The control of stomatal conductance and water status of droughted plants



Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants.

by Tardieu F., Davies W. J. (1993)

F. Tardieu, INRA Agronomie, F78850 Thiverval Grin, France.

in Plant, Cell & Environment 16: 341349 – DOI: 10.1111/j.1365-3040.1993.tb00880.x –

Wiley Online Library |CASCrossRefWeb of ScienceGoogle Scholar


We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant.

(1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil-plant-atmosphere continuum, to which are linked the difference between Ψrand Ψs.

(2) The water flux will also dilute the concentration of the message in the xylem sap.

(3) The stomatal sensitivity to the message is increased as leaf water potential falls.

Stomatal conductance, which controls the water flux, therefore would be controlled by a water-flux-dependent message, with a water-flux-dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem.

In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate.

Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data.

We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short-term plant response to this message would depend on the evaporative demand.


Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s