Nongye Gongcheng Xuebao/Transactions of the CSAE 25: 19–23. [in Chinese with English abstract] – https://www.researchgate.net/publication/288543709_Improvement_of_stomatal_conductance_models_of_rice_under_water_saving_irrigation_treatment – (On our blog : https://plantstomata.wordpress.com/2018/11/16/improvement-of-stomatal-conductance-models/ )

Peng Z., Weyers J. D. B. (1994) – Stomatal sensitivity to abscisic acid following water deficit stress – Journal of Experimental Botany 45: 835–845 – https://doi.org/10.1093/jxb/45.6.835 – https://academic.oup.com/jxb/article-abstract/45/6/835/509011?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-sensitivity-to-aba-following-water-deficit-stress/ )

Penny M. G., Bowling D. J. F. (1974) –  A study of potassium gradients in the epidermis of intact leaves of Commelina communis L. in relation to stomatal opening – Planta 119: 17–25 – DOI: 10.1007/BF00390818 – https://www.ncbi.nlm.nih.gov/pubmed/24442405?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/10/11/potassium-transport-both-into-and-out-of-the-stomata-is-an-active-process/ )

Penny M. G., Kelday L. S., Bowling D. J. F. (1976) – Active chloride transport in the leaf epidermis of Commelina communis in relation to stomatal activity – Planta 130: 291-294 – DOI: 10.1007/BF00387835 – https://www.ncbi.nlm.nih.gov/pubmed/24424642 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/active-chloride-transport-in-relation-to-stomatal-activity/

Penuelas J., Matamala R. (1990) – Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during then last three centuries of CO2 increase – J. Exp. Bot. 41: 1119–1124 – https://doi.org/10.1093/jxb/41.9.1119 – https://academic.oup.com/jxb/article-abstract/41/9/1119/594478?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/11/20/changes-in-stomatal-density-and-specific-leaf-area-during-the-last-three-centuries-of-co2-increase/

Pepin S., Livingston N. J. (1997) – Rates of stomatal opening in conifer seedlings in relation to air temperature and daily carbon gain – Plant, Cell & Environment 20: 1462–1472 – https://doi.org/10.1046/j.1365-3040.1997.d01-40.xhttps://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.1997.d01-40.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/rates-of-stomatal-opening-in-relation-to-air-temperature-and-daily-carbon-gain/ )

Pereira J. S., Tenhunen J. D., Lange O. L. (1987) – Stomatal control of photosynthesis of Eucalyptus globulus Labill. Trees under field conditions in Portugal – Journal of Experimental Botany 38: 1678–1688 – https://doi.org/10.1093/jxb/38.10.1678 –https://academic.oup.com/jxb/article-abstract/38/10/1678/508177?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/12/22/stomata-were-more-closed-in-the-afternoon-than-in-the-morning/ )

Pereira de Souza R., Vasconcelos Ribeiro R., Caruso Machado E., Ferraz de Oliveira R., Gomes da Silveira J. A. (2005) – Photosynthetic responses of young cashew plants to varying environmental conditions – Pesq. agropec. bras. vol.40 no.8 Brasília Aug. 2005 –http://dx.doi.org/10.1590/S0100-204X2005000800002 – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2005000800002&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/02/15/stomata-and-varying-environmental-conditions-2/ )

Perera L. K. R. R., Mansfield T. A., Malloch A. J. C. (1994) – Stomatal responses to sodium ions in Aster tripolium: a new hypothesis to explain salinity regulation in above-ground tissues – Plant, Cell & Environment 17(3): 335–340 – DOI: 10.1111/j.1365-3040.1994.tb00300.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00300.x/full – (On our blog : https://plantstomata.wordpress.com/2017/10/26/stomatal-responses-to-sodium-ions/ )

Perez‐Martin A., Michelazzo C., Torres‐Ruiz J. M., Flexas J., Fernandez J. E., Sebastiani L., Diaz‐Espejo A. (2014) – Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins – J. Exp. Bot. 10.1093/jxb/eru160 – https://www.academia.edu/12980878/Regulation_of_photosynthesis_and_stomatal_and_mesophyll_conductance_under_water_stress_and_recovery_in_olive_trees_correlation_with_gene_expression_of_carbonic_anhydrase_and_aquaporins – (On our blog : https://plantstomata.wordpress.com/2019/05/09/78284/ )

Perks M. P., Irvine J., Grace J. (2002) – Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought – Tree Physiol 22: 877– 883 – PMID: 12184977 – https://www.ncbi.nlm.nih.gov/pubmed/12184977?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/canopy-stomatal-conductance-and-xylem-sap-aba-during-a-gradually-imposed-drought/ )

Perry S. W., Krieg D. R., Hutmacher R. B. (1983) – Photosynthetic Rate Control in Cotton – Photorespiration – Plant Physiol 73(3): PMC1066526 – PMID: 16663278-https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066526/ – (On our blog : https://plantstomata.wordpress.com/2018/12/16/photorespiration-in-cotton/

Peschel S., Beyer M., Knoche M. (2003) – Surface characteristics of sweet cherry fruit: stomata-number, distribution, functionality and surface wetting – Scientia Horticulturae 97: 265–278 – Surface_characteristics_of_sweet_cherry.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/the-number-distribution-size-and-function-of-stomata-and-wettability-of-the-sweet-cherry/ )

Peters R. L., Speich M., Pappas C., Kahmen A., von Arx G., Graf Pannatier E., Steppe K., Treydte K., Stritih A., Fonti P. (2018) – Contrasting stomatal sensitivity to temperature and soil drought in mature alpine conifers – Plant, Cell & Environment – published online and citable – https://doi.org/10.1111/pce.13500 –https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13500?af=R – (On our blog : https://plantstomata.wordpress.com/2018/12/14/contrasting-stomatal-sensitivity-to-temperature-and-soil-drought/ )   

Peterson K. M., Rychel A. L., Torii K. U. (2010) – Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development – The Plant Cell 22(2) : 296-306  – DOI: https://doi.org/10.1105/tpc.109.072777 – http://www.plantcell.org/content/22/2/296 – (On our blog : https://plantstomata.wordpress.com/2018/01/20/evolution-and-diversity-of-stomatal-development/

Peterson R. L., Firminger M. S,, Dobrindt L. A. (1975) – Nature of the guard cell wall in leaf stomata of three Ophioglossum species – Can J Bot. 53: 1698–1711 – https://doi.org/10.1139/b75-199 – http://www.nrcresearchpress.com/doi/abs/10.1139/b75-199?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/08/15/components-of-the-guard-cell-wall-in-stomata/ )

Peterson R. L., Hambleton S. (1978) – Guard cell ontogeny in leaf stomata of the fern Ophioglossum petiolatum – Canadian Journal of Botany 56: 2836–2852 – https://doi.org/10.1139/b78-340 – http://www.nrcresearchpress.com/doi/abs/10.1139/b78-340?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/stomatal-ontogeny-in-the-fern-ophioglossum-petiolatum-filicopsida/

Petrie P. R., Trought M. C. T., Howell G. S. (2000) – Influence of leaf ageing, leaf
area and crop load on photosynthesis, stomatal conductance and senescence of grapevine (Vitis vinifera L. cv. Pinot noir) leaves – Vitis 39: 31–36 –

Petrova Y. (2012) – The effect of light intensity on the stomatal density of lavender, Lavandula angustifolia – Young Scientists Journal 2012(12): 89-93 – https://www.ysjournal.com/wp-content/uploads/Issue12/The-effect-of-light-intensity-on-the-stomatal-density-of-lavender-Lavandula-angustifolia.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/04/a-positive-correlation-between-stomatal-density-and-the-light-intensity/ )

Pezeshki S. R., Chambers J. L. (1985) – Stomatal and photosynthetic response of sweet gum (Liquidambar styraciflua) to flooding – Can. J. For. Res. 15: 371-375 – https://doi.org/10.1139/x85-059 – http://www.nrcresearchpress.com/doi/abs/10.1139/x85-059?journalCode=cjfr – (On our blog : https://plantstomata.wordpress.com/2018/11/21/stomatal-response-to-flooding/

Pezeshki S. R., Chambers J. L. (1986) – Stomatal and photosynthetic response of drought-stressed cherrybark oak (Quercus falcata var. pagodaefolia) and sweetgum (Liquidambar styraciflua) – Can J Forest Res 16: 841–846 – https://doi.org/10.1139/x86-148 – http://www.nrcresearchpress.com/doi/abs/10.1139/x86-148 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/the-effects-of-water-stress-on-stomatal-conductance-and-net-photosynthesis/

Pezeshki S. R., Hinckley T. M. (1982) – The stomatal response of red alder and black cottonwood to changing water status – Can. J. For. Res. 12: 760-771 – https://doi.org/10.1139/x82-115 – http://www.nrcresearchpress.com/doi/10.1139/x82-115 – (On our blog : https://plantstomata.wordpress.com/2018/11/22/stomatal-response-to-changing-water-status/

Pharmawati M., Billington T., Gehring C. A. (1998) – Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent – Cell. Mol. Life Sci. 54: 272–276. – doi: 10.1007/s000180050149 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://link.springer.com/article/10.1007%2Fs000180050149 – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomata-responses-to-kinetin-and-natriuretic-peptides/ )

Pickard W. F. (1982) – Distribution of evaporation in the sub-stomatal chamber, the possibility of transpiration-linked pore narrowing, and the pathway of water near the site of evaporation – Ann. Bot. 49: 545–548. –https://eurekamag.com/research/000/859/000859348.php – (On our blog : https://plantstomata.wordpress.com/2017/02/16/evaporation-through-the-chamber-wall-adjacent-to-the-inner-aperture-of-the-stomatal-pore/ )

Pickett-Heaps J. D. (1969) – Preprophase microtubules and stomatal differentiaton. Some effects of centrifugation on symmetrical and asymmetrical cell division – Journal of Ultrastructure Research 27: 24–44 – https://doi.org/10.1016/S0022-5320(69)90018-5 – https://www.sciencedirect.com/science/article/pii/S0022532069900185 – (On our blog : https://plantstomata.wordpress.com/2018/11/22/preprophase-microtubules-and-stomatal-differentiaton/

Pickett-Heaps J. D. (1969) – Preprophase microtubules and stomatal differentiation in Commelina cyanea – Aust. J. Biol. Sci. 22: 374–391 – DOI: 10.1071/BI9690375 – http://trove.nla.gov.au/work/180661045?q&versionId=196693521 – (On our blog :  https://plantstomata.wordpress.com/2017/09/09/preprophase-microtubules-and-stomatal-differentiation/

Pickett-Heaps J. D., Northcote D. H. (1966) – Cell division in the formation of the stomatal complex of the young leaves of wheat – Journal of Cell Science 1: 121–128 – PMID: 5929805 – https://pdfs.semanticscholar.org/1bec/57bc1965d498da04bbf1603ba6a54532a7f8.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/09/microtubules-in-the-cell-division-in-the-formation-of-the-stomatal-complex/

Pieruschka R., Berry J. A. (2009) – Stomatal conductance based on energy balance – Comparative Biochemistry and Physiology, Part A 153 (2009) S174–S183 – doi:10.1016/j.cbpa.2009.04.382 – Stomatal_conductance_based_on_energy_bal.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/19/stomatal-conductance-based-on-energy-balance/ )

Pieruschka R., Huber G., Berry J. A. (2009) – Control of transpiration by radiation – PNAS 107(30): 13372–13377 – doi: 10.1073/pnas.0913177107 – http://www.pnas.org/content/107/30/13372.abstract – (On our blog : https://plantstomata.wordpress.com/2017/10/29/the-regulation-of-leaf-and-canopy-transpiration-by-the-radiation-load/ )

Pietragalla J., Pask A. (2012) – Stomatal conductance – In: Pask A., Pietragalla J., Mullan D., Reynolds M. (Eds.) – Physiological Breeding II: A Field Guide to Wheat Phenotyping – CIIMMYT – Chapter 2 – http://www.plantstress.com/methods/Stomatal%20conductance%20measurement%20(wheat%20example%20-%20from%20CIMMYT).PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/30/stomatal-conductance/ )

Pillitteri L. J., Bogenschutz N. L., Torii K. U. (2008) – The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis – Plant Cell Physiol 49:934–943. – DOI:https://doi.org/10.1093/pcp/pcn067 – Abstract/FREE Full TextGoogle Scholar – https://academic.oup.com/pcp/article/49/6/934/1811933/The-bHLH-Protein-MUTE-Controls-Differentiation-of?ijkey=a82b0b2306ff4bfe69c873557ad45343c29fd352&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/02/16/the-bhlh-protein-mute-stomata-and-the-hydathode-pore/ )

Pillitteri L. J., Dong J. (2013) – Stomatal Development in Arabidopsis – The Arabidopsis Book, 11, pp. e0162, June 2013. – doi:  10.1199/tab.0162 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711358/ – (On our blog : https://plantstomata.wordpress.com/2017/02/16/stomatal-development-2/ )

Pillitteri L. J., Peterson K. M., Horst R., Torii K. U. (2011) – Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis – Plant Cell 23: 3260–3275 – https://doi.org/10.1105/tpc.111.088583 – http://www.plantcell.org/content/23/9/3260 – (On our blog : https://plantstomata.wordpress.com/2018/11/21/molecular-constituents-of-stomatal-stem-cells-2/

Pillitteri L. J., Sloan D. B., Bogenschutz N. L., Torii K. U. (2007) – Termination of asymmetric cell division and differentiation of stomata. – Nature 445: 501–505. – CrossRefPubMedGoogle Scholar – http://www.nature.com/nature/journal/v445/n7127/full/nature05467.html – (On our blog : https://plantstomata.wordpress.com/2016/08/22/stomata-the-roles-of-bhlhs-in-cell-type-differentiation/)

Pillitteri L. J, Torii K. U. (2007) – Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development – Bioessays 29: 861–870 – DOI: 10.1002/bies.20625 – [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/17691100 – (On our blog : https://plantstomata.wordpress.com/2018/11/21/three-bhlh-proteins-direct-cell-fate-decisions-during-stomatal-development/

Pillitteri L. J, Torii K. U. (2012) – Mechanisms of stomatal development – Annual Review of Plant Biology 63: 591–614 – 10.1146/annurev-arplant-042811-105451 – CrossRefMedlineWeb of ScienceGoogle Scholar – http://www.annualreviews.org/doi/10.1146/annurev-arplant-042811-105451 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/mechanisms-of-stomatal-development/ )

Pilot G., Lacombe B., Gaymard F., Chérel I., Boucherez J., Thibaud J. B., Sentenac H. (2001) – Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. – J. Biol. Chem. 276, 3215–3221. – doi: 10.1074/jbc.M007303200 – http://www.jbc.org/content/276/5/3215.full – (On our blog : https://plantstomata.wordpress.com/2018/01/19/expression-of-the-twin-channel-subunits-kat1-and-kat2-in-stomata/ )

Piovani P., Leonardi S., Magnani F., Menozzi P. (2011) – Variability of stomatal conductance in a small and isolated population of silver fir (Abies alba Mill.) – Tree Physiology 31: 500-507 – doi: 10 1093/treephys/tpr029 – Variability_of_stomatal_conductance_in_a.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/21/variability-of-stomatal-conductance/ )

Pirasteh-Anosheh H., Saed-Moucheshi A., Pakniyat H., Pessarakli M. (2016) – Stomatal responses to drought stress – Book: Water Stress and Crop Plants, 24-40 – DOI: 10.1002/9781119054450.ch3 – https://www.researchgate.net/publication/304479897_Stomatal_responses_to_drought_stress – (On our blog : https://plantstomata.wordpress.com/2018/11/22/effect-of-drought-stress-on-stomatal-opening/

Pitman J. I. (1996) – Ecophysiology of tropical dry evergreen forest, Thailand: Measured and modelled stomatal conductance of Hopea ferrea, a dominant canopy emergent – Journal of Applied Ecology 33: 1366–1378 – DOI: 10.2307/2404777 – https://www.jstor.org/stable/2404777?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/11/22/measured-and-modelled-stomatal-conductance/

Pivovaroff A. L., Cook V. M. W., Santiago L. S. (2018) – Stomatal behavior and stem xylem traits are coordinated for woody plant species under exceptional drought conditions – Plant, Cell & Environment 41(11):2617-2626 – https://doi.org/10.1111/pce.13367 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13367?af=R – (On our blog : https://plantstomata.wordpress.com/2018/06/28/the-stomatal-and-xylem-hydraulic-safety-strategies-of-woody-species/ )

Plesch G., Ehrhardt T., Mueller-Roeber B. (2001) – Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. – Plant J. 28: 455– 464 – https://doi.org/10.1046/j.1365-313X.2001.01166.x – https://www.ncbi.nlm.nih.gov/pubmed/11737782 – (On our blog : https://plantstomata.wordpress.com/2018/06/12/taaag-elements-are-target-sites-for-trans-acting-dof-proteins-controlling-stomatal-specific-gene-expression/ )

Plumbe A. M., Willmer C. M. (1986) – Phytoalexins, water-stress and stomata – New Phytologist 102 (3): 375–384 – DOI: 10.1111/j.1469-8137.1986.tb00815.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1986.tb00815.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/the-effects-of-the-phytoalexins-on-stomatal-responses/ )

Poffenroth M., Green D. B., Tallman G. (1992) – Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light: analysis by high performance liquid chromatography. – Plant Physiol. 98, 1460–1471. – doi: 10.1104/pp.98.4.1460 – CrossRef |PubMed | – http://www.plantphysiol.org/content/98/4/1460 – (https://plantstomata.wordpress.com/2017/02/27/soluble-sugars-can-contribute-significantly-to-the-osmoregulation-of-stomatal-cells/ )

Pompelli M. F., Martins S. C. V., Celin E. F., Ventrella M. C., DaMatta F. M. (2010) – What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? – Braz. J. Biol. 70(4): 1083-1088 – http://www.scielo.br/pdf/bjb/v70n4/a25v70n4.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/24/influence-of-ordinary-epidermal-cells-and-stomata-on-the-leaf-plasticity-of-coffee/ )

Poole I., Lawson T., Weyers J. D. B. , Raven J.A. (2000) – Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa – New Phytologist 145(3): 511-521 – https://doi.org/10.1046/j.1469-8137.2000.00589.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.2000.00589.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/effect-of-elevated-co2-on-the-stomatal-distribution/ )

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (1996) – Variations in stomatal density and index: implications for palaeoclimatic reconstructions – Plant, Cell and Environment 19, 705–712. – Wiley Online Library | CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00405.x/full – (On our blog : https://plantstomata.wordpress.com/2017/02/27/high-level-of-variation-in-stomatal-characters-occurs-both-within-and-between-leaves-of-a-tree/ )

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (2000) – Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa – New Phytol. 145: 511–521 –Effect_of_elevated_CO2_on_the_stomatal_d.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/14/stomatal-development-distribution-and-conductance-under-elevated-co2-concentration/ )

Poór P., Gémes K., Horváth F., Szepesi A., Simon M. L., Tari I. (2011) – Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress – Plant Biol. 13: 105–114 – doi: 10.1111/j.1438-8677.2010.00344.x – PubMed Abstract | CrossRef Full Text | Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1438-8677.2010.00344.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/salicylic-acid-treatment-via-the-rooting-medium-interferes-with-stomatal-response/ )

Poposka H., Simikj S. M., Stojanova M., Mukaetov D. (2015) – Influence of foliar fertilizing on stomata parameters in maize leaf (Zea mays L.) – Int. J. Agri. & Agri. R. 7(4): 68-74 – ISSN: 2223-7054 (Print) 2225-3610 (Online) – https://pdfs.semanticscholar.org/32a9/2fdcebbe1dbbbacf83f6e74114b74d6b82a5.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/09/influence-of-foliar-fertilizing-on-stomata-parameters/ )

Pornsiriwong W., Estavillo G. M., Chan K. X., Tee E. E., Ganguly D., Crisp P. A., Phua S. Y., Zhao C., Qiu J., Park J., Yong M. T., Nisar N., Yadav A. K., Schwessinger B., Rathjen J., Cazzonelli C. I., Wilson P. B., Gilliham M., Chen Z.-H., Pogson B. J. (2017) – A chloroplast retrograde signal, 3’-phosphoadenosine 5’-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination – eLife 2017;6:e23361 DOI: 10.7554/eLife.23361 –https://elifesciences.org/articles/23361 – (On our blog : https://plantstomata.wordpress.com/2019/01/16/sal1-pap-retrograde-pathway-interacts-with-aba-signaling-to-regulate-stomatal-closure/ )

Pospíšilová J. (1996) – Effect of air humidity on the development of functional stomatal apparatus – Biologia Plantarum 1996;38:197–204. –  doi:10.1007/BF02873846 – (Google Scholar) – https://link.springer.com/article/10.1007%2FBF02873846?LI=true – (On our blog : https://plantstomata.wordpress.com/2017/02/27/air-humidity-on-the-development-of-stomata/ )

Pospíšilová J. (2003) – Participation of phytohormones in the stomatal regulation of gas exchange during water stress – Biol. Plant. 46: 491–506 – https://doi.org/10.1023/A:1024894923865https://link.springer.com/article/10.1023/A:1024894923865 – (On our blog :  https://plantstomata.wordpress.com/2019/05/27/phytohormones-in-the-stomatal-regulation-of-gas-exchange-during-water-stress/ )

Pospíšilová J., Šantrůček J. (1994) – Stomatal patchiness – Biologia Plantarum 36(4): 481-510  – doi:10.1007/BF02921169 – CrossRefWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF02921169. – (On our blog : https://plantstomata.wordpress.com/2017/02/27/small-groups-of-stomata-on-a-single-leaf-blade-stomatal-patchiness/ )

Pospíšilová J., Šantrůček J. (1997) – Stomatal patchiness: effects on photosynthesis – In: Handbook of Photosynthesis (ed. M. Pessarakli): 427-44 – Marcel Dekker, New York – (Article not found) –

Pospisilová J., Solarova J. (1980) – Environmental and biological control of diffusive conductances of adaxial and abaxial leaf epidermes – Photosynthetica 14: 90–127 – https://www.cabdirect.org/cabdirect/abstract/19800704742 – (On our blog : https://plantstomata.wordpress.com/2018/11/20/the-behaviour-of-stomata-on-the-adaxial-and-abaxial-epidermis/

Pou A., Flexas J., del Mar Asina M., Bota J., Carambula C., de Herralde F., Galmés J., Lovisolo C., Jiménez M., Ribas-Carbó M., Rusjan D., Secchi F., Tomàs M., Zsófi Z., Medrano H. (2008) – Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris) – Physiologia Plantarum 134: 313–323 – https://doi.org/10.1111/j.1399-3054.2008.01138.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.2008.01138.x – (On our blog : https://plantstomata.wordpress.com/2018/11/22/adjustments-of-water-use-efficiency-by-stomatal-regulation-during-drought-and-recovery/ )

Pou A., Medrano H., Flexas J., Tyerman S. D. (2013) – A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering – Plant, Cell &Environ 36: 828–843 –

Poudel M. S. (2013) – Responses of air humidity and light quality on growth and stomata function of greenhouse grown Rosa × hybrida – Department of Plant and Environmental Sciences (IPM), Norwegian University of Life Sciences, Ås, Norway  – –https://brage.bibsys.no/xmlui/bitstream/handle/11250/189591/madhu%20sudhan%20thesis.pdf?sequence=1 – (On our blog : https://plantstomata.wordpress.com/2018/01/10/light-quality-can-be-used-a-tool-to-improve-the-stomata-function-under-high-rh/ )

Poudel P., Kataoka I., Mochioka R. (2007) – Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes – Plant Cell Tissue and Organ Culture 92(2):147-153 – DOI: 10.1007/s11240-007-9317-1 – https://www.researchgate.net/publication/225104137_Effect_of_red-_and_blue-light-emitting_diodes_on_growth_and_morphogenesis_of_grapes – (On our blog : https://plantstomata.wordpress.com/2019/04/10/red-and-blue-light-emitting-diodes-and-stomata/ )

Poulter B., Frank D. (2015) – Rising CO2 levels are changing how fast forests cycle water – The Conversation  – http://theconversation.com/rising-co2-levels-are-changing-how-fast-forests-cycle-water-40746 – (On our blog : https://plantstomata.wordpress.com/2017/02/27/stomata-and-rising-co2-levels/ )

Powles J. E., Buckley T. N., Nicotra A. B., Farquhar G. D. (2006) – Dynamics of stomatal water relations following leaf excision – Plant, Cell and Environment 29: 981–992 – doi: 10.1111/j.1365-3040.2005.01491.x – http://biology-assets.anu.edu.au/CMS/FileUploads/file/Farquhar/229PowleslfexcisionPCE2006.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/27/leaf-excision-and-dynamics-of-stomatal-water-relations/ )

Predovich S. (2012) – Stomata Density of Orchids and Cloud Forest Humidity – Oregon Undergraduate Research Journal – 3.1 (2012) ISSN: 2160-617X (online) – DOI: 10.5399/uo/ourj.3.1.2386 – 2386-5866-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/25/orchids-closed-their-stomata-in-drier-conditions-in-order-to-reduce-water-loss-and-desiccation/ )

Prodhan Y., Munemasa S., Nahar N., Nakamura Y., Murata Y. (2018) – Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway – Plant Physiology – DOI: https://doi.org/10.1104/pp.18.00321 – http://www.plantphysiol.org/content/early/2018/07/23/pp.18.00321 – (On our blog : https://plantstomata.wordpress.com/2018/10/04/stomatal-sa-signaling-is-integrated-into-aba-signaling/ )

Price A. H., Cairns J. E., Horton P., Jones H. G., Griffiths H. (2002) – Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses – J Exp Bot 53: 989–1004 – https://doi.org/10.1093/jexbot/53.371.989 –https://academic.oup.com/jxb/article/53/371/989/509255 – (On our blog : https://plantstomata.wordpress.com/2019/02/06/linking-drought-resistance-mechanisms-to-drought-avoidance-new-opportunities-to-integrate-stomatal-and-mesophyll-responses/ )

Price A. H, Young E. M., Tomos A. D. (1997)  – Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa) – New Phytologist 137: 83–91 – https://doi.org/10.1046/j.1469-8137.1997.00818.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.1469-8137.1997.00818.x – (On our blog : https://plantstomata.wordpress.com/2019/02/06/quantitative-trait-loci-associated-with-stomatal-conductance/ )

Price D. T., Black T. A., Kelliher F. M. (1986) – Effects of salal understory removal on photosynthetic rate and stomatal conductance of young Douglas-fir trees – Canadian Journal of Forest Research 16(1): 90-97 – https://doi.org/10.1139/x86-015https://www.nrcresearchpress.com/doi/10.1139/x86-015 – (On our blog : https://plantstomata.wordpress.com/2019/08/26/tree-growth-response-to-salal-removal-was-due-to-higher-soil-water-potential-which-increased-stomatal-conductance/ )

Priddy S. (2016) – Stomata: Tree Breath – The Blog – http://www.kibi.org/stomata-tree-breath/ – (On our blog : https://plantstomata.wordpress.com/2018/01/11/video-the-earth-has-lungs-watch-them-breathe/ )

Prino S., Spanna F., Cassardo C. (2009) – Verification of the stomatal conductance of Nebbiolo grapevine – Journal of Chongqing University (English Edition) [ISSN 1671-8224] – 8(1): 17-24 – http://hdl.handle.net/2318/96184https://iris.unito.it/retrieve/handle/2318/96184/15282/2009_Verification_of_the_stomatal_conductance_of_Nebbiolo_grapevine.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/24/verification-of-the-stomatal-conductance/ )

Prior L. D., Eamus D., Duff G. A. (1997) – Seasonal and diurnal patterns of carbon assimilation, stomatal conductance and leaf water potential in Eucalyptus tetrodonta saplings in a wet–dry savanna in northern Australia – Aust. J. Bot. 42: 26–32 – https://doi.org/10.1071/BT9601http://www.publish.csiro.au/bt/BT96017 – (On our blog : https://plantstomata.wordpress.com/2019/03/24/seasonal-and-diurnal-patterns-of-carbon-assimilation-stomatal-conductance-and-leaf-water-potential-in-a-wet-dry-savanna/ )

Prioul J. L., Cornic G., Jones H. G. (1984) – Discussion of stomatal and nonstomatal components in leaf photosynthesis decline under stress conditions. In Sybesma, ed, Advances in Photosynthesis Research IV. Martinus Nijhoff/ W. Junk, The Hague, pp 375-378 –

Prodhan Y., Munemasa S., Nahar N.-E- N., Nakamura Y., Murata Y. (2018) – Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca2+/CPK-Dependent Pathway – Plant Physiology DOI: https://doi.org/10.1104/pp.18.00321 – http://www.plantphysiol.org/content/178/1/441 – (On our blog : https://plantstomata.wordpress.com/2018/09/10/guard-cell-salicylic-acid-signaling-is-integrated-into-aba-signaling-in-stomata/ )

Prokic L., Jovanovic Z., McAinsh M. R., Vucinic Z., Stikic R. (2006) – Species- dependent changes in stomatal sensitivity to abscisic acid mediated by external pH. – J. Exp. Bot. 57: 675–683. – doi: 10.1093/jxb/erj057 – PubMed Abstract | CrossRef Full Text | Google Scholar – https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erj057 – (On our blog : https://plantstomata.wordpress.com/2017/03/01/species-and-stomatal-sensitivity-to-aba/ )

Prytz G., Futsaether C. M., Johnsson A. (2003) – Thermography studies of the spatial and temporal variability in stomatal conductance of Avena leaves during stable and oscillatory transpiration – New Phytologist 158(2): – https://doi.org/10.1046/j.1469-8137.2003.00741.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.1469-8137.2003.00741.x – (On our blog : https://plantstomata.wordpress.com/2019/04/03/spatial-and-temporal-variability-in-stomatal-conductance-during-stable-and-oscillatory-transpiration/ )

Przywara L., Pandey K. K., Sanders P. M. (1988) – Length of stomata as an indicator of ploidy level in Actinidia deliciosa – New Zealand Journal of Botany 26(2): 179-182 – DOI: 10.1080/0028825X.1988.10410110 – https://www.researchgate.net/publication/254280214_Length_of_stomata_as_an_indicator_of_ploidy_level_in_Actinidia_deliciosa – (On our blog : https://plantstomata.wordpress.com/2019/03/30/measurement-of-stomata-length-is-a-rapid-technique-for-identifying-ploidy-level-in-kiwifruit/ )

Puli M. R., Raghavendra A. S. (2012) – Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cells in abaxial epidermis of Pisum sativum. – J. Exp. Bot. 63:  1349–1356. – doi: 10.1093/jxb/err364 – https://www.ncbi.nlm.nih.gov/pubmed/22131162 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/pyrabactin-to-examine-the-aba-related-signal-transduction-components-in-stomatal-guard-cells/ )

Punthakey J. F., McFarland M. J., Worthington J. W. (1984) – Stomatal responses to leaf water potentials of drip irrigated peach (Prunus persica) – Trans. ASAE 27: 1442-1450 – doi: 10.13031/2013.32985 – https://elibrary.asabe.org/abstract.asp?aid=32985 – (On our blog : https://plantstomata.wordpress.com/2019/02/07/stomatal-responses-to-leaf-water-potentials/ )

Puli M. R., Rajsheel P., Aswani V., Agurla S., Kuchitsu K., Raghavendra A. S. (2016) – Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. – Planta 244: 831–841. – doi: 10.1007/s00425-016-2545-z – https://www.ncbi.nlm.nih.gov/pubmed/27233507 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/stomatal-closure-induced-by-phyto-s1p-and-s1p-depends-on-rise-in-ph-as-well-as-no-of-guard-cells/ )

Purcell C., Batke S., Yiotis C., Caballero R., Soh W. K., Murray M., McElwain J. C. (2018) – Increasing stomatal conductance in response to rising atmospheric CO2 – Annals of Botany 121(6): 1137-1149 – https://doi.org/10.1093/aob/mcx208 – https://doi.org/10.1093/aob/mcy023 -, https://academic.oup.com/aob/advance-article-abstract/doi/10.1093/aob/mcx208/4823760?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-conductance-and-rising-atmospheric-co2/ )

Purohit S., Kumar G. P., Laloraya M., Laloraya M. M. (1994) – Involvement of superoxide radical in signal transduction regulation stomatal movements – Biochem Biophys Res Commun 205: 30–37 – DOI: 10.1006/bbrc.1994.2625 – https://www.ncbi.nlm.nih.gov/pubmed/7999040?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/09/05/stomatal-movements-regulated-by-blue-light-activated-redox-reactions/ )

Putarjunan A., Ruble J., Srivastava A., Zhao C., Rychel A. L., Hofstetter A. K., Tang X., Zhu J.-K., Tama F., Zheng N., Torii K. U. (2019) – Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP Kinases to SPEECHLESS – bioRxiv – https://doi.org/10.1101/587154https://www.biorxiv.org/content/10.1101/587154v1 – (On our blog : https://plantstomata.wordpress.com/2019/04/05/bipartite-anchoring-of-scream-enforces-stomatal-initiation-by-coupling-map-kinases-to-speechless/ )

Putra E.T.S., Zakaria W., Abdullah N.A.P., Saleh G. B. (2012) – Stomatal Morphology, Conductance and Transpiration of Musa sp. cv. Rastali in Relation to Magnesium, Boron and Silicon Availability – American Journal of Plant Physiology  7( 2): 84-96 – DOI: 10.3923/ajpp.2012.84.9 – http://docsdrive.com/pdfs/academicjournals/ajpp/2012/84-96.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/06/linear-relationships-between-stomatal-width-stomatal-conductance-and-transpiration-rate/ )

Pyakurel A., Wang J. (2014) – Leaf Morphological and Stomatal Variations in Paper Birch Populations along Environmental Gradients in Canada – American Journal of Plant Sciences, 5, 1508-1520. – doi: 10.4236/ajps.2014.511166.- http://www.scirp.org/journal/PaperInformation.aspx?PaperID=45954#.VR6cL5OUe6E – (On our blog : https://plantstomata.wordpress.com/2017/03/01/35120/ )

Qi X., Torii K. U. (2018) – Hormonal and environmental signals guiding stomatal development – BMC Biology 16: 21 – https://doi.org/10.1186/s12915-018-0488-5 – https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0488-5 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/71422 )

Qi Z., Pi E., Zhang X., Möller M., Jiang B., Lu H. (2017) – Ontogenesis of D-type stomata and cork-warts on the leaf epidermis of Camellia japonica (Theaceae) and functional assessment – Flora 228: 24-30 – https://doi.org/10.1016/j.flora.2017.01.010 – https://www.sciencedirect.com/science/article/pii/S0367253017310174 – (On our blog : https://plantstomata.wordpress.com/2018/08/28/d-type-stomata-and-cork-warts-are-responsible-for-air-exchange-and-water-evaporation/

Qian P., Song W., Yokoo T., Minobe A., Wang G., Ishida T., Sawa S., Chai J., Kakimoto T. (2018) – The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors – Nature Plants 4:1071-1081 – https://www.nature.com/articles/s41477-018-0317-4 – (On our blog : https://plantstomata.wordpress.com/2018/12/10/the-cle9-10-secretory-peptide-regulates-stomatal-and-vascular-development-through-distinct-receptors/ ) See also : https://www.nature.com/articles/s41477-018-0347-y.

Qiang L., Long-Jiang Y., Yang D., Wei L., Mao-Tang L., Jiang-Hua C. (2007) – Leaf epidermal characters of Lonicera japonica and Lonicera confusa and their ecology adaptation – J. Forest. Res. 18(2): 103-108 –

Qin X.-M., Bian M.-D., Yang Z.-M., Shi W.-L. (2015) – Tyrosine phosphorylation mediates starch metabolism in guard cell of Vicia faba – Published Online: 2015-06-23 –  DOIhttps://doi.org/10.1515/biolog-2015-0068 – https://www.degruyter.com/view/j/biolog.2015.70.issue-5/biolog-2015-0068/biolog-2015-0068.xml – (On our blog : https://plantstomata.wordpress.com/2018/01/19/tyrosine-phosphorylation-may-modulate-starch-degradation-in-guard-cells-and-regulate-the-stomatal-movement/ )

Qu M., Hamdani S., Bunce J. A. (2016) – The physiology and genetics of stomatal adjustment under fluctuating and stressed environments, Applied Photosynthesis – New Progress, Mohammad Mahdi Najafpour, IntechOpen, DOI: 10.5772/62223. Available from: https://www.intechopen.com/books/applied-photosynthesis-new-progress/the-physiology-and-genetics-of-stomatal-adjustment-under-fluctuating-and-stressed-environments – (On our blog : https://plantstomata.wordpress.com/2019/04/15/stomatal-adjustment-under-fluctuating-and-stressed-environments/ )

Qu M., Hamdani S., Li W., Wang S., Tang J., Chen Z., Song Q., Li M., Zhao H., Chang T., Zhu X. (2016) – Rapid stomatal response to fluctuating light: an under-explored mechanism to improve drought tolerance in rice – Funct. Plant Biol. 43: 727–738 – https://doi.org/10.1071/FP15348http://www.publish.csiro.au/fp/FP15348 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/stomatal-dynamics-under-fluctuating-light-is-closely-related-to-drought-resistance-2/ )

Qu X., Cao B., Kang J., Wang X., Han X., Jiang W., Shi X., Zhang L., Cui L., Hu Z., Zhang Y., Wang G. (2019) – Fine-Tuning Stomatal Movement Through Small Signaling Peptides – Front. Plant Sci., 30 January 2019 | https://doi.org/10.3389/fpls.2019.00069 –https://www.frontiersin.org/articles/10.3389/fpls.2019.00069/full – (On our blog : https://plantstomata.wordpress.com/2019/02/09/future-challenges-to-decipher-peptide-signaling-pathways-in-guard-cells/ )

Qu X., Peterson K. M., Torii K. U. (2017) – Stomatal development in time: the past and the future – Curr. Opin. Genet. Dev. 45: 1–9 – DOI: 10.1016/j.gde.2017.02.001- [PubMed] [Cross Ref] – https://www.sciencedirect.com/science/article/pii/S0959437X16302118 – (On our blog  : https://plantstomata.wordpress.com/2018/12/14/the-past-and-the-future-of-stomatal-development-2/)

Qu Y., An Z., Zhuang B.$, Jing W., Zhang Q., Zhang W. (2014) – Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis – J. Plant Res. 127: 533–544 – https://doi.org/10.1007/s10265-014-0633-3https://link.springer.com/article/10.1007%2Fs10265-014-0633-3#citeas – (On our blog : https://plantstomata.wordpress.com/2019/07/09/cuao-and-pld-act-independently-in-aba-induced-stomatal-closure/ )

Quiñones M. A., Lu Z., Zeiger E. (1996) – Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism – PNAS 93(5): 2224-2228 – https://doi.org/10.1073/pnas.93.5.2224 -https://www.pnas.org/content/93/5/2224.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Proc_Natl_Acad_Sci_U_S_A_TrendMD_1 (On our blog : https://plantstomata.wordpress.com/2018/12/11/the-stomatal-guard-cell-and-coleoptile-chloroplasts-specialize-in-sensory-transduction/ )  

Raczka B., Duarte H. F., Koven C. D., Ricciuto D., Thornton P. E., Lin J. C., Bowling D. R. (2016) – An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5) – Biogeosciences 13(18): 5183-5204 – https://doi.org/10.5194/bg-13-5183-2016 – https://www.biogeosciences.net/13/5183/2016/ – (On our blog : https://plantstomata.wordpress.com/2017/11/24/isotope-observations-can-provide-important-information-related-to-stomatal-function/ )

Radin J. W. (1981) – Water relations of cotton plants under nitrogen deficiency – III. Stomatal conductance, photosynthesis, and abscisic acid accumulation during drought – Plant Physiol 67: 115-119 – PMID: 16661608 – PMCID: PMC425632 -https://www.ncbi.nlm.nih.gov/pubmed/16661608 –  (On our blog : https://plantstomata.wordpress.com/2018/11/30/stomatal-conductance-photosynthesis-and-aba-accumulation-during-drought/

Radin J. W.  (1984) – Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants – Plant Physiol 76:392–394 -doi: http://dx.doi.org/10.1104/pp.76.2.392 – PubMedCentralPubMedCrossRef – http://www.plantphysiol.org/content/76/2/392 – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-aba-and-cytokinins/ )

Radin J. W., Ackerson R. C. (1981) – Water relations of cotton plants under nitrogen deficiency. – III. Stomatal Conductance, Photosynthesis, and Abscisic Acid Accumulation during Drought – Plant Physiol. 67: 115-119 – https://www.jstor.org/stable/4266597?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-conductance-photosynthesis-and-aba-accumulation-during-drought-2/ )

Radin J. W., Hendrix D. L. (1988) – The apoplastic pool of abscisic acid in cotton leaves in relation to stomatal closure – Planta 174: 180–186 – https://doi.org/10.1007/BF00394770https://link.springer.com/article/10.1007/BF00394770 – (On our blog : https://plantstomata.wordpress.com/2019/05/27/the-apoplastic-pool-of-aba-in-relation-to-stomatal-closure-2/ )

Radin J. W., Lu Z., Percy R. G., Zeiger E. (1994) – Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation – Proc. Natl. Acad. Sci. U.S.A. 91, 7217–7221. – PubMed Abstract | Google Scholar – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=11607487 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/genetic-variability-for-stomatal-conductance-and-temperature/ )

Radin J. W., Parker L. L. (1979) – Water relations of cotton plants under nitrogen deficiency. I. Dependence upon leaf structure – Plant Physiol 64: 495-498 – PMID: 16660996 PMCID: PMC543121 – https://www.ncbi.nlm.nih.gov/pubmed/16660996 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/in-n-deficient-plants-leaf-areas-and-leaf-epidermal-cells-are-smaller-than-at-the-same-nodes-in-high-n-plants/ )

Radin J. W., Parker L. L. (1979) – Water relations of cotton plants under nitrogen deficiency. – II. Environmental interactions on stomata – Plant Physiol 64: 499- 501 – https://www.jstor.org/stable/4265937?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-behavior-may-impart-a-stress-avoidance-type-of-drought-resistance-to-n-deficient-plants/ )

Radin J. W., Parker L. L., Guinn G. (1982) – Water relations of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid – Plant Physiol 70: 1066–1070 – PMCID: PMC1065826 – PMID: 16662614 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065826/ – (On our blog : https://plantstomata.wordpress.com/2018/11/22/environmental-control-of-aba-accumulation-and-stomatal-sensitivity-to-aba-2/

Radoglou K. M., Aphalo P. J., Jarvis P. G. (1992) – Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. – Annals of Botany 70,257–264. –http://aob.oxfordjournals.org/content/70/3/257.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/stomatal-conductance-elevated-co2-and-nutrient-supply/ )

Raghavendra A. S. (1990) – Blue light effects on stomata are mediated by the guard cell plasma membrane redox system distinct from the proton translocating ATPase – Plant Cell Environ. 13: 105–110 – https://doi.org/10.1111/j.1365-3040.1990.tb01282.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1990.tb01282.x – (On our blog : https://plantstomata.wordpress.com/2018/12/23/blue-light-effects-on-stomata-are-mediated-by-the-guard-cell-plasma-membrane-redox-system/ )

Raghavendra A.S., Bhaskar Reddy K. (1987) – Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate – Plant Physiol. 83: 732-734, 1987. –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1056439/ – (https://plantstomata.wordpress.com/2016/12/03/stomatal-behavior-proline-aba-g-substances-and-methyl-jasmonate/ )

Raghavendra A. S., Das V. S. R. (1972) – Control of stomatal opening by cyclic photophosphorylation – Curr. Sci. 41: 150-151 – (Article not found)

Raghavendra A. S., Gonugunta V. K., Christmann A., Grill E. (2010) – ABA perception and signaling. – Trends Plant Sci. 15, 395–401. – doi: 10.1016/j.tplants.2010.04.006 – https://www.ncbi.nlm.nih.gov/pubmed/20493758 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/aba-perception-and-signaling/ )

Raghavendra A. S., Murata Y. eds. (2017) – Editorial: Signal Transduction in Stomatal Guard Cells – Front. Plant Sci. 8:114. doi: 10.3389/fpls.2017.00114 – 9782889451678.PDF – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/247 )

Raghavendra A. S., Rao I. M., Das V. S. R. (1976) – Characterization of abscisic acid inhibition of stomatal opening in isolated epidermal strips – Plant Sci. Lett. 6, 111–115. – doi: 10.1016/0304-4211(76)90144-9 – CrossRef Full Text | Google Scholar – http://www.sciencedirect.com/science/article/pii/0304421176901449?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2017/03/03/aba-inhibition-of-stomatal-opening-in-isolated-epidermal-strips/ )

Raghavendra A. S., Vani T. (1989) – Respiration in Guard Cells, Pattern and Possible Role in Stomatal Function – Journal of Plant Physiology 135(1): 3-8 – https://doi.org/10.1016/S0176-1617(89)80215-9  – https://www.sciencedirect.com/science/article/pii/S0176161789802159 – (On our blog : https://plantstomata.wordpress.com/2018/10/08/the-literature-on-the-respiratory-properties-of-stomata/ )

Rahnama A., James R. A., Poustini K., Munns R. (2010) – Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil – Functional Plant Biology 37: 255–263 – DOI: 10.1071/FP09148 – https://www.researchgate.net/publication/222102737_Stomatal_conductance_as_a_screen_for_osmotic_stress_tolerance_in_durum_wheat_growing_in_saline_soil – (On our blog : https://plantstomata.wordpress.com/2018/12/24/stomatal-conductance-as-a-screen-for-osmotic-stress-tolerance/ )

Rahnama A., Poustini K., Tavakkol-Afshari R., Tavakoli A. (2010) – Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress – Int J Biol Life Sci 6: 216–221 – https://rms.scu.ac.ir/Files/Articles/Journals/Abstract/v6-4-36-2010.PDF20111285151390.PDF – (On our blog : https://plantstomata.wordpress.com/2019/06/13/growth-and-stomatal-responses-in-tolerance-to-salt-stress/ )

Raissig Lab – Stomatal Biology (xxxx) – Form, Development and Function of Plant Stomata – https://raissiglab.org/ – (On our blog : https://plantstomata.wordpress.com/2019/03/21/form-development-and-function-of-plant-stomata/ )

Raissig Lab – Stomatal Biology (xxxx) – Form(ation) and function of plant stomata – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/formation-and-function-of-plant-stomata/ )

Raissig Lab – Stomatal Biology (xxxx) – Development and function of grass subsidiary cells – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/development-and-function-of-grass-stomatal-subsidiary-cells/ )

Raissig Lab – Stomatal Biology (xxxx) – Epidermal development of grass leaves in time and space – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/epidermal-development-and-stomata-of-grass-leaves/ )

Raissig Lab – Stomatal Biology (xxxx) – Stomatal development and physiology in C4 and CAM plants – http://raissiglab.org/research/ – (On our blog : https://plantstomata.wordpress.com/2019/05/02/stomatal-development-and-physiology-in-c4-and-cam-plants/ )

Raissig Lab – Stomatal Biology (xxxx) – Form, Development and Function of Plant Stomatahttps://raissiglab.org/ – (On our blog : https://plantstomata.wordpress.com/2019/08/13/developmental-cytological-and-physiological-aspects-of-different-stomatal-morphologies/ )

Raissig M. T., Abrash E., Bettadapur A., Vogel J. P., Bergmann D. C. (2016) – Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity – Proc Natl Acad Sci USA 113: 8326–8331 – Abstract/FREE Full TextGoogle Scholar  http://www.pnas.org/content/113/29/8326 – (On our blog : https://plantstomata.wordpress.com/2018/01/23/the-stomatal-transcription-factor-module-is-a-prime-target-for-breeding-or-genome-modification-to-improve-plant-productivity/ )

Raissig M. T., Bergmann D. C. (2017) – The recipe for especially efficient stomata – VIDEO – Eurekalert AAAS – http://dx.doi.org/10.1126/science.aal3254 – https://www.eurekalert.org/multimedia/pub/135451.php – (On our blog : https://plantstomata.wordpress.com/2018/01/16/the-recipe-for-especially-efficient-stomata-video/ )

Raissig M. T., Matos J. L., Anleu Gil M. X., Kornfeld A., Bettadapur A., Abrash E., Allison H. R., Badgley G., Vogel J. P., Berry J. A., Bergmann D. C. (2017) – Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. – Science 355(6330):1215-1218 – doi:10.1126/science.aal3254 – http://science.sciencemag.org/content/355/6330/1215 – (On our blog : https://plantstomata.wordpress.com/2018/06/13/an-ortholog-of-the-stomatal-regulator-atmute-defines-the-stomatal-precursor-fate/ )

Rajab H., Khan M. S., Malagoli M., Hell R., Wirtz M. (2019) – Sulfate-Induced Stomata Closure Requires the Canonical ABA Signal Transduction Machinery –  Plants 8: 21- – https://doi.org/10.3390/plants8010021 – https://www.mdpi.com/2223-7747/8/1/21 (On our blog : https://plantstomata.wordpress.com/2019/01/16/hypothesis-that-sulfate-and-sulfide-induce-stomatal-closure-by-stimulating-cysteine-synthesis-to-trigger-aba-production/ )

Rajagopal V., Patil K. D., Sumathykuttyamma B. (1986) – Abnormal Stomatal Opening in Coconut Palms Affected with Root (Wilt) Disease – Journal of Experimental Botany Vol. 37, No. 182 (September 1986), pp. 1398-1405 – https://www.jstor.org/stable/23691597?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/28/stomatal-regulation-is-significantly-impaired-in-diseased-palms/ )

Rajendra B. R., Mujeeb K. A., Bates L. S. (1978) – Relationships between 2X hordeum sp., 2X Secale sp. and 2X, 4X, 6X triticum spp. for stomatal frequency, size and distribution – Environ. Exp. Bot., 18: 33-37. –http://journals2.scholarsportal.info/details?uri=/00988472/v18i0001/33_rb2hs2fsfsad.xml – (https://plantstomata.wordpress.com/2016/12/03/stomatal-frequency-size-and-distribution/ )

Rajmohan A. (2014) – Comparing stomatal densities in sun and shade – BIOC52 – https://www.scribd.com/document/248523446/Comparing-stomatal-densities-in-sun-and-shade – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-densities-in-sun-and-shade/ )

Rakocevic M., Vasconcelos Ribeiro R., Ribeiro Marchiori P. E., Ferreira Filizola H., Reis Batista E. (2018) – Structural and functional changes in coffee trees after 4 years under free air CO2 enrichment – Annals of Botany, 12(5,): 1065–1078 – https://doi.org/10.1093/aob/mcy011 – https://academic.oup.com/aob/article/121/5/1065/4856813 – (On our blog : https://plantstomata.wordpress.com/2018/04/22/increased-air-co2-stimulated-stomatal-conductance-and-leaf-photosynthesis/ )

Rama Das V. S., Raghavendra A. S. (1978) – Control of stomatal opening by pyruvate metabolism in light – Indian journal of Experimental Biology 12: 425-428 – (Article not found)

Rama Das V. S., Raghavendra A. S. (1982) – Stomata: The physiology and biochemistry of their regulation in leaves – Curr. Sci. 51: 586-593 – https://www.jstor.org/stable/24085464?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/01/physiology-and-biochemistry-of-stomatal-regulation/

Ramos L. J., Nayaranan K. R., McMillan R. T. Jr. (1992) – Association of stomatal frequency and morphology in Lycopersicon species with resistance to Xanthomonas campestris pv. vesicatoria – Plant Pathology 41(2): 157–164 –  Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.1992.tb02334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/18/correlations-between-stomatal-traits-and-the-number-of-bacterial-lesions/ )

Ramos L. J., Volin R. B. (1987) – Role of stomatal opening and frequency on infection of Lycopersicon spp. by Xanthomonas campestris pv. vesicatoria – Florida Agricultural Experiment Stations Journal Series No. 7355 – Phytopathology 77(9): 1311-1317 – https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Articles/Phyto77n09_1311.PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/06/role-of-stomatal-opening-and-frequency-on-infection-by-xanthomonas/ )

Ran J.-H., Shen T.-T., Liu W.-J., Wang X.-Q. (2013) – Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants – PLoS ONE 8, e78997 (2013). –https://www.ncbi.nlm.nih.gov/pubmed/24244399 – (https://plantstomata.wordpress.com/2016/12/03/the-bhlh-genes-involved-in-stomatal-development/ )

Rana H. S., Chadha T. R. (1990) – Relationship between stomatal density and vigour in clones of some Prunus species – Proceedings of XXIII International Hort. Cong. Firenze (Italy) – Abst. of Contributed Papers No. 1232 –

Rand R. H., Storti D. W., Upadhyaya S. K., Cooke J. R. (1982) – Dynamics of coupled stomatal oscillators – Journal of Mathematical Biology 15: 131–149 – https://doi.org/10.1007/BF00275070 – https://link.springer.com/article/10.1007%2FBF00275070#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/27/dynamics-of-coupled-stomatal-oscillators/ )

Rand R. H., Upadhyaya S. K., Cooke J. R., Storti D. W. (1981) – Hopf bifurcation in a stomatal oscillator – Journal of Mathematical Biology 12, 1–11. – doi:10.1007/BF00275199 – CrossRef – https://link.springer.com/article/10.1007%2FBF00275199 – (https://plantstomata.wordpress.com/2017/03/03/hopf-bifurcation-in-a-stomatal-oscillator/ )

Rao D. G., Vanaja M., Hebbar K. B., Venkateswarlu B. (1996) – Control of stomatal function by xylem exudates from stressed plants without a decrease in the leaf water potential: possible role for root signals ? – Proc. Indian natn. Sci. Acad. B62(4): 297-302 –http://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol62B_1996_4_Art08.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/24/control-of-stomatal-function-by-xylem-exudates/ )

Rao I. M., Anderson L. E. (1983) – Light and stomatal metabolism – Plant Physiol. 71: 451– 455 – PMID: 16662847 PMCID: PMC1066058 – http://www.plantphysiol.org/content/plantphysiol/71/3/451.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/01/light-modulation-of-enzymes-may-play-a-significant-role-in-the-mechanism-of-stomatal-movement/ )

Rao N., Inamdar J. (1980) – Action of growth substances on the cotyledonary and hypocotyledonary stomata of Brassica juncea L – Histochemistry developmental and structural anatomy of angiosperms a symposium: 20-228 – https://eurekamag.com/research/014/946/014946154.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/action-of-growth-substances-on-the-cotyledonary-and-hypocotyledonary-stomata/ )

Raschke K. (1965) – Die Stomata als Glieder eines schwingungsfähigen CO2‐Regelsystems Experimenteller Nachweis an Zea mays L. – Zeitschrift für Naturforschung 20b, 1261–1270. – https://www.degruyter.com/downloadpdf/j/znb.1965.20.issue-12/znb-1965-1219/znb-1965-1219.xml – (https://plantstomata.wordpress.com/2016/12/03/stomata-a-regulatory-system-stabilizing-the-co2-concentration-within-the-intercellular-spaces-of-leaves/ )

Raschke K. (1966) – Die Reaktionen des CO2-Regelsystems in den Schließzellen von Zea mays auf weißes Licht – Planta 68: 111–140 –

Raschke K. (1970) – Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. – Planta 91: 336–363. – doi: 10.1007/Bf00387507 – https://www.jstor.org/stable/23368819?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/15/stomatal-aperture-and-co2/ )

Raschke K. (1970) – Leaf hydraulic system: rapid epidermal and stomatal responses to changes in water supply – Science 167: 189–191 – DOI: 10.1126/science.167.3915.189 – http://science.sciencemag.org/content/167/3915/189 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/rapid-epidermal-and-stomatal-responses-to-changes-in-water-supply/ )

Raschke K. (1972) – Saturation kinetics of the velocity of stomatal closing in response to CO2 – Plant Physiol. 49: 229–234 –

Raschke K. (1970) – Stomatal responses to pressure changes and interruptions in the water supply of detached leaves of Zea mays L. – Plant Physiol. 45: 415-423 – https://doi.org/10.1104/pp.45.4.415http://www.plantphysiol.org/content/45/4/415 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-responses-to-pressure-changes-and-interruptions-in-the-water-supply/ )

Raschke K. (1975) – Stomatal action – Ann. Rev. Plant Physiol. 26: 309-340 – https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.26.060175.001521 – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-action-2/ )

Raschke K. (1975) – Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. – Planta 125: 243-259 – DOI: 10.1007/BF00385601 – https://www.ncbi.nlm.nih.gov/pubmed/24435438 – (On our blog : https://plantstomata.wordpress.com/2018/12/25/the-simultaneous-requirement-of-co2-and-aba-for-stomatal-closure-leads-to-the-inference-that-aba-inhibits-the-expulsion-of-h-from-guard-cells/ )

Raschke K. (1976) – How stomata resolve the dilemma of opposing priorities – Phil Trans R Soc Lond 273: 551–560 – DOI: 10.1098/rstb.1976.0031 – CrossRefGoogle Scholar – http://rstb.royalsocietypublishing.org/content/273/927/551 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomata-and-opposing-priorities/ )

Raschke K. (1979) – Movements of stomata – in: Encyclopedia of Plant Physiology, New Series, 7. (Eds. HAUPT, W., and FEINLElB, M. E.) pp. 383-441. Springer-Verlag, Berlin 1979.

Raschke K. (1987) – Action of abscisic acid on guard cells – In : Stomatal Function (eds. E. Zeiger, G. D. Farquhar & I. R. Cowan : 253-279) – Stanford University Press, Stanford, California.

Raschke K. (2003) – Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate – Planta 217:651–657 – doi:10.1007/s00425-003-1034-3 – CrossRef Medline Google Scholar – https://link.springer.com/article/10.1007%2Fs00425-003-1034-3 – (On our blog : https://plantstomata.wordpress.com/2017/03/03/alternation-of-anion-conductance-in-stomata/ )

Raschke K., Dickerson M. (1973) – Changes in shape and volume of guard cells during stomatal movement – Plant Res 1972: 149–153 – (Article not found)

Raschke K., Dittrich P. (1977) –  (14C) Carbon dioxide fixation by isolated leaf epidermes with stomata closed or open – Planta 134: 69-75 – https://doi.org/10.1007/BF00390097https://link.springer.com/article/10.1007/BF00390097#citeas – (On our blog : https://plantstomata.wordpress.com/2018/11/12/14c-carbon-dioxide-fixation-by-isolated-leaf-epidermes-with-stomata-closed-or-open/

Raschke K., Fellows M. P. (1971) – Stomatal movement in Zea mays: Shuttle of potassium and chloride between guard cells and subsidiary cells – Planta 101: 296-316 –  https://doi.org/10.1007/BF00398116 – https://link.springer.com/article/10.1007/BF00398116#citeas – (On our blog : https://plantstomata.wordpress.com/2018/03/16/shuttle-of-potassium-and-chloride-between-stomatal-guard-cells-and-subsidiary-cells/ )

Raschke K., Hanebuth W. F., Farquhar G. D. (1978) – Relationship between stomatal conductance and light intensity in leaves of Zea mays L., derived from experiments using the mesophyll as shade – Planta 139: 73-77 – https://doi.org/10.1007/BF00390813https://link.springer.com/article/10.1007/BF00390813 – (On our blog : https://plantstomata.wordpress.com/2019/05/11/relationship-between-stomatal-conductance-and-light-intensity-derived-from-experiments-using-the-mesophyll-as-shade/ )

Raschke K., Hedrich R. (1989) – Patch-clamp measurements on isolated guard cell protoplasts and vacuoles – Methods in Enzymol. 174: 312–330 – https://doi.org/10.1016/0076-6879(89)74025-8 –https://www.sciencedirect.com/science/article/pii/0076687989740258 – (On our blog : https://plantstomata.wordpress.com/2018/12/27/patch-clamp-measurements-on-isolated-stomatal-protoplasts/ )

Raschke K., Hedrich R., Reckmann U., Schroeder J. I. (1988) – Exploring biophysical and biochemical components of the osmotic motor that drives stomatal movement – Botanica Acta 101: 283-294 – https://doi.org/10.1111/j.1438-8677.1988.tb00046.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1438-8677.1988.tb00046.x – (On our blog : https://plantstomata.wordpress.com/2019/06/14/the-osmotic-motor-that-drives-stomatal-movement/ )

Raschke K., Humble G. D. (1973) – No uptake of anions required by opening stomata of Vicia faba: guard cells release hydrogen ions – Planta 115: 47–57 – https://doi.org/10.1007/BF00388604https://link.springer.com/article/10.1007/BF00388604 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/no-uptake-of-anions-required-by-opening-stomata/ )

Raschke K., Pierce M., Popiela C. C. (1976) – Abscisic acid content and stomatal sensitivity to CO2 in leaves of Xanthium strumarium L. after pretreatments in warm and cold growth chambers – Plant Physiol 57: 115-121 – https://doi.org/10.1104/pp.57.1.115http://www.plantphysiol.org/content/57/1/115 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/abscisic-acid-content-and-stomatal-sensitivity-to-co2-in-leaves/ )

Raschke K., Resemann A. (1986) -The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity – Planta (1986) 168: 546-558 – https://doi.org/10.1007/BF00392275https://link.springer.com/article/10.1007/BF00392275#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/28/a-reversible-reduction-of-photosynthetic-capacity-is-the-result-of-a-co-evolution-with-the-development-of-a-strong-stomatal-sensitivity-to-changes-in-humidity/ )  

Raschke K., Shabahang M., Wolf R. (2003) – The slow and the quick anion conductances in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2 – Planta 217(4): 639-50 – DOI 10.1007/s00425-003-1033-4  – https://www.ncbi.nlm.nih.gov/pubmed/12712336 – (On our blog : https://plantstomata.wordpress.com/2017/03/06/anion-conductances-in-stomata/

Raschke K., Schnabl H. (1978) – Availability of chloride affects the balance between potassium chloride and potassium malate in guard cells of Vicia faba L. – Plant Physiol. 62: 84–87 – DOI: https://doi.org/10.1104/pp.62.1.84http://www.plantphysiol.org/content/62/1/84.short – (On our blog : https://plantstomata.wordpress.com/2019/04/04/availability-of-chloride-affects-the-balance-between-kcl-and-potassium-malate-in-guard-cells/ )

Raschke K., Zeevaart J. A. D. (1976) – Abscisic acid content, transpiration, and stomatal conductance as related to leaf age in plants of Xanthium strumarium L. – Plant Physiol 58: 169-174 – 

Raskin I., Ladyman J. A. R. (1988) – Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata – Planta 1988;173:73-78. – doi:10.1007/BF00394490 – CrossRefMedlineWeb of ScienceGoogle Scholar – http://link.springer.com/article/10.1007%2FBF00394490 – (On our blog : https://plantstomata.wordpress.com/2016/12/03/aba-insensitive-stomata/ )

Rasmussen H. (1986) – Pattern formation and cell interactions in epidermal development of Anemarrhena asphodeloides (Liliaceae) – Nordic Journal of Botany 6:467–477.- DOI: 10.1111/j.1756-1051.1986.tb00903.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1756-1051.1986.tb00903.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/03/a-characteristic-pattern-of-stomata/ )

Rathaiah Y. (1975) – Infection of Sugarbeet by Cercospora beticolain Relation to Stomatal Condition – Phytopathology 66: 737-740. –https://www.apsnet.org/publications/phytopathology/backissues/Documents/1976Articles/Phyto66n06_737.PDF – (On our blog : https://plantstomata.wordpress.com/2016/12/27/cercospora-beticola-penetrates-sugarbeet-through-stomata/ )

Raven J. A. (1993) – The evolution of vascular plants in relation to quantitative function of dead water-conducting cells and stomata – Biol. Rev. 68: 337–363 – DOI: 10.1111/j.1469-185X.1993.tb00735.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-185X.1993.tb00735.x/abstracthttps://plantstomata.wordpress.com/2017/09/10/quantitative-functioning-of-dead-water-conducting-cells-and-stomata/ )

Raven  J. A. (2002) – Selection Pressures on Stomatal Evolution – New Phytologist, 153: 371-386 – DOI: 10.1046/j.0028-646X.2001.00334.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00334.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomatal-evolution-2/ )

Raven J. A. (2014) – Speedy small stomata ? – Journal of Experimental Botany 65(6): 1415–1424 – https://doi.org/10.1093/jxb/eru032 – https://academic.oup.com/jxb/article/65/6/1415/588799 – (On our blog : https://plantstomata.wordpress.com/2017/09/10/faster-opening-and-closing-of-smaller-than-of-larger-stomata/ )

Rawson H. M., Craven C. L. (1975) – Stomatal Development During Leaf Expansion in Tobacco and Sunflower – Australian Journal of Botany 23(2) – DOI: 10.1071/BT9750253 – https://www.researchgate.net/publication/248898229_Stomatal_Development_During_Leaf_Expansion_in_Tobacco_and_Sunflower – (On our blog : https://plantstomata.wordpress.com/2018/09/17/stomatal-development-during-leaf-expansion/  )

Reckmann U., Scheibe R., Raschke K. (1990) – Rubisco activity in guard cells compared with the solute requirement for stomatal opening – Plant Physiol. 92: 246–253 – 10.1104/pp.92.1.246 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/plantphysiol/92/1/246.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/14/rubisco-activity-in-stomata/

Redmann R. E. (1985) – Adaptation of grasses to water stress – leaf rolling and stomate distribution – Annals of the Missouri Botanical Garden 72(4): 833–842 – CrossRef – http://www.jstor.org/stable/2399225?origin=crossref&seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/03/06/stomata-and-water-stress/ )

Reddy A. R., Das V. S. R. (1986) – Stomatal movement and sucrose uptake by guard cell protoplasts of Commelina benghalensis L. – Plant Cell Physiol 27: 1565–1570 – https://doi.org/10.1093/oxfordjournals.pcp.a077257https://academic.oup.com/pcp/article-abstract/27/8/1565/1840083?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/07/17/stomatal-movement-and-sucrose-uptake-by-guard-cell-protoplasts/ )

Reddy C. K. K., Jain S. K., Kumar M. B. A., Krishnan S. G.,
Singh A. K., Hussain Z. (2019)
– Genetic Variation of Stomatal Traits in Four
Tomato Hybrids and their Parental Lines – Int.J.Curr.Microbiol.App.Sci. 8(01): 1190-1195 – doi: https://doi.org/10.20546/ijcmas.2019.801.125https://www.ijcmas.com/8-1-2019/Chennem%20Kiran%20Kumar%20Reddy,%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/21/genetic-variation-of-stomatal-traits/ )

Reich P. B. (1984) – Loss of stomatal function in ageing hybrid poplar leaves – Annals of Botany 53:  691-698 –  https://doi.org/10.1093/oxfordjournals.aob.a086734 –https://academic.oup.com/aob/article-abstract/53/5/691/157588?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/12/27/a-loss-of-stomatal-control-with-increasing-leaf-age/ )

Reich P. B. (1984) – Oscillations in stomatal conductance of hybrid poplar leaves in the light and dark – Plant Physiology 61: 541-548 – 10.1111/j.1399-3054.1984.tb05167.x –https://experts.umn.edu/en/publications/oscillations-in-stomatal-conductance-of-hybrid-poplar-leaves-in-t – (On our blog : https://plantstomata.wordpress.com/2019/04/07/oscillations-in-stomatal-conductance-in-the-light-and-dark-2/ )

Reich P. B. (1984) – Leaf stomatal density and diffusive conductance in three amphistomatous hybrid poplar cultivars – New Phytol. 98: 231–239 – https://doi.org/10.1111/j.1469-8137.1984.tb02733.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1984.tb02733.x – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-density-and-diffusive-conductance/ )

Reich P. B., Borchert R. (1988) – Changes with leaf age in stomatal function and water status of several tropical tree species – Biotropica 20(1): 60-69 –https://experts.umn.edu/en/publications/changes-with-leaf-age-in-stomatal-function-and-water-status-of-se – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-water-status-change-with-leaf-age/ )

Reich P. B., Hobbie S. E.,  Lee T. D. Pastore M. A. (2018) – Unexpected reversal of C3 versus Cgrass response to elevated CO2 during a 20-year field experiment – Science  360(6386): 317-320 – DOI: 10.1126/science.aas9313 – http://science.sciencemag.org/content/360/6386/317 – (On our blog : https://plantstomata.wordpress.com/2018/04/25/effect-of-rising-co2-levels-on-c3-and-c4-plants/

Reid C. D., Maherali H., Johson H. B., Smith S. D., Wullschleger S. D., Jackson R. B. (2003) – On the relationship between stomatal characters and atmospheric CO2 – Geophys. Res. Lett. 30: 1–4 – doi:10.1029/2003GL017775 – https://jacksonlab.stanford.edu/sites/default/files/grl03_0.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/28/stomatal-characters-and-atmospheric-co2-2/ )

Reiling K., Davison A. W. (1995) – Effects of ozone on stomatal conductance and photosynthesis in populations of Plantago major L. – New Phytol. 129: 587–594 – https://doi.org/10.1111/j.1469-8137.1995.tb03026.x –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1995.tb03026.x – (On our blog : https://plantstomata.wordpress.com/2018/12/28/ozone-and-stomatal-conductance/ )

Ren H., Wei K., Jia W., Davies W. J., Zhang J. (2007) – Modulation of Root Signals in Relation to Stomatal Sensitivity to Root‐sourced Abscisic Acid in Drought‐affected Plants – Journal of Integrative Plant Biology 49(10): – https://doi.org/10.1111/j.1672-9072.2007.00549.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1672-9072.2007.00549.x – (On our blog : https://plantstomata.wordpress.com/2019/02/02/stomatal-sensitivity-to-root%e2%80%90sourced-aba-in-drought%e2%80%90affected-plants/ )

Renard C., Demessemacker W. (1983) – Effects of wind velocity on stomatal conductance and consequences of leaf rolling on water uptake in tall fescue – Biologia Plantarum 25(6): 408–411 – https://doi.org/10.1007/BF02903136https://link.springer.com/article/10.1007/BF02903136#citeas – (On our blog : https://plantstomata.wordpress.com/2019/08/12/effects-of-wind-velocity-on-stomatal-conductance/ )

Renninger H. J., Carlo N., Clark K. L., Schäfer K. V. (2014) – Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem – Tree Physiol. 34(2): 159-173 – doi: 10.1093/treephys/tpt122 – Epub 2014 Jan 31 – https://www.ncbi.nlm.nih.gov/pubmed/24488856 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-control-stomatal-conductance-and-physiological-strategies-in-a-water-and-nutrient-limited-ecosystem/ )

Renninger H. J., Carlo N., Clark K. L., Schäfer K. V. (2015) – Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forestFront Plant Sci. 6:297 – doi: 10.3389/fpls.2015.00297 – eCollection 2015 – https://www.ncbi.nlm.nih.gov/pubmed/25999966 – (On our blog : https://plantstomata.wordpress.com/2019/08/31/stomatal-responses-to-environmental-drivers/ )

Resemann A., Raschke K. (1984) – Midday depression in stomatal and photosynthetic activity of leaves of Arbutus unedo are caused by large water-vapor pressure differences between leaf and air – Plant Physiol 75: 5-66 –

Rhine J. B. (1924) – Clogging of Stomata of Conifers in Relation to Smoke Injury and Distribution – Botanical Gazette Vol. 78, No. 2 (Oct., 1924), pp. 226-232 –https://www.jstor.org/stable/2469885?seq=1#page_scan_tab_contents – (https://plantstomata.wordpress.com/2016/12/30/smoke-injury-and-clogging-of-stomata/ )

Rho H.,Van Epps V., Wegley N.,Doty S. I.,Kim S.-H. (2018) – Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice – Front Plant Sci. 9: 188 –   – doi:  10.3389/fpls.2018.00188 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840156/ – (On our blog : https://plantstomata.wordpress.com/2018/07/30/the-physiological-mechanisms-of-plant-endophyte-interactions-involving-plant-water-relations-and-stomatal-functions/ )

Říčánek M., Vicherková M. (1992) – Stomatal responses to ABA and IAA in isolated epidermal strips of Vicia faba L. – Biol. Plant. 34: 259–265 – DOI: 10.1007/BF02925879 – https://www.researchgate.net/publication/226240582_Stomatal_responses_to_ABA_and_IAA_in_isolated_epidermal_strips_ofVicia_faba_L – (On our blog : https://plantstomata.wordpress.com/2019/05/28/stomatal-responses-to-aba-and-iaa/ )

Ricciardi L. (1984) – Plant breeding for resistance to drought II. Relationships between stomatal and agronomic traits in Vicia faba L. genotypes – Agric. Meditteranea 119: 424-434 – (Article not found)

Ricciardi L. (1989) – Plant breeding for resistance to drought. I: Stomatal traits in genotypes of Vicia faba L. – Agric. Mediter. 119: 297-308 –

Ricciardi L., Filippetti A., Torre F. (1986) – Plant breeding for drought stress: 1. Stomatal variability in Vicia faba L. – Gene. Agraria 40: 470-470 –

Ricciardi L., Steduto P. (1988) – Leaf water potential and stomatal resistance variations in Vicia faba L. – Fabis Newslett. 20: 21-24 –

Richards J. (2016) – New study of water-saving plants advances efforts to develop drought-resistant crops – EurekAlert 2016-12-05 –https://www.eurekalert.org/pub_releases/2016-12/drnl-nso120516.php – (https://plantstomata.wordpress.com/2016/12/07/29113/ )

Richardson F., Brodribb T. J., Jordan G. J. (2017) – Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand – Tree Physiology 37: 869–878 doi:10.1093/treephys/tpx073 – http://www.brodribblab.org.au/wp-content/uploads/2017/08/Amphistomatic-leaf-surfaces-independently-regulate-gas-exchange-in-response-to-variations-in-evaporative-demand.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/amphistomatic-leaf-surfaces-independently-regulate-gas-exchange/ )

Richardson L. G., Torii K. U. (2013) – Take a deep breath: peptide signalling in stomatal patterning and differentiation – J Exp Bot. 64(17): 5243-5251 – doi: 10.1093/jxb/ert246 – Epub 2013 Aug 30 – https://www.ncbi.nlm.nih.gov/pubmed/23997204 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/to-understand-the-molecular-mechanisms-involved-in-cell-cell-communication-during-stomatal-development/ )

Ridolfi M., Garrec J.-P. (2000) – Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves – Ann. For. Sci. 57(3): 209 – 218 – DOI: 10.1051/forest:2000112 – https://www.afs-journal.org/articles/forest/abs/2000/03/f0302/f0302.html – (On our blog : https://plantstomata.wordpress.com/2017/11/24/excess-al-associated-to-low-ca-and-mg-nutrition-lead-to-a-strong-stomatal-dysfonction/ )

Ridolfi M., Fauveau M. L., Label P., Garrec J. P., Dreyer E.. (1996) – Responses to water stress in an ABA-unresponsive hybrid poplar, Populus koreana × trichocarpa cv. Peace. I. Stomatal function. – New Phytol. 134: 445–454 – https://doi.org/10.1111/j.1469-8137.1996.tb04361.x – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1996.tb04361.x – (On our blog : https://plantstomata.wordpress.com/2018/06/14/drought-control-of-stomatal-conductance-is-aba%e2%80%90independent-and-could-involve-calcium-ions/

Ridolfi M., Roupsard O., Garrec J. P., Dreyer E. (1996) – Effects of a calcium deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution – Annales des Sciences Forestières > 1996 > 53 > 2-3 > 325-335 – ISSN :0003-4312 – https://www.infona.pl/resource/bwmeta1.element.elsevier-0234dd50-d101-38e8-8422-f8dd781d8c17 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/effects-of-a-calcium-deficiency-on-stomatal-conductance/ )

Rienmüller F., Beyhl D., Lautner S., Fromm J., Al-Rasheid K. A. S., Ache P., et al. (2010) – Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels – Plant Cell Physiol. 51: 1548–1554 – doi: 10.1093/pcp/pcq102 – https://www.ncbi.nlm.nih.gov/pubmed/20630987 – (On our blog : https://plantstomata.wordpress.com/2018/06/14/stomatal-specific-calcium-sensitivity-of-high-density-and-activity-sv-tpc1-channels/ )

Ripley B. S., Gilbert M. E., Ibrahim D. G., Osborne C. P. (2007) – Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata – Journal of Experimental Botany 58: 1351–1363 – doi:10.1093/jxb/erl302 – https://www.ncbi.nlm.nih.gov/pubmed/17322550 – (On our blog : https://plantstomata.wordpress.com/2018/12/28/stomatal-and-metabolic-limitations-in-c3-and-c4-subspecies/ )

Ripullone F., Guerrieri M. R., Nole A., Magnani F., Borghetti M. (2007) – Stomatal conductance and leaf water potential responses
to hydraulic conductance variation in Pinus pinaster seedlings – Trees – DOI 10.1007/s00468-007-0130-6 – Stomatal_conductance_and_leaf_water_pote.pdf – (On our blog : https://plantstomata.wordpress.com/2019/02/20/stomatal-conductance-and-leaf-water-potential-responses-to-hydraulic-conductance-variation/ )

Ritte G., Raschke K. (2003) – Metabolite export of isolated guard cell chloroplasts of Vicia faba – New Phytologist 159: 195–202 – https://doi.org/10.1046/j.1469-8137.2003.00789.x –https://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.1469-8137.2003.00789.x – (On our blog : https://plantstomata.wordpress.com/2018/12/28/metabolites-released-by-illuminated-stomatal-chloroplasts-originated-predominantly-from-starch-breakdown/ )

Ritte G., Rosenfeld J., Rohrig K., Raschke K. (1999) – Rates of sugar uptake by guard cell protoplasts of Pisum sativum L. – Related to the solute requirement for stomatal opening – Plant Physiol 121: 647–656 – doi: 10.1104/pp.121.2.647 – http://www.plantphysiol.org/content/121/2/647 – (On our blog : https://plantstomata.wordpress.com/2018/12/28/rates-of-sugar-uptake-by-stomatal-guard-cell-protoplasts/ )

Robaina-Estévez S., Daloso D. M., Zhang Y., Fernie A. R., Nikoloski Z. (2017) – Resolving the central metabolism of Arabidopsis guard cells – Scientific Reports 7, Nt.: 8307 – doi:10.1038/s41598-017-07132-9 – https://www.nature.com/articles/s41598-017-07132-9 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/55316)

Robatzek S., Lozano-Duran R., Bourdais G., Zhou J. (2012) – Guarding the gates: Stomatal responses to pathogens – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomatal-responses-to-pathogens/ )

Roberts J., Wallace J. S., Pitman R. M. (1984) – Factors Affecting Stomatal Conductance of Bracken Below a Forest Canopy – Journal of Applied Ecology 21(2): 643-655 – DOI: 10.2307/2403435 – https://www.jstor.org/stable/2403435?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/21/factors-affecting-stomatal-conductance-below-a-forest-canopy/ )

Robertson R. N. (1936) – The stomatal apparatus: The path of the gas supply in plants – 8610-22442-1-SM.pdf – (On our blog : https://plantstomata.wordpress.com/2019/08/22/stomata-and-gas-supply-in-plants/ )

Roberntz P., Stockfors J. (1998) – Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees – Tree Physiology 18: 233–241 –

Robinson J. M. (1994) – Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization – Plant, Cell & Environment 17: 345-354 –

Robinson M. F., Heath J., Mansfield T. A. (1998) – Disturbances in stomatal behaviour caused by air pollutants – Journal of Experimental Botany 49: 461-470 – ttps://doi.org/10.1093/jxb/49.Special_Issue.461https://academic.oup.com/jxb/article/49/Special_Issue/461/508011 – (On our blog : https://plantstomata.wordpress.com/2019/09/11/air-pollutants-and-stomatal-behaviour/ )

Robinson N., Preiss J. (1985) – Biochemical phenomena associated with stomatal function. – Physiol. Plantarum 64: 141-146 – https://doi.org/10.1111/j.1399-3054.1985.tb02327.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1985.tb02327.x – (On our blog : https://plantstomata.wordpress.com/2018/06/14/stomatal-function-and-biochemical-phenomena/ )

Robredo A., Pérez-Lopez U., Sainz de la Maza H., Gonzalez-Moro B., Lacuesta M., Mena-Petite A., Alberto Munoz-Rueda A. (2007) – Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis – Environmental and Experimental Botany 59 : 252–263 – Elevated_CO2_alleviates_the_impact_of_dr.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/co2-drought-and-improvement-of-water-status-by-lowering-stomatal-conductance/ )

Roccío A., Elvira S., Sanz M. J., Emberson L., Gimeno B. S. (2007) – Parameterization of the Stomatal Component of the DO3SE Model for Mediterranean Evergreen Broadleaf Species – The Scientific World Journal 7: 119-127 – doi:10.1100/tsw.2007.27 – https://www.ncbi.nlm.nih.gov/pubmed/17450288 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/parameterization-of-the-stomatal-component-of-the-do3se-model/ )

Rocha-Uriartt L., Marques Corta G., Gehlen G., Droste A., Schmitt J. L. (2014) – Morphometric differences of Microgramma squamulosa (Kaulf.) de la Sota (Polypodiaceae) leaves in environments with distinct atmospheric air quality – Anais da Academia Brasileira de Ciências 86(3):1137-46. – DOI: 10.1590/0001-3765201420130094 ·Source: PubMed – https://www.ncbi.nlm.nih.gov/pubmed/25014917 – (https://plantstomata.wordpress.com/2017/01/16/stomata-of-a-fern-in-environments-with-distinct-atmospheric-air-quality/ )

Roche D. (2015) – Stomatal conductance is essential for higher yield potential of C3 crops. – Crit. Rev. Plant Sci. 34, 429–453. – doi: 10.1080/07https://www.ncbi.nlm.nih.gov/pubmed/16101906352689.2015.10 23677 – https://www.tandfonline.com/doi/abs/10.1080/07352689.2015.1023677 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/stomatal-conductance-and-c3-crops/ )

Rochette P., Pattey E., Desjardins R. L., Dwyer L. M., Stewart D. W., Dube P. A. (1991) – Estimation of maize ( Zea mays L.) canopy conductance by scaling up leaf stomatal conductance – Agricultural and Forest Meteorolog, 54: 241–261 – https://doi.org/10.1016/0168-1923(91)90008-E –https://www.sciencedirect.com/science/article/pii/016819239190008E – (On our blog : https://plantstomata.wordpress.com/2018/12/28/estimation-of-canopy-conductance-by-scaling-up-leaf-stomatal-conductance/ )

Rockwell F. E., Holbrook N. M. (2017) – Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective – Plant Physiology – DOI: https://doi.org/10.1104/pp.17.00303http://www.plantphysiol.org/content/174/4/1996 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/leaf-hydraulic-architecture-and-stomatal-conductance/ )

Rodrigues M. L., Santos T. P., Rodrigues A. P., de Souza C. R., Lopes C. M., Maroco J. P., Pereira J. S., Chaves M. M. (2008) – Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation – Functional Plant Biology 35(7): 565-579 – https://doi.org/10.1071/FP08004http://www.publish.csiro.au/fp/FP08004 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/hydraulic-feedback-and-feed-forward-root-to-shoot-chemical-signalling-mechanisms-might-be-involved-in-the-control-of-stomata/ )

Rodrigues O., Reshetnyak G., Grondin A., Saijo Y., Leonhardt N., Maurel C., Verdoucq L. (2017) – Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure – PNAS 114(34): 9200-9205 – https://doi.org/10.1073/pnas.1704754114https://www.pnas.org/content/114/34/9200 – (On our blog : https://plantstomata.wordpress.com/2019/08/16/a-signaling-role-of-plasma-membrane-aquaporins-in-stomatal-guard-cells/ )

Rodriguez J. L., Davies W. J. (1982) – The effects of temperature and ABA on stomata of Zea mays L. – J. Exp. Bot. 33, 977–987. – doi: 10.1093/jxb/33. 5.977 – https://academic.oup.com/jxb/article-abstract/33/5/977/566674?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2018/06/15/effects-of-temperature-and-aba-on-stomata/ )

Rodriguez-Dominguez C. M., Buckley T. N., Egea G., de Cires A., Hernandez-Santana V., Martorell S., Diaz-Espejo A. (2016) – Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor – Plant, Cell and Environment 39: 2014–2026 – https://doi.org/10.1111/pce.12774  – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.12774 – (On our blog : https://plantstomata.wordpress.com/2018/12/28/reduced-stomatal-conductance-during-soil-drought-may-result-from-effects-of-leaf-turgor-on-stomata/ )

Rodriguez-Gamir J., Xue J., Clearwater M. J., Meason Dean F., Clinton P. W., Domec J.-C. (2018) – Aquaporin regulaton in roots controls plant hydraulic conductance, stomatal conductance and leaf water potential in Pinus radiata under water stress – Plant, Cell & Environment – https://doi.org/10.1111/pce.13460 – Accepted, unedited article published online and citable – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13460?af=R – (On our blog : https://plantstomata.wordpress.com/2018/10/13/higher-kplant%e2%80%90l-is-associated-with-water-stress-resistance-by-sustaining-a-less-negative-%cf%88leaf-and-delaying-stomatal-closure/ )

Roelfsema M. R. G. Hanstein S., Felle H. H., Hedrich R. (2002) – CO2 provides an intermediate link in the red light response of guard cells – Plant J. 32: 65–75 – https://doi.org/10.1046/j.1365-313X.2002.01403.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2002.01403.x – (On our blog : https://plantstomata.wordpress.com/2018/12/28/in-intact-leaves-the-red-light-response-of-stomatal-guard-cells-is-mediated-through-a-decrease-of-the-intercellular-co2-concentration/ )

Roelfsema M. R. G., Hedrich R. (2002) – Studying guard cells in the intact plant: modulation of stomatal movement by apoplastic factors – New Phytol. 153, 425–431 – doi: 10.1046/j.1469-8137.2002.00344.x – https://doi.org/10.1046/j.0028-646X.2001 –https://nph.onlinelibrary.wiley.com/doi/abs/10.1046/j.0028-646X.2001.Documedoc.doc.x – (On our blog : https://plantstomata.wordpress.com/2018/12/29/modulation-of-stomatal-movement-by-apoplastic-factors-2/ )

Roelfsema M. R. G., Hedrich R. (2005) – In the light of stomatal opening: new insights into ‘the Watergate’ – New Phytol. 167: 665–691 – doi: 10.1111/j.1469- 8137.2005.01460.x – https://www.ncbi.nlm.nih.gov/pubmed/16101906 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/new-insights-in-stomatal-opening/ )

Roelfsema M. R. G., Hedrich R. (2009) – Stomata – eLS – https://doi.org/10.1002/9780470015902.a0002075.pub2 – https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470015902.a0002075.pub2 – (On our blog : https://plantstomata.wordpress.com/2018/08/02/stomata-5/ )

Roelfsema M. R. G., Hedrich R. (2010) – Making sense out of Ca2+signals: their role in regulating stomatal movements – Plant Cell Environ. 33, 305–321 – doi: 10.1111/j.1365-3040.2009.02075.x – Epub 2009 Nov 11 – https://www.ncbi.nlm.nih.gov/pubmed/19906147 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/ca2signals-their-role-in-regulating-stomatal-movements/ )

Roelfsema M. R. G., Hedrich R., Geiger D. (2012) – – Anion channels: master switches of stress responses – Trends Plant Sci. 17(4): 221-229 – doi: 10.1016/j.tplants.2012.01.009 – https://www.ncbi.nlm.nih.gov/pubmed/22381565?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/12/03/anion-channels-serve-a-general-function-as-master-switches-of-stress-responses-e-g-in-stomata/ )

Roelfsema M. R. G., Konrad K. R., Marten H., Psaras G. K., Hartung W., Hedrich R.. (2006) – Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid –  Plant, Cell & Environment 29: 1595–1605 – DOI: 10.1111/j.1365-3040.2006.01536.x – CrossRefMedlineGoogle Scholar – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2006.01536.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/the-function-of-stomata-in-albino-leaf-patches/ )

Roelfsema M. R. G., Levchenko V., Hedrich R. (2004) – ABA depolarizes guard cells in intact plants through a transient activation of R- and S-type anion channels. – Plant Journal 37: 578–588. – doi:10.1111/j.1365-313X.2003.01985.x pmid:14756768 – CrossRefMedlineWeb of ScienceGoogle Scholar  – https://www.ncbi.nlm.nih.gov/pubmed/14756768 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/aba-depolarizes-guard-cells-in-intact-plants/ )

Roelfsema M. R. G., Prins H. B. A. (1995) – Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana – Physiologia Plantarum 95: 373–378 – DOI: 10.1111/j.1399-3054.1995.tb00851.x – Wiley Online Library |CAS | CrossRefGoogle Scholar –http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1995.tb00851.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/18/effect-of-aba-on-stomatal-opening-in-abi-mutants-of-arabidopsis/ )

Roelfsema M. R. G., Prins H. B. A. (1997) – Ion channels in guard cells of Arabidopsis thaliana (L) Heynh – Planta 202 (1): 18–27 – DOI: 10.1007/s004250050098 –https://link.springer.com/article/10.1007/s004250050098 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/arabidopsis-thaliana-stomata-provide-an-excellent-system-for-the-study-of-signal-transduction-processes/ )

Roelfsema M. R. G., Prins H. B. A. (1998) – The membrane potential of Arabidopsis thaliana guard cells; depolarizations induced by apoplatic acidification – Planta 205: 100-112 – DOI: 10.1007/s004250050301 –https://www.ncbi.nlm.nih.gov/pubmed/9599807 – (On our blog : https://plantstomata.wordpress.com/2018/12/30/apoplastic-acidification-will-increase-the-k-efflux-in-the-depolarized-state-and-reduce-the-k-influx-in-the-hyperpolarized-state-in-stomata-2/ )

Roelfsema M. R. G., Staal M., Prins H. B. A. (1998) – Blue light‐induced apoplastic acidification of Arabidopsis thaliana guard cells: inhibition by ABA is mediated through protein phosphates – Physiologia Plantarum 103: 466-474 – https://doi.org/10.1034/j.1399-3054.1998.1030404.x –https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.1998.1030404.x – (On our blog : https://plantstomata.wordpress.com/2018/12/30/blue-light%e2%80%90induced-apoplastic-acidification-of-stomata/ )

Roelfsema M. R. G., Steinmeyer R., Staal M., Hedrich R. (2001) – Single guard cell recordings in intact plants: light‐induced hyperpolarization of the plasma membrane – The Plant Journal 26: 1-13 – https://doi.org/10.1046/j.1365-313x.2001.01000.x – https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313x.2001.01000.x – (On our blog : https://plantstomata.wordpress.com/2018/10/27/single-guard-cell-recordings-in-intact-plants-2/

Rogers C. A., Powell R. D., Sharpe P. J. H. (1979) – Relationship of Temperature to Stomatal Aperture and Potassium Accumulation in Guard Cells of Vicia faba – Plant Physiol. 63(2): 388–391 – DOI: https://doi.org/10.1104/pp.63.2.388http://www.plantphysiol.org/content/63/2/388.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2019/04/04/relationship-of-temperature-to-stomatal-aperture/ )

Rogers C. A., Sharpe P. J. H., Powell R. D. (1981) – High temperature disruption of guard cells of Vicia faba. Effect on stomatal aperture – Plant Physiol 67: 193-196

Rogiers S. Y., Clarke S. (2013) – Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines – Annals of Botany 111(3): 433-444 – doi:doi:10.1093/aob/mcs298 – https://researchdirect.westernsydney.edu.au/islandora/object/uws:43783/ – (On our blog : https://plantstomata.wordpress.com/2018/09/15/both-night-time-and-daytime-stomatal-conductance-are-responsive-to-root-zone-temperature/ )

Rogiers S. Y., Hardie W. J., Smith J. P. (2011) – Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide – Australian Journal of Grape and Wine Research 17(2):  – https://doi.org/10.1111/j.1755-0238.2011.00124.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-0238.2011.00124.x – (On our blog : https://plantstomata.wordpress.com/2018/03/29/stomatal-density-responds-to-soil-temperature-and-atmospheric-co2/ )

Romano L. A., Jacob T., Gilroy S., Assmann S. M. (2000) – Increases in cytosolic Ca2+ are not required for abscisic acid-inhibition of inward K+ currents in guard cells of Vicia faba L. – Planta 211: 209-217 – https://doi.org/10.1007/s004250000286https://link.springer.com/article/10.1007/s004250000286 – (On our blog : https://plantstomata.wordpress.com/2019/03/15/ca2-independent-regulation-is-involved-in-aba-inhibition-of-stomatal-opening-processes-2/ )

Ronzier E., CorratgéFaillie C., Sanchez F., Prado K., BrièreC., Leonhardt N., Thibaud J. B., Xiong T. C. (2014) – CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening – Plant Physiol. 166: 314–326 – doi:http://dx.doi.org/10.1104/pp.114.240226 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/166/1/314.long – ( On our blog : https://plantstomata.wordpress.com/2017/01/25/cpk13-reduces-stomatal-aperture-through-its-inhibition-of-the-guard-cell-expressed-kat2-and-kat1-channels/ )

Roos J., Bejai S., Oide S., Dixelius C. (2014) – RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity – PloS one 9, e88187 – doi:10.1371/journal.pone.0088187 –http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088187 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/rabgap22-contributes-to-stomata-immunity/ )

Rose M. A., Rose M. A. (1994) – Oscillatory transpiration may complicate stomatal conductance and gas-exchange measurements – HortScience 29: 693–694 – https://journals.ashs.org/hortsci/view/journals/hortsci/29/6/article-p693.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/08/oscillatory-transpiration-may-complicate-stomatal-conductance-and-gas-exchange-measurements/ –

Roth-Bejerano N., Itai C. (1987) – Phytochrome involvement in stomatal movement in Pisum sativum, Vicia faba, and Pelargonium sp. – Physiol. Plant. 70: 85–89 – https://doi.org/10.1111/j.1399-3054.1987.tb08701.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-3054.1987.tb08701.x – (On our blog : https://plantstomata.wordpress.com/2018/12/30/phytochrome-involvement-in-stomatal-movement-2/ )

Roth-Nebelsick A. (2005) – Reconstructing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO2-sensor – Trees – Structure and Function 19: 251–265 –

Roth-Nebelsick A. (2007) – Computer-based Studies of Diffusion through Stomata of Different Architecture – Annals of Botany 100: 23–32 – doi:10.1093/aob/mcm075 –  available online at http://www.aob.oxfordjournals.org – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Computer-based-Studies-of-Diffusion-through-Stomata-of-Different-Architecture.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/29/diffusion-through-stomata-of-different-architecture/ )

Roth-Nebelsick A., Fernandez V., Peguero-Pina J. J., Sancho-Knapik D., Gil-Pelegrin E. (2013) – Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a Mediterranean evergreen species (Quercus coccifera L.) – Plant Cell & Environment, 36(3), 579-589 – https://doi.org/10.1111/j.1365-3040.2012.02597.x –https://app.dimensions.ai/details/publication/pub.1030669549 – (On our blog : https://plantstomata.wordpress.com/2019/01/31/plasticity-of-stomatal-architecture-can-be-an-important-structural-component-of-hydraulic-adaptation/ )

Roth-Nebelsick A., Grein M., Utescher T., Konrad W. (2012) – Stomatal pore length change in leaves of Eotrigonobalanus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange and CO2 reconstruction – Review of Palaeobotany and Palynology 174: 106-112 – CrossRefGeoRefWeb of ScienceGoogle Scholar – https://www.sciencedirect.com/science/article/pii/S0034666712000024 – (On our blog : https://plantstomata.wordpress.com/2018/06/15/any-interpretation-of-stomatal-parameters-as-indicators-of-co2-should-consider-the-influence-of-climate-on-stomatal-conductance-and-gas-exchange/ )

Roth-Nebelsick A., Hassiotou F., Veneklaas E. J. (2009) – Stomatal Crypts Have Small Effects on Transpiration: A Numerical Model Analysis – Plant Physiology 151: 2018–2027 –doi:  10.1104/pp.109.146969 –  http://www.plantphysiol.org/content/plantphysiol/151/4/2018.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/29/stomatal-crypts-and-reduction-of-transpiration/ )

Roux B., Leonhardt N. (2018) – Chapter Seven – The Regulation of Ion Channels and Transporters in the Guard Cell – In Advances in Botanical Research 87: 171-214 – https://doi.org/10.1016/bs.abr.2018.09.013https://www.sciencedirect.com/science/article/pii/S0065229618300570 – (On our blog : https://plantstomata.wordpress.com/2019/08/05/79754/ )

Rowe M. H., Bergmann D. C. (2010) – Complex signals for simple cells: the expanding ranks of signals and receptors guiding stomatal development. – Curr Opin Plant Biol. 2010 Oct;13(5):548-55. – PMID: 20638894 – https://doi.org/10.1016/j.pbi.2010.06.002 – https://www.sciencedirect.com/science/article/pii/S1369526610000804?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2018/11/21/the-latest-findings-regarding-rlk-mediated-signaling-in-stomatal-development/

Rowland-Bamford A.J., Nordenbrock C., Baker J. T., Bowes G., Allen L.H. Jr. (1990) – Changes in stomatal density in rice grown under various CO2 regimes with natural solar irradiance – Environ. Exp. Bot. 30: 175-180 –

Roychowdhury R., Sultana P., Tah J. (2011) – Morphological architecture of foliar stomata in M2 Carnation (Dianthus caryophyllus L.) genotypes using Scanning Electron Microscopy (SEM) – Electronic Journal of Plant Breeding 2(4): 583-588 – ISSN 0975-928X –https://core.ac.uk/download/pdf/25899308.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/18/foliar-stomata-in-m2-carnation-dianthus-caryophyllus-l-genotypes/ )

Royer D. L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Rev. Palaeobot. Palynol. 144 (1-2): 1 – 28. – http://dx.doi.org/10.1016/S0034-6667(00)00074-9 – http://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Royer%202001.pdf – (https://plantstomata.wordpress.com/2016/12/09/paleoatmospheric-co2-concentration-and-stomata/ )

Rudall P. J., Hilton J., Bateman R. M. (2013) – Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants – New Phytol. 200(3): 98-614 – doi: 10.1111/nph.12406 – Epub 2013 Jul 26 – https://www.ncbi.nlm.nih.gov/pubmed/23909825 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/the-evolution-of-stomatal-patterning-in-land-plants-2/ )

Rudall P. J., Knowles E. V. W. (2013) – Ultrastructure of stomatal development in early-divergent angiosperms reveals contrasting patterning and pre-patterning – Ann. Bot. 112: 1031–1043 – doi: 10.1093/aob/mct169 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783234/ – (On our blog : https://plantstomata.wordpress.com/2018/12/29/loss-of-asymmetric-divisions-in-stomatal-development-could-be-a-significant-factor-in-land-plant-evolution/ )

Ruggenthaler P., Fichtenbauer D., Krasensky J., Jonak C., Waigmann E. (2009) – Microtubule-Associated Protein AtMPB2C Plays a Role in Organization of Cortical Microtubules, Stomata Patterning, and Tobamovirus Infectivity – Plant Physiology 149(3): 1354–1365 – https://doi.org/10.1104/pp.108.130450http://www.plantphysiol.org/content/149/3/1354 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/atmpb2c-is-involved-in-the-alignment-of-cortical-microtubules-and-the-patterning-of-stomata/ )

Rui Y., Anderson C. T. (2016) – Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis – Plant Physiol.  170 (3) 1398-1419 –  DOI: https://doi.org/10.1104/pp.15.01066 – http://www.plantphysiol.org/content/170/3/1398 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/66272

Rui Y., Chen Y., Kandemir B., Yi H., Wang J. Z., Puri V. M., Charles T Anderson C. T. (2018) – Balancing Strength and Flexibility: How the Synthesis, Organization, and Modification of Guard Cell Walls Govern Stomatal Development and Dynamics – Frontiers in Plant Science 9 – DOI: 10.3389/fpls.2018.01202 – https://www.researchgate.net/publication/327043368_Balancing_Strength_and_Flexibility_How_the_Synthesis_Organization_and_Modification_of_Guard_Cell_Walls_Govern_Stomatal_Development_and_Dynamics – (On our blog : https://plantstomata.wordpress.com/2018/08/24/wall-polysaccharides-in-guard-cells-of-stomata-and-stomatal-form-and-function/ )

Rui Y., Chen Y., Yi H., Purzycki T., Puri V. M., Anderson C. T. (2019) – – Synergistic Pectin Degradation and Guard Cell Pressurization Underlie Stomatal Pore Formation – Plant Physiol. -https://doi.org/10.1104/pp.19.00135 – http://www.plantphysiol.org/content/early/2019/02/25/pp.19.00135 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/hg-delivery-and-modification-and-guard-cell-pressurization-make-functional-contributions-to-stomatal-pore-initiation-and-enlargement/ )

Rui Y., Yi H., Kandemir B., Wang J. Z., Puri V. M., Anderson C. T. (2016) – Integrating cell biology, image analysis, and computational mechanical modeling to analyze the contributions of cellulose and xyloglucan to stomatal function – Plant Signal. Behav. 11:e1183086 – doi: 10.1080/15592324.2016.1183086 – https://www.ncbi.nlm.nih.gov/pubmed/27220916 – (On our blog : https://plantstomata.wordpress.com/2019/08/02/the-contributions-of-cellulose-and-xyloglucan-to-stomatal-function/ )

Rui Y., Xiao C., Yi H., Kandemir B., Wang J. Z., Puri V. M., Anderson C. T. (2017) – POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in Arabidopsis thaliana – The Plant Cell 29(9) – DOI: https://doi.org/10.1105/tpc.17.00568 – http://www.plantcell.org/content/early/2017/10/03/tpc.17.00568 – (On our blog : https://plantstomata.wordpress.com/2017/11/01/pgx3-mediated-pectin-degradation-affects-stomatal-development-in-cotyledons/ )

Run-hui W., Nian-he X., Ru-shun L. (2002) – Micro-morphological study on leaf characteristics of dominant species in different succession stages of forest communities in Dingushan – J. Tropi and Subtropi Bot 10 (1): 1-8 – (Article not found)

Rusconi F., Simeoni F., Francia P., Cominelli E., Conti L., Riboni M., Simoni L., Martin C. R., Tonelli C., Galbiati M. (2013) –  The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. – J Exp Bot64(11): 3361-3371 – doi:10.1093/jxb/ert180 – https://www.academia.edu/23511850/The_Arabidopsis_thaliana_MYB60_promoter_provides_a_tool_for_the_spatio-temporal_control_of_gene_expression_in_stomatal_guard_cells – (On our blog : https://plantstomata.wordpress.com/2018/06/16/regulatory-modules-derived-from-the-atmyb60-promoter-offer-new-insights-into-the-functional-conservation-of-the-cis-mechanisms-that-mediate-gene-expression-in-stomata/ )

Russo G., De Angelis P., Mickle J. E., Lumaga Barone M. R. (2014) – Stomata morphological traits in two different genotypes of Populus nigra L. – Italian Society of Silviculture and Forest Ecology – iForest (early view) – doi: 10.3832/ifor1104-007 – https://www.researchgate.net/publication/282683703_Stomata_morphological_traits_in_two_different_genotypes_of_Populus_nigra_L – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1165 )

Russo S. E., Cannon W. L., Elowsky C., Tan S., Davies S. ( 2010) – Variation in Leaf Stomatal Traits of 28 Tree Species in Relation to Gas Exchange along an Edaphic Gradient in a Bornean Rain Forest – American Journal of Botany 97(7): 1109–1120 – https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=https://www.google.be/&httpsredir=1&article=1159&context=bioscifacpub – (On our blog : https://plantstomata.wordpress.com/2018/03/23/variation-in-leaf-stomatal-traits-of-tree-species/ )

Ruszala E. M., Beerling D. J., Franks P. J., Chater C., Casson S. A., Gray J. E., Hetherington A. M. ( 2011) – Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History – Curr. Biology 21(12): 1030-1035  – https://doi.org/10.1016/j.cub.2011.04.044 – https://www.sciencedirect.com/science/article/pii/S0960982211004866 – (On our blog : https://plantstomata.wordpress.com/2018/09/02/stomata-are-a-key-evolutionary-innovation-vital-to-the-success-of-the-land-plants/ )

Rutter J. C., Willmer C. M. (1979) – A light and electron microscopy study of the epidermis of Paphiopedilum spp. with emphasis on stomatal ultrastructure – Plant Cell Environ 2: 211–219 – https://doi.org/10.1111/j.1365-3040.1979.tb00072.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00072.x – (On our blog : https://plantstomata.wordpress.com/2018/12/29/lady-slipper-orchids-possess-functional-stomata-the-guard-cells-of-which-do-not-contain-chloroplasts/ )

Rychel A. L., Peterson K. L., Torii K. U. (2010) – Plant twitter: ligands under 140 amino acids enforcing stomatal patterning – Journal of Plant Research 123: 275–280 – doi: 10.1007/s10265-010-0330-9 – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/20336477?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2018/11/21/ligands-under-140-amino-acids-enforcing-stomatal-patterning-2/

Rydsaa J. H., Stordal F., Gerosa G., Finco A., Hodnebrog Ø. (2016) – Evaluating stomatal ozone fluxes in WRF-Chem: Comparing ozone uptake in Mediterranean ecosystems – Atmospheric Environment 143: 237-248 – https://doi.org/10.1016/j.atmosenv.2016.08.057https://www.sciencedirect.com/science/article/pii/S1352231016306501 – (On our blog : https://plantstomata.wordpress.com/2019/09/07/evaluating-stomatal-ozone-fluxes-in-wrf-chem/ )

Saab I. N., Sharp R. E. (1989) – Non-hydraulic signals from maize roots in drying soil: inhibition of leaf elongation but not stomatal conductance – Planta 179: 466–474 – DOI: 10.1007/BF00397586 –https://www.ncbi.nlm.nih.gov/pubmed/24201770 – (On our blog : https://plantstomata.wordpress.com/2018/12/30/inhibition-of-leaf-elongation-but-not-stomatal-conductance-in-drying-soil/ )

Saadabi A. M. A., El-Amin A.-N. (2011) – Effects of Environmental Pollution (Auto-Exhaust) on the Micro-Morphology of Some Ornamental Plants from Sudan – Environmental Research Journal 5(2): 38-41 – DOI: 10.3923/erj.2011.38.41 – https://www.medwelljournals.com/abstract/?doi=erj.2011.38.41 – (On our blog : https://plantstomata.wordpress.com/2017/11/16/environmental-pollution-auto-exhaust-and-stomata/ )

Saadu R. O., Abdulrahaman A. A., Oladele F. A. (2009) – Stomatal complex types and transpiration rates in some tropical tuber species – African Journal of Plant Science Vol. 3 (5), pp. 107-112 – Available online at http://www.academicjournals.org/AJPS –http://www.academicjournals.org/article/article1380095359_Saadu%20et%20al.pdf – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomata-and-transpiration-rates-in-tuber-species/ )

Sabir A., Yazar K. (2015) – Diurnal dynamics of stomatal conductance and leaf temperature of grapevines (Vitis vinifera L.) in response to daily climatic variables – Acta scientiarum Polonorum. Hortorum cultus = Ogrodnictwo 14(4): 3-15 – https://www.researchgate.net/publication/282379365_Diurnal_dynamics_of_stomatal_conductance_and_leaf_temperature_of_grapevines_Vitis_vinifera_L_in_response_to_daily_climatic_variables – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomatal-conductance-characteristics-with-an-emphasis-on-daily-climatic-responses/ )

Sabo M., Bede M., Vukadinovic V. (2001) – Correlation between number of stomata and concentration of macro- and microelements in some winter wheat (Triticum aestivum L.) genotypes – Acta-Agronomica_Hungarica 49: 319-327 – DOI:10.1556/AAgr.49.2001.4.2https://www.semanticscholar.org/paper/CORRELATION-BETWEEN-NUMBER-OF-STOMATA-AND-OF-MACRO-Sabo-Bede/342cf29c79dda6e110e80c17c9945bb151d20ae8 – (On our blog : https://plantstomata.wordpress.com/2019/07/17/significant-correlation-between-the-stomata-number-per-mm2-and-the-macro-n-p-k-ca-mg-and-microelement-zn-cu-fe-mn-concentrations/

Sachs T. (1974) – The developmental origin of stomata pattern in Crinum – Bot. Gaz. 135: 314–318 – Google Scholar – https://www.jstor.org/stable/2474226?seq=1#page_scan_tab_contents – (On our blog :  https://plantstomata.wordpress.com/2017/12/18/developmental-origin-of-stomatal-pattern/ )

Sachs T. (1979) – Cellular interactions in the development of stomatal patterns in Vinca major L. – Annals of Botany 43: 693–700 –

Sachs T. (1991) – “Pattern Formation in Plant Tissues” – Cambridge University Press, Cambridge.

Sachs T. (1994) – Commentary: Both cell lineages and cell interactions contribute to stomatal patterning – International Journal of Plant Sciences 155: 245-247 – DOI: 10.1086/297163 – https://www.jstor.org/stable/2475177?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/05/09/both-cell-lineages-and-cell-interactions-contribute-to-stomatal-patterning/ )

Sack F. D. (1987) – The development and structure of stomata – In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 59–89 –

Sack F. D. (1994) – Structure of the stomatal complex of the monocot Flagellaria indicaAmerican Journal of Botany, 81(3), 339-344 – https://doi.org/10.1002/j.1537-2197.1994.tb15452.x – https://app.dimensions.ai/details/publication/pub.1100741399 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/flagellaria-indica-does-not-have-a-grass-or-dumbbell%e2%80%90shaped-type-of-stomate/ )

Sack F. D. – The Sack Lab – https://www.botany.ubc.ca/people/fred-sack – (On our blog : https://plantstomata.wordpress.com/2018/01/22/the-fred-d-sack-lab/ )

Sack F. D., Chen J. C. (2009) – Pores in place – Science 323: 592-593 – DOI: 10.1126/science.1169553 – http://science.sciencemag.org/content/323/5914/592/tab-figures-data – (On our blog : https://plantstomata.wordpress.com/2018/06/16/signals-controling-cell-division-and-fate-also-control-stomatal-development/ )

Sack F. D., Paolillo D. J. Jr (1982) – Microtubule distribution in stomata with incomplete cytokinesis – Abstracts, Bot. Soc. Amer. Misc. Publ. 162: 24 – (Article not found)

Sack F. D., Paolillo D. J. Jr (1983) – Stomatal pore and cuticle formation in Funaria – Protoplasma 116: 1-13 – https://doi.org/10.1007/BF01294225https://link.springer.com/article/10.1007%2FBF01294225#citeas – (On our blog : https://plantstomata.wordpress.com/2019/05/12/stomatal-pore-and-cuticle-formation-in-funaria-bryophyta/

Sack F. D., Paolillo D. J. Jr (1983) – Protoplasmic changes during stomatal development in Funaria – Canadian Journal of Botany 61: 2515–2526 – https://doi.org/10.1139/b83-275 –http://www.nrcresearchpress.com/doi/abs/10.1139/b83-275 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/protoplasmic-changes-during-stomatal-development/

Sack F. D., Paolillo D. J. Jr (1983) – Structure and development of walls in Funaria stomata – Amer. J. Bot. 70: 1019–1030 – https://doi.org/10.1002/j.1537-2197.1983.tb07902.x –– https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.198 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/walls-in-funaria-stomata/ )

Sack F. D., Paolillo D. J. Jr (1985) – Incomplete cytokinesis in Funaria stomata – American Journal of Botany 72: 1325–1333 –  – https://doi.org/10.1002/j.1537-2197.1985.tb08389.xhttps://onlinelibrary.wiley.com/doi/abs/10.1002/j.1537-2197.1985.tb08389.x – (On our blog : https://plantstomata.wordpress.com/2018/11/29/incomplete-cytokinesis-in-funaria-stomata/

Sack L., Buckley T. N. (2016) – The Developmental Basis of Stomatal Density and Flux – Plant Physiol. 171 (4) 2358-2363 – DOI: https://doi.org/10.1104/pp.16.00476 – http://www.plantphysiol.org/content/171/4/2358 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-density-and-flux-2/ )

Sack L., John G. P., Buckley T. N. (2018) – ABA Accumulation in Dehydrating Leaves Is Associated with Decline in Cell Volume, Not Turgor Pressure – Plant Physiol. 176 (1): 489-495 – DOI: https://doi.org/10.1104/pp.17.01097 – http://www.plantphysiol.org/content/176/1/489 – (On our blog : https://plantstomata.wordpress.com/2018/02/02/aba-accumulation-in-dehydrating-leaves/

Sack L., Scoffoni C. (2012) – Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM) –J. Vis. Exp. (70), e4179, doi:10.3791/4179 (2012). – https://www.jove.com/video/4179/measurement-leaf-hydraulic-conductance-stomatal-conductance-their – (On our blog : https://plantstomata.wordpress.com/2018/02/15/method-for-simultaneously-measurement-of-leaf-hydraulic-conductance-kleaf-and-stomatal-conductance-gs-for-transpiring-excised-leaves/ )

Sagaram M., Lombardini L. (2007) – Variation in Leaf Anatomy of Pecan Cultivars from Three Ecogeographic Locations – JASHS 132(5): 592-596 – http://journal.ashspublications.org/content/132/5/592.full – (On our blog : https://plantstomata.wordpress.com/2018/01/27/stomatal-density-and-stomatal-index-in-pecan-cultivars/

Saibo N. J. M., Vriezen W. H., Beemster G. T., Van Der Straeten D. (2003) – Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins – Plant Journal 33: 989–1000 – https://doi.org/10.1046/j.1365-313X.2003.01684.x –https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-313X.2003.01684.x – (On our blog : https://plantstomata.wordpress.com/2018/12/30/the-implication-of-three-hormones-in-relation-to-cell-division-and-stomata-formation/ )

Saito S., Hamamoto S., Moriya K., Matsuura A., Sato Y., Muto J., Noguchi H., Yamauchi S., Tozawa Y., Ueda M., Hashimoto K., Köster P., Dong Q., Held K., Kudla J., Utsumi T., Uozumi N. (2018) – N-myristoylation and S-acylation are common modifications of Ca2+-regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel – New Phytol. doi:10.1111/nph.15053 – http://onlinelibrary.wiley.com/doi/10.1111/nph.15053/abstract – (On our blog : https://plantstomata.wordpress.com/2018/03/02/n-myristoylation-and-s-acylation-required-for-activation-of-the-slac1-anion-channel-in-stomata/ )

Saito S., Uozumi N. (2019) – Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure – Planta 8(1): 9 – https://doi.org/10.3390/plants8010009 –https://www.mdpi.com/2223-7747/8/1/9 – (On our blog : https://plantstomata.wordpress.com/2019/01/08/an-elaborate-mechanism-controlling-stress-induced-stomatal-closure/ )

Saji S., Bathula S., Kubo A., Tamaoki M., Kanna M., Aono M., Nakajima N., Nakaji T., Takeda T., Asayama M., Saji H. (2008) – Disruption of a gene encoding C4-dicarboxylate transporter-like protein increases ozone sensitivity through deregulation of the stomatal response in Arabidopsis thaliana – Plant Cell Physiol. 49: 2-10 – DOI: 10.1093/pcp/pcm174 –https://www.ncbi.nlm.nih.gov/pubmed/18084014 – (On our blog : https://plantstomata.wordpress.com/2019/04/14/ozs1-helps-to-close-stomata/ )

Sakaki T., Satoh A., Tanaka K., Omasa K., Shimazaki K.-I. (1995) – Lipids and fatty acids in guard-cell protoplasts from Vicia faba leaves – Phytochemistry 40: 1065–1070 – DOI: 10.1016/0031-9422(95)00272-9 –https://www.sciencedirect.com/science/article/pii/0031942295002729 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/lipids-and-fatty-acids-in-stomata/ )

Sakoda K. , Watanabe T., Sukemura S., Kobayashi S., Nagasaki Y., Tanaka Y., Shiraiwa T. (2019) – Genetic Diversity in Stomatal Density among Soybeans Elucidated Using High-throughput Technique Based on an Algorithm for Object Detection – Scientific Reports 9 – Article number: 7610 – https://www.nature.com/articles/s41598-019-44127-0 – (On our blog : https://plantstomata.wordpress.com/2019/06/08/genetic-diversity-in-stomatal-density/ )

Sakurai N., Akiyama M., Kuraishi S. (1986) – Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings – Plant and Cell Physiology 27: 1177-1185 – https://doi.org/10.1093/oxfordjournals.pcp.a077202 – (On our blog : https://plantstomata.wordpress.com/2018/01/03/irreversible-effects-of-water-stress-on-growth-and-stomatal-development-in-cotyledons/ )

Sala A., Tenhunen J. D. (1994) – Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed – Tree Physiol 14: 601–617 – https://doi.org/10.1093/treephys/14.6.601 –https://academic.oup.com/treephys/article-abstract/14/6/601/1655635?redirectedFrom=PDF – (On our blog :https://plantstomata.wordpress.com/2018/12/30/site-specific-water-relations-and-stomatal-response/

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2012) – MAP kinases, MPK9 and MPK12, regulate chitosan-induced stomatal closure. – Biosci. Biotechnol. Biochem. 76: 1785–1787 – DOI: 10.1271/bbb.120228 – https://www.ncbi.nlm.nih.gov/pubmed/22972330 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/mpk9-and-mpk12-are-involved-in-cht-induced-stomatal-closure/ )

Salam M. A., Jammes F., Hossain M. A., Ye W., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2013) – Two guard cell-preferential MAPKs, MPK9 and MPK12, regulate YEL signalling in Arabidopsis guard cells – Plant Biol. (Stuttg.) 15: 436–442 – doi: 10.1111/j.1438-8677.2012.00671.x. Epub 2012 Oct 8 – https://www.ncbi.nlm.nih.gov/pubmed/23043299 – (On our blog : https://plantstomata.wordpress.com/2018/06/16/mpk9-and-mpk12-regulate-yel-signalling-in-stomata/ )

Salas J. A., Sanabria M. E., Pire R. (2001) – Variación en el índice y densidad estomática en plantas de tomate (Lycopersicon esculentum Mill.) sometidas a tratamientos salinos. – Bioagro 13(3): 99-104  – http://www.redalyc.org/articulo.oa?id=85713302 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/modification-of-stomatal-index-and-density-in-tomato-plants/ )

Saleh H., Thind  S. K.  (2015) – Physiology of Cell Membranes, Stomata And Photosynthetic Pigments of Rice (Oryza sativa L.) Under High Temperature – International Journal of Scientific Research 4(6) – 8179 – DOI : 10.15373/22778179 – https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/articles.php?val=NTc2NA==&b1=65&k=17 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/physiology-of-stomata-under-high-temperature/ )

Salem A. (2017) – A General Discerption of Plants’ PhotosyntheticPathways in Deserts in Saudi Arabia – American Research Journal of Bio Sciences (ARJB) 3: 1-5 – https://www.academia.edu/38681654/A_General_Discerption_of_Plants_Photosynthetic_Pathways_iIn_Deserts_in_Saudi_Arabia?email_work_card=view-paper – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-differences-among-photosynthesis-pathways-based-on-climate-conditions-in-deserts-stomata-in-c3-and-c4-photosynthesis/ )

Saliendra N.Z., Meinzer F. C. (1991) – Symplast volume, turgor, stomatal conductance and growth in relation to osmotic and elastic adjustment in droughted sugarcane – J. Exp. Bot. 42(243): 1251–1259 – https://doi.org/10.1093/jxb/42.10.1251https://academic.oup.com/jxb/article-abstract/42/10/1251/484701?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/07/23/stomatal-conductance-and-growth-in-relation-to-osmotic-and-elastic-adjustment-in-droughted-sugarcane/ )

Saliendra N. Z., Sperry J. S., Comstock J. P. (1995) – Influence of leaf water status on stomatal responses to humidity, hydraulic conductance, and soil drought in Betula occidentalis – Planta 196: 357-366 – https://doi.org/10.1007/BF00201396https://link.springer.com/article/10.1007/BF00201396#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/22/influence-of-leaf-water-status-on-stomatal-responses-to-humidity-hydraulic-conductance-and-soil-drought/ )

Salisbury E. J. (1927) – On the causes and ecological significance of stomatal frequency with special reference to the woodland flora. – Philosophical Transactions of the Royal Society of London B Biological Sciences 216: 1-65 –

Sallanon H., Laffray D., Coudret A. (1993) – Ultrastructure and functioning of guard cells of in vitro cultured rose plants – Plant Physiol. Biochem. 29: 333-339 –https://geoscience.net/research/002/269/002269301.php – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomata-of-in-vitro-cultured-rose-plants/ )

Sallanon H., Tort M., Coudret A. (1993) – The ultrastructure of micropropagated and greenhouse rose plant stomata – Plant Cell, Tissue and Organ Culture 32(2): 227-233 – https://doi.org/10.1007/BF00029847https://link.springer.com/article/10.1007/BF00029847 – (On our blog : https://plantstomata.wordpress.com/2019/05/29/micropropagated-and-greenhouse-rose-plant-stomata/ )

Salleo S., Nardini A., Pitt F., LoGullo M. (2000) – Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.) – Plant, Cell & Environm. 23: 71-79 – https://doi.org/10.1046/j.1365-3040.2000.00516.xhttps://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-3040.2000.00516.x – (On our blog : https://plantstomata.wordpress.com/2019/05/28/78847/ )

Salomé P. A. (2017) – This ICE/SCRM Melts in the Dark: Light-Dependent COP1-Mediated Protein Degradation in Stomatal Formation – The Plant Cell 29(11) – DOI: https://doi.org/10.1105/tpc.17.00870– http://www.plantcell.org/content/29/11/2680?rss=1 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/light-dependent-cop1-mediated-protein-degradation-in-stomatal-formation/ )

Sanchez C., Fischer G., Sanjuanelo D. W. (2013) – Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims) and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer] – Agron. colomb., 31, (1): 38-47 – ISSN electrónico 2357-3732 – ISSN impreso 0120-9965 – https://revistas.unal.edu.co/index.php/agrocol/article/view/35800/47061 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-behavior-in-fruits-and-leaves/ )

Sanchez S. (1977) – The fine structure of the guard cells of Helianthus annuus – American Journal of Botany 64: 814–824 – http://www.jstor.org/stable/2442374 – Google Scholar – http://www.jstor.org/stable/2442374?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/05/the-fine-structure-of-the-guard-cells-of-helianthus-annuus/ )

Sanderson M. G., Collins W. J., Hemming D. L., Betts R. A. (2007) – Stomatal conductance changes due to increasing carbon dioxide levels: Projected impact on surface ozone levels – Tellus 59B: 404–411 – https://www.geos.ed.ac.uk/~dstevens/publications/sanderson_tellus07.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/03/stomatal-conductance-and-increasing-co2-levels/ )

Santakumari M., Fletcher R. A. (1987) – Reversal of triazole-induced stomatal closure by gibberellic acid and cytokinins in Commelina benghalensis – Physiol. Plant. 71: 95-99, 1987 – DOI: 10.1111/j.1399-3054.1987.tb04623.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1987.tb04623.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/20/triazole-induced-stomatal-closure-ga-and-cytokinins/ )

Santamaria, J. M., Davies W. J., Atkinson C. J. (1993) – Stomata of micropropagated Delphinium plants respond to abscisic acid (ABA), CO2, light and water potential but fail to close fully – Journal of Experimental Botany, 44 (1). pp. 99-107. ISSN 1460-2431 – http://www.research.lancs.ac.uk/portal/en/publications/stomata-of-micropropagated-delphinium-plants-respond-to-abscisic-acid-aba-co2-light-and-water-potential-but-fail-to-close-fully(774441ae-ef2f-4eb5-99a2-9b8b213f5996).html – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/1321 )

Santelia D., Lawson T. (2016) – Rethinking Guard Cell Metabolism – Plant Physiology 172(3) – DOI: https://doi.org/10.1104/pp.16.00767 –http://www.plantphysiol.org/content/172/3/1371 – (On our blog : https://plantstomata.wordpress.com/2017/11/11/multiple-processes-and-plasticity-in-guard-cell-metabolism-of-stomata/ )

Santelia D., Lunn J. E. (2017) – Transitory starch metabolism in guard cells: unique features for a unique function. – Plant Physiol 174: 539–549 – DOI: 10.1104/pp.17.00211 – http://www.plantphysiol.org/content/174/2/539 – (On our blog : https://plantstomata.wordpress.com/2018/01/02/transitory-starch-metabolism-in-stomata/)

Šantrůček J., Hronkova M., Kveton J. K., Sage R. F. (2003) – Photosynthesis inhibition during gas exchange oscillations in ABA-treated Helianthus annuus: relative role of stomatal patchiness and leaf carboxylation capacity – PHOTOSYNTHETICA 41 (2): 241-252 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Photosynthesis-inhibition-during-gas-exchange-oscillations-in-ABA-treated-Helianthus-annuus–relative-role-of-stomatal-patchiness-and-leaf-carboxylation-capacity.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/23/stomatal-patchiness-and-leaf-carboxylation-capacity/ )

Šantrůček J., Sage R. F. (1996) – Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album – Australian Journal of Plant Physiology 23: 467-478 – https://doi.org/10.1071/PP9960467https://www.publish.csiro.au/FP/PP9960467 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/stomatal-conductance-co2-enriched-atmosphere-and-elevated-temperature/ )

Šantrůček J., Šimáňová E., Karbulková J., Šimková M., Scheiber L. (2004) – A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves – Journal of Experimental Botany 55: 1411–1422 – https://doi.org/10.1093/jxb/erh150 –  https://academic.oup.com/jxb/article/55/401/1411/478991 – (On our blog : https://plantstomata.wordpress.com/2018/10/10/a-new-technique-for-measurement-of-water-permeability-of-stomatous-cuticular-membranes/ )

Šantrůček J., Vráblová M., Šimková M., Hronková M., Drtinová M., Květoň J., Vrábl D., Kubásek J., Macková J., Wiesnerová D., Neuwithová J., Schreiber L. (2014) – Stomatal and pavement cell density linked to leaf internal CO2 concentration – Ann Bot 114(2): 191–202 –  PMC4217638 – doi:  10.1093/aob/mcu095 – Abstract/FREE Full TextGoogle Scholar – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217638/ – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-density-affected-by-rising-atmospheric-co2-light-air-humidity-and-drought/ )

Sanyal P., Bhattacharya U., Bandyopadhyay S. (2008) – Analysis of sem images of stomata of different tomato cultivars based on morphological features – Modeling Simulation, 2008. AICMS 08. Second Asia International Conference on, May 2008, pp. 890–894 –

Sanz L. C., Fernández-Maculet J. C., Gómez E., Vioque B., Olías J. M. (1993) – Effect of methyl jasmonate on ethylene biosynthesis and stomatal closure in olive leaves – Phytochemistry 33: 285-289 – https://doi.org/10.1016/0031-9422(93)85504-Khttps://www.sciencedirect.com/science/article/pii/003194229385504K – (On our blog : https://plantstomata.wordpress.com/2017/12/20/meja-caused-stomatal-closure/ )

Sapala A., Runions A., Routier-Kierzkowska A.-L., Gupta M. D., Hong L., Hofhuis H., Verger S., Mosca G., Li C.-B., Hay A., Hamant O., Roeder A. H. K., Tsiantis M., Prusinkiewicz P., Smith R. S. (2018) – Why plants make puzzle cells, and how their shape emerges – eLife 2018;7:e32794 – DOI: 10.7554/eLife.32794 – https://elifesciences.org/articles/32794 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/mechanical-stress-is-a-key-driver-of-cell-shape-morphogenesis-in-stomata/

Saradadevi R., Palta J. A., Siddique K. H. M. (2017) – ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat – Front Plant Sci. 8: 1251 – doi: 10.3389/fpls.2017.01251 – eCollection 2017 – https://www.ncbi.nlm.nih.gov/pubmed/28769957 – (On our blog : https://plantstomata.wordpress.com/2019/09/03/aba-mediated-stomatal-response/ )

Saravanavel R., Ranganathan R., Anantharaman P. (2011) – Effect of Sodium Chloride on Photosynthetic Pigments and Photosynthetic Characteristics of Avicennia officinalis Seedlings – Recent Res. Sci. Technol. 3(4) –https://scienceflora.org/journals/index.php/rrst/article/view/665 – (On our blog : https://plantstomata.wordpress.com/2017/10/25/effect-of-nacl-on-stomatal-conductance-in-avicennia/ )

Sarsag M., Ünal M. (2004) – The effects of Sultan 70 WG on stomatal function – Biotechnol. & Biotechnol. Eq. 18/2004/2: 104-111 – (On our blog : https://plantstomata.wordpress.com/2017/11/24/herbicide-effects-on-stomatal-function/ )

Sarwar A. K. M. Golam, Karim M. A., Rana S. M. A. Masud (2013) – Influence of stomatal characteristics on yield and yield attributes of rice – J. Bangladesh Agril. Univ. 11(1): 47–52 – ISSN 1810-3030  – http://ageconsearch.umn.edu/bitstream/209746/2/18207-65562-1-PB.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/06/stomata-and-rice-yield/ )

Sasaki T., Mori I. C., Furuichi T., Munemasa S., Toyooka K., Matsuoka K., Murata Y., Yamamoto Y.  (2010) – Closing plant stomata requires a homolog of an aluminum-activated malate transporter. – Plant Cell Physiol. 51: 354–365. – doi: 10.1093/pcp/pcq016 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835873/ – (On our blog : https://plantstomata.wordpress.com/2018/06/17/atalmt12-is-a-novel-class-of-anion-transporter-involved-in-stomatal-closure/ )

Sato H., Kumagai T. O., Takahashi A., Katul G. (2015) – Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO2-enriched climate conditions – J. Geophys. Res. Biogeosci. 120, 979–988. – doi: 10.1002/2014JG002838 – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1002/2014JG002838/full – (On our blog : https://plantstomata.wordpress.com/2017/12/20/stomatal-conductance-response-to-humidity/ )

Sato N. (1985) – Lipid biosynthesis in epidermal, guard and mesophyll cell protoplasts from leaves of Vicia faba L. – Plant Cell Physiol. 26: 805–811 – DOI: 10.1093/oxfordjournals.pcp.a076974 – https://link.springer.com/chapter/10.1007/978-1-4684-5263-1_100 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/epidermal-and-guard-cells-are-quite-different-in-ability-to-synthesize-long-chain-fatty-acids-in-stomata-of-broad-bean/ )

Sato T., Abdalla O. S., Oweis T. Y., Sakuratani T. (2006) – Effect of supplemental irrigation on leaf stomatal conductance of field-grown wheat in northern Syria – Agricultural Water Management 85: 105–112 – https://doi.org/10.1016/j.agwat.2006.03.015 –https://www.sciencedirect.com/science/article/pii/S0378377406001041 – (On our blog : https://plantstomata.wordpress.com/2018/12/30/effect-of-supplemental-irrigation-on-leaf-stomatal-conductance/ )

Saupe S. G. (2009) – Plant Physiology (Biology 327) – Stomatal Images – https://employees.csbsju.edu/ssaupe/biol327/Lab/stomata/stomata-images.htm

Savchenko T., Kolla V. A., Wang C. Q., Nasafi Z., Hicks D. R., Phadungchob B., Chehab W. E., Brandizzi F., Froehlich J., Dehesh K. (2014) – Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought – Plant Physiol. 164: 1151–1160 – 10.1104/pp.113.234310 – [PMC free article] [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/24429214 – (On our blog : https://plantstomata.wordpress.com/2018/06/17/12-opda-as-a-drought-responsive-regulator-of-stomatal-closure-functioning-together-with-aba/

Savvides A., Fanourakis D., van Ieperen W. (2012) – Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves – J Exp Bot. 63(3): 1135–1143.Published online 2011 Nov 25. doi: 10.1093/jxb/err348 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276089/ – (On our blog : https://plantstomata.wordpress.com/2018/12/21/co-ordination-of-hydraulic-and-stomatal-conductances-across-light-qualities/ )

Sawhney B. L., Zelitch I. (1969) – Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light – Plant Physiol. 44(9): 1350–1354 – https://www.jstor.org/stable/4261836?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/12/30/potassium-ion-accumulation-in-guard-cells-in-relation-to-stomatal-opening-in-light/ )

Sawinski K., Mersmann S., Robatzek S., Böhmer M. (2013) – Guarding the green: pathways to stomatal immunity. – Mol. Plant Microbe Interact. 26, 626–632. – doi: 10.1094/Mpmi-12-12-0288-CR – https://www.ncbi.nlm.nih.gov/pubmed/23441577 – (On our blog : https://plantstomata.wordpress.com/2018/06/17/the-signaling-pathways-leading-to-stomatal-closure-triggered-by-biotic-and-abiotic-stresses-employ-several-common-components/ )

Sawyer W. H. Jr. (1932) – Stomatal apparatus of the cultivated cranberry Vaccinium macrocarpon – American Journal of Botany 19(6): 508-513 – https://www.jstor.org/stable/2436073?seq=1#page_scan_tab_contents – (On our blog :

Sayed S. A. (1997) – Effect of cadmium and kinetin on transpiration rate, stomatal opening and leaf relative water content in safflower plants – Journal of Islamic Academy of Sciences. 10(3): 73-80 – https://www.journalagent.com/ias/pdfs/IAS_10_3_73_80.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/20/cadmium-mediated-reduction-in-transpiration-rate-stomatal-opening-and-leaf-turgidity-are-reversed-by-kinetin/ )

Sayre J. D. (1926) – Physiology of Stomata of Rumex patientia – Ohio Jour. Sci. 26: 233-266 –

Saxe H. (1979) – A structural and functional study of the coordinated reactions of individual Commelina communis L. stomata (Commelinaceae) – Amer. J. Bot. 66: 1044-1052 – https://doi.org/10.1002/j.1537-2197.1979.tb06320.x –https://bsapubs.onlinelibrary.wiley.com/doi/pdf/10.1002/j.1537-2197.1979.tb06320.x – (On our blog : https://plantstomata.wordpress.com/2018/12/31/coordinated-reactions-of-individual-stomata/ )

Saxe H. (1990) – Photosynthesis and stomatal responses to polluted air, and the use of physiological and biochemical responses for early detection and diagnostic tools – Advances in Botanical Research 18: 1–129 – https://doi.org/10.1016/S0065-2296(08)60021-X –https://www.sciencedirect.com/science/article/pii/S006522960860021X – On our blog : https://plantstomata.wordpress.com/2018/12/31/photosynthesis-and-stomatal-responses-to-polluted-air/ )

Scarth G. W. (1927) – Stomatal Movement: its Regulation and Regulatory Role. A Review – Protoplasma 2(3): 498-511 –

Scarth G. W. (1929) – The Influence of H-Ion Concentration on the Turgor and Movement of Plant Cells with Special Reference to Stomatal Behaviour – Proc. Internat. Cong. Plat. Sci. 2: 1151-1162 –

Scarth G. W. (1932) – The Mechanism of the Action of Light and Other Factors on Stomatal Movement – Plant Phys. 7: 481-504 –

Scarth G. W., Shaw M. (1951) – Stomatal Movement and Photosynthesis in Pelargonium. II. Effects of Water Deficit and of Chloroform: photosynthesis in guard cells – Plant Physiol. 26: 581-597 – https://www.jstor.org/stable/4258451?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/20/effect-of-water-deficit-and-chloroform-on-stomatal-movement/ )

Scarth G. W., Whyte J. H., Brown (1933) – On the Cause of Night Opening of Stomata – Trans. Roy. Soc. Canada 115-117 –

Schäfer R. (1888) – Über den Einfluss des Turgors der Epidermissellen auf die Function des Spaltöffnungsapparates – Jahrb. f. wiss. Bot. 19: 178-205 – ,

Schäfer K. V. R.,, Oren R., Tenhunen J. D. (2000) – The effect of tree height on crown level stomatal conductance – Plant, Cell and Environment 23: 365-375 – https://doi.org/10.1046/j.1365-3040.2000.00553.x –http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.3632&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/31/decreasing-hydraulic-conductance-with-tree-height-reduces-carbon-uptake-through-a-corresponding-decrease-in-stomatal-conductance/ ) – https://plantstomata.wordpress.com/2019/01/04/tree-height-and-crown-level-stomatal-conductance/ )

Schäfer N., Maierhofer T., Herrmann J., Jørgensen M. E., Lind C., von Meyer K., Lautner S., Fromm J., Felder M., Hetherington A. M., Ache P., Geiger D., Hedrich R. (2018) –  A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate – Current Biology,26 April 2018 DOI: 10.1016/j.cub.2018.03.027 – https://www.scoop.it/t/plant-hormones-by-julio-retamales/p/4097207899/2018/04/26/a-tandem-amino-acid-residue-motif-in-guard-cell-slac1-anion-channel-of-grasses-allows-for-the-control-of-stomatal-aperture-by-nitratehttps://www.cell.com/current-biology/abstract/S0960-9822(18)30356-7 – (On our blog : https://plantstomata.wordpress.com/2018/04/29/a-tandem-amino-acid-residue-motif-that-within-the-slac1-channels-differs-fundamentally-between-monocots-and-dicots/ )

Schaller J., Paschold P. J. (2009) – Stomata-characteristics and responses to soil drought indicating a cultivar specific drought stress susceptibility in asparagus – European Journal of Horticultural Science 74(4): 145-151 – http://0-search.ebscohost.com.catalog.library.colostate.edu/login.aspx?direct=true&AuthType=cookie,ip,url,cpid&custid=s4640792&db=lah&AN=20093259465&site=ehost-live – https://agwaterconservation.colostate.edu/library/stomata-characteristics-and-responses-to-soil-drought-indicating-a-cultivar-specific-drought-stress-susceptibility-in-asparagus/ – (On our blog : https://plantstomata.wordpress.com/2017/10/29/stomata-and-responses-to-soil-drought-in-asparagus/ )

Scheibe R., Reckmann U., Hedrich R., Raschke K. (1990) – Malate dehydrogenase in guard cells of Pisum sativum – Plant Physiol. 93: 1358-1364 – DOI: https://doi.org/10.1104/pp.93.4.1358 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062680/ – (On our blog : https://plantstomata.wordpress.com/2017/12/20/the-malate-requirement-for-stomatal-opening-in-the-light-malate-dehydrogenase-in-guard-cells/ )

Schellenberg B., Ramel C., Dudler R. (2010) – Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition – Mol. Plant Microbe Interact. 23: 1287–1293 –  doi: 10.1094/MPMI-04-10-0094. – https://www.ncbi.nlm.nih.gov/pubmed/20831408 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/inhibition-of-stomatal-immunity-by-syringolin-a/ )

Scherzer S., Maierhofer T., Al-Rasheid K. A. S., Geiger D., Hedrich R. (2012) – Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. – Mol. Plant 5, 1409–1412. – doi: 10.1093/mp/sss084 – https://www.ncbi.nlm.nih.gov/pubmed/22933711 – ((On our blog : https://plantstomata.wordpress.com/2018/06/17/ca-dependent-kinases-modulate-aba-activated-stomatal-anion-channels/ )

Schletz R. (2008) – Stomata Densities of Developing and Mature Leaves of Geraniums – ESSAI: Vol. 6, Article 42. – http://dc.cod.edu/essai/vol6/iss1/42 – https://dc.cod.edu/cgi/viewcontent.cgi?article=1084&context=essai – (On our blog : https://plantstomata.wordpress.com/2018/01/24/stomata-densities-of-developing-and-mature-leaves/ )

Schlüter U., Muschak M., Berger D., Altmann T. (2003) – Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes – J Exp Bot 54: 867–874 – https://doi.org/10.1093/jxb/erg087 – CrossRefPubMedGoogle Scholar – https://academic.oup.com/jxb/article/54/383/867/545860 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/a-point-mutation-in-a-single-gene-sdd1-causes-specific-alterations-in-stomatal-density-and-distribution/

Schmidt C., Schelle I., Liao Y.-J., Schroeder J. I. (1995) – Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events – Proc Natl Acad Sci USA 92: 9535–9539 – DOI: 10.1073/pnas.92.21.9535 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40836/ – (On our blog : https://plantstomata.wordpress.com/2019/01/07/strong-regulation-of-slow-anion-channels-and-aba-signaling-in-stomata/ )

Schmidt C., Schroeder J. I. 1994) – Anion-selectivity of slow anion channels in Vicia faba guard cells: large nitrate permeability – Plant Physiol 106: 383–391 – https://doi.org/10.1104/pp.106.1.383https://pdfs.semanticscholar.org/3df8/c333491b895b6a76a86983bf1c09516f9f51.pdf – (On our blog : https://plantstomata.wordpress.com/2018/12/06/slow-anion-channels-can-provide-an-efficient-pathway-for-efflux-of-physiologically-important-anions-from-stomata/ )

Schmitt U., Ruetze M., Liese W. (1987) – Scanning electron microscopical investigations on stomatal wax plugs of fir and spruce needles after fumigation and acid rain treatment (Rasterelektronenmikroskopische Untersuchungen an Stomata von Fichten‐ und Tannennadeln nach Begasung und saurer Beregnung) – European Journal of Forest Pathology, 17: 118-124 – https://doi.org/10.1111/j.1439-0329.1987.tb00736.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0329.1987.tb00736.x – (On our blog : https://plantstomata.wordpress.com/2019/01/07/stomatal-wax-plugs-after-fumigation-and-acid-rain-treatment/ )

Schnabl H. (1980) – CO2 and malate metabolism in starch-containing and starch lacking guard cell protoplasts – Planta 149: 52–58 –

Schnabl H. (1981) – The compartmentation of carboxylating and decarboxylating enzymes in guard cell protoplasts – Planta 152: 307–313 – https://doi.org/10.1007/BF00388254https://link.springer.com/article/10.1007%2FBF00388254#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/17/carboxylating-and-decarboxylating-enzymes-in-stomatal-protoplasts/ )

Schnabl H., Bornman C., Ziegler H. (1978) – Studies in isolated starch-containing and starch-deficient guard cell protoplasts – Planta 143: 33–39 –

Schnabl H., Kottmeier C. (1984) – Determination of malate levels during the swelling of vacuoles isolated from guard cell protoplasts – Planta 161: 27–31 – https://doi.org/10.1007/BF00951456https://link.springer.com/article/10.1007%2FBF00951456#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/07/malate-levels-during-the-swelling-of-vacuoles-isolated-from-stomatal-protoplasts/ )

Schnabl H., Kottmeier C. (1984) – Properties of phosphoenolpyruvate carboxylase in desalted extracts from isolated guard cell protoplasts – Planta 162: 220–225 – https://doi.org/10.1007/BF00397443https://link.springer.com/article/10.1007/BF00397443 – (On our blog : https://plantstomata.wordpress.com/2019/05/09/properties-of-pep-carboxylase-in-desalted-extracts-from-isolated-guard-cell-protoplasts/ )

Schnabl H., Michalke B. (1988) – The role of oxidative phosphorylation in stomatal opening. Adenylate pool sizes in light- and dark-treated swelling guard cell protoplasts – Life Sci. Adv. Plant Physiol. 7: 203–207 – (Article not found)

Schnabl H., Raschke K. (1980) – Potassium Chloride as Stomatal Osmoticum in Allium cepa L., a Species Devoid of Starch in Guard Cells – Plant Physiol. 65(1): 88–93 – PMID: 16661151 PMCID: PMC440273 –https://www.ncbi.nlm.nih.gov/pubmed/16661151 – (On our blog :https://plantstomata.wordpress.com/2019/01/17/potassium-chloride-as-stomatal-osmoticum/ )

Schnabl H., Weissenboeck G., Sachs G., Scharf H. (1989) – Cellular distribution of UV-absorbing compounds in guard and subsidiary cells of Zea mays L. – Journal of Plant Physiology 135: 249–252 –

Schnabl H., Ziegler H. (1975) –  Über die Wirkung von Aluminiumionen auf die Stomatabewegung von Vicia faba Epidermen. Zeit. Pflanzenphysiol.74: 394-403 –

Schnabl H., Ziegler H. (1977) – The mechanism of stomatal movement in Allium cepa L. – Planta 136: 37-43 – doi: 10.1007/BF00387922. –https://www.ncbi.nlm.nih.gov/pubmed/24420224 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/starch-and-the-mechanism-of-stomatal-movement/ )

Schneider J. V., Habersetzer J., Rabenstein R., Wesenberg J., Wesche K., Zizka G. (2017) – Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density – New Phytol. 214(1):473-486 – doi: 10.1111/nph.14382 – Epub 2016 Dec 22 – https://www.ncbi.nlm.nih.gov/pubmed/28005294 – (On  our blog : https://plantstomata.wordpress.com/2018/06/14/relationships-between-leaf-size-vein-and-stomata-traits-and-their-interplay-with-climate/ )

Schoch P. G., Jacques R., Lecharny A., Sibi M. (1984) – Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. II. Effect of different light quality – Journal of Experimental Botany 35: 1405-1409 –  https://doi.org/10.1093/jxb/35.10.1405 –https://academic.oup.com/jxb/article-abstract/35/10/1405/512576?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/07/phytochrome-is-involved-in-stomatal-differentiation/ )

Schoch P. G., Zinsou C., Sibi M. (1980) – Dependence of the stomatal index on environmental-factors during stomatal differentiation in leaves of Vigna sinensis L. – 1. Effect of light-intensity. – J. Exp. Bot. 31: 1211–1216 –  doi:10.1093/jxb/31.5.1211 – https://academic.oup.com/jxb/article-abstract/31/5/1211/454079?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2018/02/01/dependence-of-the-stomatal-index-on-environmental-factors/ )

Schroeder J. I. (1988) – K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells – J. Gen. Physiol. 92: 667–683 – DOI: 10.1085/jgp.92.5.667 –PubMed – https://www.ncbi.nlm.nih.gov/pubmed/3235976 – (On our blog : https://plantstomata.wordpress.com/2017/12/20/a-prominent-role-for-ikin-and-ikout-channels-in-k-transport-across-the-plasma-membrane-of-guard-cells-in-stomata-of-vicia/ )

Schroeder  J. I. (1992) – Plasma membrane ion channel regulation during abscisic acid-induced closing of stomata – Philos. Trans. R. Soc. Lond. 338: 83-89 – DOI: 10.1098/rstb.1992.0131 – http://rstb.royalsocietypublishing.org/content/338/1283/83 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/plasma-membrane-ion-channel-regulation-and-stomatal-closure/ )

Schroeder J. I. (1995) – Magnesium-independent activation of inward-rectifying K+ channels in Vicia faba guard cells – FEBS Lett 363: 157–160  – https://core.ac.uk/download/pdf/82557060.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/07/the-activation-mechanism-of-inward-rectifying-k-channels-in-stomata-is-independent-of-intracellular-mg2-block/ )

Schroeder J. I. (1995) – Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions – Plant Molecular Biology 28(3): 353-361 – https://doi.org/10.1007/BF00020385https://link.springer.com/article/10.1007%2FBF00020385#citeas – (On our blog : https://plantstomata.wordpress.com/2018/12/06/a-brief-review-of-new-and-recent-insights-into-the-molecular-properties-and-cell-biological-functions-of-anion-channels-in-stomata/ )  

Schroeder  J. I. (2003) – Knockout of the guard cell Kout channel and stomatal movements – PNAS 100(9): 4976–4977 – doi/10.1073/pnas.1031801100 – http://www.pnas.org/content/100/9/4976.full.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/17/kout-channels-function-in-mediating-stomatal-closing-and-turgor-reduction-in-plant-cells/ )

Schroeder J. I., Allen G. J., Hugouvieux V., Kwak,J. M., Waner D. (2001) – Guard cell signal transduction – Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 627–658 – doi: 10.1146/annurev.arplant.52.1.627 – https://www.ncbi.nlm.nih.gov/pubmed/11337411 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/stomatal-cells-signal-transduction/ )

Schroeder J. I., Fang H. H. (1991) – Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake – Plant Physiol 88: 11583–11587 – https://pdfs.semanticscholar.org/d904/3945e04c4608cd53247e5f9f69f13f63239e.pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/11/inward-rectifying-k-channels-in-stomata-and-low-affinity-k-uptake/ )

Schroeder  J. I., Hagiwara S. (1989) – Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells – Nature 338, 427–443. – doi: 10.1038/338427a0 – CrossRef Full Text, – CrossRefWeb of ScienceGoogle Scholar – https://www.nature.com/articles/338427a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/ca2-dependent-regulation-of-stomatal-movements/ )

Schroeder J. I., Hagiwara S. (1990) – Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels – Proc. Natl. Acad. Sci. U.S.A. 87: 9305–9309.  – doi: 10.1073/pnas.87.23.9305 – Pubmed Abstract | Pubmed Full Text | CrossRef Full Text – http://www.pnas.org/content/87/23/9305.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/aba-activation-of-ca2-permeable-ion-channels-in-the-plasma-membrane-of-guard-cells/ )

Schroeder J. I., Hedrich R., Fernandez J. M. (1984) – Potassium-selective single channels in guard cell protoplasts of Vicia faba – Nature 312: 361–362 – doi: 10.1038/312361a0 – https://www.nature.com/articles/312361a0 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/k-channel-contributes-significantly-to-the-uptake-and-release-of-k-by-guard-cells-during-stomatal-movement-2/ )

Schroeder J. I., Keller B. U. (1992) – Two types of anion channel currents in guard-cells with distinct voltage regulation. – Proc. Natl. Acad. Sci. U.S.A. 89, 5025–5029. – PMCID: PMC49221 – PMID: 1375754 -https://www.ncbi.nlm.nih.gov/pmc/articles/PMC49221/ – (On our blog : https://plantstomata.wordpress.com/2019/01/07/anion-channel-currents-in-stomata/ )

Schroeder J. I., Kwak J. M., Allen G. J. (2001) – Guard cell abscisic acid signaling and engineering drought hardiness in plants – Nature 410: 327–330. – doi: 10.1038/35066500 –PubMed Abstract | CrossRef Full Text | Google ScholarMedline, – http://www.nature.com/nature/journal/v410/n6826/full/410327a0.html – ( https://plantstomata.wordpress.com/2017/01/25/engineering-stomatal-responses-to-control-co2-intake-and-plant-water-loss/ )

Schroeder J. I., Munemasa S., Hauser F., Hu H., Kim T.-H., Brandt B., Nishimura N., Israelsson-Nordstrom M., Boisson-Dernier A., Brodsky D. (2012) – Guard cell CO2 and abscisic acid signal transduction network – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/stomata-co2-and-aba-signal-transduction-network/ )

Schroeder J. I., Raschke K., Neher E. (1987) – Voltage dependence of K+ channels in guard cell protoplasts – Proceedings of the National Academy of Sciences, USA1987;84:4108-4112 –http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Voltage-dependence-of-K–channels-in-guard-cell-protoplasts.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/21/voltage-dependence-of-k-channels-in-guard-cell-protoplasts/ )

Schroeder J., Schmidt C., Sheaffer J. (1993) – Identification of High-Affinity Slow Anion Channel Blockers and Evidence for Stomatal Regulation by Slow Anion Channels in Guard Cells – Plant Cell 5, 1831–1841 – DOI: https://doi.org/10.1105/tpc.5.12.1831http://www.plantcell.org/content/5/12/1831 – (On our blog : https://plantstomata.wordpress.com/2019/01/09/evidence-for-stomatal-regulation-by-slow-anion-channels/ )

Schuermann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora (Jena) 147: 471-520 –

Schuler M. L., Sedelnikova O. V., Walker B. J., Westhoff P., Langdale J. A. (2018) – SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency – Plant Physiol.176 (1): 1-11 – DOI: https://doi.org/10.1104/pp.17.01763 – http://www.plantphysiol.org/content/176/1 – (On our blog : https://plantstomata.wordpress.com/2018/01/15/shortroot-mediated-increase-in-stomatal-density/ )

Schulz H. R., Kiefer W., Gruppe W. (1996) – Photosynthetic duration, carboxylation efficiency and stomatal limitation of sun and shade leaves of different ages in field-grown grapevine (Vitis vinifera L.) – Vitis 35(4): 169-176 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1008.6361&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/15/stomatal-limitation-of-sun-and-shade-leaves-of-different-ages/ )

Schulz-Lessdorf B., Lohse G., Hedrich R. (1996) – GCAC1 recognizes the pH gradient across the plasma membrane: a pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism – The Plant J. 10: 993-1004 – DOI: 10.1046/j.1365-313X.1996.10060993.x –http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1996.10060993.x/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/21/gcac1-is-strongly-modulated-by-atp-and-protons-this-channel-is-capable-of-sensing-changes-in-the-energy-status-acid-metabolism-and-the-h-atpase-activity-of-guard-cells/ )

Schulze D. E., Hall A. E. (1982) – Stomatal responses, water loss and CO2assimilation rates of plant. In O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler (eds.), Physiological Plant Ecology, II Encyclopedia of Plant Physiology, 12B, Springer Verlag, Berlin, pp. 181-230.

Schulze E. D., Kelliher F. M., Korner C., Lloyd J., Leuning R. (1994) – Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. – Annu. Rev. Ecol. Syst. 25: 629–660 – DOI: 10.1146/annurev.es.25.110194.003213 –ISIArticle –https://www.jstor.org/stable/2097327?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/21/maximum-stomatal-conductance-ecosystem-surface-conductance-carbon-assimilation-rate-and-plant-nitrogen-nutrition/ )

Schulze E. D., Küppers M. (1970) – Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. – Planta 146: 319-326 – DOI: 10.1007/BF00387804 –https://www.ncbi.nlm.nih.gov/pubmed/24318185 – (On our blog : https://plantstomata.wordpress.com/2018/11/25/concurrent-measurements-of-plant-water-status-may-not-be-sufficient-for-explaining-stomatal-and-other-plant-responses-to-drought/ )

Schulze E. D., Lange O. L., Buschbom U., Kappen L., Evenari M. (1972) – Stomatal responses to changes in humidity in plants growing in the desert – Planta 108: 259-270 – DOI: 10.1007/BF00384113 -https://link.springer.com/article/10.1007/BF00384113 – (On our blog : https://plantstomata.wordpress.com/2017/08/02/stomatal-responses-to-changes-in-humidity-in-desert-plants/ )

Schulze E. D., Lange O. L., Evenari M., Kappen L., Buschbom U. (1973) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance – Oecologia (Berl.) 17 : 159-170 – DOI: 10.1007/BF00345424 – DOI: 10.1007/BF00346278 – https://link.springer.com/article/10.1007/BF00346278 – (On our blog : https://plantstomata.wordpress.com/2017/12/21/the-role-of-air-humidity-and-leaf-temperature-in-controlling-stomatal-resistance-under-desert-conditions/ )

Schulze E. D., Lange O. L., Evenari M., Kappen L., Buschbom U. (1975) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. III. The effect on water use efficiency. – Oecologia 19: 303–314 – doi: 10.1007/BF00348106. – https://www.ncbi.nlm.nih.gov/pubmed/28309242 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/the-role-of-air-humidity-and-leaf-temperature-in-controlling-stomatal-resistance-and-the-effect-on-water-use-efficiency/ )

Schulze E. D., Lange O. L., Kappen L., Buschbom U., Evenari M. (1973) – Stomatal response to changes in temperature at increasing water stress – Planta 110: 29–42 – doi: 10.1007/BF00386920 – https://link.springer.com/article/10.1007/BF00386920 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/stomatal-response-to-changes-in-temperature-at-increasing-water-stress/ )

Schulze E. D., Lange O. L., Kappen L., Evenari M., Buschbom U. (1975) – The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. – Oecologia (Berl.) 18 : 219-233 – DOI: 10.1007/BF00345424 –https://www.ncbi.nlm.nih.gov/pubmed/28308679 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/controlling-stomatal-resistance-under-desert-conditions-significance-of-leaf-water-status-and-internal-co2-concentration/ )

Schulze E. D., Turner N. C., Gollan T., Shackel K. A. (1987) – Stomatal responses to air humidity and to soil drought. In Stomatal Function. Eds. E. Zeiger, G.D. Farquhar and I.R. Cowan. Stanford University Press, Stanford, CA, pp 311–322

Schürmann B. (1959) – Über den Einfluss der Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialen – Flora 147: 471-520 – https://ac.els-cdn.com/S036716151731981X/1-s2.0-S036716151731981X-main.pdf?_tid=12c86a7c-e736-11e7-b153-00000aab0f26&acdnat=1513960689_dff4a08cb2065fa088a5515db1fc3a5f – (On our blog : https://plantstomata.wordpress.com/2017/12/22/influence-of-water-and-light-on-the-development-of-stomata-initials-in-german/ )

Schurr U., Gollan T., Schulze E. D. (1992) – Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap – Plant, Cell and and Environment 15: 561-567 – https://doi.org/10.1111/j.1365-3040.1992.tb01488.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01489.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/stomatal-sensitivity-to-aba-imported-from-the-xylem-sap-2/ )

Schwabe W. W. (1952) – Effects of photoperiodic treatment on stomatal movement – Nature (Lond.) 169: 1053-1054 – DOI: 10.1038/1691053a0 –https://www.nature.com/articles/1691053a0 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/the-effects-of-day-length-treatments-on-stomatal-movement/ )

Schwartz A. (1985) – Role of Ca and EGTA on Stomatal Movements in Commelina communis L. – Plant Physiol. 79: 1003–1005 – DOI: https://doi.org/10.1104/pp.79.4.1003 – https://www.jstor.org/stable/4269650?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2018/06/18/ca-and-egta-in-stomatal-movements/ )

Schwartz A., Ilan N., Grantz D. A. (1988) – Calcium effects on stomatal movement in Commelina communis L. Use of EGTA to modulate stomatal response to light, KCl and CO2 – Plant Physiol.  87: 583-587 –  PMID:16666189 –  http://dx.doi.org/10.1104/pp.87.3.583https://eurekamag.com/research/004/867/004867898.php – (On our blog : https://plantstomata.wordpress.com/2019/01/07/use-of-egta-to-modulate-stomatal-response-to-light-kcl-and-co2-2/ )

Schwartz A., Ilan N., Assmann S. M. (1991) – Vanadate inhibition of stomatal opening in epidermal peels of Commelina communis – Planta 183: 590596 – DOI: 10.1007/BF00194281 – https://link.springer.com/article/10.1007/BF00194281#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/22/vanadate-inhibition-of-stomatal-opening/ )

Schwartz A., Ilan N., Schwarz M., Scheaffer J., Assmann S. M., Schroeder J. I. (1995) – Anion-channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells – Plant Physiology 109: 651–658 – https://doi.org/10.1104/pp.109.2.651https://www.ncbi.nlm.nih.gov/pubmed/12228619 – (On our blog : https://plantstomata.wordpress.com/2019/01/07/anion-channel-blockers-inhibit-s-type-anion-channels-and-aba-responses-in-stomata/ )

Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. (1994) – Inhibition of inward K+channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action – Proc. Natl. Acad. Sci. U.S.A. 91: 4019–4023 – https://doi.org/10.1073/pnas.91.9.4019 – [PMC free article] [PubMed] – http://www.pnas.org/content/91/9/4019 – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Inhibition-of-inward-K–channels-and-stomatal-response-by-abscisic.pdf – (On our blog : https://plantstomata.wordpress.com/2018/06/18/aba-can-act-from-within-guard-cells-to-regulate-stomatal-apertures/

Schwartz A., Zeiger E. (1984) – Metabolic energy for stomatal opening – Roles of photophosphorylation and oxidative-phosphorylation – Planta161129136 – DOI: 10.1007/BF00395472 – Google Scholar CrossRef PubMed  – https://link.springer.com/article/10.1007/BF00395472 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/photophosphorylation-and-oxidative-phosphorylation-for-stomatal-movements/ )

Schwendener S. (1881) – Über Bau und Mechanik der Spaltöffnungen – Monatsber. d. Akad. d. Wiss. zu Berlin, 833 –

Schwendener S. (1882) – Über Bau und Mechanik der Spaltöffnungen – Monatsber. d. preuss. Akad. der Wissensch. Berlin

Schymanski S. J., Or D., Zwieniecki M. (2013) – Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations – PLoS ONE 8, e54231 – doi:10.1371/ journal.pone.0054231 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054231 – (On our blog : https://plantstomata.wordpress.com/2017/12/22/65176/ )

Schymanski S. J., Singer T., Or D. (2017) – Linking stomata geometries and densities to leaf gas exchange – new opportunities and old pitfalls – Geophysical Research Abstracts 19, EGU2017-11526 – http://meetingorganizer.copernicus.org/EGU2017/EGU2017-11526.pdf – (On our blog : https://plantstomata.wordpress.com/2017/10/29/linking-stomata-geometries-and-densities-to-leaf-gas-exchange/ )

Scoffoni C., Albuquerque C., Cochard H., Buckley T. N., Fletcher L. R., Caringella M. A., Bartlett M., Brodersen C. R., Jansen S., McElrone A. J., Lawren Sack L. (2018) – The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in Arabidopsis thaliana – Plant Physiology 178(4): 1584-1601 – https://doi.org/10.1104/pp.18.00743http://www.plantphysiol.org/content/plantphysiol/178/4/1584.full.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/15/causes-of-leaf-hydraulic-vulnerability-and-stomatal-conductance/ )

Scuffi D., Álvarez C., Laspina N., Gotor C., Lamattina L., Garcia-Mata C. (2014) – Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. – Plant Physiol. 166: 2065–207 – doi: 10.1104/pp.114.245373 – https://www.ncbi.nlm.nih.gov/pubmed/25266633 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/des1-is-a-unique-component-of-aba-signaling-in-stomata-2/ )

Scuffi D., Lamattina L., Garcia-Mata C. (2016) – Gasotransmitters and Stomatal Closure: Is There Redundancy, Concerted Action, or Both? – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:277. – doi: 10.3389/fpls.2016.00277- 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/gasotransmitters-and-stomatal-closure-2/ )

Scuffi D., Nietzel T., Di Fino L. M., Meyer A. J., Lamattina L., Schwarzlander M., Laxalt A. M., Garcia-Mata C. (2018) – Hydrogen Sulfide Increases Production of NADPH Oxidase-Dependent Hydrogen Peroxide and Phospholipase D-Derived Phosphatidic Acid in Guard Cell Signaling –  Plant Physiol. 176: 2532–2542 – DOI: https://doi.org/10.1104/pp.17.01636http://www.plantphysiol.org/content/176/3/2532 – (On our blog : https://plantstomata.wordpress.com/2019/01/16/the-involvement-of-h2s-in-the-signaling-network-that-controls-stomatal-closure/ )

Seethaler S. (2006) – UCSD Study Reveals How Plants Respond to Elevated Carbon Dioxide – UCSD News – http://ucsdnews.ucsd.edu/archive/newsrel/science/sCO2plants.asp – (On our blog : https://plantstomata.wordpress.com/2018/01/24/how-plants-and-stomata-respond-to-elevated-carbon-dioxide/ )

Segev R., Nannapaneni R., Sindurakar P., Kim H., Read H., Lijek S. (2015) – The Effect of the Stomatal Index on the Net Rate of Photosynthesis in the Leaves of Spinacia oleraceaVinca minorRhododendron sppEpipremnum aureum, and Hedera spp. –  Journal of Emerging Investigators 2018 – https://www.emerginginvestigators.org/articles/the-effect-of-the-stomatal-index-on-the-net-rate-of-photosynthesis-in-the-leaves-of-i-spinacia-oleracea-i-i-vinca-minor-i-i-rhododendron-spp-i-i-epipremnum-aureum-i-and-i-hedera-spp-i – (On our blog : https://plantstomata.wordpress.com/2018/01/23/correlation-between-stomatal-index-and-photosynthesis/ )

Segschneider H. J., Wildt J., Forstel H. (1995) – Uptake of (NO2)-N-15 by sunflower (Helianthus-annuus) during exposures in light and darkness – quantities, relationship to stomatal aperture and incorporation into different nitrogen pools within the plant – New Phytologist 131: 109–119 – https://doi.org/10.1111/j.1469-8137.1995.tb03060.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1995.tb03060.x – (On our blog : https://plantstomata.wordpress.com/2019/09/10/uptake-of-no2-n-15-and-stomatal-aperture/ )

Seibt U., Wingate L., Berry J. A. (2007) – Nocturnal stomatal conductance effects on the d18O signatures of foliage gas exchange observed in two forest ecosystems – Tree Physiology 27: 585–595 – DOI: 10.1093/treephys/27.4.585 – https://www.researchgate.net/publication/6561086_Nocturnal_stomatal_conductance_effects_on_the_d18O_signatures_of_foliage_gas_exchange_observed_in_two_forest_ecosystems – (On our blog : https://plantstomata.wordpress.com/2019/01/17/nocturnal-stomatal-conductance-effects/ )

Sellin A. (2001) – Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. – Tree Physiology 21:879–888 – DOI: 10.1093/treephys/21.12-13.879 – https://www.ncbi.nlm.nih.gov/pubmed/11498335 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/hydraulic-and-stomatal-adjustment-of-trees-to-environmental-stress/ )

Sen D. N., Harsha L. N. (1974) – Ecophysiological studies on stomatal regulation in Allium cepa L. and Asphodelus tenuifolius Cav. – Flora 163: 14-25 – DOI: 10.1016/S0367-2530(17)31074-5 – https://ac.els-cdn.com/S0367253017310745/1-s2.0-S0367253017310745-main.pdf?_tid=5548ae14-e7bf-11e7-8185-00000aab0f01&acdnat=1514019641_df39a1a59be5adad76dd9e986e7f1457 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/ecophysiological-studies-on-stomatal-regulation/ )

Seo J., Lee H. Y., Choi H., Choi Y., Lee Y.,Kim Y.-W., Ryu S. B., Lee Y. (2008) – Phospholipase A2β mediates light-induced stomatal opening in Arabidopsis – Journal of Experimental Botany 59(13): 3587–3594 – https://doi.org/10.1093/jxb/ern208 –https://academic.oup.com/jxb/article/59/13/3587/514340 – (On our blog : https://plantstomata.wordpress.com/2019/05/04/phospholipase-a2%ce%b2-mediates-light-induced-stomatal-opening/ )

Seo M., Park D.-H., Lee C. W., Jaworski J., Kim J.-M. (2016) – Fluorometric Measurement of Individual Stomata Activity and Transpiration via a “Brush-on”, Water-Responsive Polymer – Sci Rep. 2016; 6: 32394 – doi: 10.1038/srep32394https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006157/ – (On our blog : https://plantstomata.wordpress.com/2019/08/01/coating-can-identify-the-proportion-of-active-stomata/ )

Serna L. (2007) – bHLH proteins know when to make a stoma – Trends Plant Sci 12: 483–485 – DOI: 10.1016/j.tplants.2007.08.016 – https://www.ncbi.nlm.nih.gov/pubmed/17928257?dopt=Abstract – (On our blog :  https://plantstomata.wordpress.com/2018/12/04/bhlh-proteins-know-when-to-make-a-stoma/

Serna L. (2009) – Cell fate transitions during stomatal development – Bioessays 31: 865–873 – DOI:  10.1002/bies.200800231- [PubMed] [Cross Ref] – https://www.ncbi.nlm.nih.gov/pubmed/19565615 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/the-role-of-a-signaling-cascade-during-stomatal-development/ )

Serna L. (2009) – Emerging Parallels between Stomatal and Muscle Cell Lineages – Plant Physiology 149 (4) 1625-1631 – DOI: https://doi.org/10.1104/pp.108.133090 – http://www.plantphysiol.org/content/149/4/1625/F1 – (On our blog :  https://plantstomata.wordpress.com/2018/12/04/emerging-parallels-between-stomatal-and-muscle-cell-lineages/

Serna L. (2011) – Stomatal development in Arabidopsis and grasses: differences and commonalities – International Journal of Developmental Biology 55: 5–10 – [PubMed] – doi: 10.1387/ijdb.103094ls. – https://www.ncbi.nlm.nih.gov/pubmed/21425077 – (On our blog : https://plantstomata.wordpress.com/2019/03/11/distinctions-in-the-regulation-of-gene-expression-and-protein-function-are-responsible-for-the-divergence-of-stomatal-development-between-arabidopsis-and-grasses/ )

Serna L., Fenoll C. (1997) – Tracing the ontogeny of stomatal clusters in Arabidopsis with molecular markers – Plant J. 12: 747–755 – PMID: 9375390 – https://www.ncbi.nlm.nih.gov/pubmed/9375390 – (On our blog : https://plantstomata.wordpress.com/2019/01/17/tracing-the-ontogeny-of-stomatal-clusters-with-molecular-markers/ )

Serna L, Fenoll C. (2000) – Stomatal development in Arabidopsis: how to make a functional pattern – Trends in Plant Science 5: 458-460 – DOI: https://doi.org/10.1016/S1360-1385(00)01782-9 – http://www.cell.com/trends/plant-science/pdf/S1360-1385(00)01782-9.pdf – (On our blog : https://plantstomata.wordpress.com/2018/03/22/stomatal-development-how-to-make-a-functional-pattern/ )

Serna L, Fenoll C. (2002) – Reinforcing the idea of signalling in the stomatal pathway – Trends in Genetics 18: 597–600 – https://doi.org/10.1016/S0168-9525(02)02790-7 –https://www.sciencedirect.com/science/article/pii/S0168952502027907 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/signalling-in-the-stomatal-pathway/ )

Serna L., Torres-Contreras J., Fenoll C., (2002) – Clonal analysis of stomatal development and patterning in Arabidopsis leaves – Developmental Biology 241: 24-33 – doi:10.1006/dbio.2001.0506, available online at http://www.idealibrary.com  – https://ac.els-cdn.com/S0012160601905068/1-s2.0-S0012160601905068-main.pdf?_tid=6344cd74-9996-4379-9322-240873410272&acdnat=1520793969_16932ebe86988dedab59603bde8e5e29 – (On our blog : https://plantstomata.wordpress.com/2018/03/11/cell-lineage-plays-a-very-important-role-during-stomatal-pattern-establishment/ )

Serrano E. E., Zeiger E. (1989) – Sensory transduction and electrical signaling in guard cells – Plant Physiol. 91(3):795–799 – PMID: 16667138 PMCID: PMC1062076https://www.ncbi.nlm.nih.gov/pubmed/16667138 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/sensory-transduction-and-electrical-signaling-in-stomata/ )

Serrano E. E., Zeiger E., Hagiwara S. (1988) – Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts – Proceedings of the National Academy of Sciences, USA 85: 436–440 – PMCID: PMC279564 – http://www.pnas.org/content/85/2/436 – https://plantstomata.wordpress.com/2017/12/23/red-light-stimulates-an-electrogenic-proton-pump-in-guard-cells-and-guard-cell-chloroplasts-modulate-this-response/ )

Setter T. L., Brun W. A., Brenner M. L. ( 1980) – Effect of obstructed translocation on leaf abscisic acid, and associated stomatal closure and photosynthesis decline – Plant Physiol 65: 1111– 1115 – PMID: 16661342 – PMCID: PMC440492https://www.ncbi.nlm.nih.gov/pubmed/16661342?dopt=Abstract – (On our blog : https://plantstomata.wordpress.com/2019/03/22/effect-of-obstructed-translocation-on-leaf-aba-and-associated-stomatal-closure/ )

Shackel K. A., Brinckmann E. (1984) – In situ measurement of epidermal cell turgor, leaf water potential and gas exchange in Tradescantia virginiana L. – Plant Physiology 78: 66–70 – DOI: https://doi.org/10.1104/pp.78.1.66 – http://www.plantphysiol.org/content/78/1/66 – (On our blog : https://plantstomata.wordpress.com/2017/12/23/little-direct-relation-between-stomatal-humidity-response-and-epidermal-water-status/ )

Shackel K. A., Novello V., Sutter E.G. (1990) – Stomatal Function and Cuticular Conductance in Whole Tissue-cultured Apple Shoots – J. AMER. SOC HORT. SCI. 115(3):468-472. – http://journal.ashspublications.org/content/115/3/468.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/25/stomatal-function-and-cuticular-conductance/ )

Shahinnia F., Le Roy J., Laborde B., Sznajder B., Kalambettu P., Mahjourimajd S., Tilbrook J., Fleury D. (2016) – Genetic association of stomatal traits and yield in wheat grown in low rainfall environments – BMC Plant Biology 16:150 – DOI 10.1186/s12870-016-0838-9 – https://bmcplantbiol.biomedcentral.com/track/pdf/10.1186/s12870-016-0838-9?site=bmcplantbiol.biomedcentral.com – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-traits-and-yield-in-wheat-grown-in-low-rainfall-environments/ )

Shang Y., Dai C., Lee M. M., Kwak J. M., Nam K. H. (2015) – BRI1-Associated Receptor Kinase 1 regulates guard cell ABA signaling mediated by Open Stomata 1 in Arabidopsis. – Mol. Plant 9: 447–460. – DOI: https://doi.org/10.1016/j.molp.2015.12.014 – https://www.cell.com/molecular-plant/abstract/S1674-2052(15)00467-0 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/bak1-regulates-aba-induced-stomatal-closure-in-guard-cells-2/ )

Shanmughavel P. (1995) – Effect of cement dust on stomata structure – Ecology, Environment and Conservation Paper 01(14): 7-9 –http://www.envirobiotechjournals.com/article_abstract.php?aid=2441&iid=84&jid=3 – (On our blog : https://plantstomata.wordpress.com/2017/11/28/effect-of-cement-dust-on-stomata/ )

Sharghi K. (2008) – Stanford researchers investigate how plants adapt to climate – Stanford Report, November 24, 2008 – https://news.stanford.edu/news/2008/december3/stomata-120308.html – (On our blog : https://plantstomata.wordpress.com/2018/01/24/development-of-stomata-can-be-altered-on-the-fly-to-better-enable-the-plant-to-cope-with-environmental-conditions/ )

Sharkey T. D., Ogawa T. (1987) – Stomatal responses to light. In Stomatal Function, ed. E Zeiger, G Farquhar, I Cowan, pp. 195–208. Stanford, CA: Stanford Univ. Press

Sharkey T. D., Raschke K. (1980) – Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus – Plant Physiol. 65(2): 291–297 –  PMID: 16661176 PMCID: PMC440313 – https://www.ncbi.nlm.nih.gov/pubmed/16661176 – (On our blog : https://plantstomata.wordpress.com/2018/11/30/effects-of-phaseic-acid-and-dihydrophaseic-acid-on-stomata/

Sharkey T. D., Raschke K. (1981) – Separation and measurement of direct and indirect effects of light on stomata – Plant Physiol. 68:33–40. – DOI: 10.2307/3670169 – https://www.jstor.org/stable/4266838?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/direct-and-indirect-effects-of-light-on-stomata/ )

Sharkey T. D., Raschke K. (1981) – Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. – Plant Physiol 68: 1170–1174 – DOI: https://doi.org/10.1104/pp.68.5.1170http://www.plantphysiol.org/content/68/5/1170 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/effect-of-light-quality-on-stomatal-opening/ )

Sharma G. K., Butler J. (1975) – Environmental pollution.  Leaf cuticular patterns in Trifolium repens L. – Ann. Bot. 39: 1087-1090 – DOI: 10.1093/oxfordjournals.aob.a085028 – https://www.jstor.org/stable/42756344?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/12/26/stomatal-size-density-and-environmental-pollution/ )

 Sharma S. S., Sen D. N. (1976) – Effect of different sugars on stomatal behaviour in Merremia aegyptia (L.) Urban and M. dissecta Hallier F. – Biol. Plant. 18: 81-87 – https://doi.org/10.1007/BF02923141 – https://link.springer.com/article/10.1007/BF02923141 – https://plantstomata.wordpress.com/2017/12/27/effect-of-different-sugars-on-stomatal-behaviour/ )

Sharpe P. J. H. (1973) – Adaxial and abaxial stomatal resistance of cotton in the field – Agron. J. 65: 570-574 – doi:10.2134/agronj1973.00021962006500040014x –https://dl.sciencesocieties.org/publications/aj/abstracts/65/4/AJ0650040570?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/26/65210/ )

Sharpe P. J. H., Wu H., Spence R. D. (1987) – Stomatal mechanics – In: Stomatal Function (eds. E. Zeiger, G. D. Farquhar & I. R. Cowan : 253-279) – Stanford University Press, Stanford, California.

Shaw M. (1954) – Chloroplasts in the stomata of Allium cepa L. – New Phytol. 53. 344-348 – DOI: 10.1111/j.1469-8137.1954.tb05244.xhttp://onlinelibrary.wiley.com/store/10.1111/j.1469-8137.1954.tb05244.x/asset/j.1469-8137.1954.tb05244.x.pdf?v=1&t=jbp4maps&s=983c0c7145ac87817841a5f2ae61221022301050 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/65220/ )

Shaw M. (1958) – The physiology of stomata II. The apparent absence of chlorophyll, photosynthesis, and a normal response to light in the stomatal cells of an albino barley – Canad. Jour. Bot. 36: 575-579 – https://doi.org/10.1139/b58-052http://www.nrcresearchpress.com/doi/abs/10.1139/b58-052?journalCode=cjb1 – https://plantstomata.wordpress.com/2017/12/27/normal-light-sensitive-stomatal-cells-contain-functional-chloroplasts/ )

Shaw M., MacLachlan G. A. (1954) – The physiology of stomata. I. Carbon dioxide fixation in guard cells – Can J Bot 32: 784-794 – https://doi.org/10.1139/b54-067 –http://www.nrcresearchpress.com/doi/abs/10.1139/b54-067 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/carbon-dioxide-fixation-in-stomata/ )

Shawesh G. A., Voigt R. L., Dobreng A. K. (1985) – Stomatal frequency and distribution in drought tolerant and drought susceptible Sorghum bicolor L. Moench genotypes grown under moisture stress and non-stress – Sorghum Newsl. 28: 123-125 – (Article not found)

She X.-P., Li J., Huang A.-X., Han X.-Z. (2010) – Fusicoccin inhibits dark-induced stomatal closure reducing nitric oxide in the guard cells of broad bean – Australian J Bot. 58: 81–88 –  https://doi.org/10.1071/BT09182http://www.publish.csiro.au/bt/BT09182 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/fusicoccin-inhibits-dark-induced-stomatal-closure/ )

She X.-P., Song, X.-G. (2008) – Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells. – J. Integr. Plant Biol. 50: 1539–1548. – doi: 10.1111/j.1744-7909.2008.00716.x – https://www.ncbi.nlm.nih.gov/pubmed/19093972 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/the-regulatory-role-of-co-during-stomatal-movement/ )

She X.-P., Song, X.-G. (2012) – Ethylene inhibits abscisic acid-induced stomatal closure in Vicia faba via reducing nitric oxide levels in guard cells – New Zealand Journal of Botany 50(2):203-216 – DOI: 10.1080/0028825X.2012.661064 – https://www.researchgate.net/publication/254281150_Ethylene_inhibits_abscisic_acid-induced_stomatal_closure_in_Vicia_faba_via_reducing_nitric_oxide_levels_in_guard_cells – (On our blog : https://plantstomata.wordpress.com/2019/04/22/ethylene-probably-induces-no-removal-thereby-reducing-no-levels-in-vicia-faba-guard-cells-and-finally-inhibits-stomatal-closure-induced-by-aba/ )

Shen L., Sun P., Bonnell V. C., Edwards K. J., Hetherington A. M., McAinsh M. R., Roberts M. R. (2015) – Measuring stress signaling responses of stomata in isolated epidermis of graminaceous species. – Front. Plant Sci. 6: 533. – doi: 10.3389/fpls.2015.00533 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stress-signaling-responses-of-stomata/ )

Shearman R. C., Beard J. B. (1972) – Stomatal density and distribution in Agrostis as influenced by species, cultivars and leaf blade surface and position – Crop Sci 12 (6): 822-823 – doi:10.2135/cropsci1972.0011183X001200060031x – https://dl.sciencesocieties.org/publications/cs/abstracts/12/6/CS0120060822?access=0&view=pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/09/stomatal-density-and-distribution-in-agrostis/ )

Sheriff D. W. (1979) – Stomatal aperture and the sensing of the environment by guard cells – Plant Cell Environ. 2: 15–22 – https://doi.org/10.1111/j.1365-3040.1979.tb00769.x –https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1979.tb00769.x – (On our blog : https://plantstomata.wordpress.com/2019/01/19/stomatal-aperture-and-the-sensing-of-the-environment/ )

Sheriff D. W. (1984) – Epidermal transpiration and stomatal responses to humidity: some hypotheses explored. – Plant, Cell and Environment 7:669–677 – DOI: 10.1111/1365-3040.ep11571796 – http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11571796/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/27/stomatal-responses-to-humidity-6/ )

Sheriff D. W., Kaye P. E. (1977) – Response of diffusive conductance to humidity in a drought avoiding and a drought resistant (in terms of stomatal response) legume – Ann. Bot. 41: 653-655 – https://doi.org/10.1093/oxfordjournals.aob.a085335 –https://academic.oup.com/aob/article-abstract/41/3/653/236398?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/27/response-of-diffusive-conductance-to-humidity/ )

Shi C., Qi C., Ren H. Y., Huang A. X., Hei S. M., She X. P. (2015) – Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis – The Plant Journal 82: 280–301 – DOI10.1111/tpj.12815 – CrossRef , CAS, –https://www.semanticscholar.org/paper/Ethylene-mediates-brassinosteroid-induced-stomatal-Shi-Qi/3e99dcbdf377e8475c93d2a74f9f601673bd54ea – (On our blog : https://plantstomata.wordpress.com/2017/12/27/ethylene-mediates-brassinosteroid-induced-stomatal-closure-2/ )

Shi K., Li X., Zhang H., Zhang G., Liu Y., Zhou Y., Xia X., Chen Z., Yu J. (2015) – Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato – New Phytologist 208(2):342-53. – doi: 10.1111/nph.13621 –https://www.ncbi.nlm.nih.gov/pubmed/26308648 – (On our blog : https://plantstomata.wordpress.com/2017/12/27/the-signaling-pathway-for-elevated-co2-induced-stomatal-movement/ )

Shi W. L., Jia W. S., Liu X., Zhang S. Q. (2004) – Protein tyrosine phosphatases involved in signaling of the ABA-induced H2O2 generation in guard cells of Vicia faba L. – Chinese Sci. Bull. 49: 1841-1846 – https://doi.org/10.1007/BF03183411 – https://link.springer.com/article/10.1007%2FBF03183411 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/ptpases-are-a-critical-signaling-component-in-aba-induced-stomatal-closure/ )

Shi W. L., Liu X., Jia W. S., Zhang S. Q. (2005) – Protein tyrosine phosphatases mediate the signaling pathway of stomatal closure of Vicia faba L. – J. Integr. Plant Biol. 47: 319-326 – DOI: 10.1111/j.1744-7909.2005.00032.x – http://www.jipb.net/Abstract.aspx?id=4839 – (On our blog : https://plantstomata.wordpress.com/2018/06/18/a-novel-explanation-for-conflicting-results-about-vanadate-modulating-stomatal-movement-and-the-involvement-of-ptpases/ )

Shi Y. C., Fu Y. P., Liu W. Q. (2012) – NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate – Plant Physiology and Biochemistry 51: 26-30 – DOI10.1016/j.plaphy.2011.09.014 –https://www.infona.pl/resource/bwmeta1.element.elsevier-9d0315d5-6aa2-360b-8e5c-b0ef0593b56f – (On our blog : https://plantstomata.wordpress.com/2017/10/24/dha-induced-h-2-o-2-generation-via-activation-of-nadph-oxidase-results-in-stomatal-closure/ )

Shimada T., Sugano S. S., Hara-Nishimura I. (2011) – Positive and negative peptide signals control stomatal density – Cellular and Molecular Life Sciences (2011) 68: 2081-2088 – DOI: 10.1007/s00018-011-0685-7 – https://link.springer.com/article/10.1007/s00018-011-0685-7 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/recent-research-progress-in-the-peptide-signaling-of-stomatal-development/)

Shimazaki K.-i. (xxxx) – Molecular Mechanism of Blue Light Response in Stomatal Guard Cells – Light Sensing in Plants (Phototropin): 185-192 – DOI10.1007/4-431-27092-2_21 – https://www.infona.pl/resource/bwmeta1.element.springer-ec0d1399-4b76-31e2-b985-39aece10e5c7 – (On our blog : https://plantstomata.wordpress.com/2017/10/22/blue-light-response-in-stomatal-guard-cells/ )

Shimazaki K.-i. (1989) – Ribulosebisphosphate carboxylase activity and photosynthetic O2evolution rate in Vicia guard cell protoplasts – Plant Physiology 91: 459-463. – DOI: https://doi.org/10.1104/pp.91.2.459 – http://www.plantphysiol.org/content/91/2/459 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-guard-cells-fix-co2-photosynthetically/)

Shimazaki K., Doi M., Assmann S. M., Kinoshita T. (2007) – Light regulation of stomatal movement – Annu. Rev. Plant Biol. 58: 219–247 – doi: 10.1146/annurev.arplant.57.032905.105434 – https://www.ncbi.nlm.nih.gov/pubmed/17209798 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/recent-progress-in-blue-and-red-light-dependent-stomatal-opening/ ) – https://wordpress.com/post/plantstomata.wordpress.com/69298 )

Shimazaki K.-i., Goh C. H., Kinoshita T. (1999) – Involvement of intracellular CA2+ in blue light-dependent proton pumping in guard cell protoplasts from Vicia faba – Physiol. Plant. 105: 554-561 – DOI: 10.1034/j.1399-3054.1999.105322.x – http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1999.105322.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/a-stimulus-specific-ca2-signal-for-stomatal-opening/)

Shimazaki K., Gotow K., Kondo N. (1982) – Photosynthetic properties of guard cell protoplasts from Vicia faba – Plant Cell Physiol. 23: 871-879 – https://doi.org/10.1093/oxfordjournals.pcp.a076422https://academic.oup.com/pcp/article-abstract/23/5/871/1844796?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/01/19/photosynthetic-properties-of-stomatal-protoplasts/ )

Shimazaki K.-i., Gotow K., Sakaki T., Kondo N. (1983) – High respiratory activity of guard-cell protoplasts from Vicia faba L. – Plant, Cell & Environment 24: 1049-1056 –  https://doi.org/10.1093/oxfordjournals.pcp.a076607 –https://academic.oup.com/pcp/article-abstract/24/6/1049/1858924?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/01/22/high-respiratory-activity-of-stomatal-guard-cell-protoplasts/

Shimazaki K.-i., Iino M., Zeiger E. (1986) – Blue light-dependent proton extrusion by guard-cell protoplasts of Vicia faba. – Nature 319: 324–326. – doi: 10.1038/319324a0 – https://www.nature.com/articles/319324a0 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/an-electrogenic-plasmalemma-h-atpase-is-postulated-as-the-cause-of-blue-light-induced-h-extrusion/ )

Shimazaki K.-i., Kinoshita T., Nishimura M. (1992) – Involvement of Ca2+/calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping of guard cell protoplast from Vicia faba L. – Plant Physiology 99: 1416–1421 — DOI: 10.1104/pp.99.4.1416 –https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080641/ – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cam-and-ca2-cam-dependent-myosin-light-chain-kinase-are-the-components-of-the-signal-transduction-process-in-blue-light-dependent-proton-pumping-in-stomata/)

Shimazaki K.-i., Kondo N. (1987) – Plasma membrane H+ -ATPase in guard-cell protoplasts from Vica faba L. – Plant Cell Physiol. 28: 893–900 – https://doi.org/10.1093/oxfordjournals.pcp.a077371 –https://academic.oup.com/pcp/article-abstract/28/5/893/1913155?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2019/01/24/stomatal-guard-cells-have-a-high-plasma-membrane-h-atpase-activity/ )

Shimazaki K.-i., Omasa K., Kinoshita T., Nishimura M. (1993) – Properties of the signal transduction pathway in the blue light response of stomatal guard cells of Vicia faba and Commelina benghalensis – Plant Cell Physiol.  34: 1321–1327 – https://doi.org/10.1093/oxfordjournals.pcp.a078556 –https://academic.oup.com/pcp/article-abstract/34/8/1321/1813276?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/04/04/the-signal-transduction-pathway-in-the-blue-light-response-of-stomatal-guard-cells/ )

Shimazaki K.-i., Sugiyama N., Takemiya A. (2012) – Signaling in stomatal guard cells in response to blue light – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 –https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/11/signaling-in-stomatal-guard-cells-in-response-to-blue-light/ )

Shimazaki K.-i., Terada J., Tanaka K., Kondo N. (1989) – Calvin-Benson cycle enzymes in guard cell protoplasts from Vicia faba L. – Plant Physiol. 90: 1057-1064 – PMCID: PMC1061843 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061843/ –  (On our blog : https://plantstomata.wordpress.com/2017/12/31/calvin-benson-cycle-enzymes-in-guard-cell-protoplasts-of-stomata/)

Shimazaki K.-i., Tominaga M., Shigenaga A. (1997) – Inhibition of the stomatal blue light response by verapamil at high concentration – Plant Cell Physiol. 38: 747–750 – https://www.ncbi.nlm.nih.gov/pubmed/9249989 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/verapamil-inhibits-blue-light-signaling-in-stomata-without-inhibiting-the-pump/ )

Shimazaki K.-i., Zeiger E. (1985) – Cyclic and non-cyclic photophosphorylation in isolated guard cell chloroplasts from Vicia faba L. – Plant Physiol. 78: 211-214 – https://doi.org/10.1104/pp.78.2.211 – http://www.plantphysiol.org/content/78/2/211 – (On our blog : https://plantstomata.wordpress.com/2017/12/31/cyclic-and-non-cyclic-photophosphorylation-in-isolated-guard-cell-chloroplasts-of-stomata/)

Shimazaki K.-i., Zeiger E. (1987) – Red light-dependent CO2 uptake and oxygen evolution in guard cell protoplast of Vicia faba L.: Evidence for photosynthetic CO2 fixation – Plant Physiol. 84: 7-9 – https://doi.org/10.1104/pp.84.1.7 – http://www.plantphysiol.org/content/84/1/7.long?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Plant_Physiol_TrendMD_0 – (On our blog : https://plantstomata.wordpress.com/2018/12/11/suggestion-that-proton-pumping-and-photosynthesis-in-stomata-are-regulated-by-light-quality/ )  

Shimoda S., Maruyama A. (2014) – Rice varietal differences in responses of stomatal gas exchange to supplemental nitrogen application – Photosynthetica 52(3): 397-403 – https://doi.org/10.1007/s11099-014-0043-8 – https://link.springer.com/article/10.1007%2Fs11099-014-0043-8 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/responses-of-stomatal-gas-exchange-to-supplemental-nitrogen-application/ )

Shimono H., Nakamura H., Hasegawa T., Okada M. (2013) – Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice – Glob. Change Biol. 19, 2444–2453. doi: 10.1111/gcb.12214 – PubMed Abstract | CrossRef Full Text | Google Scholar –http://onlinelibrary.wiley.com/doi/10.1111/gcb.12214/abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/28/canopy-evapotranspiration-rate-leaf-stomatal-conductance-and-open-air-co2-elevation/ )

Shimshi D. (1963) – Effect of chemical closure of stomata on transpiration in varied soil and atmospheric environments – Plant Physiol. 38: 709-712 –http://www.plantphysiol.org/content/plantphysiol/38/6/709.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/28/effect-of-chemical-closure-of-stomata-on-transpiration/ )

Shimshi D. (1963) – Effect of soil moisture and phenylmercuric acetate upon stomatal aperture, transpiration, and photosynthesis – Plant Physiol. 38: 713-721 – PMCID: PMC550000 –http://www.plantphysiol.org/content/plantphysiol/38/6/713.full.pdf – (On our blog :  https://plantstomata.wordpress.com/2017/12/29/the-control-of-stomatal-opening-by-chemical-treatment/)

Shirakawa M., Ueda H., Nagano A. J., Shimada T., Kohchi T., HaraNishimura I. (2014) – FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis – Plant Cell 26: 4039-4052 – DOI: 10.1105/tpc.114.129874 – https://www.ncbi.nlm.nih.gov/pubmed/25304202 – (On our blog : https://plantstomata.wordpress.com/2017/12/29/a-common-regulatory-pathway-that-determines-two-distinct-cell-types-in-leaves-epidermal-guard-cells-stomata-and-inner-tissue-myrosin-cells/)

Shiv K., Ila P. (2014) – Stomatal analysis in Cassia occidentalis L. in response to automobile pollution along Roadsides in Meerut city, India – Int. Res. J. of Sci. & Engg., 2014; 2 (5):167-170.- http://oaji.net/articles/2014/731-1409862820.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/stomata-and-pollution/ )

Shoemaker E. M., Srivastava L. M. (1973) – The mechanics of stomatal opening
in corn (Zea mays L.) leaves – J Theor Biol. 42: 219–225 – https://doi.org/10.1016/0022-5193(73)90086-6https://www.sciencedirect.com/science/article/pii/0022519373900866 – (On our blog : https://plantstomata.wordpress.com/2019/08/02/the-assumption-that-opening-of-corn-stomata-is-related-to-differential-wall-thickening-of-the-guard-cells/ )

Shope J. C., DeWald D. B., Mott K. A. (2003) – Changes in surface area of intact guard cells are correlated with membrane internalization – Plant Physiol. 133: 1314–1321 – https://doi.org/10.1104/pp.103.027698 – http://www.plantphysiol.org/content/133/3/1314?ijkey=c39eedca681055b2a64c725ccc7932f3b1cccefb&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2018/12/03/changes-in-surface-area-of-intact-guard-cells-are-correlated-with-membrane-internalization/ )

Shope J. C., Peak D., Mott K. A. (2008) – Stomatal responses to humidity in isolated epidermes – Plant, Cell and Environment 31: 1290-1298 – DOI: 10.1111/j.1365-3040.2008.01844.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2008.01844.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/28/stomatal-responses-to-humidity-in-isolated-epidermes/)

Shpak E. D., McAbee J. M., Pillitteri L. J., Torii K. U. (2005) – Stomatal patterning and differentiation by synergistic interactions of receptor kinases. – Science 309: 290–293 – DOI: 10.1126/science.1109710 – Abstract/FREE Full TextGoogle Scholar – http://science.sciencemag.org/content/309/5732/290?ijkey=a061a0cdb1d934059dc68174286074f559286e5d&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/04/06/patterning-and-differentiation-of-stomata-and-erecta-er-family-leucine-rich-repeat-receptor-like-kinases/)

Shtein I., Popper Z. A., Harpaz-Saad S. (2017) – Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns – Plant Signaling & Behavior 12(7) – http://dx.doi.org/10.1080/15592324.2017.1339858 – http://www.tandfonline.com/doi/abs/10.1080/15592324.2017.1339858 – https://plantstomata.wordpress.com/2017/10/28/the-pattern-of-cellulose-crystallinity-in-stomata-of-floating-plants-2/

Shtein I., Shelef Y., Marom Z., Zelinger E., Schwartz A., Popper Z. A., Bar-On B., Harpaz-Saad S. (2017) – Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups – Annals of Botany, 119(6): 1021-1033 – https://doi.org/10.1093/aob/mcw275 – https://www.botany.one/2017/05/stomatal-cell-wall-composition-distinct-structural-patterns-different-phylogenetic-groups/ – https://plantstomata.wordpress.com/2017/10/31/stomatal-cell-wall-composition-cell-wall-patterns-in-stomata-and-stomatal-wall-strengthening-function/ )

Shukla S. N., Gangopadhyaya S. (1981) – Stomatal index and size of stomatal opening of rice cultivars varying in reaction to bacterial leaf blight – Proc. Indian natn. Sci. Acad. B47 (4): 557-559 – 20005a0c_557.pdfhttps://www.researchgate.net/profile/Dr_Tresina…/20005a0c_557.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/02/stomatal-index-and-size-of-stomatal-opening-in-reaction-to-bacterial-leaf-blight/ )

Sibbernsen E., Mott K. A. (2010) – Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells – Plant Physiol. 153:1435–1442. – doi: 10.1104/pp.110.157685. – Abstract/FREE Full Text – https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=%22Sibbernsen%20E%22%5Bau%5D&dispmax=50 – (On our blog : https://plantstomata.wordpress.com/2017/01/15/a-vapor-phase-signal-between-the-mesophyll-and-stomata/ )

Sicard P., De Marco A., Dalstein-Richier L., Tagliaferro F., Renou C., Paoletti E. (2016) – An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests – Sci. Total Environ. 541: 729–741 – ttps://doi.org/10.1016/j.scitotenv.2015.09.113 –https://www.sciencedirect.com/science/article/pii/S0048969715307749 – (On our blog : https://plantstomata.wordpress.com/2019/01/19/new-stomatal-flux-based-critical-levels-clef-for-forest-protection-against-visible-o3-injury/ )

Siebke K., Weis E. (1995) – Assimilation images of leaves of Glechoma hederacea: Analysis of non‐synchronous stomata related oscillations – Planta 196: 155–165 – https://doi.org/10.1007/BF00193229https://link.springer.com/article/10.1007/BF00193229 – (On our blog : https://plantstomata.wordpress.com/2017/12/28/non%E2%80%90synchronous-stomata-related-oscillations/)

Siegel K. (2019) – What’s Stomata With You? Investigating the Role of a Protein Kinase Family in Stomatal Defense – Queen’s University – Molecular & Cellular Integrative Biology Seminar – https://mcibseminar.weebly.com/ – (On our blog : https://plantstomata.wordpress.com/2019/05/04/a-small-family-of-mitogen-activated-protein-kinases-involved-in-blue-light-induced-stomatal-opening/ )

Siegel R. S., Xue S., Murata Y., Yang Y., Nishimura N., Wang A., Schroeder J. I. (2009) – Calcium elevation-dependent and attenuated resting calcium- dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+channels in Arabidopsis guard cells. – Plant J. 59, 207–220. – doi: 10.1111/j.1365- 313X.2009.03872.x – https://www.ncbi.nlm.nih.gov/pubmed/19302418 – (On our blog : https://plantstomata.wordpress.com/2018/06/19/an-attenuated-and-slowed-aba-response-when-ca2i-elevations-are-directly-inhibited-in-guard-cells/ )

Siegenthaler P. A., Packer L. (1965) – Light-dependent volume changes and reactions in chloroplasts. I. Action of alkenylsuccinic acids and phenylmercuric acetate and possible relation to mechanisms of stomatal control – Plant Physiol., Lancaster 40: 785

Siegert C. M., Levia D. F. (2011) – Stomatal conductance and transpiration of co-occurring seedlings with varying shade tolerance – Trees 25: 1091–1102 –  https://doi.org/10.1007/s00468-011-0584-4https://link.springer.com/article/10.1007/s00468-011-0584-4#citeas – (On our blog : https://plantstomata.wordpress.com/2019/01/19/stomatal-conductance-and-transpiration/ )

Sierla M., Hõrak H., Overmyer K., Waszczak C., Yarmolinsky D., Maierhofer T., Vainonen J. P., Denessiouk K., Salojärvi J., Laanemets K., Tõldsepp K., Vahisalu T., Gauthier A., Puukko T., Paulin L., Auvinen P., Geiger D., Hedrich R., Kollist H., Kangasjärvi J. (2018) – The receptor-like pseudokinase GHR1 is required for stomatal closure – DOI: https://doi.org/10.1105/tpc.18.00441 – http://www.plantcell.org/content/early/2018/10/25/tpc.18.00441 – (On our blog : https://plantstomata.wordpress.com/2018/11/05/ghr1-acts-in-stomatal-closure-as-a-scaffolding-component/ )

Sierla M., Waszczak C., Vahisalu T., Kangasjärvi J. (2016) – Reactive Oxygen Species in the Regulation of Stomatal Movements – Plant Physiology 171(3) – DOI: https://doi.org/10.1104/pp.16.00328 – http://www.plantphysiol.org/content/171/3/1569 – (On our blog : https://plantstomata.wordpress.com/2017/11/07/the-role-of-ros-in-stomatal-closure/ )

Silva E. C., Nogueira R. J., Vale F. H., Araújo F. P. D., Pimenta M. A.  (2009) – Stomatal changes induced by intermittent drought in four umbu tree genotypes – Brazilian Journal of Plant Physiology 21, 33–42. – CrossRef –  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-04202009000100005&lng=en&nrm=iso&tlng=en – (On our blog : https://plantstomata.wordpress.com/2017/04/13/drought-and-stomatal-responses-in-spondias-tuberosa-trees-umbu/ )

Silva H., Sagardia S., Ortiz M., Franck N., Opazo M., Quiroz M., Baginsky C., Tapia C. (2014) – Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L) Burm f. as a function of water availability – Revista Chilena de Historia Natural201487:13 – https://doi.org/10.1186/s40693-014-0013-3 –https://revchilhistnat.biomedcentral.com/articles/10.1186/s40693-014-0013-3 – (On our blog : https://plantstomata.wordpress.com/2017/11/23/water-availability-and-stomatal-traits/ )

Simono H., Okada M., Inoue M., Nakamura H., Kobayashi K., Hasegawa T. (2010) – Diurnal and seasonal variations in stomatal conductance of rice at elevated atmospheric CO2 under fully open-air conditions – Plant, Cell and Environment 33: 322–331 – https://doi.org/10.1111/j.1365-3040.2009.02057.x –https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-3040.2009.02057.x – (On our blog : https://plantstomata.wordpress.com/2019/01/29/diurnal-and-seasonal-variations-in-stomatal-conductance-of-rice-at-elevated-atmospheric-co2/ )

Simmons A. R., Bergmann D. C. (2016) – Transcriptional control of cell fate in the stomatal lineage – Curr Opin Plant Biol. 2016 Feb;29:1-8. – doi: 10.1016/j.pbi.2015.09.008. – PMID: 26550955 – http://www.sciencedirect.com/science/article/pii/S136952661500148X – (On our blog : https://plantstomata.wordpress.com/2017/12/28/transcriptional-control-of-cell-fate-in-the-stomatal-lineage/)

Simmons A. R., Davies K. A., Wang W., Liu Z., Bergmann D. C. (2018) – SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage – Preprint – https://www.biorxiv.org/content/early/2018/08/17/394940 – https://prelights.biologists.com/highlights/sol1-sol2-regulate-fate-transition-cell-divisions-arabidopsis-stomatal-lineage/ – (On our blog : https://plantstomata.wordpress.com/2018/10/06/sol1-and-sol2-regulate-fate-transition-and-cell-divisions-in-the-arabidopsis-stomatal-lineage/ )

Sinclair R. (1980) – Water potential and stomatal conductance of three Eucalyptus species in the Mount Lofty Ranges, South Australia: Responses to summer drought – Australian Journal of Botany 28: 499–510 – https://doi.org/10.1071/BT9800499http://www.publish.csiro.au/BT/BT9800499 – (On our blog : https://plantstomata.wordpress.com/2019/01/24/water-potential-and-stomatal-conductance-responses-to-summer-drought/)

Singh A. P. (1977) – The subcellular organization of stomatal initials in sugar cane leaves: the guard and subsidiary mother cells – Can. J. Bot. 55: 2801-2809 – https://doi.org/10.1139/b77-318 –http://www.nrcresearchpress.com/doi/abs/10.1139/b77-318 – (On our blog : https://plantstomata.wordpress.com/2019/01/24/stomatal-initials-in-sugar-cane-leaves-the-guard-and-subsidiary-mother-cells/ )

Singh A. P., Shaw H., Hollins G. (1977) – Preprophase bands of microtubules in developing stomatal complexes of sugar cane – Cytologia 42, 611-620 – DOI: 10.1508/cytologia.42.611 – https://www.jstage.jst.go.jp/article/cytologia1929/42/3-4/42_3-4_611/_pdf – (On our blog : https://plantstomata.wordpress.com/2019/01/24/preprophase-bands-of-microtubules-in-developing-stomatal-complexes/ )

Singh A. P., Srivastava L. M. (1973) – The fine structure of pea stomata – Protoplasma 76: 61–82 – https://doi.org/10.1007/BF01279673https://link.springer.com/article/10.1007%2FBF01279673 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/structure-and-cytology-of-the-guard-cells-of-pea/ )

Singh J., Kant S. (2007) – Impact of coal mining on leaf morphology and stomatal index of plants in Kalakote Range, Rajouri (J&K), India – Nature Environment and Pollution Technology © Technoscience Publications 6(4): 715-718 –http://www.neptjournal.com/upload-images/NL-30-30-(30)comB-1.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/21/impact-of-coal-mining-on-leaf-morphology-and-stomatal-index/ )

Singh S. K., Badgujar G., Reddy V. R., Fleisher D. H., Bunce J. A. (2013) – Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton – J. Plant Physiol. 170: 801–813 – https://doi.org/10.1016/j.jplph.2013.01.001https://www.sciencedirect.com/science/article/pii/S0176161713000187?via%3Dihub – (On our blog : Carbon dioxide diffusion across stomata and mesophyll )

Singh S. K., Reddy K. R. (2011) – Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata {[}L.] Walp.) under drought – J. Photochem. Photobiol. B-Biol. 105(1): 40-50 – Doi 10.1016/j.jphotobiol.2011.07.001 – https://www.sciencedirect.com/science/article/pii/S1011134411001588 – (On our blog : https://plantstomata.wordpress.com/2019/03/25/stomatal-regulation-is-a-major-limitation-to-photosynthesis-under-drought-conditions/ )

Sirichandra C., Wasilewska A., Vlad F., Valon C., Leung J. (2009) – The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action – Journal of Experimental Botany 60(5): 1439–1463 – https://academic.oup.com/jxb/article/60/5/1439/481377 -https://doi.org/10.1093/jxb/ern340 – (On our blog : https://plantstomata.wordpress.com/2018/01/18/an-emerging-signalling-complex-critical-for-modulating-the-stomatal-aperture-in-response-to-environmental-stimuli-2/ )

Sirisampan S., Hiyama T., Takahashi A., Hashimoto T., Fukushima Y. (2003) – Diurnal and seasonal variations of stomatal conductance in a secondary temperate forest – Journal of Japan Society of Hydrology and Water Resources 16: 113–130 [In Japanese with English summary] –

Skabeeva A. S. (1969) – The effect of some micro-elements on the number and size of stomata on black currant leaves -Trudy vses. Sel’.-hoz. Inst. zaocn. Obraz, 33, 99-101 – https://eurekamag.com/research/014/736/014736601.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/positive-effect-of-some-micro-elements-on-the-number-and-size-of-stomata/ )

Skrodzki C. J. A. (2017) – Unexpected Environmental Conditions Suggest Paleozoic Plant Morphological Gas Conductance Models – http://hdl.handle.net/2104/9431https://baylor-ir.tdl.org/baylor-ir/handle/2104/9431 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/63948 )

Slavik B. (1963) – The distribution pattern of transpiration rate, water saturation deficit, stomata number and size, photosynthetic and respiration rate in the area of the tobacco leaf blade – Biol. Plantarum 5: 143-153 – https://doi.org/10.1007/BF02933646https://link.springer.com/article/10.1007%2FBF02933646?LI=true#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomata-number-and-size-photosynthetic-and-respiration-rate-in-tobacco-leaf-blade/)

Slogteren E. van (1917) – De gasbeweging door het blad in verband met stomata en intercellulaire ruimten – Dissert. Groningen

Slootweg G., van Meeteren U. (1991) – Transpiration and stomatal conductance of roses cv. Sonia grown with supplemental lighting – Acta Hort. 298: 119-125 – DOI:  10.17660/ActaHortic.1991.298.12 –http://www.actahort.org/books/298/298_12.htm – (On our blog : https://plantstomata.wordpress.com/2017/12/29/stomatal-behavior-of-nl-plants-and-sl-plants/)

Slot M. , Winter K. (2017) – In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species – Plant Cell Environ. 40: 3055–3068 – doi: 10.1111/pce.13071 – https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13071 – (On our blog : https://plantstomata.wordpress.com/2018/10/13/in-situ-temperature-relationships-of-biochemical-and-stomatal-controls-of-photosynthesis/ )

Slovik S., Siegmund A., Führer H.-W., Heber U. (1996) – Stomatal uptake of SO2, NOx and O3 by spruce crowns (Picea abies) and canopy damage in central Europe – New. Phytol. 132: 661-676 – https://doi.org/10.1111/j.1469-8137.1996.tb01884.xhttps://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1996.tb01884.x – (On our blog : https://plantstomata.wordpress.com/2019/05/09/stomatal-uptake-of-so2-nox-and-o3/ )

Small J., Maxwell K. M. (1939) – pH-phenomena in relation to stomatal opening. I. Coffea arabica and some other species – Protoplasma 32: 272-283 – https://doi.org/10.1007/BF01796986https://link.springer.com/article/10.1007/BF01796986#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/ph-phenomena-in-relation-to-stomatal-opening/)

Small J., Clarke M.I., Crosbie-Baird J. (1942) – pH-phenomena in relation to stomatal opening. II-V. – Proc. Roy. Soc. Edinburgh B 61(3): 233-266 – https://doi.org/10.1017/S0080455X00011565https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-b-biological-sciences/article/xixph-phenomena-in-relation-to-stomatal-opening-iiv/11924EE3219C49CB2098CED7E634DA7F – (On our blog : https://plantstomata.wordpress.com/2017/12/29/the-closing-of-stomatal-pores-both-with-too-little-and-with-too-much-illumination/)

Smart L. B., Cameron K. D., Bennett A. B. (2000) – Isolation of genes predominantly expressed in guard cell and epidermal cell of Nicotiana glauca – Plant Molecular Biology 42857–869 – https://doi.org/10.1023/A:1006480107407https://link.springer.com/article/10.1023/A:1006480107407#citeas – (On our blog : https://plantstomata.wordpress.com/2017/12/29/isolation-of-genes-predominantly-expressed-in-guard-cells-stomata/)

Smith B. (2016) – Does grass hold the secret to more efficient crops? – Cosmos News Biology July 5, 2016 – https://cosmosmagazine.com/biology/change-the-shape-of-plant-mouths-to-feed-the-world – (On our blog : https://plantstomata.wordpress.com/2018/01/23/stomata-in-grasses-share-underlying-genes-with-broad-leafed-plants-implications/ )

Smith R. Y., Greenwood D. R., Basinger J. F. (2010) – Estimating paleo-atmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada – Palaeogeography, Palaeoclimatology, Palaeoecology 293: 120-131 – https://doi.org/10.1016/j.palaeo.2010.05.006 – https://www.sciencedirect.com/science/article/pii/S003101821000283X – (On our blog : https://plantstomata.wordpress.com/2019/02/01/estimating-paleo-atmospheric-pco2-from-stomatal-frequency/ )

Smith S., Weyers J. D. B., Berry W. G. (1989) – Variation in stomatal characteristics over the lower surface of Commelina communis leaves. – Plant, Cell and Environment 12: 653–659 – DOI: 10.1111/j.1365-3040.1989.tb01234.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1989.tb01234.x/full – (On our blog : https://plantstomata.wordpress.com/2017/12/29/variation-in-stomatal-characteristics/)

Smith W. K., Hollinger DY (1991) – Measuring stomatal behaviour. In: Lassoie JP, Inckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton (Article not found)

Smith W. K., Young D. R., Carter G. A., Hadley J. L., McNaughton G. M. (1984) – Autumn stomatal closure in six conifer species of the Central Rocky Mountains – Oecologia (Berlin) (1 984) 63 : 337-242  – http://library.wrds.uwyo.edu/wrp/84-23/84-23.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/03/seasonal-stomatal-closure/ )

Snaith P. J., Mansfield T. A. (1982) – Control of the CO2 responses of stomata by indol-3-ylacetic acid and abscisic acid – Journal of Experimental Botany 33: 360-365 – DOI: 10.1093/jxb/33.2.360 – https://www.researchgate.net/publication/249280215_Control_of_the_Co_2_Responses_of_Stomata_by_Indol-3ylacetic_Acid_and_Abscisic_Acid – (On our blog : https://plantstomata.wordpress.com/2018/06/22/iaa-aba-and-co2-responses-of-stomata-2/ )

Snaith P. J., Mansfield T. A. (1984) – Studies of the inhibition of stomatal opening by naphth-1–ylacetic acid and abscisic acid – J. Exp. Bot. 35: 1410–1418 – https://doi.org/10.1093/jxb/35.10.1410https://academic.oup.com/jxb/article/35/10/1410/512579 – (On our blog : https://plantstomata.wordpress.com/2019/05/28/inhibition-of-stomatal-opening-by-naa-and-aba/ )

Snaith P. J., Mansfield T. A. (1985) – Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm – J. Exp. Bot. 36: 937-944 – https://doi.org/10.1093/jxb/36.6.937https://academic.oup.com/jxb/article-abstract/36/6/937/603950?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/12/29/responses-of-stomata-to-iaa-and-fusicoccin/)

Soar C. J., Speirs J., Maffei S. M., Loveys B. R. (2004) – Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis viniferacv. Shiraz: molecular and physiological studies investigating their source – Functional Plant Biology 31(6) 659-669 https://doi.org/10.1071/FP03238http://www.publish.csiro.au/fp/FP03238 – (On our blog : https://plantstomata.wordpress.com/2019/02/04/gradients-in-stomatal-conductance/ )

Sobahan M. A., Akter N., Okuma E., Uraji M., Ye W., Mori I. C., Nakamura Y., Murata Y. (2015) – Allyl isothiocyanate induces stomatal closure in Vicia faba – Biosci. Biotechnol. Biochem. 79, 1737–1742 –  doi: 10.1080/09168451.2015.1045827 – https://www.ncbi.nlm.nih.gov/pubmed/26027691 – (On our blog : https://plantstomata.wordpress.com/2018/06/22/aitc-induces-stomatal-closure-2/ )

Sõber A. (1996) – Simultaneous measurement of leaf hydraulic and stomatal conductances by pressure bomb, gas exchange and -gauge techniques – Proc. Est. Acad. Sci. Biol. 45:35–43 – (Article not found)

Sõber A. (1997) – Hydraulic conductance, stomatal conductance, and maximal photosynthetic rate in bean leaves – Photosynthetica 34: 599–603 – https://doi.org/10.1023/A:1006834119588https://link.springer.com/article/10.1023/A:1006834119588 – (On our blog : https://plantstomata.wordpress.com/2019/02/01/a-positive-correlation-between-steady-state-values-of-hydraulic-lpa-and-stomatal-conductance-gs/ )

Sõber A. J., Moldau H. A. (1977) – An apparatus with separate conditioning of the plant and the leaf for the determination of stomatal resistance and leaf water content – Fiziol. Rast. 24: 1301–1307 – In Russian.

Sõber A. J., Sild E. (1999) – Stomatal closure during tobacco leaf desiccation as affected by ozone – Biol. Plant. 42: 267–272 – https://doi.org/10.1023/A:1002168820518https://link.springer.com/article/10.1023/A:1002168820518 – (On our blog : https://plantstomata.wordpress.com/2019/02/01/ozone-sensitive-cultivars-treated-with-ozone-lost-more-water-during-desiccation-than-control-plants/ )

Sobeih W. Y., Dodd I. C., Bacon M. A., Grierson D., Davies W. J. (2004) – Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying – Journal of Experimental Botany  55, No. 407 – Water-Saving Agriculture Special Issue 2353–2363 – doi:10.1093/jxb/erh204 – (On our blog : https://plantstomata.wordpress.com/2018/11/16/long-distance-signals-regulating-stomatal-conductance-in-plants-subjected-to-partial-root-zone-drying/ )

Socratic – Biology Topics  (2015) – How do stomata help conserve water ? – https://socratic.org/questions/how-do-stomata-help-conserve-water – (On our blog : https://plantstomata.wordpress.com/2018/11/04/conservation-of-water-by-stomata/ )

Sokolov V., Shumnyi V., Tsonev T., Stanev V., Danailov Zh., Dobrinova K. (1988) – Frequency, size and functional characteristics of the stomata in relation to heterosis in pea – Izvestia Sibirskogo-Otdeleniya-Akademii-Nauk-SSSR – Biologicheskikh-Nauk, (14/2): 89-94. 3 of 6 in
CAB Abstract. 1989 – (Article not found)

Sokolovski S., Blatt M. R. (2004) – Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. – Plant Physiol. 136: 4275–4284. – doi: 10.1104/pp.104.050344 – http://www.plantphysiol.org/content/136/4/4275 – (On our blog : https://plantstomata.wordpress.com/2018/06/22/no-directly-modifies-the-k-channel-or-a-closely-associated-regulatory-protein-probably-by-nitrosylation-of-cysteine-sulfhydryl-groups-in-stomata/ )

Sokolovski S., Hills A., Gay R., Garcia-Mata C., Lamattina L., Blatt, M. R. (2005) – Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. – Plant J. 43: 520–529. – doi: 10.1111/j.1365-313X.2005.02471.x – https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-313X.2005.02471.x – (On our blog : https://plantstomata.wordpress.com/2018/06/23/no-dependent-signals-can-be-modulated-through-protein-phosphorylation-upstream-of-intracellular-ca2-release-in-stomata/ )

Solanki S., Ameen G., Borowicz P., Brueggeman R. S. (2019) – Shedding Light on Penetration of Cereal Host Stomata by Wheat Stem Rust Using Improved Methodology – Scientific Reports 9: 7939 – https://www.nature.com/articles/s41598-019-44280-6 – (On our blog : https://plantstomata.wordpress.com/2019/06/07/penetration-of-cereal-host-stomata-by-wheat-stem-rust/ )

Solarova J., Pospisilova J. (1983) – Photosynthetic characteristics during ontogenesis of leaves. VIII. Stomatal diffusive conductance and stomata reactivity – Photosynthetica 17: 101- 151 – https://eurekamag.com/research/001/108/001108643.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/stomatal-diffusive-conductance-and-stomata-reactivity/ )

Solarova J., Pospisilova J. (1987) – Effect of irradiance of leaves during their ontogeny on the number and size of stomata and the epidermal diffusive conductance – Biologicke Listy 52(3): 207-223 – https://eurekamag.com/research/005/248/005248895.php – (On our blog : https://plantstomata.wordpress.com/2019/02/01/effect-of-irradiance-of-leaves-during-their-ontogeny-on-the-number-and-size-of-stomata/ )

Soleh M. A., Ariyanti M., Dewi I. R., Kadapi M. (2018) – Chlorophyll Fluorescence and Stomatal Conductance of Ten Sugarcane Varieties under Waterlogging and Fluctuation Light Intensity – Emirates Journal of Food and Agriculture 30(11): 935-940 – doi:https://doi.org/10.9755/ejfa.2018.v30.i11.1844https://www.ejfa.me/index.php/journal/article/view/1844 – (On our blog : https://plantstomata.wordpress.com/2019/03/28/stomatal-conductance-under-waterlogging-and-fluctuation-light-intensity/ )

Solmaz I., Sari N., Dasgan H. Y., Aktas H., Yetisir H., Unlu H. (2013) – The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids – Journal of Food Agriculture and Environment 9(3) – https://www.researchgate.net/publication/235921373_The_effect_of_salinity_on_stomata_and_leaf_characteristics_of_dihaploid_melon_lines_and_their_hybrids – (On our blog : https://plantstomata.wordpress.com/2018/08/22/the-effect-of-salinity-on-stomata/ )

Song S.-J., Feng Q.-N., Li C.-L., Li E., Liu Q., Kang H., Zhang W., Zhang Y., Li S. (2018) – A Tonoplast-Associated Calcium-Signaling Module Dampens ABA Signaling during Stomatal Movement – Plant Physiol., published online – DOI: -https://doi.org/10.1104/pp.18.00377 – http://www.plantphysiol.org/content/177/4/1666?rss=1 – (On our blog : https://plantstomata.wordpress.com/2018/08/07/the-tonoplast-cbl-cipk-complexes-form-a-signaling-module-that-negatively-regulates-aba-signaling-during-stomatal-movement/ )

Song X., She X., He J., Huang C., Song T. (2006) – Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. – Funct. Plant Biol. 33: 573–583 – http://dx.doi.org/10.1071/FP05232 – [Cross Ref] – http://www.publish.csiro.au/fp/fp05232 – (On our blog : ls of Vicia faba – Russ. J. Plant Physiol. 59: 372-380 – http://dx.doi.org/10.1134/S102144371203017X – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69334 )

Song X.-G., She X.-P., Wang J. (2011) – Inhibition of abscisic acid-induced stomatal closure by ethylene is related to the change of hydrogen peroxide levels in guard cells in broad bean – Australian Journal of Botany 59: 781–789 –

Song X.-G., She X.-P., Wang J. (2012) – Inhibition of darkness-induced stomatal closure by ethylene involves a removal of hydrogen peroxide from guard cells of Vicia faba – Russ J Plant Physiol 59: 372-380 –  https://doi.org/10.1134/S102144371203017X – https://link.springer.com/article/10.1134/S102144371203017X – (On our blog : https://plantstomata.wordpress.com/2018/06/25/ethylene-probably-induces-h2o2-removal-and-reduces-h2o2-level-in-stomata-and-inhibits-stomatal-closure-induced-by-darkness/ )

Song X.-G., She X.-P., Wang J., Sun Y.-C. (2011) – Ethylene inhibits darkness- induced stomatal closure by scavenging nitric oxide in guard cells of Vicia faba. – Funct. Plant Biol. 38, 767–777. – doi: 10.1071/FP11055 – http://www.publish.csiro.au/FP/FP11055 – (On our blog : https://plantstomata.wordpress.com/2018/06/25/ethylene-reduces-the-levels-of-no-in-stomata-via-a-pattern-of-no-scavenging-then-induces-stomatal-opening-in-the-dark/ )

Song X. G., She X. P., Yue M., Liu Y. E., Wang Y. X., Zhu X., Huang A. K. (2014) – Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba. – Russ. J. Plant Physiol. 61: 390–396 – 10.1134/S1021443714020150 – [Cross Ref] – https://link.springer.com/article/10.1134%2FS1021443714020150 – (On our blog : https://plantstomata.wordpress.com/2018/06/24/cuao-mediated-h2o2-production-is-involved-in-ethylene-induced-stomatal-closure-2/

Song Y., Miao Y., Song C. P. (2014) – Behind the scenes: the roles of reactive oxygen species in guard cells. – New Phytol. 201, 1121–1140. – doi: 10.1111/nph.12565 – https://www.ncbi.nlm.nih.gov/pubmed/24188383 – (On our blog : https://plantstomata.wordpress.com/2018/06/24/understanding-of-ros-signalling-in-stomata/ )

Song Y., Xiang F.,  Zhang G. Miao Y., Miao C., Song C.-P.  (2016) – Abscisic Acid as an Internal Integrator of Multiple Physiological Processes Modulates Leaf Senescence Onset in Arabidopsis thaliana – In : Signal Transduction in Stomatal Guard Cells by Raghavendra A. S., Murata Y. (Eds.) (2017) – Front. Plant Sci. 7:181. doi: 10.3389/fpls.2016.00181 – 9782889451678.PDF – (On our blog : https://plantstomata.wordpress.com/2018/01/07/aba-stomatal-aperture-and-senescence/ )

Sorokin H. P., Sorokin S. (1968) –  Fluctuations in the acid phosphatase activity of spherosomes in guard cells of Campanula persicifolia – J. Histochem. Cytochem. 16: 791-802 – https://doi.org/10.1177/16.12.791 –https://journals.sagepub.com/doi/abs/10.1177/16.12.791- (On our blog : https://plantstomata.wordpress.com/2019/02/02/acid-phosphatase-activity-of-spherosomes-in-stomata/ )

Sosa-Flores V. P., Ramírez-Godina F., Benavides-Mendoza A., Ramírez H. (2014) – Study of morphological and histological changes in melon plants grown from seeds irradiated with UV-B – Journal of Applied Horticulture 16(3): 199-204 –http://horticultureresearch.net/journal_pdf/melon.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/17/stomatal-frequency-stomatal-index-length-and-width-of-stomata-in-melon-plants-grown-from-seeds-irradiated-with-uv-b/ )

Soundararajan P., Manivanna A., Cho Y. S., Jeong B. R. (2017) Exogenous Supplementation of Silicon Improved the Recovery of Hyperhydric Shoots in Dianthus caryophyllus L. by Stabilizing the Physiology and Protein Expression – Frontiers Plant Science – https://doi.org/10.3389/fpls.2017.00738 –https://www.frontiersin.org/articles/10.3389/fpls.2017.00738/full – (On our blog : https://plantstomata.wordpress.com/2019/04/10/deformation-of-stomata-by-si/ )

Sousa Paiva E. A., Lemos-Filho J. P., Oliveira D. M. T. (2006) – Imbibition of Swietenia macrophylla (Meliaceae) Seeds: The Role of Stomata – Annals of Botany 98(1): 213-217 – DOI 10.1093/aob/mcl090 – https://www.researchgate.net/publication/7096069_Imbibition_of_Swietenia_macrophylla_Meliaceae_Seeds_The_Role_of_Stomata – (On our blog : https://plantstomata.wordpress.com/2018/05/29/the-role-of-stomata-in-the-seed-coat/ )

Spanner D. C., Heath O. V. S. (1951) – Experimental studies of the relation between carbon assimilation and stomatal movement. IL The use of the resistance porometer in estimating stomatal aperture and diffusive resistance – Ann. Bot. N.S. 15: 319-

Sparks J. P., Black R.A. (1999) – Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation – Tree Physiology 19: 453–459 – PMID: 12651551- https://www.ncbi.nlm.nih.gov/pubmed/12651551 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/interpopulation-variation-in-resistance-to-drought-induced-xylem-cavitation-stomatal-behavior-and-hydraulic-conductivity/ );

Speirs J., Binney A., Collins M., Edwards E., Loveys B. (2013) – Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon) – Journal of Experimental Botany 64: 1907–1916 – https://doi.org/10.1093/jxb/ert052 –https://academic.oup.com/jxb/article/64/7/1907/580763 – (On our blog : https://plantstomata.wordpress.com/2019/02/02/aba-plays-an-important-role-in-linking-stomatal-response-to-soil-moisture-status/ )

Spence R. D. (1987) – The problem of variability in stomatal responses, particularly aperture variance, to environmental and experimental conditions – New Physiol. 107(2): 303 – 315. – DOI: 10.1111/j.1469-8137.1987.tb00182.x –http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1987.tb00182.x/full – (On our blog : https://plantstomata.wordpress.com/2016/11/14/stomatal-aperture-as-a-characteristic-response-to-environmental-and-experimental-conditions/ )

Spence R. D., Sharpe P. J. H., Powell R. D., Wu H. (1984) – Response of guard cells to temperature at different concentrations of carbon dioxide in Vicia faba L. – New Phytol. 97, 129–144 – doi: 10.1111/j.1469-8137.1984. tb04117.x – https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1984.tb04117.x – (On our blog : https://plantstomata.wordpress.com/2018/06/25/response-of-stomata-to-temperature-at-different-concentrations-of-co2/ )

Spence R. D., Wu H., Sharpe P. J. H. Clark K. G. (1986) – Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells – Plant, Cell and Environment 9: 197–202 – https://doi.org/10.1111/1365-3040.ep11611639 – https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-3040.ep11611639 – (On our blog : https://plantstomata.wordpress.com/2018/10/07/an-anatomical-mechanical-basis-to-explain-how-stomatal-opening-in-drought-conditions-can-occur/

Sperry J. S. (1986) – Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa – Plant Physiol. 80: 110–116 – DOI: https://doi.org/10.1104/pp.80.1.110 – [Google Scholar] [CrossRef] [PubMed] – http://www.plantphysiol.org/content/80/1/110 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/relationship-of-xylem-embolism-to-xylem-pressure-potential-and-stomatal-closure/ )

Sperry J. S. (2004) – Coordinating stomatal and xylem functioning – an evolutionary perspective – New Phytologist 162: 568–570 – http://sperry.biology.utah.edu/publications/NewPhyt04B.pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/27/coordinating-stomatal-and-xylem-functioning/ )

Sperry J. S., Alder N. N., Eastlack S. E. (1993) –  The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation – J. Exp. Bot. 44: 1075-1082 – https://doi.org/10.1093/jxb/44.6.1075 –https://academic.oup.com/jxb/article-abstract/44/6/1075/594712?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/02/05/effect-of-reduced-hydraulic-conductance-on-stomatal-conductance/ )

Sperry J. S., Pockman W. T. (1993) – Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis – Plant, Cell and Environment 16(3): 279-287 – DOI 10.1111/j.1365-3040.1993.tb00870.x – https://utah.pure.elsevier.com/en/publications/limitation-of-transpiration-by-hydraulic-conductance-and-xylem-ca – (On our blog : https://plantstomata.wordpress.com/2018/03/20/stomatal-conductance-responding-to-reduced-hydraulic-conductance-and-preventing-cavitation%e2%80%90inducing-xylem-pressure/ )

Sperry J. S., Venturas M. D., Anderegg W. R. I., Mencuccini M., Mackay D. S., Wang Y., Love D. M. (2016) – Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost – Plant, Cell and Environment – DOI: 10.1111/pce.12852 – Accepted, unedited articles published online – http://onlinelibrary.wiley.com/doi/10.1111/pce.12852/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/21/the-optimization-of-photosynthetic-gain-and-hydraulic-cost-to-predict-stomatal-responses/ )

Sperry J. S., Wang Y., Wolfe B. T., Mackay D. S., Anderegg W. R. L., McDowell N. G., Pockman W. T. (2016) – Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits – New Phytol. 212: 577–589 – DOI: 10.1111/nph.14059https://www.ncbi.nlm.nih.gov/pubmed/27329266 – (On our blog : https://plantstomata.wordpress.com/2019/06/14/hydraulic-theory-predicts-stomatal-responses-to-climatic-water-deficits/ )

Spinner H. (1936) – Stomates et altitude – Berichte der Schweizerischen Botanischen Gesellschaft 46: 12–27 – 

Squire G. R., Mansfield T. A. (1972) – A simple method of isolating stomata on detached epidermis by low pH treatment: observations on the importance of subsidiary cells – New Phytol. 71: 1033-1043 – https://plantstomata.wordpress.com/2017/08/23/isolating-stomata-on-detached-epidermis-by-low-ph-treatment/ )

Squire G. R., Mansfield T. A. (1974) – The action of fusicoccin on stomatal guard cells and subsidiary cells – New Phytol. 73: 433-440 – https://doi.org/10.1111/j.1469-8137.1974.tb02120.x –https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1974.tb02120.x – (On our blog : https://plantstomata.wordpress.com/2019/02/05/fusicoccin-and-stomata/ )

Srivastava A., Lu Z. M., Zeiger E. (1995) – Modification of guard-cell properties in advanced lines of Pima cotton bred for higher yields and heat-resistance – Plant Science 108: 125-131 – https://doi.org/10.1016/0168-9452(95)04140-P – https://www.sciencedirect.com/science/article/pii/016894529504140P – (On our blog : https://plantstomata.wordpress.com/2018/10/08/the-conductance-increases-are-associated-with-modifications-of-some-key-stomatal-properties/ )

Srivastava A., Zeiger E. (1992) – Fast fluorescence quenching from isolated guard cell chloroplasts of Vicia faba is induced by blue light and not by red light – Plant Physiology 84: 7-9 – https://doi.org/10.1104/pp.100.3.1562http://www.plantphysiol.org/content/100/3/1562 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/stomatal-guard-cell-chloroplasts-have-a-specific-response-to-blue-light/ )

Srivastava A., Zeiger E. (1995) – The inhibitor of zeaxanthin formation, dithiothreitol, inhibits blue-light-stimulated stomatal opening in Vicia faba – Planta 196: 450-457 – https://doi.org/10.1007/BF00203642https://link.springer.com/article/10.1007/BF00203642 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/zeaxanthin-could-function-as-a-photoreceptor-mediating-the-stomatal-responses-to-blue-light/ )

Srivastava A., Zeiger E. (1995) – Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia faba leaves – Plant, Cell & Environment 18: 813-817 – https://doi.org/10.1111/j.1365-3040.1995.tb00586.xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3040.1995.tb00586.x – (On our blog : https://plantstomata.wordpress.com/2019/05/10/zeaxanthin-is-well-suited-to-function-as-a-molecular-photosensor-in-stomatal-movements-2/ )

Srivastava A., Zeiger E., Strasser R. J. (1998) – Light Sensing by Guard Cell Chloroplasts: Large Antenna Size and High Electron Transport Rates. In: Garab G. (eds) Photosynthesis: Mechanisms and Effects. Springer, Dordrecht – Photosynthesis: Mechanisms and Effects 2813-2816 – https://link.springer.com/chapter/10.1007/978-94-011-3953-3_662#citeas – (On our blog : https://plantstomata.wordpress.com/2018/10/08/light-sensing-by-stomatal-chloroplasts/

Srivastava L. M. (2002) – Abscisic Acid Signal Perception and Transduction – In : Plant Growth and Development: Hormones and Environment 2002: 569-590 – https://doi.org/10.1016/B978-012660570-9/50166-0 –https://www.sciencedirect.com/science/article/pii/B9780126605709501660 – (On our blog : https://plantstomata.wordpress.com/2019/01/14/aba-signal-perception-and-transduction/ )

Srivastava L. M., Singh A.P. (1972) – Stomatal structure in corn leaves – J. Ultrastruct. Res. 39: 345–363 – https://doi.org/10.1016/s0022-5320(72)90028-7 –https://app.dimensions.ai/details/publication/pub.1006460944 – (On our blog : https://plantstomata.wordpress.com/2019/01/30/stomatal-structure-in-relation-to-the-mechanism-of-stomatal-movements/

Srivastava N., Gonugunta V., Puli M., Raghavendra, A. (2009) – Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. – Planta 229: 757–765. – doi: 10.1007/s00425-008-0855-5 – https://www.ncbi.nlm.nih.gov/pubmed/19084995 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/the-role-of-no-and-chitosan-in-stomata/ )

Stadler R., Büttner M., Ache P., Hedrich R., Ivashikina N., Melzer M., Shearson S. M., Smith S. M., Sauer N. (2003) – Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis. – Plant Physiol. 133: 528–537 – 10.1104/pp.103.024240 – [PMC free article] [PubMed] [Cross Ref] – http://www.plantphysiol.org/content/133/2/528 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/atstp1-in-stomata/

Staley D. (2018)  – NEXT: Plants that Provide Energy, Fuel, Light – Columbus Underground April 3, 2018 – https://www.columbusunderground.com/next-plants-that-provide-energy-fuel-light-ds1 – (On our blog : https://plantstomata.wordpress.com/2018/04/04/plants-that-provide-energy-fuel-light-and-the-role-of-stomata/ )

Stålfelt M. G. (1928) – Die Abhangigkeit der Pholischen Spaltöffnungsreaktionen von der Temperatur – Zeit. Wiss. Biol. Abt. E. Planta 6 (2): 183-191 –

Stålfelt M. G. (1929) – Die Abhängigkeit der Spaltöffnungsreaktionen von der Wasserbilanz – Planta 8: 287–340 – https://doi.org/10.1007/BF01916623https://link.springer.com/article/10.1007%2FBF01916623 – (On our blog : https://plantstomata.wordpress.com/2019/02/11/the-dependency-of-stomatal-reactions-on-the-water-balance-in-german/ )

Stålfelt M. G. (1955) – The stomata as a hydrophotic regulator of the water deficit of the plant – Physiologia Plant. 8: 572-

Stålfelt M. G. (1962) – The effect of temperature on the opening of the stomatal cells – Physiol. Plant 15: 772–779 – https://doi.org/10.1111/j.1399-3054.1962.tb08126.xhttps://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1962.tb08126.x – (On our blog : https://plantstomata.wordpress.com/2019/04/04/temperature-and-opening-of-stomatal-cells/ )

Stålfelt M. G. (1963) – Diurnal dark reactions in the stomatal movements – Physiologia Plantarum 16: 756–766 – https://doi.org/10.1111/j.1399-3054.1963.tb08353.x –https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1963.tb08353.x – (On our blog : https://plantstomata.wordpress.com/2019/02/11/75331/ )

Staxen I., Pical C., Montgomery L. T., Gray J. E., Hetherington A. M., and others. (1999) – Abscisic acid induces oscillations in guard cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C – Proc Natl Acad Sci USA 96: 1779–1784 – https://doi.org/10.1073/pnas.96.4.1779 – https://www.pnas.org/content/96/4/1779https://www.researchgate.net/publication/13299565_Abscisic_Acid_Induces_Oscillations_in_Guard-Cell_Cytosolic_Free_Calcium_That_Involve_Phosphoinositide-Specific_Phospholipase_C – (On our blog : https://plantstomata.wordpress.com/2019/02/05/involvement-of-oscillations-in-ca2cyt-in-the-maintenance-of-stomatal-aperture-by-aba/ )

Stebbins G. L., Jain S. K. (1960) – Developmental studies of cell differentiation in the epidermis of monocotyledons. I. Allium, Rhoeo, Commelina – Dev. Biol. 2: 401-426 – https://doi.org/10.1016/0012-1606(60)90025-7https://www.sciencedirect.com/science/article/pii/0012160660900257 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/cell-differentiation-in-the-epidermis-of-monocotyledons-i-allium-rhoeo-commelina/ )

Stebbins G. L., Shah S. S. (1960) – Developmental studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the Gramineae – Dev. Biol. 2: 477-500 – https://doi.org/10.1016/0012-1606(60)90050-6https://www.sciencedirect.com/science/article/pii/0012160660900506 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/cell-differentiation-in-the-epidermis-of-monocotyledons-ii-cytological-features-of-stomatal-development-in-the-gramineae/ )

Stenglein S. A., Arambarri A. M., Menendez-Sevillano M. C., Balatti P. A. (2005) – Leaf epidermal characters related with plant’s passive resistance to pathogens vary among accessions of wild beans Phaseolus vulgaris var. aborigineus (Leguminosae-Phaseoleae) – Flora 200: 285–295 –

Steppe K., Dzikiti S., Lemeur R., Milford J. R. (2006) – Stomatal oscillations in orange trees under natural climatic conditions – Annals of Botany 97: 831–835 – https://doi.org/10.1093/aob/mcl031 – https://academic.oup.com/aob/article/97/5/831/220237 – (On our blog : https://plantstomata.wordpress.com/2018/10/28/stomatal-oscillations-under-natural-climatic-conditions/ )

Sternberg L. D. S. L, Manganiello L. M. (2014) – Stomatal Pore Size and Density in Mangrove Leaves and Artificial Leaves: Effects on Leaf Water Isotopic Enrichment during Transpiration – Functional Plant Biology 41: 648-658 – https://doi.org/10.1071/FP13235http://www.publish.csiro.au/fp/FP13235 – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-pore-size-and-density-in-mangrove-leaves-and-artificial-leaves-2/ )

Stevens R. A., Martin E. S. (1977) – New structure associated with stomatal complex of the fern Polypodium vulgare – Nature 265: 331–334 – doi:10.1038/265331a0 – https://www.nature.com/articles/265331a0 – (On our blog : https://plantstomata.wordpress.com/2018/01/13/new-structures-in-the-stomatal-complex-the-site-of-potassium-accumulation/ )

Stevens R. A., Martin E. S. (1978) – Structural and functional aspects of stomata: I. Developmental studies in Polypodium vulgare – Planta 142: 307–316 – https://doi.org/10.1007/BF00385082https://link.springer.com/article/10.1007/BF00385082 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/structural-and-functional-aspects-of-stomata/ )

Stewart D. W., Dwyer L. M. (1983) – Stomatal response to plant water deficits – Journ. Theoret. Biology 104(3): 655-666 – https://doi.org/10.1016/0022-5193(83)90253-9https://www.sciencedirect.com/science/article/pii/0022519383902539 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/stomatal-response-to-plant-water-deficits/ )

Streck N. A. (2003) – Stomatal response to water vapor pressure deficit: an unsolved issue – RESPOSTA ESTOMÁTICA AO DÉFICIT DE PRESSÃO DE VAPOR D’ÁGUA: UM ASSUNTO AINDA EM DEBATE – R. bras. Agrociência 9(4): 317-322 – 649-1147-1-PB (2).pdf – (On our blog : https://plantstomata.wordpress.com/2019/03/16/stomatal-response-to-vpd-is-still-a-controversial-issue-2/ )

Street I. (2017) – Guard Cells Tolerating Heat – The Quiet Branches blog April 18, 2017 – https://thequietbranches.com/2017/04/18/guard-cells-tolerating-heat/ – (On our blog : https://plantstomata.wordpress.com/2018/01/19/65858/ )

Streit K., Siegwolf R. T. W., Hagedorn F., Schaub M., Buchmann N. (2013) – Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline – Plant, Cell and Environment 37: 315–326 – https://doi.org/10.1111/pce.12197 –https://onlinelibrary.wiley.com/doi/full/10.1111/pce.12197 – (On our blog : https://plantstomata.wordpress.com/2019/02/05/lack-of-photosynthetic-or-stomatal-regulation-after-9-years-of-elevated-co2-and-4-years-of-soil-warming/ )

Strobel D. W., Sundberg M. D. (1983) – Stomatal density in leaves of various xerophytes–a preliminary study – Journal of the Minnesota Academy of Science 49(2): 7-9 – ISSN : 0026-539X – http://mnmas.org/sites/default/files/198384V49N2_Strobel.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/31/stomatal-density-in-various-xerophytes/ )

Su J., Zhang M., Zhang L., Sun T., Liu Y., Lukowitz W., Xu J., Zhang S. (2017) – Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid – Plant Cell 29: 526–542 – doi: 10.1105/tpc.16.00577 – https://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=ShowDetailView&TermToSearch=28254778 – (On our blog : https://plantstomata.wordpress.com/2018/09/19/regulation-of-stomatal-immunity-by-interdependent-functions-of-a-pathogen-responsive-mpk3-mpk6-cascade-and-aba/ )

Subedi S. C., Ross M. S., Vidales R., Sah J. P., Sternberg L. (2018) – Variation in Stomatal Characteristics of Bursera simaruba (L.) Sarg., a Dominant Tree Species of Tropical Hardwood Hammock Forest across a Habitat Gradient in the Florida Keys – American Journal of Plant Sciences 9: 2120-2139 -https://doi.org/10.4236/ajps.2018.910154 – Variation_in_Stomatal_Characteristics_of_Bursera_s.pdf – (On our blog : https://plantstomata.wordpress.com/2019/09/05/stomatal-characteristics-of-bursera-simaruba/ )

Suetsugu N., Takami T., Ebisu Y., Watanabe H., Iiboshi C., Doi M., Shimazaki K-i. (2014) – Guard Cell Chloroplasts Are Essential for Blue Light-Dependent Stomatal Opening in Arabidopsis – PLoS ONE9(9): e108374. – https://doi.org/10.1371/journal.pone.0108374 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108374 – (On our blog : https://plantstomata.wordpress.com/2017/11/13/guard-cell-chloroplasts-provide-atp-and-or-reducing-equivalents-that-fuel-bl-dependent-stomatal-opening/ )

Sugano S., Shimada T., Imai Y., Okawa K., Tamai A., Mori M., Hara-Nishimura I. (2010) – Stomagen positively regulates stomatal density in Arabidopsis. – Nature 463: 241–244 – DOI: 10.1038/nature08682 – CrossRefPubMedGoogle Scholar – http://www.nature.com/nature/journal/v463/n7278/full/nature08682.html – (On our blog : https://plantstomata.wordpress.com/2015/10/18/stomagen-and-stomatal-density/)

Sugimoto K., Morita Y., Kazama H. (1993) – Red-light induced subsidiary cell differentiation in the hypocotyl epidermis of Cucumis sativus L. In: Proceedings of XV International Botanical Congress, Yokohama, p 435 –

Suh S., Park J., Lee Y. (1998) – Possible involvement of phospholipase A2 in light signal transduction of guard cells of Commelina communis – Physiologia Plantarum 104: 306-310 – https://doi.org/10.1034/j.1399-3054.1998.1040303.xhttps://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.1998.1040303.x – (On our blog : https://plantstomata.wordpress.com/2019/05/04/pla2-functions-as-a-signal-transducer-for-both-blue-and-red-light-in-stomatal-guard-cells/ )

Suh S. J., Wang Y. F., Frelet A., Leonhardt N., Klein M., Forestier C., Mueller-Roeber B., Cho M. H., Martinoia E., Schroeder J. I. (2007) – The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. – J. Biol. Chem. 282: 1916–1924. – doi: 10.1074/jbc.M6079 26200 – https://www.ncbi.nlm.nih.gov/pubmed/17098742 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/atmrp5-abc-transporter-is-a-central-regulator-of-stomatal-ion-channel-during-aba-and-ca2-signal-transduction-in-guard-cells/ )

Suhita D., Kolla V. A., Vavasseur A., Raghavendra A. S. (2003) – Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid – Plant Sci. 164: 481–488 – https://doi.org/10.1016/S0168-9452(02)00432-6https://www.sciencedirect.com/science/article/pii/S0168945202004326?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/05/28/mj-could-be-a-useful-tool-to-analyze-the-sequence-and-pattern-of-signal-transduction-in-stomatal-guard-cells/ )

Suhita D., Raghavendra A. S., Kwak J. M., Vavasseur A. (2004) – Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. – Plant Physiol. 134: 1536– 1545. – doi: 10.1104/pp.103.032250 – PubMed Abstract | CrossRef Full Text | Google ScholarCrossRefPubMedCAS –http://www.plantphysiol.org/content/134/4/1536.full.pdf – (https://plantstomata.wordpress.com/2016/12/27/cytoplasmic-alkalization-and-ros-production-during-mj-or-aba-signal-transduction-in-stomata/ )

Sun B.-N., Ding S.-T., Wu J.-Y., Dong C. (2012) – Carbon Isotope and Stomatal Data of Late Pliocene Betulaceae Leaves from SW China: Implications for Palaeoatmospheric CO2-levels -Turkish Journal of Earth Sciences 21(2): 237 – 250 – http://dergipark.gov.tr/tbtkearth/issue/11987/143550 – (On our blog : https://plantstomata.wordpress.com/2018/03/20/palaeoatmospheric-co2-levels-carbon-isotope-and-stomata/

Sun L. R., Hao F. S., Lu B. S., Ma L. Y. (2010) – AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. – Plant Signal. Behav. 5: 1022–1024. – doi: 10.4161/psb.5.8.12293 – https://www.ncbi.nlm.nih.gov/pubmed/20657186 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/atnoa1-regulates-sa-triggered-no-accumulation-and-stomatal-closure/ )

Sun W., Maseyk K., Lett C., Seibt U. (2018 ?) – Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh – Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-431, in review, 2017 – https://www.biogeosciences-discuss.net/bg-2017-431/ – (On our blog : https://plantstomata.wordpress.com/2018/01/07/stomatal-control-of-leaf-fluxes-of-cos-and-co2/ )

Sun X., Kang X., Ni M. (2012) – Hypersensitive to red and blue 1 and its modification by protein phosphatase 7 are implicated in the control of Arabidopsis stomatal aperture. – PLoS Genet. 8: e1002674. – doi: 10.1371/journal.pgen.1002674 – https://www.ncbi.nlm.nih.gov/pubmed/22589732 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/hypersensitive-to-red-and-blue-1-hrb1-and-protein-phosphatase-7-pp7-and-the-control-of-stomatal-aperture-2/ )

Sun Y., Yan F., Cui X., Liu F. (2014) – Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes – J. Plant Physiol. 171: 1248–1255 – DOI:  10.1016/j.jplph.2014.06.002 – https://www.sciencedirect.com/science/article/pii/S0176161714001448 – (On our blog : https://plantstomata.wordpress.com/2019/05/10/plasticity-in-stomatal-size-and-density-under-different-irrigation-and-p-regimes/ )

Sun Z., Jin X., Albert R., Assmann S. M. (2014) – Multi-level modeling of light-induced stomatal opening offers new insights into its regulation by drought – PLoS Comp. Biol. PLOS Computational Biology 12(11): e1005181 – https://doi.org/10.1371/journal.pcbi.1005181 – PMC free article] [PubMed] [Cross Ref] – http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003930 – (On our blog : https://plantstomata.wordpress.com/2018/01/31/light-induced-stomatal-opening-and-regulation-by-drought/ )

Suresh R., Foy C. D., Weidner J. R., (2008) – Effects of excess soil manganese on stomatal function in two soybean cultivars – Journal of Plant Nutrition 10(7): 749-760 – https://doi.org/10.1080/01904168709363606http://www.tandfonline.com/doi/pdf/10.1080/01904168709363606 – (On our blog : https://plantstomata.wordpress.com/2017/11/25/mn-toxicity-closed-stomata/ )

Sussmilch F. C., Brodribb T. J., McAdam S. A. (2017) – What are the evolutionary origins of stomatal responses to abscisic acid in land plants? – Journ. Integrative Plant Biology 59(4): – https://doi.org/10.1111/jipb.12523 –https://onlinelibrary.wiley.com/doi/10.1111/jipb.12523?utm_source=TrendMD&utm_medium=cpc&utm_campaign=Journal_of_Integrative_Plant_Biology_TrendMD_1 – (On our blog : https://plantstomata.wordpress.com/2019/03/22/strong-evidence-to-support-a-gradualistic-model-for-stomatal-evolution-2/ )

Sussmilch F. C., Brodribb T. J., McAdam S. A. (2017) – Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required – Journal of Experimental Botany – doi:10.1093/jxb/erx124 – http://www.brodribblab.org.au/wp-content/uploads/%20%202017/05/Up-regulation-of-NCED3-and-ABA-biosynthesis-occur-within-minutes-of-a-decrease-in-leaf-turgor-but-AHK1-is-not-required.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/27/decreased-leaf-turgor-triggers-de-novo-aba-biosynthesis-within-the-time-frame-of-the-stomatal-response-to-vpd/ )

Sussmilch F. C., McAdam S. A. (2017) – Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity – Plants 6(4): 54 – doi:10.3390/plants6040054 – the Special Issue Plant Adaptation to Climate Change)http://www.mdpi.com/2223-7747/6/4/54 – (On our blog : https://plantstomata.wordpress.com/2017/11/04/aba-stomata-and-mechanisms-for-conserving-water-under-low-humidity/ )

Sussmilch F. C., Roelfsema M. R. G., Hedrich R. (2018) – On the origins of osmotically‐driven stomatal movements – New Phytologist – published online and citable  – https://doi.org/10.1111/nph.15593 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.15593?af=R – (On our blog : https://plantstomata.wordpress.com/2018/11/17/the-postulate-that-ion-channels-adopted-stomatal-guard-cell%e2%80%90specific-functions-after-the-divergence-of-bryophytes/ )

Sussmilch F. C., Schultz J., Hedrich R., Roelfsema M. R. G. (2019) – Acquiring Control: The Evolution of Stomatal Signalling Pathways – Trends in Plant Science – https://www.sciencedaily.com/releases/2019/02/190221111659.htm – DOI:https://doi.org/10.1016/j.tplants.2019.01.002 –https://www.cell.com/trends/plant-science/fulltext/S1360-1385(19)30014-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1360138519300147%3Fshowall%3Dtrue – (On our blog : https://plantstomata.wordpress.com/2019/02/22/evolution-of-stomatal-signalling-pathways/ )

Sutton F., Paul S. S., Wang X.-Q., Assmann S. M. ((2000) – Distinct Abscisic Acid Signaling Pathways for Modulation of Guard Cell versus Mesophyll Cell Potassium Channels Revealed by Expression Studies in Xenopus laevis Oocytes – Plant Physiology 124(1): 223-230 – https://doi.org/10.1104/pp.124.1.223 –https://app.dimensions.ai/details/publication/pub.1002740494 – (On our blog : https://plantstomata.wordpress.com/2019/04/15/mesophyll-cells-and-stomatal-guard-cells-use-distinct-and-different-receptor-types-and-or-signal-transduction-pathways-in-aba-regulation-of-k-channels/ )

Syvertsen J. P. (1982) – Minimum leaf water potential and stomatal closure in citrus leaves of different ages – Ann. Bot. 47: 827-834 – https://doi.org/10.1093/oxfordjournals.aob.a086309https://academic.oup.com/aob/article-abstract/49/6/827/147132?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/05/10/minimum-leaf-water-potential-and-stomatal-closure/ )

Swift H. M. (1932) – Behavior of stomata – OREGON STATE AGRICULTURAL COLLEGE MSc Thesis – SwiftHarveyM1932.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/10/behavior-of-stomata-3/ )

Szyroki A., Ivashikina N., Dietrich P., Roelfsema M. R., Ache P., Reintanz B., et al. (2001) – KAT1 is not essential for stomatal opening. – Proc. Natl. Acad. Sci. U.S.A. 98, 2917–2921. – doi: 10.1073/pnas.051616698 – http://www.pnas.org/content/98/5/2917 – (On our blog : https://plantstomata.wordpress.com/2018/06/26/multiple-k-channel-transcripts-exist-in-stomata-and-kat1-is-not-essential-for-stomatal-action/ )

Advertisements

Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.