Stomata and global warming

 

Global Warming and Stomatal Complex Types

by Abdulrahaman A. A., Oladele F. A. (2008)

in Ethnobotanical Leaflets 12: 553-556. 2008.

(http://www.ethnoleaflets.com/leaflets/global.htm)

EXCERPT

In relation with this, plants that possessed stomata with many subsidiary cells (e.g. tetracytic and anomocytic types) will play an important role in reducing greenhouse gases especially carbondioxide. To proof this fact, Obiremi and Oladele (2001) and Oyeleke et al (2004) studied the relationship between the stomatal complex types and transpiration rate in some selected Citrus species and some afforestation tree species respectively.

In both studies, stomatal complex types with many subsidiary cells transpired higher than those with less number. This translates to mean that the latter opens faster to allow carbon dioxide to enter the leaves and water vapour to escape to the atmosphere via the stomatal openings than the former. More over the other aspect of stomatal opening that favour water loss to the atmosphere (i.e. encouraging high rate of transpiration) is also advantageous by humidifying the atmospheric air.

Amaranthus stomata - http://www.ethnoleaflets.com/leaflets/global_files/image002.jpg
Amaranthus stomata – http://www.ethnoleaflets.com/leaflets/global_files/image002.jpg
Amaranthus stomata - http://www.ethnoleaflets.com/leaflets/global_files/image004.jpg
Amaranthus stomata – http://www.ethnoleaflets.com/leaflets/global_files/image004.jpg

However, to achieve reasonable atmospheric purification, plants with hypostomatic nature of the leaves (i.e. stomata being found or located on the abaxial surface only), lower frequency of stomata with many subsidiary cells (e.g. anisocytic, tetracytic and anomocytic), higher frequency of stomata with frequency of stomata with little subsidiary cells (e.g. cyclic, paracytic and diacytic), less heterogeneous composition of stomatal complex types, less stomatal density and index (i.e. less distribution of stomata on the surface of leaves), and lastly, probably occurrence of trichome (Figures 9 – 11) may be more suitable for afforestation in dry locations. Plants with opposite conditions of the above stomatal features may be more suitable for afforestation in wet environments. These conditions had earlier identified by Oyeleke et al. (2004) and AbdulRahaman and Oladele (2003; 2004).

Read the full story: Ethnobotanical Leaflets

Published by

Willem Van Cotthem

Honorary Professor of Botany, University of Ghent (Belgium). Scientific Consultant for Desertification and Sustainable Development.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s