Stomatal density in fossil leaves as a proxy for CO2 partial pressure

Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure

by McElwain J. C. (2004)

Jennifer C. McElwain

Department of Geology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA


In Geology 32: 1017–1020 –


Existing methods for determining paleoelevation are primarily limited by

(1) large errors (±450 m),

(2) a reliance on incorrect assumptions that lapse rates in terrestrial temperature decrease with altitude in a globally predictable manner, and/or

(3) are inherently climate dependent.

Here I present a novel paleoelevation tool, based on a predictable, globally conserved decrease in CO2 partial pressure (pCO2) with altitude, as indicated by increased stomatal frequency of plant leaves.

The approach was validated using historical populations of black oak (Quercus kelloggii). These analyses demonstrate highly significant inverse relationships between stomatal frequency and pCO2 (r2 > 0.73), independent of ecological or local climatic variability. As such, this is the first paleobotanical method to be globally applicable and independent of long-term Cenozoic climate change.

Further, tests on modern leaves of known elevations indicate that species-specific application to the fossil record of Q. kelloggii (= Q. pseudolyrata) will yield paleoelevation estimates within average errors of ∼±300 m, representing a significant improvement in accuracy over the majority of existing methods.

Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s