Technology – Technique – bibliography

 

 

 

Aasamaa K., Sõber A. (2011) – Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. – Environ. Exp. Bot. 71(1): 72-78 – CrossRef (http://dx.doi.org/10.1016/j.envexpbot.2010.10.013) – http://www.sciencedirect.com/science/article/pii/S009884721000211X – (On our blog : https://plantstomata.wordpress.com/2015/09/05/stomatal-sensitivities-to-all-the-most-important-environmental-factors/).

Aasamaa K., Söber A. (2011) – Responses of stomatal conductance to simultaneous changes in two environmental factors – Tree Physiology, 2011, 31, 8, 855-864 – doi: 10.1093/treephys/tpr078 – http://treephys.oxfordjournals.org/content/31/8/855 – (On our blog : https://plantstmata.wordpress.com/2016/03/22/stomatal-conductance-and-environmental-factors/)

Aasamaa K., A. Söber A., Rahi M. (2001) –  Leaf Anatomical Characteristics Associated with Shoot Hydraulic Conductance, Stomatal Conductance and Stomatal Sensitivity to Changes of Leaf Water Status in Temperate Deciduous Trees – Australian Journal of Plant Physiology, Vol. 28, No. 8, 2001, pp. 765-774. – https://www.researchgate.net/publication/248887614_Leaf_anatomical_characteristics_associated_with_shoot_hydraulic_conductance_and_stomatal_sensitivity_to_changes_of_leaf_water_status_in_temperate_deciduous_trees – (On our blog : https://plantstomata.wordpress.com/2016/09/13/stomatal-conductance-and-stomatal-sensitivity/)

Abak K.Yanmaz R. (1985) – Investigation on the stomatal density in certain pepper lines and their F1 hybrids – Capsicum Newsletter 4: 22 – Google Scholar

Abdulrahaman A.A. (2009) – Morphological and epidermal adaptations to water stress in some ornamental plant species. Ph.D. Thesis, University of Ilorin, Ilorin, Nigeria. (No abstract)

Abdulrahaman A. A., Oladele F. A. (2008) – Global warming and stomatal complex types. Ethnobotanical Leaflets, 12: 553-556 – (On our blog : https://plantstomata.wordpress.com/2016/05/03/stomata-and-global-warming-2/)

Abdulrahaman A. A., Oladele F. A. (2011) – Anatomical Basis for Optimal Use of Water for Maintenance of Some Mesophytic Plants. Insight Botany, 1: 28-38
DOI: 10.5567/BOTANY-IK.2011.28.38 – http://insightknowledge.co.uk/fulltext/?doi=BOTANY-IK.2011.28.38 – (On our blog : https://plantstomata.wordpress.com/2016/03/27/8634/)

Abraham P. E., Yin H., Borland A. M., Weighill D., Lim S. D., Cestari De Paoli H., Engle N., Jones P. C., Agh R., Weston D. J., Wullschleger S. D., Tschaplinski T., Jacobson D., Cushman J. C., Hettich R. L., Tuskan G. A., Yang X. (2016) – Transcript, protein and metabolite temporal dynamics in the CAM plant Agave – Nature Plants 2, Article number: 16178 (2016) – doi:10.1038/nplants.2016.178 – http://www.nature.com/articles/nplants2016178 – (On our blog : https://plantstomata.wordpress.com/2016/12/07/stomatal-openingclosing-and-drought-resistance-in-cam-plants/)

Abrash E., Bergmann D. C. (2009) – Asymmetric cell divisions: A view from plant development. Dev. Cell. 2009;16:783–796. [PubMed]

Abrash E., Bergmann D. C. (2010) – Regional specification of stomatal production by the putative ligand CHALLAH. – Development (2010) 137:447–455.  -10.1242/dev.040931. – http://dev.biologists.org/content/137/3/447 – (On our blog : https://plantstomata.wordpress.com/2016/03/28/chal-and-the-epfs-both-act-through-er-family-receptors-to-repress-stomatal-production/)

Abrash E., Lampard G. R. (2010) – A view from the top: new ligands controlling stomatal development in Arabidopsis. – New Phytol 186:561–564. – DOI: 10.1111/j.1469-8137.2010.03265.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03265.x/full – (On our blog : https://plantstomata.wordpress.com/2016/09/13/new-ligands-controlling-stomatal-development/)

Acharya B., Assmann S. (2009) – Hormone interactions in stomatal function. Plant Mol. Biol.69, 451–462. doi: 10.1007/s11103-008-9427-0 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/09/05/phytohormones-and-the-effects-of-their-interactions-on-stomata/)

Acharya B. R., Jeon B. W., Zhang W., Assmann S. M. (2013) – Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. – New Phytol. 200, 1049–1063. doi: 10.1111/nph.12469 – PubMed Abstract | CrossRef Full Text | Google Scholar – MedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/05/03/ost1-as-a-critical-limiting-component-in-aba-regulation-of-stomatal-apertures/)

Ache P., Becker D., Ivashikina N., Dietrich P., Roelfsema M. R., Hedrich R. (2000) – GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K1-selective, K1-sensing ion channel. – FEBS Lett 486: 93–98

Ackerson R. C. (1980) – Stomatal Response of Cotton to Water Stress and Abscisic Acid as Affected by Water Stress History – Plant Physiology 1980 vol. 65 no. 3 455-459 – doi: http://dx.doi.org/10.1104/pp.65.3.455 – http://www.plantphysiol.org/content/65/3/455 – (On our blog : https://plantstomata.wordpress.com/2016/05/05/stomatal-response-of-cotton-to-water-stress-and-aba/)

Addington R. N., Donovan L. A., Mitchell R. J., Vose J. M., Pecot S. D., Jack S. B., Hacke U. G., Sperry J. S., Oren R. (2006) – Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats – Plant, Cell & Environment 29, Issue 4, April 2006, 535–545 – DOI: 10.1111/j.1365-3040.2005.01430.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01430.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stomatal-conductance-in-xeric-and-mesic-habitats/)

Addington R. N., Mitchell R. J., Oren R., Donovan L. A. (2004) – Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. – Tree Physiol. 24(5): 561-569 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/04/stomata-and-vapor-pressure-deficit/).

Adrian J., Chang J., Ballenger C., Bargmann B., Alassimone J., Davies K. A., Lau S., Matos J. L., Hachez C., Lanctot A., Vatén A., Birnbaum K. D., Bergmann D. C. (2015) – Transcriptome Dynamics of the Stomatal Lineage: Birth, Amplification, and Termination of a Self-Renewing Population – Developmental Cell 33(1):107-18 · April 2015- DOI: 10.1016/j.devcel.2015.01.025 – Source: PubMed – https://www.researchgate.net/publication/274729494_Transcriptome_Dynamics_of_the_Stomatal_Lineage_Birth_Amplification_and_Termination_of_a_Self-Renewing_Population – (On our blog : https://plantstomata.wordpress.com/2017/01/21/transcriptome-dynamics-of-the-stomatal-lineage/)

Agurla S., Gayatri G., Raghavendra A. S. (2014) – Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. – Nitric Oxide 43, 89–96. doi: 10.1016/j.niox.2014.07.004 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/05/nitric-oxide-no-as-a-link-between-stomatal-closure-and-plant-innate-immunity/)

Ahuja I., de Vos R. C. H., Rohloff J., Stoopen G. M., Halle K. K., Ahmad S. J. N., Hoang L., Hall R. D., Bones A. M. (2016) – Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle – Scientific Reports 6, Article number: 38990 (2016) – doi:10.1038/srep38990 – (https://plantstomata.wordpress.com/2016/12/26/the-glucosinolate-myrosinase-system-and-the-cuticle/)

Ainsworth, E.A., Rogers, A. (2007) – The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions – Plant Cell Environ., 30: 258-270. (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01641.x/abstract).- (On our blog : https://plantstomata.wordpress.com/2016/02/04/response-of-photosynthesis-and-stomatal-conductance-to-rising-co2/).

Akita K., Hasezawa S. Higaki T. (2013) – Breaking of plant stomatal one-cellspacing rule by sugar solution immersion. – PLoS ONE 8, e72456 – 

Akbarian M. R., Tabari M., Akbarinia M., Zarafshar M., Meave J. A., Yousefzadeh H., Sattarian A. B. (2011) – Effects of elevational gradient on leaf and stomatal morphology of Caucasian alder (Alnus subcordata) in the Hyrcanian forest, Iran – Folia Oecologica38.1.2011): 17.  – http://search.proquest.com/openview/8291dfe8a8c04d77829f1d894836deb7/1?pq-origsite=gscholar&cbl=29663 – (On our blog : https://plantstomata.wordpress.com/2016/05/16/the-effect-of-altitude-on-the-whole-leaf-and-stomatal-morphology/)

Akita K., Hasezawa S., Higaki T. (2013) – Breaking of plant stomatal one-cell-spacing rule by sugar solution immersion. – PLoS ONE 8: e72456. – http://dx.doi.org/10.1371/journal.pone.0072456 – http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0072456 – (On our blog : https://plantstomata.wordpress.com/2016/09/06/sucrose-solution-and-abnormally-clustered-stomata/)

Al Afas N., Marron N., Ceulemans R. (2006) – Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. – Environ. Exp. Bot.58, 279-286. – http://www.sciencedirect.com/science/article/pii/S0098847205001656?np=y – (On our blog : https://plantstomata.wordpress.com/2016/10/22/stomatal-characteristics-affect-biomass-production/)

Al-Ani T. A., Bierhuizen J. F. (1971) – Stomatal resistance, transpiration, and relative water content as influenced by soil moisture stress – Acta Bot. Neerl. 20(3): 318-326. – (On our blog : https://plantstomata.wordpress.com/2017/04/18/stomatal-resistance-can-be-used-as-a-tool-by-which-the-soil-water-plant-relationship-can-be-predicted/)

Aliniaeifard S., Matamoros M. P., van Meeteren U. (2014) – Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? – Physiol. Plant. 152: 688-699 (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/04/stomatal-malfunctioning/).

Aliniaeifard S., van Meeteren U. (2013) – Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? – J. Exp. Bot. 64(12): 3551-3566 (CrossRef, Medline).PubMed Abstract  – (On our blog : https://plantstomata.wordpress.com/2015/09/06/long-term-low-vapour-pressure-deficit-vpd-and-stomata/).

Aliniaeifard S., Van Meeteren U. (2016) – Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning – J. Exp. Bot. (2014) 65 (22):6529-6542.doi: 10.1093/jxb/eru370 – http://jxb.oxfordjournals.org/content/65/22/6529.abstract – (On our blog : https://plantstomata.wordpress.com/2016/03/26/stomatal-responses-to-closing-stimuli-after-long-term-exposure-to-low-vpd/)

Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. (1994) Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. – Plant Cell, 6, 319328. – CrossRef | [PMC free article] [PubMed] – (On our blog).

Allaway W. G. (1973) – Accumulation of malate in guard cells of Vicia faba during stomatal opening – Planta 110: 63-70.

Allaway W. G., Hsiao T. C. (1973) – Preparation of rolled epidermis of Vicia faba so that stomata are the only viable cells: analysis of guard cell potassium by flame photometry – Aust. J. Bot. 26: 309-318.

Allaway W. G., Mansfield T. A. (1967) – Stomatal responses to changes in carbon dioxide concentration in leaves treated with 3–(4–chlorophenyl)–1, I-dimethylurea. – New Phytol., 66, 57. – DOI: 10.1111/j.1469-8137.1967.tb05986.x – Wiley Online LibraryCASWeb of Science® – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1967.tb05986.x/full – (On our blog)

Allaway W. G., Mansfield T. A.(1970) – Experiments and observations on the aftereffect of wilting on stomata of Rumex sanguineus. – Canad. J. Bot. 48, 513–521 (1970) – Doi: 10.1139/b70-072 – http://www.nrcresearchpress.com/doi/abs/10.1139/b70-072 – (On our blog)

Allaway W. G., Milthorpe F. L. (1976) – Structure and functioning of stomata. In TT Kozlowski, ed, Water Deficits and Plant Growth, Vol 4. – Soil Water Measurement, Plant Responses, and Breeding for Drought Resistance. Academic Press, New York, pp 57–102

Allaway W. G., Setterfield G. (1972) – Ultrastructural observations of guard cells of Vicia faba and Allium porrum.- Can. J. Bot. 50, 1405–1413 – DOI: 10.1139/b72-169 – Google Scholar – http://www.nrcresearchpress.com/doi/abs/10.1139/b72-169 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/microstructures-in-stomata/)

Allen G. J., Amtmann A., Sanders D. (1998) – Calcium-dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles. – J. exp. Bot. 49 (Spec. Issue): 305-318, 1998.

Allen G. J., Chu S. P., Harrington C. L., Schumacher K., Hoffmann T., Tang Y. Y., Grill E.,Schroeder J. I. (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. – Nature 411: 10531057. CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/07/stomatal-movements-and-guard-cell-calcium-oscillation-parameters/)

Allen G. J., Chu S. P., Schumacher K., Shimazaki C. T., Vafeados D., Kemper A., Hawke S. D.,Tallman G., Tsien R. Y., Harper J. F., Chory J., Schroeder J. I. (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3mutant. – Science 289: 23382342. – CrossRef |PubMed |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/10/stimulus-specific-calcium-oscillations-are-necessary-for-stomatal-closure/).

Allegre M., Daire X., Heloir M. C., Trouvelot S., Mercier L., Adrian M. et al. (2007) – Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. – New Phytol. 2007;173:832–840. – [PubMed] – https://www.ncbi.nlm.nih.gov/pubmed/17286831 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomatal-deregulation-by-plasmopara-viticola-infection/)

Allen G. J., Kuchitsu K., Chu S. P. Murata Y., Schroeder J. I. (1999)Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11: 1785–1798 – CrossRef |PubMedAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/03/10/aba-induced-cytoplasmic-calcium-rises-in-stomata/).

Allen G. J., Kwak J. M., Chu S. P., Llopis J., Tsien R. Y., Harper J. F., Schroeder J. I. (1999) – Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells.Plant Journal 19: 735738. – Wiley Online Library |PubMed |CAS | – (On our blog).

Allen G. J., Sanders D. (1996) Control of ionic currents in guard cell vacuoles by cytoplasmic and luminal calcium. – Plant J., 10, 10551069. – Wiley Online Library |PubMed | – (On our blog).

Allen M. T., Pearcy R. W.  (2000) –  Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. – Oecologia, 122: 470-478. (http://cat.inist.fr/?aModele=afficheN&cpsidt=1403013). – (On our blog).

Al-Rawahy S. H., Al-Amri H., Al-Hinai A., Sherwani N. (2007) – Growth and stomatal conductance of Prosopis cineraria (Ghaff Tree) exposed to sulphur dioxide. – Asian J. Plant Sci., 6: 673-677. (http://scialert.net/abstract/?doi=ajps.2007.673.677) – (On our blog).

Alves de Sena J.O., Zaidan H. A., Castro P. R. C. (2007) – Transpiration and stomatal resistance variations of perennial tropical crops under soil water availability conditions and water deficit. – Brazilian Arch. Biol. Technol., 50: 225-230 – (On our blog)

Alvim P. de T. (1946) – A influência do umidecimento des folhas sôbre a abertura dos estômatos – Revista Ceres 7: 141-152

Alvim P. de T. (1949) – A actividad e fotossintética das células guardas – Lilloa 19: 5-10.

Alvim P. de T. (1949) – Studies on the mechanism of stomatal behavior – Amer. Journ. Bot. 36: 781-791. – (On our blog : https://plantstomata.wordpress.com/2017/04/18/38657/)

Alvim P. de T. (1951) – The influence of the green mesophyll in stomatal movement – Plant Physiol.  1951: 206-209 – (On our blog : https://plantstomata.wordpress.com/2017/04/18/green-mesophyll-and-stomatal-movement/)

Alwerdt J.L., Gibson D.J., Ebbs S.D., Wood A.J. (2006) – Intraspecific interactions in Arabidopsis thaliana and the stomatal mutants tmm1-1 and sdd1-2. – Biol Plantarum 50:205–209.

Amsbury S., Hunt L., Elhaddad N., Baillie A., Lundgren M., Verhertbruggen Y., Scheller H. V., Knox J. P., Fleming A. J., Gray J. E. (2016) – Stomatal function requires pectin de-methyl-esterification of the guard cell wall. – Curr Biol 26: 2899–2906

An Y., Liu L., Chen L., Wang L. (2016) – ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells – Front. Plant Sci., 11 April 2016 | http://dx.doi.org/10.3389/fpls.2016.00482 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00482/full – (On our blog)

 

An Z. F., Jing W., Liu Y. L., Zhang W. H. (2008) – Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. – J. Exp. Bot. 59, 815–825. doi: 10.1093/jxb/erm370 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Anav A., De Marco A., Proietti C., Alessandri A., Dell’Aquila A., Cionni I., Friedlingstein P., Khvorostyanov D., Menut L., Paoletti E., Sicard P., Sitch S., Vitale M. (2016) – Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. – Global Change Biol, 22: 1608–1627. doi:10.1111/gcb.13138 – http://onlinelibrary.wiley.com/doi/10.1111/gcb.13138/abstract – (On our blog)

Anderson B. E., Ward J. M., Schroeder J. I. (1994) – Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. – Plant Physiology 104: 1177–1183.

Anderson C. T., Yue R. (2016) – Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis thalianaPlant Physiology January 4, 2016 pp.01066.2015 – doi: http://dx.doi.org/10.1104/pp.15.01066 – http://www.plantphysiol.org/content/early/2016/01/04/pp.15.01066 – (On our blog)

Anonymous (2016) – An amino acid controls plants’ breath – Phys.Org 2016-12-06 – http://phys.org/news/2016-12-amino-acid.html – (On our blog : https://plantstomata.wordpress.com/2016/12/07/the-role-of-calcium-in-the-opening-and-closing-of-stomata/)

Anonymous (x) – SimSphere Workbook – Chapter 9 – Prifysgol Aberystwyth University – https://www.aber.ac.uk/en/iges/research-groups/earth-observation-laboratory/research/simsphere/workbook/chapter-9/  – (On our blog)

Aphalo P. J., Jarvis P. G. (1993) – The boundary layer and the apparent responses of stomatal conductance to wind speed and to the mole fractions of CO2 and water vapour in the air. – Plant, Cell and Environment 16, 771783. – Wiley Online Library | – (On our blog)

Apple M. E., Olszyk D. M., Ormrod D. P., Lewis J., Southworth D., Tingey D.T. (2000) – Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature – Int J Plant Sci. 2000 Jan;161(1):127-132. (http://www.ncbi.nlm.nih.gov/pubmed/10648202) – (On our blog).

Araújo W. L.Fernie A. R.Nunes-Nesi A. (2011) Control of stomatal aperture: a renaissance of the old guard. – Plant Signaling & Behavior 2011;6:13051311.

Archana J. S., Valon C.,  Leung J.  (2011) A brand new START: abscisic acid perception and transduction in the guard cell. –Sci. Signal.  29 Nov 2011:Vol. 4, Issue 201, pp. re4 – DOI: 10.1126/scisignal.2002164 – Abstract/FREE Full Text – (On our blog)

Arend M., Schnitzler J.-P., Ehlting B., Hänsch R., Lange T., Rennenberg H., Himmelbach A., Grill E., Fromm J. (2009) – Expression of the Arabidopsis Mutant abi1Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars – Plant Physiology December 2009 vol. 151 no. 4 2110-2119. (https://plantstomata.wordpress.com/2015/03/03/a-role-for-aba-in-regulating-stomatal-development/). (On our blog).

Arends J. (1925) – Über den Einfluss chemischer Agenzien auf Stärkegehalt und osmotischen Wert der Spaltöffnungsschliesszellen – Planta 1: 84-115 – (On our blog : https://plantstomata.wordpress.com/2017/04/19/effect-of-chemical-substances-on-starch-and-osmotic-value-of-stomata/)

Arens T. (1968) – Radial Strukturen in den Stomata von Ouratea spectabilis (Mart.) Engl. – Protoplasma 66: 403-411 –

Armstrong F., Leung J., Grabov A., Brearley J., Giraudat J., Blatt M.R.(1995) – Sensitivity to abscisic acid of guard cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. – Proc. Natl Acad. Sci. USA, 92, 95209524. – CrossRefPubMedCASADS – (On our blog : https://plantstomata.wordpress.com/2015/10/09/the-role-of-abi1-1-a-mutant-arabidopsis-gene-in-stomata/).

Arnaud D., Hwang, I. (2015) – A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. – Mol. Plant 8, 566–581. doi: 10.1016/j.molp.2014.10.012 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/07/pathways-to-regulate-stomatal-defenses-to-bacterial-pathogens/)

Arntzen C. J., Haugh M., Bobick S. (1973) – Induction of stomatal closure by Helminthosporium maydis pathotoxin – Plant Physiol. 52: 569-574.

Arve L. E, Terfa M. T., Gislerød H. R., Olsen J. E., Torre S. (2013) – High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. – Plant Cell. Environ.36(2): 382-392 (CrossRef, Medline). – (On our blog).

Arve L. E, Torre S., Olsen J. E, Tanino K. K. (2011) – Stomatal Responses to DroughtStress and Air Humidity – “Abiotic Stress in Plants – Mechanisms and Adaptations”, book edited by Arun Shanker and B. Venkateswarlu, ISBN 978-953-307-394-1, (2011) – (http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/stomatal-responses-to-drought-stress-and-air-humidity). – (On our blog : https://plantstomata.wordpress.com/2015/04/11/stomata-and-drought/).

Asai N., Nakajima N., Kondo N., Kamada H. (1999) – The effect of osmotic stress on the solutes in guard cells of Vicia faba L. – Plant Cell Physiol 40:843–849 CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/16/osmotic-stress-and-stomata/)

Asai N., Nakajima N., Tamaoki M., Kamada H., Kondo N. (2000) – Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement. – Plant Cell Physiol 41:10–15 CrossRef PubMed – (On our blog : https://plantstomata.wordpress.com/2016/03/18/role-of-malate-synthesis-in-stomata/)

Asl L. K., Dhondt S., Boudolf V. et al. (2011) – Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells – Plant Physiology (2011) 156: 2172-2183

Ask Nature (2008-2015) – Guard cells regulate gas and moisture exchange: plants – © 2008-2015 The Biomimicry Institute. (http://www.asknature.org/strategy/8c389105f450bb568e1eed4725c4c195#.VQasDRDF-6F) – (On our blog).

Aslam M. , Zamir M.S.I. , Anjum S.A. , Khan I., Tanveer M. (2015) – An investigation into morphological and physiological approaches to screen maize (Zea mays L.) hybrids for drought tolerance – Cereal Research Communications 43(1): 41-51 (2015).

Aslani F., Bernard F., Mirzajani F., Hadian J. (2015) – Comparison of in vitro seeds and shoot tips colchicine treatment methods on of Thymus daenensis Celak via the study of morphological features of stomata and cellular DNA content – jppf. 2015; 3 (10) :1-8. (http://www.jispp.ir/browse.php?a_id=151&sid=1&slc_lang=en) – (On our blog).

Aslantaş R., Karakurt H. (2009) – The effects of altitude on stomata number and some vegetative growth parameters of some apple cultivars. – Research Journal of Agriculture and Biological Sciences 5, 853–857.

Assmann S. M. (1988) – Enhancement of the stomatal response to blue light by red light, reduced intercellular concentrations of CO2, and low vapor pressure differences.– Plant Physiol. 87:226231. – Abstract/FREE Full Text – CASPubMedArticle – (On our blog)

Assmann S. M. (1992) –  Effects of light quality during development on the morphology and stomatal physiology of Commelina communis – Oecologia 92(2):188-195 · November 1992 – DOI: 10.1007/BF00317363 – https://www.researchgate.net/publication/226608952_Effects_of_light_quality_during_development_on_the_morphology_and_stomatal_physiology_of_Commelina_communis – (On our blog)

Assmann S. M. (1993) Signal transduction in guard cells. – Annual Review of Cell Biology 9: 345375. – CrossRef |PubMed  – No abstract.

Assmann S. M. (1999) The cellular basis of guard cell sensing of rising CO2. Plant, Cell & Environment 22: 629637. – Wiley Online Library |CAS | – (On our blog)

Assmann S. M. (2003) – OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. – Trends Plant Sci. 8, 151153. – CrossRef |PubMed |CAS – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Assmann S.M. (2010) Abscisic acid signal transduction in stomatal responses. In Plant Hormones. Biosynthesis, Signal Transduction, Action! Ed. Davies P.J. Springer,Dordrecht, pp 399426Google Scholar (no abstract).

Assmann S. M., Armstrong F. (1999) – Hormonal regulation of ion transporters: the guard cell system. – In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 337-361. Elsevier, Amsterdam 1999.

Assmann S. M., Lee D. M., Malkus P. (1992) – Rapid stomatal response to red-light in Zea mays. – Photochem Photobiol. 56 685–689.

Assmann S. M., Shimazaki K. I. (1999) – The multisensory guard cell. Stomatal responses to blue light and abscisic acid. – Plant Physiol. 119(3): 809-815 (337-361 ?) .- CrossRefPubMed | FREE Full Text http://www.plantphysiol.org/content/119/3/809.full?ijkey=7a12ea1668efa214d91fef46a8c6bc1a4ed58734&keytype2=tf_ipsecsha -(On our blog).

Assmann S. M., Simoncini L., Schroeder J. I.  (1985) – Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. – Nature. 1985;3186(1):285–287.

Assmann S. M., Snyder J. A., Lee Y-R. J. (2000) – ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. – Plant Cell Environ. 23(4): 387-395  – (CrossRef). –  Wiley Online Library |PubMed |CAS | – (On our blog).

Assmann S. M., Wang X.-Q. (2001) From milliseconds to millions of years: guard cells and environmental responses. Current Opinion in Plant Biology 4: 421428. – CrossRef |PubMed |CAS | – (On our blog)

Assouline S., Or D. (2015) – Plant water use efficiency over geological time—evolution of leaf stomata configurations affecting plant gas exchange. – PLoS ONE 10, e0127015. (doi:10.1371/journal.pone. 0127015) –

Aston M. J. (1976) – Variation of stomatal diffusive resistance with ambient humidity in sunflower (Helianthus annuus) – Aust. J. Plant Physiol. 3: 489-502. – Google Scholar – http://www.publish.csiro.au/fp/PP9760489 – (On our blog : https://plantstomata.wordpress.com/2017/02/01/stomatal-diffusive-resistance-and-ambient-humidity/)

Aston M. J. (1978) – Differences in the behaviour of adaxial and abaxial stomata of amphistomatous sunflower leaves: Inherent or environmental – Aust. J. Plant Physiol. 5: 211-218 –

Atkinson C. J. (1991) – The flux and distribution of xylem sap calcium to adaxial and abaxial epidermal tissue in relation to stomatal behaviour. – J Exp Bot 42:987–993 CrossRef – (On our blog).

Atkinson C. J. (2014) Is xylem sap calcium responsible for reducing stomatal conductance after soil liming? – Plant and Soil, 2014, 382, 1-2, 349 – http://link.springer.com/article/10.1007%2Fs11104-014-2180-z – (On our blog)

Atkinson C. J., Mansfield T. A.Davies W. J. (1990) Does calcium in xylem sap regulate stomatal conductance? New Phytologist, 1990, 116, 1, 19-27 – DOI: 10.1111/j.1469-8137.1990.tb00506.x  –CrossRef – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1990.tb00506.x/full – (On lour blog)

Atkinson C. J., Mansfield T. A., Kean A. M., Davies W. J. (1989) Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. – New Phytologist 111: 917. – Wiley Online Library |CrossRef– http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1989.tb04212.x/full – (On our blog)

Atkinson C. J., Mansfield T. A., McAinsh M. R., Brownlee C., Hetherington A. M. (1990) – Interactions Of Calcium With Abscisic-Acid In The Control Of Stomatal Aperture. – Biochemie Und Physiologie Der Pflanzen 186, 333-339. – http://www.sciencedirect.com/science/article/pii/S0015379611802283 – (On our blog)

Augé R. M., Green C. D., Stodola A. J. W., Saxton A. M., Olinick J. B., Evans R. M. (2000) –  Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in a natural habitat. – New Phytol. 145: 483-500, 2000.

Aylor D. E., Parlange J.-Y;, Krikorian A. D. (1973) – Stomatal mechanics – Amer. J. Bot. 60: 163-171 –

Azoulay-Shemer T., Palomares A., Bagheri A., Israelsson-Nordstrom M., Engineer C. B., Bargmann B. O. R., Stephan A. B., Schroeder J. I. (2015) – Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2– and ABA-induced stomatal closing. – Plant J. 83, 567–581. doi: 10.1111/tpj.12916 – CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/tpj.12916/abstract – (On our blog)

Babu, R. H., Savithramma, N. (2014) – Studies on stomata of some selected grass species of Poaceae and Cyperaceae – World Journal of Pharmacy and Pharmaceutical Sciences Vol 3, Issue 7, 1268-1279, 2014. (http://isindexing.com/isi/papers/1416559462.pdf). –www.wjpps.com/download/article/1404210729.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/19/stomata-in-poaceae-and-cyperaceae-2/).

Baier M., Gimmler H., Hartung W. (1990) – The permeability of the guard cell plasma membrane and tonoplast. – J. Exp. Bot. 41,

Bak G., Lee E. J., Lee Y., Kato M., Segami S., Heven S., Maeshima M., Hwang J. U., Lee Y. (2013) – A role of phosphatidylinositol 3,5-bisphosphate in vacuolar structure change in guard cells of closing stomata. – Plant Cell 25:2202–2216 – CrossRef PubMed PubMedCentral – (On our blog : https://plantstomata.wordpress.com/2016/03/19/rapid-aba-induced-stomatal-closure-requires-ptdins35p2/)

Bakker J. C. (1991) –  Effects of humidity on stomatal density and its relation to leaf conductance. – Scienta Hort. 48, 205-212.

Balcerowicz, M., Hoecker, U. (2014) – Auxin – a novel regulator of stomata differentiation – Trends in Plant Science,Volume 19, Issue 12, December 2014, Pages 747–749.(http://www.sciencedirect.com/science/article/pii/S1360138514002684) – (On our blog : https://plantstomata.wordpress.com/2015/02/07/stomata-and-auxin/).

Bald J. G. (1952) – Stomatal droplets and the penetration of leaves by plant pathogens – Amer. J. Bot. 39(2): 97-99 – (On our blog : https://plantstomata.wordpress.com/2017/05/06/stomatal-droplets-on-gladiolus-leaves-induce-the-germ-tubes-of-pleospora-to-infect-the-leaf/)

Baldocchi D. (1994)  – An analytical solution for coupled leaf photosynthesis and stomatal conductance models – Tree Physiology 14, 10691079. – DOI:https://doi.org/10.1093/treephys/14.7-8-9.1069 – CrossRef – https://academic.oup.com/treephys/article-abstract/14/7-8-9/1069/1727768/An-analytical-solution-for-coupled-leaf?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/02/06/coupled-leaf-photosynthesis-and-stomatal-conductance-equations/)

Ball M. C., Farquhar G. D. (1984) – Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions – Plant Physiology 74, 16. – doi: http://dx.doi.org/10.1104/pp.74.1.1 – CrossRefCAS – http://www.plantphysiol.org/content/74/1/1 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/stomatal-responses-of-two-mangrove-species-to-long-term-salinity-and-humidity-conditions/)

Ball J. T., Woodrow I. E., Berry J. A. (1987) – A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. – Progress in Photosynthetic Research 4, 221228. – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/03/14/7119/).

Balmant K. M., Zhang T., Chen S. (2016) – Protein Phosphorylation and Redox Modification in Stomatal Guard Cells – Front. Physiol., 05 February 2016 | http://dx.doi.org/10.3389/fphys.2016.00026 – http://journal.frontiersin.org/article/10.3389/fphys.2016.00026/full – (On our blog : https://plantstomata.wordpress.com/2016/03/31/ptms-that-modify-molecular-components-in-stomata/)

Bange G. G. J. (1953) – On the quantitative explanation of stomatal transpiration – Acta Bot. Neerl. 2 (3): 253-297 – (On our blog : https://plantstomata.wordpress.com/2017/06/05/quantitative-explanation-of-stomatal-transpiration/)

Bannister P. (1964) – Stomatal responses of heath plants to water deficits – J. Ecol. 52: 151-158.

Barbacka M. (1994) – Reconstruction of stomata in Komlopteris Barbacka and Pachypteris Brongniart and their adaptation to climate. -Ann. Hist.-Nat. Mus. nat. Hungar. 86. 05-11. SEM. Was Thinnfeldia. Stomata not a xeromorphic adaptation.

Barbieri G., Vallone S., Orsini F., Paradiso R., De Pascale S., Negre-Zakharov F., and A. Maggio A. (2012) – Stomatal Density and Metabolic Determinants Mediate Salt Stress Adaptation and Water Use Efficiency in Basil (Ocimum basilicum L.) – Journal of Plant Physiology, Vol. 169, No. 17, 2012, pp. 1737-1746. – http://dx.doi.org/10.1016/j.jplph.2012.07.001 – (On our blog)

Barrs H. D. (1971) – Cyclic variations in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions. – Ann. Rev. Plant Physiol. 22, 223–236  – Google Scholar

Bartlett M. K. Klein T.Jansen S.Choat B., Sack L. (2016) – The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought – PNAS 
PNAS November 2, 2016 – http://www.pnas.org/content/early/2016/11/01/1604088113.abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/04/plant-stomatal-hydraulic-and-wilting-responses-to-drought/)

Barton K. (2007) – Making Holes in Leaves: Promoting Cell State Transitions in Stomatal Development – The Plant Cell April 2007 vol. 19 no. 4 1140-1143 – doi: http://dx.doi.org/10.1105/tpc.107.051177 – http://www.plantcell.org/content/19/4/1140.full – (On our blog : https://plantstomata.wordpress.com/2016/03/27/how-stomata-are-built/)

Bates G.W., Rosenthal D.M., Sun J., Chattopadhyay M., Peffer E., Yang J., Ort D.R., Jones A.M. (2012) – A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. PloS one 7, e49641.

Batista Florindo J., Landini G.,  Almeida Filho H., Martinez Bruno O. (2015) – Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia zebrina – Journal of Physics: Conference Series, Volume 633, Issue 1, article id. 012113 (2015). – 10.1088/1742-6596/633/1/012113 – http://adsabs.harvard.edu/abs/2015JPhCS.633a2113B – (On our blog : https://plantstomata.wordpress.com/2017/07/26/a-method-for-the-analysis-of-the-stomata-distribution-patterns/)

Batos, B., Vilotic, D., Orlovic, S. and Miljkovic, D. (2010) – Inter and Intra-Population Variation of Leaf Stomatal Traits of Quercus robur L. in Northern Serbia. – Archives of Biological Sciences, 62, 1125-1136. – (http://dx.doi.org/10.2298/ABS1004125B) – (On our blog : https://plantstomata.wordpress.com/2015/09/07/variation-of-stomatal-characteristics/).

Bauer H., Ache P., Lautner S., Fromm J., Hartung W., Al-Rasheid K. A. S., Sonnewald S., Sonnewald U., Kneitz S., Lachmann N., Mendel R. R., Bittner F., Hetherington A. M., Hedrich R. (2013) – The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. – Curr. Biol.23(1): 53-57 (CrossRef, Medline).[PubMed]- (On our blog : https://plantstomata.wordpress.com/2015/09/07/guard-cells-operate-the-entire-aba-biosynthesis-pathway/).

Bauly J. M., Sealy I. M., Macdonald H., Brearley J., Dröge S., Hillmer S., Robinson D. G., Venis M. A., Blatt M. R., Lazarus C. M., Napier R. M. (2000) – Overexpression of auxinbinding protein enhances the sensitivity of guard cells to auxin. – Plant Physiol. 124: 1229-1238, 2000.

Bayramzadeh, V. (2011) – Stomatal Characteristics of Fagus orientalis Lipsky in Geographically Separated Locations in the Caspian Forests of Northern Iran. – Research Journal of Environmental Sciences, 5, 836-840  (http://dx.doi.org/10.3923/rjes.2011.836.840) – (On our blog)

Beardsel M. F., Cohen D. (1975) – Relationships between Leaf Water Status, Abscisic Acid Levels, and Stomatal Resistance in Maize and Sorghum. – Plant Physiol. 56, 207–212 (1975). – http://www.plantphysiol.org/content/56/2/207 – (On our blog)

Beaulieu J. M., Leitch I. J., Patel S., Pendharkar A., Knight C. A. (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. – New Phytologist 179:975986.-doi: 10.1111/j.1469-8137.2008.02528.x. Epub 2008 Jun 28. –  CrossRef, PubMed – (On our blog)

Becraft P. W. (1999) Development of the leaf epidermis. – Current Topics in Developmental Biology 451–40. – Medline – https://www.ncbi.nlm.nih.gov/pubmed/10332602?dopt=Abstract (On our blog : https://plantstomata.wordpress.com/2017/01/07/development-of-the-epidermis/)

Beerling D. J. (1993) – Changes in the stomatal density of Betula nana leaves in response to increases in atmospheric carbon dioxide concentrations since the last glacial. – Special Papers in Palaeontology 49: 181-187.

Beerling D. J. (1995) – Stomatal responses to variegated leaves to CO2 enrichment. Annals of Botany. 1995;75:507–11.

Beerling D. J. (1998) – Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L. trees exposed in situ for three years to elevated CO2 and temperature. Acta Oecologica 18, 697–712.

Beerling D. J. (1999) –  Stomatal density and index: theory and application.  In: JONES, T. P. & ROWE, N. P. (eds.) Fossil Plants and Spores: modern techniques. Geological Society, London 251-256. –

Beerling D.J. (2015) – Gas valves, forests and global change: a commentary on Jarvis (1976) ‘The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field’ – Philosoph. Transactions B, Volume: 370 Issue: 1666

Beerling D. J., Chaloner W. (1992a) – Stomatal density as an indicator of atmospheric CO2 concentration – The Holocene 2: 71-78 – DOI: 10.1177/095968369200200109 –http://journals.sagepub.com/doi/abs/10.1177/095968369200200109 – (On our blog : https://plantstomata.wordpress.com/2017/09/14/stomatal-density-as-an-indicator-of-atmospheric-co2-concentration/)

Beerling D. J., Chaloner W. (1993) – The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur lammas leaves. – Annals of Botany 71, 231–235. – CrossRef | CAS |  – (On our blog)

Beerling D. J., Chaloner W. (1993) – Stomatal density responses of Egyptian Olea europaea L. leaves to COchange since 1327 BC. – Ann Bot 71:431–435 – doi: 10.1006/anbo.1993.1056 – CrossRef – (On our blog)

Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.A. and Tooley, M.J. (1993) – Stomatal Density Responds to the Glacial Cycle of Environmental Change. – Proceedings of the Royal Society B: Biological Sciences, 251, 133-138.
(http://dx.doi.org/10.1098/rspb.1993.0019) – (On our blog).

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J., Woodward F. (1992) – Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and post-glacial time. – Philos. Trans. R. Soc. London B, 1992; 336, 215±224 – https://www.jstor.org/stable/55890?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/14/variations-in-stomatal-density-under-changing-atmospheric-co2-concentrations-of-late-and-postglacial-time/)

Beerling D. J., Franks P. J. (2009) – Evolution of stomatal function in ‘lower’ land plants. New Phytologist 183, Issue 4: 921-925  – DOI: 10.1111/j.1469-8137.2009.02973.x – (CrossRef, Medline). – http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.02973.x/full – (On our blog : https://plantstomata.wordpress.com/2016/12/29/stomatal-function-in-lower-land-plants/)

Beerling D. J., McElwain J. C., Osborne C. P. (1998) – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – Journal of Experimental Botany, Vol. 49, No. 326, pp. 1603–1607 – http://jxb.oxfordjournals.org/content/49/326/1603.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/stomatal-responses-to-changes-in-atmospheric-co2-concentrations/)

Beerling D. J., Putland V., Woodward F. I. (1995) – Stomatal density responses to global environment change – Advances in Bioclimatology.

Beerling D. J., Royer D. L. (2002) – Reading a CO2 signal from fossil stomata – New Phytologist (2002) 153: 387-397

Belhadj S., Derridj A., Moriana A., Gijon M. D. C., Mevy J. P. and Gauquelin T. (2011) – Comparative Analysis of Stomatal Characters in Eight Wild Atlas Pistachio Populations (Pistacia atlantica Desf.; Anacardiaceae). – International Research Journal Plant Science, 2, 60-69.

Belin C.de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A., Giraudat J., Barbier-Brygoo H., Thomine S. (2006) – Identification of features regulating OST1 kinase activity and OST1 function in guard cells. – Plant Physiol 141:13161327. – doi: http://dx.doi.org/10.1104/pp.106.079327 – Abstract/FREE Full Text – (On our blog)

Bellasio C., Quirk J., Buckley T. N., Beerling D. J. (2017) – A dynamic hydro-mechanical and biochemical model of stomatal conductance for C4 photosynthesis – Plant Physiology  – DOI: 10.1104/pp.17.00666 – https://www.researchgate.net/publication/318721627_A_dynamic_hydro-mechanical_and_biochemical_model_of_stomatal_conductance_for_C4_photosynthesis?discoverMore=1 – (On our blog : https://plantstomata.wordpress.com/2017/08/07/a-model-of-stomatal-conductance-for-c4-photosynthesis/)

Bennett K. J., Rook D. A. (1978) – Stomatal and mesophyll resistances in two clones of Pinus radiana D. Don known to differ in transpiration and survival rate – Aust. J. PLant Physiol. 5: 231-238 –

Berger D., Altmann T. (2000) – A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. – Gene Dev 14:1119–1131. – Abstract/FREE Full Text – http://genesdev.cshlp.org/content/14/9/1119.full.html – (On our blog : https://plantstomata.wordpress.com/2016/05/07/the-sdd1-gene-and-stomata/)

Berger F., Linstead P., Dolan L., Haseloff J. (1998) – Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermal patterning – Dev. Biol., 1998, vol. 194: 226-234 – Google ScholarCrossRefPubMed

Bergmann Lab – Introduction to stomatal development – http://web.stanford.edu/group/bergmann/cgi-bin/bergmannlab/research – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-development-3/)

Bergmann D.C. (2003) – Integrating signals in stomatal development.- Curr. Opin. Plant Biol. 7: 1-7.

Bergmann D. C. (2004) – Integrating signals in stomatal development. – Curr. Opin. Plant Biol. 7, 26–32. – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/03/28/need-for-models-that-explain-how-the-signals-that-regulate-stomatal-development/)

Bergmann D. C. (2005) – Stomatal patterning: how do cells choose their fate? – Biologist Volume 52 Number 3, July 2005: 138-143 – http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.7879&rep=rep1&type=pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/27/how-do-we-know-whether-plants-have-an-optimal-density-of-stomata/)

Bergmann D. C. (2006) – Stomatal development: from neighbourly to global communication – Current Opinion in Plant Biol., vol. 9(5): 478-483, 2006. – Google ScholarCrossRef

Bergmann D. C. (2014) – Plant development and its implications for human and global health. I. Key issues in plant development – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-1.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/key-issues-in-plant-development-stomata/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. II: Stomata as a model for stem cells – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-2.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-as-a-model-for-stem-cells/)

Bergmann D. C. (2014) – Plant development and its implications for human and global health. III. Stomata and global climate cycles – https://www.ibiology.org/ibioseminars/dominique-bergmann-part-3.html – (On our blog)

Bergmann D. C., Lukowitz W., Somerville C. R. (2004) – Stomatal development and pattern controlled by a MAPKK kinase. – Science 304:1494–1497. – 10.1126/science.1096014. – Abstract/FREE Full Text – View ArticlePubMed – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Bergmann D. C., Sack F. D. (2007) – Stomatal development. – Annual review of plant biology 58, 163-181. – CrossRefMedlineWeb of Science Google Scholar – http://dx.doi.org/10.1146/annurev.arplant.58.032806.104023 – (On our blog)

Berkowitz G.Zhang X.Mercie R.Leng Q.Lawton M. (2000) – Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes. – Plant Cell Physiol 41: 785790 – DOI: https://doi.org/10.1093/pcp/41.6.785 – Abstract/FREE Full Text – https://academic.oup.com/pcp/article/41/6/785/1923323/Co-Expression-of-Calcium-Dependent-Protein-Kinase – (On our blog : https://plantstomata.wordpress.com/2017/02/01/calcium-dependent-protein-kinase-with-the-inward-rectified-guard-cell-k-channel-kat1-and-stomata/)

Bernacchi C. J., Kimball B. A.Quarles D. R.Stephen P. Long S. P., –Ort D. R. (2006) – Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration – Plant Physiology January 2007 vol. 143 no. 1 134-144 – doi: http://dx.doi.org/10.1104/pp.106.089557 – http://www.plantphysiol.org/content/143/1/134 – (On our blog)

Bernacchi C. J. et al. (2006) – Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ. 29, 2077–2090 (2006).

Berry J.A., Beerling D.J., Franks P.J. (2010) – Stomata: key players in the earth system, past and present. Curr. Opin. Plant Biol. 13:232–239. – CrossRefMedlineGoogle Scholar – (On our blog)

Berryman C. A., Eamus D., Duff G. A. (1994) – Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. – Journal of Experimental Botany 45, 539–546.

Bertoni G. (2009) – Integration of signaling pathways in stomatal development. – Plant Cell 21:2542.

Bertsch A. (1969) – Die Diffusionswiderstand der Spaltöffnungen; ein Vergleich des CO2-Gaswechsels von Blättern mit und ohne Epidermis – Planta 87: 102-109 –

Bertsch A., Domes W. (1969) – CO2-Gaswechsel amphistomatischer Blätter. I. Der Einfluss unterschiedlicher Stomaverteilungen der beiden Blattepidermen auf den CO2-Transport – Planta 85: 183-193. – (On our blog : https://plantstomata.wordpress.com/2017/05/17/co2-exchange-in-amphistomatic-leaves-i-the-influence-of-the-distribution-of-stomata-on-both-leaf-surfaces-upon-co2-transport-in-german/)

Bessey C. E. (xxxx) – Some considerations upon the function of stomata – Science 7: 13-16 – (On our blog : https://plantstomata.wordpress.com/2017/04/28/functions-of-stomata/)

Beyer A. (1929) – Über Tropfenbildung in den Schliesszellen der Spaltöffnungen von Tradescantia zebrina – Bot. Arch. 26:

Beyschlag W., Eckstein J. (2001) –  Towards a Causal Analysis of Stomatal Patchiness. The Role of Stomatal Size Variability and Hydrological Heterogeneity – Acta Oecologica, Vol. 22, No. 3, 2001, pp. 161-173. – http://dx.doi.org/10.1016/S1146-609X(01)01110-9 – (On our blog)

Beyschlag W., Pfanz H., Ryel R. J. (1992) – Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. – Planta. 1992 Jul;187(4):546-53. doi: 10.1007/BF00199976. – PMID: 24178151

Bhandari M. C., Sen D. N. (1973) – Role of epidermal cell turgor on stomatal regulation in isolated epidermal peelings of Citrullus colocynthis Linn. (Schard.) – Biochem. Physiol. Pflanzen 164: 180-187.

Bhat W. A. (2015) – Study of transient response of plant leaf using infrared imaging and effect of light on stomatal opening – BEST 2015 ,Indian Institute of Science (IISc Bangalore) – Dept. of Bioengineering and Biosciences -IIT GUWAHATI – http://www.be.iisc.ernet.in/BESTReports/WaseemBhat.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/20/effect-of-light-on-stomatal-opening/)

Bhave N. S., Veley K. M., Nadeau J. A., Lucas J. R., Bhave S. L., Sack F. D. (2009) – TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems. – Planta 229:357– 367. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog)

Black C.R., Squire G.R. (1979) – Effects of atmospheric saturation deficit on the stomatal conductance of pearl millet (Pennisetum typhoides S. and H.) and Groundnut (Arachis hypogea L.). – J. Exp. Bot. 118: 935–45 (1979) – DOI: https://doi.org/10.1093/jxb/30.5.935 – Google Scholar – https://academic.oup.com/jxb/article-abstract/30/5/935/450295/Effects-of-Atmospheric-Saturation-Deficit-on-the – (On our blog : https://plantstomata.wordpress.com/2017/02/01/atmospheric-saturation-deficit-and-stomatal-conductance/)

Blackman P. G., Davies W. J. (1983) –  The effect of cytokinins and ABA on stomatal behaviour of maize and Commelina. – J. exp. Bot. 34: 1619-1626, 1983.

Blackman P. G., Davies W.J. (1984) – Modification of the CO2 responses of maize stomata by abscisic acid and by naturally-occurring and synthetic cytokinins. – Journal of Experimental Botany 35, 174179 – CrossRefCAS | – (On our blog)

Blackman P. G., Davies W.J. (1984) – Age-related changes in stomatal response to cytokinins and abscisic acid. – Ann. Bot. 54: 121-125, 1984.

Blakemore, E. (2015) – Creating Drought-Tolerant Plants By Hacking Their Natural Responses – http://www.smithsonianmag.com/smart-news/scientists-can-program-plants-be-more-drought-tolerant-180954159/?no-ist – (On our blog).

Blanke M. S., Belcher A. R. (1989) – Stomata of apple leaves cultured in vitro – Plant Cell Tissue Organ Cult. 19: 85-89.

Blanke M.M., Cooke D.T. (2004) – Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves – Plant Growth Regul. 42: 153–160 – Google Scholar – CrossRef

Blatt M. R. (1985) Extracellular potassium activity in attached leaves and its relation to stomatal function. – Journal of Experimental Botany 36: 240251. – CrossRef | – (On our blog)

Blatt M. R. (1987a) –  Electrical characteristics of stomatal guard cells: The ionic basis of the membrane potential and the consequence of potassium chloride leakage from microelectrodes.- Planta 170:272–287

Blatt M. R. (1987b) Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “eiectrogenic” transport revealed by current-voltage and difference-current-voltage analysis. – J. Membrane Biol. 98:257–274

Blatt M. R. (1988) – Potassium-dependent bipolar gating of potassium channels in guard cells.- J. Membrane Biol. 102:235–246

Blatt M. R. (1990) – Potassium channel currents in intact stomatal guard cells: Rapid enhancement by abscisic acid. – Planta 180, 445-455.

Blatt M. R. (1991) – Ion channel gating in plants: physiological implications and integration for stomatal function. Journal of Membrane Biology 124: 95112. – CrossRef |PubMed |CAS | – (On our blog)

Blatt M. R. (1992) – K+ channels of stomatal guard cells: Characteristics of the inward rectifier and its control by pH. – J. Gen. Physiol. 99, 615644. – CrossRefPubMedCAS | – (On our blog)

Blatt M.R. (1999) – Reassessing roles for Ca2+ in guard cell signalling. – J. Exp. Bot.50, 989999. – CrossRefCAS | – (On our blog)

Blatt M. R. (2000) Ca2+ signalling and control of guard-cell volume in stomatal movements – Curr. Opinion Plant Biol 3: 196204 – CrossRefMedline Google Scholar – http://dx.doi.org/10.1016/S1369-5266(00)80065-5 – http://www.sciencedirect.com/science/article/pii/S1369526600800655?np=y&npKey=e7d461eaa74355a375dec534bedb8747eb9c7dc3379a3a8515f2046bf2415553 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/ca2-signalling-and-stomatal-movements/)

Blatt M. R. (2000) – Cellular signaling and volume control in stomatal movements in plants. – Annals of Review of Cell and Developmental Biology 16: 221241. – CrossRef |PubMed |CASMedline – (On our blog : https://plantstomata.wordpress.com/2015/09/08/understanding-of-guard-cell-signaling/).

Blatt M. R. (2002) Towards understanding vesicle traffic and the guard cell model. New Phytologist 153: 405413. – Wiley Online Library |CAS | – (On our blog)

Blatt M. R., Armstrong (1993) –  K+ channels of stomatal guard cells: abscisic acid evoked control of the outward rectifier mediated by cytoplasmic pH. – Planta, 191,330341. – CrossRef | CAS | – (On our blog).

Blatt M. R., Clint G. M. (1989) – Mechanisms of fusicoccin action kinetic modification and inactivation of potassium channels in guard cells. – Planta 178:509–523

Blatt M. R., Grabov A.  (1997) – Signalling gates in abscisic acid-mediated control of guard cell ion channels –  Physiol. Plantarum Vol. 100, Issue 3 July 1997 , 481–490 – DOI: 10.1111/j.1399-3054.1997.tb03052.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1997.tb03052.x/full – (On our blog)

Blatt M.R., Thiel G. (1994) – K+ channels of stomatal guard cells: Bimodal control of the K+inward-rectifier evoked by auxin. – Plant J. 5: 55–68 [PubMed] – (On our blog)

Blatt M. R., Thiel G., Trentham D. R. (1990) – Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,54risphosphate. – Nature 346,766-769.

Blatt M. R., Wang Y., Leonhardt N., Hills A. (2014) –  Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells – Journal of Plant Physiology, 2014, 171, 9, 770-778 – doi:10.1016/j.jplph.2013.09.014 – http://www.sciencedirect.com/science/article/pii/S017616171300401X – (On our blog)

Boccalandro H. E., Giordano C. V., Ploschuk E. L., Piccoli P. N., Bottini R., Casal J. J.
(2012) – Phototropins but not cryptochromes mediate the blue light-specific
promotion of stomatal conductance, while both enhance photosynthesis and
transpiration under full sunlight. – Plant Physiology 158: 14751484

Boetsch J., Chin J., Croxdale J. (1995) – Arrest of stomatal initials in Tradescantia is linked to the proximity of neighboring stomata and results in the arrested initials acquiring properties of epidermal cells. Dev Biol 1995, 168:28-38. (PubMed Abstract | Publisher Full Text) – (On our blog).

Bolliger R. (1959) – Entwicklung und Struktur der Epidermisaussenwand bei einigen Angiospermenblättern – J. Ultrastructure Research 3: 105-130 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/epidermis-and-cuticula-in-angiosperms-in-german/)

Boorse G, Tallman G.1999. Guard cell protoplasts. Isolation, culture, and regeneration of plants. Methods of Molecular Biology111,243–257. – Medline

Bopp M., Bock G. (1961) – Die Reaktion der Schliesszellen bei einigen panaschierten Pflanzen – Ber. Deutsch. Bot. Ges. LXXIV (4) : 125-134 – (On our blog : https://plantstomata.wordpress.com/2017/04/22/effect-of-chlorophyll-content-on-stomatal-movement-in-variegated-plants-in-german/)

Borel C., Frey A., Marion-Poll A., Tardieu F., Simonneau T. (2001) – Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought? – Plant Cell Environ. 24: 477-489, 2001.

Borel C., Simonneau T., This D., Tardieu F. (1997) – Stomatal conductance and ABA concentration in the xylem sap of barley lines of contrasting genetic origins. – Aust. J. Plant Physiol. 24: 607-615, 1997.

Boudolf V.Barrôco R.de Almeida Engler J., Verkest A., Beeckman T., Naudts M., Inzé D., De Veylder L. (2004) – B1-Type Cyclin-Dependent Kinases Are Essential for the Formation of Stomatal Complexes in Arabidopsis thaliana – The Plant Cell April 2004 vol. 16 no. 4 945-955 – doi: http://dx.doi.org/10.1105/tpc.021774 – http://www.plantcell.org/content/16/4/945.abstract – (On our blog)

Bowling D. J. F. (1976) Malate-switch hypothesis to explain the action of stomata. Nature 262, 393–394. – Google Scholar

Bowling D. J. F. (1987) Measurement of the apoplastic activity of K+ and Cl in the leaf epidermis of Commelina communis in relation to stomatal activity. – Journal of Experimental Botany 38: 13511355. – CrossRef | – (On our blog)

Bowling D. J. F., Edwards A. (1984) – pH gradients in the stomatal complex of Tradescantia virginiana. – Journal of Experimental Botany 35 : 1641–1645.

Bradbury D., Ennis W. B. Jr. (1952) – Stomatal closure in kidney bean plants treated with ammonium 2,4-dichlorophenoxyacetate – Amer. J. Bot. 39: 324-328 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-and-24-d/)

Bradford K. J., Sharkey T. D., Farquhar G. D. (1983) – Gas exchange, stomatal behaviour, and d13C values of the flacca tomato mutant in relation to abscisic acid. – Plant Physiol 72 245–250 [PMC free article] [PubMed] – (On our blog).

Brady K. (x) – Challenging a Fine Balance – Dept. Biol. Univ. Washington. –  (http://www.biology.washington.edu/newsletter/sum12/Keiko%20Torii.html) – (On our blog)

Brandt B., Munemasa S., Wang C., Nguyen D., Yong T., Yang P. G., Poretsky E., Belknap T. F., Waadt R., Alemán F., Schroeder J. I. (2015) –  Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells, eLife, 2015, 4  – http://elifesciences.org/content/4/e03599v1 – (On our blog)

Brearley J., Venis M. A., Blatt M. R . (1997) – The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. – Planta 203: 145–154 CrossRef – (On our blog)

Bright J., Desikan R., Hancock J. T., Weir I. S., Neill S. J. (2006) –  ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. – The Plant Journal 45, 113122. – CrossRefMedlineWeb of Science – (On our blog)

Brindley H. M. (1990) – Fluxes of 86Rb+ in “isolated” guard cells of Vicia faba L. – Planta 181:432–439

Bringmann M., Bergmann D. C. (2017) – Tissue-wide mechanical forces influence the polarity of stomatal stem cell in Arabidopsis. – Curr. Biol. http://dx.doi.org/10.1016/j.cub.2017.01.059 (2017)

Brock A. K., Willmann R., Kolb D., Grefen L., Lajunen H. M., Bethke G., Lee J., Nürnberger T., Gust A. A. (2010) – The Arabidopsis Mitogen-Activated Protein Kinase Phosphatase PP2C5 Affects Seed Germination, Stomatal Aperture, and Abscisic Acid-Inducible Gene Expression – Plant Physiol. 153, 1098–1111. doi: 10.1104/pp.110.156109 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Brodribb T. J., Hill R. S. (1997) –  Imbricacy and stomatal wax plugs reduce maximum leaf conductance in southern hemisphere conifers. – Australian Journal of Botany 45, 657–668. – CrossRef | – (On our blog)

Brodribb T. J., Holbrook N. M. (2003) – Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. – Plant Physiology 132, 2166–2173. – CrossRef CAS

Brodribb T. J., Holbrook N. M. (2004) – Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist 162: 663-670 (CrossRef).– (On our blog).

Brodribb T. J., Holbrook N. M. (2004) – Diurnal depression of leaf hydraulic conductance in a tropical tree species – Plan, Cell and Environment 2004;27:820-827. – CrossRef Google Scholar – (On our blog).

Brodribb T. J., Holbrook N. M., Edwards E. J., Guttiérrez M. V. (2003) – Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees – Plant Cell Environ. Volume 26, Issue 3 March 2003  Pages 443–450  –DOI: 10.1046/j.1365-3040.2003.00975.x– http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.00975.x/abstract – (On our blog)

Brodribb, T.J., Jordan, G.J. (2008) – Internal coordination between hydraulics and stomatal control in leaves. Plant Cell Environ. 31: 1557-1564 ) – Wiley Online Library – PubMed – CrossRef, Medline). – (On our blog).

Brodribb Lab – Stomatal Function and Evolution – http://www.brodribblab.org.au/research-areas/stomatal-function-and-evolution/ – (On our blog : https://plantstomata.wordpress.com/2017/01/03/stomatal-function-and-evolution-at-the-brodribb-lab/)

Brodribb, T.J., McAdam S. A. M. (2011) – Passive origins of stomatal control in vascular plants. Science 331: 582-585 – doi: 10.1126/science.1197985. Epub 2010 Dec 16. – PMID: 21163966 – Free Article – (CrossRef, Medline). – (On our blog).

Brodribb, T.J., McAdam S. A. M. (2012) – Stomatal (mis)behaviour. – Tree Physiol. 2011 Oct;31(10):1039-40. – doi: 10.1093/treephys/tpr100. Epub 2011 Sep 24. – PMID: 21949027

Brodribb T.J., McAdam S. A. M. (2013) – Abscisic acid mediates a divergence in the drought response of two conifers. – Plant Physiol. 2013 Jul;162(3):1370-7. doi: 10.1104/pp.113.217877. Epub 2013 May 24. – PMID: 23709665 – Free PMC Article – (On our blog).

Brodribb T.J., McAdam S. A. M. (2013) – Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling. – PLoS One. 2013 Nov 20;8(11):e82057. doi: 10.1371/journal.pone.0082057. eCollection 2013. – PMID: 24278470 – Free PMC Article – (On our blog).

Brodribb T.J., McAdam S. A. M. (2015) – Evolution in the smallest valves (stomata) guides even the biggest trees. – Tree Physiol. 2015 May;35(5):451-2. doi: 10.1093/treephys/tpv042. No abstract available. – PMID:-26041093.

Brodribb T.J., McAdam S. A. M. (2017) – Evolution of the stomatal regulation of plant water content – Plant physiology 174(2) · April 2017 – DOI: 10.1104/pp.17.00078 – https://www.researchgate.net/publication/316111982_Evolution_of_the_stomatal_regulation_of_plant_water_content – (On our blog : https://plantstomata.wordpress.com/2017/06/25/the-function-of-early-stomata/)

Brodribb T.J., McAdam S. A. M.,  Carins Murphy M. R. (2016) – Xylem and Stomata, Coordinated Through Time and Space – Plant Cell and Environment · August 2016 – DOI: 10.1111/pce.12817 – https://www.researchgate.net/publication/306271326_Xylem_and_Stomata_Coordinated_Through_Time_and_Space – (On our blog : https://plantstomata.wordpress.com/2016/08/20/evolution-in-xylem-and-stomatal-function-and-their-interaction/)

Brodribb T.J., McAdam S. A. M., Jordan G. J., Feild T. S. (2009) – Evolution of stomatal responsiveness to CO(2) and optimization of water-use efficiency among land plants. – New Phytol. 2009 Aug;183(3):839-47. – doi: 10.1111/j.1469-8137.2009.02844.x. Epub 2009 Apr 23. – PMID: 19402882. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog)

Brodribb T. J., McAdam S. A., Jordan G. J., Martins S. C. ( 2014) – Conifer species adapt to low-rainfall climates by following one of two divergent pathways. – Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14489-93. doi: 10.1073/pnas.1407930111. Epub 2014 Sep 22. – https://www.ncbi.nlm.nih.gov/pubmed/25246559 – (On our blog : https://plantstomata.wordpress.com/2016/12/31/the-simple-way-conifers-evolved-to-cope-with-water-shortage-a-critical-interaction-between-xylem-and-stomatal-tissues/)

Brosché M., Merilo E., Mayer F ., Pechter  P., Puzörjova I., Brader G ., Kangasjärvi J., Kollist H. (2010) – Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. – Plant Cell Environ. 2010 Vol 33: 914-925 – DOI: 10.1111/j.1365-3040.2010.02116.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2010.02116.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/10/the-role-of-stomata-in-regulating-o3-entry-and-damage/)

Brown K. W., Rosenberg N. J. (1970) – Influence of leaf age, illumination, and upper and lower surfaces on stomatal resistance of sugar beet (Beta vulgaris) leaves – Agron. J. 62: 20-24.

Brown W. V., Johnson S. C. (1962) – The fine structure of the grass guard cell – Am. J. Bot. 49: 110-115.

Brownlee C. (2001) – The long and the short of stomatal density signals. -Trends Plant Sci 6:441-442. – DOI: http://dx.doi.org/10.1016/S1360-1385(01)02095-7 – CrossRefMedlineWeb of Science – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/The-long-and-the-short-of-stomatal-density-signals.pdf – (On our blog : https://plantstomata.wordpress.com/2015/09/09/the-density-and-patterning-of-stomata-in-response-to-environmental-stimuli/)

Brun W. A. (1962) – Rhythmic stomatal opening responses in banana leaves – Physiol. Plant. 15: 623-630 –

Buckley T. N. (2005) – The control of stomata by water balance. – New Phytol. 168(2): 275-292 (CrossRefMedlineGoogle ScholarWiley Online Library |PubMed |CAS).- http://dx.doi.org/10.1111/j.1469-8137.2005.01543.x – (On our blog : https://plantstomata.wordpress.com/2015/08/25/stomata-and-water-balance/).

Buckley T. N. (2016) – Stomatal responses to humidity: has the ‘black box’ finally been opened? – Plant, Cell & Environment Volume 39, Issue 3, pages 482–484,March 2016

Buckley T. N. (2008) – The role of stomatal acclimation in modelling tree adaptation to high CO2. -) Journal of Experimental Botany 59, 19511961. – CrossRefPubMed |- CAS |-

Buckley T. N. (2017) – Modeling stomatal conductance. – Plant Physiol 174: 572–582 –

Buckley T. N., Farquhar G. D., Mott K. A. (1997) – Qualitative effects of patchy stomatal conductance distribution features on gas exchange calculations. – Plant, Cell & Environment 20(7): 867880 – DOI: 10.1046/j.1365-3040.1997.d01-128.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-128.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/patchy-stomatal-conductance-distribution-features-and-gas-exchange/)

Buckley T. N., Farquhar G. D., Mott K. A. (1999) – Carbon-water balance and patchy stomatal conductance. – Oecologia 118, 132143. – CrossRef –

Buckley T. N., Mott K. A. (2000) – Stomata responses to non-local changes in PFD: evidence for long-distance hydraulic interactions. – Plant, Cell and Environment 23: 301-309.

Buckley T.N., Mott K.A. (2002a) – Dynamics of stomatal water relations during the humidity response: implications of two hypothetical mechanisms. – Plant Cell Environ.25:407–419. – Wiley Online Library Google Scholar – http://onlinelibrary.wiley.com/doi/10.1046/j.0016-8025.2001.00820.x/full – (On our blog)

Buckley T.N., Mott K.A. (2002b) – Stomatal water relations and the control of hydraulic supply and demand. – Progress in Botany 63, 309325. – CrossRef

Buckley T.N., Mott K.A. (2013) – Modelling stomatal conductance in response to environmental factors – Plant Cell Environ, 36: 1691–1699. doi:10.1111/pce.12140 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12140/full – (On our blog)

Buckley T. N., Mott K. A., Farquhar G. D. (2003) – A hydromechanical and biochemical model of stomatal conductance. – Plant, Cell and Environment 26: 1767-1786. – DOI: 10.1046/j.1365-3040.2003.01094.x – CrossRef  Google Scholar – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2003.01094.x/abstract – (On our blog)

Buckley T. N., Sack L., Farquhar G. D. (2016) – Optimal plant water economy – DOI: 10.1111/pce.12823 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12823/abstract – (On our blog : https://plantstomata.wordpress.com/2016/09/20/plant-water-economy/)

Buckley T. N., Sack L., Gilbert M. E. (2011) – The role of bundle sheath extensions and life form in stomatal responses to leaf water status. – Plant Physiology 156, 962973 –  CrossRefCAS |

Buckley T. N., Turnbull T. L., Adams M. A. (2012) – Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data. – Plant, Cell & Environment 35, 16471662. – Wiley Online Library

Bunce J.A. (1997) – Does transpiration control stomatal responses to water vapour pressure deficit? – Plant Cell Environ. 20:131–135. – CrossRefWeb of ScienceGoogle Scholar – (On our blog) 

Bunce  J. A. (1998) – Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration – Plant Cell Environ. 21: 115–120 (1998).

Bunce J. A. (2004) – Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. – Oecologia, 140(1): 1-10.

Bunce J.A. (2006) – How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits? – Plant Cell Environ. 29: 1644–1650 – Google Scholar CrossRef

Bunce J. A. (2007) – Low carbon dioxide concentrations can reverse stomatal closure during water stress. Physiol. Plant. 130, 552–559. doi: 10.1111/j.1399-3054.2007.00937.x – CrossRef Full Text | Google Scholar – (On our blog)

Bundy, M. G. R., Kosentka P. K., Willet A. H., Zhang L., Miller E., Shpak E. D. (2016) – A Mutation in the Catalytic Subunit of the Glycosylphosphatidylinositol Transamidase Disrupts Growth, Fertility, and Stomata Formation – 

Burghardt M., Riederer M. (2003) – Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. – J. Environ. Biol., 54: 1941-1949 – (On our blog)

Burnett E. C., Desikan R., Moser R. C., Neill S. J. (2000) – ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. – J. Exp. Bot. 51, 197–205. doi: 10.1093/jexbot/51.343.197 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Burrows F. J., Milthorpe F. L. (1976) – Stomatal conductance in gas exchange control. In T. T. Kozlowski, ed. Water deficits and Plant Growth, Vol. 4, Acad. Press New York, pp. 103-152 –

Busch F. (2013) – Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain – Photosynthesis Research. doi: 10.1007/s11120-013-9805-6. – CrossRef

Büssis D., von Groll U., Fisahn J., Altmann T. (2006) – Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. – Funct Plant Biol 33:1037–1043. – doi: 10.1071/FP06078 – CrossRef Full Text | Google Scholar – (On our blog)

Butterfass T. (1961) – Das Verhalten der Chloroplastenzahlen in den Schliesszellenpaaren von Zuckerrüben verschiedener Ploidiestufen vom Keimling bis zur blühenden Pflanze – Züchter 31: 62-71.

Buttery B. R.Gaynor J. D.Buzell R. I.Mactavish D. C.Armstrong R. J. (1992) – The effect of shading on kaempherol content and leaf characteristics of five soybean lines. – Physiol. Plant. 86:279284. – CrossRef Google Scholar – 

Cach-Pérez M. J., Andrade J. L., Cetzal-Ix W., Reyes-García C. (2016) – Environmental influence on the inter- and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula – Botanical Journal of the Linnean Society – Early View (Online Version of Record published before inclusion in an issue) – DOI: 10.1111/boj.12398 – http://onlinelibrary.wiley.com/doi/10.1111/boj.12398/abstract – (On our blog)

Cai S., Chen G., Wang Y., Huang Y., Marchant D. B., Wang Y., Yang Q., Dai F., Hills A., Franks P. J., Nevo E., Soltis D., Soltis P., Sessa E., Wolf P. G., Xue D., Zhang G. P., Pogson B. J., Blatt M. R. Chen Z.-H. (2017) – Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns – Plant physiology · February 2017 – DOI: 10.1104/pp.16.01848 – https://www.researchgate.net/publication/313950886_Evolutionary_Conservation_of_ABA_Signaling_for_Stomatal_Closure_in_Ferns?focusedCommentId=58b76d7382999cd4be08f8b7 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/aba-signaling-for-stomatal-closure-in-ferns/)

Cai S., Papanatsiou M., Blatt M. R., Chen Z.-H. ( 2017) – Speedy grass stomata: Emerging molecular and evolutionary features – Molecular Plant xxxx – https://www.researchgate.net/publication/317508978_Speedy_Grass_Stomata_Emerging_Molecular_and_Evolutionary_Features – (On our blog : https://plantstomata.wordpress.com/2017/06/12/speedy-grass-stomata/)

Caine R., Chater C. C., Kamisugi Y., Cuming A. C., Beerling D. J.,Gray J. E.,  Fleming A. J. (2016) – An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens – 

Caird M. A., Richards J. H., Donovan L. A. (2007) – Nighttime stomatal conductance and transpiration in C3 and C4 plants. – Plant Physiol. 143(1): 4 – 10.

Caligaris F. (2017) – Stomata And Wounds: The Constant Dilemma Of Pathogen Infection – Global Engage (blog) – Feb. 2017 – http://www.global-engage.com/agricultural-biotechnology/stomata-and-wounds-constant-dilemma-pathogen-infection/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/pathogen-infection-penetration-through-stomata-and-wounds/)

Camargo M.A.B. , Maremco R.A. (2011) – Density, Size and Distribution of Stomata in 35 Rainforest Tree Species in Central Amazonia. – Acta Amazonica, 41, 205-212. (http://dx.doi.org/10.1590/S0044-59672011000200004) – (On our blog : https://plantstomata.wordpress.com/2015/10/18/stomata-in-rainforest-trees/).

Campany C. E., Tjoelker M. G., von Caemmerer S., Duursma R. A. (2016) – Coupled Response of Stomatal and Mesophyll Conductance to Light Enhances Photosynthesis of Shade Leaves under Sunflecks – Plant, Cell & Environment, Accepted, unedited articles published online – DOI: 10.1111/pce.12841 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12841/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/12/stomatal-and-mesophyll-conductance/)

Campos H., Trejo C., Pena-Valdivia C. B., Garcia-Nava R., Conde-Martinez F. V.,  Cruz-Ortega M. R. (2014) – Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: delayed restoration of photosynthesis during recovery. – Environ. Exp. Bot. 98, 56–64. doi: 10.1016/j.envexpbot.2013.10.015 – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/12/stomatal-and-non-stomatal-limitations/)

Cardon Z. G., Mott K. A., Berry J. A. (1994) – Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated using gas-exchange techniques – Plant, Cell &Environment 17(9): 995-1007 – DOI: 10.1111/j.1365-3040.1994.tb02033.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb02033.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/dynamics-of-patchy-stomatal-movements/)

Capellades M., Fontarneau R., Carulla C., Debergh P. (1990) – Environment influences anatomy of stomata and epidermal cells in tissue-cultured Rosa multiflora – J. Amer. Soc. Hort. Sci. 115: 141-145 – http://journal.ashspublications.org/content/115/1/141.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/21/effect-of-environment-on-stomata/)

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2014) – Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. – Plant, Cell & Environment 37, 124–131. – doi: 10.1111/pce.12136. Epub 2013 Jun 10. – PMID: 23682831 – (CrossRef | CAS | – (On our blog).

Carins Murphy M. R., Jordan G. J., Brodribb T. J. (2016) – Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade – Annals of Botany · August 2016 – Annals of Botany · August 2016 – DOI: 10.1093/aob/mcw167 – http://aob.oxfordjournals.org/content/early/2016/08/27/aob.mcw167.abstract – (On our blog)

Carins Murphy M. R., Dow G. J., Jordan G. J., Brodribb T. J. (2017) – Vein density is independent of epidermal cell size in Arabidopsis mutants – Functional Plant Biology – http://dx.doi.org/10.1071/FP16299 – published online 9 January 2017 – https://www.researchgate.net/publication/312162425_Vein_density_is_independent_of_epidermal_cell_size_in_Arabidopsis_mutants – (On our blog : https://plantstomata.wordpress.com/2017/01/12/densities-of-leaf-minor-veins-and-stomata/)

Carlson J. E.Adams C. A., Holsinger K. E. (2015) – Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub – Ann Bot (2016) 117 (1): 195-207.doi: 10.1093/aob/mcv146 – http://aob.oxfordjournals.org/content/117/1/195 – (On our blog)

Carr D. J., Carr S. G., Jahnke R. (1980) – Intercellular strands associated with stomata: stomatal pectic strands – Protoplasma 102: 177-1812 –

Case S. (2004)Leaf stomata as bio indicators of environmental change. TIEF, Vol. 1.

Casson S. A., Franklin K. A., Gray J. E., Grierson C. S., Whitelam G. C., Hetherington A. M. (2009) – Phytochrome B and PIF4 regulate stomatal development in response to light quantity. – Current Biology 19: 229234 – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/13/phytochrome-b-and-pif4-light-quantity-and-stomatal-development/)

Casson S., Gray J. E. (2008) – Influence of environmental factors on stomatal development. New Phytol, 2008; 178: 9–23 – CrossRefGoogleScholar – (http://www.ncbi.nlm.nih.gov/pubmed/18266617) – (On our blog : https://plantstomata.wordpress.com/2015/09/13/changes-in-the-environment-and-stomatal-development/).

Casson S.A., Hetherington A.M. (2010) – Environmental regulation of stomatal development. – Current Opinion in Plant Biology 13, 90-95. – http://dx.doi.org/10.1016/j.pbi.2009.08.005 – (On our blog : https://plantstomata.wordpress.com/2016/05/13/environmental-cues-for-stomata/)

Castorina G., Fox S., Tonelli C., Galbiati M., Conti L. (2016) – A novel role for STOMATAL CARPENTER 1 in stomata patterning – BMC Plant BiologyBMC series – open, inclusive and trusted 2016 16:172 – https://doi.org/10.1186/s12870-016-0851-z – https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0851-z – (On our blog : https://plantstomata.wordpress.com/2017/09/18/stomatal-carpenter-1-in-stomata-patterning/)

Ceulemans R. I., Impens I., Lemeur R., Moermans R., SAmsuddin Z. (1978) – Water movement in the soil-poplar-atmosphere system. I. Comparative study of stomatal morphology and anatomy, and the influence of stomatal density and dimensions on the leaf diffusion characteristics in different poplar clones 13: 1-12 –

Chaffey N. (2016) – A fresh look at guard cell walls – AoB Blog http://aobblog.com/2016/03/fresh-look-guard-cell-walls/ – (On our blog https://plantstomata.wordpress.com/2016/04/27/the-role-played-by-cellulose-microfibrils-within-the-walls-of-the-guard-cells-in-stomatal-opening/)

Chakravorty D., Trusov Y., Zhang W., Acharya B. R., Sheahan M. B., McCurdy D. W.,  Assmann S. M., Botella J. R.. (2011) –  An atypical heterotrimeric G protein γ subunit is involved in guard cell K(+) channel regulation and morphological development in Arabidopsis thaliana. Plant J. 67(5): 840-851.

Chasan R. (1995) – New openings into stomata. – Plant Cell. 7: 1113-1115 – DOI: https://doi.org/10.1105/tpc.7.8.1113 http://www.plantcell.org/content/plantcell/7/8/1113.full.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/23/new-openings-into-stomata/) – General paper regarding studying of external signals altering cell behaviour.

Chater C., Caine R. S., Fleming A. J., Gray J. E. (2017) – Origins and evolution of stomatal development. – Plant Physiology 174: 624–638

Chater C., Gray J. E., Beerling D. J. (2013) – Early evolutionary acquisition of stomatal control and development gene signalling networks. – Curr Opin Plant Biol 16: 638–646

Chater C., Kamisugi Y., Movahedi M., Fleming A., Cuming A. C. Gray J. E., Beerling D. J. (2011) – Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. – Curr Biol 2011, 21:1025-1029.  -10.1016/j.cub.2011.04.032.(PubMed Abstract | Publisher Full Text) – (On our blog).

Chater C., Oliver J., Casson S., Gray J. E. (2014) – Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. – New Phytol. 2014 Apr;202(2):376-391. doi: 10.1111/nph.12713. Epub 2014 Mar 10. – https://www.researchgate.net/publication/260680150_Putting_the_brakes_on_Abscisic_acid_as_a_central_environmental_regulator_of_stomatal_development – (On our blog)

Chater C., Peng K., Movahedi M., Dunn J. A., Walker H. J., Liang Y.-K., McLachlan D. H., Casson S., Isner J. C., Wilson J., Neill S. J., Hedrich R., Gray J. E,  Hetherington A. M. (2015) – Elevated CO2-Induced Responses in Stomata Require ABA and ABA Signaling – Current Biology Volume 25, Issue 20, 2709–2716 – DOI: http://dx.doi.org/10.1016/j.cub.2015.09.013 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/13/elevated-co2-induced-responses-in-stomata/).

Cheeseman J. M. (1991) – PATCHY: simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. – Plant, Cell & Environment 14, 593599. – Wiley Online Library

Chel’cova L. P. (1957) – Cytological data on the development of leaf stomata in wheat. – Dokl. Akad. Nauk SSSR (NS). 113. 1372-5. – [Seen in Napp-Zinn, K. 1974 Blatt.

Chen C., Xiao Y.-G., Li X., Ni M. (2012) – Light-regulated stomatal aperture in

Arabidopsis – Molecular Plant 5: 566572

Chen D.-H., Acharya B., Liu W., Zhang W. (2013) –  Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks – Plants, 2013, 2, 4, 615 – http://www.mdpi.com/2223-7747/2/4/615 – CrossRef –

Chen L.Q., Cheng-Sen L., Chaloner W. G., Beerling D. J., Sun Q-G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. – Am J Bot 88:1309–1315. – https://core.ac.uk/download/pdf/245608.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/21/the-stomatal-density-and-index-of-fossil-ginkgo-leaves/)

Chen T., Wu H., Wu J., Fan X., Li X., Lin Y. (2017) – Absence of OsβCA1causes CO2 deficit and affects leaf photosynthesis and stomatal response to CO2 in rice – Plant J. – Accepted Author Manuscript. doi:10.1111/tpj.13497 – http://onlinelibrary.wiley.com/doi/10.1111/tpj.13497/abstract – (On our blog)

Chen Y.-h., Hu L., Pinta M., Bruni R., Hillrich B., Kloss B., Rost B., Love J., Siegelbaum S. A., Hendrickson W. A. (2010) – Homologue structure of the SLAC1 anion channel for closing stomata in leaves – Nature 467, 1074–1080  – doi:10.1038/nature09487 – http://www.nature.com/nature/journal/v467/n7319/full/nature09487.html – (On our blog : https://plantstomata.wordpress.com/2017/09/17/a-bacterial-homologue-of-slac1-for-closing-stomata/)

Chen Z., Gallie D. R. (2004) – The ascorbic acid redox state controls guard cell signaling and stomatal movement. – Plant Cell. 2004;166(1):1143–1162. [PMC free article] [PubMed] – (On our blog)

Chen Z.-H., Chen G., Dai F., Wang Y., Hills A., Ruan Y.-L., Zhang G., Franks P. J., Nevo E., Blatt M. R. (2016) Molecular Evolution of Grass Stomata – Trends in Plant Science – DOI: http://dx.doi.org/10.1016/j.tplants.2016.09.005 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(16)30159-5?rss=yes – (On our blog)

Chen Z. H., Hills A., Bätz U., Amtmann A., Lew V. L., Blatt M. R. (2012) – Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. – Plant Physiol 159: 1235–1251 – CrossRefCAS

Chen Z.-H., Hills A., Lim C. K., Blatt M. R. (2010) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+concentration and protein phosphorylation – The Plant Journal, 2010, 61, 5, 816-825 – Wiley Online Library, CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog)

Chen Z.-H., Wang Y. W.-W., Babla M., Zhao C., Garcia-Mata C., Sani E., Differ C., Mak M., Hills A., Amtmann A., Blatt M. R. (2015) – Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis – New Phytologist 209(4): 1456–1469 – DOI: 10.1111/nph.13714 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13714/full – (On our blog : https://plantstomata.wordpress.com/2017/07/30/potassium-nutrition-and-nitrogen-metabolism-in-the-nia1nia2-mutant-affecting-stomatal-function/)

Chin J.C.Wan Y.Smith J.Croxdale J. (1995) – Linear aggregations of stomata and epidermal cells in Tradescantia leaves: Evidence for their group patterning as a function of the cell cycle. Dev. Biol. 168:3946. – CrossRefMedlineWeb of ScienceGoogle Scholar

Chodat F. (1940) – Mesure du degré d’ouverture des stomates par la méthode de flottaison à l’acétone – C. R. Soc. Phys. & Hist. Nat.; Genève 57: 247-252 – (On our blog : https://plantstomata.wordpress.com/2017/06/08/measuring-the-aperture-of-stomata-by-keeping-them-floating-in-acetone/)

Choi Y., Lee Y., Jeon B. W., Staiger C. J., Lee Y. (2008) – Phosphatidylinositol 3- and 4-phosphate modulate actin filament reorganization in guard cells of day flower. – Plant, Cell & Environment 31, 366–377. – | CrossRef | CAS | open url image1

Christmann A., Moes D., Himmelbach A., Yang Y., Tang Y., Grill E. (2006) – Integration of Abscisic Acid Signalling into Plant Responses – Plant Biology Volume 8, Issue 3, pages 314–325 – DOI: 10.1055/s-2006-924120 – http://onlinelibrary.wiley.com/wol1/doi/10.1055/s-2006-924120/abstract – (On our blog)

Ciha A.J., Brun W. A.  (1975) –  Stomatal size and frequency in soybeans. – Crop. Sci., pp: 309-313. – doi:10.2135/cropsci1975.0011183X001500030008x – https://dl.sciencesocieties.org/publications/cs/abstracts/15/3/CS0150030309?access=0&view=pdf – (On our blog)

Clark D. G., Hecht H., Curtis O. F., Shafer J. I. (1941) – Stomatal behavior in inbred and hybrid maize – Am. J. Bot. 28: 537-541 – (On our blog : https://plantstomata.wordpress.com/2017/06/13/stomatal-behavior-in-inbred-and-hybrid-maize/)

Clark G., Fraley D., Steinebrunner I., Cervantes A., Onyirimba J., Liu A., Torres J., Tang W., Kim J., Roux S. J. (2011) – Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. – Plant Physiol. 2011;156:1740–1753. – [PMC free article] [PubMed]

Cleary A. L., Hardham A. R. (1990) – Reinstatement of microtubule arrays from cortical nucleating sites in stomatal complexes of Lolium rigidum following depolymerisation of microtubules by oryzalin and high pressure – Plant Cell Physiol. 31, 903-915. – http://pcp.oxfordjournals.org/content/31/7/903.abstract – (On our blog)

Clements F. E. (1916) – On the relation between transpiration and stomatal aperture. Phil. Trans. Roy. Soc. London B 207 : 413.

Clements F. E., Pertz D. F. M. (1911) – New method of estimating the aperture of stomata. Proc. Roy. Soc. London B 84 : 149.

Clifford S. C.Black C. R.Roberts J. A.Stronach I. M.Singleton-Jones P. R.,Mohamed A. D.Azam-Ali S. N. (1995) – The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut [Arachis hypogea (L.)]. – J. Exp. Bot. 46847852. – *Abstract/FREE Full Text

Cochard H., Coll L., Le Roux X., Ameglio T. (2002) – Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. – Plant Physiol. 128:282–290.- doi: http://dx.doi.org/10.1104/pp.010400 – Abstract/FREE Full Text – http://www.plantphysiol.org/content/128/1/282 – (On our blog)

Cochrane T. T., Cochrane T. A. (2009) – The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. – Plant Signal Behav 4:240–243 – CrossRef PubMed PubMedCentral Google Scholar

Collins M.J., Fuentes S., Barlow E.W.R. (2010) – Partial rootzone drying and deficit irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric grapevines – Funct. Plant Biol.37: 128–138 – Google Scholar CrossRef

Cominelli E., Galbiati M., Vavasseur A., Conti L.,Sala T. et al. (2005) – Guard-cell-specific myb transcription factor regulates stomatal movements and plant drought tolerance.-  Curr. Biol., 15: 1196-1200 -DOI: http://dx.doi.org/10.1016/j.cub.2005.05.048http://www.cell.com/current-biology/abstract/S0960-9822(05)00563-4?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982205005634%3Fshowall%3Dtrue – (On our blog)

Comstock J. P. (2002) – Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. – J. Exp. Bot. 53(367): 195-200 –  (CrossRef, Medline). – (On our blog).

Comstock J. P., Ehleringer J. R. (1993) – Stomatal response to humidity in common bean (Phaseolus vulgaris): Implications for maximum transpiration rate, water-use efficiency and productivity. – Australian Journal of Plant Physiology 20, 669691. – CrossRef | – (On our blog)

Comstock J., Mencuccini M. (1998) Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub. – Plant, Cell & Environment 21: 10291038. – Wiley Online Library |PubMed | – (On our blog)

Cooke J. R., De Baerdemaeker J. G., Rand R. H., Mang H. A. (1976) – A finite element shell analysis of guard cell deformations. – Trans ASAE (Am Soc Agric Eng) 19 1107–1121. – https://www.researchgate.net/publication/274492871_A_Finite_Element_Shell_Analysis_of_Guard_Cell_Deformations – (On our blog)

Cooper M. J., Digby P. J., Cooper P. J. (1972) – Effects of plant hormones on the stomata of barley : A study of the interaction between abscisic acid and kinetin – Planta 105: 43-49 –

Copeland E. B. (1902) – The mechanism of stomata – Ann. Bot. 16 (2): 327-364 – (On our blog : https://plantstomata.wordpress.com/2017/06/18/the-mechanism-of-stomata/)

Correia M. J., Rodrigues M. L., Ferreira M. I., Pereira J. S. (1997) – Diurnal changes in the relationship between stomatal conductance and abscisic acid in the xylem sap of field grown peach trees. – J. exp. Bot. 48: 1727-1736, 1997.

Correia M. J., Rodrigues M. L., Osório M. L., Chaves M. M. (1999) – Effect of growth temperature on the response of lupin stomata to drought and abscisic acid. – Aust. J. Plant Physiol. 26: 549-559, 1999.

Cotelle V., Leonhardt N. (2016) – 14-3-3 Proteins in Guard Cell Signaling – Front. Plant Sci., 28 January 2016 http://dx.doi.org/10.3389/fpls.2015.01210 – http://journal.frontiersin.org/article/10.3389/fpls.2015.01210/full – (On our blog)

Cotelle V., Pierre J. N., Vavasseur A. (1999) – Potential strong regulation of guard cell phosphoenolpyruvate carboxylase through phosphorylation. J. Exp. Bot. 335, 777783 (1999).

Couot-Gastelier J., Laffray D., Louguet P. (1984) – Étude comparée de l’ultrastructure des stomates ouverts et fermés chez le Tradescantia virginiana. – Can. J. Bot. 62, 1505–1512 – Google Scholar

Coursol S., Fan L.-M., Le Stunff H., Spiegel S., Gilroy S., Sarah M. Assmann S. M. (2003)– Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins – Nature 423:651–654 –  CrossRef Medline PubMed Google Scholar – (On our blog).

Cousson A. (2000) – Analysis of the sensing and transducing processes implicated in the stomatal responses to carbon dioxide in Commelina communis L. – Plant Cell Environ 23: 487–495 – CrossRef Google Scholar

Cousson A. (2001) – Pharmacological evidence for the implication of both cyclic GMP-dependent and -independent transduction pathways within auxin-induced stomatal opening in Commelina communis (L.). – Plant Sci. 161: 249-258, 2001.

Cousson A. (2003) – Pharmacological evidence for a positive influence of the cyclic GMP-independent transduction on the cyclic GMP-mediated Ca2+-dependent pathway within the Arabidopsis stomatal opening in response to auxin – Plant Sci. 164, 759–767. – doi: 10.1016/S0168-9452(03)00062-1 – CrossRef Full Text | Google Scholar – (On our blog).

Cousson A. (2003) – Two potential Ca2+-mobilising processes depend on the abscisic acid concentration and growth temperature in the Arabidopsis stomatal guard cell. – J. Plant Physiol.160, 493–501. doi: 10.1078/0176-1617-00904 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog).

Cousson A., Vavasseur A. (1998) – Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic GMP-mediated induction of stomatal opening by auxin in Commelina communis L. – Planta 206: 308-314, 1998.

Cousson A., Vavasseur A. (1998) – Two potential Ca2+-dependent transduction pathways in stomatal closing in response to abscisic acid. – Plant Physiology and Biochemistry 36: 257–262.

Cowan I. R. (1972) – Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. – Planta 106, 185219. – CrossRef

Cowan I. (1977) – Stomatal behaviour and the environment. – Advances in Botanical Research 4, 117–228. – Google Scholar

Cowan I. R. (1994) – As to the mode of action of the Guard Cells in dry air. In Ecophysiology of Photosynthesis (eds E.D. Schulze & M.M. Caldwell), pp. 205–229. – Springer-Verlag, New York.

Cowan I. R., Farquhar, G. D. (1977) – Stomatal function in relation to leaf metabolism and environment. – Symposium for the Society of Experimental Biology 31:471-505. – PubMed CAS (No abstract)

Cowan I. R., Raven J. A., Hartung W., Farquhar G. D. (1982) – A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves. Aust J Plant Physiol 9: 489-498.

Creese, C., Oberbauer, S., Rundel, P., Sack, L. (2014) – Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances – New Phytologist (2014) 204: 92–104. (http://www.ncbi.nlm.nih.gov/pubmed/25077933) – (On our blog).

Croxdale J. L. (2000) – Stomatal patterning in angiosperms. – Am. J. Bot. 87, 1069–1080. – Abstract/FREE Full Text – (On our blog)

Croxdale J., Smith J., Yandell B., Johnson J. B. (1992) – Stomatal patterning in Tradescantia: an evaluation of the cell lineage theory. – Dev Biol. 1992 Jan;149(1):158-67. – PMID: 1728585

Cukrova V., Avratovscukova N. (1968) – Photosynthetic activity, chlorophyll content and stomata characteristics in diploid and polyploid types of Datura stramonium L. – Photosynthetica 2 (4): 227-237 – (On our blog : https://plantstomata.wordpress.com/2017/06/22/stomata-in-datura-stramonium/)

Currier H. R., Pickering E. R., Foy C. L. (1964) – Relation of stomatal penetration to herbicidal effects using fluorescent dye as a tracer – Weeds 12: 301-303 –

Czech K. (1869) – Ueber die Funktion der Stomata – Bot. Zeitung 27(48-49): 801-808 ; 817-823. – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/41129 )

Dai Q. S., Peng A.Q., Chavez, Vergara B. S. (1995) – Effects of UVB radiation on stomatal density and opening in rice (Oryza sativa L.). – Ann. Bot., 76: 65-70 – (On our blog)

Dale J. E. (1961) – Investigations into the stomatal physiology of upland cotton – Ann. Bot. 25: 39-52.

Daloso, D. M., dos Anjos L., Fernie A. R. (2016) – Roles of sucrose in guard cell regulation – New Phytologist ,doi:10.1111/nph.13950 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13950/abstract – (On our blog)

Damour G., Simonneau T., Cochard H., Urban L. (2010) – An overview of models of stomatal conductance at the leaf level. – Plant Cell Environ. 33:1419–1438. – MedlineWeb of ScienceGoogle Scholar – (On our blog)

Danyanandan P., Kauffman P. B. (1975) – Stomatal movements associated with potassium fluxes – Am. J. Bot. 62: 221-231.

Darwin F. (1898) – Observations on stomata – Phil. Transactions Roy. Soc. London B 190:531-561 – https://archive.org/stream/philtrans04647888/04647888_djvu.txt  – (On our blog : https://plantstomata.wordpress.com/2017/09/04/physiological-aspects-of-stomata/)

da Silva Oliveira M. W., da Silva N. R. , Casanova D. , Souza Pinheiro L. F., Kolb R. M., Martinez Bruno O. (2014) – Automatic Counting of Stomata in Epidermis Microscopic Images – X Workshop de Vis˜ao Computacional – WVC 2014 – 253-257 – http://www.lbd.dcc.ufmg.br/colecoes/wvc/2014/0044.pdf – (On our blog : https://plantstomata.wordpress.com/2017/11/21/automatic-counting-of-stomata/)

Daszkowska-Golec A., Szarejko I. (2013) –  Open or close the gate stomata action
under the control of phytohormones in drought stress conditions. – Frontiers in
Plant Science 4. doi: 10.3389/fpls.2013.00138.

Davenport D. C. (1966) – Effect of phenylmercuric acetate on transpiration and growth  of small plots of grass – Nature 212: 801-802.

Davenport D. C., Fischer M. A., Hagan  R. M. (1971) – Retarded stomatal closure by phenylmercuric acetate – Physiol. Plant. 24: 330-336.

Davies W. J. (1978) – Some effects of abscisic acid and water stress on stomata of Vicia faba L. – J. Exp. Bot. 29: 175-182, 1978 – https://doi.org/10.1093/jxb/29.1.175 – https://academic.oup.com/jxb/article-abstract/29/1/175/494514/Some-Effects-of-Abscisic-Acid-and-Water-Stress-on?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/18/effects-of-aba-and-water-stress-on-stomata/)

Davies W. J., Kozlowski T. T. (1974) Stomatal responses of five woody angiosperms to light intensity and humidity – Canad. Journ. Bot. 52(7): 1525-1534 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-responses-of-trees-to-light-intensity-and-humidity/)

Davies W. J., Kozlowski T. T., Pereira J. S. (1973) Effect of wind on transpiration and stomatal aperture of woody plants.  Int. Plant Physiol. Symp. Mech. Plant Growth, Massey Univ., Palmerston North, New Zealand.

Davies W. J., Wilkinson S., Loveys B. (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture.New Phytologist 153: 449460. – Wiley Online Library |CAS | – (On our blog : https://plantstomata.wordpress.com/2016/03/13/stomatal-control-by-chemical-signalling/)

Davies W.J. Wilson J.A., Sharp R.E., Osonubi O. (1980) – Control of stomatal behaviour in water stressed plants. In: Stomatal Physiology (eds.) P.G. Jarvis, and T.A. Mansfield). C.U.P., London  (1980) – Google Scholar

Davis A. R., Gunning B. E. S. (1993) – The modified stomata of the floral nectary of Vicia faba L. – Bot. Acta. 1993;106:241–253.

Dayanandan P., Kaufman P. B. (1975) – Stomatal movements associated with potassium fluxes. – Am J Bot 62: 221–231.

Dayer S.,  Perez Peña J., Gindro K.,  Torregrosa L.,  Voinesco F.,  Martínez L.,  Prieto J. A.,  Zufferey V. (2017) – Changes in leaf stomatal conductance, petiole hydraulics and vessel morphology in grapevine (Vitis vinifera cv. Chasselas) under different light and irrigation regimes – Functional Plant Biologyhttps://doi.org/10.1071/FP16041 – http://www.publish.csiro.au/fp/FP16041 – (On our blog : https://plantstomata.wordpress.com/2017/05/02/not-only-plant-water-status-but-also-the-light-environment-at-the-leaf-level-affect-leaf-and-petiole-hydraulics/)

Deans R. M., Brodribb T. J., McAdam S. A. M. (2017) – An integrated hydraulic-hormonal model of conifer stomata predicts water stress dynamics – Plant Physiol. (2017) – DOI: 10.1104/pp.17.00150 – (On our blog : https://plantstomata.wordpress.com/2017/03/27/a-hydraulic-hormonal-model-for-conifer-stomata/)

De Angeli A., Zhang J., Meyer S., Martinoia E. (2013) – AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. – Nat Commun 4:1804 –  CrossRef PubMed PubMedCentral – http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2815.html – (On our blog : https://plantstomata.wordpress.com/2016/03/27/atalmt9-is-controlling-stomata-aperture/)

de Boer H. J., Price C. A., Wagner-Cremer F., Stefan C. Dekker S. C., Franks P. J., Veneklaas E. J. (2016) – Optimal allocation of leaf epidermal area for gas exchange – New Phytologist –New Phytologist (Impact Factor: 7.67). 03/2016; DOI: 10.1111/nph.13929 – (On our blog).

Dehnel G. S. (1960) – Response of stomata to wounding. – Bot. Gazette 122: 124-130 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42754)

Delf E. M. (1911) – Transpiration and behaviour of stomata in halophytes – Ann. Bot., London, 25 (98): 485–505 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42680)

Delwiche M. J., Cooke J. R. (1977) – An analytical model of the hydraulic aspects of stomatal dynamics –  J. Theor. Biol. 69, 113–141 – Google Scholar

de Marcos A., Houbaert A., Triviño M., Delgado D., Martín-Trillo M., Russinova E., Fenoll C., Mena M. (2017) – A mutation in the bHLH domain of the SPCH transcription factor uncovers a BR-dependent mechanism for stomatal development. – Plant Physiol 174: 823–842

de Marcos A., Triviño M., Pérez-Bueno M. L., Ballesteros I., Barón M., Mena M., Fenoll C. (2015) – Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata – Frontiers in Plant Science – http://journal.frontiersin.org/article/10.3389/fpls.2015.00456 – (On our blog : https://plantstomata.wordpress.com/2016/01/17/stomataless-plants-in-arabidopsis/)

De Michelle D. W., Sharpe P. J. H. (1971) – A model of stomatal action: Its agronomic and ecological significance. – Pap. No. 71-589 – Winter meeting, – Am. Soc. Agric. Eng., Chicago, III, Dec.

De Michelle D. W., Sharpe P. J. H. (1973) – An analysis of the mechanics of guard cell motion. – J. Theor. Biol. 41: 77–96 – [PubMed].- (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42694).

De Michelle D. W., Sharpe P. J. H. (1974) – A parametric analysis of the anatomy and physiology of the stomata – Agric. Meterology 14: 229-241 – (On our blog : https://plantstomata.wordpress.com/2017/07/04/anatomy-and-physiology-of-the-stomata/)

De Silva D. L. R., Cox R. C., Hetherington A. M., Mansfield T. A. (1986) – The role of abscisic acid and calcium in determining the behaviour of adaxial and abaxial stomata. New Phytologist 104, 4151. – Wiley Online LibraryCASCrossRef – (On our blog)

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985a) Synergism between calcium ions and abscisic acid in preventing stomatal opening. – New Phytol., 100, 473482. – Wiley Online Library | – (On our blog).

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985b) – Suggested involvement of calcium and calmodulin in the responses of stomata to abscisic acid –  New Phytologist 101,555563. – CrossRefCAS | – (On our blog)

De Silva D. L. R., Honour S. J., Mansfield T. A. (1996) Estimations of apoplastic concentrations of K+ and Ca2+ in the vicinity of stomatal guard cells. – New Phytologist 134: 463469. – Wiley Online Library |CAS – (On our blog).

De Silva D. L. R., Mansfield T. A. (1994) –  The stomatal physiology of calcicoles in relation to calcium delivered in the xylem sap. – Proceedings of the Royal Society of London Series B 257: 8185. – CrossRef – (On our blog)

Des Marais D. L., Auchincloss L. C., Sukamtoh E., Mckay J. K., Logan T., Richards J. H., Juenger T. E. (2014) – Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proc. Natl. Acad. Sci. U.S.A. 111, 2836–2841. doi: 10.1073/pnas.1321429111 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Delgado D., Alonso-Blanco C., Fenoll C., Mena M. (2011) – Natural Variation in Stomatal Abundance of Arabidopsis thaliana Includes Cryptic Diversity for Different Developmental Processes – Annals of Botany, 2011. http://dx.doi.org/10.1093/aob/mcr060 – (On our blog)

Delgado D., Ballesteros I., Mena M., Fenoll C. (2012a) – Roles of CONSTITUTIVE
PHOTOMORPHOGENIC 10 in Arabidopsis stomata development. – Plant Signaling & Behavior 7: 990993.

Delgado D., Ballesteros I., Torres-Contreras J., Mena M., Fenoll C. (2012b) – Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in
Arabidopsis stomatal lineage development. – Planta 236: 447461. – [PubMed]

Delwiche M. J., Cooke J. R. (1977) – An analytical model of the hydraulic aspects of stomatal dynamics. – CrossRef |PubMed |CAS |

Desai M. C. (1937) – Effect of certain nutrient deficiencies on stomatal behavior – Plant Physiology 12: 253-289 – (0n our blog : https://plantstomata.wordpress.com/2017/06/24/nutrient-deficiencies-and-stomata/)

Desikan R.Cheung M.K.Clarke A.Golding S.Sagi M.Fluhr R.Rock C.Hancock J.Neill S. (2004)Hydrogen peroxide is a common signal for darkness- and ABA-induced stomatal closure in Pisum sativum. – Funct. Plant Biol. 31: 913920. – CrossRef Web of Science – http://www.publish.csiro.au/?paper=FP04035 – (On our blog : https://plantstomata.wordpress.com/2015/10/11/hydrogen-peroxide-and-stomatal-closure-2/ )

Desikan R., Griffiths R., Hancock J., Neill S. (2002) – A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. – Proc. Natl. Acad. Sci. U.S.A. 99, 16314–16318. doi: 10.1073/pnas.252461999 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/17/nr-mediated-no-synthesis-is-required-for-aba-induced-stomatal-closure/)

De Silva D. L. R., Hetherington A. M., Mansfield T. A. (1985) – Synergism between calcium ions and abscisic acid in preventing stomatal opening. – New Phytol. 100:473–482

Dewar R. (1995) – Interpretation of an empirical model for stomatal conductance in terms of guard cell function. – Plant, Cell & Environment 18, 365372. – Wiley Online Library

Dewar R. (2002) – The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. – Plant, Cell & Environment 25, 13831398. –  Wiley Online Library

Dhir B., Mahmooduzzafar, Siddiqi T.O., Iqbal M. (2001) – Stomatal and photosynthetic responses of Cichorium intybus leaves to sulfur dioxide treatment at different stages of plant development. – J. Plant Biol., 44: 97-102. (http://link.springer.com/article/10.1007%2FBF03030282) – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/3600).

Dietrich P., Hedrich R. (1994) – Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel. – Planta 195: 301–304 – Google Scholar

Dickmann W., Hedrich R., Raschke K., Robinson D. G. (1993) – Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells. – J. Exp. Bot. 44: 1569–1577.

Ding S.Zhang B., Qin F. (2015) – Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation – The Plant Cell October 27, 2015 tpc.15.00321 – doi: http://dx.doi.org/10.1105/tpc.15.00321 – http://www.plantcell.org/content/early/2015/10/27/tpc.15.00321.abstract#aff-1 – (On our blog : https://plantstomata.wordpress.com/2016/03/31/rzfp34chyr1-a-ubiquitin-e3-ligase-regulates-stomatal-movement/)

Di Matteo G., Riccardi M., Righi F., Fusaro E. (2012) – Inter- and intraspecific variations in bud phenology, foliar morphology, seasonal stomatal conductance and carbon isotopic composition in Cedrus libani and C. atlantica – Trees 26(4) · August 2012 – DOI: 10.1007/s00468-012-0692-9 – https://www.researchgate.net/publication/257431522_Inter-_and_intraspecific_variations_in_bud_phenology_foliar_morphology_seasonal_stomatal_conductance_and_carbon_isotopic_composition_in_Cedrus_libani_and_C_atlantica – (On our blog : https://plantstomata.wordpress.com/2016/07/26/seasonal-stomatal-conductance-in-cedrus/)

Distefano A. M., Garcia-Mata C., Lamattina L., Laxalt A. M. (2008) – Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. – Plant Cell Environ. 31, 187–194. doi: 10.1111/j.1365-3040.2007.01756.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our  blog : https://plantstomata.wordpress.com/2016/05/18/plc-and-pld-derived-pa-and-stomatal-closure/)

Dittrich P., Raschke K. (1977) – Malate metabolism in isolated epidermes of Commelina communis L. in relation to stomatal functioning. Planta 134, 76–82. – Google Scholar

Dobrenz A. K., Wright L. N., Humphrey A. B., Massengale M. A., Kneebone W. R. (1969) – Stomata density and its relationship to water-use efficiency  of Blue Panicgrass (Panicum antidotale Retz.) – Crop Sci. 9: 354-357 –

Dodd I. C. (2003) – Hormonal interactions and stomatal responses. – J. Plant Growth Regul. 22, 32–46. doi: 10.1007/s00344-003-0023-x – CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/18/hormonal-factors-and-stomatal-behavior/)

Dodd I. C. (2013) – Abscisic acid and stomatal closure: a hydraulic conductance conundrum? – New Phytol, 197: 6–8. doi:10.1111/nph.12052 – This article is corrected by: Errata: Corrigendum – Volume 198, Issue 4, 1290, Article first published online: 4 April 2013 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12052/abstract – (On our blog : https://plantstomata.wordpress.com/2016/05/18/12401/)

Dodge B. O. (1903) – Effect of the Orange-Rusts of Rubus on the development and distribution of stomata – Journ. Agric. Res. XXV(11): 495-501 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/42740)

Doheny-Adams T., Hunt L., Franks P. J., Beerling D. J., Gray J. E. (2012) Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. – Proceedings of the Royal Society B, 367: 547–555. – http://rstb.royalsocietypublishing.org/content/367/1588/547 – (On our blog : https://plantstomata.wordpress.com/2016/05/18/manipulation-of-stomatal-density/)

Doi M., Kitagawa Y., Shimazaki K.-I. (2015) – Stomatal Blue Light Response Is Present in Early Vascular Plants – Plant Physiology October 2015 vol. 169 no. 2 1205-1213 – doi: http://dx.doi.org/10.1104/pp.15.00134 – http://www.plantphysiol.org/content/169/2/1205.abstract#fn-5 – (On our blog : https://plantstomata.wordpress.com/2016/03/22/stomatal-blue-light-response/)

Doi M., Shimazaki K.-I. (2008) – The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Plant Physiol 147: 922–930. – Abstract/FREE Full Text – (On our blog)

Doi M., Wada M., Shimazaki K.-I. (2006) – The fern Adiantum capillus-veneris lacks stomatal responses to blue light. – Plant Cell Physiol. 47:748–755. – Abstract/FREE Full Text – CASPubMedArticle – (On our blog)

Domec J.-C., Noormets A., King J. S., Sun G. E., McNulty S. G., Gavazzi M. J., Boggs J. L., Treasure E. A. (2009) – Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. – Plant Cell Environ. 32(8): 980-991 (CrossRef, Medline, ISI). – (On our blog).

Domec J.-C.., Palmroth S., Ward E., Maier C. A., Therezien M., Oren R. (2009) – Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. – Plant, Cell Environ. 32: 1500-1512 –

Domec J.-C., Scholz F. G., Bucci S. J., Meinzer F. C., Goldstein G. V., Villalobos-Vega R. (2006) – Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status – Plant Cell Environ292635 – Google Scholar CrossRef

Domec J.-C., Warren J. M., Meinzer F. C., Brooks J. R., Coulombe R. (2004) – Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution – Oecologia September 2004, Volume 141, Issue 1, pp 7-16 – http://link.springer.com/article/10.1007%2Fs00442-004-1621-4 – (On our blog)

Domes W., Bertsch A. (1969) – CO2-exchange in amphistomatous leaves. 2. A comparison between the diffuse CO2-exchange of both leaf surfaces of Zea mays and the viscous flow of volume in the porometer – Planta 86: 84-91.

Dong J., Bergmann D. C. (2010) – Stomatal patterning and development. – Curr Top Dev Biol 2010, 91:267-297. (PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/09/22/components-in-signaling-pathways-required-for-cell-fate-and-pattern-of-stomata/).

Dong J., MacAlister C. A., Bergmann D. C. (2009) –  BASL controls asymmetric cell division in Arabidopsis. – Cell. 2009, 137: 1320-1330. 10.1016/j.cell.2009.04.018. – PubMed CentralView ArticlePubMed – (On our blog : https://plantstomata.wordpress.com/2016/05/19/basl-and-stomata-2/)

Dörffling K., Streich J., Kruse W., Muxfeldt B. (1977) Abscisic acid and the after-effect of water stress on stomatal opening potential – Zeitschrift für Pflanzenphysiologie, 1977.81 (1), 43 – 56 – CrossRef.

Dornhoff G. M., Shibles R. (1976) – Leaf morphology and anatomy in relation to CO2 exchange rate of soybean leaves – Crop Sci. 16: 377-381 –

Douhovnikoff V.Taylor S. H.Hazelton E. L. G. Smith C., O’Brien J. (2016) – Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages ofPhragmites australis in North America – AoB PLANTS (2016) : plw006doi: 10.1093/aobpla/plw006 – http://aobpla.oxfordjournals.org/content/8/plw006

Dow G. J. (2014) – The physiological consequences of altering stomatal development in plants — lessons from Arabidopsis – Environmental Science and Engineering Seminar, May 7, 2014. (http://www.gps.caltech.edu/content/environmental-science-and-engineering-seminar-271) – (On our blog : https://plantstomata.wordpress.com/2015/10/11/altering-the-density-and-pattern-of-stomata/).

Dow G. J. (2017) – Current Research of Graham DOW – https://www.bu.edu/biology/people/profiles/graham-dow/ – (On our blog : https://plantstomata.wordpress.com/2017/09/19/graham-dows-research-on-stomata/)

Dow G. J., Bergmann D. C. (2014) – Patterning and processes: how stomatal development defines physiological potential. – Current Opinion in Plant Biology 21: 67-74 –

Dow G. J., Bergmann D. C., Berry J. A.  (2014) – An integrated model of stomatal development and leaf physiology. – New Phytologist. 201: 1218-1226 –

Dow G. J., Berry J. A., Bergmann D. C. (2013) – The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana – New Phytologist Volume 201, Issue 4 March 2014, 1205–1217 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12586/full – (On our blog : https://plantstomata.wordpress.com/2016/11/08/developmental-mechanisms-that-enforce-stomatal-spacing/)

Downton W. J. S., Loveys B. R., Grant W. J. R. (1988) – Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. – New Phyologist 108, 263–6 –

Drake B. G. (2001) Global change and stomatal research – the 21st century agenda.- New Phytologist 152: 372374. – DOI: 10.1046/j.0028-646X.2001.00293.x – CrossRef – (On our blog : https://plantstomata.wordpress.com/2016/05/19/12581/)

Drake P. L., Froend R. H., Franks P. J.(2013) – Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. – Journal of Experimental Botany 64, 495–505.| CrossRef | CAS | PubMed | – (On our blog : https://plantstomata.wordpress.com/2015/09/23/leaves-with-higher-rates-of-gas-exchange-have-smaller-stomata-and-faster-dynamic-characteristics/).

Drawert H. (1952) – Der fluorescenzoptische Nachweis von Chloroplasten in den Schliesszellen von Allium cepa L. – Flora, Jena 139, 329.

Drew A. P., Bazzaz F. A. (1979) – Response of stomatal resistance and photosynthesis to night temperature in Populus deltoides. – Oecologia (Berlin) 41 : 89-98

Driscoll S., Prins A., Olmos E., Kunert K., Foyer C. (2006) – Specification of Adaxial and Abaxial Stomata, Structure and Photosynthesis to CO2 Enrichment Maize Leaves, – Journal of Experimental Botany, Vol. 57, No. 2, 2006, pp. 381-390.- http://dx.doi.org/10.1093/jxb/erj030 – (On our blog)

Dry P. R., Loveys B. R. (1999) Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried. – Vitis 38: 151156. –

Dubbe D. R., Farquhar G. D., Rasch K. (1978) – Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata. Plant Physiol 62: 413-417.

Dufour L. (1885) – Influence de la lumière sur le nombre des stomates des feuilles – Bull. Soc. bot. France 32 –

Dugger W. M., Taylor O. C., Cardiff E., Thompson C. R. (1962) – Stomatal action in plants as related to damage from photochemical oxidents – Plant Physiol. 37: 487-491 –

Dumont J., Cohen D., Gerard J., Jolivet Y., Dizengremel P., Le Thiec D. (2014) – Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican poplar genotypes – Plant, Cell & Environment 37(9): 2064-2076.  – DOI: 10.1111/pce.12293 – http://www.ccacoalition.org/en/resources/distinct-responses-ozone-abaxial-and-adaxial-stomata-three-euramerican-poplar-genotypeshttps://www.ncbi.nlm.nih.gov/pubmed/24506578 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/distinct-responses-to-ozone-of-stomata/)

Dumont J., Spicher F., Montpied P., Dizengremel P., Jolivet Y., Le Thiec D., (2013) Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigragenotypes. – Environ Pollut. 173: 85-96. – doi: 10.1016/j.envpol.2012.09.026 – https://www.ncbi.nlm.nih.gov/pubmed/23202637 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/effects-of-ozone-on-stomatal-responses-to-environmental-parameters/)

Dunlap, J.M., Stettler, R.F. (2001) – Variation in Leaf Epidermal and Stomatal Traits of Populus trichocarpa from Two Transects across the Washington Cascades. – Canadian Journal of Botany, 79, 528-536.

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. I. Preliminary stiudies on the effect of light and carbon dioxide. –  New Phytologist,1984, 97, 2, 115

Dunleavy P. J., Cobb A. H. (1984) – Benzatone-induced stomatal movement in epidermis peels from Chenopodium album L. II. Characterization of the response to different concentrations of KCl and CO2 – New Phytologist 1984, 97, 2, 121-128 –  DOI: 10.1111/j.1469-8137.1984.tb04116.x – Wiley Online Library – (On our blog)

Dunleavy P. J., Ladley P. D. (1995) -Stomatal responses of Vicia faba L. to indole acetic acid and abscisic acid. – J. exp. Bot. 46: 95-100, 1995.

Dzierzynska A. (2006) – The role of cytoskeleton in stomata functioning. – Acta Phys. Planta. 28:59–79.

Eamus D. (1986) – Further evidence in support of an interactive model in stomatal control. – J. exp. Bot. 37: 657-665, 1986.

Eamus D., Narayan A. D. (1989) – The influence of prior water stress and abscisic acid foliar spraying on stomatal responses to CO2, IAA, ABA, and calcium in leaves of Solanum melongena. – J. exp. Bot. 40: 573-579, 1989.

Eamus D., Taylor D. T., Macinnis-Ng C. M. O., Shanahan S., De Silva L. (2008) – Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. – Plant Cell Environ. 31(3): 269-277 (CrossRef, Medline). – (On our blog).

Easlon H.M., Richards J.H. (2009) – Photosynthesis affects following night leaf conductance in Vicia faba. – Plant Cell Environ. 32:58–63. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog)

Ebel R., Duan X., Still D., Auge R. (1997) – Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil – New Phytol. 135, 755–761 (1997).

Eckstein J., Beyschlag W., Mott K. A., Ryel R. J. (1996) – Changes in photon flux can induce stomatal patchiness – Plant, Cell & Environment 19(9): 1066-1074 – DOI: 10.1111/j.1365-3040.1996.tb00213.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00213.x/full – (On our blog : https://plantstomata.wordpress.com/2017/08/28/changes-in-photon-flux-can-induce-stomatal-patchiness/)

Edwards A., Bowling D. J. F. (1985) Evidence for a CO2 Inhibited Proton Extrusion Pump in the Stomatal Cells of Tradescantia virginiana – J. Exp. Bot. (1985) 36 (1): 91-98.doi: 10.1093/jxb/36.1.91 – http://jxb.oxfordjournals.org/content/36/1/91.abstract – (On our blog)

Edwards D., Axe L. (1992) – Stomata and mechanics of stomatal functioning in some early land plants – Courier Forschungsintitut Seckenberg 147: 59-73.

Edwards D., Kerp H., Hass H. (1998) – Stomata in early land plants: an anatomical and ecophysiological approach. – J Exp Bot 1998, 49 (Suppl 1)255-278. – DOI: 10.1093/jexbot/49.suppl_1.255 – Web of ScienceGoogle Scholar – (On our blog)

Edwards M. C., Bowling D. J. F. (1984) An electrophysiological study of the stomatal complex of Tradescantia virginiana. – J. Exp. Bot. 35, 562–567 – Google Scholar

Edwards M. C., Bowling D. J. F. (1986) The growth of rust germ tubes towards stomata in relation to pH gradients. – Physiological and Molecular Plant Pathology29: 185196. – CrossRef | – (On our blog)

Edwards M. C., Meidner H. (1978)Stomatal responses to humidity and the water potentials of epidermal and mesophyll tissue. – J. Exp. Bot. 29: 771-780.

Edwards M. C., Meidner H. (1979) – Direct Measurements of Turgor Pressure Potentials : IV. Naturally occurring pressures in guard cells and their relation to solute and matric potentials in the epidermis – J. Exp. Bot. 30: 829-837 – https://doi.org/10.1093/jxb/30.4.829https://academic.oup.com/jxb/article-abstract/30/4/829/493808/Direct-Measurements-of-Turgor-Pressure?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/08/26/pressures-in-stomata-and-their-relation-to-solute-and-matric-potentials/)

Edwards M. C., Meidner H., Sheriff D. W. (1976) – Direct Measurements of Turgor Pressure Potentials of Guard Cells. II. THE MECHANICAL ADVANTAGE OF SUBSIDIARY CELLS, THE SPANNUNGSPHASE, AND THE OPTIMUM LEAF WATER DEFICIT – J. Exp. Bot. (1976) 27 (1): 163-171. – doi: 10.1093/jxb/27.1.163 –  CrossRef – http://jxb.oxfordjournals.org/content/27/1/163 – (On our blog : https://plantstomata.wordpress.com/2016/11/06/turgor-pressure-potentials-of-guard-cells-ii/)

Edwards M. C., Smith G. N., Bowling D. J. F. (1988) – Guard cells extrude protons prior to stomatal opening: a study using fluorescence microscopy and pH micro-electrodes. – Journal of Experimental Botany 39: 1541–1547.

Eensalu E., Kupper P., Sellin A., Rahi M., Sober A., Kull O. (2008) – Do stomata operate at the same relative opening range along a canopy profile of Betula pendula? – Functional Plant Biology 35, 103–110.| CrossRef | – (On our blog).

Egea G., Verhoef A., Vidale P. L. (2011) – Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. – Agricultural and Forest Meteorology 151, 13701384. – CrossRef

Ehler W. L. (1971) – Periodic nocturnal stomatal opening of Citrus in a steady environment – Physiol. Plant. 25: 488-492.

Eisele J. F., Fäßler F., Bürgel P. F., Chaban C . (2016) – A Rapid and Simple Method for Microscopy-Based Stomata Analyses – Plos One 11(10): e0164576. https://doi.org/10.1371/journal.pone.0164576 – http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164576 – (On our blog : https://plantstomata.wordpress.com/2017/09/27/method-for-microscopy-based-stomata-analyses/)

Eisenach C., Chen Z.-H., Grefen C., Blatt M. R. (2012) The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth – The Plant Journal, 2012,69, 2, 241 – DOI: 10.1111/j.1365-313X.2011.04786.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04786.x/full – (On our blog : https://plantstomata.wordpress.com/2016/05/21/syp121-stomatal-closure-and-k-channel-activity/)

Eisenach C., De Angeli A. (2017) – Ion transport at the vacuole during stomatal movements. – Plant Physiol 174: 520–530 –

Eisinger W., Ehrhardt D., Briggs W. (2012a) – Microtubules are essential for guard-cell function in Vicia and Arabidopsis. – Molecular plant 5, 601-610.

Eisinger W. R., Kirik V., Lewis C., Ehrhardt D. W., Briggs W. R. (2012b) – Quantitative changes in microtubule distribution correlate with guard cell function in Arabidopsis. – Molecular plant 5, 716-725.

Elias P. (1979) – Some ecophysiological features in leaves of plants in an oak-hornbeam forest – Folia Geobotanica et Phytotaxonomica 14, Issue 1, 29–42- doi:10.1007/BF02856320 – http://link.springer.com/article/10.1007/BF02856320 -(Via Submission Form – Personal Communication) –  (On our blog : https://plantstomata.wordpress.com/2017/02/13/stomata-of-plants-in-an-oak-hornbeam-forest/)

Elias P. (1979) – Leaf diffusion resistance pattern in an oak-hornbeam forest – Biologia Plantarum 21(1) : 1-8 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomatal-resistance-patterns/)

Elias P. (1979) – Stomatal activity within the crown of tall deciduous trees under forest conditions – Biologia Plantarum (Praha) 21(4): 266-274 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/variation-in-stomatal-activity-within-the-crown-of-tall-deciduous-trees/)

Elias P. (1988) – Stomata in forest communities: density, size and conductance – Acta Universitati Carolinae – Biologica 31: 27-41, ISSN 0001-7124 – (Via Submission Form – Personal Communication) – (On our blog : https://plantstomata.wordpress.com/2017/01/27/variations-in-stomata-density-size-and-conductance/)

Elias P. (1995) – Stomata density and size of apple tress growing in irrigated and non-irrigated conditions. – Biologia Bratislava, 50: 115-118.

Eliáš P., Huzulák J. (1975) – Hustota prieduchov v korune javora polného (Acer campestre L.). (The density of stomata in the crown of Acer campestre L.) – Acta Mus. Silesiae, Ser. Dendrol., Opava, 25: 129–135. – Google Scholar

Eliáš P.,  Kozinka V. (1976) – Stomata in the leaves of Asperula odorata L. and Pulmonaria officinalis L. subsp.maculosa (Hayne) Gams.- Biológia, Bratislava, 31: 33–40. – Google Scholar

Else M. A., Tiekstra A. E., Croker S. J., Davies W. J., Jackson M. B. (1996) Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. – Plant Physiology 112: 239247. – PubMed |CAS | – (On our blog)

El-Sharkawy M. A., Hesketh J. D. (1964) – Effect of stomatal differences among species on leaf photosynthesis – Crop Sci. 4: 619-621 –

Emi T., Kinoshita T., Shimazaki K. (2001) – Specific binding of vf14-3-3a isoform to the plasma membrane H+-ATPase in response to blue light and fusicoccin in guard cells of broad bean. – Plant Physiol. 2001;125:1115–1125. – [PMC free article] [PubMed] – 

Engineer C. B., Ghassemian M., Anderson J. C., Peck S. C., Hu H., Schroeder J. I. (2014) – Corrigendum: Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development –Nature 513, 246–250 (2014).; DOI: 10.1038/nature13452 – CAS PubMed Article – (On our blog)

Engineer C. B., Hashimoto-Sugimoto M., Negi J., Israelsson-Nordström M., Azoulay-Shemer T., Rappel W.-J., Iba K.Schroeder J. I. (2015) –  CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions – Trends in Plant Science, 2015 – Volume 21, Issue 1, p16–30, January 2016 -DOI: http://dx.doi.org/10.1016/j.tplants.2015.08.014 – http://www.cell.com/trends/plant-science/fulltext/S1360-1385(15)00229-0 – (On our blog)

Enne V. (2017) – How do stomata work in photosynthesis ? – Sciencing – http://sciencing.com/do-stomata-work-photosynthesis-5498075.html – (On our blog : https://plantstomata.wordpress.com/2017/09/18/how-do-stomata-work/)

Erban M. (1917) – Über die Verteilung der Spaltöffnungen in Beziehung zur Schlafstellung der Blätter -Plant Biology 34(10): 880-890 – DOI: 10.1111/j.1438-8677.1916.tb07103.x – (On our blog : https://plantstomata.wordpress.com/2017/06/28/distribution-of-stomata-in-german/)

Esau K. (1941) – Inclusions in guard cells of tobacco affected with mosaic. – Hilgardia 13, 427–430. – Google Scholar

Escher P., Peuke A. D., Bannister P., Fink S., Hartung W., Jiang F., Rennenberg H. (2008) Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana) – Plant Physiology and Biochemistry, 2008, 46, 1, 64 – http://www.sciencedirect.com/science/article/pii/S0981942807001593 – (On our blog)

Esser J. E., Liao Y. J., Schroeder J. I. (1997) – Characterization of ion channel modulator effects on ABA- and malate-induced stomatal movements: strong regulation by kinase and phosphatase inhibitors, and relative insensitivity to mastoparans. – J Exp Bot 48: 539–550 – Google Scholar

Eun S. O., Lee Y. (1997) – Actin filaments of guard cells are reorganized in response to light and abscisic acid. – Plant Physiol. 115: 1491-1498, 1997.

European Medical Alliance (2017) – Stomata close during water deficit in response to abscisic acid – http://www.europeanmedical.info/osmotic-stress/stomata-close-during-water-deficit-in-response-to-abscisic-acid.html – (On our blog : https://plantstomata.wordpress.com/2017/09/20/water-deficit-aba-and-stomata/)

Evans L. S., Gmur N. F., Da Costa F. (1977) – Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain – Amer. J. Bot. 64(7): 903-913 – (On our blog : https://plantstomata.wordpress.com/2017/06/28/stomata-and-lesion-development-by-acid-rain/)

Evans N. H. (2003) – Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. – Plant Physiol 131: 8–11

Evans N. H., Hetherington A. M. (2001) – Plant physiology: the ups and downs of guard cell signalling. – Curr Biol 11: R92R94 – CrossRefPubMedWeb of ScienceGoogle Scholar

Ewers B. E., Gower S. T., Bond-Lamberty B., Wang C. K. (2005) – Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests – Plant, Cell and Environment 28, Issue 5, 660–678 – DOI: 10.1111/j.1365-3040.2005.01312.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01312.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stand-age-tree-species-canopy-transpiration-and-average-stomatal-conductance/)

Ewers B. E., Oren R., Kim H.-S., Bohrer G., Lai C.-T. (2007) – Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns – Plant, Cell and Environment, 30, Issue 4, April 2007, 483–496 – DOI: 10.1111/j.1365-3040.2007.01636.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2007.01636.x/full – (On our blog : https://plantstomata.wordpress.com/2017/03/24/hydraulic-architecture-spatial-variation-in-light-and-stomatal-conductance-of-tree-branches/)

Ewers B. E., Oren R., Phillips N., Stromgren M., Linder S. (2001) – Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda. – Tree Physiology 21, 841850. – CrossRef |PubMedCAS |

Ewert M. S., Outlaw W. H. Jr, Zhang S., Aghoram K., Riddle K. A. (2000) Accumulation of an apoplastic solute in the guard-cell wall is sufficient to exert a significant effect on transpiration in Vicia faba leaflets. – Plant, Cell and Environment, 2000,23, 2, 195 – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2000.00539.x/full – (On our blog)

Facette M. R., Smith L. G.(2012) – Division polarity in developing stomata. – Curr. Opin. Plant Biol. 2012;15:585–592. [PubMed]

Fan L.-M., Zhang W., Chen J.-G., Taylor J. P., Alan M., Jones A. M., Assmann S. M. (2008) – Abscisic acid regulation of guard-cell K+ and anion channels in Gβ- and RGS-deficient Arabidopsis lines – Current Issue, vol. 105 no. 24, 8476–8481, doi: 10.1073/pnas.0800980105 – http://www.pnas.org/content/105/24/8476.full – (On our blog)

Fan L.-M., Zhao Z. X., Assmann S. M. (2004) – Guard cells: a dynamic signaling model. – Curr. Opin. Plant Biol. 7, 537546 (2004). – ISIPubMedArticleCAS – (On our blog)

Fanourakis D., Carvalho S. M. P., Almeida D. P. F., Heuvelink E. (2011) – Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning. – Physiol. Plant. 142(3): 274-286 (CrossRef, Medline). – (On our blog).

Fanourakis D.Matkaris N.Heuvelink E.Carvalho S. M. P.(2010) – Effect of relative air humidity on the stomatal functionality in fully developed leaves. – Acta Horticulturae 2010870:8388.

Farber M.Attia Z., Weiss D. (2016) – Cytokinin activity increases stomatal density and transpiration rate in tomato – J. Exp. Bot. (2016) 67 (22):6351-6362.doi: 10.1093/jxb/erw398 – http://jxb.oxfordjournals.org/content/67/22/6351.short?rss=1 – (On our blog)

Farquhar G. D. (1977) – Stomatal function in relation to leaf metabolism and environment – Symp Soc Exp Biol 31: 471-505 – https://scholar.google.be/citations?view_op=view_citation&hl=en&user=YQKKTRYAAAAJ&citation_for_view=YQKKTRYAAAAJ:unp9ATQDT5gC  (no abstract)

Farquhar G. D. (1978) – Feedforward responses of stomata to humidity. – Australian Journal of Plant Physiology 5 : 787800. – CrossRef | – (On our blog)

Farquhar G.D., Buckley T.N., Miller J.M. (2002) – Optimal stomatal control in relation to leaf area and nitrogen. – Silva Fennica 36(3): 625–737.

Farquhar G. D.Sharkey T. D. (1982) – Stomatal conductance and photosynthesis. – Annual Review of Plant Physiology 1982;33:317345. – CrossRefCAS |Google Scholar

Farquhar G.D., Wong S.C. (1984) – An empirical model of stomatal conductance. – Australian Journal of Plant Physiology11, 191209. – CrossRefCAS |

Fatemy F., Trinder P. K. E. , Wingfiel J. N., Evans K. (1985) – Effects of Globodera rostochiensis, water stress and exogenous abscisic acid on stomatal function and water use of Cara and Pentland Dell potato plants. – Revue Nématology. 8(3):249- 255 – 

Felle H. H., Hanstein S. (2002) – The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors. – Journal of Experimental Botany 53: 73–78.

Felle H. H., Hanstein S., Steinmeyer R., Hedrich R. (2000) Dynamics of ionic activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness – The Plant Journal2000, 24, 3, 297-304 – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.2000.00878.x/full – (On our blog)

Fernandez O. A., Mujica B. (1973) – Effects of some environmental factors on the differentiation of stomata in Spirodela intermedia. – Bot. Gaz, 1973; 134: 117-121. (http://agris.fao.org/agris-search/search.do?recordID=US201303266932) – (On our blog)

Ferri M. G., Lex A. (1948) – Stomatal behaviour as influenced by treatment with β-naphthoxyacetic acid. – Contr. Boyce Thompson Inst. Pl. Res., 15, 283. – CAS

Ferri M. G., Rachid M. (1949) – Further information on stomatal behaviour as influenced by treatment with hormone-like substances. Anais Acad. bras. Cienc, 21, 155.

Ferris R., Long L., Bunn S. M., Robinson K. M., Bradshaw H. D., Rae A. M., Taylor G. (2002) – Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. Tree Physiol., 22: 633-640.

Ferris R., Taylor G. (1994) – Stomatal characteristics of four native herbs following exposure to elevated CO2. – Annals of Botany 73: 477–453.

Ferry R. J. (2008) – Stomata, subsidiary cells and implications – http://miosjournal.org/journal/2008/03/StomataSubsidiary.html – (On our blog : https://plantstomata.wordpress.com/2017/09/21/stomata-in-orchids-3/)

Field C. B., Jackson R. B., Mooney H. A. (1995) -Stomatal responses to increased CO2: implications from the plant to the global scale – Plant Cell Environ. 18, 1214–1225 (1995) – DOI: 10.1111/j.1365-3040.1995.tb00630.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00630.x/abstract – (On our blog)

Field K.J., Duckett J.G., Cameron D.D., Pressel S. (2015) – Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. – Annals of Botany, 115 (6). 915 – 922. – http://eprints.whiterose.ac.uk/86084/ – http://aob.oxfordjournals.org/content/115/6/915– (On our blog)

Finkelstein R.R., Rock C.D. (2002) – Abscisic acid biosynthesis and response. In The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. American Society of Plant Biologists, Rockville, pp 1–52. – Google Scholar

Finsinger W., Wagner-Cremer F. (2009) – Stomatal-based inference models for reconstruction of atmospheric CO2 concentration: a method assessment using a calibration and validation approach, Holocene, 19, 757–764 –

Fiorin L., Brodribb T. J., Anfodillo T. (2016) – Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves. – New Phytol. 2016 Jan;209(1):216-27. doi: 10.1111/nph.13577. Epub 2015 Jul 30. – PMID: 262242 – https://www.researchgate.net/publication/280585417_Transport_efficiency_through_uniformity_Organization_of_veins_and_stomata_in_angiosperm_leaves – (On our blog : https://plantstomata.wordpress.com/2016/02/19/6153/).

Fischer R. A. (1968) – Stomatal opening: role of potassium uptake by guard cells. – Science. N.Y., 160: 784-785 – CrossRefPubMedCASADS – (On our blog)

Fischer R. A. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. I. Responses to light and to CO2-free air. – Plant Physiol. 43: 1947–1952 [PMC free article] [PubMed] – (On our blog).

Fischer R. A. (1970) – After effect of water stress on stomatal opening potential. II. Possible causes. J. exp. Bot. 21, 386–404 (1970).

Fischer R. A. (1971) – Role of potassium in stomatal opening in the leaf of Vicia faba. – Plant Physiol. 47, 555–558

Fischer R. A. (1972) – Aspects of potassium accumulation by stomata of Vicia faba. – Aust. J. Biol. Sci. 25:1107–1123 – http://www.publish.csiro.au/bi/pdf/bi9721107 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/aspects-of-k-accumulation-by-stomata/)

Fischer R. A., Hsiao T. C. (1968) – Stomatal opening in isolated epidermal strips of Vicia faba. II. Responses to KCl concentration and the role of potassium absorption. Plant Physiol. 43, 1953–1958.

Fitzsimons P. J., Weyers J. D. B. (1987) – Responses of Commelina communis guard cell protoplasts to abscisic acid. – J. Exp. Bot. 38: 992-1001

Fordham M. C.Harrison-Murray R. S.Knight L.Evered C. E. (2001) – Effects of leaf wetting and high humidity on stomatal function in leafy cuttings and intact plants of Corylus maxima. – Physiologia Plantarum 2001;113:233240.

Forestier C., Bouteau F., Leonhardt N., Vavasseur A. (1998) – Pharmacological properties of slow anion currents in intact guard cells of Arabidopsis. Application of the discontinuous single-electrode voltage-clamp to different species. – Pflugers Archiv Eur J Physiol 436: 920–927 – CrossRefGoogle Scholar

Foschi M. L., Martínez L. E., Ponc M. T., Galmarini C. R., Bohanec B. (2013) – Effect of colchicine and amiprophos-methyl on the production of in vitro doubled haploid onion plants and correlation assessment between ploidy level and stomatal size – Rev. Fac. Cienc. Agrar., Univ. Nac. Cuyo vol.45 no.2 Mendoza dic. 2013. (http://www.scielo.org.ar/scielo.php?pid=S1853-86652013000200012&script=sci_arttext) – (On our blog).

Franco C. M. (1938) – Sôbre a fisiologia dos estômatos de cafeeiro Coffea arabica L. – Annais da Primeira Reuniao Sul-Americano de Botânica, Rio de Janeiro 3: 293-302.

Franco C. (1939) – Relation between chromosome number and stomata in Coffea. Botanical Gazette. 1939;100:817-827. Botanical Gazette, 100: 817-827

Franke W. (1964) – Role of guard cells in foliar absorption. – Nature. Lond., 202,1236. – CrossRef |ADS – (On our blog)

Franks P. J. (2003) – Use of the pressure probe in studies of stomatal function. _ Journal of Experimental Botany 54, 1495-1504 (Invited review).

Franks P. J. (2004) – Stomatal control and hydraulic conductance, with special reference to tall trees. – Tree Physiol 24 865–878 [PubMed]. – (On our blog).

Franks P. J. (2013) – Passive and active stomatal control: either or both? New Phytologist, 198(2), 325-327. – http://onlinelibrary.wiley.com/doi/10.1111/nph.12228/abstract (No abstract).

Franks P., Beerling D. (2009) – Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. – Proceedings of the National Academy of Sciences, USA (2009) 106, 10343–10347. | CrossRef | CAS | PubMed Article – (On our blog).

Franks P. J., Berry J. A., Lombardozzi D. L., Bonan G. B. (2017) – Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling, and global models. – Plant Physiol 174: 583–602 –

Franks P. J., Britton-Harper Z. J. (2016) – No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? – Online Version of Record published before inclusion in an issue – DOI: 10.1111/nph.14020 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14020/abstract – (On our blog)

Franks, P., Brodribb, T.J. (2005) – Stomatal control and water transport in the xylem. In Vascular transport in plants. Edited by N.M. Holbrook and M.A. Zwieniecki. Elsevier Academic Press, Amsterdam. pp. 69–89. – (On our blog).

Franks P. J., Buckley T. N., Shope J. C., Mott K. A. (2001) – Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. – Plant Physiol 125 1577–1584 [PMC free article][PubMed] – (On our blog).

Franks P. J., Casson S. (2014) – Connecting stomatal development and physiology.- New Phytologist 201(4), 1079-1082 – http://onlinelibrary.wiley.com/doi/10.1111/nph.12673/abstract – (On our blog : https://plantstomata.wordpress.com/2015/09/30/stomatal-development-and-physiology/)

Franks P. J., Cowan I. R., Farquhar G. D. (1997) – The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. – Plant, Cell and Environment 20, 142145.DOI: 10.1046/j.1365-3040.1997.d01-14.x – – Wiley Online Library | – (On our blog : https://plantstomata.wordpress.com/2016/05/23/feedforward-response-of-stomata-to-air-vapour-pressure-deficit/)

Franks P. J., Cowan I. R., Farquhar G. D. (1998) – A study of stomatal mechanics using the cell pressure probe. – Plant Cell Environ 21 94–100. – Google Scholar Wiley Online Library

Franks P. J., Cowan I. R., Tyerman S. D., Cleary A. L., Lloyd J., Farquhar G. D. (1995) – Guard cell pressure/aperture characteristics measured with the pressure probe. – Plant Cell Environ18: 795–800

Franks P. J., Doheny-Adams T. W., Britton-Harper Z. J., Gray J. E. (2015) – Increasing water-use efficiency directly through genetic manipulation of stomatal density – New Phytol.207, 188–195. doi: 10.1111/nph.13347 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2015/03/09/stomatal-density-and-wue/).

Franks P. J., Drake P.L., Beerling D. J. (2009) – Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment, 2009; 32: 1737–1748. (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2009.002031.x/abstract) – AbstractFull Article (HTML)PDF(1027K)References – PubMed Article– (On our blog : https://plantstomata.wordpress.com/2015/09/30/3961/)

Franks P. J., Drake P. L., Froend R. H. (2007) – Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. – Plant, Cell and Environment 30, 19-30. – Google Scholar CrossRef

Franks P. J., Farquhar G. D. (2001) – The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. – Plant Physiol 125: 935–942 [PMC free article][PubMed] – CrossRefPubMed, CAS –  (On our blog : https://plantstomata.wordpress.com/2015/10/11/the-effect-of-exogenous-aba-on-stomata/)

Franks  P. J., Farquhar G. D. (2007) –  The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology, 2007; 143: 78–87. – doi: 10.1104/pp.106.089367 – PubMed Abstract | CrossRef Full Text | Google Scholar – (http://www.plantphysiol.org/content/143/1/78) – (On our blog : https://plantstomata.wordpress.com/2015/08/03/mechanical-diversity-of-stomata/)

Franks P. J., Leitch I., Ruszala E., Hetherington A., Beerling D. (2012) – Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philosophical Transactions of the Royal Society B. Biological Sciences, 367(1588), 537-546. – http://rstb.royalsocietypublishing.org/content/367/1588/537 – (On our blog)

Franks P. J., R. C. I., D. F. G. (1998) – A study of stomatal mechanics using the cell pressure probe. -Plant, Cell and Environment 21, 94-100. – Pubmed: Aut

Fraser L. H., Greenall A., Carlyle C., Turkington R., Friedman C. R. (2009) – Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. – Ann Bot- Lon 103:769–775. – PubMedArticle – (On our blog)

Fraser L.H., Greenall A., Carlyle C., Turkington R. , Friedman C.R. (2009) – Adaptive Phenotypic Plasticity of Pseudoroegneria spicata: Response of Stomatal Density, Leaf Area and Biomass to Changes in Water Supply and Increased Temperature. – Annals of Botany, 103, 769-775. – PubMed Article – [Web of Science] – http://dx.doi.org/10.1093/aob/mcn252 – (On our blog).

Frechilla S., Talbott L. D., Zeiger E. (2002) – The CO2 response of Vicia guard cells
acclimates to growth environment. – Journal of Experimental Botany 53: 545550.

Freudenberger H. (1940) – Die Reaktion der Schliesszellen auf Kohlensäure und Sauerstoff-Entzug – Protoplasma 35, 15.

Frey B., Scheidegger C., Gunthardt-Goerg M. S., Matyssek R. (1996) – The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital as image-analysis and X-ray microanalysis. – New Phytologist 132, 135–143.| CrossRef | CAS | – (On our blog).

Fricker M. D., Gilroy S., Read N. D., Trewavas A. J. (1991) – Visualisation and measurement of the calcium message in guard cells. – In: Molecular Biology of Plant Development. W. Schuch and G. Jenkins, editor. Cambridge University Press, Cambridge

Fricker M. D., White N. (1990) – Volume measurements of guard cell vacuoles during stomatal movements using confocal microscopy. – Transactions of the Royal Microscopical Society 1: 345–358.

Frommhold I. (1971) – Ontogenetische und funktionelle Entwicklung der Stomata von Hafer (Avena sativa L.) – Biochem. Pflanz. (BPP) 162: 410-416.

Fry K. E. (1965) – A study of transpiration and photosynthesis in relation to stomatal resistance and internal water potential in Douglas Fir. – Ph.D. thesis Univ. Washington.

Fry K. E., Walker R. B. (1967) – A pressure infiltration method for estimating stomatal opening in conifers. – Ecology 48: 155-157.

Fuentes S., Canamero R. C., Serna L. (2012) – Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl.-  Int. J. Dev. Biol. 2012;56:675–680. [PubMed]

Fuchs E. E., Livingston N. J. (1996) – Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii(Mirb) Franco] and alder [Alnus rubra (Bong)] seedlings. – Plant, Cell and Environment 19, 10911098. – DOI:10.1111/j.1365-3040.1996.tb00216.x – Wiley Online Library | – (On our blog)

Fujino M. (1959) – Stomatal movement and active migration of potassium (in Japanese) – Kagaku 29: 660-661.

Fujino M. (1967) – Role of adenosinetriphosphate and adenosinetriphosphatase in stomatal movement. – Sci. Bull. Fac. Educ. Nagasaki Univ. 18: 1–47 –

Fujino M., Jinno N.
 (1972)
– The fine structure of the guard cell of Commelina communis L. – Sci. Bull., Fac. Educ. Nagasake Univ. (23), 101–111. – Google Scholar

Fujita T., Noguchi K., Terashima I. (2013) Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. – New Phytologist, 2013, 199, 2, 395 – DOI: 10.1111/nph.12261 – Wiley Online Library – (On our blog)

Furukawa A., Park S.-Y., Fujinuma Y. (1990) – Hybrid poplar stomata unresponsive to changes in environmental conditions – Trees December 1990, Volume 4, Issue 4, pp 191-197 – http://link.springer.com/article/10.1007%2FBF00225315 – (On our blog)

Gaastra P. (1959) – Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. – Meded. Landbouwhogeschool, Wageningen 59: 1–68 –

Gaedeke N., Klein M., Kolukisaoglu U., Forestier C., Muller A., Ansorge M., Becker D.Mamnun Y., Kuchler K., Schulz B., Mueller-Roeber B., Martinoia E. (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO Journal 20: 18751887. – DOI: 10.1093/emboj/20.8.1875 – Wiley Online Library |PubMed |CAS | – (On our blog)

Galatis B. (1977) – Differentiation of stomatal meristemoids and guard cell mother cells into guard-like cells in Vigna sinensis leaves after colchicine treatment. An ultrastructural and experimental approach. – Planta 136, 103–114. – Google Scholar

Galatis B. (1980) – Microtubules and guard cell morphogenesis in Zea mays L. – Cell Sci. 45: 211-244 –

Galatis B., Apostolakis P., Katsaros C., Loukari H. (1982) – Pre-prophase microtubule band and local wall thickening in guard cell mother cells of some Leguminosae – Ann. Bot. 50: 779-791 –

Galatis B., Apostolakis P. (1991) – Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings of Zea mays. – Protoplasma 165,11–26. – CrossRefWeb of Science – (On our blog)

Galatis B.,  Mitrakos K. (1980) – The ultrastructural cytology of the differentiating guard cells of Vigna sinensis – Amer. J. Bot. 67: 1243-1261 –

Gan Y., Zhou L., Shen Z.-J., Shen Z.-X., Zhang Y.-Q., Wang G.-X. (2010) – Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants – Botanical Studies (2010) 51: 325-336. – http://ejournal.sinica.edu.tw/bbas/content/2010/3/Bot513-06.pdf  http://connection.ebscohost.com/c/articles/60102322/stomatal-clustering-new-marker-environmental-perception-adaptation-terrestrial-plants – (On our blog : https://plantstomata.wordpress.com/2016/10/24/stomatal-clustering-is-correlated-with-environmental-signals-2/)

Gangadhara M. (1973) – Effect of growth regulators on structure and development in Lagenaria leucantha (Duch.) Rusby – M. Sci. diss., S. P. Univ., India

Gangadhara M., Rao T. B., Inamdar J. A., Patel R. M. (1977) – Effect of growth regulators on the structure of cotyledonary and hypocotyledonary stomata of Gossypium herbaceum var. digvijay – Phyton 18: 9-28 –

Gao Q., Zhao P., Zeng X., Cai X., Shen W. (2002) – A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. – Plant, Cell & Environment 25, 13731381. –  Wiley Online Library

Gao X., Chen J., Wei P., Ren F., Chen J., Wang X. (2008) – Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. – Plant Cell Rep. 27:1655–1665.

Garcia-Amorena I., Wagner F., van Hoof T. B., Gomez Manzaneque F. (2006) – Stomata responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase; refining the stomatal-based CO2 proxy. – Rev. Palaebot. Palynol. 141. 303-312. Quercus robur. LM of lower leaf cuticle showing stomata.

Garcia-Mata C., Gay R.Sokolovski S.Hills A., Lamattina L.,  Blatt M. R. (2003) – Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. – Proc. Natl Acad. Sci. USA, 100, 1111611121. – CrossRefPubMedCASADS – (On our blog)

Garcia-Mata C., Lamattina L. (2009) – Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress (126 pg 1196 F , 2001). – Plant Physiology 150: 531-531.

Gao J., Wang N., Xu S. S., Li Y., Wang Y., Wang G. X. (2013) – Exogenous applicationof trehalose induced H2O2 production and stomatal closure in Vicia faba. – Biologia Plantarum 57: 380384.

Gao Q., Zhao P., Zeng X., CAI X., Shen W. (2002) – A model of stomatal conductance to quantify relationship between leaf transpiration, microclimate and soil water stress – Plant, Cell and Environment 25: 1373-1381 – http://onlinelibrary.wiley.com/store/10.1046/j.1365-3040.2002.00926.x/asset/j.1365-3040.2002.00926.x.pdf;jsessionid=0C4FD8D4E020DF3DC0F996706AB8B81E.f03t02?v=1&t=j7jepxi1&s=b27aa1d8111383898ab6c89fceeb6ccdb9dd65a6 – (On our blog : https://plantstomata.wordpress.com/2017/09/13/a-model-of-stomatal-conductance/)

Gao X.-Q., Li C.-G., Wei P.-C., Zhang X.-Y., Chen J., Wang X.-C. (2005) – The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. – Plant Physiol. 139: 1207–1216 [PMC free article] [PubMed] – (On our blog)

Gao X., Zou C., Wang L., Zhang F. (2006) – Silicon decreases transpiration rate and conductance from stomata of maize plants. – J. Plant Nutr., 29: 1637-2647. (http://www.tandfonline.com/doi/abs/10.1080/01904160600851494#.VREt3pPF-6E) – (On our blog).

Garcia-Mata C., Gay R., Sokolovski S., Hills A., Lamattina L., Blatt M. R.  (2003)Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid‐evoked signaling pathwaysProceeding of the National Academy of Sciences, USA 100, 1111611121. -doi: 10.1073/pnas.1434381100  Abstract/FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Garcia-Mata C., Lamattina L. (2002) – Nitric oxide and abscisic acid cross talk in guard cells. – Plant Physiol. 128, 790–792. doi: 10.1104/pp.011020 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Garcia-Mata C., Lamattina L. (2010) – Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. – New Phytol. 188, 977–984. doi: 10.1111/j.1469-8137.2010.03465.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Gardner M. J.Baker A. J.Assie J.-M.Poethig R. S.Haseloff J. P.Webb A. A. R. (2009) – GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression. – Journal of Experimental Botany 60, 213226. – doi: 10.1093/jxb/ern292 – Abstract/FREE Full Text – CrossRefMedlineGoogle Scholar – (On our blog)

Garner D. B., Paolillo D. J. Jr. (1973) – On the functioning of stomata in Funaria – Bryologist 76: 423-427 –

Ghat J., Peirce G. J. (1919) – The influence of light upon the action of the stomata and its relation to the transpiration of certain grains. – Am. Jour. Bot. 6:131. – CrossRefGoogle Scholar

Gay A. P., Hurd R.G. (1975) – The influence of light on stomatal density in the tomato – New Phytologist 75: 37-46.

Gedenk E. (2017) – Research team uses supercomputing to understand processes leading to increased drought resistance in food and fuel crops – https://phys.org/news/2017-04-team-supercomputing-drought-resistance-food.html – (On our blog : https://plantstomata.wordpress.com/2017/04/19/supercomputing-stomata-and-increased-drought-resistance-in-food-and-fuel-crops/)

Gehring C. A., Irving H. R., McConchie R. M., Parish R. W. (1997) – Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. – Ann. Bot. 80: 485-489.

Gehring C. A., McConchie R. M., Venis M. A., Parish R. W. (1998) – Auxin-binding-protein antibodies and peptides influence stomatal opening and alter cytoplasmic pH. – Planta 205: 581-586, 1998.

Geiger D., Maierhofer T., Al-Rasheid K. A., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C.Marten I.Grill E.Romeis T., Hedrich R. (2011) – Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. – Sci. Signal. 4:ra32. doi: 10.1126/scisignal.2001346 – PubMed Abstract | CrossRef Full Text | Google Scholar – Abstract/FREE Full Text – (On our blog)

Geiger D., Scherzer S., Mumm P., Marten I., Ache P., Matschi S., Liese A.Wellmann C.Al-Rasheid K. A.Grill E.et al. (2010) – Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. – Proc. Natl Acad. Sci. USA 107, 80238028 (2010). – doi: 10.1073/pnas.0912030107 – PubMedArticlePubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Geiger D.Scherzer S.Mumm P.Stange A.Marten I.Bauer H.Ache P.Matschi S.Liese A.Al-Rasheid K.A.Romeis T.Hedrich R. (2009) – Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair.- Proc. Natl. Acad. Sci. USA 106: 2142521430. – Abstract/FREE Full Text – http://www.pnas.org/content/106/50/21425.full – (On our blog)

Geisler M. J., Deppong D. O., Nadeau J. A., Sack F. D. (2003) – Stomatal neighbor cell polarity and division in Arabidopsis. – Planta 216: 571-579. (pdf) – (On our blog)

Geisler M. J., Nadeau J., Sack F. D. (2000) – Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. – Plant Cell 12:2075– 2086. – Abstract/FREE Full Text – http://www.plantcell.org/content/12/11/2075.abstract – (On our blog)

Geisler M. J., Sack F. D. (2002) – Variable timing of developmental progression in the stomatal pathway in Arabidopsis cotyledons. – New Phytol. 153, 469–476. – DOI: 10.1046/j.0028-646X.2001.00332.x – CrossRefWeb of Science – http://dx.doi.org/10.1046/j.0028-646X.2001.00332.x – (On our blog)

Geisler M. J., Yang M., Sack F. D. (1998) – Divergent regulation of stomatal initiation and patterning in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips. – Planta 205, 522–530. – CrossRefMedlineWeb of Science – http://dx.doi.org/10.1007/s004250050351 – (On our blog)

Geng S., Misra B. B., de Armas E., Huhman D. V., Alborn H. T., Sumner L. W., Chen S. (2016) – Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics – doi: 10.1111/tpj.13296 – (On our blog)

Gepstein S., Jacobs M., Taiz L. (1982) – Inhibition of stomatal opening in Vicia faba epidermal tissue by vanadate and abscisic acid. – Plant Sci. Lett. 28:63–72

Gharun M., Turnbull T., Pfautsch S., Adams M. (2015) – Stomatal structure and physiology do not explain differences in water use among montane eucalypts – Oecologia – April 2015, Volume 177, Issue 4, pp 1171-1181 – [http://link.springer.com/article/10.1007%2Fs00442-015-3252-3] – (On our blog).

Giannoutsou E., Apostolakos P., Galatis B. (2016) – Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays – Planta · July 2016 – DOI: 10.1007/s00425-016-2574-7 – https://www.researchgate.net/publication/305661902_Spatio-temporal_diversification_of_the_cell_wall_matrix_materials_in_the_developing_stomatal_complexes_of_Zea_mays – (On our blog)

Giday H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2013a) Foliar abscisic acid content underlies genotypic variation in stomatal responsiveness after growth at high relative air humidity. – Ann. Bot. 112(9): 1857-1867 (CrossRef, Medline). – (On our blog).

Giday H. , Kjaer K. H., Fanourakis D., Ottosen C.-O. (2013b) – Smaller stomata require less severe leaf drying to close: A case study in Rosa hydrida – Journal of Plant Physiology, vol. 170, no. 15, pp. 1309 – 1316, 2013.

Giday H., Fanourakis D., Kjaer K. H., Fomsgaard I. S., Ottosen C.-O. (2014) – Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth.- J. Exp. Bot. 65(15): 4361-4370 (CrossRef, Medline). – (On our blog).

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Imaging the release of calcium from organelles during stomatal closure. – Plant Cell 3:333–344

Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. (1991) – Role of calcium in signal transduction of Commelina guard cells. – Plant Cell, 3, 333344. – CrossRef |PubMedCAS | – http://www.ncbi.nlm.nih.gov/pubmed/12324599 – (On our blog)

Gilroy S., Read N. D., Trewavas A. J. (1990) – Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. – Nature 346, 769-771.

Gimenez-Ibanez S., Boter M., Ortigosa A., García-Casado G., Chini A., Lewsey M. G., Ecker J. R., Ntoukakis V., Solano R. (2016) – JAZ2 controls stomata dynamics during bacterial invasion – New Phytologist (2017): Online Version of Record – DOI: 10.1111/nph.14354 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14354/abstract;jsessionid=7CCDFADCAFE977E2DCD0A6C68A238DF3.f01t04 – (https://plantstomata.wordpress.com/2016/12/26/a-coi1-jaz2-myc234-anac195572-module-responsible-for-the-regulation-of-stomatal-aperture/)

Gitz D. C., Liu-Gitz L., Britz S. J., Sullivan J. H. (2005) – Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars – Environmental and Experimental Botany (2005) 53: 343-355

Givnish T. J. (1986) – Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. – In: On the economy of plant form and function (ed. T.J. Givnish ), pp. 171213. Cambridge University Press, Cambridge.

Glinka Z. (1971) – The effect of epidermal cell water potential on stomatal response to illumination of leaf discs of Vicia faba – Physiol. Plant. 24: 476-479.

Glinka Z., Meidner H. (1968) – The measurement of stomatal responses to stimuli in leaves and leaf discs. – J. exp. Bot., 19, 152. – CrossRef | – http://jxb.oxfordjournals.org/content/19/1/152 – (On our blog)

Godoski J., Kuhn J. M., Schroeder J. I. (2011) – Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. – Nature Cell Biology 12, 87 – 93 (2010) Published online: 13 December 2009 –doi:10.1038/ncb2009 – CrossRef Medline Web of Science Google Scholar – http://www.nature.com/ncb/journal/v12/n1/fig_tab/ncb2009_F5.html – (On our blog)

Goh C. J., Avadhani P. N., Loh C. S., Hanegraaf C., Arditti J. (1977) – Diurnal stomatal and acidity rhythms in orchid leaves – New Phytol. 78: 365-372 –

Gollan T., Passioura J.B., Munns R. (1986) – Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves – Aust. J. Plant Physiol. 13: 459–464 – Google Scholar CrossRef

Gollan T.Schurr U., Schulze E.-D. (1992) – Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids in, and pH of, the xylem sap – Australian Journal of Plant Physiology 13: 459464. – Wiley Online Library |PubMed |CAS |CrossRef | – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01488.x/full – (On our blog)

Goltz S. M., Tanner C. B. (1972) – Seed onion temperatures and their effect on stomata – Hort. Scvience 7: 180-181.

Gomez L. D., Gilday A., Feil R., Lunn J. E., Graham I. A. (2010) –  AtTPS1-mediated
trehalose 6-phosphate synthesis is essential for embryogenicand vegetative growth
and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant
Journal 64:113.

Gomi K., Ogawa D., Katou S., Kamada H., Nakajima N., Saji H., Soyano T.Sasabe M.Machida Y.Mitsuhara I., Ohashi1 Y., Seo S. (2005) – A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. – Plant Cell Physiol. 46, 1902–1914. doi: 10.1093/pcp/pci211 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Gonugunta V. K., Srivastava N., Puli M. R., Raghavendra A. S. (2008) – Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. – Plant Cell Environ. 31: 1717–1724 [PubMed] – (On our blog)

Gonzales-Guzman M., Pizzio G.A., Antoni R., Vera-Sirera, Merilo E., Bassel G. W., Fernandez M. A., Holdsworth M. J., Perez-Amador M. A., Kollist H., Rodriguez P. L. (2012) – Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid – The Plant Cell Online 24: 2483-2496 – doi: 10.1105/tpc.112.098574 – https://www.ncbi.nlm.nih.gov/pubmed/22739828 – (On our blog : https://plantstomata.wordpress.com/2017/09/12/arabidopsis-pyrpylrcar-receptors-play-a-major-role-in-quantitative-regulation-of-stomatal-aperture/)

Göring H., Koshuchowa S., Deckert C. (1990) – Influence of gibberellic acid on stomatal movement. – Biochem. Physiol. Pflanz. 186: 367-374, 1990.

Gotow K., Kondo N., Syôno K. (1982) – Effect of CO2 on volume change of guard cell protoplast from Vicia faba L. – Plant Cell Physiol. 23, 1063–1070. – Google Scholar (No abstract)

Gowing D. J., Jones H. G., Davies W. J. (1993) Xylem-transported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture. – Plant, Cell & Environment 16: 453459. – Wiley Online Library |PubMed |CAS | – (On our blog)

Grabov A., Blatt M. R. (1997) – Parallel control of the inward‐rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. – Planta 201: 8495 – CrossRefWeb of ScienceGoogle Scholar

Grabov A., Blatt M. R. (1998a) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. – Proc. Natl Acad. Sci. USA, 95, 47784783. – CrossRef |PubMedCASADS – (On our blog)

Grabov A., Blatt M. R. (1998b) –  Co-ordination of signaling elements in guard cell ion channel control. – J. Exp. Bot., 49, 351360. – CrossRef | – (Not found)

Grabov A., Blatt M.R. (1999) – A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol. 119:277–287. – doi:http://dx.doi.org/10.1104/pp.119.1.277 – Abstract/FREE Full Text – (On our blog)

Grabov A., Leung J.Giraudat J.Blatt M. R. (1997) – Alteration of anion channel kinetics in wild-type andabi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. – Plant J.12, 203213. – Wiley Online LibraryPubMedCASCrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/05/30/aba-and-anion-channel-kinetics-in-stomata/)

Grant B. W., Vatnick I. (1998) – A multi-week inquiry for an undergraduate introductory biology laboratory: Investigating correlations between environmental variables and leaf stomata density. – Journal of College Science Teaching. 28:109-112 – 

Grant B. W., Vatnick I. (2004) – Environmental Correlates of Leaf Stomata Density -Teaching Issues and Experiments in Ecology (TIEE) -Ecological Society of America (Esa) -Volume 1 © 2004 – (http://www.esa.org/tiee/vol/v1/experiments/stomata/stomata_description.html) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/leaf-stomata-density-and-the-environment/)

Grantz D. A., Assmann S. M. (1991) – Stomatal response to blue-light: water-use efficiency in sugarcane and soybean. – Plant Cell Environ 14 683–690 – DOI: 10.1111/j.1365-3040.1991.tb01541.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1991.tb01541.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/24/blue-light-stimulated-stomata/)

Grassi G., Magnani F. (2005)Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ., 28: 834-849. (http://cat.inist.fr/?aModele=afficheN&cpsidt=16860662) – (On our blog : https://plantstomata.wordpress.com/2016/02/15/stomata-drought-and-leaf-ontogeny/).

Gray J. E. (2007) – Plant Development: Three Steps for Stomata – Curr. Biol. 17(6): 213-215 – https://doi.org/10.1016/j.cub.2007.01.032 – http://www.sciencedirect.com/science/article/pii/S0960982207008706 – (On our blog : https://plantstomata.wordpress.com/2017/09/18/three-steps-for-stomata/)

Gray J. E., Holroyd G. H., van der Lee F. M., Bahrami A. R, Sijmons P. C., Woodward F. I., Schuch W., Hetherington A. M. (2000) – The HIC signalling pathway links CO2 perception to stomatal development. – Nature 408: 713716. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/05/30/hic-co2-and-stomatal-development/)

Greenwood D. R., Scarr M. J., Christophel D. C. (2003) – Leaf stomatal frequency in the Australian tropical tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric Co2. – Palaeography, Palaeocliatology, Palaeoecology, 2003; 196 (3-4): 375-393.

Grewal S. (x) – Auxin keeps stomata in the dark – The Node.(https://plantstomata.wordpress.com/2015/03/11/light-and-auxin-signals-regulate-stomatal-development/) – (On our blog).

Grondin A.Rodrigues O.Verdoucq L.Merlot S.Leonhardt N.Maurel C. (2015) – Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation – The Plant Cell July 2015 vol. 27 no. 7 1945-1954 – doi: http://dx.doi.org/10.1105/tpc.15.00421 – http://www.plantcell.org/content/27/7/1945.abstract – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/03/29/aquaporins-abaost1-and-stomata/)

Gross L. J., Kirschbaum M. U. F, Pearcy R. W. (1991) – A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation. – Plant, Cell & Environment 14, 881893. – Wiley Online LibraryCAS |

Grulke N. E., Alonso R., Nguyen T., Cascio C., Dobrowolski W. (2004) – Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics – Tree Physiology. 24(9): 1001-1010 – https://doi.org/10.1093/treephys/24.9.1001 – https://www.fs.usda.gov/treesearch/pubs/53846 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomata-open-at-night-in-pole-sized-and-mature-ponderosa-pine/)

Grulke N.E., Neufeld H.S., Davison A.W., Roberts M., Chappelka A.H. (2007) – Stomatal behavior of ozone-sensitive and -insensitive coneflowers (Rudbeckia laciniata var. digitata) in Great Smoky Mountains National Park. – New Phytol.173:100–109. – CrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/01/o3-sensitivity-and-stomatal-behavior/)

Gu Z. F., Qing W. W., Ping Z. A., Min Z. X., He H., Le P. J., Song, Run C. (2004) – Effect of chlorophyll content and stoma density on cucumber resistance to downy mildew.- J. Shanghai Univ. Agril. Sci., 22: 381-384.

Gudesblat G. E., Betti C., Russinova E. (2012) – Brassinosteroids tailor stomatal production to different environments. – Trends Plant Sci. 2012a;17:685–687. – [PubMed]

Gudesblat G. E., Iusem N. D., Morris P. C. (2007) – Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. – New Physiol., 173: 713-721 – doi: 10.1111/j.1469-8137.2006.01953.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/06/01/the-important-role-of-mpk3-in-the-perception-of-aba-and-h2o2-in-stomata/)

Gudesblat G. E., Schneider-Pizon J., Betti C., Mayerhofer J., Vanhoutte I., van Dongen W., Boeren S., Zhiponova M., de Vries S., Jonak C., Russinova E. (2012) –  SPEECHLESS integrates brassinosteroid and stomata signalling pathways. – Nat Cell Biol 2012, 14:548-554. – 10.1038/ncb2471. – (PubMed Abstract | Publisher Full Text) – (On our blog : https://plantstomata.wordpress.com/2015/10/23/4728/).

Gudesblat G. E., Torres P. S., Vojnov A. A. (2009) – Stomata and pathogens; Warfare at the gates – Plant Signal Behav 4(12): 1114-1116 – http://dx.doi.org/10.4161/psb.4.12.10062 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819434/ – (On our blog : https://plantstomata.wordpress.com/2017/09/18/pamp-triggered-stomatal-closure-and-several-mechanisms-to-evade-stomatal-defense/)

Gudesblat G. E., Torres P. S., Vojnov A. A. (2009)Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. – Plant Physiol. 149, 1017–1027. doi: 10.1104/pp.108.126870 – PubMed Abstract | CrossRef Full Text | Google Scholar  – (On our blog : https://plantstomata.wordpress.com/2016/06/06/phytopathogens-and-stomatal-response/)

Guimaraes R. L., Stotz H. U. (2004) –  Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection. – Plant Physiol. 2004;136:3703–3711. – [PMC free article][PubMed] – 

Guo P., Xia X., Yin W. L. (2011) – A role for stomata in regulating water use efficiency in Populus × euramericana and characterization of a related gene, PdERECTA. – Afr. J. Biotechnol., 10: 6904-6912. (http://www.academicjournals.org/login)

Gupta M. (1992) – Effect of growth regulators on foliar stomata of Vicia faba L. – Adv. Pl. Sci. 5. 483-495. – Stomatal abnormalities.

Gupta P., Bhatnagar A. K. (2015) – Spatial distribution of arsenic in different leaf tissues and its effect on structure and development of stomata and trichomes in mung bean, Vigna radiata (L.) Wilczek – Environmental and Experimental Botany Volume 109: 12–22 – http://www.sciencedirect.com/science/article/pii/S0098847214002007 – (On our blog : https://plantstomata.wordpress.com/2016/12/22/arsenic-and-its-effect-on-structure-and-development-of-stomata-and-trichomes/)

Gupta S. C., Paliwal G. S., Gupta M. (1965) – The Development of Stomata in Vegetative and Reproductive Organs of Bupleurum tenue Buch.-Ham. ex D. Don – Ann Bot (1965) 29 (4): 645-654. – http://aob.oxfordjournals.org/content/29/4/645.abstract – (On our blog : https://plantstomata.wordpress.com/2016/12/12/stomata-in-bupleurum-tenue-apiaceae/)

Guseman J. M., Lee J. S., Bogenschutz N. L., Peterson K. M., Virata R. E., Xie B., Kanaoka M. M., Hong Z., Torii K. U. (2010) – Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASELIKE 8). – Development 137:1731–1741. – doi: 10.1242/dev.049197 – http://dev.biologists.org/content/137/10/1731 – (On our blog)

Gutiérez M. V., Meinzer F. C., Grantz D. A. (1994) – Regulation of transpiration in coffee hedgerows: covariation of environmental variables and apparent responses of stomata to wind and humidity – Plant, Cell & Environment Volume 17, Issue 12, 1305–1313 – DOI: 10.1111/j.1365-3040.1994.tb00532.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00532.x/full – (On our blog : https://plantstomata.wordpress.com/2017/01/09/responses-of-stomata-to-wind-and-humidity/)

Gutschick V.P., Simonneau T. (2002) – Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying. – Plant, Cell & Environment 25, 14231434. – Wiley Online Library

Guyot G., Scoffoni C., Sack L. (2011) – Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control – Plant Cell and Environment 35(5):857-871 – DOI: 10.1111/j.1365-3040.2011.02458.x – https://www.researchgate.net/publication/51787626_Combined_impacts_of_irradiance_and_dehydration_on_leaf_hydraulic_conductance_Insights_into_vulnerability_and_stomatal_control – (On our blog)

Guyot M. (1964) –  Action de la colchicine sur le development des stomates de Vicia faba L. – C. R. Seanc. Soc. Biol. 158: 1722–1726.

Guyot M., Pikusz M. A., Humbert C. (1968) – Action de la colchicine sur les stomates de Dianthus caryophyllus – Comptes Rendus de l’Académie des Sciences de Paris 266: 1251-1252.

Guzel-Deger A., Scherzer S., Nuhkat M., Kedzierska J., Kollist H., Brosché M., Unyayar S., Boudsocq M., Hedrich R., Roelfsema M. R. G. (2015) –  Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure – New Phytologist, 2015, 208, 1, 162-173 – DOI: 10.1111/nph.13435  –PubMed Abstract | CrossRef Full Text | Google Scholar – http://onlinelibrary.wiley.com/doi/10.1111/nph.13435/full – (On our blog)

Ha Y.Shang Y., Nam K. H. (2016) – Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis – J. Exp. Bot. (2016) 67 (22):6297-6308.doi: 10.1093/jxb/erw385 – http://jxb.oxfordjournals.org/content/67/22/6297.short?rss=1 – (On our blog)

Haberlandt G. (1932) – Zur Physiologie und Pathologie der Spaltöffnungen. I. Mitteilung – Sitzber. K. Preuss. Akad. 3. Berlin 10: 358-369 – (On our blog : https://plantstomata.wordpress.com/2017/07/29/physiology-and-pathology-of-stomata-i-communication-in-german/)

Haberlandt G. (1934) – Zur Physiologie und Pathologie der Spaltöffnungen. II. Die Spaltöffnungen von Artbastarden – Sitzber. K. Preuss. Akad. 3. Berlin 12: 115-151 – (On our blog : https://plantstomata.wordpress.com/2017/07/29/physiology-and-pathology-of-stomata-ii-stomata-of-species-hybrids-in-german/)

Hachez C., Ohashi-Ito K., Dong J., Bergmann D. C.(2011) –  Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. – Plant Physiol. 2011;155:1458–1472.-  [PMC free article] [PubMed]

Haefner J. W., Buckley T. N., Mott K.A. (1997) – A spatially explicit model of patchy stomatal responses to humidity. – Plant, Cell & Environment 20, 10871097 – DOI: 10.1046/j.1365-3040.1997.d01-137.x – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.1997.d01-137.x/full –  (On our blog : https://plantstomata.wordpress.com/2017/08/28/model-of-patchy-stomatal-responses-to-humidity/)

Hall A. E., Kaufmann M. R. (1975) – Stomatal response to environment with Sesamum indicum L. – Plant Physiol. 55: 455-459.

Hall A. E., Schulze E.-D., Lange O. L. (1976) – Current perspectives of steady state stomatal response to environment. – In Lange O. L., Kappen L., Schulze E.-D., eds, – Water and Plant Life. Ecological Studies 19. Springer, Berlin, pp 169–185. – Google Scholar

Hall D. M., Jones R. L. (1961) – The role of carbon dioxide in the light response of stomata. I. – J. Exp. Bot. 1: 29-62 –

Hall L. N., Langdale J. A. (1996) – Tansley review No. 88. Molecular genetics of cellular differentiation in leaves. – New Phytol. 132. 533-553. – Development of epidermis, stomata, trichomes, photosynthetic cell types, vasculature.

Hall R. D., Verhoeven H. A., Krens F. A. (1995) – Computer-assisted identification of protoplasts responsible for rare division events reveals guard cell totipotency. – Plant Physiol 107: 1379-1386

Hall R. D., Riksen-Bruinsma T., Weyens G., Lefèbvre M., Dunwell J. M., Krens F. A. (1996) – Stomatal guard cells are totipotent. – Plant Physiology 112, 889–92. – doi: http://dx.doi.org/10.1104/pp.112.3.889 – http://www.plantphysiol.org/content/112/3/889.abstract – (On our blog)

Hall R. D., Riksen-Bruinsma T., Weyens G. J., Rosquin I. J., Denys P. N., Evans I. J., Lathouwers J. E., Lefèbvre M. P., Dunwell J. M., van Tunen A., Krens F. A. (1996b) – A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. – Nat. Biotechnol. 14, 1133–1138. – CrossRefMedlineWeb of Science – (On our blog)

Hamada N., Baba H. (1930) – On the number of chloroplasts in the guard cells in mulberry. – J. Sericultural Sci. 1: 305-309 –

Hamanishi E. T., Thomas B. R., Campbell M. M. (2012) – Drought induces alterations in the stomatal development program in Populus. – J. Exp. Bot. 2012;63:4959–4971. – [PMC free article] [PubMed]

Hamilton D. W. A.,  Hills A., Blatt M. R. (2001) – Extracellular Ba2‡ and voltage interact to gate Ca2‡ channels at the plasma membrane of stomatal guard cells – FEBS Letters 491 (2001) 99-103 – http://onlinelibrary.wiley.com/store/10.1016/S0014-5793(01)02176-7/asset/feb2s0014579301021767.pdf?v=1&t=ip5xzwp2&s=16a1dd5e6e60dc5a7e36dea9e88360ec36821ea3 – (On our blog)

Hamilton D. W. A.,  Hills A., Kohler B., Blatt M. R. (2000) – Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. – Proc. Natl Acad. Sci. USA, 97, 49674972. – CrossRefPubMedCASADS – (On our blog)

Hanebuth W. F., Raschke K. (1973) – Stomatal aperture in Zea mays controlled by light or CO2? – Plant Physiol. (suppl.) 51: 9

Hanstein S. M., Felle H. H. (2002) – CO2-triggered chloride release from guard cells in intact fava bean leaves: kinetics of the onset of stomatal closure. – Plant Physiol 130:940–950 – 10.1101/gad.1550707. – CrossRef PubMed PubMedCentral – PubMed CentralView ArticlePubMed – (On our blog)

Hara K., Kajita R., Torii K. U., Bergmann D. C., Kakimoto T. (2007) -The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. – Gene Dev 21:1720–1725. – Abstract/FREE Full Text – (On our blog)

Harada A., Shimazaki K. (2009) – Measurement of changes in cytosolic Ca2+ in Arabidopsis guard cells and mesophyll cells in response to blue light. – Plant Cell Physiol.50, 360–373. doi: 10.1093/pcp/pcn203 – PubMed Abstract | CrossRef Full Text – (On our blog)

Harms H. (1936) – Beziehungen zwischen Stomataweite, Lichtstärke und Lichtfarbe – Planta 25: 155-193.

Hardy  J.P., Anderson V.J., Gardner  J.S. (1995) – Stomatal characteristics, conductance ratios and drought-induced leaf modifications of semiarid grassland species. Am. J. Bot., 82: 1-7. (http://www.jstor.org/discover/10.2307/2445779?sid=21106223288733&uid=4&uid=3737592&uid=2) –

Harris M. J., Outlaw W.H., Jr. (1991) – Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status. – Plant Physiol. 95: 171-173, 1991.

Hartung W. (1983) – The site of action of abscisic acid at the guard cell plasmalemma of Valinariella locusta. – Plant Cell Environ. 6, 427428. – Wiley Online Library |PubMed |CAS | – (On our blog)

Hartung W., Wilkinson S., Davies W. J. (1998) – Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell. – J. exp. Bot. 49: 361-367, 1998.

Hashimoto-Sugimoto M.Higaki T.Yaeno T., Nagami A.Irie M.Fujimi M.Miyamoto M.Akita K.Negi J.Shirasu K.Hasezawa H., Iba K. (2013) – A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses – Nature Communications4,Article number:2215 – doi:10.1038/ncomms3215 – http://www.nature.com/ncomms/2013/130730/ncomms3215/full/ncomms3215.html – (On our blog : https://plantstomata.wordpress.com/2016/03/30/a-munc13-like-protein-and-stomatal-responses/)

Hashimoto-Sugimoto M.Negi J., Monda K., Higaki T., Isogai Y., Nakano T.Hasezawa S.., Iba K. (2016) – Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis – J. Exp. Bot. (2016)doi: 10.1093/jxb/erw134 – http://jxb.oxfordjournals.org/content/early/2016/03/30/jxb.erw134.full – (On our blog : https://plantstomata.wordpress.com/2016/05/20/ht1-a-critical-regulator-for-co2-signaling-and-involved-in-stomatal-opening/)

Hashimoto-Sugimoto M.Negi J.Young J., Israelsson M., Schroeder J. I., Iba K. (2006) – Arabidopsis HT1 kinase controls stomatal movements in response to CO2 – Nature Cell Biology 8,391397.– CrossRefMedlineWeb of Science  (On our blog : https://plantstomata.wordpress.com/2016/05/20/ht1-kinase-controls-stomatal-movements/)

Haworth M.Elliott-Kingston C., McElwain J. C. (2011) – Stomatal control as a driver of plant evolution – J. Exp. Bot. (2011) 62 (8):2419-2423. – doi: 10.1093/jxb/err086 – http://jxb.oxfordjournals.org/content/62/8/2419.full – (On our blog : https://plantstomata.wordpress.com/2016/12/31/stomatal-control-and-plant-evolution/)

Haworth M.Gallagher A.Elliott-Kingston C.Raschi A.Marandola D.McElwain J. C. (2010) – Stomatal index responses of Agrostis canina to carbon dioxide and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy. – New Phytologist2010a;188845855. – CrossRefMedlineWeb of ScienceGoogle Scholar –

Haworth M.Heath J.McElwain J. C. (2010) – Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers – Annals of Botany 2010b;105:411418. – Abstract/FREE Full Text

Hayashi M., Inoue S., Takahashi K., Kinoshita T. (2011) – Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. – Plant Cell Physiol 52: 1238–1248. doi: 10.1093/pcp/pcr072 – PubMed Abstract | CrossRef Full Text | Google ScholarAbstract/FREE Full Text – (On our blog)

Hayashi M., Inoue S., Ueno Y., Kinoshita T. (2017) – A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening – Scientific Reports 7, Article number: 45586 – doi:10.1038/srep45586 – https://www.nature.com/articles/srep45586 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/a-raf-like-protein-kinase-bhp-and-stomatal-opening/)

Hayashi M., Kinoshita T. (2011) Crosstalk between blue-light- and aba-signaling pathways in stomatal guard cells – Plant Signaling & Behavior – Volume 6, Issue 11, 2011, 1662-1664 – DOI:10.4161/psb.6.11.17800 – CrossRef – http://www.tandfonline.com/doi/abs/10.4161/psb.6.11.17800 – (On our blog)

Hays B. (2016) – Agave genes could inspire new drought-resistant plants – UPI Science News 2016-12-06 – http://www.upi.com/Science_News/2016/12/06/Agave-genes-could-inspire-new-drought-resistant-plants/2391481046942/ – (On our blog : https://plantstomata.wordpress.com/2016/12/07/the-stomata-genes-of-agave-and-future-improved-drought-resistance-capabilities/)

He J., Ma X.-G., Zhang Y., Sun T.-F., Xu F.-F., Chen Y.-P., Liu X., Yue M. (2013) – Role and interrelationship of Ga protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. – Plant Physiology 161: 15701583

He J., Xu H., She X.-P., Song X.-G., Zhao W.-M. (2005) – The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. – Funct. Plant Biol. 32, 237–247. doi: 10.1071/FP04185 – CrossRef Full Text | Google Scholar – (On our blog)

He J., Yue X., Wang R., Zhang Y. (2011)
– Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. – J. Exp. Bot. 62, 2657–2666. doi: 10.1093/jxb/erq431 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Heath O. V. S. (1938) – An experimental investigation on the mechanism of stomatal movement with some preliminary observations on the response of the guard cells to shock – New Phytol. 37: 385-395.

Heath O. V. S. (1948) – Control of stomatal movement by a reduction in the normal carbon dioxide content of the air – Nature (London) 161: 179-181 –

Heath O. V. S. (1949) – Studies in stomatal behaviour. II. The role of starch in the light response of stomata. Part I. Review of literature and experiments on the relation between aperture and starch content in the stomata of Pelargonium zonale. – New Phytol. 48: 186-211.

Heath O. V. S. (1950) – The role of carbon dioxide in the light response of stomata. I. – J. Exp. Bot. 1, 29–62 (1950).

Heath O. V. S. (1950) – Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata, Part I – Journal of Experimental Botany 1950;1:2962. – Abstract/FREE Full Tex

Heath O. V. S. (1959) – Light and carbon dioxide in stomatal movements.- Handb. Pfl. Physiol, 17/1, 415.

Heath O. V. S. (1959) – The water relations of stomatal cells and the mechanisms of stomatal movement –  in F. C. STEWARD (Ed.), Plant Physiology, a Treatise Vol. 2: 193-250, Academic Press, New York.

Heath O. V. S., Mansfield T. A. (1969) – The movements of stomata. In The physiology of plant growth and development. Wilkins M. B. Edit. 303-322. – Mac Graw-Hill, London.

Heath O. V. S., Meidner H. (1957) – Effects of carbon dioxide and temperature on stomata of Allium cepa L. – Nature (London) 180: 181-182.

Heath O. V. S., Meidner H. (1981) – Feedback Processes in the Opening of Leaf Stomata in Light – 

Heath O. V. S., Milthorpe F. L. (1950) – Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata, Part II – Journal of Experimental Botany 19501227-243.

Heath O. V. S., Russell J. (1954) – Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by mesophyll. Part I. Interactions with carbon dioxide. J. exp. Bot. 5: 1-15

Heath O. V. S., Russell J. (1954) – Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by mesophyll. Part II. Interactions with carbon dioxide. J. exp. Bot. 5, 269–292 .

Heckenberger U., Schurr U., Schulze E.-D. (1996) – Stomatal response to abscisic acid fed into the xylem of intact Helianthus annuus (L.) plants. – J. exp. Bot. 47: 1405-1412, 1996.

Hedrich R. (XXXX) – Stomatal movement – guard cell physiology – http://www.bot1.biozentrum.uni-wuerzburg.de/en/research/prof_dr_rainer_hedrich/stomata_guard_cell_action/ – (On our blog : https://plantstomata.wordpress.com/2017/09/20/aba-receptors-and-stomatal-movement/)

Hedrlch R., Busch H., Raschke K. (1990) – Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. – EMBO J. 9, 3889-3892. – PubMedCASMedlineWeb of ScienceGoogle Scholar – (On our blog)

Hedrich R., Marten I. (1993) – Malate-induced feedback regulation of plasma membrane anion channels could provide a carbon dioxide sensor to guard cells.- EMBO J. 12:897–901. – MedlineWeb of ScienceGoogle Scholar – (On our blog)

Hedrich R., Marten I., Lohse G., Dietrich P., Winter H., Lohaus G., Heldt H.-W. (1994) – Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. – Plant J. 6:741–748. –DOI: 10.1046/j.1365-313X.1994.6050741.x –  CrossRefWeb of ScienceGoogle Scholar – (On our blog)

Hedrich R., Neimanis S., Savchenko G., Felle H. H., Kaiser W. M., Heber U. (2001) –  Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply. – Planta 213: 594–601 – [PubMed] – (On our blog)

Heichel G. H. (1971) – Stomatal movements, frequencies, and resistances in two maize varieties differing in photosynthetic capacity – J. Exp. Bot. 22: 644-649 –

Heller F. O. (1966) – Cytologische Untersuchungen belichteter und verdunkelter Schliesszellen – Dipl.-Arbeit Darmstadt –

Heller F. O. (1979) – Lichtmikroskopische und ultraviolettmikroskopische Untersuchung des Form- und Strukturwandels lebender Schliesszellen bei ihren Reaktionen auf verschiedene ökologische Faktoren – Diss. Darmstadt 1979, D 17. – (On our blog : https://plantstomata.wordpress.com/2017/07/28/changes-of-stomatal-structure-during-reactions-on-ecological-factors-in-german/)

Heller F. O., Kausch W. (1971) – Licht- und ultraviolettmikroskopische Beobachtungen an Schliesszellen nach ihrer Reaktion auf verschiedene Umweltbedingungen – Ber. Dtsch. Bot. Ges. 84(9): 541-549 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/microscopic-observations-of-stomata-after-their-responses-to-environmental-factors-in-german/)

Heller F. O., Kausch W., Trapp L. (1971) – UV-mikroskopischer Nachweis von Strukturänderungen in Schliesszellen von Vicia faba L. – Naturwissennschaften 58: 419- 420 – (On our blog : https://plantstomata.wordpress.com/2017/07/28/structural-changes-in-stomata-of-vicia-faba-l-in-german/)

Heller F. O., Resch A. (1967) – Funktionell bedingter Strukturwechsel in den Schliesszellen von Vicia faba – Planta 75: 243-252 – (On our blog : https://plantstomata.wordpress.com/2017/07/30/structure-of-nuclei-and-functional-change-in-stomata-in-german/)

Hentschel R., Hommel R. , Poschenrieder W., Grote R., Holst J.Biernath C., Gessler A., Priesack E. (2016) – Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech – Trees, February 2016, Volume 30, Issue 1, pp 153-174 – http://link.springer.com/article/10.1007%2Fs00468-015-1284-2 – (On our blog)

Hepworth C. (2016) – The role of stomata in regulating water and nutrient availability: Model to crop studies – PhD thesis, University of Sheffield.

Hepworth C., Doheny-Adams T., Hunt L., Cameron D.D., Gray J.E. (2015) – Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. – New Phytologist, 208 (2). pp. 336-341. ISSN 0028-646X – http://eprints.whiterose.ac.uk/90224/ – http://dx.doi.org/10.1111/nph.13598 – (On our blog)

Herde O., Peña-Cortés H., Willmitzer L., Fisahn J. (1997) – Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. – Plant Cell Environ. 20: 136,-141.

Hernandez M. J., Montes F., Ruiz F., Lopez G., Pita P. (2016) – The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes – Ann Bot first published online April 6, 2016doi:10.1093/aob/mcw031 – Abstract, Full Text (HTML), Full Text (PDF), http://aob.oxfordjournals.org/content/early/2016/04/05/aob.mcw031.abstract – (On our blog)

Héroult A., Lin Y.-S., Bourne A., Medlyn B. E.Ellsworth D. S. (2013) – Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. – Plant Cell Environ. 36, 262274 (2013). – doi: 10.1111/j.1365-3040.2012.02570.x.  – CASISIPubMedArticle – (On our blog)

Hetherington A. M. (2001) – Guard cell signaling. – Cell 107: 711–714 CASISIPubMedArticleCrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog)

Hetherington  A. M., Brownlee C. (2004) – The generation of Ca2+ signals in plants. Annu. Rev. Plant Biol. 55, 401427. – CrossRefPubMedCAS | – (On our blog)

Hetherington A. M., Woodward F. I. (2003) – The role of stomata in sensing and driving environmental change. Nature, 2003; 424: 901–908. – doi: 10.1038/nature01843 – PubMed Abstract | CrossRef Full Text | Google Scholar , MedlineWeb of Science– (On our blog).

Hettenhausen C., Baldwin I. T.,Wu J. (2012) – Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000. – Plant Physiol. 158, 759–776. doi: 10.1104/pp.111.190074 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Hew C. S., Lee G. L., Wong S. C. (1980) – Occurrence of non-functional stomata in the flowers of tropical orchids – Ann. Bot. 46: 195-201 –  (On our blog : https://plantstomata.wordpress.com/2017/07/19/non-functional-stomata-in-the-flowers-of-tropical-orchids/)

Hill K. E., Guerin G. R., Hill R. S., Watling J. R. (2015) – Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp.angustissima along a latitude gradient in southern Australia – Australian Journal of Botany 62(8) 657-665 http://dx.doi.org/10.1071/BT14204 – http://www.publish.csiro.au/paper/BT14204.htm – (On our blog)

Hills A., Chen Z. H., Amtmann A., Blatt M. R., Lew V. L. (2012) – OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. – Plant Physiol 159: 1026–1042 – CrossRefCAS |

Hirasawa T., Wakabayashi K., Touya S., Ishihara K. (1995) -Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants (Helianthus annuus L.) grown under different conditions. – Plant Cell Physiol. 36: 955- 964, 1995.

Hirano E. (1931) – Relative abundance of stomata in Citrus and some related genera. – Bot.Gaz. 92:296-310.

Hochberg U., Windt C. W., Ponomarenko A., Zhang Y.-J., Gersony J., Rockwell F. E., Holbrook N. M. (2017) – Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems. – Plant Physiol 174: 764–775 –

Hodgson J. G., Sharafi M., Jalili A., Díaz S., Montserrat-Martí G., Palmer C., Cerabolini B., Pierce S., Hamzehee B., Asri Y., et al (2010) – Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? – Ann Bot (Lond) 105: 573–584

Hofmann N. R. (2008) – They All Scream for ICE1/SCRM2: Core Regulatory Units in Stomatal Development – The Plant Cell, July 2008 vol. 20 no. 7 1732 – http://www.plantcell.org/content/20/7/1732.full – (On our blog)

Hofstra G., Hesketh J. D. (1969) – The effect ofd temperature on stomatal aperture in different species – Canad. J. Bot. 47 : 1307-1310.

Holbrook N. M., Shashidhar V. R., James R. A., Munns R. (2002) -Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. – J Exp Bot. 2002 Jun;53(373):1503-1514. – doi:10.1093/jexbot/53.373.1503 – CASPubMedArticle – (On our blog)

Holland N., Richardson A. D. (2009) – Stomatal Length Correlates with Elevation of Growth in Four Temperate Species. – Journal of Sustain Forestry, 28, 63-73.
http://dx.doi.org/10.1080/10549810802626142 – (On our blog).

Hollinger, D. Y. (1987) – Photosynthesis and stomatal conductance patterns of two fern species from different forest understoreys. J. Ecol. 75: 925-935 (CrossRef, ISI).

Holroyd G. H., Hetherington A. M., Gray J. E. (2002) A role for the cuticular waxes in the environmental control of stomatal development. – New Phytologist 153: 433439. –DOI: 10.1046/j.0028-646X.2001.NPH326.doc.x – CrossRef |CAS | – (On our blog)

Homann U. (1998) – Fusion and fission of plasma-membrane material accommodates for osmotically induced changes in the surface area of guard-cell protoplasts. – Planta 206: 329–333

Homann U., Thiel G. (1999) Unitary exocytotic and endocytotic events in guard cell protoplasts during osmotically driven Volume changes. – FEBS Letters 460: 495499. – CrossRef |PubMed |CAS | – (On our blog)

Honour S. J., Webb A. A. R., Mansfield T. A. (1995) – The responses of stomata to abscisic-acid and temperature are interrelated. – Proc. R. Soc. B Biol. Sci. 259, 301–306. doi: 10.1098/rspb.1995.0044 – CrossRef Full Text | Google Scholar – (On our blog)

Hopper D. W., Ghan R., Cramer G. R. (2014) – A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes – Horticulture Research 1, Nr.: 2  – doi:10.1038/hortres.2014.2 – https://www.nature.com/articles/hortres20142 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/stomatal-response-differences-in-grapevine-genotypes/)

Hoover W. S. (1986) – Stomata and stomatal clusters in Begonia: Ecological response in 2 Mexican species. – Biotropica 18:16–21.

Hõrak H., Kollist H., Merilo E. (2017) – Fern stomatal responses to ABA and CO2 depend on species and growth conditions. – Plant Physiol 174: 672–679 –

Hõrak H.Sierla M.Tõldsepp K.Wang C.Wang Y.-S.Nuhkat M.Valk E.Pechter P., Merilo E. Salojärvi J.Overmyer K.Loog M.Brosché M.Schroeder J. I., Kangasjärvi J., Kollist H. (2016) – A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO2-Induced Stomatal Closure – The Plant Cell October 2016 vol. 28 no. 10 2493-2509 – doi: http://dx.doi.org/10.1105/tpc.16.00131 – http://www.plantcell.org/content/28/10/2493.short?rss=1 – (On our blog)

Hornberg C., Weiler E.W. (1984) – High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. – Nature 310, 321324. – CrossRef |CAS | – (On our blog)

Hoshika Y., Katata G., Deushi M., Watanabe M., Koike T., Paoletti E. (2015) – Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests. – Sci. Rep. 5, 09871; doi: 10.1038/srep09871 (2015). – (On our blog : https://plantstomata.wordpress.com/2016/07/04/carbon-and-water-balance-of-temperate-deciduous-forests-and-stomatal-sluggishness/)

Hoshika Y., Watanabe M., Carrari E., Paoletti E., Koike T. (2017) – Ozone-induced stomatal sluggishness changes stomatal parameters of Jarvis-type model in white birch and deciduous oak – Plant Biology, accepted for publication – DOI: 10.1111/plb.12632 – (On our blog : https://plantstomata.wordpress.com/2017/09/24/ozone-induced-stomatal-sluggishness-changes-stomatal-parameters/)

Hosoi S., Iino M., Shimazaki K. (1988) – Outward rectifying K+ channel in stomatal guard cell protoplasts. – Plant Cell Physiol. 29:907–911

Hosy E., Vavasseur A., Mouline K., Dreyer I., Gaymard F., Porée F.Boucherez J., Lebaudy A., Bouchez D., Véry A.-A., Simonneau T. Thibaud J.-B., Sentenac H. (2003) – The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration – PNAS 2003 100 (9) 55495554; doi:10.1073/pnas.0733970100 – http://www.pnas.org/content/100/9/5549.full – (On our blog)

Hoth S., Hedrich R. (1999) – Distinct molecular bases for pH sensitivity of guard cell K+ channels KST1 and KAT1. – Journal of Biological Chemistry 274: 11599–11603.

Hronková M.Wiesnerová D.Šimková M. Skůpa P.Dewitte W.Vráblová M.,  Zažímalová E.Šantrůček J. (2015) – J. Exp. Bot. (2015) 66 (15):4621-4630.doi: 10.1093/jxb/erv233 – http://jxb.oxfordjournals.org/content/66/15/4621.abstract – (On our blog)

Hsiao T. C. (1976) – Stomatal ion transport. In Encyclopedia of Plant Physiology. II. Transport in Plants. Part B. Tissues and organs.  Edited by U. Lutthe and G. Pitman.  Springer, Berlin, Heidelberg, New York.  Chapt. 3.

Hsiao T. C., Allaway W. G., Evans L. T. (1973) – Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba – Plant Physiol. 51: 82-88.

Hu H., Boisson-Dernier A., Israelsson-Nordstrom M., Bohmer M., Xue S., Ries A., Godoski J., Kuhn J. M., Schroeder J. I. (2010) – Carbonic anhydrases are upstream regulators of CO2- controlled stomatal movements in guard cells, Nat. Cell Biol., 12, 87–93 –

Hu H., Rappel W.-J., Occhipinti R., Ries A., Böhmer M., You L. (2015) – Distinct Cellular Locations of Carbonic Anhydrases Mediate CO2 Control of Stomatal Movements – Plant Physiology  08/2015; 169(2). DOI: 10.1104/pp.15.00646 -Source: PubMed– https://www.researchgate.net/publication/280911463_Distinct_Cellular_Locations_of_Carbonic_Anhydrases_Mediate_CO2_Control_of_Stomatal_Movements – (On our blog)

Huang R. F., Wang X. C., Lou C. H. (2000) – Cytoskeletal inhibitors suppress the stomatal opening of Vicia faba L. induced by fusicoccin and IAA. – Plant Sci. 156: 65-71, 2000.

Huang Y. -C., Wu H.-C., Wang Y.-D., Liu C.-H., Lin C.-C., Luo D.-L., Jinn T.-L. (2017) – PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement. – Plant Physiol 174: 748–763 –

Huang Z.Xu Z.Blumfield T. J.Bubb K. (2008)Variations in relative stomatal and biochemical limitations to photosynthesis in a young blackbutt (Eucalyptus pilularis) plantation subjected to different weed control regimes. – Tree Physiology2008;28:9971005.

Hubbard K. E., Hotta C. T., Gardner M. J., Bark S. J., Dalchau N., Dontamala S., Dodd A. N., Webb A. A. R. (2007) – Circadian Rhythms in Stomata: Physiological and Molecular Aspects – in Rhythms in Plants, Chapter 8, 157-177 – Editors: Prof. Dr. Stefano MancusoDr. Sergey Shabala, Springer Verlag, Heidelberg, ISBN 978-3-540-68069-7 – https://www.microsoft.com/en-us/research/publication/circadian-rhythms-stomata-physiological-molecular-aspects/ – (On our blog : https://plantstomata.wordpress.com/2017/09/23/the-physiological-mechanisms-by-which-the-circadian-clock-may-regulate-stomatal-movements/)

Hubbard K. E., Siegel R. S., Valerio G., Brandt B., Schroeder J. I. (2012) –  Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. – Annals of Botany, 2012, 109,(1) 5 – 17; doi: 10.1093/aob/mcr252 – http://aob.oxfordjournals.org/content/109/1/5 – (On our blog)

Hughes J., Hepworth C., Dutton C., Dunn J. A., Hunt L., Stephens J., Waugh R., Cameron D. D., Gray J. E. (2017) – Reducing stomatal density in barley improves drought tolerance without impacting on yield. – Plant Physiol 174: 776–787 –

Humbert C., Guyot M. (1969) – Action de la colchicine sur le développement des stomates paracytiques – Bull. Soc. Bot. Fr. 116: 301-310 – DOI: 10.1080/00378941.1969.10838672 – http://www.tandfonline.com/doi/abs/10.1080/00378941.1969.10838672 – (On our blog : https://plantstomata.wordpress.com/2017/09/05/colchicine-tropocinesis-and-stomatal-differentiation-in-french/)

Humble G. D., Hsiao T. C. (1969) – Specific requirement of potassium for light-activated opening of stomata in epidermal strips. – Plant Physiol 44: 230–234 [PMC free article] [PubMed] – (On our blog).

Humble G. D., Hsiao T. C. (1970) – Light-dependent influx of potassium of guard cells during stomatal opening and closing. Plant Physiol. 46, 483–487 (1970). – Abstract/FREE Full Text

Humble G. D., Raschke K. (1971) – Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. – Plant Physiol. 48: 447–453 [PMC free article] [PubMed] – (On our blog)

Hunt L., Amsbury S., Baillie A., Movahedi M., Mitchell A., Afsharinafar M., Swarup K., Denyer T., Hobbs J. K., Swarup R. et al. (2017) – Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. – Plant Physiol 174: 689–699 –

Hunt L., Gray J. E. (2009) – The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. – Curr Biol 19:864– 869. -10.1016/j.cub.2009.03.069.- CrossRefMedlineWeb of ScienceGoogle Scholar – View ArticlePubMed – (On our blog)

Hunt L., Gray J. E. (2010) – BASL and EPF2 act independently to regulate asymmetric divisions during stomatal development. – Plant Signal Behav. 5:278–280.

Hunter G. (2013) – Evaluating Eriogonum corymbosum tolerance to frequent irrigation and evaluating its significant morphological variations for potential cultivars – Thesis UTAH STATE UNIVERSITY, 2013, 76 pages; 1541717.

Huntingford, C., Smith, D. M., Davies, W. J., Falk, R., Sitch, S., Mercado, L. M. (2015) – Combining the [ABA] and net photosynthesis-based model equations of stomatal conductance – Ecological Modelling, Volume 300, 24 March 2015, Pages 81–88. (http://www.sciencedirect.com/science/article/pii/S0304380015000174) – (On our blog).

Hurst A. C., Meckel T., Homann U., Thiel G. (2004) – Traffdicking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba – Plant J. 37: 391-397 – [PubMed]

Husby C. E., Delatorre-Herrera J., Oberbauer S., Grau A., Novara L. (2014) – Stomatal conductance patterns of Equisetum giganteum stems in response to environmental factors in South America – Botany, 2014, 92(10): 701-712, 10.1139/cjb-2013-0312. (http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2013-0312#.VQg8jhDF-6E) – http://www.nrcresearchpress.com/doi/abs/10.1139/cjb-2013-0312?journalCode=cjb – (On our blog)

Hwang J. U., Suh S., Yi H. J., Kim J., Lee Y. (1997) Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L. – Plant Physiology 115: 335342. – PubMed |CAS[PMC free article] – (On our blog)

Ichie T., Inoue Y., Takahashi N., Kamiya K., Kenzo T. (2016) – Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest – Journal of Plant Research, 2016, pp 1-11 – http://link.springer.com/article/10.1007%2Fs10265-016-0795-2 –  (On our blog)

Ichida A. M., Pei Z. M., Baizabal-Aguirre V. M., Turner K. J., Schroeder J. I. (1997) – Expression of a Cs+-resistant guard cell K+ channel confers Cs+-resistant, light-induced stomatal opening in transgenic Arabidopsis. Plant Cell 9: 1843–1857.

Idso S.B. (1987) – An apparent discrepancy between porometry and thermometry relative to the dependence of plant stomatal conductance on air vapor pressure deficit –  Agr. and Forest Meteor, 40, 105 – 106.

Ilan N., Schwarz A., Moran N. (1994) – External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba. – Journal General Physiology 103: 807–831.

Iljin W. S. (1914) – Die Regulierung der Spaltöffnungen in Zusammenhang mit der Veränderung des osmotischen Druckes – Beih. z. Bot. Zentralbl. 32: 15-35.

Iljin W. S. (1933) – über Öffnen der Stomata bei starken Welken der Pflanzen – Jahrb. f. wiss. Bot. 77: 220-251.

Iljin W. S. (1957) – Drought resistance in plants and physiological processes. – A. Rev. Pl. Physiol, 8, 257. – CrossRefCAS | – (No abstract).

Imamura S. (1943) – Untersuchungen über den Mechanismus der Turgorschwankung der Spaltöffnungsschliesszellen – Jap. J. Bot. 12: 251-346.

Imes D., Mumm P., Böhm J., Al-Rasheid K. A. S., Marten I., Geiger D., Hedrich R. (2013) – Open Stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. – Plant J. 74, 372–382. doi: 10.1111/tpj.12133 – PubMed Abstract | CrossRef Full TextMedlineWeb of Science – (On our blog)

Inada S., Ohgishi M., Mayama T., Okada K., Sakai T. (2004) – RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. – Plant Cell 16, 887–896 (2004). – https://www.ncbi.nlm.nih.gov/pubmed/15031408?dopt=Abstract&holding=npg – (On our blog : https://plantstomata.wordpress.com/2016/12/07/phototropin-rpt2-nph3-and-stomatal-opening/)

Inamdar J. A. (1970) – Action of growth regulators on the development of stomata of Abelmoschus esculentus Moench. – Flora 159: 497-502 – (On our blog  : https://plantstomata.wordpress.com/2017/07/14/growth-regulators-and-the-development-of-stomata-of-abelmoschus-okra-malvaceae/)

Inamdar J. A., Gangadhara M. (1975) – Effect of Growth Regulators on Stomatal Structure and Development in the Cotyledons of Lagenaria leucantha (Duch.) Rusby – Australian Journal of Botany 23(1) 13 – 25 – http://dx.doi.org/10.1071/BT9750013 – http://www.publish.csiro.au/bt/BT9750013 – (On our blog)

Inamdar J. A., Gangadhara M., Rao M. S. (1975) – Effect of Growth Regulators on Stomatal Structure and Development in the Cotyledons of Cucurbita maxima Duch. – Geobios 1: 113-117 –

Incoll L. D., Jewer P. C. (1987) Cytokinins and stomata. In: Zeiger E., Farquhar G. D.Cowan I. R., eds. Stomatal function. Stanford, CA, USA: Stanford University Press, 281292.

Incoll L. D., Whitelam G. C. (1977) – Effect of kinetin on stomata of grass Anthephora pubescens nees. – Planta 137, 243–245. doi: 10.1007/Bf00388157 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog).

Indiana University (2011) – Rising CO2 is causing plants to release less water to the atmosphere, researchers say – https://phys.org/news/2011-03-co2-atmosphere.html – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stomata-and-co2-4/)

Inoue H., Katoh Y. (1987) – Calcium inhibits ion-stimulated stomatal opening in epidermal strips of Commelina communis L. – Journal of Experimental Botany 38, 142149. – CrossRefCAS | – (On our blog)

Inoue S.-i., Kinoshita T. (2017) – Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. – Plant Physiol 174: 531–538 –

Inoue S.-i., Takemiya A., Shimazaki K. (2010) – Phototropin signaling and stomatal opening as a model case. – Curr. Opin. Plant Biol. 13, 587593 (2010). -doi:10.1016/j.pbi.2010.09.002 –  CASPubMedArticle – (On our blog)

Irving H. R., Gehring C. A., Parish R. W. (1992) Changes in cytoplasmic pH and calcium in guard cells precede stomatal movements. – Proc. Natl Acad. Sci. USA, 89, 17901794. – CrossRef |PubMed | [PMC free article] – (On our blog)

Ishihara K., Sago R., Ogura T. (1978) – The Relationship between Environmental Factors and Behaviour of Stomata in the Rice Plants : V. Effects of partial excision of root system on diurnal course of stomatal aperture – Japanese Journal of Crop Science
Vol. 47 (1978) No. 4 P 499-505 – http://doi.org/10.1626/jcs.47.499 – https://www.jstage.jst.go.jp/article/jcs1927/47/4/47_4_499/_article – (On our blog: https://plantstomata.wordpress.com/2017/09/23/effects-of-partial-excision-of-root-system-on-diurnal-course-of-stomatal-aperture/)

Islam M. M., Hossain M. A., Jannat R., Munemasa S., Nakamura Y., Mori I. C., Murata Y. (2010) – Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. – Plant Cell Physiol. 51: 1721–1730 – doi: 10.1093/pcp/pcq131. – [PubMed] – (On our blog)

Ismail M. R., Yusoff M. K., Mahmood M. (2004) – Growth, water relations, stomatal conductance and proline concentration in water stressed banana (Musa sp.) plants. Asian J. Plant Sci., 3: 709-713. (http://scialert.net/abstract/?doi=ajps.2004.709.713) – (On our blog).

Isner J.-C., Xu Z., Costa J. M., Monnet F., Batstone T., Ou X., Deeks M. J., Genty B., Jiang K., Hetherington A. M. (2017) – Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness – New Phytol. – doi:10.1111/nph.14655 – http://onlinelibrary.wiley.com/doi/10.1111/nph.14655/abstract – (On our blog : https://plantstomata.wordpress.com/2017/06/26/stomatal-response-to-darkness-and-the-scarwave-complex/)

Israelsson M., Siegel R. S., Young J., Hashimoto-Sugimoto M., Iba K., Schroeder J. I. (2006) – Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. – Current Opinion in Plant Biology 9, 654663. – doi:10.1016/j.pbi.2006.09.006 –CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/06/30/aba-co2-and-ca2-in-stomata/)

Itai C., Roth-Bejerano N., Zvilich M. (1982) – Involvement of epidermal cells in stomata movement: The effect of ABA – Physiologia Plantarum, 55: 35–38. doi:10.1111/j.1399-3054.1982.tb00281.x – Wiley Online Library – (On our blog : https://plantstomata.wordpress.com/2016/07/01/epidermal-cells-thus-seem-to-play-a-role-in-stomatal-movement/)

Iura M. (1934) – On the size of the guard cells, as well as the number of chloroplasts in them in the leaf of Brassica. (Japanese) –

Ivashikina N.Deeken R.Fischer S.Ache P.Hedrich R. (2005) – AKT2/3 subunits render guard cell K+channels Ca2+ sensitive. – J Gen Physiol 125:483492. – doi: 10.1085/jgp.200409211 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/01/akt23-subunit-constitutes-the-ca2-sensitivity-of-the-guard-cell-k-uptake-channel-in-stomata/)

Jackson M.B., Hall K.C. (1987) – Early stomatal closure in water-logged pea plants is mediated by abscisic acid in the absence of foliar water deficits – Plant Cell Environ. 10: 121–130

Jacob T., Ritchie S., Assmann S. M., Gilroy S. (1999) – Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. – Proc. Natl. Acad. Sci. USA 96: 12192–12197 –  [PMC free article] [PubMed], bstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/01/aba-signal-transduction-in-stomata-is-mediated-by-pld-activity/)

Jacobsen S.-E.., Liu F., Jensen C. R. (2009) – Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). – Scientia Horticulturae 122(2): 281-287 – DOI: 10.1016/j.scienta.2009.05.019 – http://static-curis.ku.dk/portal/files/15292895/Jacobsen_SE.pdf – (No abstract available) – On our blog : https://plantstomata.wordpress.com/2017/09/19/abas-role-for-regulation-of-stomata-under-drought-in-quinoa/)

Jaiwal P. K., Bhamble S. (1983) – Influence of Morphactin on Leaf Morphology and Stomatal Apparatus of Vigna radiata (L.) Wilczek – Giornale Botanico Italiano 117(1-2):39-46 – https://www.researchgate.net/publication/249034444_Influence_of_Morphactin_on_Leaf_Morphology_and_Stomatal_Apparatus_of_Vigna_radiata_L_Wilczek – (On our blog : https://plantstomata.wordpress.com/2016/07/26/the-effect-of-morphactin-on-stomata/)

Jalakas P., Huang Y.-C., Yeh Y.-H., Zimmerli L., Merilo E., Kollist H., Brosché M. (2017) – The role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis stomatal responses is beyond ABA signaling. – Plant Physiol 174: 665–671 –

Jammes F., Song C., Shin D., Munemasa S., Takeda K., Gu D., Choa D., Lee S., Giordo R.,  Sritubtim S., Leonhardt N., Ellis B. E., Murata Y., Kwak J. M. (2009) – MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. – Proc. Natl. Acad. Sci. U.S.A. 106, 20520–20525. doi: 10.1073/pnas.0907205106 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Jammes F., Yang X., Xiao S., Kwak J. M. (2011) – Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. – Plant Signal. Behav. 6, 1875–1877. doi: 10.4161/psb.6.11.17933 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Janowska B., Mansfeld N., Andrzejak R. (2014) – Effect of BA and GA3 on the Morphological Features of Stomata in the Leaf Epidermis of the Zantedeschia albomaculata cv. ‘Albomaculata’ – Not Bot Horti Agrobo, 2014, 42(1): 104-108.(http://www.notulaebotanicae.ro/index.php/nbha/article/download/9318/7687) – (On our blog).

Jarman P. D. (1974) – The difTusion of carbon dioxide and water vapour through stomata. Journal of Experimental Botany 25: 927-936 –

Jarvis P. G. (1976) – The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. – Philosophical Transactions of the Royal Society London, Series B 273, 593610. –  CrossRefCAS |

Jarvis P. G. (1980) – Stomatal response to water stress in conifers. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperatures stress. John Wiley and Sons, pp 105- 122

Jarvis R. G., Mansfield T. A. (1980) – Reduced stomatal responses to light, carbon dioxide and abscisic acid in the presence of sodium ions. –  Plant, Cell and Environment, 3, 279283. – CAS |

Jarvis P. G., Mansfield T. A. (1981) – Stomatal Physiology. – Edn. Cambridge University Press, London. p 89-130. – https://books.google.be/books?hl=en&lr=&id=Y1GCxYwNapMC&oi=fnd&pg=PA51&ots=rpWM-Jxvz-&sig=e3vWl4BSP5ZMUgdrtRAMtBFuDEU&redir_esc=y#v=onepage&q&f=false – (On our blog : https://plantstomata.wordpress.com/2017/02/15/physiology-of-stomata/)

Jarvis P. G., Morison J. I. L. (1981) – The control of transpiration and photosynthesis by the stomata. In Stomatal Physiology (eds P.G. Jarvis & T.A. Mansfield), pp. 247–279. – Cambridge University Press, New York.

Jarvis P. G., Rose C. W., Begg J. E. (1967) – An experimental and theoretical comparison of viscous and diffuse resistance to gas flow through amphistomatous leaves – Agr. Metorol. 4:103-117.

Jeffree C. E., Johnson R. P. C., Jarvis P. G. (1971) – Epicuticular wax in the stomatal antechamber of sitka spruce and its effect on the diffusion of water vapour and carbon dioxide – Planta 98: 1-10.

Jewaria P. K., Hara T., Tanaka H., Kondo T., Betsuyaku S., Sawa S., Sakagami Y., Aimoto S., Kakimoto T. (2008) – Differential effects of peptides stomagen, EPF1, and EPF2 on activation of the MAP kinase MPK6 and the SPCH protein level – Plant Cell Physiol., vol. 49(6), pp. 934-943, 2008.

Jezek M., Blatt M. R. (2017) – The membrane transport system of the guard cell and its integration for stomatal dynamics. – Plant Physiol 174: 487–519 -,

Jia W., Zhang J. (2008) – Stomatal movements and long-distance signalling in plants – Plant Signal Behav. 3: 772–777 – Google Scholar CrossRef

Jiang C.-J., Nakajima N., Kondo N. (1996) – Disruption of microtubules by abscisic acid in guard cells of Vicia faba L. – Plant Cell Physiol. 37: 697-701, 1996.

Jibrill S. M., Jakada B. H. (2015) – Leaf Epidermal Structures and Stomata Ontogeny in Some Members of the Family Cucurbitaceae – International Journal of Plant & Soil Science 9(2): 1-9, 2016; Article no.IJPSS.20615 – DOI: 10.9734/IJPSS/2016/20615 – Jakada922015IJPSS20615.pdf – (On our blog)

Joachimiak A., Grabowska-Joachimiak A. (2000) Stomatal cell length and ploidy level in four taxa belonging to the Phleum sect. Phleum. – Acta Biologica Cracoviensia Series Botanica 42: 103107.

John Innes Centre (2017) – Changing of the guard: Research sheds light on how plants breathe – Science Daily 2017-09 – https://www.sciencedaily.com/releases/2017/09/170921101743.htm – (On our blog : https://plantstomata.wordpress.com/2017/09/22/the-first-full-3d-model-of-a-guard-cell/)

Johnson C. (2001) – The getting of plant wisdom – ABC Science 2001 (http://www.abc.net.au/science/articles/2001/05/10/293607.htm) – (On our blog)

Johnson D. M., McCulloh K. A., Meinzer F. C., Woodruff D. R., Eissenstat D. M. (2011) – Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. – Tree Physiol. 2011 Jun;31(6):659-68. doi: 10.1093/treephys/tpr050. Epub 2011 Jun 30. – PMID: 21724585 – https://www.fs.usda.gov/treesearch/pubs/39940 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/stem-and-leaf-vulnerability-to-hydraulic-dysfunction-and-measuring-in-situ-daily-patterns-of-stomatal-conductance-in-the-field/)

Johnson D. M., Woodruff D. R., McCulloh K. A., Meinzer F. C. (2009)
– Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. – Tree Physiology 29, 879–887. – CrossRef  CAS

Johnson R. (2007) – Control of Leaf Stomatal Opening – Colby J. Res. Meth. 9: 14-17 – https://www.colby.edu/academics_cs/courses/BI214/upload/lab5-stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2017/09/20/techniques-for-analysis-of-stomatal-aperture/)

Johnsson M., Issaias S., Brogardh T., Johnsson A. (1976) – Rapid, blue-light-induced transpiration response restricted to plants with grass-like stomata. – Physiol Plant 36:  229–232.

Jones H. G. (1985) – Partitioning stomatal and non-stomatal limitations to photosynthesis. – Plant, Cell and Environment 8, 95104. – DOI: 10.1111/j.1365-3040.1985.tb01227.x – Wiley Online Library | – (On our blog)

Jones H.G. (1998) – Stomatal control of photosynthesis and transpiration. – J. Exp. Bot., 49: 387-398. (http://jxb.oxfordjournals.org/content/49/Special_Issue/387.short) – (On our blog).

Jones H. G. (1999) – Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22: 1043–1055. – DOI: 10.1046/j.1365-3040.1999.00468.x – CrossRef – (On our blog)

Jones H. G.Stoll M.Santos T.de Sousa C.Chaves M. M.Grant O. M. (2002) – Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. – Journal of Experimental Botany 2002;53:22492260. – Abstract/FREE Full Text

Jones H. G., Sutherland R.A. (1991) – Stomatal control of xylem embolism – Plant Cell Environ. 6: 607–612 – Google Scholar CrossRef

Jones H. G., Sutherland R. A. (1991) – Stomatal control of xylem embolism. – Plant Cell Environ. 11, 111–121 (1991).

Jones L., Milne J. L., Ashford D., McCann M. C., McQueen-Mason S. J. (2005) – A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species. – Planta 221: 255–264

Jones L., Milne J. L., Ashford D., McQueen-Mason S. J. (2003) – Cell wall arabinan is essential for guard cell function. – Proceedings of the National Academy of Sciences of the United States of America 100, 11783-11788.

Jones R. J.
, Mansfield T. A. (
1970) Suppression of stomatal opening in leaves treated with abscisic acid. Journal of Experimental Botany 21: 714719. – doi: 10.1093/jxb/21.3.714 – CrossRef |CAS | – (On our blog)

Jordan G., Carins-Murphy M., Brodribb T. (2014) – Acclimation to humidity modifies the link between leaf size and the density of veins and stomata – (http://www.brodribblab.org.au/publication/acclimation-to-humidity-modifies-the-link-between-leaf-size-and-the-density-of-veins-and-stomata/) – (On our blog).

Jordan G. J., Carpenter R. J., Koutoulis A., Price A., Brodribb T. J. (2015) – Environmental adaptation in stomatal size independent of the effects of genome size. – New Phytol. 2015 Jan;205(2):608-17. doi: 10.1111/nph.13076. Epub 2014 Sep 30. – PMID: 25266914 – Free PMC Article – (On our blog).

Jordan G. J. Weston P. H.Carpenter R. J. Dillon R. A., Brodribb T. J. (2008) – The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae – Am. J. Bot. (2008) vol. 95 no. 5 521-530. (http://www.amjbot.org/content/95/5/521.full) – (On our blog).

Jordan W. R., Brown K. W., Thomas J. C. (1975) – Leaf age as a determinant in stomatal control of water loss from cotton during water stress. – Plant Physiology 56:
595599.

Jossier M., Kroniewicz L., Dalmas F., Le Thiec D., Ephritikhine G., Thomine S., Barbier-Brygoo H., Vavasseur A., Filleur S., Leonhardt N. (2010) – The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. – Plant J. 64, 563576(2010). – doi: 10.1111/j.1365-313X.2010.04352.x. – PubMedArticle – (On our blog)

Joudoi T., Shichiri Y., Kamizono N., Akaike T., Sawa T., Yoshitake J., Yamada N., Iwai S. (2013) –  Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis . The Plant Cell 25, 558571. – doi: http://dx.doi.org/10.1105/tpc.112.105049 – Abstract/FREE Full Text – (On our blog)

Jover-Gil S.Candela H.Robles P.Aguilera V.Barrero J. M.Micol J. L., Ponce M. R. (2012) – The MicroRNA Pathway Genes AGO1, HEN1and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis – Plant Cell Physiol (2012) 53 (7):1322-1333.doi: 10.1093/pcp/pcs077 – http://pcp.oxfordjournals.org/content/53/7/1322.abstract – (On our blog)

Jung J.-Y., Kim Y.-W., Kwak J. M., Hwang J.-U., Young J., Schroeder J. I., Hwang I., Lee Y. (2002) – Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. – Plant Cell 14: 2399–2412 –  [PMC free article] [PubMed] – (On our blog)

Kagan M. L., Sachs T. (1991) – Development of immature stomata: evidence for epigenetic selection of a spacing pattern – Dev. Biol. 146:100-105.

Kammer P. M., Steiner J. S., Schöb C. (2015)Arabis alpina and Arabidopsis thaliana have different stomatal development strategies in response to high altitude pressure conditions – Alpine Botany, 125(2):101-112. – http://doi.org/10.5167/uzh-112101 – http://www.zora.uzh.ch/112101/– (On our blog)

Kamululdeen J., Yunusa I., Bruhl  J., Prychid C., Zerihun A. (2016) – Plasticity in stomatal density and morphology in okra and tomatoes in response to soil and water salinity, pp. 45-53. – http://doi.org/10.17660/ActaHortic.2016.1112.7 – (On our blog)

Kanaoka M. M., Pillitteri L. J., Fujii H., Yoshida Y., Bogenschutz N. L., Takabayashi J., Zhu J-K., Torii K. U. (2008) – SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. – Plant Cell 20:1775–1785. – 10.1105/tpc.108.060848. – PubMed CentralView ArticlePubMed – Abstract/FREE Full Text – (On our blog)

Kanemasu E. T., Thurtell G. W., Tanner C. B. (1969) – Design, calibration and field use of a stomatal diffusion porometer – Plant Physiol. 44: 881-885 –

Kanemasu E. T., Tanner C. B. (1969) – Stomatal diffusion resistance of snap beans. I. Influence of leaf-water potential – Plant Physiol. 4: 1547-1552 –

Kanemasu E. T., Tanner C. B. (1969) – Stomatal diffusion resistance of snap beans. II. Effect of light – Plant Physiol. 44: 1542-1546 –

Kang C.-Y., Lian H.-L., Wang F.-F., Huang J.-R., Yang H.-Q. (2009) – Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. – Plant Cell 21: 26242641. – bstract/FREE Full Text – (On our blog)

Kareltschikoff S. (1866) – Ueber die Verteilung der Spaltoeffnungen auf den Blaettern – Bull. Soc. imp. naturalistes de Moscou. –

Kardel F., Wuyts K., Babanezhad M., Vitharana U. W. A.,Wuytack T., Potters G., Samson R. (2010) – Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. – Environmental pollutionISSN 0269-7491158:3(2010), p. 788-794.

Karlsson P. E., Assmann S. M. (1990) – Rapid and specific modulation of stomatal conductance by blue-light in ivy (Hedera helix): an approach to assess the stomatal limitation of carbon assimilation. – Plant Physiol 94440–447 [PMC free article] [PubMed] – (On our blog)

Karvé A. (1961) – Die Wirkung verschiedener Lichtqualitäten auf die Öffnungsbewegung der Stomata – Z. Bot. 49: 47-72.

Katul G., Manzoni S., Palmroth S., Oren R. (2010) – A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. – Ann Bot 105:431–442 – CrossRef PubMed PubMedCentral Google Scholar

Katul G .G., Palmroth S., Oren R. (2009) – Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. – Plant, Cell & Environment 32, 968979. – Wiley Online LibraryCAS |

Kaufman P. B., Cacsell S. J. (1963) – Striking features in the development of internodal epidermis in the oat plant (Avena sativa) – Michigan Bot. 2: 115-121.

Kaufman P. B.Petering L. B.Yocum C. S.Baic D. (1970) – Ultrastructural studies on stomata development in internodes of Avena sativa. – Amer. J. Bot. 57, 3349. – Google Scholar – http://www.jstor.org/stable/pdf/2440378.pdf?seq=1#page_scan_tab_contents – (On our blog)

Kaufman P. B.Petering L. B., Soni S. L. (1971) – Ultrastructural studies on cellular differentiation in internodal epidermis of Avena sativa – Phytomorphology 20 (3): 281-309 – (On our blog : https://plantstomata.wordpress.com/2017/03/20/ultrastructural-studies-on-stomata-in-avena-monocots/)

Kaufmann K. (1927) – Anatomie und Physiologie der Spaltöffnungsapparate mit verholtzten Schliesszellmembranen – Planta 3: 27-59

Kaufmann M. R.  (1976) – Stomatal response of Engelmann spruce to humidity, light, and water stress. – Plant Physiol 57: 898-901

Kaufmann M. R. (1979) – Stomatal control and development of water deficit in Engelmann spruce seedlings during drought. – Can J Forest Res 9 : 297-304

Kaufmann M. R.  (1982a) – Leaf conductance as a function of photosynthetic photon flux density and absolute humidity difference from leaf to air. – Plant Physiol 69: 1018-1022

Kaufmann M. R. (1982 b) – Evaluation of season, temperature, and water stress effects on stomata using a leaf conductance model. – Plant Physiol.  69: 1023-1026

Kaufmann M. R., Eckard A. N. (1977) – A portable instrument for rapidly measuring conductance and transpiration of conifers and other species. – Forest Sci 23 : 227-237

Kaufmann M. R., Levy Y. (1976) – Stomatal response of Citrus jambhiri to water stress and humidity – Physiol. Plant. 38: 105-108 –

Kebeish R., Niessen M., Oksaksin M., Blume C., Peterhaensel C. (2012) – Constitutive and dark-induced expression of Solanum tuberosum phosphoenolpyruvate carboxylase enhances stomatal opening and photosynthetic performance of Arabidopsis thaliana – Biotechnology and Bioengineering. 02/2012; 109(2):536-44. DOI: 10.1002/bit.23344 – PubMed – https://www.researchgate.net/publication/51682200_Constitutive_and_dark-induced_expression_of_Solanum_tuberosum_phosphoenolpyruvate_carboxylase_enhances_stomatal_opening_and_photosynthetic_performance_of_Arabidopsis_thaliana – (On our blog)

Keel S. G., Pepin S., Leuzinger S., Korner C. (2007) – Stomatal conductance in mature deciduous forest trees exposed to elevated CO2. Trees, 21: 151-159. (http://link.springer.com/article/10.1007%2Fs00468-006-0106-y) – (On our blog).

Keerthisinghe S,   Nadeau J. A., Lucas J. R., Nakagawa T., Sack F. D. (2015) – The Arabidopsis leucine-rich repeat receptor-like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis. The Plant Journal DOI: 10.1111/tpj.12757

Kelle A. (1934) – Zur Physiologie der Nebenzellen des Spaltöffnungsapparates. – Diss. Münster

Keller B. U., Hedrich R., Raschke K. (1989) – Voltage-dependent anion channels in the plasma membrane of guard cells. – Nature  341: 450–453. – CrossRefWeb of ScienceGoogle Scholar – (On our blog)

Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z.,

Belausov E., Granot D. (2013) – Hexokinase mediates stomatal closure. – Plant Journal 75: 977988

Kelly W. B., Esser J. E., Schroeder J. I. (1995) – Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant J. 8:479–489. – CrossRefWeb of ScienceGoogle Scholar – (On our blog)

Kenzo T., Yoneda R., Sano M., Araki M., Shimizu A., Tanaka-Oda A., Chann S. (2012) – Variations in Leaf Photosynthetic and Morphological Traits with Tree Height in Various Tree Species in a Cambodian Tropical Dry Evergreen Forest – Japan Agricultural Research Quarterly: JARQ; ISSN:0021-3551; Vol.46; No.2: 167-180. (https://www.jstage.jst.go.jp/article/jarq/46/2/46_2_167/_pdf) – (On our blog).

Kerstiens G., Tych W., Robinson M. F., Mansfield T. A. (2002) Sodium-related partial stomatal closure and salt tolerance of Aster tripolium – New Phytologist, 2002, 153, 3, 509 – Wiley Online Library – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00330.x/full – (On our blog)

Ketellapper H. J. (1959) – The mechanism of stomatal movement – Amer. Jour. Bot.  46(3): 225-231 – (On our blog : https://plantstomata.wordpress.com/2017/03/24/stomatal-movement-mechanism/)

Ketellapper H. J. (1963) – Stomatal physiology – A. Rev. Pl. Physiol. 14: 249-270.

Khan M., Rozhon W., Bigeard J., Pflieger D., Husar S., Pitzschke A., Teige M.,
Jonak C., Hirt H., Poppenberger B. (2013) – Brassinosteroid-regulated GSK3/
Shaggy-like Kinases phosphorylate mitogen-activated protein (MAP) Kinase
Kinases, which control stomata development in Arabidopsis thaliana. – Journal of
Biological Chemistry 288: 75197527

Khazaei H., Monneveux P., Hongbo S., Mohammady S. (2010) – Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet. Resour. Crop Evol., 57: 307-314. (http://link.springer.com/article/10.1007%2Fs10722-009-9471-x) – (On our blog).

Khazaei H., O’Sullivan, Silanpää M. J., Stoddard F. L. (2014) – Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.) – DOI: 10.1007/s00122-014-2383-y – https://www.researchgate.net/publication/265342275_Use_of_synteny_to_identify_candidate_genes_underlying_QTL_controlling_stomatal_traits_in_faba_bean_Vicia_faba_L – (On our blog)

Khazaei H., Street K., Santanen A., Bari A., Stoddard F. L. (2013) – Do faba bean (Vicia faba L.) accessions from environments with contrasting seasonal moisture availabilities differ in stomatal characteristics and related traits? – Genet. Resour. Crop Evol. (2013) 60: 2343. – doi:10.1007/s10722-013-0002-46363 – http://link.springer.com/article/10.1007%2Fs10722-013-0002-4 – (On our blmog)

Khokon A. R., Okuma E., Hossain M. A., Munemasa S., Uraji M., Nakamura Y., Mori I. C., Murata Y. (2011) – Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. – Plant Cell Environ. 34, 434–443. doi: 10.1111/j.1365-3040.2010.02253.x – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Khokon A. R., Salam M. A., Jammes F., Ye W., Hossain M. A., Uraji M., Nakamura Y., Mori I. C., Kwak J. M., Murata Y. (2015) – Two guard cell MAPKs, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana – Plant Biology (Stuttg) 17, 946–952. doi: 10.1111/plb.12321 PubMed Abstract | CrossRef Full Text | Google Scholar –  (https://plantstomata.wordpress.com/page/11/). – (On our blog).

Kim D.J., Lee J.S. (2007) – Current theories for mechanism of stomatal opening: Influence of blue light: Mesophyll cells and sucrose. J. Plant Biol., 50: 523-556. (http://link.springer.com/article/10.1007%2FBF03030704) – (On our blog).

Kim M., Hepler P. K., Eun S. O., Ha K. S., Lee Y. (1995) – Actin filaments in mature guard cells are radially distributed and involved in stomatal movement. – Plant Physiol. 109: 1077–1084 [PMC free article] [PubMed] – (On our blog)

Kim S. J., Hahn E. J., Heo J. W., Paek K. Y. (2004) – Effects of LEDs on net photosynthetic rate, growth and leaf stomata of Chrysantemum plantlets in vitro. – Sci. Hort, 2004; 101: 143- 151.

Kim T. H., Böhmer M., Hu H. H., Nishimura N., Schroeder J. I. (2010) – Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. – Annu. Rev. Plant Biol. 61: 561-591 -doi: 10.1146/annurev-arplant-042809-112226 – PubMed Abstract | CrossRef Full Text | Google Scholar – (CrossRef, Medline). – (On our blog : https://plantstomata.wordpress.com/2016/02/16/abscisic-acid-co2-and-ca2-signaling-in-stomata/).

Kim T. W., Michniewicz M., Bergmann D. C., Wang Z. Y. (2012) – Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. – Nature 2012, 482:419-422. – 10.1038/nature10794. – PubMed Abstract | Publisher Full Text – (On our blog : https://plantstomata.wordpress.com/2015/10/27/regulation-of-stomatal-development-by-brassinosteroid/).

Kinoshita T., Doi M., Suetsugu N., Kagawa T., Wada M., Shimazaki K. (2001) – phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414: 656–660. –  doi:10.1038/414656a – CrossRef |PubMed |CAS | – (On our blog)

Kinoshita T., Nishimura M., Shimazaki K.-I. (1995) Cytoplasmic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. – Plant Cell, 7, 13331342. – DOI: 10.1105/tpc.7.8.1333 – CrossRef |PubMed | – (On our blog)

Kinoshita T., Shimazaki K. (1999) – Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. – EMBO J 18: 5548–5558. – DOI: 10.1093/emboj/18.20.5548 – PubMedArticleCAS – (On our blog)

Kinoshita T., Emi T.Tominaga M.Sakamoto K. Shigenaga A.Doi M., Shimazaki K.-i.(2003) – Blue-light- and phosphorylation-dependent binding of a 14-3-3 protein to phototropins in stomatal guard cells of broad bean. – Plant. Physiol. 133, 14531463 (2003). – DOI: 10.1104/p.103.029629 – CASPubMedArticle – (On our blog)

Kirschbaum M. U .F., Gross L. J., Pearcy R. W. (1988) -^Observed and modelled stomatal responses to dynamic light environments in the shade plant AIocasia macrorrhiza – Plant, Cell & Environment 11, 111121. – 

Kirschbaum M. U. F., Kuppers M., Schneider H., Giersch C., Noe S. (1998) – Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates. – Planta 204, 1626. – CrossRefCAS |

Kisselew N. (1925) – Veränderung der Durchlässigkeit des Protoplasmas der Schliesszellen im Zusammenhange mit stomatären Bewegungen – Beih. Bot. Centralbl. 41 (I): 287-306

Klein A., Itai C. (1989)  Is proline involved in stomata regulation of Commelina communis plants recovering from salinity stress? – Physiologia Plantarum, 1989,75 (3), 399 – 404 – CrossRef.

Klein T. (2014) – The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours – Functional Ecology Volume 28, Issue 6 December 2014  Pages 1313–1320 – DOI: 10.1111/1365-2435.12289 – http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12289/abstract – (On our blog)

Klemm G. (1956) – Untersuchungen über den Transpirations-widerstand der Mesophyllmembranen und seine Bedeutung als Regulator für die stomatäre Transpiration – Planta 47: 547-587.

Klermund C.Ranftl Q. L.Diener J.Bastakis E.Richter R., Schwechheimer C.  (2016) LLM-domain B-GATA transcription factors promote stomata development downstream from light signaling in Arabidopsis thaliana hypocotyls – The Plant Cell March 2016 vol. 28 no. 3 646-660

Klooster B., Palmer-Young E. (2004) – Water stress marginally increase stomatal density in E. canadensis, but not in A. geradii. Tillers, 5: 35-40 – (Absytact not found)

Klusener B., Young J. J., Murata Y., Allen G. J., Mori I. C., Hugouvieux V., Schroeder J. I. (2002) –  Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. – Plant Physiol. 130, 2152–2163. doi: 10.1104/pp.012187 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Knapp A. K., Cocke M., Hamerlynck E. P., Owensby C. E. (1994) – Effect of elevated CO2 on stomatal density and distribution in a C4 grass and a C4 forb under ®eld conditions. – Ann. Bot., 1994; 74 : 595±599.

Knapp A. K., Smith W. K. (1990a) – Contrasting stomatal responses to variable sunlight in two subalpine herbs. – Am. J. Bot. 77, 226–231. doi: 10.2307/2444644

Knapp A. K., Smith W. K. (1990b) – Stomatal and photosynthetic responses to variable sunlight. – Physiol. Plant. 78, 160–165. doi: 10.1111/j.1399-3054.1990.tb08731.x – CrossRef Full Text | Google Scholar – (On our blog)

Knecht G. N., O’Leary J. W. (1972) – The effect of light intensity on stomate number and density of Phaseolus vulgaris L. leaves – Bot. Gaz. 133: 132-134 –

Knight R. C. (1916) – On the use of the porometer in stomatal investigation – Ann. Bot. 30: 57-

Knight R. C. (1917) – The interrelations of stomatal aperture, leaf water content, and transpiration rate – Ann. Bot. 31: 221-

Koers S., Guzel-Deger A., Marten I., Roelfsema M. R. G. (2011) Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels – The Plant Journal, 2011, 68, 4, 670 – DOI: 10.1111/j.1365-313X.2011.04719.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04719.x/full – (On our blog)

Kohl F. G. (1895) – Zur Mechanik der Spaltöffnungsbewegungen – Bot. Beiblatt zur Leopoldina 2.

Kohl F. G. (1897) – Die Protoplasmaverbindungen der Spaltöffnungsschließzellen und der Moosblätter. – Bot. Centbl.72, 257–265. – Google Scholar

Köhler B., Blatt M. R. (2002) – Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. – Plant J. 32,185194. – DOI: 10.1046/j.1365-313X.2002.01414.x – Wiley Online LibraryPubMed – (On our blog)

Köhler B., Hills A., Blatt M. R. (2003) – Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. – Plant Physiol 131: 385–388

Koike T., Watanabe T., Toda H., Haibara K. (1998) – Morphological diversity of stomata of representative broadleaved trees in a temperate region: detection with the Sump method. – For Resour Environ 36:57–65

Kokilavani V., Rajendiran, K. (2015) – Variations in foliar morphology and anatomy of Vigna unguiculata (L.) Walp. CV CO-3 after supplementary ultraviolet-B exposure –

Kolla V. A., Vavasseur A., Raghavendra A. S. (2007) – Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis.Planta 225, 1421–1429. doi: 10.1007/s00425-006-0450-6 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Kollist H., Jossier M., Laanemets K., Sébastien Thomine S. (2011) Anion channels in plant cells – FEBS Journal, 2011, 278, 22, 4277-4292 – DOI: 10.1111/j.1742-4658.2011.08370.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2011.08370.x/full – (On our blog)

Kollist H., Nuhkat M., Roelfsema M. R. G. (2014) – Closing gaps: linking elements that control stomatal movement. New Phytol. 203, 44–62. – doi: 10.1111/nph.12832 – PubMed Abstract |Wiley Online Library , CrossRef Full Text | Google Scholar – (On our blog).

Kondo N., Maruta I., Sugahara K. (1980) – Effects of sulfite and pH on abscisic acid-dependent transpiration and on stomatal opening. – Plant Cell Environ. 21, 817-828.

Kondo T., Kajita R., Miyazaki A., Hokoyama M., Nakamura-Miura T., Mizuno S., Masuda Y., Irie K., Tanaka Y., Takada S., Kakimoto T., Sakagami Y. (2010) – Stomatal density is controlled by a mesophyllderived signaling molecule. – Plant Cell Physiol. 51:1–8.

Kong D., Karve R., Willet A., Chen M. K., Oden J., Shpak E. D. (2012) – Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1. Plant physiology 159, 156-168.

Kono A.Umeda-Hara C.Adachi S., Nagata N.Konomi M.Nakagawa T.Uchimiya H.Umeda M. (2007) – The Arabidopsis D-Type Cyclin CYCD4 Controls Cell Division in the Stomatal Lineage of the Hypocotyl Epidermis – The Plant Cell April 2007 vol. 19 no. 4 1265-1277 – doi: http://dx.doi.org/10.1105/tpc.106.046763 – http://www.plantcell.org/content/19/4/1265.full – (On our blog)

Konrad K. R. , Hedrich R. (2008) – The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells. – Plant Journal 55: 161-173

Konrad W., Roth-Nebelsick, A., Grein, M. (2008) Modelling of stomatal density response to atmospheric CO2. – Journal of Theoretical Biology,, 253: 63858.

Kopka J., Provart N. J., Müller-Röber B. (1997) Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. – Plant Journal 11: 871882. – DOI: 10.1046/j.1365-313X.1997.11040871.x – Wiley Online Library |PubMed |CAS | – (On our blog)

Korn R. W. (2009) – A new hypothesis for stomatal placement in Arabidopsis. – J. Theor. Biol. 260:172–174.

Körner C. (1988) – Does global increase of CO2 alter stomatal density? – Flora 181: 253-257.

Körner C., Cochrane P. (1985) – Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. – Oecologia 74: 443–455.

Kouwenberg L. L. R., Kurschner W. M., McElwain J. C. (2007) – Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. – Paleoaltimetry: Geochemical and Thermodynamic Approaches 66, 215–241. – Rev. Mineral. Geochem., 66: 215-241

Kouwenberg L. L. R. , McElwain J. C. , Kurschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H. (2003) – Stomata frequency adjustment of four conifer species to historical changes in atmospheric CO2 – Am. J. Bot. 90. 610-619.- doi: 10.3732/ajb.90.4.610 – http://www.amjbot.org/content/90/4/610.full – (On our blog : https://plantstomata.wordpress.com/2016/12/30/historical-changes-in-atmospheric-co2-and-stomata-frequency-adjustment/) – No. of stomata per mm of needle length. Tsuga, Picea, Larix.

Kramer P. J., Boyer J. S. (1995) – Stomata and gas exchange. In: Kramer P. J., Boyer J. S., Editors Water relations of plants and soils. London: Academic Press. p 257–282.

Kropfitsch (1951) – Apfelgas-Wirkung auf Stomatazahl – Protoplasma 40: 256-265 –

Kropfitsch (1951) – UV-Bestrahlung und Stomatazahl – Protoplasma 40: 266-274 –

Kropfitsch (1951) – Spaltöffnungszahl und Heteroauxin – Protoplasma 40: 461-474 –

Kroupitski Y., Golberg D., Belausov E., Pinto R., Swartzberg D., Granot D., et al. (2009) – Internalization of Salmonella in leaves is induced by light and involves chemotaxis and penetration through open stomata. – Appl Environ Microbiol. 2009 AEM.01084-09. –  [PMC free article] [PubMed] – 

Kubitscheck U., Homann U., Thiel G. (2000) Osmotically evoked shrinking of guard-cell protoplasts causes vesicular retrieval of plasma membrane into the cytoplasm.- Planta 210: 423431. – CrossRef |PubMed |CAS | – (On our blog)

Kubota T. (    ) – Stanford scientists reveal how grass developed a better way to breathe – http://news.stanford.edu/2017/03/16/grass-developed-better-way-breathe/ – (On our blog : https://plantstomata.wordpress.com/2017/09/23/how-grass-developed-a-better-way-to-breathe-stomata/)

Kuchitsu K., Ward J. M., Allen G., Schelle I., Schroeder J. (2002) Loading acetoxymethyl ester fluorescent dyes into the cytoplasm of Arabidopsis and Commelina guard cells. – New Phytologist 153: 527533. – DOI: 10.1046/j.0028-646X.2001.00346.x – Wiley Online Library |CAS | – (On our blog)

Kudoyarova G. R., Veselov D. S., Faizov R. G., Veselova S. V., Ivanov E. A., Farkhutdinov R. G. (2007) – Stomata response to changes in temperature and humidity in wheat cultivars grown under contrasting climatic conditions. – Russ. J. Plant Physiol. 54(1): 46-49 (CrossRef). – (On our blog)

Kuiper P. J. C. (1961) – The effect of environmental factors on the transpiration of leaves, with special reference to stomatal light response – Mededel. Landbouwhogeschool Wageningen, Nederland 58: 1-16. (61(7): 1-49)

Kuiper P. J. C. (1964) – Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. – Pl. Physiol., Lancaster , 39, 952. – CrossRefPubMedCAS | – (On our blog)

Kulshreshtha K., Rai A., Mohanty C. S., Roy R. K., Sharma S. C. (2009) – Particulate Pollution Mitigating Ability of Some Plant Species – Int. J. Environ. Res., 3(1):137-142, Winter 2009 – ISSN: 1735-6865 – http://www.bioline.org.br/pdf?er09016 – (On our blog : https://plantstomata.wordpress.com/2016/12/21/stomata-and-the-ability-of-individual-plant-species-to-intercept-and-mitigate-particulate-pollutants/)

Kumar N. M., Tomar M., Bhatnagar A. K. (2000) – Influence of cadmium on growth and development of Vicia faba Linn. – Ind. J. Exp. Biol. 38: 819-823 – http://nopr.niscair.res.in/bitstream/123456789/24232/1/IJEB%2038(8)%20819-823.pdf– (On our blog : https://plantstomata.wordpress.com/2016/12/20/abnormalities-of-stomata-caused-by-soil-pollution/)

Kümmler A. (1922) – Über die Funktion der Spaltöffnungen weissbunter Blätter – Jahrb. Wiss. Bot. 61: 610-669.

Kundu S. K., Tigerstedt P. M. A. (1998) – Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica). – Tree Physiol, 1998; 19: 47-52.

Küppers M. (1978) – Die Regulation der Spaltöffnungen von Corylus avellana L. in Abhängigkeit von Blattwasserzustand und Luftfeuchte – Dipl.-Arb. Bayreuth u. Frankfurt.

Küppers M. (1984) – Carbon relations and competition between woody species in a central European hedgerow II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway – Oecologia 64: 344–354 – Google Scholar – CrossRef

Kürschner W. M. (1996) – Leaf stomata as biosensors of palaeoatmospheric CO2 levels. -PhD thesis,Laboratory of Palaeobotany and Palynology, Laboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 5: 1–153.

Kürschner W. M., Van der Burgh J., Visscher H., Dilcher D. L. (1996) – Oak leaves as biosensors of Late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology 27: 299–312.

Kürschner W. M.Wagner F.Visscher E. H.Visscher H. (1997) – Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. – Geologische Rundschau 1997;86:512517. – Google Scholar

Kusumi K., Hirotsuka S., Kumamaru T., Iba K. (2012) – Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. – J. Exp. Bot. 63, 5635–5644. doi: 10.1093/jxb/ers216 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Kusvuran S., Dasgan  H. Y., Küçükkömürcü S. and Abak K. (2010) – Relationship between drought tolerance and stomata density in melon. – The 4th International Cucurbitaceae Symposium, 20th-24th September 2009, Changsha, Hunan, China.  – Acta Hort. 871:291-300 – 

Kutter C.Schöb H.Stadler M.Meins Jr. F., Si-Ammour A. (2007) – MicroRNA-Mediated Regulation of Stomatal Development in Arabidopsis – The Plant Cell 2007, Vol. 18 (8) 2417-2429 – doi: http://dx.doi.org/10.1105/tpc.107. –50377 – Abstract/FREE Full Text0 – http://www.plantcell.org/content/19/8/2417.full – (On our blog)

Kwak JM, Kim SA, Hong SW, Nam HG.1997. Evaluation of 515 expressed sequence tags obtained from guard cells of Brassica campestris. Planta202,9–17 – CrossRefMedlineWeb of Science

Kwak J. M., Mäser P., Schroeder J. I. (2008) – The clickable guard cell, version II: interactive model of guard cell signal transduction mechanisms and pathways. In The Arabidopsis Book. Eds. Somerville C.R., Meyerowitz E.M. American Society of Plant Biologists, Rockville, e0114. – Google Scholar – http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243356/ – (On our blog)

Kwak J. M., Moon J. H., Murata Y., Kuchitsu K., Leonhardt N., DeLong A.,Schroeder J. I. (2002) -Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. – Plant Cell 14, 2849–2861. doi: 10.1105/tpc.003335 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog).

Kwak J. M., Murata Y., Baizabal-Aguirre V. M., Merrill J., Wang M., Kemper A., Hawke S. D.Tallman G., Schroeder J. I. (2001) Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis. – Plant Physiology 127: 473485. – doi: http://dx.doi.org/10.1104/pp.010428 – CrossRef |PubMed |CASAbstract/FREE Full Text – (On our blog)

Laanemets K. , Brandt B., Li J., Merilo E., Wang Y.-F., Keshwani M. M., Taylor S. S., Kollist H., Schroeder J. I. (2013) – Calcium-Dependent and -independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming[W] – Plant Physiol. Vol. 163, 2013, 504-513  – http://www.plantphysiol.org/content/163/2/504.full.pdf+html – (On our blog : https://plantstomata.wordpress.com/2016/12/10/stomatal-signaling-network-and-stomatal-opening-via-ca2-sensitivity-priming/)

Laanemets K., Wang Y.-F.Lindgren O., Wu J., Nishimura N., Lee S., Caddell D., Merilo E., Brosche M., Kilk K., Soomets U., Kangasjärvi J., Schroeder J. I., Kollist H. (2013) – Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels. – New Phytol. 197: 88–98 – DOI: 10.1111/nph.12008 –  [PMC free article][PubMed] – http://onlinelibrary.wiley.com/doi/10.1111/nph.12008/full – (On our blog)

Lahav M., Abu-Abied M., Belausov E., Schwartz A., Sadot E. (2004) – Microtubules of guard cells are light sensitive. – Plant Cell Physiol 45:573–582 – CrossRef PubMed – (On our blog)

Lai L. B., Nadeau J. A., Lucas J., Lee E-K., Nakagawa T., Zhao L., Geisler M., Sack F. D. (2005) – The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal lineage. – Plant Cell 17:2754–2767. –Abstract/FREE Full Text – (On our blog)

Laidlow C. J. P., Knight R. C. (1916) – A description of a recording porometer and a note on stomatal behavior during wilting – Ann. Bot. 30: 47-

Lake J. A., Woodward F. I. (2008) – Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. – New Phytologist 179, 397-404. – [Google Scholar]http://www.ncbi.nlm.nih.gov/pubmed/19086289 – (On our blog)

Laloraya M. M., Srivastava H. N., Baksi N., Shah N., Pandya K. J., Singh Y. D. (1972) – Role of growth regulators, flavonoid pigments and peroxidase in stomata and trichome differentiation.  In: V. PURI (ed.) Biology of Land Plants: 143-159. Meerut. –

Lange O. L., Lösch R., Schulze E. D., Kappen L. (1971) – Responses of stomata to changes in humidity – Planta (Berl) 100 : 76-86. – Google Scholar

Langer K., Levchenko V., Fromm J., Geiger D., Steinmeyer R., Lautner S., Ache P., Hedrich R. (2004) The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development. – Plant Journal 37: 828838. – (On our blog).

Lammertsma E. I., de Boer H. J., Dekker S. C., Dilcher D. L., Lotter A. F., Wagner-Cremer F. (2011) – Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. – Proceedings of the National Academy of Sciences, USA 108, 4035–4040.| CrossRef | CAS PubMed Article – (On our blog)

Lampard G. R., Lukowitz W., Ellis B. E., Bergmann D. C. (2009) – Novel and expanded roles for MAPK signaling in Arabidopsis stomatal cell fate revealed by cell type-specific manipulations. – Plant Cell 2009, 21:3506-3517. -10.1105/tpc.109.070110. (PubMed Abstract | Publisher Full Text |PubMed Central Full Text) – (On our blog).

Lampard G. R., MacAlister C. A., Bergmann D. C. (2008)Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. – Science 322:1113–1116. – 10.1126/science.1162263.- Abstract/FREE Full Text– View ArticlePubMed – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Lampard G. R., Wengier D. L., Bergmann D. C. (2014) – Manipulation of mitogen-activated protein kinase kinase signaling in the Arabidopsis stomatal lineage reveals motifs that contribute to protein localization and signaling specificity. – Plant Cell 2014 Aug 29;26(8):3358-71. Epub 2014 Aug 29. – http://www.pubfacts.com/detail/25172143/Manipulation-of-mitogen-activated-protein-kinase-kinase-signaling-in-the-Arabidopsis-stomatal-lineag – (On our blog)

Landré P. (1969) – Quelques aspects infrastructuraux des stomates des cotylédons de la L Moutarde (Sinapis alba L.) – C. R. Hebd. Séances Acad. Sci. 269: 900-992.

Landré P. (1969) – Premières observations sut l’évolution infrastructurale des cellules stomatiques de la Moutarde (Sinapis alba L.) depuis leur mise en place jusqu’à l’ouverture de l’ostiole – C. R. Hebd. Séances Acad. Sci. 269: 943-946.

Landré P. (1970) – Activité golfienne en liaison avec celle du plasmolemme dans les cellules stomatiques de la Moutarde (Sinapis alba L.) lors dela formation de l’ostiolole – C. R. Hebd. Séances Acad. Sci. 271 : 904-907.

Lange O. L., Lösch R., Schulze E.-D., Kappen L. (1971) – Responses of stomata to changes in humidity. – Planta 100 76–86 [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/02/16/stomatal-behavior-and-humidity/)

Larkin J. C., Brown M., Schiefelbein J. W. (2003) – How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. – Annu. Rev. Plant Biol. 54, 403–430. – CrossRefMedlineWeb of Science – (On our blog : https://plantstomata.wordpress.com/2016/03/28/8904/)

Larkin J. C., Marks M. D., Nadeau J. A., Sack F. D. (1997) – Epidermal cell fate and patterning in leaves. – Plant Cell 9: 1109-1120. – https://botany.ubc.ca/sites/botany.ubc.ca/files/larkin_et_al_1997_pl_cell.pdf – (On our blog : https://plantstomata.wordpress.com/2016/10/26/26123/)

Larsen C. M. (1961) – Développement des stomates de peupliers au cours d’une année sèche – Physiol. plant. 14: 877-889 –

Lau O. S.Bergmann D. C. (2012) – Stomatal development: a plant’s perspective on cell polarity, cell fate transitions and intercellular communication. Development 139,36833692 – doi: 10.1242/dev.080523 – Abstract/FREE Full Text – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/21/stomata-a-conceptual-and-technical-framework-3/)

Lau O. S., Davies K. A., Chang J., Adrian J.,  Rowe M. H., Ballenger C. E., Bergmann D. C. (2014) – Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells – Science 26 September 2014: Vol. 345 no. 6204 pp. 1605-1609.

Lawson S. S., Pijut P. M., Michler C.H. (2014) – The cloning and characterization of a poplar stomatal density gene. – Genes and Genomics 36: 427–441.

Lawson S. S., Pijut P. M., Michler C.H. (2014) – Comparison of Arabidopsis Stomatal Density Mutants Indicates Variation in Water Stress Responses and Potential Epistatic Effects – J. Plant Biol. (2014) 57:162-173.(http://www.fs.fed.us/nrs/pubs/jrnl/2014/nrs_2014_lawson_002.pdf) – (On our blog)

Lawson T. (2009) – Guard cell photosynthesis and stomatal function. – New Phytol. 181, 13-34. – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Lawson T., Blatt M. R. (2014) – Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. – Plant Physiol. 2014 Apr;164(4):1556-1570. doi: 10.1104/pp.114.237107. Epub 2014 Feb 27.- CASPubMedArticle – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Lawson T., Craigon J., Black C. R., Colls J. J., Landon G., Weyers J. D. (2002) –  Impact of elevated CO2 and O3 on gas exchange parameters and epidermal characteristics in potato (Solanum tuberosum L.) –  J. Exp. Bot., vol. 53(369), pp. 737–746, 2002.

Lawson T., James W., Weyers J. (1998) – A surrogate measure of stomatal aperture – Journal of Experimental Botany, Vol. 49(325): 1397–1403 – (On our blog : https://plantstomata.wordpress.com/2017/09/19/measuring-stomatal-aperture/)

Lawson T., Lefebvre S., Baker N. R., Morison J. I. L., Raines C. A. (2008) – Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO– Journal of Experimental Botany 59, 36093619. – Abstract/FREE Full Text – (On our blog: https://plantstomata.wordpress.com/2016/07/21/photosynthesis-and-stomatal-responses-to-light-and-co2/)

Lawson T., McElwain J. C. (2016) – Evolutionary trade-offs in stomatal spacing – New Phytologist 210: 1149–1151 – DOI: 10.1111/nph.13972 – http://onlinelibrary.wiley.com/doi/10.1111/nph.13972/full – (On our blog : https://plantstomata.wordpress.com/2016/05/10/stomatal-spacing/)

Lawson T., Morison J. I. L. (2010) – Guard Cell Photosynthesis – Plant Physiol. & Developm., 6th ed., Essay 10.1 – http://6e.plantphys.net/essay10.01.html – (On our blog : https://plantstomata.wordpress.com/2015/10/24/guard-cell-photosynthesis-and-fluorescence/)

Laxalt A. M., Garcia Mata C., Lamattina L. (2016) -The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure – Frontiers Plant Sci. – doi: 10.3389/fpls.2016.00476 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00476/full – (On our blog : https://plantstomata.wordpress.com/2016/09/03/dual-role-of-no-in-stomata/)

Le J., Liu X.-G., Yang K.-Y., Chen X.-L., Zou J.-J., Wang H.-Z., Wang M., Vanneste S., Morita M., Tasaka M., Ding Z.-J., Friml J., Beeckman T., Sack F. (2014) – Auxin transport and activity regulate stomatal patterning and development – Nature Communications 5, – doi:10.1038/ncomms4090 – http://www.nature.com/articles/ncomms4090 – (On our blog : https://plantstomata.wordpress.com/2016/12/16/auxin-stomatal-patterning-and-development/)

Leakey A., Bernacchi C., Ort D., Long S. (2006) – Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions – Plant Cell Environ. 29, 1794–1800 (2006). – Wiley Online LibraryPubMedCAS |

Lebaudy A.Pascaud F.Véry A. A., Alcon C.Dreyer I.Thibaud J. B.Lacombe B. (2010) – Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. – J Biol Chem 285: 62656274 – Abstract/FREE Full Text

Lebaudy A., Vavasseur A., Hosy E., Dreyer I., Leonhardt N., Thibaud J.-B., Véry A.-A., Simonneau T., Sentenac H. (2008) – Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. – Proc. Natl Acad. Sci. USA 105:5271–5276. – doi: 10.1073/pnas.0709732105 – Abstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/22/gckin-activity-plays-pleiotropic-roles-in-stomata/)

Lechowski Z. (1997) – Stomatal response to exogenous cytokinin treatment of the hemiparasite Melampyrum arvense L. before and after attachment to the host. – Biol. Plant. 39: 13- 21, 1997.

Leckie C. P., McAinsh M. R., Allen G. J., Sanders D., Hetherington A.M. (1998) –  Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. – Proc. Natl Acad. Sci. USA,95, 1583715842. – doi: 10.1073/pnas.95.26.15837 – CrossRef |PubMed | – (On our blog)

Lee E., Liu X., Eglit Y., Sack F. (2013)  – FOUR LIPS and MYB88 conditionally restrict the G1/S transition during stomatal formation – J. Exp. Bot. (2013) 64 (16):5207-5219.- doi: 10.1093/jxb/ert313 – http://jxb.oxfordjournals.org/content/64/16/5207.abstract?ijkey=22e89154124e32cc948637e8891ecf4c6450bd72&keytype2=tf_ipsecsha – (On our blog)

Lee E., Lucas J. R., Goodrich J., Sack F. D. (2014) – Arabidopsis Guard Cell Integrity Involves the Epigenetic Stabilization of the FLP and FAMA Transcription Factor Genes – THE PLANT JOURNAL 78(4) ·  · DOI: 10.1111/tpj.12516 – https://www.researchgate.net/publication/261030727_Arabidopsis_Guard_Cell_Integrity_Involves_the_Epigenetic_Stabilization_of_the_FLP_and_FAMA_Transcription_Factor_Genes – (On our blog)

Lee E., Lucas J. R., Sack F. D. (2014)  – Deep functional redundancy between FAMA and FOUR LIPS in stomatal development. – Plant Journ. 2014 May;78(4):555-65. doi: 10.1111/tpj.12489. Epub 2014 Apr 23. – http://www.ncbi.nlm.nih.gov/pubmed/24571519 – (On our blog)

Lee J., Bowling D. J. F. (1992) – Effect of the mesophyll on stomatal opening in Commelina communis. – J. Exp. Bot. 43, 951–957. – doi: 10.1093/jxb/43.7.951 – CrossRef Full Text | Google Scholar – http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Effect-of-the-Mesophyll-on-Stomatal-Opening-in-Commelina-communis.pdf  – (On our blog : https://plantstomata.wordpress.com/2016/02/16/the-effect-of-a-number-of-factors-on-the-opening-of-stomata/).

Lee J., Sack F. D., et al. (2014) – Auxin transport and activity regulate stomatal patterning and development. – Nature Communications DOI:10.1038/ncomms4090

Lee J. S., Kuroha T., Hnilova M., Khatayevich D., Kanaoka M. M., McAbee J. M., Sarikaya M., Tamerler C., Torii K. U. (2012) – Direct interaction of ligand-receptor pairs specifying stomatal patterning. – Genes Dev 2012, 26:126-136. -10.1101/gad.179895.111 (PubMed Abstract | Publisher Full Text |PubMed Central Full Text) – (On our blog).

Lee J. S., Hnilova M., Maes M.Lin Y.-C. L.Putarjunan A.Han S.-K.Avila J.,Torii K. U. (2015) – Competitive binding of antagonistic peptides fine-tunes stomatal patterning – Nature522,439–443(25 June 2015)doi:10.1038/nature14561 – (On our blog : https://plantstomata.wordpress.com/2016/07/04/antagonistic-peptides-and-stomatal-patterning/)

Lee M., Choi Y., Burla B., Kim Y.-Y., Jeon B., Maeshima M., Yoo J.-Y., Martinoia M., Lee Y. (2008) – The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. – Nature Cell Biol 10:1217–1223 – CrossRef PubMedMedlineWeb of ScienceGoogle Scholar – (On our blog)

Lee S., Ishiga Y., Clermont K., Mysore K. S. (2013) – Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. – Peer J. 1, e34 –

Lee S., Senthil-Kumar M., Kang M., Rojas C. M., Tang Y., Oh S., Choudhury S. R., Lee H.-K., Ishiga Y., Allen R. D., Pandey S., Mysore K. S. (2017) – The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity – Scientific Reports 7, Nr.: 9260 – doi:10.1038/s41598-017-08932-9 – https://www.nature.com/articles/s41598-017-08932-9 – (On our blog : https://plantstomata.wordpress.com/2017/09/17/the-new-functional-role-of-small-gtpase-nog1-in-guard-cell-signaling-for-stomatal-response/)

Lee S., Choi H., Suh S., Doo I. S., Oh K. Y., Choi E. J. et al. (1999) – Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 121, 147–152. doi: 10.1104/pp.121.1.147 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Lee S. C.Lan W.Buchanan B. B.Luan S. (2009) – A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. – Proc Natl Acad Sci USA 106: 2141921424 – doi: 10.1073/pnas.0910601106 – Abstract/FREE Full Text – (On our blog)

Lee S. C., Lim C. W., Lan W., He K., Luan S. (2013) – ABA Signaling in guard cells entails a dynamic protein–protein interaction relay from the PYL-RCAR Family receptors to ion channels.- Mol. Plant 6, 528–538. doi: 10.1093/mp/sss078 – PubMed Abstract | CrossRef Full Text | Google ScholarMedline – (On our blog)

Lee S. C., Luan S. (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses – Plant, Cell & Environment, 2012, 35, 1, 53 – DOI: 10.1111/j.1365-3040.2011.02426.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2011.02426.x/full – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Lee S. H., Tewari R. K., Hahn E. J., Paek K. Y. (2007) – Photon flux density and light quality induce changes in growth, stomatal development, photosyntesis plantlets. – Plant cell tiss Org. Cult, (2007) 90: 141-151.- doi:10.1007/s11240-006-9191-2 – http://link.springer.com/article/10.1007/s11240-006-9191-2 – (On our blog : https://plantstomata.wordpress.com/2016/12/19/quality-and-quantity-of-light-affect-stomatal-development/)

Lee Y., Choi Y. B., Suh S., Lee J., Assmann S. M., Joe C. O., Kelleher J. F., Crain R. C. (1996)Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. – Plant Physiol. 110: 987–996 -doi: http://dx.doi.org/10.1104/pp.110.3.987 [PMC free article] [PubMed], Abstract – (On our blog)

Lee Y., Kim Y. J., Kim M.-H., Kwak J. M. (2016) – MAPK Cascades in Guard Cell Signal Transduction – Front. Plant Sci., 11 February 2016 | http://dx.doi.org/10.3389/fpls.2016.00080 – (On our blog)

Lee Y., Kim Y.-W., Jeon B. W., Park K.-Y., Suh S. J., Seo J., Kwak J. M., Martinoia E., Hwang I., Lee Y. (2007) – Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. – Plant J. 52: 803–816 -PMID:17883374 – DOI:10.1111/j.1365-313X.2007.03277.x – [PubMed] – (On our blog)

Lehmann P., Or D. (2015) – Effects of stomata clustering on leaf gas exchange. – New Phytol. 207, 1015 – 1025. (doi:10.1111/nph.13442) –

Leitgeb H. (1888) – Beitrage zur Physiologie der Spaltöffnungsapparate – Graz Bet. Inst. Mitt. 1: 123-

Lekhak H. D., Sen D. N. (1982) – Stomatal responses towards neutral red uptake and particulate movement in some arid zone plants – Biologia Plantarum (Praha) 24(2): 101-108. – (On our blog)

Lemichez E., Wu Y., Sanchez J.  P., Mettouchi A., Mathur J., Chua N. H. (2001) – Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev.15,1808–1816. -doi:10.1101/gad.900401 – CrossRefAbstract/FREE Full TextMedline – (On our blog)

Lemtiri-Chlieh F. (1996) – Effects of internal K+ and ABA on the voltage- and time-dependence of the outward K+-rectifier in Vicia guard cells. – J Membr Biol 1563: 105–116 – CrossRefGoogle Scholar

Lemtiri-Chlieh F., MacRobbie E. A. C. (1994) –  Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid: a patch clamp study. – J. Membr. Biol., 137, 99107. – DOI: 10.1007/BF00233479 – CrossRef |PubMed | – (On our blog)

Lemtiri-Chlieh F., MacRobbie E. A. C., Brearley C. A. (2000) – Inositol hexakisphosphate is a physiological signal regulating the K+ -inward rectifying conductance in guard cells. – Proc. nat. Acad. Sci. USA 97: 8687-8692, 2000.

Lemtiri-Chlieh F., MacRobbie E. A. C., Webb A. A. R., Manison N. F., Brownlee C., Skepper J. N.,Chen J., Prestwich G. D., Brearley C. A. (2003) – Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. – Proc. Natl. Acad. Sci. U.S.A. 100, 10091. doi: 10.1073/pnas.1133289100 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Leonhardt N., Kwak J. M., Robert N., Waner D., Leonhardt G., Schroeder J. I (2004)  – Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. – Plant Cell 16,596615 (2004). – doi: http://dx.doi.org/10.1105/tpc.019000 – CASISIPubMedArticlePubMed Abstract | CrossRef Full Text | Google ScholarAbstract/FREE Full Text -(On our blog)

Leuning R. (1990) – Modeling stomatal behavior and photosynthesis of Eucalyptus grandis.- Australian Journal of Plant Physiology 17, 159175. – CrossRef

Leuning R. (1995) – A critical appraisal of a combined stomatal-photosynthesis model for C3 plants.- Plant Cell Environ. 18, 339355 (1995). – DOI: 10.1111/j.1365-3040.1995.tb00370.x – ArticleWiley Online LibraryCAS |- (On our blog)

Levchenko V., Konrad K. R.Dietrich P.Roelfsema M. R.Hedrich R. (2005) – Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. – Proc. Natl Acad. Sci. USA, 102,42034208. – doi: 10.1073/pnas.0500146102 – CrossRefPubMedCASAbstract/FREE Full Text – (On our blog : https://plantstomata.wordpress.com/2016/07/27/aba-activates-guard-cell-anion-channels-in-stomata/)

Levchenko V., Guinot D. R., Klein M., Roelfsema M. R. G., Hedrich R., Dietrich P. (2008) – Stringent control of cytoplasmic Ca2+ in guard cells of intact plants compared to their counterparts in epidermal strips or guard cell protoplasts. – Protoplasma 233: 61–72 – doi: 10.1007/s00709-008-0307-x. – [PubMed] – (On our blog : https://plantstomata.wordpress.com/2016/07/28/cytoplasmic-ca2-concentrations-in-stomata/)

Levchenko V., Konrad K. R., Dietrich P., Roelfsema M. R., Hedrich R. (2005) – Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proceedings of the National Academy of Sciences of the United States of America 102, 4203–4208.| CrossRef | CAS | open url image1

Levitt J. (1967) – The mechanism of stomatal action – Planta 74 : 101118.

Levitt J. (1974) – The mechanism of stomatal action – Once More – Protoplasma 82: 1-17 (On our blog : https://plantstomata.wordpress.com/2017/03/02/types-of-stomatal-movement/)

Levitt J. (1976) – Physiological Basis of Stomatal Response – in O. L. Lange et al. (eds.) : Water and Plant Life pp 160-168 – Part of the Ecological Studies book series (ECOLSTUD, volume 19) – https://link.springer.com/chapter/10.1007%2F978-3-642-66429-8_10 – (On our blog : plantstomata.wordpress.com/2017/09/18/stomata-fulfill-three-major-functions-in-the-physiology-of-the-plant/)

Leyman B., Geelen D., Quintero F. J., Blatt M. R. (1999) A tobacco syntaxin with a role in hormonal control of guard cell ion channels. – Science 283: 537540. – DOI: 10.1126/science.283.5401.537 – CrossRef |PubMed |CAS | – (On our blog :https://plantstomata.wordpress.com/2016/07/28/a-tobacco-syntaxin-in-stomata/)

Leymarie J., Lasceve G., Vavasseur A. (1998) – Interaction of stomatal responses to ABA and CO2 on Arabidopsis thaliana. – Aust. J. Plant Physiol. 25:785–791. – doi:10.1071/PP98031  – CrossRefWeb of ScienceGoogle Scholar – (On our blog : https://plantstomata.wordpress.com/2016/07/28/stomatal-responses-to-aba-and-co2/)

Leymarie J.,Vavasseur A., Lasceve G.  (1998) – CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana – Plant Physiology and Biochemistry, Volume 36, Issue 7, July 1998, Pages 539-543 – doi:10.1016/S0981-9428(98)80180-0 – http://www.sciencedirect.com/science/article/pii/S0981942898801800 – (On our blog)

Li B., Liu G., Deng Y., Xie M., Feng Z., Sun M., Zhao Y., Liang L., Ding N., Jia, W. (2010) – Excretion and folding of plasmalemma function to accommodate alterations in guard cell volume during stomatal closure in Vicia faba L. – J Exp Bot 61, 3749- 3758.

Li C., Zhang X., Liu X., Luukkanen O., Berninger F. (2006) – Leaf Morphological and Physiological Responses of Quercus aquifolioides along an Altitudinal Gradient – Silva Fennica 40(1): 5–13. (http://www.metla.fi/silvafennica/full/sf40/sf401005.pdf) – (On our blog).

Li C. L.Wang M., Ma X. Y.Zhang W. (2014) – NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis. – Mol Plant 7: 15081521 – DOI: http://dx.doi.org/10.1093/mp/ssu061 – CrossRefMedline – (On our blog)

Li C.-L., Wang M.Wu X.-M.Chen D.-H.Lv H.-J.Shen J.-L.Qiao Z., Zhang W. (2016) – THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis – Plant Physiology February 2016 vol. 170 no. 2 1090-1104 – doi: http://dx.doi.org/10.1104/pp.15.01649 – http://www.plantphysiol.org/content/170/2/1090.full – (On our blog)

Li H., Wang Y., Xiao J., Kun Xu K. (2015) Reduced photosynthetic dark reaction triggered by ABA application increases intercellular CO2 concentration, generates H2O2 and promotes closure of stomata in ginger leaves – Environmental and Experimental Botany, 2015, 113, 11-17 –doi:10.1016/j.envexpbot.2015.01.002 – http://www.sciencedirect.com/science/article/pii/S0098847215000118  – (On our blog)

Li J., Assmann S. M. (1996) – An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. – Plant Cell8,2359–2368. – doi: http://dx.doi.org/10.1105/tpc.8.12.2359 – CrossRefAbstract/FREE Full TextMedline – (On our blog)

Li J., Besseau S., Törönen P., Sipari N., Kollist H., Holm L., Palva E. T. (2013) – Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. – New Phytol 200:457–472 – CrossRef PubMed PubMedCentral Google Scholar

Li J.Lee Y. R.Assmann S. M. (1998) – Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. – Plant Physiol 116: 785795 – Abstract/FREE Full Text

Li J., Li X. M. (2014) – Response of stomatal conductance of two tree species to vapor pressure deficit in three climate zones. – J. Arid Land 6(6): 771-781 (CrossRef). – (On our blog).

Li J., Wang X. Q., Watson M. B., Assmann S. M.(2000) – Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. – Science 287,300–303. – DOI: 10.1126/science.287.5451.300 – CrossRefAbstract/FREE Full TextMedline – (On our blog)

Li Q., Yu L.-j., Deng Y., Li W., Li M.-t., Cao J.-h. (2007) – Leaf epidermal characters of Lonicera japonica and Lonicera confuse and their ecology adaptation. – J. For. Res., 18: 103-108 – https://link.springer.com/article/10.1007%2Fs11676-007-0020-1 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/stomata-in-lonicera-dicots-2/)

Li S., Assmann S. M., Albert R. (2006) –  Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. – PLoS Biol.4:e312. doi: 10.1371/journal.pbio.0040312 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Li S., Harley P. C., Niinemets Ü. (2017) – Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris – Plant, Cell & Environment – doi: 10.1111/pce.13003. – http://onlinelibrary.wiley.com/doi/10.1111/pce.13003/abstract – (On our blog : https://plantstomata.wordpress.com/2017/06/19/key-role-of-stomatal-conductance-in-controlling-ozone-uptake-leaf-injury-and-volatile-release/)

Li T., Kromdijk J., Heuvelink E., van Noort F. R., Kaiser E., Marcelis L. F. M. (2016) – Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity – Front. Plant Sci., 04 February 2016 | http://dx.doi.org/10.3389/fpls.2016.00056 – http://journal.frontiersin.org/article/10.3389/fpls.2016.00056/full – (On our blog)

Li Y., Xu S., Gao J., Pan S., Wang G. (2016) – Bacillus subtilis-regulation of stomatal movement and instantaneous water use efficiency in Vicia faba – Plant Growth Regulation January 2016, Volume 78, Issue 1, pp 43-55 – http://link.springer.com/article/10.1007%2Fs10725-015-0073-7 – (On our blog)

Li Y.-M. et al (2011) Effects of Aluminum Stress on the Stomatal Characteristics and Photosynthesis of Scutellaria baicalensis Georgi Seedlings – Journal of Anhui Agricultural Sciences, 2011-10. (http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHNY201110051.htm) – (On our blog).

Liang J., Zhang J. (1999) – The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering. – Plant Growth Regul. 29: 77-86, 1999.

Liang J., Zhang J., Wong M. H. (1996) – Stomatal conductance in relation to xylem sap abscisic acid concentrations in two tropical trees, Acacia confusa and Litsea glutinosa. – Plant Cell Environ. 19: 93-100, 1996.

Liang J., Zhang J., Wong M. H. (1997) – Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? – Photosynth. Res. 51: 149-159, 1997. – doi:10.1023/A:1005797410190 – http://link.springer.com/article/10.1023/A:1005797410190 – (On our blog)

Liang S.Lu K.Wu Z.Jiang S.-C.Yu Y.-T.Bi C.Xin Q.Wang X.-F.Zhang D.-P. (2015) – A link between magnesium-chelatase H subunit and sucrose nonfermenting 1 (SNF1)-related protein kinase SnRK2.6/OST1 inArabidopsis guard cell signalling in response to abscisic acid – J. Exp. Bot. (2015) 66 (20):6355-6369.- doi: 10.1093/jxb/erv341 – http://jxb.oxfordjournals.org/content/66/20/6355.full – (On our blog)

Lieck E. (1928) – Untersuchungen ¨ber den Einfluss des Lichtes auf die Öffnungsweite unterseitiger und oberseitiger Stomata desselben Blattes – Jhrb. Wiss. Bot. 67: 771-848 –

Lim C. W., Baek W., Jung J., Kim J. H., Lee S. C. (2015) – Function of ABA in stomatal defense against biotic and drought stresses. – Int. J. Mol. Sci. 16, 15251–15270. doi: 10.3390/ijms160715251 – PubMed Abstract | CrossRef Full Text | Google Scholar – http://www.mdpi.com/1422-0067/16/7/15251 – (On our blog)

Lima P., Lopes C. A., CafeFilho A. C. (2010) – Stomatal patterns of Capsicum genotypes resistant or susceptible to Oidlopsis haplophylli. – Summa Phytopathologia 36: 25–29.

Limin Y., Mei H., Guangsheng Z., Jiandong L. (2007) – The changes in water-use efficiency and stoma density of Leymus chinensis along northeast China transect. – Acta Ecologica Sinica 27, 16–23.| CrossRef | – (On our blog).

Lin Y.-S.Medlyn B. E., Duursma R. A.Prentice I. C.Wang H.Baig S.Eamus D.Resco de Dios V.Mitchell P.Ellsworth D. S.Op de Beeck M.Wallin G., Uddling J.Tarvainen L.Linderson M.-L.Cernusak L. A.Nippert J. B.Ocheltree T. O.Tissue D. T.Martin-StPaul N. K.Rogers A.Warren J. M.De Angelis P.Hikosaka K.Han Q. et al. (2015)Optimal stomatal behaviour around the world – Nature Climate Change5,459–464(2015) doi:10.1038/nclimate2550 – (On our blog)

Lin Z. F., Li S. S., Lin G. Z.(1986) – The distribution of stomata and photosynthetic pathway in leaves. – Acta bot. sin. 28. 387-95. (Eng.) – http://www.jipb.net/Abstract_old.aspx?id=129 – (On our blog : https://plantstomata.wordpress.com/2016/10/02/the-stomata-frequency-and-distribution-in-c3-c4-and-cam-plants/) – C3: Allium, Arachis, Brassica, 

Lind C. et al. (2015) – Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr. Biol. 25, 928–935 (2015).

Linder B. (1994) – Ein langsam aktivierender Anionenkanal in der Plasmamembran von Schließzellprotoplasten. – Dissertation, Universität Göttingen, Cuvillier Verlag, Göttingen

Linder B., Raschke K. (1992) – A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing.- FEBS Lett. 313, 2730. –DOI: 10.1016/0014-5793(92)81176-M – CrossRefPubMedCASCrossRefMedlineWeb of ScienceGoogle Scholar – (On our blog)

Linsbauer K. (1917) – Beiträge zur Kenntnis der Spaltöffnungsbewegungen – Flora N.S. 9: 100-143.

Linsbauer K. (1927) – Weitere Beobachtungen an Spaltöffnungen – Planta 3:

Lionel D., De Silva R., Hetherington A. M., Mansfield T. A. (1998) –  The regulation of apoplastic calcium in relation to intracellular signalling in stomatal guard cells – Zeitschrift für Pflanzenernährung und Bodenkunde, 1998, 161, 5, 533 – DOI: 10.1002/jpln.1998.3581610506 – Wiley Online Library – http://onlinelibrary.wiley.com/enhanced/doi/10.1002/jpln.1998.3581610506 – (On our blog)

Litz R. E., Kimmins W. C. (1968) – Plasmodesmata between guard and accessory cells – Can. J. Bot. 46: 1603-1604. – Google Scholar

Liu F.Jensen C. R.Shahanzari A.Andersen M. N.Jacobsen S. E. (2005) – ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. – Plant Science 2005;168:831836. – http://dx.doi.org/10.1016/j.plantsci.2004.10.016 http://www.sciencedirect.com/science/article/pii/S0168945204004674 – (On our blog)

Liu J., Elmore J. M., Fuglsang A. T., Palmgren M. G., Staskawicz B. J., Coaker G. (2009) – RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. –PLoS Biol. 2009;7:1000139. – [PMC free article] [PubMed] –

Liu K.Fu H.Bei Q.Luan S. (2000) – Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. – Plant Physiol 124: 13151326 – Abstract/FREE Full Text

Liu K., Luan S. (1998) Voltage-dependent K+ channels as targets of osmosensing in guard cells. – Plant Cell 10: 19571970. – doi: http://dx.doi.org/10.1105/tpc.10.11.1957 – CrossRef |PubMed |CAS | – (On our blog)

Liu L., McDonald A. J. S., Stadenberg I., Davies W. J. (2001) – Abscisic acid in leaves and roots of willow: significance for stomatal conductance. – Tree Physiol. 21: 759-764, 2001. – PMID:11470662 – https://www.ncbi.nlm.nih.gov/pubmed/11470662 – (On our blog)

Liu S., Li H., Lv X., Ahammed G. J., Xia X., Zhou J., Shi K,, Asami T., Yu J., Zhou Y. (2016) – Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity – Scientific Reports 6, Article number: 20212 (2016) – doi:10.1038/srep20212 – http://www.nature.com/articles/srep20212 – (On our blog)

Liu T., Ohashi-Ito K., Bergmann D. C. (2009) – Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. – Development 136:2265–2276. – 10.1242/dev.032938. – View ArticlePubMed – Abstract/FREE Full Text – http://dev.biologists.org/content/136/13/2265.long?trendmd-shared=0 – (On our blog : https://plantstomata.wordpress.com/2016/07/13/stomatal-bhlh-genes/)

Liu W. T., Pool R., Wenkert W., Kriedemann P. E. (1978) – Changes in Photosynthesis, Stomatal Resistance and Abscisic Acid of Vitis Labruscana Through Drought and Irrigation Cycles- Am. J. Enol. Viticult. 29, 239–246 (1978). – http://www.ajevonline.org/content/29/4/239 – (On our blog)

Liu X., Mak M., Babla M., Wang F., Chen G., Veljanoski F., Wang G., Shabala S., Zhou M., Chen Z.-H. (2014) Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley – Frontiers in Plant Science, 2014, 5  – http://dx.doi.org/10.3389/fpls.2014.00634 – http://dx.doi.org/10.3389/fpls.2014.00634 – http://journal.frontiersin.org/article/10.3389/fpls.2014.00634/abstract – (On our blog)

Liu Y. K., Liu Y. B., Zhang M. Y., Li D. Q. (2010) – Stomatal development and movement: the roles of MAPK signaling. – Plant Signal. Behav. 5, 1176–1180. doi: 10.4161/psb.5.10.12757 – PubMed Abstract | CrossRef Full Text | Google Scholar – (On our blog)

Liu Y.-L., Yue S.-S., Wang, J. (2005) – Effect of Red Light on the Stomatal Opening and Physiological Characteristics of Vicia faba L. – (http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBNY200505014.htm) – (On our blog).

Livanos P., Galatis B., Apostolakos P. (2015) – Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes – Protoplasma · August 2015 – https://www.researchgate.net/publication/280868535_Deliberate_ROS_production_and_auxin_synergistically_trigger_the_asymmetrical_division_generating_the_subsidiary_cells_in_Zea_mays_stomatal_complexes – (On our blog)

Livingston B. E. (1909) – Stomata and transpiration in Tradescantia zebrina – Science 29: 269-

Livingston B. E., Estabrook A. H. (1912) – Observations on the degree of stomatal movement in certain plants – Bull. Torr. Bot. Club 39: 15-

Llan N., Schwartz,A., Moran N. (1994) – External pH effects on the depolarization-activated K channels in guard cell protoplast of Vicia faba. – J. Gen. Physiol. 103: 807-831 – 

Lloyd F. E. (1908) – The physiology of stomata. – Publ. Carnegie Inst. Washington 82, 1–142 (1908). – https://archive.org/details/physiologyofstom00lloyuoft – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/24073)

Lloyd F. E. (1912) – The relation of transpiration and stomatal movement to water content of leaves in Fouquiera splendens – Plant World 12: 1-

Lloyd F. E. (1913) – Leaf water and stomatal movement in Gossypium and a method of direct visual observation of stomata in situ – Bull. Torrey Bot. Club 40: 1-2

Lloyd J. (1991) – Modeling stomatal responses to environment in Macadamia integrifolia. – Australian Journal of Plant Physiology 18, 649660. – CrossRef

Lloyd J., Syvertsen J.P., Kriedemann P.E., Farquhar G.D. (1992) – Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. – Plant Cell & Environment 15: 873–899. – DOI: 10.1111/j.1365-3040.1992.tb01021.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1992.tb01021.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/02/co2-diffusion-from-stomata-to-the-sites-of-carboxylation/)

Loftfield J. V. G. (1921) – The behavior of stomata – Carnegie Inst. Wash. Publ. 314 : 104 – https://archive.org/stream/behaviorofstomat00loftuoft/behaviorofstomat00loftuoft_djvu.txt – (On our blog : https://plantstomata.wordpress.com/2017/09/16/behavior-of-stomata-2/)

Lohse G., Hedrich R. (1992)
– Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells. Modulation by extracellular factors and seasonal changes. – Planta 166:206–214 – Google Scholar

Lohse G., Hedrich R. (1995) – Anions modify the response of guard cell anion channels to auxin. – Planta 197: 546-552, 1995. – doi:10.1007/BF00196677 – http://link.springer.com/article/10.1007/BF00196677 – (On our blog)

Lomax B. H., Woodward F. I., Leitch I. J., Knight C. A., Lake J. A. (2009) – Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions. – New Phytol 181: 311–314

Lopushinsky W. (1969) – Stomatal closure in conifer seedlings in response to leaf moisture stress. – Bot. Gaz. 130: 258-263 – (On our blog : https://plantstomata.wordpress.com/2017/03/02/stomatal-closure-in-response-to-leaf-moisture-stress/)

Lösch R. (1976) – Die Reaktion der Stomata isolierter Epidermen auf Luftfeuchtigkeit, Temperatur, CO2-Gehalt der Luft und Wasserspannung (Untersuchungen an Polypodium vulgare). – Diss. Würzburg 1976.

Lösch R. (1977) – Responses of Stomata to Environmental Factors – Experiments with Isolated Epidermal Strips of Polypodium vulgare. I. Temperature and Humidity – Oecologia (Berl) 29: 85-97. – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/31549)

Lösch R. (1977) – Responses of Stomata to Environmental Factors – Experiments with Isolated Epidermal Strips of Polypodium vulgare. II. Leaf Bulk Water Potential, Air Humidity, and Temperature – Oecologia (Berl.) 39: 229-238. – (On our blog : https://plantstomata.wordpress.com/2017/01/17/stomata-respond-to-water-potential-air-humidity-and-temperature/)

Lösch R. (1978) – Changes in stomatal potassium content induced by changes in air humidity and temperature – Ber. dtsch. bot. Ges. 91 (1978): 645-656. – (On our blog : https://plantstomata.wordpress.com/2017/03/14/stomatal-responses-to-changes-in-environmental-parameters/)

Lösch R. (1978) – Veränderungen im stomatären Kalium-Gehalt bei Änderungen von Luftfeuchte und Umgebungstemperatur. – Ber. dtsch. bot. Ges. 91 (1978): 645-656. – (On our blog : https://plantstomata.wordpress.com/2017/03/14/stomatal-responses-to-changes-in-environmental-parameters/)

Lösch R. (1979) – Stomatal responses to changes in air humidity. In: Structure, Function, and Ecology of Stomata (ed. D. N. Sen). Jodhpur 1979.

Lösch R., Bressel C. (1979) – Guard Cell Potassium Relations in Leptosporangiate Ferns Showing Diverse Types of Stomata – Flora 168: 109-120 – (On our blog : https://plantstomata.wordpress.com/2017/03/07/35533/)

Lösch R., Schenk B. (1978) – Humidity responses of stomata and the potassium content of guard cells – J. exp. Bot. 29: 781-787.

Loucos K. E., Simonin K. A., Barbour M. M. (2016) – Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species – Plant, Cell & Environment, Accepted, unedited articles published online and citable – DOI: 10.1111/pce.12865 – http://onlinelibrary.wiley.com/doi/10.1111/pce.12865/abstract – (On our blog)

Loveys B. R., Kriedemann P. E. (1974) – Internal Control of Stomatal Physiology and Photosynthesis. I. Stomatal Regulation and Associated Changes in Endogenous Levels of Abscisic and Phaseic Acids – Australian Journal of Plant Physiology 1(3) 407-415  -doi:10.1071/PP9740407  – http://www.publish.csiro.au/?paper=PP9740407 – (On our blog)

Lu P., Zhang S. Q., Outlaw W. H. Jr, Riddle K. A. (1995) – Sucrose: a solute that accumulates in the guard-cell apoplast and guard-cell symplast of open stomata. – FEBS Lett 362:180–184 – CrossRef PubMed Google Scholar

Lu Z., Quinones M. A., Zeiger E. (1993) – Abaxial and adaxial stomata from pimacotta (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality. – Plant Cell. Environ., 16: 851-885. (No abstract found – Who can send us one ?)

Luan S. (2002) – Signalling drought in guard cells. – Plant Cell and Environment 25: 229-237. – DOI: 10.1046/j.1365-3040.2002.00758.x – http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3040.2002.00758.x/abstract – (On our blog)

Luan S.Li W.Rusnak F.Assmann S. M.Schreiber S. L. (1993) – Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. – . Proc Natl Acad Sci USA 90: 22022206 – Abstract/FREE Full Text

Lucas J. R., Nadeau J. A., Sack F. D. (2006) – Microtubule arrays and Arabidopsis stomatal development. – J Exp Bot 57, 71-79. – doi: 10.1093/jxb/erj017  – http://jxb.oxfordjournals.org/content/57/1/71.abstract – (On our blog)

Luomala E. M., Laitinen K., Sutinen S., Kellomaki S., Vapaavuori E. (2005) – Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2and temperature. – Plant Cell Environ. 28, 733–749 (2005). – DOI: 10.1111/j.1365-3040.2005.01319.x – CAS Article – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.2005.01319.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/10/02/co2-temperature-and-stomatal-density/)

Lurie S. (1977) – Stomatal development in etiolated Vicia faba.  Relationship between structure and function – Aust. J. Plant Physiol. 4: 61-68 –

Lushnikov A. A., Vesala T., Kulmala M., Hari P. (1994) – A semiphenomenologicai model for stomatal gas transport. – Journal of Theoretical Biology 171: 291 311 –

Lv S., Zhang Y., Li C., Liu Z., Yang N., Pan L., Wu J., Wang J., Yang J., Lv Y., Zhang Y., Jiang W., She X., Wang G. (2017) – Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner – New Phytol. (Online Version) – DOI: 10.1111/nph.14813 – (On our blog : https://plantstomata.wordpress.com/2017/09/22/sls-play-a-prominent-role-together-with-h2o2no-production-and-slac1-activation-in-inducing-stomatal-closure-in-an-aba-independent-mechanism/)

Advertisements

Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s