A model of stomatal conductance for C4 photosynthesis

 

 

A dynamic hydro-mechanical and biochemical model of stomatal conductance for C4 photosynthesis

by Bellasio C., Quirk J., Buckley T. N., Beerling D. J. (2017)

1. Australian National University CITY: Acton STATE: ACT POSTAL_CODE: 2601 Australia [AU]

2. The University Of Sheffield CITY: Sheffield United Kingdom [GB].

3. The University of Sydney CITY: Narrabri STATE: NSW POSTAL_CODE: 2390 Australia [AU].

4. University of Sheffield CITY: Sheffield United Kingdom [GB].

Thomas_Buckley2
Thomas N Buckley, University of Sydney

https://www.researchgate.net/publication/318721627_A_dynamic_hydro-mechanical_and_biochemical_model_of_stomatal_conductance_for_C4_photosynthesis?discoverMore=1

Abstract
C4 plants are major grain (maize, sorghum), sugar (sugarcane) and biofuel (Miscanthus) producers, and contribute ~20% to global productivity.
Plants lose water through stomatal pores in order to acquire CO2 (assimilation, A), and control their carbon-for-water balance by regulating stomatal conductance (gS). The ability to mechanistically predict gS and A in response to atmospheric CO2, water availability and time is critical for simulating stomatal control of plant-atmospheric carbon and water exchange under current, past or future environmental conditions.
Yet, dynamic mechanistic models for gS are lacking, especially for C4 photosynthesis. We developed and coupled a hydro-mechanical model of stomatal behaviour with a biochemical model of C4 photosynthesis, calibrated using gas exchange measurements in maize, and extended the coupled model with time- explicit functions to predict dynamic responses.
We demonstrated the wider applicability of the model with three additional C4 grass species in which interspecific differences in stomatal behaviour could be accounted for by fitting a single parameter.
The model accurately predicted steady-state responses of gS to light, atmospheric CO2 and O2, soil drying and evaporative demand, as well as dynamic responses to light intensity.
Further analyses suggest the effect of variable leaf hydraulic conductance is negligible.
Based on the model, we derived a set of equations suitable for incorporation in land surface models. Our model illuminates the processes underpinning stomatal control in C4 plants and suggests the hydraulic benefits associated with fast stomatal responses of C4 grasses may have supported the evolution of C4 photosynthesis.
Advertisements

Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s